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ABSTRACT

MULTI-OBJECT DETECTION AND TRACKING

IN SENSOR NETWORKS AND VIDEO SEQUENCES

Guohua Ren, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Ioannis D. Schizas

Firstly the problem of tracking multiple objects using observations acquired at spa-

tially scattered sensors is considered here. Sensors are measuring a sort of signal attenua-

tion from the present targets/sources. Multiple moving targets may die and be born at some

point of the monitored period while the states of the sources, e.g. temperature of a fire

source, CO/CO2 density of gas source, are also changing with time. In the case of targets

tracking, radar signals sent out by sensors and later bounced back from the surface of the

targets are measured at sensors, and the task is to find out the true position/velocity infor-

mation hidden in the sensor measurements. While in the scenario where sources are present

in the sensed field, the aforementioned signal attenuation is generally not available, so the

task is to estimate the states of the corresponding sources and in the meanwhile recovering

the unknown sensing observation matrix.

Concretely, in this thesis a framework is put forth where norm-one regularized factor-

ization is employed to decompose the sensor observation data covariance matrix into sparse

factors whose support facilitates recovery of sensors that acquire informative measurements

about the targets. This novel sensors-to-targets association scheme is integrated with par-
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ticle filtering mechanisms to perform accurate tracking. Precisely, distributed optimization

techniques are employed to associate targets with sensors, and Kalman/particle filtering is

integrated to perform target tracking using only the sensors selected by the sparse decom-

position scheme. Different from existing alternatives, the novel algorithm can efficiently

track and associate targets with sensors even in noisy settings.

As for the multi-source tracking scenario, two different sensing architectures are

studied: i) A fusion-center based topology where sensors have a limited power budget;

and ii) an ad hoc architecture where sensors collaborate with neighboring nodes enabling

in-network processing. A novel source-to-sensor association scheme and tracking is intro-

duced by enhancing the standard Kalman filtering minimization formulation with norm-

one regularization terms. In the fusion-based topology a pertinent transmission power

constraint is introduced, while coordinate descent techniques are employed to recover the

unknown sparse observation matrix, select pertinent sensors and subsequently track the

source states. In the ad hoc topology, the centralized minimization problem is written in a

separable way and the alternating direction method of multipliers is utilized to construct an

in-network algorithmic tracking and association framework.

The problem of distributed tracking of multiple targets is tackled by exploiting sen-

sor mobility and the presence of sparsity in the sensor data covariance matrix. Sparse ma-

trix decomposition relying on norm-one/two regularization is integrated with a kinematic

framework to identify informative sensors, associate them with the targets and enable them

to follow closely the moving targets. Coordinate descent techniques are employed to deter-

mine in a distributed way the target-informative sensors, while the modified barrier method

is employed to minimize proper error covariance matrices acquired by extended Kalman

filtering. Different from existing approaches which force all sensors to move, here local up-

dating recursive rules are obtained only for the target-informative sensors that can update

their location and follow closely the corresponding targets while staying connected.
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Lastly, we extend out tracking scheme to tackle the problem of tracking multiple

objects in a sequence of frames (video). The task of identifying objects is formulated as

the process of factorizing a properly defined kernel covariance matrix into sparse factors.

The support of these factors will point to the indices of the pixels that form each object.

A coordinate descent approach is utilized to determine the sparse factors, and extract the

object pixels. A centroid pixel is estimated for each object which is subsequently tracked

via Kalman filtering. A novel interplay between the sparse kernel covariance factorization

scheme along with Kalman filtering is proposed to enable joint object detection and track-

ing, while a divide and conquer strategy is put forth to reduce computational complexity

and enable real-time tracking. Extensive numerical tests on both synthetic data and thermal

video sequences demonstrate the effectiveness of the novel approach and superior tracking

performance compared to existing alternatives.
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CHAPTER 1

INTRODUCTION

In recent years, there has been increasing interest on sensor network (SN) systems

due to the expanding needs on civilian and military surveillance and monitoring, e.g., air

pollution level tracking, forrest fire monitoring, operation of unmanned aerial vehicles

(UAVs) for reconnaissance and national defense systems. The availability of cheaper,

smaller and intelligent sensor nodes make SN even more popular. These sensors are

equipped with wireless interfaces e.g., signal emitter and/or receiver, thus they can com-

municate with each other and cooperate on measuring and monitoring fields or parameters

of interest. We mainly focus on two important applications of SN, multiple target tracking

and environmental sources monitoring here.

Object detection and tracking in videos is another active research area in both mil-

itary and civilian surveillance systems. Different camera sensors provide different data

modes to utilize. Recently, un-cooled thermal sensors have become affordable, as a result,

there is an increasing interest in utilizing thermal sensors to facilitate video monitoring

tasks. In this work, we aim at proposing novel methodologies to process thermal videos,

thus precisely identifying and localizing moving objects present in the acquired video se-

quence.

1



1.1 Goals of the thesis

1.1.1 Distributed Spatio-Temporal Association and Tracking of Multiple Targets Using

Multiple Sensors

Sensor networks allow the collection and distributed processing of information in

challenging environments whose structure is not known and is dynamically changing with

time, e.g. battlefields. In such harsh environments both equipment and infrastructure,

as well as humans, are prone to threats that may be generated due to malicious attacks,

functional failures and even human errors. Threats can be quite unpredictable both spatially

and temporally, since they could happen anywhere anytime within a setting that consists of

heterogeneous units, e.g,. communication units, sensing units and humans. Effective and

fast target detection and tracking is really essential to avoid any potential negative effects.

A necessary step towards multi-target tracking is to associate sensors with targets

across space and time. Targets present in the sensed field affect only a small portion of

the deployed sensor networks (SNs). Thus, given the limited resources, it is pertinent to

identify the sensors that acquire informative observations about the targets and use only

those which provide this information. We characterize such sensors as ‘target-informative’

sensors in this manuscript. Many existing tracking techniques require all sensors to be

active [1,26,82,84,133] which may be resource-consuming given the locality of the targets

and the fact that only a few sensors bear information about the field targets. To this end,

a decentralized algorithmic framework is developed here that does not require a central

fusion center and it can associate sensors with targets combined with tracking.

An algorithmic framework is proposed here that associates targets with the sen-

sors which acquire informative measurements about these targets, and subsequently per-

forms tracking using only these informative sensors. Note that existing data association

schemes [31, 42, 52, 79, 83, 118] match measurements with targets across time and rely on

2



probabilistic models. Differently, the sensors-targets association task here is relying only

on the acquired sensor data and no probabilistic models are adopted. Specifically, sensors

which are positioned close to the same target, acquire data measurements that tend to be

correlated, no matter what the underlying physical model is. Such correlations induce a

sparse structure (presence of many zeros) in the sensor data covariance matrix. Sparsity is

an attribute found in many natural and man-made signals, and it has been exploited in a

wide range of applications including sparse regression, sub-Nyquist sampling and statisti-

cal inference, e.g., see [25, 114].

To facilitate association of sensor measurements with targets a pertinent framework

is derived to analyze the sensor data covariance into sparse factors whose support (position

of the nonzero entries) will indicate subsets of sensors sensing the same target. Different

from [43], [51], [68], [69], [115], [137], the matrix factorization scheme developed here

does not require a central fusion center and does not impose structural requirements to the

unknown factors such as orthogonality and/or positivity of the factor entries. The idea of

covariance sparse factorization was also discussed in [101]. However, the work in [101] is

dealing with stationary settings where the targets/sources present in the field are static and

immobile, while linear data models are considered not pertinent for tracking applications.

Here the framework in [42] is generalized in nonlinear highly dynamic and time-varying

settings where sensors acquire information about multiple moving targets whose number

may also be changing in time.

There is a plethora of strategies which address the multi-target-tracking problem, for

example see the partial list [8, 9, 61, 71, 76–78, 119] and references therein. The track-

ing process here is carried out via particle filtering (PF) [5, 29, 41] due to its flexibility to

handle nonlinear and/or nonGaussian scenarios. PF will be combined here with the afore-

mentioned sparse factorization scheme to cope with the time-varying settings and perform

real-time association of sensors and targets. A common assumption present in existing
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multi-target schemes, e.g., [31, 42, 52, 79, 83, 118], is that sensor measurements contain in-

formation about just one target. Here we relax this assumption given that sensors may be

sensing multiple targets at the same time among which one of them is closer to the sensor

than the rest.

1.1.2 Distributed Spatio-Temporal Association and Tracking of Multiple Sources in Sen-

sor Network

The task of tracking simultaneously many sources using sensor measurements at

spatially scattered locations is extremely useful in a number of applications varying from

surveillance to environmental monitoring [3]. The majority of existing tracking approaches,

such as the network schemes in see e.g., [1], [27, 28, 70, 82, 84, 133], extend standard tech-

niques such as Kalman filtering or particle filtering, see e.g., [4, 29]. The aforementioned

approaches are developed under the assumption that the sensing model parameters are

available. Such an assumption enables sensors to identify which sources they sense, which

can further simplify the tracking process. However, in many settings it is not known which

sensors observe each of the underlying sources in a monitored field, while the signal at-

tenuation from a source to a sensor is unavailable giving rise to an observation model with

unknown parameters. In such settings a source-to-sensor association scheme is essential.

Alternative Kalman filtering schemes have been designed for settings where there is

uncertainly in the state and observation model parameters, e.g., [73,98], [124], [126], [59],

[90]. Different from these approaches, here no a priori information is available about the

observation model parameter values, i.e., the sensing matrix entries. In practice, sources

present in the monitored field are localized and affect only a small percentage of the sen-

sors present in the sensor network (SN). Interestingly, such a localized structured can be

translated to a sensing matrix which has a large number of negligible (or zero) entries, i.e.,

a sparse matrix. Sparsity is exploited here to recover the unknown sparse sensing matrix in
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the measurement model, while tracking the different source states. To this end, norm-one

regularization techniques, see e.g., [114, 131], will be employed to enhance the standard

Kalman filter framework. The idea of sparsity has been exploited in the context of track-

ing [22, 60, 122], though the difference with respect to the present setting is that sparsity is

present in the source states and not in the sensing matrix.

In practice, sources present in the monitored field are localized and affect only a small

percentage of the sensors present in the sensor network (SN). For instance, ground vibrating

sources produce signals that undergo an exponential attenuation as they propagate in the

ground. Such signals can be sensed in the measurements of sensors located a few meters

away from the sources [116]. Interestingly, such a localized structured can be translated

to a sensing matrix which has a large number of negligible (or zero) entries, i.e., a sparse

matrix. Sparsity in the sensing matrix will be exploited here to jointly recover the sensing

matrix and obtain tracking estimates for the, not necessarily sparse, field source states. The

minimization formulation for the Kalman filter/smoother, see e.g., [4], will be enhanced

with a pertinent norm-one regularization term. The sparsity-inducing terms will enable

associating sources with sensors, and thus identify the sensors that acquire informative

observations about the sources and use only those subsequently for tracking. Similar to the

multi-target tracking strategy, here the sparsity-inducing schemes will rely only on sensor

measurements to associate sources with sensors.

Two different network topologies of complementary nature are considered here. A

fusion center (FC) based topology is treated first in which a fusion-center is responsible

for processing the sensor data and carrying out the association and tracking. Sparsity is

combined with the introduction of a power constraint that enables utilization of a small per-

centage of sensors that are source-informative while a transmission power budget from the

sensors to the fusion center is not exceeded. The resulting novel constrained minimization

formulation is tackled here via coordinate descent tools, see e.g., [10]. Power considera-
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tions in estimation and tracking have been considered in estimation and tracking [23], [56],

though without taking into consideration issues such as source-to-sensor association and

unknown model parameters.

The requirement for a more scalable and failure-resilient sensing architecture, while

compromising computational speed, leads to tackle the novel norm-one regularized Kalman

minimization framework in an ad hoc sensing topology. After reformulating the latter

minimization problem in a separable form, the alternating direction method of multipliers

(ADMM) combined with block coordinate descent, see e.g., [10, 15], is utilized to obtain

an in-network algorithmic scheme that is capable of associating sensors with sources while

tracking the source states.

1.1.3 Exploiting Sensor Mobility and Covariance Sparsity For Distributed Tracking of

Multiple Sparse Targets

In recent years, potential applications of sensor networks (SN) have expanded due to

the low cost of the sensing units, their ability to cover large areas and the robustness dis-

tributed processing offers. One characteristic exploited more and more in sensor networks

is sensor mobility and the design of kinematic rules that control sensor movement. Sen-

sor mobility adds extra flexibility to a sensor network making it capable of covering larger

areas, as well as being more energy efficient and robust [107]. Mobile sensors have been

extensively utilized in target tracking applications to enable sensors to closely follow the

moving target(s) and provide accurate target location estimates [21,80,86]. The aforemen-

tioned approaches require all the sensors to keep active [86], [80], [21], which may lead

to excessive resource consumption despite the targets’ locality and the fact that in practice

a small portion of sensors may possess useful information about the present targets. The

aim here is to design an adaptive scheme that exploits mobility and covariance sparsity to
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associate targets with sensors, and then properly determine kinematic strategies only for

the informative sensors which will closely follow the field targets.

In the absence of sensor mobility, there has been a plethora of approaches for track-

ing multiple targets while associating targets’ with sensor measurements. Existing works

[42,52,85,118] associate measurements acquired at static sensors with targets across time

and rely heavily on probability models. A distributed Kalman filtering scheme is pro-

posed in [20] relying on information diffusion strategies. In [20] only neighboring sensors

collaborate, though all sensors in the network are utilized to track a single source while

sensors have fixed locations. A different approach is followed in [99], where consensus-

averaging is employed across the whole sensor network and all the sensors are forced to

be active irrespective of the quality of their measurements. In [70], a related single-target

distributed tracking approach is proposed, in which extended Kalman filtering is employed

for tracking. A probability model is assumed to determine informative sensors which may

lead to instability due to its dependence on the tracking estimates. Different in this paper,

distributed tracking of multiple targets will be considered, while sensor mobility will be

exploited, and combined with a sensor-to-target association scheme for selecting target-

informative sensors without the need of relying on model parameters and state estimators

that maybe inaccurate and result divergence. It should be pointed out that the distributed

characterization here is referring to the fact that i) only neighboring sensors need to com-

municate with each other and collaborate for multi-target tracking; while ii) processing will

take place in a few head sensors and will not involve all sensors in the network but only

those sensors that bear information about the moving targets.

When tracking multiple-targets with mobile sensors, the approach in [80] proposed

an active sensing model, whereas the target-sensor association is based on a nearest neigh-

bor rule which heavily relies on the accuracy of the state estimator while a central process-

ing center is required. The scheme in [66] tackled the problem of moving sensors using a
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flock control law where all sensors are utilized, while the targets are some of the moving

sensors whose position is known. The approach in [36] is utilizing clustering and neural

networks to move sensors under the assumption that target locations are available. The

scheme in [37], designs a Kalman filtering approach with gradient descent based kinematic

rules under the assumption that it is known which targets every sensor observes bypassing

in that way the essential sensor-to-target association step. These schemes involve move-

ment of all sensors at every time instant leading to resource-demanding algorithms that do

not exploit spatial locality of the field targets.

Measurements corresponding to sensors which are close to the same target tend to be

statistically correlated. Given that targets are spatially localized and affect small portions

of the sensor network, an approximately sparse sensor data covariance matrix is emerg-

ing. Sparsity (presence of a many zero entries in a vector or matrix), has been exploited

in a wide range of applications including sparse regression, and statistical inference, e.g.,

see [114, 137]. The problem of associating targets to sensors, as well as determining the

sensors with target-informative measurements is formulated here as the task of decompos-

ing a matrix into sparse factors. The sparse matrix factorization techniques in [93, 101]

are integrated here with proper sensor kinematic strategies and tracking techniques to ex-

ploit sensor mobility. Note that in [93, 101], a stationary (immobile) sensor network is

considered where sensors have fixed locations. Tracking in [93, 101] is performed by im-

mobile sensors, whereas here tracking is generalized to a mobile network with the more

challenging task of designing and integrating with multi-target tracking, sensor kinematic

strategies that improve tracking accuracy while preserving local sensor network connec-

tivity. Norm-one and norm-two regularization mechanisms are employed to formulate a

pertinent minimization framework that recovers sparse covariance factors, while estimates

the number of targets on the field. Coordinate descent techniques [10, 112] are employed

to derive local updating recursions that allow sensors to associate with targets.
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Different from the aforementioned tracking schemes using sensor mobility, here only

the target-informative sensors will be enabled to move at every time-instant and track

closely the moving targets. Thus, only target-affected portions of the sensor network will

be used for tracking the moving targets, potentially resulting better resource consumption

and prolongation of the network lifetime. Kinematic rules will be designed by minimiz-

ing proper error covariance matrices obtained by extended Kalman filtering recursions [63]

used to track each of the targets. The minimization will be performed under connectivity

constraints that ensure the moving sensors stay connected and are able to communicate.

The modified barrier method [10, pg. 423] is employed to solve a pertinent constrained

minimization problem and obtain distributed kinematic rules that the mobile sensors can

apply locally without the need of a central controller. In contrast to existing approaches, the

novel framework identifies and controls the movement only of target-informative sensors

allowing for accurate tracking.

1.1.4 Regularized Kernel Matrix Decomposition in Thermal Video Multi-Object Track-

ing

Tracking of moving objects in videos is a fundamental problem in computer vision,

and a plethora of work has been put forth to address the tracking problem using RGB (red,

green, blue) cameras, see e.g., [108], [14], [74], [57]. Nonetheless, there are many chal-

lenges that still need to be addressed such as object/camera motion, varying appearances

of the objects, different illumination conditions and occlusions. Further, the presence of a

changing number of multiple objects in a frame sequence makes tracking still an extremely

challenging problem.

Recently, un-cooled thermal sensors have become affordable and achieve improved

resolution capability [35]. Further, there is an increasing interest in utilizing thermal sen-

sors to facilitate vision tasks, such as face recognition, and human-robot interaction, [109],
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[24]. Moreover, in moving object tracking applications like outdoor surveillance, where

usually the background temperature is largely different from moving objects, thermal imag-

ing becomes crucial in detecting and tracking those objects that radiate thermal energy

such as humans, animal or vehicles. It is noteworthy that thermal imaging is not affected

by shadow and light illumination, which normally is a bottleneck for RGB or other vis-

ible cameras, rendering it more suitable for moving object tracking in both daytime and

nighttime, [88].

Thermal cameras output corresponds usually to gray scale imaging, which results

a lower data processing complexity, in contrast to the triple data load produced by RGB

cameras. Also, there are some research efforts that propose fusion of thermal and RGB

visible data, e.g, [48], [45], [34]. The work in [34] relies on the contour saliency map, to

fuse together object locations and contours from both thermal and color sensors and even-

tually extract the object silhouette features, thus obtaining improved tracking performance.

However, the method is computationally expensive since it aims at constructing a complete

object contour. In [48], data fusion is implemented to fuse thermal and visible data, result-

ing in an illumination-invariant face image. In the latter work, decision fusion combines

the matching score generated from individual face recognition models. Indeed, modal fu-

sion enables better tracking performance since more data is utilized. However, in many

practical scenarios where only one of the imaging modalities is available to use, tracking

systems can benefit from the utility of thermal data due to the computational cost savings

introduced.

In this work we propose a novel approach to perform joint detection and tracking

of multiple moving objects in thermal videos. Having no prior information on the objects

present in the video frames, the object detection problem is formulated as the problem of

factorizing a kernel covariance matrix into sparse factors. The pixels consisting of an object

will be determined by estimating the support of these sparse factors and employing clus-
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tering of the nonzero entries to separate individual objects. Each object will be tracked via

alternative implementation of Kalman filtering and the proposed kernel matrix sparse fac-

torization scheme. The idea of sparse covariance factorization was first explored in [101]

to determine informative sensors in a network. However, in [101], linear data models are

considered which is not the case in the video object tracking setting considered here. Fur-

ther, the approach in [101] focuses in detecting stationary and static sources, whereas in the

proposed work here nonlinear inter-pixel correlations are extracted and utilized along with

multiple object dynamics to achieve accurate multi-object tracking. Coordinate descent

techniques [112], [10] are employed to decompose the formulated kernel covariance matrix

in a recursive way. Moreover, the implementation of computationally efficient ’divide-and-

conquer’ based schemes mitigate the high computational burden of factorizing large kernel

covariance matrices resulting from frames having large dimensions and acquired at fast

rates. The Kalman filter [63] is further combined with the aforementioned kernel sparse

factorization scheme to allow precise tracking of the detected objects in videos.

1.2 Prior work

Single-target tracking techniques have been developed for SNs using consensus-

averaging techniques [28,72] combined with the skeleton of particle filtering, e.g., see [29].

Further, extended Kalman filtering (EKF) for tracking a single-target is combined with a

probabilistic framework for selecting sensors in [70]; an EKF for distributed multi-target

tracking is considered in [91]. Data association and particle filtering have been applied in

multi-target tracking applications where the measurements from a single sensor are used,

while association takes place in time to determine which measurements contain informa-

tion about a target [31, 42, 52]. Probabilistic models on the number of targets and the

target-measurement assignments are also employed in [79] to perform multi-target track-
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ing in single-sensor settings. Improved particle sampling techniques for single sensor set-

tings are considered in [130], where particles corresponding to closely spaced targets are

sampled jointly. The latter approaches require the availability of a probabilistic data model

which is utilized to associate measurements acquired across time with the targets present. A

centralized algorithm, that relies on Markov chain Monte Carlo (MCMC) tools, performs

data association on measurements acquired at a single-sensor across time in polynomial

time [85]. The previous framework is extended to a network of sensors in [83]. Again

the data association performs matching among temporal measurements and targets. Other

centralized approaches that perform data association in time utilize Monte Carlo filtering,

see e.g., [118] and [42].

A distributed algorithm that combines joint probabilistic data association with Kalman

filtering has been developed in [99]. Though, some limitations are that linear Gaussian

measurements models are assumed which are not always suitable for tracking applications,

e.g. in low SNR environments and/or when the sensor observations are bearing and range

(see e.g. [78]), while the consensus-averaging methods [125] employed, force all sensors

to be active and be used in the tracking process despite the fact that some of them may

have low quality observations. A different approach is followed in [105] where multiple

fusion centers are present in the sensor network and evaluate the posterior Cramer-Rao

lower bound that requires knowledge of the underlying data model. Then, as long as the

fusion centers know which targets they track, then they can select the sensors which result

the smallest Cramer-Rao lower bound. The novel algorithm proposed here does not require

linear data models to operate and furthermore does not assume that sensors are aware of

which targets they track. A related distributed approach for tracking a single target is also

proposed in [70]. The latter approach utilizes extended Kalman filtering, while assuming a

probabilistic model to determine the sensors that are closely located to the target. Further,

the scheme in [70] relies on the tracking algorithm target position estimates and leads to
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instability in noisy environments as will be demonstrated via numerical tests. Finally, work

has been done in sensor scheduling and tracking in [38,64] where the focus is to determine

at which time-intervals a sensor operates and when it should be idle. Further, the approach

in [132] assumes the availability of the target position to activate sensors using tree-based

structures in the network topology.

A number of Kalman filtering based schemes were studied when there is uncertainly

in the state and observation model parameters. In [73, 98], known state and observation

model parameters with some additive error is considered. A robust Kalman filter is de-

veloped in [124], which relies on the assumption that an uncertainty norm in the state and

measurement models can be upper bounded. The latter work is extended in [126] to in-

corporate uncertainty with an upper bounded norm in the state and measurement noise

covariance matrices. Robust Kalman filtering approaches have also been developed in sen-

sor network settings. The work in [59] considers uncertainties in the measurement model

introduced by a unknown sensor-to-fusion center channel. The channel follows a proba-

bilistic on-off model, which is assumed known, and incorporated in the Kalman filter, to

decide whether to use or drop measurements. Similarly, the work in [90] considers the de-

sign of Kalman filtering techniques in the presence of noise covariance matrix uncertainties

with a bounded norm for a fusion-center based multi-sensor setting.

Single target tracking using mobile sensor networks has been studied for a variety

of different scenarios, [67, 134, 136]. Most of these approaches control the movement of

all sensors by minimizing the estimation error covariance, [134], [21], while the approach

in [136] manages sensor mobility based on a Bayesian estimation model and restricting

sensors to move only on a grid of locations. A path planning strategy for a setting involving

a fixed-location target and a single moving sensor is designed in [81] by maximizing the

determinant of the Fisher information matrix corresponding to the configuration. In [32],

an approach is proposed for controlling the trajectories of multiple UAVs by minimizing
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the localization uncertainty for a fixed-location target setting where the target is emitting a

radio signal. The work in [65] rigorously presents how sensor mobility can increase spatial

resolution when tracking a target with mobile sensors.

Various approaches has been put forth in the realm of video object tracking, e.g.,

in [135], a sparse representation technique is utilized to extract features for the video

objects. Compressed feature vectors are first obtained by the sparse representation tech-

nique, then a Bayes binary classifier is designed to track the object. A subspace model is

learned in [12] to model the object of interest in videos, though it is an offline tracking

approach. [88] proposed to use a particle filter to track object motion features preprocessed

from the Wigner distribution. Support vector machines and Kalman filtering are combined

toward identifying and tracking pedestrians in [127]. In [128], a scheme is developed to

detect the pedestrian head, and pedestrian legs which are later tracked by local search. The

aforementioned approaches are limited in the sense that cannot jointly detect and track

multiple objects, while they have to impose certain pixel intensity thresholding or statisti-

cal/structural assumptions for the objects present.

1.3 Advantages of the proposed algorithms

In contrast to the aforementioned approaches, our proposed multi-target tracking

framework exhibits several advantages: i) no fusion center is required to implement target-

sensor association ii) only sensor observation data is acquired in our proposed scheme;

iii) it can handle non-Gaussian noise and nonlinear sensor observations; iv) only a small

portion of sensors will be included in the tracking process.

When tracking underlying sources with model parameter uncertainty, our proposed

FC-based method utilizes just a sensor subset to jointly recover the unknown sensing matrix
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while respecting a limited power budget; our distributed method extends the FC-based

scheme to a more scalable and stable architecture.

In the scenario that mobile sensor network is employed, our proposed scheme heirs

the benefits from our target-sensor association algorithm which potentially save sensor de-

ployment cost and prolong the lifespan of the whole SN, moreover, it exhibits favorable

tracking performance after combining our proposed sensor kinematic strategy.

As for the video object tracking sector, compared to existing works, our approach

works with the original video data directly, without the need of extracting certain object

features or any prior knowledge of object location or search window size.
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CHAPTER 2

Distributed Spatio-Temporal Association and Tracking of Multiple Targets Using Multiple

Sensors

2.1 Problem formulation

Consider an ad-hoc multi-sensor network with a total number of m sensors. Each

sensor is able to communicate with its single-hop neighboring sensors which are within its

range. The single-hop neighborhood for sensor j will be denoted by Nj , while the sensor

network (SN) is modeled as an undirected graph and the inter-sensor links are assumed to

be symmetric [see dashed lines (single hop) in Fig. 2.1]. The connectivity information of

the SN is summarized by the m × m adjacency matrix E whose (j, j′)th entry will be 1

if sensors j and j′ are connected and zero otherwise. Sensors monitor a field on which an

unknown and time-varying number of multiple moving targets is present. The targets on

the field are sensed via measurements xj(t) acquired at sensor j and time instant t. For

instance, in Fig. 2.1, there are two targets whose location is denoted by the red and green

stars. The targets are moving at spatially different locations in the field affecting different

parts of the SN. A general setting is considered where new targets are sensed at a given

time instance, while other targets maybe becoming inactive (e.g., they are eliminated in a

tactical environment). This leads to a setting where the number of targets is time-varying.

Sensors measure the intensity of signals received from the different moving targets

on the field. Sensor j acquires a scalar measurement at time instant t that adheres to the

following model

xj(t) =
∑R

ρ=1
bρ(t)d

−2
j,ρ(t) + wj(t), j = 1, . . . ,m (2.1)
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Figure 2.1. Tracking multiple targets in a sensor network..

where bρ(t) denotes the intensity of a signal emitted by the ρth target, while dj,ρ(t) denotes

the distance between the ρth target and sensor j at time t. The number R corresponds to

the total number of different targets that move through the field over the lifetime of the

SN, while wj(t) denotes the zero-mean temporally white sensing noise with variance equal

to σ2
w. Note that (4.3) is formulated assuming that the targets act as transmitters. The

signal bρ(t) emitted from target ρ propagates via free-space to arrive at sensor j attenuated

as bρ(t)/d2
j,ρ(t). From wireless transmission (see [40, Ch. 2]), it is known that signals

emitted from different targets and propagating via free-space are superimposed in the way

described in (1), while the additive noise corresponds to random perturbations generated

by the sensors’ electronic components. Each of the bρ(t) signals emitted by a moving target

can be the result of, e.g., a radar signal impinging on the ρ target surface and then bouncing

back. Thus, bρ(t) could be viewed as the signal resulting after the radar signal has bounced

back from target ρ surface. If the radar signal has intensity β(t), then the intensity of the

signal emitted by the target would be proportional to βρ(t) ∼ β(t)
d2ρ(t)

, where dρ(t) denotes the

distance of the radar from target ρ. This would give rise to fourth-order distance terms in

(4.3), however here since βρ(t) corresponds to the signal emitted by target ρ second-order

distance terms appear in (4.3). Assuming that each sensor will receive one reflection of the
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bounced radar signal,then the superimposing argument given earlier can be used here to

derive (4.3).

Assuming that targets are sufficiently separated in space, the intensity of the signals

bouncing back from the target surfaces are considered to be uncorrelated. Note from (4.3)

that among the summands bρ(t)d−2
j,ρ(t) some have very small amplitude when sensor j is

far from target ρ, whereas others have large amplitude when sensor j is close to target ρ

[dj,ρ(t) is small]. Here it is assumed that among these summands in (4.3) only one has

strong amplitude whereas the rest are negligible. This pertains to a setting where only one

target, say the ρth target, is close to sensor j whereas the rest are sufficiently far thus their

impact is very small. This can be realized when targets are well separated in space. This is a

more ‘relaxed’ version of the common assumption that sensor measurements in multi-target

tracking contain information about just one target [31,42,52,79,83,118]. The intensity bρ(t)

will be nonzero only for the interval for which a target is sensed by the sensors, otherwise

will be zero deactivating target ρ in (4.3). For instance, if a target is sensed moving within

interval [t1, t2], then bρ(t) = 0 for t < t1 and t > t2. At a given time t a subset of the

targets, say of cardinality r(t), will be active (bρ(t) 6= 0) in (4.3). The distance term dj,ρ(t)

is equal to ‖pj − pρ(t)‖, where ‖ · ‖ denotes the Euclidean norm, pj ∈ R2×1 is the fixed

and available position of sensor j, while pρ(t) := [pρ,x1(t), pρ,x2(t), . . . , pρ,xK (t)]T ∈ RK×1

denotes the unknown ρth target position in a K-dimensional manifold.

Each target, say the ρth is characterized by a 2K × 1 state vector sρ(t) that contains

at a given time t its location pρ(t) and the velocity vρ(t) := [vρ,x1(t), . . . , vρ,xK (t)]T at

the K different spatial directions, i.e., sρ(t) := [pTρ (t),vTρ (t)]T . The target states evolve

according to a general Markov model:

sρ(t+ 1) = g(sρ(t),uρ(t)), (2.2)
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where g(·, ·) : R2K×1 × R2K×1 → R2K×1 is family of nonlinear, nonsingular functions,

while uρ(t) denotes the state noise. Details on the state model used for the numerical tests

will be given in Sec. 2.6.

Fusing all sensor measurements in (4.3) on an m× 1 vector we obtain the following

measurement model

xt = Dtbt + wt, where bt := [b1(t) b2(t) . . . bR(t)]T , (2.3)

while Dt is a m × R matrix with entries Dt(j, ρ) = d−2
j,ρ(t) with j = 1, . . . ,m and ρ =

1, . . . , R. The noise wt has covariance Σw = σ2
wIm, where Im denotes the m×m identity

matrix. Note that vector xt is not stored somewhere and it is introduced here for notational

purposes. Given that the entries of bt are uncorrelated, it follows that the data covariance

matrix is

Σx,t = DtΣbD
T
t + σ2

wIm = D̄tD̄
T
t + σ2

wIm, (2.4)

where Σb is a diagonal matrix whose diagonal entries correspond to the variance of the

entries in bt, while D̄t := BtΣ
1/2
b . Note that the matrix Dt is time-varying since the

distance of the sensors from the targets is changing with time. Further, among theR entries

in bt, there will be r(t) nonzero entries corresponding to the active targets moving at the

sensed field at t. Inactive targets at time instant t (either far away from sensors) will be

represented by zero bρ(t)’s that will further zero out the corresponding columns in Dt.

Here it is assumed that once a target becomes inactive (i.e. bρ(t) = 0) it remains inactive.

The ρth column of Dt contains the distances of all sensors from target ρ at time t.

For sensors close to target ρth, the corresponding distances, dj,ρ(t), will be relatively small,

thus leading to relatively large entries Dt(j, ρ) = d−2
j,ρ(t), compared to sensors that are

further away. For example in Fig. 2.1, where the number of targets R = 2 and K = 2,

target 1 (green star) will be close to sensors {1, 2, 3, 4}, while target 2 will be close to

sensors {12, 13, 14, 16}. The measurements of the aforementioned sensors are expected to
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be strongly affected by the target intensity signals and have a richer information content

about the present targets compared to the remaining sensors that are further away. Since

targets at a given instant t are very localized and close to a small percentage of sensors,

many entries of any column, say the ρth, in Dt are expected to be close to zero giving rise

to an approximately sparse matrix Dt. Matrices Dt here are constantly changing, due to

the presence of mobile targets. This is to be constrasted with the stationary setting in [101]

where sources are immobile and the corresponding covariance matrix time-invariant.

Notice that the matrices Dt are not available since the targets’ locations are not avail-

able. Further, someone may approximate Dt by first applying tracking techniques to esti-

mate the targets’ locations and subsequently the entries of Dt. However, the presence of a

time-varying number of multiple-targets and the fact that it is unknown which target cor-

responds to each measurement make our framework challenging and different than the one

in [101]. Nonetheless, if there was a way to locate where the strong-amplitude and small-

amplitude entries are located in the ρth column Dt,ρ: then we can identify which sensors

are close and acquire informative observations about a specific target, say the ρth. This step

of associating sensor measurements with targets will be of paramount importance before

applying any tracking techniques. A spatio-temporal data association framework will be

designed here that allows sensors to collaborate and determine which subsets of sensors ac-

quire informative measurements about the r(t) active targets at time instant t. This will be

executed by employing sparsity-regularization techniques to estimate Dt and decompose

it into sparse factors. Note that existing data association schemes [31, 42, 52, 79, 83, 118]

match measurements with targets across time and rely on probabilistic models. The sensor-

target association framework proposed here will then be integrated with particle filtering

techniques that will be encountered across the different sets of informative sensors to track

accurately the targets’ positions. The goal here is twofold: i) determine the active targets
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and identify the sensors that acquire informative measurements about them; and ii) perform

tracking among the different subsets of target-informative sensors.

2.2 Spatio-Temporal Target-to-Sensor Data Association

2.2.1 Sparsity-Cognizant Minimization Framework

As mentioned earlier, at a given time instant, the number of targets present on the

monitored field is unknown, as well as which sensors have informative measurements about

a specific target. Let Tρ,t denote the subset of sensors that are closely located to target ρ

and whose measurements [see eq. (4.3)] are dominated by the ρth target component at

time t. This implies that for all sensors j ∈ Tρ,t the corresponding measurements will be

approximately distributed as

xj(t) ∼ N (bρ(t)d
−2
j,ρ(t), σ2

w), (2.5)

since sensors j ∈ Tρ,t are much closer to target ρ than the rest targets, resulting bρ(t)d−2
j,ρ(t)

to be the dominant summand in (4.3). This stems directly from the assumption introduced

in Sec. II that targets are sufficiently separated in space, which further implies that dj,ρ �

dj,ρ′ for ρ′ 6= ρ.

Next, we derive a technique to track the sensor subsets Tρ,t. In this way we will

manage to associate sensor measurements with targets. Note that the data association here

is spatio-temporal and will be done in a distributed manner and does not rely on specific

probabilistic models. Different from [101], the subsets Tρ,t are time-varying due to the

moving targets. Thus, the stationary framework developed in [101] is generalized here to

dynamic and time-varying settings. Note that the rank of the information component in the

data covariance in (4.5), which is equal to r(t), reveals the number of active sensed targets

at time instant t, whereas the relatively strong-amplitude entries in each column {Dt,:ρ}Rρ=1

reveal the members of a target-informative subset Tρ′,t. With these properties in mind, it is
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of interest to decompose the sensor data covariance matrix Σx,t into sparse factors whose

nonzero entries will indicate where the strong-amplitude entries are in D̄t.

Note that the sensor data covariance Σx,t is time-varying due to the changing number

of targets and their movements, while in practical situations the ensemble covariance is

not available. This is to be contrasted with the setting in [101], where the sensor data

covariance matrix is time-invariant. The covariance matrix should be updated in a way that

gives more emphasis to the more recent sensing data while forgets the old data gradually.

This process is achieved by utilizing exponential weighing, and is a common technique

in adaptive signal processing to estimate efficiently time-varying covariance matrices, see

e.g., [100, 103]. Specifically, the covariance entries are estimated by

Σ̂x,t =
1− γ

1− γt+1

t∑
τ=0

γt−τ (xτ − x̄t)(xτ − x̄t)
T , (2.6)

where γ ∈ (0, 1) denotes the forgetting factor that controls the ’memory’ process and

x̄t =
1− γ

1− γt+1

t∑
τ=0

γt−τxτ , (2.7)

corresponds to an adaptive estimate for the data ensemble mean which is also time-varying.

Note that γt−τ decreases as τ decreases (corresponding to past data), while for τ = t

(present datum) the coefficient multiplying xt is equal to one. Thus, the present datum is

multiplied by the maximum possible value that γt−τ can reach. The scaling (1 − γ)(1 −

γt+1)−1 in (4.6) and (4.7) is introduced here to ensure that the time-varying covariance and

mean estimates Σ̂x,t and x̄t will be unbiased estimates of the ensemble quantities Σx,t and

E[xt] respectively, in a time-invariant (stationary) setting, i.e.

E[(1− γ)(1− γt+1)−1Σ̂x,t] = Σx,t, and E[x̄t] = E[xt].

Thus, the scaling introduced in (4.6) and (4.7) ensures that the obtained adaptive estimates

are properly normalized to give unbiased estimates in a stationary setting which further

implies good estimation in nonstationary settings too, see e.g., [100].
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In order to adhere to the single-hop connectivity constraints summarized in the ad-

jacency matrix E, each sensor j is responsible for evaluating the ‘single-hop’ covariance

entries Σ̂x,t(j, j
′) where j′ ∈ Nj . For example, sensor 5 in Fig. 2.1 will be able to evaluate

only the single-hop covariance entries Σ̂x,t(5, 5), Σ̂x,t(5, 6). The latter tasks involve the

exchange of scalar measurements xj(t) between single-hop neighbors during time t. Thus,

covariance entries that correspond to sensors more than one hop away will not be evaluated

in the SN.

A standard least-squares based matrix factorization scheme would minimize the

Frobenius norm-based cost ‖Σ̂x,t −MtM
T
t − σ2Im×m‖2

F with respect to (wrt) the fac-

tor estimates in Mt ∈ Rm×r. However, such a formulation does not account for the nearly

sparse structure of D̄t. In fact it assumes that the number r of factors (sensed targets) is

available, while all covariance entries are available. The need for a framework that ac-

counts for sparsity, unknown number of targets and single-hop connectivity is apparent. To

this end, the following framework is put forth

(
M̂t, {σ̂j}mj=1

)
:= arg min

Mt,{σj}mj=1

‖E�
(
Σ̂x,t −MtM

T
t − diag(σ2

1,t, . . . , σ
2
m,t)
)
‖2
F

+
L∑
`=1

λ`‖Mt,:`‖1 + φ
L∑
`=1

‖Mt,:`‖2
2, (2.8)

where � denotes the Hadamard operator (entry-wise matrix product), σ2
j is the local noise

variance estimate at sensor j, while L is an upper bound for the number of active sensed

targets r(t) (L ≥ r(t)) and Mt,:` denotes the `th column of Mt. Although the sensing noise

variance σ2
w is common across all sensors we introduce different noise variance estimates

σ2
j,t to facilitate the development of a decentralized iterative minimization technique for

(4.8). Matrix Mt ∈ Rm×L contains L columns that will estimate the sparse matrix columns

of D̄t, while L is selected sufficiently large to ensure that is an upper bound for the number

of present targets r(t).
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Sensor j will be responsible for updating the jth row in Mt, namely Mt,j: for

j = 1, . . . ,m. The adjacency matrix E in (4.8) along with the nature of the Hadamard

operator ensure that only the available single-hop covariance entries will participate in the

minimization formulation, while the updating recursions that will be obtained later for each

sensor j to find M̂t,j: will require message exchanges only between single-hop neighbors.

The first term in (4.8) accounts for the fact that the covariance assumes the structure in (4.5).

The second (norm-one) term in (4.8) induces sparsity in the columns of Mt to account for

the approximately sparse structure of D̄t. Norm-one regularization is well known to affect

sparsity in several estimation and regression problems [114, 137]. The larger the nonneg-

ative sparsity-controlling coefficient λρ is, the more zeros the estimated factor M̂t,:ρ will

contain. The third term in (4.8), where φ ≥ 0, is present to adjust the number of nonzero

columns of M̂t needed to accurately represent Σ̂x,t. The number of nonzero columns in

M̂t will be smaller than L and can be used as an estimate for the number of sensed targets

r(t) at time t.

Notice that the optimization formulation in (4.8) is also different from the one given

in [101]. The difference is in the last two terms which are there to control the number of

nonzero rows in matrix Mt. In fact the number of nonzero rows in Mt will correspond to

an estimate of the number of targets present in the field. The scheme in [101] works under

the assumption that the number of sources is known. Another feature of the minimization

formulation in (4.8), not present in [101], is the estimation of the sensing noise variances

σ2
j , which in general are unknown, and not available as is the case in [101].

2.2.2 Decentralized Algorithm

An iterative algorithm is proposed here to minimize numerically the cost in (4.8)

derived using coordinate descent techniques [10, 112]. The approach followed here is to

minimize the cost in (4.8) recursively wrt an entry of Mt or diag(σ2
1, . . . , σ

2
m), while keep-

24



ing the remaining entries fixed. During one coordinate descent cycle all the entries of

matrix Mt and diag(σ2
1,t, . . . , σ

2
m,t) are updated. Sensor j is responsible for updating the

entries {Mt(j, `)}L`=1 and σ2
j,t. Given the most recent updates M̂k−1

t and {σ2
j,t,k−1} at the

end of coordinate cycle k−1, updates M̂k
t (j, `) at sensor j can be formed by differentiating

(4.8) wrt Mt(j, `) while fixing the rest of the minimization variables to their most up-to-

date values from cycle k − 1. It turns out that (see Apdx. A) during coordinate cycle k,

the update M̂k
t (j, `) can be obtained as the value that achieves the minimum possible cost

in (4.8) (while fixing the rest of the variables) among the candidate values: i) y = 0; ii) the

real positive roots of the third-degree polynomial

4y3 + 4
[∑

i∈Nj [M̂
k−1
t (i, `)]2 − ζkt,Σ(j, j, `) + 0.5φ

]
y −

[
4
∑

i∈Nj ζ
k
t,Σ(j, µ, `)M̂k−1

t (i, `)
]

+ λ` = 0

(2.9)

and iii) the real negative roots of the third-degree polynomial

4y3 + 4
[∑

i∈Nj [M̂
k−1
t (µ, `)]2 − ζkt,Σ(j, j, `) + 0.5φ

]
y −

[
4
∑

i∈Nj ζ
k
t,Σ(j, i, `)M̂k−1

t (i, `)
]
− λ` = 0

(2.10)

where

ζkt,Σ(j, i, `) := Σ̂x,t(j, i)− δj,iσ̂2
j,t,k−1 −

L∑
`′=1,`′ 6=`

M̂k−1
t (j, `′)M̂k−1

t (i, `′) (2.11)

while δj,i denotes the Kronecker delta, i.e., δj,i = 1 if j = i, and δj,i = 0 if j 6= i.

Further, the noise variance estimates across sensors can be updated during cycle k at

time instant t as

σ̂2
j,t,k = Σ̂x,t(j, j)− M̂k

t,j:(M̂
k
t,j:)

T , j = 1, . . . ,m. (2.12)

The roots of (2.9) and (2.10) can be obtained using, companion matrices [50]. Sensor j

can evaluate the coefficients of the polynomials in (2.9) and (2.10) by communicating only

with its neighbors in Nj . In detail, sensor j receives {M̂k−1
t (i, 1), . . . , M̂k−1

t (i, L)} and
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the latest measurements {xi(t)} from sensors i ∈ Nj to form the single-hop covariance

updates Σ̂x,t(j, i) and subsequently evaluate ζkt,Σ(j, i, `). Similarly, it sends to its neighbors

the L scalar updates for the jth row of Mt, namely {M̂k−1
t (j, 1), . . . , M̂k−1

t (j, L)} and its

current measurement xj(t). Further, each sensor j can update the noise variance estimates

σ̂2
j,t,k using only locally available information as can be seen in (2.12). To facilitate a

real-time implementation a small fixed number, say κ, of coordinate cycles is applied per

time t. Note that the proposed scheme also involves constant updating of the single-hop

covariance entries Σ̂x,t(j, i) needed in ζkt,Σ(j, i, `) to account for the constantly changing

statistical properties of the sensed field. Such online updating is not present in [101].

The task of forming the updates {M̂t(j, `)}L`=1 at sensor j at time instant t boils down

to determining the roots of the third-degree polynomials given in (9) and (10). The latter

task involves: i) evaluating the quantities {ζkt,Σ(j, µ, `)}µ∈Nj∪{j},`=1,...,r, with a computa-

tional complexity of the order of O(|Nj|r2), i.e., L|Nj| coefficients each evaluated in (11)

with a complexity of O(L); ii) evaluating the 4|Nj| coefficients of the polynomials at (9)

and (10) with a complexity of O(4|Nj|L); and iii) determining the roots of the third-order

polynomials in (9) and (10) that involves evaluation of the corresponding 2L companion

matrices of size 3× 3 at a computational complexity of O(L). Note that the cost at sensor

j per coordinate cycle is linearly dependent on the number of single-hop neighbors |Nj|,

while the dependency is quadratic when it comes to the upper bound of the number of tar-

gets L. Nevertheless, the number of sources r (and thus L) in practical scenarios is much

smaller than the number of sensors m.

Once the sparse factors {M̂t,:`}r̂(t)`=1 are estimated, where r̂(t) < L corresponds to

the number of nonzero columns of M̂t := M̂κ
t at t, their support (nonzero entries) can

be used to identify the sensors that sense a specific target at time instant t. In that way

sensor subsets T`t,t for `t = 1, . . . , r̂(t) can be identified and used to track r̂(t) different

targets. One challenge that will be addressed in Sec. 2.4 is how to determine whether two

26



subsets T`t,t and T`′t,t′ evaluated at different time instances correspond to the same target

or not. This time-association step is necessary to make sure that estimated trajectories

corresponding to different targets are updated using newly acquired sensor measurements

that correspond to the correct dominant target. At a given time instant t the steps followed

across sensors, which form a connected network, to perform decentralized data association

is tabulated as Algorithm 1. During time instant t one coordinate cycle k involves updating

the m × L entries M̂k
t and the m variance estimates σ2

j,t,k via (2.9), (2.10) and (2.12). In

Apdx. B it is demonstrated that Alg. 1 converges at least to a stationary point of (4.8). The

parameters {λ`}L`=1 can be set using the strategy proposed in [101].

To end the iterative process involved in Alg. 1, each sensor j proceeds to evaluate

the Euclidean norm of the difference between two consecutive estimates, namely ‖M̂k−1
t,j: −

M̂k
t,j:‖2, found during iteration steps k and k−1. Using a max consensus scheme, e.g., [54],

the maximum of these m norm quantities can be found across sensors which then they

compare this maximum with a desired threshold of accuracy. Once the maximum norm

‖M̂k−1
t,j: − M̂k

t,j:‖2 (sensor with largest updating difference) is less than a threshold ε which

could be set as a adjustable small positive value (in our tests is set as 5 · 10−3), then the

updating process involved in Alg. 1 will stop across sensors.

2.3 Tracking via Particle Filtering

Next we will take into our advantage the target-informative sensor subsets Tρ,t which

have been retrieved using the decentralized framework in Sec. 2.2 in order to perform

multi-target tracking. We focus on executing the tracking process via particle filtering

(PF) [5,41] due to its flexibility to handle nonlinear and/or nonGaussian scenarios as in our

observation model in (4.3). For each subset Tρ,t a different PF will be constructed to track

the corresponding target ρ.
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Algorithm 1 Distributed Target-Sensor Association
1: At time instant t:

2: Sensor j updates Σ̂x,t(j, j
′) for j′ ∈ Nj ∪ {j} using (4.6) after receiving the most recent data

{xj′(t)}j′∈Nj from its neighbors.

3: Sensor j initializes the jth row of Mt as M̂0
t,j: = 01×L, while it sets σ̂2

j,t,0 = 0.

4: for k = 1, 2, . . . , κ do

5: Each sensor j for j = 1, . . . ,m:

6: Transmits {M̂k−1
t (j, `′)}L`′=1 to its neighbors in Nj , and receives {M̂k−1

t (j′, `′)}L`′=1 from

j′ ∈ Nj .

7: Evaluates ζkt,Σ(j, i, `) for i ∈ Nj ∪ {j} via (2.11).

8: Determine the updates {M̂k
t (j, `)}L`=1 after determining the positive roots of (2.9) and the

negative roots of (2.10).

9: If maxj=1,...,m(‖M̂k−1
t,j: − M̂k

t,j:‖2) ≤ ε then stop.

10: end for

Tracking objects consists of computing a conditional expectation

E(f(sρ,t)|xTρ,0:t) =

∫
f(sρ,t)p(sρ,t|xTρ,0:t)dsρ,t

of a function of the state, sρ,t, of a target ρ, using the measurements of the sensors within

the informative subset Tρ,t. Equivalently, the conditional density p(sρ,t|xTρ,0:t) given the

measurements needs to be computed instead. These measurements are denoted herein by

the |Tρ,t| × 1 vector xTρ,t := {xj(t)}j∈Tρ,t , where |Tρ,t| denotes the cardinality of sensor

subset Tρ,t. The measurements are affiliated with a pertinent likelihood function which

depends on the underlying observation model. We generally denote this likelihood function

by p(xTρ,t |sρ,t) given the state sρ,t of the ρth target at time t. The reader may refer to Sec.

2.6 for specific details on the likelihood and the associated observation model. All the

available data from time 0 up to the current time instant t will be used. Let xTρ,0:t denote
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the sensor measurements associated with the informative sensor subsets Tρ,0, Tρ,1, . . . , Tρ,t

within the time horizon [0, t].

However, in many instances, it is a rather formidable task to compute or approximate

the conditional density, p(sρ,t|xTρ,0:t). Therefore, employing importance sampling tech-

niques, one may consider a different distribution, say q(sρ,t|xTρ,0:t) and the aforementioned

conditional expectation is derived

E(f(sρ,t)|xTρ,0:t) =

∫
f(sρ,t)

p(sρ,t|xTρ,0:t)
q(sρ,t|xTρ,0:t)

q(sρ,t|xTρ,0:t)dsρ,t.

Consequently, if one draws Q samples, siρ,t, i = 1, · · · , Q, from the proposal distribution

q(sρ,t|xTρ,0:t), the conditional expectation is in turn approximated by

E(f(sρ,t)|xTρ,0:t) ≈
1

Q

Q∑
i=1

f(siρ,t)
p(siρ,t|xTρ,0:t)
q(siρ,t|xTρ,0:t)

, (2.13)

and by further approximating Q ≈
∑Q

i=1

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )

we have that

E(f(sρ,t)|xTρ,0:t) ≈

∑Q
i=1 f(siρ,t)

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )∑Q

i=1

p(siρ,t|xTρ,0:t )
q(siρ,t|xTρ,0:t )

. (2.14)

Defining

wiρ,t ∝
p(siρ,t|xTρ,0:t)
q(siρ,t|xTρ,0:t)

(2.15)

to be the ith weight which corresponds to the ith particle siρ,t, the conditional expectation

is approximated by

E(f(sρ,t)|xTρ,0:t) ≈
Q∑
i=1

wiρ,tf(siρ,t).

The particle filter is an importance sampling with a special importance density q(·).

To identify this density q(·), one takes into account that the conditional distribution, p(sρ,0:t|xTρ,0:t),

can be written

p(sρ,0:t|xTρ,0:t) ∝ p(xTρ,t |sρ,t)p(sρ,t|sρ,t−1)p(sρ,0:t−1|xTρ,0:t−1), (2.16)
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where∝ denotes that the two probability density functions (pdfs) on the right and left hand

sides will be equal after appropriate scaling with a constant not dependent on the unknown

state. Furthermore, one may consider that the importance density is factorized [5] such that

q(sρ,0:t|xTρ,0:t) = q(sρ,t|sρ,0:t−1,xTρ,0:t)q(sρ,0:t−1|xTρ,0:t−1). (2.17)

However, only a filtering estimate is propagated at each time step. Therefore, the im-

portance density q(sρ,t|sρ,0:t−1,xTρ,t) depends only on sρ,t−1 and xTρ,t which yields that

q(sρ,t|sρ,0:t−1,xTρ,t) = q(sρ,t|sρ,t−1,xTt). Employing the framework of eqs. (2.16) and

(2.17) into eq. (2.15) at each time step, we have that the weight corresponding to the ith

particle can be updated by

wiρ,t ∝ wiρ,t−1

p(xTρ,t |siρ,t)p(siρ,t|siρ,t−1)

q(sρ,t|sρ,t−1,xTρ,t)
, (2.18)

where wiρ,t−1 = p(siρ,0:t−1|xTρ,0:t−1)/q(s
i
ρ,0:t−1|xTρ,0:t−1). A popular choice for the density

q(siρ,t|siρ,t−1,xTρ,t) = p(siρ,t|siρ,t−1) such that the weights are given by

wiρ,t ∝ wiρ,t−1p(xTρ,t |siρ,t) ; i = 1, . . . , Q (2.19)

where siρ,t is the ith sample from the Markov transition density p(siρ,t|siρ,t−1) and p(xTρ,t |siρ,t)

the corresponding likelihood function associated with the measurements xTρ,t . Conse-

quently, the posterior filtering density is approximated by

p(sρ,t|xTρ,0:t) ≈
Q∑
i=1

wiρ,tδ(sρ(t)− siρ,t),

where the weights are defined in (2.19) and δ is the Dirac delta function.

One may easily conclude that the particle filter’s implementation is straightforward

and can be adapted for different problems as long as the algorithm is tuned according to the

specific dynamics. Precisely this has led to the particle filter algorithm’s increased popular-

ity [30]. However, it has been shown, in [41] for example, that particle filter suffers from
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degeneracy and that it needs a lot of samples in order to describe accurately the conditional

density p(sρ(t)|xTρ,0:t). Therefore several resampling schemes have been incorporated in

order to alleviate this problem, e.g. cf [41, 61, 78, 104] by replicating samples with sig-

nificant weight and disregarding the rest. In our paper, we used the popular multinomial

resampling scheme, e.g. see [41]. After the resampling stage, the particles siρ,t, are used to

estimate the state for target ρ at time instant t. Of course there are multiple targets present in

the field, thus in the next section it is described how the sensor-target distributed association

algorithm in Sec. 2.2 can be combined with PF to track effectively multiple-targets.

2.4 Joint Sensor-Target Association and Particle Filtering

Here it is described in detail how the PF unit in Sec. 2.3 and the sensor-target asso-

ciation scheme in Sec. 2.2 interact to enable tracking using only target-informative sensors

in the SN.

Specifically, during a start-up stage each sensor acquires Ts measurements, namely

{xj(τ)}0
τ=−(Ts−1). It is assumed that the sampling rate is fast enough such that the present

targets, say r(0) in number, are essentially stationary/immobile. The Ts acquired data are

then used by the distributed sensor-target association framework in Sec. 2.2 to determine

the sets of informative sensors {Tρ0` ,0}
r̂(0)
`=1 where each ρ0

` ∈ {1, . . . , R} for ` = 1, . . . , r̂(0),

and r̂(0) is the estimated number of r(0) sensed targets at time t = 0. One sensor in each set

Tρ0` ,0 is designated as a leading sensor Cρ0` ,0 which collects from all sensors j ∈ Tρ0` ,0 their

corresponding measurements xj(0) and their position pj for j ∈ Tρ0` ,0 and ` = 1, . . . , r̂(0).

During initialization the leading sensor Cρ0` ,0 can be selected randomly among the sensors

in Tρ0` ,0. Then, for time t > 0 it will be described later on how the leading sensors are
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selected. Each leading sensor Cρ0` ,0, for ` = 1, . . . , r̂(0), then calculates the ‘average’

informative sensors’ position as

p̂ρ0` (0) =
∑

j∈T
ρ0
`
,0

pj, ` = 1, . . . , r̂(0). (2.20)

Then, each leading sensor Cρ0` ,0 uses the corresponding average location in (2.20) to ini-

tialize the PF recursions in Sec. 2.3, and find a state estimate ŝρ0` (0) for target ρ0
` using the

informative measurements xj(0), for j ∈ Tρ0` ,0 and ` = 1, . . . , r̂(0).

Suppose that at time t each leading sensor {Cρ`,t} has available state estimates ŝρ`(t)

for ` = 1, . . . , r̂(t). From ŝρ`(t) the estimated target position p̂ρ`(t) can be extracted and

it is utilized to select a set of ‘candidate’ target-informative sensors, namely Jρ`,t+1, for

target ρ`. Specifically, the leading sensor Cρ`,t transmits ŝρ`(t) to its single-hop neighbors,

which will subsequently transmit to their own neighbors and the estimate propagates in

time. A sensor j that receives ŝρ`(t) will forward this estimate only to those neighbors

in j′ ∈ Nj that are located within a radius Rs from the estimated target location, i.e.,

‖pj′ − ŝρ`(t)‖2 ≤ Rs. Note that through the aforementioned process the set of sensors

Jρ`,t+1 selected at time t + 1 has the following two properties: i) each sensor j ∈ Jρ`,t is

located within a radius Rs of the estimated position p̂ρ`(t), i.e., ‖pj − p̂ρ`(t)‖ ≤ Rs; and

ii) sensors in j ∈ Jρ`,t+1 form a connected communication subgraph characterized by the

adjacency matrix Eρ`,t+1 which is going to be a submatrix of E after keeping the rows and

columns with indices in Jρ`,t+1.

In each of the subsets Jρ`,t+1 the distributed targets-to-sensors data association al-

gorithm (Alg. 1) is employed to determine the target-informative sensor subsets Tρ`,t+1 ⊆

Jρ`,t+1 for each of the targets ρ` at time instant t+ 1. The radius Rs through which Jρ`,t+1

are constructed is up to our control, and the faster the target moves the larger Rs should be

set to guarantee that all target-informative sensors are included in Jρ`,t+1. Performing the

sensor-target association algorithm in different sensor subsets Jρ`,t+1 of the SN facilitates
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tracking the present targets, while it requires less computational and communication com-

plexity than when applied in the whole SN. In fact, there will also be instances where the

sensors-targets association algorithm (Alg. 1) will be implemented across the whole SN

whenever it is detected that the present targets may have changed in number and we have

to redetermine the target-informative subsets. Indicators used to determine when to apply

the scheme in Sec. 2.2 across the whole SN are the following:

C.1 If any of the estimated target-informative sets Tρ`,t+1, returned by Algorithm 1, are

empty. This implies that most likely some of targets being tracked at previous time

instances are not present in the sensed field anymore.

C.2 If the energy of the measurements of a given sensor, not currently in any set Tρ`,t

exceeds a certain threshold. This implies that most likely a new target has entered

the sensed field and this is indicated by an elevated energy level in the measurements

of a currently non-informative sensor.

The procedure described earlier for the start-up stage is applied every time it is determined

that the distributed sensors-targets association scheme has to be applied in the whole net-

work. This process is necessary due to the fact that the target population has changed since

old targets may not be sensed anymore, while new ones may have entered the sensed field.

The leading sensor Cρ`,t+1 is chosen as that sensor in Tρ`,t+1, which is closest to the

estimated position of the ρ`th target, i.e.,

Cρ`,t+1 = arg min
j∈Tρ`,t+1

‖pj − p̂ρ`(t)‖2. (2.21)

The process of electing a new leading sensor can take place among the sensors in Tρ`,t+1

that can determine their distance from p̂ρ`(t) and find which sensor has the minimum in a

distributed fashion, e.g., see [54]. The leading sensorCρ`,t+1 then collects i) the correspond-

ing state particles and weights {siρ`,t, w
i
ρ`,t
}Qi=1 from Cρ`,t; and ii) the sensors measurements

xj(t + 1) for j ∈ Tρ`,t+1, namely the updated informative sensor subset for target ρ`th at
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time instant t+1. Assuming that the sampling rate is fast enough, the target locations sρ`(t)

and sρ`(t+ 1) will be close, thus a few communication hops (1 or 2 in simulations) suffice

to have the previous leading sensorCρ`,t, as well as the current target-informative sensors in

Tρ`,t+1 transmit their information to Cρ`,t+1. For instance, in Fig. 2.2 sensor 4 corresponds

to one leading sensor at time instant t, while the informative sensors are {1,2,3,4}. Then,

at time instant t + 1 and since the target has moved the informative sensor set changes to

{5, 6, 8} while sensor 6 is elected as the new leading sensor at t + 1 being closer to the

estimated target position.

The leading sensor Cρ`,t+1 proceeds to draw new state particles from the importance

sampling pdf q(sρ(t)|xTρ,0:t) and update their corresponding weights as in (2.19). Then,

Cρ`,t+1 forms the new state estimate ŝρ`(t + 1) ≈ E[sρ`(t + 1)|xTρ,0:t ] using (2.13), and

extract from ŝρ`(t+ 1) the estimated location for target ρ` at time instant t, namely p̂ρ`(t+

1). The leading sensor Cρ`,t+1 transmits ŝρ`(t + 1) to its single-hop neighbors and the

process described earlier is repeated to update the subsets of candidate informative sensors

Jρ`,t+2. The joint algorithmic framework for multi-target tracking and distributed sensor-

target association is tabulated as Algorithm 2.

Figure 2.2. Update of the target-informative sets and the leading sensors as a target moves
in the sensed field..
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Algorithm 2 Joint Target-Sensor Association and Multi-Target Tracking
1: Start-up stage (t = 0)/Reconfiguration (t 6= 0): Each sensor j collects Ts measurements

xj(t) and Algorithm 1 is applied in the whole network to determine the target-informative

groups Tρ`,t and ` = 1, . . . , r̂(t), where r̂(t) is the estimated number of sensed targets.

2: for τ = t, . . . , do

3: Determine the leading sensor Cρ`,τ in each Tρ`,τ for ` = 1, . . . , r̂(t) as specified in (2.21).

4: Each leading sensor Cρ`,τ receives particles and weights from Cρ`,τ−1, and xj(τ) from j ∈

Tρ`,τ to perform tracking for ρ` = 1, . . . , r̂(t) target via the PF recursions and obtain ŝρ`(τ)

via (2.13).

5: The state estimates ŝρ`(τ) are propagated from Cρ`,τ via single-hop transmissions to every

sensor j that can be reached from Cρ`,τ by a multi-hop path and satisfies ‖pj − p̂ρ`(τ)‖2 <

Rs. Then, the candidate informative sets {Jρ`,τ+1}r̂(t)`=1 are formed.

6: Algorithm 1 is applied in each connected set of sensors Jρ`,τ+1 to obtain the target-

informative sets Tρ`,τ+1.

7: If either condition C.1, or C.2 is true then go to step 1, otherwise go to step 2.

8: end for

2.5 Inter-Sensor Communication Costs

The information exchanges occurring during different steps of Algorithm 2 and the

associated communication costs are outlined next. Specifically, inter-sensor communica-

tions take place when Algorithm 1 is applied to perform sensors-to-targets association and

every time a leading sensor has to be updated.

In detail at time instant t + 1 sensor j has to receive |Nj| scalar measurements from

its neighbors, namely {xj′(t + 1)}j′∈Nj , to update Σ̂x,t+1(j, j′) (step 1 in Alg. 1). Further,

sensor j receives the updates {M̂k−1
t+1 (j′, `)}L`=1, L|Nj| scalars in total, to form its local

updates {M̂k
t+1(j, `)}L`=1 (step 8 in Alg. 1). Thus, sensor j receives (L+ 1)|Nj| scalars. In

the same way sensor j has to transmit xj(t+1) and {M̂k−1
t+1 (j, `)}L`=1, a total of L+1 scalars,
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to its neighbors per iteration k in Alg. 1. It is worth emphasizing that the communication

complexity for each sensor is linear with respect to its neighborhood size and the number

L used to bound the number of targets at a given time instant. Such a complexity can be

handled easily by networks of sensors. Note that the previous information exchanges occur

during step 1 and step 6 in Alg. 2.

Every time the target-informative sets {Tρ,t+1} are updated, the old leading sensor,

say Cρ,t, has to send to the new leader Cρ,t+1 Q particles, each entailing 2K scalars, and Q

corresponding scalar weights. Further, Cρ,t has to send out the 2K scalars corresponding

to the estimate ŝρ(t) (step 5 in Alg. 2). Thus, Cρ,t has to transmit (2K + 1)Q+ 2K scalars

for implementing steps 3 − 5 in Alg. 2. Every sensor in Tρ,t+1 has to also transmit its

scalar measurement xj(t + 1) that will reach Cρ,t+1, and will be used to update the target

state estimates. Thus, Cρ,t+1 receives in total (2K + 1)Q + 2|Tρ,t| scalars. Clearly, the

communication cost is proportional to the number of particles Q and the dimensionality of

the target state vectors 2K.

In [70] a Monte Carlo method is employed to select the active sensors when tracking

a single target. Specifically, at time t there is a cluster head sensor, say sensor j, that selects

among its neighbors, say Nj , a number of µ sensors whose measurements will be used to

track, via EKF, the target at the next time instance. A probability of detection is calculated

for each sensor in the neighborhood Nj by the cluster head, and the first active sensor is

selected as the one in Nj having the highest probability of detection. This task is carried

out at a computational complexity of O(|Nj|). In the same way the second active sensor

is selected, as the one among the remaining |Nj| − 1, achieving the highest value of a per-

tinent joint probability of detection metric; the corresponding complexity is O(|Nj| − 1).

Similarly the ith active sensor is determined at a complexity ofO(|Nj|−i) for i = 1, . . . , µ.

Thus, the total complexity at the cluster head for selecting µ sensors is O(µ(|Nj| − µ−1
2

)).

Depending on the number of active sensors chosen (1 ≤ µ ≤ |Nj|), if µ = 1 then complex-
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ity is in the order of O(|Nj|) per cluster head which is the same as in our scheme for r = 1

target. If µ = |Nj| (all sensors selected), then the computational complexity of [70] is in

the order of O(|Nj|2/2) which leads to a higher complexity compared to the one achieved

in our case when |N |j > 2. Further, in [70], all neighboring sensors send their data to

the current leading sensor, leading to a communication cost which is proportional to the

neighborhood size |Nj|.

The approach for choosing active sensors in [70] relies on the prediction state esti-

mate and MSE covariance obtained through extended Kalman filtering (EKF), see, e.g.,

[63]. The latter two quantities are used in a Gaussian pdf to evaluate the aforemen-

tioned probabilities of detection whose values will determine the active sensors. Different

from [70], the proposed sensors-to-targets association scheme does not depend on the state

and observation model parameters in (4.3) and (5.1). On the contrary the novel tracking

scheme here relies on the sensor measurements to update the target-informative portion of

the SN, and it is not affected by the tracking algorithm [cf. (9) and (10)]. Linearization in

EKF may result errors in the tracking process which can propagate to the sensor selection

process in [70] and deteriorate performance. In the same way, selecting the closest sen-

sors to the estimated target position is prone to error propagation and cannot perform better

than [70]. Numerical tests will corroborate the previous claims.

2.6 Numerical Tests

2.6.1 Target Dynamics and Particle Sampling

As in the majority of methods developed for target tracking, e.g., [70] in the nu-

merical tests we consider a scenario where the targets move according to a near constant
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velocity model [7]. Specifically, the ρth target’s state vector evolves according to the fol-

lowing model

sρ(t+ 1) = Asρ(t) + uρ(t), (2.22)

where A is a 2K × 2K transition matrix, while uρ(t) denotes zero-mean Gaussian noise

with covariance Σu. The matrices A and Σu have the following structure (e.g., see [7])

A =



1 0 . . . ∆T . . . 0

...
...

...
...

...
...

0 1 0 0 . . . ∆T

0 0 1 . . . 1 0

0 0 0 . . . 0 1


, Σu = σ2

u

(∆T )3/3 · IK (∆T )2/2 · IK

(∆T )2/2 · IK ∆T · IK



where ∆T is the sampling period, and σ2
u is a nonnegative constant controlling the variance

of the noise entries in uρ(t) while IK denotes the K×K identity matrix. The state noise is

assumed to be temporally white and uncorrelated with the observation noise across sensors,

namely wt := [w1(t), . . . , wm(t)]T .

Using the state transition model in (5.1) it follows readily that state transition pdf

p(sρ(t)|siρ,t−1) is Gaussian with expectation Asiρ,t−1 and covariance Σu. Thus, the new Q

state particles at time instant t can be generated from the ones obtained at time instant t−1

as follows:

siρ,t = A× siρ,t−1 + vt, i = 1, . . . , Q (2.23)

where vt ∈ R is a 2K × 1 zero-mean Gaussian vector with covariance Σu.

From the observation model in (4.3) it turns out that the likelihood pdf of the infor-

mative observations corresponding to the sensors in Tρ,t, given the ith particle for the state

of target ρ, i.e., p(xTρ,t |siρ,t) in (2.19) is Gaussian, i.e.,

p(xTρ,t |siρ,t) =
1

(2πσ2
w)|Tρ,t|/2

exp

(
−
∥∥xTρ,t − dρ(s

i
ρ,t)
∥∥2

2σ2
w

)
(2.24)
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where σ2
w denotes the observation noise variance, while

dρ(s
i
ρ,t) =

[
‖pjt1 − piρ,t‖−2, ‖pjt2 − piρ,t‖−2, . . . , ‖pjt|Iρ,t| − piρ,t‖−2

]T
(2.25)

where pjt1 is the known position of sensor j1 at time t, while jt1, j
t
2, . . . , j

t
|Iρ,t| are the indices

of the sensors in the informative set Tρ,t. Further, piρ,t is the estimated position for target

ρ extracted from the state particle siρ,t for i = 1, . . . , Q. Intuitively, the vector dρ(s
i
ρ,t) in

(2.25) can be viewed as an estimate (prediction) of the informative sensor measurements

xTρ,t using the most recent particles. In this way, only the measurements from the informa-

tive sensors in Tρ,t will be used to find the weights for the sampled particles, and thus track

the corresponding target ρ.

2.6.2 Tracking of a Single-Target

We start by testing the performance of the novel tracking Alg. 2 and compare to ex-

isting alternatives in a wireless network setting with m = 150 sensors which are randomly

placed in a region [0, 100]× [0, 100]m2. A scenario with a single target is considered first.

The target starts at location [27.00, 72.00] and moves with a speed of 1.8m/s at the x-axis

and the y-axis. The state and observation models introduced in (5.1) and (4.3) are utilized

here for K = 2.

In the following numerical tests we compare the tracking performance, via the local-

ization root mean-square error (RMSE), among i) the novel Alg. 2; ii) the EKF approach

with sensor selection in [70]; iii) EKF combined with the sensor-targets association Alg.

1 (EKF+Alg. 1); iv) EKF with all sensor measurements used and there is no sensors-

targets association (EKF-All sensors); v) PF with all sensor measurements used and there

is no sensors-targets association (PF-All sensors); vi) PF combined with a scheme that

selects as target-informative sensors the J-nearest sensors to the current target position es-
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timate (Nearest sensor) where here J = 3; and vii) unscented Kalman filtering (UKF) (see

e.g., [55]) combined with the sensors-to-targets association Alg. 1 (UKF+Alg. 1).

In all these tracking methods, the target position is initialized by applying Alg. 1

and finding (2.20), ensuring that the initial error is the same for all different tracking ap-

proaches. As for the parameters in Alg. 2, the forgetting factor for updating (4.6) is set to

γ = 0.1, while the radiusRs, used in forming the candidate sets Jρ,t, is set equal to 15. The

threshold to decide which entries in M̂t are zero and which are nonzero is set to be 10−5 in

the single-target case. The parameters λ` are set using the method in [101, Sec. V-A], and

φ = 1.1. Fig. 2.3 displays the root mean-square tracking error (RMSE) achieved by the

tracking schemes described earlier versus time t. Four different test cases are considered in

Fig. 2.3 in which the state noise and the measurement noise variances change. On the top

left diagram a setting with relatively small state and observations noise variances, namely

σ2
u = 0.005 and σ2

w = 0.0001 (corresponding to a sensing signal-to-noise ratio of 30dB),

is considered. The bottom left diagram corresponds to a setting with relatively small state

variance, and relatively large observation noise variance, namely σ2
u = 0.005 and σ2

w = 0.1

(corresponding to a sensing signal-to-noise ratio of 2dB). The top right diagram deals with

a setting with relatively large state variance, and relatively small observation noise vari-

ance, namely σ2
u = 0.05 and σ2

w = 0.0001 (corresponding to a sensing signal-to-noise

ratio of 30dB). Finally, the bottom right diagram corresponds to a setting where both the

state and observation noise variances are relatively large, i.e., σ2
u = 0.005 and σ2

w = 0.1

(corresponding to a sensing signal-to-noise ratio of 2dB which is low).

Fig. 2.3 corroborates that the novel tracking Alg. 2 outperforms in terms of tracking

RMSE alternative tracking approaches when the observation and/or state noise variance are

relatively high. The EKF-based approaches rely on linearization and therefore the presence

of high-variance noise in the state and/or observation models will result such approaches to

deviate as time progresses. The method in [70] utilizes the EKF target position estimates
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to determine the target informative sensors and as it can be seen in Fig. 2.3 the RMSE will

diverge. The reason for the big performance gap between the EKF and Alg. 2 lies on the

linearization errors involved in EKF. Such errors are accentuated in the presence of state and

measurement noise of high variance. Then, bad trajectory estimates further deteriorate the

sensor selection process causing an error propagation behavior. The same behavior is also

exhibited when the nearest to the estimated target position sensor are selected to perform

tracking. This method also diverges in the presence of high variance noises. Further, it can

be seen that UKF combined with Alg. 1 performs better than EKF+Alg. 1 as expected,

however its performance is still worse than Alg. 2. This is expected since UKF aims to

approximate the mean and covariance of the state, whereas the particle filters in fact track

the posterior pdf which in our setting is not Gaussian despite the presence of Gaussian

noise.

Alg. 2 performs reliable tracking even under high-variance noise environments. The

reason is that the sensors-to-targets association scheme (Alg. 1) does not rely on the track-

ing algorithm and employs the data directly to determine target-informative sensors. An-

other important property of Alg. 2 is that its tracking performance is very close to that of

a particle filtering approach that uses all the sensors in the network. This demonstrates the

efficiency of Alg. 2 in selecting a few target-informative sensors without compromising the

tracking performance. Clearly, Alg. 2 has the potential to prolong the lifetime of the net-

work without losing much tracking accuracy when compared to a setting where all sensors

measurements are utilized during tracking. When the state and observation noise variances

are small, then all six different methods perform well and reach a small tracking RMSE.

In such a setting the PF-based methods appear to reach steady-state at a slower rate than

the EKF-based and UKF-based approaches. The reason is the small number of particles

used here Q = 100 per time instant t that results slower convergence. Nonetheless, what
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is important is that the novel tracking Alg. 2 is able to accurately track the target even in

hostile settings suffering from high variance noises.

Next, we consider the same setting as in the upper diagram of Fig. (2.3) where the

state and observation noise variances, σ2
u = 0.005 and σ2

w = 0.0001, are relatively small.

Fig. 2.4 depicts the number of sensors selected to utilize their measurements for tracking

per time instant t. Alg. 2, the scheme in [70] and the nearest sensor selection rule for J = 3

are applied. Notice that the average number of selected sensors per method is equal to 3

ensuring a fair comparison in terms of RMSE in Fig. (2.3) (top). The bottomline is that

for the same number of active sensors our approach outperforms existing alternatives for

selecting informative sensors, while it performs closely to the benchmark (but demanding)

scheme where all sensors are used to perform tracking.

2.6.3 Changing the number of particles

Fig. 2.5 depicts the tracking RMSE achieved by Alg. 2 versus time for different

values of the number of particles Q used. Two different settings are considered: Fig. 2.5

(left) corresponds to a setting with relatively high state and observation noise; and Fig. 2.5

(right) corresponds to a setting with relatively low-variance state and observation noise.

As expected the left diagram in Fig. 2.5 indicates worse tracking performance than the

right diagram. Nonetheless, in all cases an increasing number of particles always leads

to considerable improvements of the tracking performance. The reason for observing

inflexions has to do with the number of sensors around the target at a give time instant. At

certain time instances there may be only one sensor close to the target whereas the number

of sensors may increase or decrease with time. The more sensors in the proximity of a

target, the more active sensors will be selected via Alg. 1, resulting a reduction in the

tracking RMSE. However, at times if there are not many sensors close to the target the

RMSE may increase in value as observed in Fig. 2.5.
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2.6.4 Tracking of multiple targets

A setting where three targets are moving in the sensed field is considered next. Note

that the scheme in [70] and nearest sensor method are not capable to track multiple tar-

gets. The same applies when using all sensors measurements and there is no sensor-data

association embedded in the tracking scheme (EKF or PF). Here we will test the track-

ing RMSE achieved by Alg. 2, as well as the scheme where EKF is combined with Alg.

1. A setting with m = 120 sensors is considered that are randomly deployed in the area

of [0, 100] × [0, 100]m2. The three targets are set to move from initial positions [30, 80],

[35, 25] and [40, 45], respectively. The speed of the targets per x-axis and y-axis is set equal

to 1.8m/s. These trajectories are well separated in space and satisfy the assumption of

having one dominant term in (4.3), as introduced in Sec. II. Step 1 in Alg. 2 is applied to

associate sensors with targets and initialize Alg. 2. Fig. 2.6 depicts the average tracking

RMSE (averaged across the three different targets) versus time for i) Alg. 2; and ii) the EKF

combined with the sensors-to-targets association Alg. 1. The left diagram corresponds to

a relatively low-variance state and observation noise setting, i.e., σ2
u = σ2

w = 8 · 10−3 (the

corresponding sensing SNR is 13dB). The right diagram corresponds to a relatively high-

variance state and observation noise setting, i.e., σ2
u = σ2

w = 8 · 10−2 (the corresponding

sensing SNR is 3dB). As in the single-target case it follows that both Alg. 2 and the EKF-

based schemes perform accurate tracking for the low-variance noise setting. Again Alg. 2

converges slower to steady state because of the limited number of particles, Q = 100, used

per time instant t. In the high-variance noise setting clearly Alg. 2 is still able to track

the three targets whereas the EKF based method fails since the linearization process breaks

down and results misleading target position estimates that eventually diverge.

Fig. 2.7 demonstrates how the steady-state tracking RMSE behaves as a function

the state and observation noise variance. Two curves are depicted, for the blue curve the

x-axis corresponds to measurement noise variance while the state noise variance is set to
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σ2
u = 0.1, whereas for the red curve the x-axis corresponds to state noise variance while the

measurement noise variance is set to σ2
w = 0.1. Note that although the noise variance in-

creases almost by an order of magnitude on the x-axis, the RMSE increases approximately

by 1.6 meters which in the [0, 100]× [0, 100] area corresponds to a relatively small tracking

performance degradation. This advocates the robustness and ‘graceful’ degradation of Alg.

2 in the presence of state/measurement noise.

2.6.5 Time-varying number of targets

Next, we test the tracking performance of our proposed method in a setting where

the number of targets can change in time. Again a number of m = 120 sensors are placed

randomly in the region of [0, 100] × [0, 100]m2. The total number of targets appearing

and disappearing across time is R = 12. In that region, five groups of different targets

appear and disappear orderly. The target configuration in the test is set as follows: Targets

ρ = 1, 2, 3 start moving at positions [35, 25], [40, 45], [20, 55] and follow the dynamics in

(5.1), with a speed of 2m/s across the x-axis. Targets ρ = 1, 2, 3 move in the field for the

time interval [1, 15]s and then are not sensed anymore. In the interval [15, 17]s no targets

are present in the field. Then, targets ρ = 4, 5 start at positions [12, 25], [30, 80] and move

according to same state model followed by the first three for the time interval [17, 30]s but

with speed 1.5m/s across the x-axis. Again no targets are present during [30, 32]s. Then,

targets ρ = 6, 7 show up at initial positions [75, 35], [10, 30] and start moving, according to

(5.1), for the time interval [32, 45]s and speed 1.5m/s per axis. Two new targets, namely

ρ = 8, 9, appear in initial positions [40, 10], [40, 70] and move in the field for the time

interval [47, 60]s with speed 1.7m/s on the y-axis, and speed 1.5m/s across the x-axis.

Finally, the last three targets ρ = 10, 11, 12 start at positions [60, 20], [60, 70] and [70, 50]

and move within the field for the time interval [62, 72]s. Target ρ = 10 follows the same

state model as targets ρ = 6, 7, while targets ρ = 11, 12 follow the same state model as

44



targets ρ = 1, 2, 3. Again, the targets are placed in the field such that at every time instant

t every sensor senses one dominant target in (4.3).

Here we have to emphasize that when testing the novel Alg. 2 we do not know the

number of targets present in the field at a given time instant, and we do not know when

the target configuration changes, with old targets vanishing and new targets showing up.

Alg. 2 entail steps 1 and 7 that detect when a change in the targets’ configuration may

have happened and estimate the number of targets present as well as the sensors acquiring

informative observations for the different targets present in the field. Thus, Alg. 2 does not

really have available the time period for which each target is active; this is something that

it estimates. This is to be contrasted with the sensor selection framework in [101], where

the number of sources/targets is known and fixed. The parameter L in Alg. 1 is set to 4,

which indicates that at every time instant the number of targets present in the field will not

exceed 4. The radius Rs for determining the candidate informative sensors subsets Jρ,t is

set equal to Rs = 10. The forgetting factor is set γ = 0.1. The state noise variance is set as

σ2
u = 0.1, while the measurement noise variance is also set to σ2

w = 0.1 (which amounts to

an observation SNR of roughly 10dB).

Fig. 2.8 depicts the true target trajectories (blue dashed curves), along with the es-

timated trajectories from Alg. 2 (light green curves). The blue stars correspond to the

starting position of the targets and the red stars denote the ending position. Clearly, Alg.

2 is able to carry out accurate tracking of all R = 12 targets. Another interesting property

shown in Fig. 2.8 is the small number of sensors selected by Alg. 1 to be utilized in the

tracking process. The red circles in Fig. 2.8 depict the target informative sensors at time

instances 15s, 30s, 45s, 60s and 72s, thus all the red circles correspond to the cumulative

number of informative sensors throughout the simulation. As it can be seen the informa-

tive sensors are selected such that they are closely located to a corresponding target. This

further implies that Alg. 2 performs efficient tracking by utilizing only a small portion of
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the sensors available in the network. It is worth mentioning that only a small portion of

the network is used to gather data. In Fig. 2.9 it is depicted where the target is (red star)

and what sensors are active during time-instances 45s and 72s. Clearly the active sensors

are in the vicinity of the targets’ location corroborating the capability of Alg. 1 to utilize

the sparse covariance sensing data structure and select those sensors acquiring informative

measurements about the present targets. Another tracking scenario where there are many

trajectory crossings, the targets are moving at different directions and different speeds is

depicted in Fig. 2.10. The noise remains the same as before and there are R = 12 targets in

total. Specifically, targets ρ = 1, 2, 3 start moving at positions [35, 25], [40, 45], [20, 55] and

follow the dynamics in (5.1). While targets ρ = 1, 3 move at a speed of 2m/s across the x-

axis, target ρ = 2 moves with a speed of 2m/s across the y-axis. Targets ρ = 1, 2, 3 move

in the field for the time interval [1, 15]s and then are not sensed anymore. In the interval

[15, 17]s no targets are present in the field. Then, targets ρ = 4, 5 start at positions [23, 40],

[50, 75] and move according to same state model followed by the first three for the time in-

terval [17, 30]s but with speeds −1.3m/s and −1.7m respectively across the x-axis. Again

no targets are present during [30, 32]s. Then, targets ρ = 6, 7 show up at initial positions

[75, 35], [10, 30] and start moving, according to (5.1), for the time interval [32, 45]s and

speed 1.5m/s on x-axis and 1.7m/s across y-axis. Three new targets, namely ρ = 8, 9, 10,

appear in initial positions [40, 70], [40, 10], [60, 70] and move in the field for the time inter-

val [47, 60]s with different speed 1.4, 1.2, 1.6m/s on both the y and x-axis. Finally, the last

two targets ρ = 11, 12 start at positions [85, 25] and [48, 48] and move within the field for

the time interval [62, 72]s. Target ρ = 11 moves with −1.0m/s and 2.6m/s across x and

y-axis, while target ρ = 12 with corresponding x-axis and y-axis speeds of −0.7m/s and

−2.5m/s, respectively. Clearly, it can be seen that the configuration of the targets does not

really affect the tracking performance of Alg. 2 corroborating its flexibility to track under

different geometric configurations of the targets.
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In fact. Fig. 2.11 depicts the number of informative sensors versus time throughout

the simulation. Clearly, the number of informative sensors does not exceed 20 (16% of

the network), while the average number of informative sensors is equal to approximately

8. Fig. 2.11 depicts the capability of Alg. 1 to select only the target-informative sensors

to perform tracking. Despite the fact that only a small percentage of the sensors is utilized,

still it can track the trajectories quite accurately as seen by Fig. 2.8.

Fig. 2.12 depicts the average tracking RMSE corresponding to the tracking of the

different targets present in the field at every time instant. Alg. 2, the EKF-based scheme

combined with Alg. 1 and the UKF scheme combined with Alg. 1 are compared. Note

that at the time intervals 15, 30, 45, 60s the average tracking RMSE is zero. It is initialized

there because during these time intervals no targets are detected in the field and thus there is

nothing to track and no corresponding tracking RMSE. However, when targets are present,

the superiority of Alg. 2 over the EKF based approach combined with Alg. 1 is apparent

in Fig. 2.12. Clearly, the EKF-based approach cannot perform efficient tracking which is

further challenged by the varying number of targets and high-variance state and observation

noise. The linearization error is the reason for the big performance gap between the two

aforementioned schemes. Further, it can be seen that UKF combined with Alg. 1 performs

better than EKF combined with Alg. 1 as expected, however its performance is still worse

than Alg. 2. Again EKF suffers from linearization errors, such errors are resolved by UKF

which still is worse than Alg. 2 since it just estimates the posterior mean and covariance

instead of tracking the posterior pdf (see also details for Fig. 2.3).

2.7 Conclusion

A novel method performing distributed sensor-target association and multi-target

tracking was designed and tested in multi-sensor networks. Our approach is based on a
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novel blending of particle filtering and sparsity-aware matrix decomposition techniques.

Target-informative sensors are selected online and their measurements are used for track-

ing. The proposed approach is capable to detect changes in the configuration and popu-

lation of the targets present in the sensed field. Extensive numerical tests show that the

proposed tracking framework outperforms related approaches in tracking multiple targets.

The novel tracking methodology is robust even in high-variance state and observations

noises, and provides accurate estimates of the targets’ position by utilizing only a small

number of the available sensors.
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Figure 2.6. Average tracking RMSE versus time for a low-variance noise setting (left) and
a high-variance noise setting (right)..

0 0.05 0.1 0.15 0.2 0.25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Noise variance

S
te

ad
y−

st
at

e 
R

M
S

E

 

 

Observation noise (σ
u
2=0.1)

State noise (σ
w
2 =0.1)

Figure 2.7. Steady-state RMSE versus state/ measurement noise variance..

51



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29
30

31

32

33 34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8182
83

84

85

86

87 88

89

90
91

92

93
94

95

96

97

98

99
100

101102103

104105

106107
108

109

110

111

112

113 114

115
116 117 118

119

120

x

y

Time−varying number of targets

 

 

Figure 2.8. Tracking of multiple targets in a setting with time-varying number of targets..
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Figure 2.9. Active sensors and position of targets at time instances (left) t = 45s and (right)
t = 72s. .
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Figure 2.10. Tracking of multiple targets in a setting with time-varying number of targets.
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CHAPTER 3

Distributed Spatio Time Association and Tracking of Sources in Sensor Network

3.1 Problem Statement

Consider a field sensed by a total of p sensors. Each sensor, say j, acquires scalar measure-

ments xj(t) at time instant t = 0, 1, 2, .... Sensor observations contain information about

r underlying sources sρ(t) which are represented by the scalar random variables sρ(t), for

ρ = 1, . . . , r. Source signals stacked in the state vector st := [s1(t) . . . sr(t)]
T evolve

according to the model:

st = Fst−1 + ut, (3.1)

where F is the transition matrix, while ut is the state noise assumed to be zero-mean Gaus-

sian with covariance Q = diag(σ2
u,1, . . . , σ

2
u,r). To ensure the stability of the state vector,

the spectral radius of F is assumed to be less than unity. Further, it is assumed here that

the sources are uncorrelated with each other, i.e., F is a diagonal matrix whose entries are

less than one. Matrix F and the noise variances σ2
u,ρ are assumed available here, and can

be found from e.g., the physics of the problem.

Each field source is observed by an unknown group of sensors. For instance, in Fig. 3.1

there are r = 2 sources in the field. At time instant t0, sensors S1, S2, S4 (green region) ac-

quire measurements about source s1(t0), while source s2(t0) is observed by sensors S8, S10

(red region). The rest of the sensors are just observing noise (blue sensors). Each sensor Sj

at time instance t acquires a scalar measurement following the model

xj(t) =
r∑

ρ=1

hj,ρ(t)sρ(t) + wj(t), (3.2)
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where the coefficients hj,ρ(t) denote the unknown channel attenuation coefficient from

source sρ(t) to sensor Sj at time t. Further, wj(t) is the corresponding zero-mean Gaussian

sensing noise with variance σ2
w. Such a setting could rise when tracking ground vibrating

sources, see e.g., [116].

Specifically, let the ρth source represent a vibrating source while sρ(t) corresponds to the

vibration signal that the source generates on the ground with ρ = 1, . . . , r. These r vi-

brating sources could correspond for instance to a moving vehicle, a person, animal or

machinery, e.g., see [116]. The vibrating signals sρ(t) in fact can be modeled in several

scenaria, as autoregressive (AR) processes [see model in (3.1)] as advocated in [138]. Note

that AR processes of higher order can be considered after employing vector states for each

of the sources. For simplicity in exposition and clarity here AR-1 processes are considered.

Let pj denote the fixed position of sensor Sj , while lρ(t) the location of the ρth source

for ρ = 1, . . . , r. According to [116] the intensity of the vibrations measured at distance

d from the vibrating source are attenuated by a factor e−αd, where α a positive constant

depending on the soil, e.g., for loess soil is 0.2m−1 [116]. Applying the superposition

principle, and assuming there is one dominant path of signal propagation from the source

to the sensor it turns out that sensor Sj acquires the measurement

xj(t) =
r∑

ρ=1

e−α‖pj−lρ(t)‖2sρ(t) + wj(t). (3.3)

It is clear from (3.3) that the channel attenuation coefficients are hj,ρ(t) = e−α‖pj−lρ(t)‖2

and depend on the distance of the sensor from the source. Notice that among the summands

e−α‖pj−lρ(t)‖2sρ(t) some have very small amplitude when sensor Sj is far from source ρ,

while the amplitude increases as sensor Sj is located closer to source ρ.

Thus, some of the attenuation coefficients may be close to zero depending on the dis-

tance between sources and sensors, e.g., in Fig. 3.1(left), sensor S2 observes source s1(t),

thus h2,1(t0) is expected to be nonzero whereas h2,2(t0) is negligible while sensor S10 ob-
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serves source s2(t), thus h10,2(t0) is expected to be nonzero whereas h10,1(t0) is negligible.

Stacking the sensor measurements in xt := [x1(t) . . . xp(t)]
T and the corresponding sens-

ing noises in vector wt := [w1(t), . . . wp(t)]
T , the observation model can be summarized

as

xt = Htst + wt, (3.4)

where the observation matrix Ht contains the unknown attenuation coefficients Ht(j, ρ)

:= hj,ρ(t). Note that the ρth column of the observation matrix Ht contains the attenuation

coefficients between all sensors and source sρ(t) at time t. For sensors close to the ρth

vibrating source, the corresponding distances, ‖pj − lρ(t)‖2, will be relatively small, thus

leading to relatively large entries Ht(j, ρ) = e−α‖pj−lρ(t)‖2 , compared to sensors that are

farther away. Since sources at a given instant t are very localized and affect the measure-

ments of a small percentage of sensors located a few meters away, many entries of Ht will

be close to zero giving rise to an approximately sparse Ht.

The field sources may be moving in space which results the time dependency of Ht.

As the sources move in the field, different group of sensors will observe them which re-

sults time-varying attenuation coefficients, resulting a time-varying Ht. For example, in

Fig. 3.1, at time instant t0 source s1(t) is sensed by S1, S2 and S4, while at time instant t1

it is sensed by S3, S4. This further implies that the corresponding attenuation coefficients

in the corresponding column of Ht will also change, e.g. in the first column of Ht0 , en-

tries Ht0(1, 1), Ht0(2, 1) and Ht0(4, 1) have strong amplitude at t0, whereas at t1 they’ve

switched to Ht1(3, 1) and Ht1(4, 1). Note that the support (indices of nonzero entries) of

each column in Ht, indicate which sensors acquire measurements about the source multi-

plying that column in (3.4).

Our goal here is to track the field source signals {sρ(t)}rρ=1 using only sensor ob-

servations and the state model, but without having available the sensing matrix Ht. For
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instance in the presence of vibrating sources, tracking the different signals can facilitate

applications such as target classification, see e.g. [113, 117]. In the following, novel algo-

rithms will be developed to jointly track the sparse matrix Ht, while performing source-

sensor association to track each of the sources using only those observations acquired at

sensors observing a source. The proposed scheme will enable multi-source tracking by

using only the source-informative sensors. The latter benefits can be seen in Fig. 3.1 in

which it is obvious that the blue sensors do not carry any information and therefore there

is no need for the FC to communicate with them. The aforementioned problem will be

considered in two different sensor network topologies.

First, a fusion-center based topology, as the one depicted in Fig. 3.1, is considered in

which every sensor only acquires measurements and if necessary transmits its observation

to a fusion center responsible for carrying out multi-source tracking and sources-to-sensors

association. The proposed tracking framework will reduce sensor-to-FC communications,

respect any power constraints across the network while using measurements from source-

informative sensors to carry out the tracking.

The second topology considered, will be an ad hoc sensor network comprising of p

sensors. In the ad-hoc topology, sensors not only will acquire measurements but also will be

responsible for carrying out information processing in an in-network fashion. Specifically,

sensors will only communicate with their single-hop neighboring sensors who are within

communication range. For instance, in Fig. 3.2, sensor S6 is able to communicate with

sensors S3, S4, S7 and S8 which form the single-hop neighborhood for S6. The neighboring

sensors of sensor j are contained in the set Nj , while the sensor network is modeled as an

undirected graph and the inter-sensor links are assumed to be symmetric.

The same state and measurement models introduced in (3.1) and (3.4) will be considered

here. The goal will be to identify the time-varying groups of sensors observing different

sources by recovering the support of the unknown Ht, while tracking st. Since there is no

57



fusion-center, in the ad-hoc setting, sensors will have to collaborate and exchange informa-

tion with their single-hop neighbors to locally track the sensors and identify the different

groups of informative sensors.

Remark: Note that the two different topologies considered here are complimentary, thus it

is of interest to consider the problem of multi-source tracking in both the FC-based topol-

ogy which enables fast processing/tracking since sensors send their data directly to a FC.

The ad hoc topology involves iterative algorithms that may take longer time to converge,

though this architecture offers robustness to failures and lack of a single point of failure,

such as a FC.

3.2 FC-Based Tracking and Sensor Selection

We start with developing a proper joint tracking and source-to-sensor association algorithm

for a FC-based setting. A pertinent minimization framework based on a novel blending of

Kalman filtering/smoothing and sparsity-aware matrix recovery via norm-one regulariza-

tion is utilized to jointly recover the sensing matrix H, and track the states {sρ(t)}rρ=1 at

the FC.

3.2.1 Kalman Filtering Optimization

Kalman filtering (KF) is an iterative filtering technique which updates the predic-

tion and correction state estimates, namely ŝ(t|t − 1) := E[s(t)|x0, . . . ,xt−1], ŝ(t|t) :=

E[s(t)|x0, . . . ,xt], as well as their corresponding error covariance matrices

Mt|t−1 := E[(st − ŝ(t|t− 1))(st − ŝ(t|t− 1))T ]

Mt|t := E[(st − ŝ(t|t))(st − ŝ(t|t))T ] (3.5)

by utilizing all data acquired up to time t. Detailed KF recursions can be found in [63](Ch.

12). If the model parameters in (3.1) and (3.4) are available, the Kalman estimates forK+1
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(where K ≥ 1) consecutive states, say {st−K , . . . , st}, can be formulated as the minimizer,

see e.g., [4], of

{šτ}tτ=t−K = arg min
st−K ,...,st

Jt,K({sτ ,Hτ}tτ=t−K) (3.6)

where

Jt,K({sτ ,Hτ}tτ=t−K) :=
t∑

τ=t−K+1

(xτ −Hτsτ )
TΣ−1

w (xτ −Hτsτ )

+
t∑

τ=t−K+1

(sτ − Fsτ−1)TQ−1(sτ − Fsτ−1)

+ (st−K − ŝt−K)TM−1
t−K|t−K(st−K − ŝt−K), (3.7)

where Σw := σ2
w · I contains the sensing noise variances and ŝt−K corresponds to an

estimate of the state st−K and Mt−K|t−K the corresponding covariance at time instant t−K

using sensor data x0, . . . ,xt−K .

Traditionally, see e.g., [63], the cost in (3.7) is minimized w.r.t the states assuming

that Hτ is given. If K = 1, the standard KF recursions are obtained by minimizing (3.7),

namely šτ = ŝ[τ |τ ]. Notice that when K > 1, the estimates št correspond to the state

estimates obtained by a fixed-lag (K lags here) Kalman smoother, see e.g., [4, pg. 177],

i.e., šτ = ŝ(τ |t) for τ = t−K, . . . , t.

Assuming that the sensing matrix Ht is available, the minimization problem is per-

formed with respect to the unknown sources’ states {sτ}tτ=t−K . However, the sensing

matrix itself is unknown in the considered setting and need to be found as well. The formu-

lation in (3.7) does not account for the sparse unknown structure of the sensing matrix Ht.

59



To this end, and inspired by existing work in `1-regularization, see e.g., [114], we introduce

a norm-one regularization term in (3.7) and obtain the minimization formulation

min
{sτ}tτ=t−K ,Hτ

t∑
τ=t−K+1

(xτ −Hτsτ )
TΣ−1

w (xτ −Hτsτ ) +
∑r,t

ρ=1,τ=t−K+1 λρ‖hτ,ρ‖1

+
t∑

τ=t−K+1

(sτ − Fsτ−1)TQ−1(sτ − Fsτ−1)

+ (st−K − ŝt−K)TM−1
t−K|t−K(st−K − ŝt−K), (3.8)

where ‖ · ‖1 denotes the one-norm, while hτ,ρ corresponds to the ρth column of matrix Hτ .

The weights λρ are nonnegative sparsity-controlling coefficients that control the number of

nonzeros in the column of hτ,ρ. Tackling the optimization problem in (3.8) will allow i)

recover the missing observation matrix Hτ and perform sources-to-sensors association; ii)

track the unknown r sources present in the monitored field.

3.2.2 Multi-source State Tracking

Aiming at minimizing the cost in (3.8), we resort to block coordinate descent tech-

nique where we minimize (3.8) wrt the states {sτ}tτ=t−K by fixing the matrices Hτ to their

most recent update. Further, to simplify (3.8), the time index of Ht is removed by assuming

that H is varying very slowly during K consecutive time instances. Then, the cost is min-

imized wrt Ht while fixing the states to their most up-to-date values. This section focuses

on updating the states while fixing H.

Denote Ĥt−1 as the estimate for H obtained during the time interval [t−K − 1, t−

1]. By fixing H to Ĥt−1, the cost in (3.8) is optimized w.r.t the states {sτ}tτ=t−K . After

differentiating the cost in (3.8) w.r.t the augmented state vector sα,t := [sTt−K . . . s
T
t ]T and

setting the derivative equal zero, we will get the following state estimates (See Apdx. C):

šα,t := [šTt−K,t, . . . , š
T
t,t]

T =
(
FT
αQ−1

α Fα

)−1
FT
αQ−1

α xα,t (3.9)
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where

Qα,t := bdiag(Mt−K|t−K ,

Ktimes︷ ︸︸ ︷
Q, . . . ,Q,

Ktimes︷ ︸︸ ︷
Σw, . . . ,Σw), (3.10)

xα,t := [−ŝTt−K ,0
T , . . . ,0T ,xTt−K+1, . . . ,x

T
t ]T (3.11)

The state estimate ŝt−K is provided by a local Kalman filter run at the FC with the estimated

Ĥt and the available sensor measurements in xt−K . Matrices Qα,t and xα,t have sizes

[Kp+ (K + 1)r]× [Kp+ (K + 1)r] and [(K + 1)r +Kp]× 1 respectively, while matrix

Fα := [FT
1 FT

2,t]
T has size (K + 1)r +Kp× (K + 1)r and formed as:

F1 =



−Ir×r 0 . . . 0

F −Ir×r . . . 0

...
...

. . .
...

0 . . . F −Ir×r


, F2,t=



0 Ĥt−1 0 . . . 0

0 0 Ĥt−1 . . . 0

...
...

. . .
...

0 0 0 . . . Ĥt−1


. (3.12)

It is worth mentioning that matrix (FT
αQ−1

α Fα)−1 is block tri-diagonal. In order to solve the

system of linear equations in (3.9), there exist efficient approaches, see e.g. [44, pg. 174]

whose computational complexity is linearly increasing with K.

3.2.3 Sparse Sensing Matrix Recovery

As stated earlier, the task of performing real-time sources-to-sensors association

turns out to boil down to the problem of recovering the support of the sensing matrix Ht.

To this end, the cost (3.8) will be minimized wrt to H by fixing the states to their latest

updated estimates {šτ,t}tτ=t−K obtained in (3.9). A coordinate descent way is utilized to

minimize (3.8) wrt one entry of H while fixing the other terms to their most recent values.

At time t, let Ĥκ
t (i, ρ) denote the coordinate update for entry H(i, ρ) obtained during coor-

dinate cycle κ for all i = 1, . . . , p and ρ = 1, . . . , r. When updating H(i, j), all remaining
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entries of H are fixed to the previous coordinate cycle updates, namely Ĥκ−1
t (i, `), and as

shown in Apdx. D Ĥκ
t (i, ρ) is obtained as:

Ĥκ
t (i, ρ) := arg min

h
σ−2
w ‖yκ−1

i,t − šρ,t · h)‖2
2 + λρ|h|, (3.13)

where yκ−1
i,t is a K × 1 vector with entries

yκ−1
i,t (m) = xi(t−K +m)−

r∑
`=1,` 6=ρ

Ĥκ−1
t (i, `)št−K+m,t(`) (3.14)

for m = 1, . . . , K and šρ,t := [št−K+1,t(ρ), . . . , št,t(ρ)]T . The minimization in (3.13) boils

down to a sparse regression (Lasso) problem involving a scalar. It turns out (see Apdx. D)

that the minimizer in (3.13) is:

Ĥκ
t (i, ρ) = sgn(šTρ,ty

κ−1
i,t ) ·

(
šTρ,ty

κ−1
i,t

‖šρ,t‖2
2

− λρ
2σ−2

w ‖šρ,t‖2
2

)
+

(3.15)

where (z)+ = max(z, 0). Note that warm starts are employed at every time instant t, where

Ĥ0
t (i, `) = ĤC

t−1(i, `) for i = 1, . . . , p and ` = 1, . . . , r. C is the number of coordinate cy-

cles applied at every time instant t. A stopping criterion applied for the coordinate method

is the following: For two consecutive updating cycles, a cost difference, using the cost in

(3.8), is evaluated. If the cost difference becomes lower than a predefined threshold, say ε,

then the updating process is terminated automatically.

3.2.4 Transmission Power Budget Constraints

It is often the case that sensors have to operate under a stringent power budget, imposed

here in the form of a constraint in the total transmission power that all sensors can consume.

Thus, it is of interest to introduce in the formulation in (3.8) a mechanism respecting such

a power constraint.
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Starting from the formulation at (3.8), we introduce in the cost in (3.8) selection vari-

ables to decide which sensors’ data participate, or not, while ensuring the total transmission

power does not exceed a desired level Ptot. In detail:

arg min
st−K ,...,st

Jt,K(D, {sτ}tτ=t−K ,H)

s. to
p∑
j=1

djσ
2
x,j < Ptot, and dj ∈ [0, 1], j = 1, . . . , p (3.16)

where

Jt,K(D, {sτ}tτ=t−K ,H) :=
t∑

τ=t−K+1

(xτ −Hsτ )
TDΣ−1

w (xτ −Hsτ )

+
t∑

τ=t−K+1

(sτ − Fsτ−1)TQ−1(sτ − Fsτ−1)

+ (st−K − ŝt−K)TM−1
t−K|t−K(st−K − ŝt−K) +

∑r
ρ=1 λρ‖hρ‖1, (3.17)

where Σw := σ2
w · Ip×p, while ŝt−K corresponds to an estimate of the state st−K and

Mt−K|t−K denotes the corresponding covariance acquired as described in Sec. 3.2.2. D is

the diagonal matrix whose diagonal entries dj lie in the interval [0, 1], and control which

sensor measurements will participate in tracking the source states in st during the interval

[t−K+1, t]. D will be selected such that the prediction error is minimized while ensuring

that the transmission power will not exceed Ptot. Note that signal variance in a way quan-

tifies the power of the signal and therefore the amount of power needed to transmit it, thus

the summation
∑P

j=1 djσ
2
x,j quantifies the average power needed to transmit data from the

selected sensors to the FC. However, it should be emphasized that this constraint does not

account for communication parameters such as the channel.

We resort to block coordinate descent techniques, see e.g. [10], where we minimize

(3.17) w.r.t. the entries of D, or H or {sτ}tτ=t−K+1 while fixing the others to their latest
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update. Fixing the state vectors and H to their latest updates, the minimization of (3.17)

w.r.t. the diagonal coefficients dj in D corresponds to

{d̂1,t, d̂2,t, . . . , d̂p,t} := arg min
t∑

τ=t−K+1

p∑
j=1

djσ
−2
w [xj(τ)− [Ĥt−1]j:šτ,t−1]2

s. to
p∑
j=1

djσ
2
x,j < Ptot, and dj ∈ [0, 1], j = 1, . . . , p (3.18)

where the sensor observation variances can be estimated as

(σ̂2
x,1,t−1, . . . , σ̂

2
x,ρ,t−1) = diag(Ĥt−1Σ̂sĤ

T
t−1), (3.19)

while the source covariance estimate Σ̂s can be estimated as Σ̂s = ŝτ,t−1 · ŝTτ,t−1. Further,

[Ĥt−1]j: denotes the jth row of Ĥt−1, while šτ,t−1 corresponds to the state estimates ob-

tained from minimizing the cost Jt−1,K , and Ĥt−1 is the sensing matrix estimate obtained

during time interval [t − K, t − 1]. The minimization problem in (3.18) corresponds to

a linear program with linear constraints and can be solved, e.g., using the interior point

method, see e.g. [16]. After the coefficients d̂j,t are determined in (3.18) for the time inter-

val [t−K+1, t], they are compared with a threshold. If d̂j,t is larger than the threshold, then

it is set to ďj,t = 1 and the FC pings the corresponding sensor to transmit its measurements,

otherwise d̂j,t is set to ďj,t = 0 and the corresponding sensor remains silent. The threshold

is selected as the smallest value in the interval (0.5, 1) such that the total power consumed

by the selected sensors, namely
∑p

j=1(ďj,tσ
2
xj

), does not exceed the power budget Ptot. The

left end of the interval 0.5 is set such that any sensor j with d̂j,t > 0.5 is considered a can-

didate sensor for being selected. Further, the smallest value in the interval (0.5, 1) allows

the largest number of sensors to be selected while not exceeding the power budget Ptot.

Once d̂j,t are determined and set to 1 or 0 as described earlier, estimates of the

sources’ state vectors {sτ}tτ=t−K+1, and recovery of the sparse Ht can be done in the same

way as described in Section 3.2. Note that since some ďj,t are zero, corresponding sum-
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mands in the first term of (3.17) will not be participating in the updating of the state vectors

and H via (3.9) and (3.15), respectively.

3.2.5 Algorithmic Summary

To initialize the matrix Ht, at time instant t = 0, and obtain an estimate of the number of

sources in the monitored field, the sparse decomposition scheme in [101], summarized in

Sec. 3.2.6, can be applied. To collect a sufficiently large number of data while ensuring

that source states do not change significantly, as required to apply [101], a sufficiently fast

sampling rate can be applied at a start-up phase to ensure the aforementioned requirement.

The processing takes place at the FC which is responsible for tracking {dj,t}pj=1, Ht and st.

Once the sensor selection variables d̂j,t are found via solving (3.18), they are compared

with a threshold. Then, depending on whether d̂j,t is larger or smaller than the threshold,

is set to ďj,t = 1 or ďj,t = 0, respectively. Then, the state vectors {sτ}tτ=t−K+1 and Ht are

estimated, by solving the costs in (3.17) after keeping only these summands within the first

term of (3.17) with index j for which ďj,t = 1.

At the start-up stage all sensors transmit their data to the FC such that the state

vectors, H0 and dj,0’s are initialized. Then, throughout the execution stage of the algorithm,

only the sensors with ďj,t = 1 will transmit their data into the FC. This further implies that

only the corresponding rows of Ht, namely [Ĥt]j: for which {j : ďj,t = 1} will be updated.

Since the sources may be moving, there is a need to update d̂j,t on a continuous basis.

The approach followed here is to re-update the weights using the start-up phase steps every,

say Ω, time instances. For slowly varying sources, the time interval separating two updates

of the dj weights can be increased and the reconfiguration step does not have to be applied

very frequently. Thus, a small percentage of sensors will be sending data to the FC most of

the time. In the simulation we quantify the percentage of active sensors and the associated

tracking error. In the FC-based architecture, sensors are just sensing measurements and
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get pinged (if ďj,t = 1) by the FC to transmit their data. Note that if Ptot >
∑p

j=1 σ
2
x,j ,

then all dj’s can be 1 and the sensors selection step is not really needed. The approach is

summarized in the Algorithm 1 Table.

3.2.6 Sparsity-aware Matrix Decomposition via [101]

The scheme in [101] focuses on estimating the sparse observation matrix H0 in (3.4) at

t = 0, by decomposing into sparse factors the data covariance matrix

Σx = H0ΣsH
T
0 + σ2

wIp = H̄0H̄
T
0 + σ2

wIp, (3.20)

where Σs corresponds to the diagonal covariance of the entries in the state vector s0, while

H̄0 := H0Σ
1/2
s . Further, let

Mx := Σx − σ2
wIp = H̄0H̄

T
0 (3.21)

which corresponds to the signal covariance matrix after removing the impact of the noise

covariance from the data covariance matrix. Note that the support of H and H̄ is the same

since Σs is diagonal in structure. The covariance Mx at t = 0 can be estimated by employ-

ing fast sampling during the initialization stage to ensure that the source state is essentially

time-invariant, and then employing sample-averaging of the acquired measurements and

removal of the noise variance. Let M̂x = Σ̂x − σ2
wI be the estimator of Mx, where Σ̂x

corresponds to the sample-average covariance estimate.

An estimate of the sparse matrix H0 is found in [101] by resorting to the sparsity-

inducing minimization formulation

Ĥ0 = arg min
H
‖M̂x −HHT‖2

F +
∑r

ρ=1 λρ‖hρ‖1 (3.22)

where ‖ · ‖1 refers to norm-one and λρ is the sparsity-controlling coefficients for the ρth

column of matrix H, namely hρ. The minimization problem in (3.22) is tackled via a
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coordinate decent approach where the cost in (3.22) is cyclically minimized with respect

to an entry of H while keeping the rest entries fixed. Details on the recursive updating

formulas involved in minimizing (3.22) can be found in [101].

3.3 Distributed Tracking and Sensor Selection

Our goal is to develop a joint multi-source association and tracking algorithm that is

distributed, and can be implemented in an ad hoc network of spatially distributed sensors.

Sensors placed in an ad hoc configuration can both acquire and process data.

3.3.1 Separable Minimization

Since there is not a central FC in the ad hoc setting, there is a need to rewrite the

centralized cost in (3.7) in a way that takes into account the network topology. The reason

for this step is to derive subsequently an algorithm that involves information exchanges

only between single-hop neighbors that are sufficiently close to communicate. Toward this

end, the cost in (3.7) will be splitted into local subcosts which can be tackled in parallel

and locally across sensors, while proper equality constraints will be used to account for the

network topology (communication graph).

Local vectors sτ,j for j = 1, . . . , p are introduced to indicate local optimization variables

stored and updated at sensor j. The vectors sτ,j corresponds to a local version of state

vector sτ , at sensor j. The local variables sτ,j are introduced to allow every sensor j to

keep tracking sτ . Since all the vectors {sτ,j}pj=1 correspond to local copies of sτ , they

should be equal. Thus, the equality constraint sτ,1 = sτ,2 = . . . = sτ,p needs to accompany

a minimization formulation that will rely on the local vectors sτ,j .

However, such a constraint is challenging to satisfy since it requires data commu-

nication between any possible pair of sensors in the network (full connectivity). In or-

der to comply with the network topology, each local state sτ,j is required to be equal to
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the local state vectors update in its neighborhood Nj , i.e., sτ,j = sτ,j′ for every sensor

j′ ∈ Nj . Connectivity of the network communication graph ensures that the previous

single-neighborhood constraints guarantee that sτ,1 = sτ,2 = . . . = sτ,p ∀τ = 0, 1, 2, . . .

Then, the cost in (3.8) can be equivalently rewritten as:

Jt,K({sτ,j}tτ=t−K ,H) :=

p∑
j=1

t∑
τ=t−K+1

(xj(τ)−Hj:sτ,j)
2σ−2

w (3.23)

+
1

p

p∑
j=1

t∑
τ=t−K+1

(sτ,j − Fsτ−1,j)
TQ−1(sτ,j − Fsτ−1,j)

+
1

p

p∑
j=1

(st−K,j − ŝt−K,j)
TM−1

t−K|t−K,j(st−K,j − ŝt−K,j) +
∑r

ρ=1 λρ‖hρ‖1,

The cost in (3.23) can be further rewritten as (details in Apdx. E):

Jt,K({sτ,j}tτ=t−K ,H) :=

p∑
j=1

t∑
τ=t−K

‖ξτ,j −Gτ,jsτ,j‖2
2 +

∑r
ρ=1 λρ‖hρ‖1 (3.24)

where

ξ1(τ) =


1 τ > t−K

0 τ = t−K
, and ξ2(τ) =


0 τ > t−K

1 τ = t−K
,

while

ξτ,j =


ξ1(τ)σ−1

w xj(τ)

ξ1(τ)(pQ)−
1
2 Fsτ−1,j

ξ2(τ)p−1/2M
− 1

2

t−K|t−K,j ŝt−K,j

 and Gτ,j =


ξ1(τ)σ−1

w Hj:

ξ1(τ)(pQ)−
1
2

ξ2(τ)p−1/2M
− 1

2

t−K|t−K,j

.

The state estimate ŝt−K,j can be updated at each sensor by running a local Kalman filter

utilizing its neighboring sensors’ measurements along with its own measurement at t−K,

while M̂t−K|t−K,j denotes the corresponding local covariance matrix. After incorporating
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the local equality constraints introduced earlier, the minimization formulation in (3.8) is

reformulated in a separate way as follows:

arg min
{sτ,j}t,pτ=t−K,j=1,H

p∑
j=1

t∑
τ=t−K

‖ξτ,j −Gτ,jsτ,j‖2
2 +

∑r
ρ=1 λρ‖hρ‖1,

s. to sτ,j = sτ,j′ , for j′ ∈ Nj, j = 1, . . . , p and τ = t−K, . . . , t (3.25)

As in the FC-based setting, the time index of the sensing matrix H has been removed, since

it is treated fixed during the time window [t−K, t]. Note that the minimization formulation

in (3.8) and (3.25) are equivalent in the sense that they have the same minimizers for the

state vectors and H.

In order to perform joint multi-source tracking and source-to-sensor association, it is re-

quired to solve (3.25) in a distributed fashion. An alternating scheme will be employed,

where we optimize (3.25) w.r.t the entries of H while fixing the state, and vice versa.

3.3.2 Algorithmic Construction

To minimize (3.25) in a fully distributed fashion w.r.t the state vectors sτ,j , we employ

the alternating direction method of multipliers (ADMM), see e.g., [17] [15]. To facilitate

applicability of ADMM, we introduce a set of auxiliary variables zj
′

τ,j for j′ ∈ Nj and τ =

t −K, ..., t. These auxiliary variables will be used to derive the local updating recursions

across sensors and will finally be eliminated. These variables are used to substitute the

constraints in (3.25) with the equivalent ones:

sτ,j = zj
′

τ,j and sτ,j = zjτ,j′ , for j′ ∈ Nj and j 6= j′ (3.26)
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Necessary in utilizing the ADMM to tackle (3.25) is the augmented Lagrangian func-

tion, see, e.g. [17, Chapt 3], which here takes the form

La[{sτ,j},v,ω] =

p∑
j=1

t∑
τ=t−K

‖ξτ,j −Gτ,jsτ,j‖2
2 +

∑r
ρ=1 λρ‖hρ‖1

+

p∑
j=1

∑
j′∈Nj

t∑
τ=t−K

[(vj
′

τ,j)
T (sτ,j − zj

′

τ,j) + (ωj
′

τ,j)
T (sτ,j − zjτ,j′)]

+ 0.5c

p∑
j=1

∑
j′∈Nj

t∑
τ=t−K

[‖sτ,j − zj
′

τ,j‖2
2 + ‖sτ,j − zjτ,j′‖

2
2] (3.27)

The Lagrangian multipliers vj
′

τ,j’s and ωj
′

τ,j correspond to the constraints sτ,j = zj
′

τ,j and

sτ,j = zjτ,j′ , respectively. Further, c is a positive coefficient, while the vectors v and ω

contain the multipliers vj
′

τ,j and ωj
′

τ,j that will make sure that the equality constraints sτ,j =

zj
′

τ,j and sτ,j = zjτ,j′ are satisfied when minimizing (3.25).

Due to the nonconvex structure of the cost in (3.27), we employ block coordinate

descent. First, (3.27) is minimized w.r.t H while treating the states sτ,j as fixed. Then, after

fixing H the cost in (3.27) will be minimized w.r.t sτ,j subject to the constraints (3.26).

Minimization of (3.27) w.r.t H:

Let k = 0, 1, 2, . . . , T denote the coordinate descent cycle index when tackling

(3.24). Every sensor j is responsible for updating the jth row of H, namely the entries

{H(j, ρ)}rρ=1. To this end, the local states sτ,j will be set to their most recent updates

ŝk+1
τ,j which corresponds to the ADMM outcome at the end of coordinate cycle k + 1 (de-

tails later). From the augmented Lagrangian function in (3.24) it turns out (using similar

arguments as in Apdx. D).

Ĥk+1
t (j, ρ) := arg min

h
σ−2
w ‖yk+1

j,t − ŝρ,kt,j · h)‖2
2 + λρ|h|, (3.28)
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where ŝρ,kt,j := [ŝkt−K+1,j(ρ), ŝkt−K+2,j(ρ), . . . , ŝkt,j(ρ)]T and yk+1
j,t is a K × 1 vector with

entries

yk+1
j,t (m) = xj(t−K +m)−

r∑
`=1,` 6=ρ

Ĥk
t (j, `)ŝ

k
t−K+m,j(`), m = 1, . . . ,M, (3.29)

where ŝkt−K+m,j(`) correspond to the `th entry of the state estimates ŝkt−K+m,j obtained via

ADMM as described next at the end of coordinate cycle k. Using similar arguments as in

Apdx. D, it turns out that the optimal solution in (3.28) is:

Ĥk+1
t (j, ρ) = sgn([ŝρ,kt,j ]Tyk+1

j,t )×

(
[ŝρ,kt,j ]Tyk+1

j,t

‖ŝρ,kt,j ‖2
2

− λρ

2σ−2
w,j‖ŝ

ρ,k
t,j ‖2

2

)
+

. (3.30)

Sensor j can update Ĥk+1
t (j, ρ), for ρ = 1, . . . , r, locally since both yk+1

j,t and ŝρ,kt,j can be

formed using its local measurements xj(τ) and the local estimates ŝkτ,j .

ADMM-based minimization of (3.27) w.r.t sτ,j and zj
′

τ,j’s:

Here C ADMM iterations are applied per coordinate cycle k + 1 to obtain across

sensors estimates for the states sτ,j for the time window τ = t−K, . . . , t. ADMM involves

the following three steps (detailed later):

i) Update the Lagrange multipliers using gradient ascent iterations. Let vj
′,k+1
τ,j (κ) and

ωj
′,k+1
τ,j (κ) denote the ADMM updates for the multipliers vj

′

τ,j and ωj
′

τ,j , where the positive

integer κ denotes the ADMM iteration index performed during coordinate cycle k + 1.

Here C ADMM iterations are nested within coordinate cycle k + 1.

ii) Minimize the augmented Lagrangian function in (3.27) w.r.t sτ,j for j = 1, . . . , p, while

fixing zj
′

τ,j , vj
′

τ,j and ωj
′

τ,j to their most up-to-date values, namely zj
′,k+1
τ,j (κ), vj

′,k+1
τ,j (κ) and

ωj
′,k+1
τ,j (κ) obtained at step i) to obtain update sk+1

τ,j (κ + 1).

iii) Minimize the augmented Lagrangian function in (3.27) w.r.t the variables zj
′

τ,j while

fixing sτ,j , vj
′

τ,j and ωj
′

τ,j to their most up-to-date values sk+1
τ,j (κ) obtained at step ii), and

vj
′,k+1
τ,j (κ), ωj

′,k+1
τ,j (κ) obtained at step i).
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Specifically, the first step of applying ADMM, during coordinate descent cycle κ + 1, is to

update the multipliers using the gradient ascent iterations:

vj
′,k+1
τ,j (κ) = vj

′,k+1
τ,j (κ − 1) + c(sk+1

τ,j (κ)− zj
′,k+1
τ,j (κ)) (3.31)

ωj
′,k+1
τ,j (κ) = ωj

′,k+1
τ,j (κ − 1) + c(sk+1

τ,j (κ)− zj,k+1
τ,j′ (κ)) (3.32)

for j′ ∈ Nj , and τ = t − K, ..., t. Warm starts are employed to initialize the Lagrange

multipliers before applying C ADMM iterations, namely vj
′,k+1
τ,j (0) = vj

′,k
τ,j (C). The same

procedure is followed to update and initialize the variables sτ,j , zj
′

τ,j and ωj
′

τ,j .

The second step involves minimizing the augmented Lagrangian in (3.27) w.r.t. sτ,j ,

while fixing the other variables to their most up-to-date values, namely [Ĥk+1
t ]j: (j-th row

of Ĥk+1
t ), zj

′,k+1
τ,j (κ), vj

′,k+1
τ,j (κ) and ωj

′,k+1
τ,j (κ). Then, as established in Apdx. F, the

update sk+1
τ,j (κ + 1) is formed as:

sk+1
τ,j (κ + 1) =(2GT

τ,jGτ,j + 2c|Nj|Ir×r)−1 (3.33)

× [2GT
τ,jξτ,j −

∑
j′∈Nj

(vj
′,k+1
τ,j (κ) + ωj

′,k+1
τ,j (κ)) + c

∑
j′∈Nj

(zj
′,k+1
τ,j (κ) + zj,k+1

τ,j′ (κ))]

The third ADMM step entails minimization of (3.27) w.r.t zj
′

τ,j , while fixing the remaining

variables to their most recent updates, namely Ĥk+1
t , sk+1

τ,j (κ+1) vj
′,k+1
τ,j (κ) andωj

′,k+1
τ,j (κ).

Then, in Apdx. F it is shown that

zj
′,k+1
τ,j (κ + 1) =

1

2
[sk+1
τ,j (κ + 1) + sk+1

τ,j′ (κ + 1)]

+
1

2c
[vj
′,k+1
τ,j (κ) + ωj,k+1

τ,j′ (κ)], for j = 1, ..., p and j′ ∈ Nj. (3.34)

In fact, the Lagrangian multipliers vj
′,k+1
τ,j (κ) and ωj

′,k+1
τ,j (κ) can be initialized ran-

domly without affecting the convergence of the three ADMM steps as κ → ∞, see e.g.,

[97]. Substituting (3.34) into (3.31), and initializing the multipliers such that vj
′,k
τ,j (0) =
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−ωj,kτ,j′(0), then for all τ and κ = 1, . . . , C, it holds vj
′,k
τ,j (κ) = −ωj,kτ,j′(κ) from which the

first updating formulate in (3.31) can rewritten as

vj
′,k+1
τ,j (κ) = vj

′,k+1
τ,j (κ − 1) + 0.5c(sk+1

τ,j (κ)− sk+1
τ,j′ (κ)) (3.35)

Thus, there is no need to update and store ωj,kτ,j′(κ), since vj
′,k
τ,j (κ) = −ωj,kτ,j′(κ). Sensor j

updates the Lagrange multipliers {vj
′,k+1
τ,j (κ)}j′∈Nj for τ = t−K, . . . , t and the local state

vectors sτ,j whose updating formula in (3.33) can be written as

sk+1
τ,j (κ + 1) =(2GT

τ,jGτ,j + 2c|Nj|Ir×r)−1 (3.36)

× [2GT
j,τξτ,j −

∑
j′∈Nj

(vj
′,k+1
τ,j (κ)− vj,k+1

τ,j′ (κ)) + c
∑
j′∈Nj

(sj
′,k+1
τ,j (κ) + sj,k+1

τ,j′ (κ))]

where it can be clearly seen that the auxiliary variables zj
′

τ,j’s have been eliminated. Recur-

sions (3.35) and (3.36) constitute the novel distributed approach where each sensor j just

have to keep track of the multipliers {vj
′

τ,j}j′∈Nj and the state updates sτ,j for τ = 0, ..., t.

The initial values of vj
′

τ,j can be set to 0, while the initial values of the s’s will be obtained

from sensor j’s local Kalman filter prediction obtained using only its own measurements. In

this way, all the sensors exchange information to their single-hop neighboring sensors. The

convergence results in [97] ensure that if the number of ADMM iterations C →∞ during

coordinate cycle k+1, then the local variables sτ,j become equal and limκ→∞ sk+1
τ,j (κ) con-

verge to the state estimates in (3.9), when H is set to Ĥk+1
t in the corresponding quantities

used to form them in (3.12).

3.4 Computational and Communication Cost

During time instant t, the augmented Lagrangian function in (3.27) is minimized by

applying T coordinate descent cycles. Once new measurements have been collected across

sensors, namely xj(t) for j = 1, 2, . . . , p, the following process takes place. During coor-

dinate cycle k + 1, sensor j first updates the jth row of H, and evaluates {Ĥk+1
t (j, ρ)}rρ=1
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via (3.30) using its local state updates ŝkt−K+m,j for m = 1, . . . , K, the measurements

xj(t − k + 1), . . . ,xj(t) and latest coordinate updates Ĥk
t (j, `), ` = 1 and ` 6= ρ. Then,

sensor j runs C ADMM iterations by carrying out (3.35) and (3.36). In detail, during

ADMM iteration κ+ 1, inside coordinate cycle k+ 1, sensor j receives the r×1 state vec-

tors sk+1
τ,j (κ) from its neighbors j′ ∈ Nj , and updates its Lagrange multipliers vj

′,k+1
τ,j (κ)

via (3.35).

Sensor j receives the multiplier vj,k+1
τ,j′ (κ) from neighbors j′ ∈ Nj which are used

along with {sk+1
τ,j′ (κ)}j′∈Nj to update sk+1

τ,j (κ + 1) via (3.36). The steps are summarized in

Alg. 2 Table.

During one ADMM iteration, sensor j receives {vj,k+1
τ,j′ (κ), sk+1

τ,j′ (κ)}tτ=t−K from its

neighbors j′ ∈ Nj , which corresponds to 2r(K + 1)|Nj| scalars. Since per time instant

t, there are T coordinate cycles with C nested ADMM iterations each, the total scalars

received during time instant t are 2r(K + 1)CT |Nj|. Further, sensor j has to transmit its

local state vector estimate sk+1
τ,j (κ) and multipliers {vj

′,k+1
τ,j (κ)}j′∈Nj which corresponds to

r(|Nj|+ 1)(K+ 1) scalars. Thus, during time instant t sensor j transmits r(K+ 1)(|Nj|+

1)CT scalars. Thus, the communication cost is proportional to the number of sources r,

the neighborhood size and the number of coordinate cycles, as well as ADMM iterations

applied per time instant t. Although the proposed algorithm is not scalable with respect to

the number of sources, it has to be emphasized that the number of sources in practice is

smaller than the number of sensors. The cost is not affected by the total size of the whole

network, and is easily manageable for small values of the number of sources r, K, |Nj|, C

and T .
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3.5 Some Remarks

The two tracking algorithms proposed earlier have complimentary nature. Specifi-

cally, the one proposed in Sec. (3.2) is developed for a FC-based setting in which a central

computing center receives and processes the data acquired at the sensors. A power con-

straint was introduced to ensure that the power of the signals to be transmitted does not

exceed the total power budget imposed across all sensors. A different setting in which

no FC is present, while only communication between neighboring sensors is allowed was

considered and led to a totally distributed algorithm. The proposed joint source tracking

and association scheme allows sensors at a close distance (and thus efficient to communi-

cate with) to collaborate and exchange information to identify and track the sources. The

FC-based setting allows faster processing, though it does not scale well with the size of

the network and is prone to FC failures. Such issues are resolved by the distributed setting,

though at the expense of slower processing due to the nested ADMM iterations during each

coordinate cycle.

3.6 Simulations

Next, we test the tracking and association performance of the two proposed schemes

and compare it with alternative approaches. In the numerical tests it is assumed that among

the summands in (4.3) only one has strong amplitude whereas the rest are negligible. This

pertains to a setting where only one source, say the ρth, is close to sensor Sj whereas the

rest are sufficiently far, thus their contribution in xj(t) is very small. Given the exponential

attenuation that vibration sources experience in (3.3), it suffices for the sources to be sepa-

rated by a distance of the order of 20− 30 meters. Consider the 2D field [0, 60]× [0, 60]m2

in which p = 35 sensors are deployed randomly. In the numerical tests, r = 2 scalar

sources are present. The transition matrix in (3.1) is set equal to F = diag(0.95, 0.95).
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The (j, ρ) entry of matrix Ht is created according to a Gaussian random variable

with expectation e−α‖pj−lρ(t)‖2 and variance 10−4, i.e., Ht(j, ρ) ∼ N (e−α‖pj−lρ(t)‖2 , 10−4),

where pj corresponds to the location of sensor j, while lρ(t) the position of the ρth source at

time instant t and α = 0.15. The sources are located such that sensors 16, 27 observe source

s1(t) and sensors 18 and 23 observe source s2(t). This test holds for a total of 120 seconds.

The sources move roughly for 0.13m per time instant t on a straight line which results

the attenuation coefficients corresponding to sensors from which the sources move away

to decrease to zero at a rate of approximately 0.98, while the coefficients corresponding

to sensors to which the sources approach closer, increase at a rate of 0.98−1 = 1.02. For

instance, if source ρ is moving away from sensor j then Ht(j, ρ) decreases by the ratio

Ht(j,ρ)
Ht−1(j,ρ)

= e−α‖pj−lρ(t)‖2

e−α‖pj−lρ(t−1)‖2 = 0.98 since the source moves ‖pj−lρ(t)‖2−‖pj−lρ(t−1)‖2 ≈

0.13m away from sensor j per time instant t. Similarly a rate of increase of 1.02 can be

obtained when a source is approaching a sensor. The sparsity-controlling coefficients λρ’s

are set as λ1 = 0.005, λ2 = 0.005 . The state and measurement noise variances are both set

to be σ2
u = 1.25 and σ2

w = 1.25.

The FC-based tracking scheme is tested first. The tracking root mean-square er-

ror(RMSE) versus time t is depicted in Fig. 3.3. The smallest tracking RMSE is achieved

from the K-lag Kalman Smoother (KS) (using all the data until time t to provide an esti-

mate št−K with delay K), followed by the traditional KF filter. In the first two cases, the

(true) Ht is available. These two schemes treating Ht as known will be used as benchmarks

to compare with the novel methods proposed here. In detail, note that the FC-based scheme

evaluates K different state estimates for the sources’ state vector {sτ}tτ=t−K at time instant

t, according to (3.9). Among these K estimates, a filtered estimate (no delay) št,t is also

provided (depicted as the green dashed-dot curve in Fig. 3.3). The performance of these

estimates is pretty close to the estimates provided from a standard KF using our estimated

Ĥt (red solid curve in Fig. 3.3). Though in the long run, among the three schemes that do
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no have available the true Ht, our FC-based scheme using št−K , (see blue curve with cross

markers) achieves a better performance while the performance gap with the traditional KF

(purple curve with ‘x’ markers) is reduced with time.

Considering the same FC-based setting described earlier, here we consider a limited power

budget. The same testing scenario with p = 35 sensors monitored field is considered here.

The average tracking RMSE for tracking two sources is depicted in Fig. 3.4 with state

and observation noise variances both set equal to σ2
u = 1.25 and σ2

w = 1.25. The total

power budget is set as Ptot = 40, resulting on average (50 Monte Carlo runs) of 86% of

all the sensors being selected to transmit their data to the fusion center. Our approach is

compared with a FC-based tracking scheme where 86% of the sensors is selected randomly

(blue solid curve). Moreover, our approach is compared with a KF scheme utilizing the

true Ht and using all sensors’ data which, not surprisingly, achieves the lowest tracking

RMSE (black crossed curve). This will act as a benchmark. Note that our approach (red

dashed curve in Fig. 3.4) is following relatively close the benchmark KF scheme using

the true sensing matrix H, while 86% of the sensors is utilized to respect the total power

constraint. This implies that the sensor selection process proposed in Sec. 3.2.4 efficiently

finds sensors that contain information about the underlying sources, while respecting the

available power budget.

Fig. 3.5 shows the average steady-state RMSE versus the percentage of sensors being

selected i) via the scheme in Sec. 3.2.4; and ii) randomly. Note that the steady-state

RMSE achieved by our proposed sensor selection scheme outperforms the random select-

ing scheme different values of the portion of selected sensors. In fact the advantage of using

the sensor selection scheme in Sec. 3.2.4 increases as fewer sensors are being selected, fol-

lowing closely the steady-state RMSE achieved using all sensors and having available the

true H. Thus, the proposed sensor selection scheme judiciously selects sensors to respect

the total power budget without significantly compromising the steady-state tracking RMSE.

77



The tracking performance of the novel distributed tracking and association algorithm

in Sec. 3.3 is tested next. Again p = 35 sensors are considered, while there are r = 4

sources. The state transition matrix is set as F = diag(0.95, 0.95, 0.95, 0.95). The observa-

tion matrix Ht is generated as described earlier. The sparsity-controlling coefficients λρ’s

are set as λ1 = 0.008, λ2 = 0.007, λ3 = 0.006 and λ4 = 0.005, while the incremental step

parameter c in the ADMM scheme is set equal to 1.0. Fig. 3.6 depicts the average track-

ing root mean-square error of 150 Monte Carlo trials for different tracking schemes with

K = 80, σ2
u = 3.25 and σ2

w = 4.25. The following four tracking schemes are tested and

compared: i) the distributed tracking scheme in Sec. 3.3 (blue with cross markers curve);

ii) the FC-based approach described in Sec. 3.2 (black dashed curve); iii) the distributed

tracking scheme in Sec. 3.3 where H is fixed to the true H0 and not recursively updated

later on (red solid curve); and iv) the FC-based approach described in Sec. 3.2 where the

true Ht is used when estimating the states (purple with ‘x’ markers curve). The number

of ADMM iterations in the i) and iii) schemes is set to C = 50 per coordinate descent cy-

cle. Clearly, the centralized FC-based methods (black dashed and purple with ‘x’ markers

curves) achieve better tracking performance than the distributed algorithm. Nevertheless,

our distributed algorithm (blue with cross markers curve) will eventually stay fairly close

to the FC-based tracking scheme when Ht is not known. This is to be expected since in the

distributed setting it takes more time for the information to propagate through the network.

When the distributed scheme in 3.3 loses its capability to estimate Ht (red solid curve) then

performance deteriorates compared to the fully blown distributed version (blue with cross

markers curve) which includes estimation of H. The lowest tracking RMSE is achieved

by the centralized tracking scheme while using the true sensing matrix Ht throughout the

tracking period.

In the same network setting, it is examined next in Fig. 3.7 how the number of ADMM

iterations affects the steady-state RMSE of the distributed tracking scheme in Sec. 3.3.
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Two different noise settings are considered: i) σ2
u = 1.25, σ2

w = 1.25 (low-noise setting);

and ii) σ2
u = 3.25, σ2

w = 4.25 (high-noise setting). The more ADMM iterations are applied,

the closer to the centralized performance the distributed scheme is getting at the expense

of a higher computational and communication complexity. The steady-state RMSE versus

the window length K is depicted in Fig. 3.8 for the two different noise settings described

earlier. It can be seen that the tracking error decreases with an increasing window length

K. The performance gap between the distributed and centralized schemes is smaller in the

low-noise case compared to the high-noise setting.

The probability of successfully recovering the support of H at t = 120s versus the

window size K is plotted in Fig. 3.9. Note that if the window length is K = 50 or less, the

sensing matrix H is not recovered well. As the window length becomes larger, the support

of the unknown sensing matrix H becomes more likely to be recovered. The proposed

distributed tracking scheme in Sec. 3.3 keeps close to the FC-based centralized scheme

especially when a relatively large window length (say, K = 80) is selected, for a number

of C = 50 ADMM iterations. The probability of recovering the support of H at t = 120s

versus the number of ADMM iterationsC is also shown in Fig. 3.10. The larger the number

of ADMM iterations, the more likely to recover correctly the support of H.

3.7 Conclusions

The paper considers the problem of jointly associating sources with sensors and sub-

sequently tracking them in i) a fusion center based sensor network; and ii) an ad hoc net-

work architecture. The algorithm proposed for the FC-based is exploiting sparsity in the

sensing matrix along with a power constraint, to jointly estimate the support of the sensing

matrix along with the source states. Coordinate descent techniques along with solving a

linear program are the building stones of the proposed algorithm. In the ad hoc setting the
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alternating direction method of multipliers is utilized to fully distribute the joint tasks of as-

sociation and source tracking across the sensors. Numerical tests demonstrate the potential

of the proposed schemes.
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Figure 3.1. Time-varying fusion-center based multi-sensor multi-source configuration. .
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Figure 3.2. Ad hoc distributed time-varying multi-sensor multi-source configuration. .
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Algorithm 3 FC-Based Joint Sensors-Sources Association and Tracking
Start-up stage: Acquire (at a sufficiently fast sampling rate) Q data from all sensors

and apply the covariance sparse decomposition scheme in [101] to obtain an estimate

Ĥ0. Initialize the states as s(0) = [s1(0), . . . , sr(0)]. Initialize the weights dj’s such that

d̂j,0 = 1, ∀j for which [Ĥ0]j,: 6= 0 (otherwise d̂j,0 = 0), and
∑p

j=1 d̂j,0σ̂
2
x,j,0 ≤ Ptot.

for t = 1, 2, 3, . . . do

for τ = t−K, . . . , t do

Receive data from sensor j ∈ {1, . . . , p} for which d̂j,t−1 = 1.

Using Ĥt−1 in (3.8) and only those summands for which d̂j,t−1 = 1, update the

source state estimates št−K,t, . . . , št,t via (3.9).

Using št−K,t, . . . , št,t and only those summands in (3.8) for which d̂j,t−1 = 1, update

the entries of Ĥt employing the formulas in (3.15) for all j for which d̂j,t−1 = 1 and

ρ = 1, . . . , r.

if t mod Ω = 0 then

Reapply start-up stage steps to update Ht, {sτ}tτ=t−K and {dj}pj=1.

end if

end for

end for
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Algorithm 4 Distributed Joint Sensors-Sources Association and Tracking
1: Start-up stage: Acquire (at a sufficiently fast sampling rate) Q data and apply the

covariance sparse decomposition scheme in [101] to obtain an estimate Ĥ0. Initialize

the multipliers v and states s as described in Sec 3.6.

2: for t = 1, 2, 3, . . . do

3: for τ = t−K, . . . , t do

4: for k = 1, . . . , T do

5: Sensor j = 1, . . . , p updates {Ĥk+1
t (j, ρ)}rρ=1 via updating recursion (3.30).

6: Sensor j applies C ADMM iterations to update locally sk+1
τ,j (κ + 1) and

vj
′,k+1
τ,j (κ) for j′ ∈ Nj and obtain updates ŝk+1

τ,j := sk+1
τ,j (C).

7: end for

8: end for

9: end for

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

t

R
M

S
E

 

 
Proposed FC−Based approach(K=80)
KF with estimated H
Undelayed estimations
KF with known true H
KS with known true H

Figure 3.3. FC-based tracking root mean-square error (RMSE) vs. time t.
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Figure 3.8. Steady-state root mean-square error (RMSE) vs. length of time window K. .
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Figure 3.9. Probability of correctly recovering support of H vs. length of time window K.
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Figure 3.10. Probability of correctly recovering support of H vs. number of ADMM
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CHAPTER 4

Exploiting Sensor Mobility and Covariance Sparsity For Distributed Tracking of Multiple

Sparse Targets

4.1 Problem Setting

An ad hoc sensor network conformed by p mobile sensors is considered here. The

sensors monitor a field where an unknown and possibly time-varying number of moving

targets is present. Each sensor communicates only with its neighboring sensors which are

within its communication range and are able to exchange information with a single-hop

of communication. The single-hop neighborhood of sensor j is denoted as Nj(t), where t

denotes the time index.

In general, all targets are assumed to be moving in a K-dimensional space. Then

every target, say the ρth is characterized by a 2K × 1 state vector which contains both its

position coordinates and velocity information for each coordinate. The position coordinates

for the ρth target at time t are stacked in vector pρ(t) = [pρ,x1(t), . . . , pρ,xK (t)]T , while the

velocity per coordinate is in vector vρ(t) = [vρ,x1(t), . . . , vρ,xK(t)]
T . So at time t, the state

vector can be written as sρ(t) = [pTρ (t),vTρ (t)]T , while it evolves according to a near

constant velocity model [7]. Specifically, the ρth target’s state vector evolves according to

the following constant velocity model, see e.g., [7]:

sρ(t+ 1) = Fsρ(t) + uρ(t), (4.1)
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where F is the 2K × 2K state transition matrix, and uρ(t) the zero-mean Gaussian state

noise with variance Σu. Matrices F and Σu are given as follows:

F =



1 0 . . . ∆T . . . 0

...
...

...
...

...
...

0 1 0 0 . . . ∆T

0 0 1 . . . 1 0

0 0 0 . . . 0 1


, Σu = σ2

u

(∆T )3/3 · IK (∆T )2/2 · IK

(∆T )2/2 · IK ∆T · IK

 , (4.2)

where σ2
u is the noise variance and IK denotes the identity matrix of size K×K, while ∆T

denotes the sampling period.

Sensor j, senses the moving targets, by acquiring at time t a scalar measurement

depending on the target location according to the following nonlinear model:

xj(t) =
∑R

ρ=1
aρ(t)d

−2
j,ρ(t) + wj(t), j = 1, . . . , p, (4.3)

where aρ(t) denotes the intensity of a signal emitted from the ρth target and dj,ρ(t) =

‖pj(t) − pρ(t)‖ is the distance between sensor j and the ρth target at time t. The total

number of targets which move in the field through the lifespan of the SN is indicated as

R, while wj(t) denotes the white sensing noise with variance σ2
w and zero-mean. The

following assumptions are introduced in the considered setting:

• A1: In the measurement model in Eq:(4.3), it is assumed that the targets act as

transmitters and each sensor will receive one reflection of the signal emitted from

the targets. Signals emitted from the targets propagate via free space, explaining

the d−2
j,ρ(t) attenuation coefficients, and are superimposed as shown in Eq:(4.3), see

e.g., [40].

• A2: The signal amplitudes aρ(t) are considered to be uncorrelated across the differ-

ent targets.
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• A3: Among the summands aρ(t)d−2
j,ρ(t) in Eq:(4.3), only one has a large amplitude

when sensor j is close to the ρth target, whereas others are negligible due to the

square-law attenuation d−2
j,ρ(t) caused by the free space propagation.

Note that assumption A3 corresponds to a setting where at most one target is present within

the sensing range of a sensor. Note that this is a more relaxed version of the common

assumption that one sensor just contains the measurement of a specific target, [52,85,118].

The signal amplitudes aρ(t) will be nonzero for the interval in which the corresponding

target is active and moving while is kept at zero when the target is inactive and disappears.

The emitted, from the targets, signals aρ(t) could correspond to communication ra-

dio signals that possibly the targets are transmitting, e.g., targets could correspond to cell

phone users moving in an area, or military vehicles or moving radio emitters that move

within the monitored area and need to be tracked, see e.g., [106]. The deployed sensors

are listening for these signals to track the moving entities. The targets could correspond

to independent entities, thus it is expected that the information bits they transmit, are un-

correlated, giving rise to uncorrelated transmission signals [87]. Thus, the communication

radio signals that the targets may be emitting are utilized to perform tracking and move

the sensors appropriately. Applications include localization and tracking of mobile users in

wireless networks, as well as tracking of radio emitters in tactical environments [106].

Stacking all the sensor measurements in Eq:(4.3) on an p× 1 vector it follows:

xt = Dtat + wt, where at := [a1(t) a2(t) . . . aR(t)]T , (4.4)

where Dt is a p × R matrix with entries Dt(j, ρ) = d−2
j,ρ(t) with j = 1, . . . , p and ρ =

1, . . . , R. The noise wt has covariance Σw = σ2
wIp. Given that the entries of at are

uncorrelated, it follows readily that the data covariance matrix is

Σx,t = DtΣaD
T
t + σ2

wIp = D̄tD̄
T
t + σ2

wIp, (4.5)
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where Σa is the diagonal covariance matrix of at, while D̄t := DtΣ
1/2
a . Among the R

entries in at, there will be r(t) nonzero entries corresponding to the active targets moving

at the sensed field at t. In the setting here, once a target becomes inactive (i.e. aρ(t) = 0) it

remains inactive for the rest of time.

The goal is to enable the mobile sensors to track an unknown number of targets

present in the monitored field. Novel target association and sensor mobility strategies will

be combined with tracking techniques to enable sensors to accurately track the different

target trajectories. Proper kinematic strategies will be developed to allow only a small per-

centage of target-informative sensors to move, different from existing approaches [67,136]

where all sensors are moving at every time instant that may be more resource demanding.

Judiciously selecting and moving sensors will enable target tracking even when the targets

move outside the area originally monitored by the sensors.

4.2 Distributed Association, Tracking, and Sensor Kinematic Strategies

4.2.1 Target-Informative Sensor Selection

Due to the presence of multiple target in the monitored field, the first goal is to

determine sets of sensors, namely Sρ,t, that acquire information bearing measurements

about the ρth target. From the observation model in Eq:(4.4), note that the strong-amplitude

entries of the ρ column in Dt, namely {Dt,:ρ}Rρ=1, can reveal the sensors within subset Sρ,t.

Specifically, recall that Dt(j, ρ) = d−2
j,ρ(t), thus when sensor j and target ρ are close in

distance then the corresponding entry is expected to have large amplitude, while the further

away they get from each other the closer to zero the corresponding entry gets. The matrix

Dt can be assumed approximately sparse. Thus, the strong-amplitude entries (away from

zero) in Dt,:ρ can be used to determine the informative sensor members of Sρ,t at time
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instant t. Thus, determining Sρ,t boils down to the problem of recovering the support of the

columns of Dt.

To recover the sparse matrix D̄t in Eq:(4.4) the data covariance matrix will be de-

composed into sparse factors. Due to the fact that the targets and sensors may be moving

while the number of targets is changing, the sparse sensor data covariance Σx,t is also time-

varying. In practice, the ensemble covariance is not available and needs to be estimated.

To this end, exponential weighing is employed to estimate the time-varying covariance

entries. The notion of exponential weighing in recursive least-squares used in processing

non-stationary signals, see e.g., [100, Ch. 9], is estimating the time-varying covariance

matrix here as follows:

Σ̂x,t =
1− ω

1− ωt+1

∑t
τ=0 ω

t−τ (xτ − x̄t)(xτ − x̄t)
T , (4.6)

where ω ∈ (0, 1) denotes a forgetting factor and

x̄t =
1− ω

1− ωt+1

∑t
τ=0 ω

t−τxτ , (4.7)

corresponds to a real-time estimate for the ensemble mean at time instant t. Note that ω in

Eqs. (4.6) and Eq:(4.7) is used in a way that puts more emphasis to the recent data while

it gradually forget the past data, which is exactly what an up-to-date estimator needs to do

for the time-varying setting considered here. The scaling (1− ω)(1− ωt+1)−1 in (4.6) and

(4.7) is to ensure that the two estimates Σ̂x,t and x̄t for the ensemble quantities Σx,t and

E[xt] will be unbiased.

To account for the nearly sparse structure of D̄t, the unknown number of targets and

single-hop connectivity of the sensor nodes the following formulation relying on norm-

one/norm-two regularization is utilized:(
M̂t, {σ̂j}mj=1

)
:= arg min

Mt,{σj}mj=1

‖E�
(
Σ̂x,t −MtM

T
t −diag(σ2

1,t, . . . , σ
2
p,t)
)
‖2
F (4.8)

+
L∑
`=1

(λ`‖Mt,:`‖1 + φ‖Mt,:`‖2) ,
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where � denotes the Hadamard operator (entry-wise matrix product), while σ2
j is the noise

variance estimate at sensor j, and L is an upper bound for the number of active sensed tar-

gets r(t) (L ≥ r(t)) and Mt ∈ Rp×L contains L columns that estimate the sparse columns

of D̄t. Mt,:` denotes the `th column of Mt. The formulation was first proposed in [93,101]

to perform target-sensor association in a network of stationary sensors that do not have

moving capabilities. Here this formulation will be utilized to determine the different sets

of informative sensors observing different targets before being integrated with kinematic

control rules.

The Hadamand operator� along with the adjacency matrix E in Eq:(4.8) allow only

the single-hop covariance entries to be used since they can be calculated by direct com-

munication of the corresponding neighboring sensors. The first term in Eq:(4.8) accounts

for the structure in Eq:(4.5). Sparsity is induced in the columns of Mt using the norm-one

term in Eq:(4.8), (see e.g., [137]), while λ` denotes the nonnegative sparsity-controlling

coefficient used to adjust the number of zeros in M̂t,:`. The coefficient φ ≥ 0 in the last

term of Eq:(4.8) promotes group sparsity among rows, [129], thus is introduced to adjust

the number of nonzero columns of M̂t needed to approximate Σ̂x,t. This is done to zero-out

unnecessary columns in M̂ when the number of active targets in the field is smaller than R.

The number of nonzero columns in Mt indirectly estimates the number of targets at time

instant t, namely r̂(t).

The cost in Eq:(4.8) is minimized by an iterative minimization scheme based on

coordinate descent [10,112], where sensor j is responsible for updating the jth row of Mt,

namely Mt,j:. Specifically, the cost is minimized wrt one entry of Mt or diag(σ2
1, . . . , σ

2
p),

while keeping the rest fixed to their most up-to-date values. Sensor j updates the entries

{Mt(j, `)}L`=1 and variance σ2
j,t. During one coordinate cycle all the entries of Mt and

diag(σ2
1,t, . . . , σ

2
p,t) will be updated.
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The updates for entries M̂k
t (j, `) will be formed by differentiating Eq:(4.8) wrt Mt(j, `)

and setting the derivative equal to zero, while fixing the rest of the entries of Mt, and σj,t

to their most recent updates in M̂k−1
t and {σ2

j,t,k−1} evaluated at cycle k − 1. It turns out

(details in [93,101]) that during coordinate cycle k, the update M̂k
t (j, `) can be obtained as

the value that gets the minimum possible cost in Eq:(4.8) (while fixing the rest of the vari-

ables) among the candidate values: i) z = 0; ii) the real positive roots of the third-degree

polynomial

z3 +

∑
i∈Nj

[M̂k−1
t (i, `)]2 − ψkt,Σ(j, j, `) +

φ

2

 z −
∑
i∈Nj

ψkt,Σ(j, µ, `)M̂k−1
t (i, `)

+
λ`
4

= 0

(4.9)

and iii) the real negative roots of the third-degree polynomial

z3 +

∑
i∈Nj

[M̂k−1
t (µ, `)]2 − ψkt,Σ(j, j, `) +

φ

2

 z −
∑
i∈Nj

ψkt,Σ(j, i, `)M̂k−1
t (i, `)

−λ`
4

= 0

(4.10)

where

ψkt,Σ(j, i, `) := Σ̂x,t(j, i)− δj,iσ̂2
j,t,k−1 −

L∑
`′=1,`′ 6=`

M̂k−1
t (j, `′)M̂k−1

t (i, `′), (4.11)

while δj,i denotes the Kronecker delta function, i.e., δj,i = 1 if j = i, and δj,i = 0 if

j 6= i. The roots of the two aforementioned polynomials can be calculated using companion

matrices, see e.g., [50].

Furthermore, during cycle k at time instant t, the noise variance estimates across

sensors can be updated as

σ̂2
j,t,k = Σ̂x,t(j, j)− M̂k

t,j:(M̂
k
t,j:)

T , j = 1, . . . , p. (4.12)

Sensor j needs to communicate only with its single-hop neighbors in Nj , in order to eval-

uate the coefficients of the polynomials in Eq:(4.9) and Eq:(4.10), and to update the noise
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variance estimates in Eq:(4.12). It can be shown that as k → ∞, the updates M̂k−1
t con-

verge at least to a stationary point of Eq:(4.8). Further, the sparsity controlling coefficients

{λ`}L`=1 can be set using the strategy proposed in [101, Sec. ]. Once the sparse columns

{M̂t,:`} are estimated, their support (the indices of relatively strong-amplitude entries) is

used to determine which sensors sense a specific target at time t.

4.2.2 Tracking via Extended Kalman Filtering

The target informative sensor subsets Sρ`,t for ` = 1, . . . , r̂(t), where r̂(t) corre-

sponds to an estimate of the number of targets at time instant t obtained from the number

of nonzero columns of M̂t := M̂K̄
t , after applying K̄ coordinate cycles. Extended Kalman

filtering is employed to process the nonlinear observations and track each target’s loca-

tion using the observations of the corresponding set Sρ`,t. For simplicity in exposition, the

specifics of EKF will be delineated here for K = 2 dimensions, but it can be readily gener-

alized to more dimensions. The target state estimator and corresponding error covariance

matrix, obtained by the extended Kalman filter using the observations in Sρ`,t for target

ρ` are denoted as ŝρ`(t|t) and Mρ`(t|t), respectively. The prediction step, see e.g. [63],

involves the following updating recursions for the state estimator and covariance at time

instant t

ŝρ`(t+ 1|t) = Fŝρ`(t|t), M̂ρ`(t+ 1|t) = FM̂ρ`(t|t)FT + Σu. (4.13)

The measurements of the sensors within set Sρ`,t will then be used to carry out the correc-

tion step of the extended Kalman filter which involves the following update recursions:

ŝρ`(t+ 1|t+ 1) = ŝρ`(t+ 1|t) + K(t+ 1) · [xt+1 − aρ(t)D̂Sρ`,t ] (4.14)

Mρ`(t+ 1|t+ 1) = Mρ`(t+ 1|t) + DT
∇,ρ`(t+ 1|t) · σ2

wI|Sρ`,t| ·D∇,ρ`(t+ 1|t), (4.15)

for ` = 1, . . . , r̂(t), while the matrix Kρ`(t+ 1) corresponds to the Kalman gain given as

Kρ`(t+ 1) = Mρ`(t+ 1|t+ 1) ·DT
∇,ρ`(t+ 1|t) · σ2

wI|Sρ`,t|, (4.16)
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where D̂Sρ`,t is a |Sρ`,t|×1 vector whose entries are given by {||pj(t)−p̂ρ`(t+1|t)||−2}j∈Sρ`,t ,

in which p̂ρ`(t+ 1|t) is the ρ`-th target position extracted from the state prediction ŝρ`(t+

1|t). Further, D∇,ρ`(t + 1|t) is the |Sρ`,t| × 4 matrix whose rows constitute of gradient

∇Dt(j, ρ`) with respect to the state vector sρ` and evaluated at ŝρ`(t + 1|t) for j ∈ Sρ`,t,

i.e.,

∇sρDt(j, ρ`)
∣∣
sρ`=ŝρ` (t+1|t) =

2 · [pj,x(t)− p̂ρ`,x(t+ 1|t),pj,y(t)− p̂ρ`,y(t+ 1|t), 0, 0]T

[(pj,x(t)− p̂ρ`,x(t+ 1|t))2 + (pj,y(t)− p̂ρ`,y(t+ 1|t))2]2
.

(4.17)

Within each informative subset of sensors Sρ`,t, the sensor closest in distance to the pre-

dicted position of the ρ`-th target, namely ŝρ`(t+1|t), is set as a the subset head sensor that

will gather the measurements of all other sensors in Sρ`,t and perform the EKF tracking

recursions.

4.2.3 Sensor Kinematics

The focus in this section is to derive kinematic rules for the target-informative sen-

sors, which are selected according to the scheme in Sec. 4.2.1, such that they follow closely

the moving targets and give accurate position estimates. The benefit from having a few sen-

sors moving is that targets can be tracked even when they move away from the original field

monitored by the sensors. Having sensors following closely the moving targets can provide

more reliable measurements about the targets than just using static sensors. Note that only

informative sensors close to the targets will be responsible for carrying out the tracking pro-

cedure leading to resource savings. Toward this end, the informative sensors in each subset

Sρ` will be placed/move in locations that minimize the trace of the error covariance asso-

ciated with the estimator ŝρ`(t|t). This will ensure that the informative sensors associated

with each target move to a location that will provide measurements that result good tracking

accuracy. The idea of minimizing a scalar function of the predicted error covariance was
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also applied in moving all sensors in a network for tracking a single target, [80, 86, 136].

Here kinematic strategies are derived in the presence of multiple targets, while a judiciously

selected small portion of target-informative sensors will be moving instead of all sensors

moving.

Among the two terms in the covariance matrix in equation (15), only the second term

is affected by the sensors’ location. The latter term, after using Eq:(4.17), can be written

as:

∑
j∈Sρ`,t

4

[(pj,x(t+ 1)− p̂ρ`,x(t+ 1|t))2 + (pj,y(t+ 1)− p̂ρ`,y(t+ 1|t))2]3
. (4.18)

Clearly Eq:(4.18) depends on the position of the sensors associated with target ρ`, namely

the sensors in subset Sρ`,t, at time instant t. Letting pj(t+ 1) := [pj,x(t+ 1) pj,y(t+ 1)]T

notice that the trace cost in Eq:(4.18) is separable with respect to the position of each

sensor j within subset Sρ`,t. Thus, the position of sensor j ∈ Sρ`,t at time instant t + 1

is determined by minimizing the corresponding summand in Eq:(4.18), i.e., the updated

location for sensors j ∈ Sρ`,t can be found as

pj(t+ 1) = arg minpj,x,pj,y

4

([pj,x − p̂ρ`,x(t+ 1|t)]2 + [pj,y − p̂ρ`,y(t+ 1|t)]2)3

s. to [pj,x − p̂ρ`,x(t+ 1|t)]2 + [pj,y − p̂ρ`,y(t+ 1|t)]2 < R2 (4.19)

Note that the inequality constraint in Eq:(4.19) ensures that the new location of the moving

sensors j ∈ Sρ` will be within distance Rj from the latest target location estimate p̂ρ`(t +

1|t). This inequality further ensures that all sensors in Sρ` will move to new locations which

are ‘close’ to the target. After applying the triangle inequality for the new locations of two

sensors j and j′ within Sρ` and using the constraint in Eq:(4.19) it turns out that the new

location should satisfy

‖pj(t+ 1)− pj′(t+ 1)‖2 ≤
√

2R, (4.20)
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which ensures that each subset Sρ` of moving sensors will stay connected, as long as the

communication range of the sensing units is at least
√

2R. Thus, R can be set such that

the moving sensors stay connected. Connectivity is necessary to elect a head sensor for

each moving subset of sensors that will acquire the measurements of all other sensors and

perform clustering. Details of the algorithm are given in Section 4.3.1. Note that existing

approaches do not entail mechanisms as the one introduced here to ensure that sensors will

be connected.

Next, the modified barrier method (MBM) is utilized [10, pg. 423] to allow every

sensor j ∈ Sρ` to solve Eq:(4.19) and determine its next location. To this end, let f(pj)

denote the cost in Eq:(4.19) and g(pj) denote the left hand side function of the inequality

constraint in Eq:(4.19). MBM involves an iterative application of the following uncon-

strained minimization problem (where κ denotes the iteration index within time instant

t+ 1):

pκj (t+ 1) ∈ arg min
pj,x,pj,y

{f(pj) +
µκ

cκ
φ[cκ · g(pj)]}, (4.21)

where the Lagrange multiplier-like scalar µκ is updated as

µκ+1 = µκ · ∇φ[cκ · g(pκj (t+ 1))], (4.22)

while the barrier function φ[τ ] is chosen as a logarithmic function having the form

φ(τ) = −ln(1− τ) (4.23)

and cκ is a penalty parameter associated with the inequality constraint in Eq:(4.19) that is

updated according to the recursion

cκ =
γκ

µκ
(4.24)

where {γk} is a positive monotonically increasing scalar sequence [10].
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For the logarithmic barrier function in Eq:(4.23) the updating recursion of the multi-

pliers in Eq:(4.22) takes the following form

µk+1 =
µκ

1− cκg(pκj (t+ 1))
. (4.25)

Further, letting F (pj) := f(pj) + µκ

cκ
φ[cκ · g(pj)] the coordinates of the new sensor loca-

tion pj(t + 1) are updated during iteration κ according to the following gradient descent

recursions

pκ+1
j,x (t+ 1) = pκj,x(t+ 1)− Γ · dF (pj)

dpj,x

∣∣∣pj,x=pκj,x(t+1) (4.26)

pκ+1
j,y (t+ 1) = pκj,y(t+ 1)− Γ · dF (pj)

dpj,y

∣∣∣pj,y=pκj,y(t+1) (4.27)

where Γ is the step size for the gradient descent method, while the derivatives in Eq:(4.26)

are given as

dF (pj)

dpj,x

∣∣∣pj,x=pκj,x(t+1) =
24 · [−pκj,x(t+ 1) + p̂ρ,x(t+ 1|t)]

([pκj,x(t+ 1)− p̂ρ,x(t+ 1|t)]2 + [pκj,y − p̂ρ,y(t+ 1|t)]2)4

+
µκ

1− cκg(pκj (t+ 1))
· 2 · (pκj,x(t+ 1)− p̂ρ,x(t+ 1|t)),

dF (pj)

dpj,y

∣∣∣pj,y=pκj,y(t+1) =
24 · [−pκj,y(t+ 1) + p̂ρ,y(t+ 1|t)]

([pκj,x(t+ 1)− p̂ρ,x(t+ 1|t)]2 + [pκj,y(t+ 1)− p̂ρ,y(t+ 1|t)]2)4

+
µκ

1− cκg(pκj (t+ 1))
· 2 · (pκj,y(t+ 1)− p̂ρ,y(t+ 1|t)). (4.28)

During time instant t+1 each sensor j within the subset Sρ`,t will keep updating their

location until the cost function in Eq:(4.19) is not reduced more than a predefined threshold

ε within two consecutive updating steps κ, κ + 1. The location pj(t + 1) will be set to the

last update pK
′

j (t + 1) obtained after K ′ MBM iterations during time instant t + 1. The

following steps are carried out during the determination of the sensor’s new location:

S1) The head sensor in each subset Sρ`,t sends the predicted position estimate of target ρ`,

namely p̂ρ`(t+ 1|t), to all sensors in Sρ`,t.

S2) Each sensor in j ∈ Sρ`,t, determines its new location using the MBM scheme. Sensors
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in Sρ`,t check their distances to other neighboring sensors and if their future location is

too close they adjust their coordinates to avoid collision when moving. Similarly, each

moving sensor checks the distance between its updated location and the position estimate

of target ρ`, and if too close, adjustments will be made to the sensor’s location such that

a minimum distance will be kept from the target. Specifically, if sensor j has an updated

location pK
′

j (t+ 1) which is too close to the already updated location of sensor j′, namely

pj′(t + 1), i.e., ‖pK′j (t + 1)− pj′(t + 1)‖2 ≤ Rmin,a, where Rmin,a is the smallest distance

allowed that two sensors can be separated from each other, then pK
′

j (t + 1) is updated as

follows:

pj(t+ 1) = pj′(t+ 1) +Rmin,a
pK

′
j (t+ 1)− pj′(t+ 1)

‖pK′j (t+ 1)− pj′(t+ 1)‖2

. (4.29)

Similarly, if sensor j has an updated location pK
′

j (t+ 1) which is too close to the ρ` target

location estimate, i.e., ‖pK′j (t + 1) − p̂ρ`(t + 1|t)|2 ≤ Rmin,b where Rmin,b is the smallest

distance that a sensor can be placed from a target, then location pK
′

j (t + 1) is updated as

follows:

pj(t+ 1) = p̂ρ`(t+ 1|t) +Rmin,b
pK

′
j (t+ 1)− p̂ρ`(t+ 1|t)

‖pK′j (t+ 1)− p̂ρ`(t+ 1|t)‖2

. (4.30)

The collision-avoidance position modifications in Eq:(4.30) was proposed in [33] to pre-

vent collision of unmanned aerial vehicles with a stationary target. The position updates in

Eq:(4.29) and Eq:(4.30) ensure that the updated locations are at distance Rmin,a and Rmin,b

from another moving sensor, or moving target respectively, satisfying the minimum dis-

tance required to prevent collision.

The actual movement can be achieved using for example robotic sensors, see e.g.,

[18, 19]. Each sensor j ∈ Sρ`,t updates its location pj(t + 1), in a coordinate fashion

while the remaining sensors in Sρ`,t are kept stationary waiting for their turn to update their

location.
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4.3 Algorithmic Summary

4.3.1 Implementation

At the start-up stage, fast sampling is used to acquire Q measurements fast enough

that the initial number of targets r(0) can be assumed stationary. By utilizing theQ acquired

data, the subsets of target-informative sensors {Sρ`,0} are initialized, where ` = 1, . . . , r̂(0)

and r̂(0) is the estimated number of r(0) sensed targets at time t = 0 (number of nonzero

columns in the sparse matrix M̂0). One sensor within each Sρ`,0 will be randomly selected

as the head sensor, which will collect the measurements xj(0) and their positions pj(0)

from all the other sensors j ∈ Sρ`,0. Each head sensor Cρ`,0 averages the positions of the

informative sensors in subset Sρ`,0 to be the initial estimate of the corresponding target

ρ`. The latter target location estimate along with the informative measurements xj(0), for

j ∈ Sρ`,0 are utilized to initialize the recursions of the extended Kalman filtering carrying

out the target tracking in Sec. 4.2.2.

At time instant t, every head sensor Cρ`,t has available the state estimates for active

target ρ`, namely ŝρ`(t|t), obtained from EKF in Sec. 4.2.2. The target’s estimated position

p̂ρ`(t|t) is then used to select a group of ’candidate informative’ sensors, which are denoted

as Jρ`,t for target ρ` at time instant t. This set is formed by having the head sensor transmit

the estimated state ŝρ`(t|t) to its single-hop neighboring sensors which then transmit the

same information to their own neighbors. Every sensor j who receives ŝρ`(t|t), from a

neighboring sensor, subsequently forwards this estimate only to those sensors j′ ∈ Nj

whose present position is within radiusRs from the estimated target location, i.e., ‖pj′(t)−

p̂ρ`(t|t)‖2 ≤ Rs. The parameter Rs can be set to be sufficiently large in order for all ρ`-

target informative sensors to be incorporated in subset Jρ`,t. The sensor subset Jρ`,t by

construction is connected.
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Since not all sensors within the candidate subsetsJρ`,t maybe informative, the scheme

in Sec. 4.2.1 is employed among the sensors in Jρ`,t to find out the target-informative sen-

sor subset Sρ`,t+1 ⊆ Jρ`,t for all the active targets. Rather than running the target-sensor

association scheme in Sec. 4.2.1 in the whole sensor network, it is performed independently

in the different sensor subsets Jρ`,t associated with each target.

Once subsets Sρ`,t+1 are found, the head sensor in each of these subsets is chosen to

be the sensor whose distance is the closest to the estimated position of the corresponding

target ρ`, i.e.,

Cρ`,t+1 = arg min
j∈Sρ`,t+1

‖pj(t)− p̂ρ`(t|t)‖2.

The head sensor Cρ`,t+1 gathers the sensor measurements xj(t + 1) from the informative

sensors j ∈ Sρ`,t+1 to carry out the extended Kalman filtering recursions at time instant

t + 1 as outlined in Sec. 4.2.2. Then, steps S1 and S2 in Sec. 4.2.3 are employed to

allow all sensors in Sρ`,t+1 to determine and move to their new positions pj(t + 1). Note

that connectivity of the sensors in Sρ`,t+1 is preserved as explained in Sec. 4.2.3. The head

sensor Cρ`,t+1 broadcasts the latest state estimate ŝρ`(t+1|t+1) to its single-hop neighbors

and repeats the process described earlier to update the candidate informative sensor subsets

Jρ`,t+1.

It is worth mentioning that the kinematic rules implemented in Sec. 3.3 at each

sensor are fully distributed since each sensor requires knowledge only of its location and

the estimated target position obtained from the head sensor in Sρ`,t+1. Connectivity of the

candidate informative subsets Jρ`,t+1 is ensured by construction irrespective of the sensor

movement. This way the sensor-to-target association scheme in Sec. 4.2.1 can still be

applied in Jρ`,t+1 and determine the informative sensors.

The target-informative sensor selection scheme in Sec. 4.2.1 may also need to be

reapplied across the whole sensor network since moving targets may disappear and not
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being sensed anymore, while new targets may appear at different regions of the sensor

network. The following conditions are checked to determine such events: (i) If any of

the sensor subsets Sρ`,t+1 becomes empty, this implies that some of the targets previously

sensed are not present anymore; (ii) If at t+1, the energy of a sensor, not previously selected

exceeds a certain threshold this indicates that most likely a new target enters the sensed

field. The two aforementioned conditions signify that the target configuration has changed

and the sensor selection scheme in Sec. 3.1 needs to be reapplied in the sensor network

to update the sensor-informative subsets. The novel tracking scheme is summarized as

Algorithm 1.

4.3.2 Communication and Computational Expenses

The communication cost of the proposed algorithm is studied next. Note that inter-

sensor communication takes place during i) the sensor-to-target association scheme in Sec.

4.2.1; ii) carrying out the EKF tracking steps in Sec. 4.2.2; and iii) when applying the

kinematic strategy in Sec. 4.2.3 to move the informative sensors. In detail, at time instant

t sensor j has to receive |Nj| scalar measurements from its neighbors, namely {xj′(t +

1)}j′∈Nj , to update Σ̂x,t+1(j, j′). Furthermore, to implement the association scheme in

Sec. 4.2.1 each sensor j receives the updates {M̂k−1
t+1 (j′, `)}L`=1 from neighborhood Nj ,

corresponding to L|Nj| scalars in total, to form its local updates {M̂k
t+1(j, `)}L`=1. Thus,

sensor j receives (L + 1)|Nj| scalars in total. Similarly sensor j has to transmit xj(t + 1)

and {M̂k−1
t+1 (j, `)}L`=1, a total of L+ 1 scalars to its neighbors, per iteration k.

After the target-informative sensors are determined, each head sensor has to carry

out the estimation process about the corresponding target’s states. Thus, the head sensor

{Cρ`,t} will collect the measurements xj(t) from the sensors within Sρ`,t+1. This involves

|Sρ`,t+1| scalar exchanges. Further, all sensors in the subset Sρ`,t+1 will receive four scalars

corresponding to the current state estimate. Once the state estimation process (Sec. 4.2.2)
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Algorithm 5 Multi-Target Tracking Using Sensor Mobility and Informative Sensor Selec-

tion
1: Start-up stage (t = 0)/Reconfiguration (t 6= 0): Every sensor j collects Q measurements

xj(t) and the sensors-targets association scheme in Sec. 4.2.1 is applied in the network to

determine the subsets Sρ`,t with ` = 1, . . . , r̂(t), and r̂(t) is the estimated number of targets.

2: for τ = t, . . . , do

3: Determine the head sensor Cρ`,τ in each Sρ`,τ for ` = 1, . . . , r̂(t).

4: Each head sensor Cρ`,τ receives measurements xj(τ) from j ∈ Sρ`,τ to perform tracking for

targets ρ` = 1, . . . , r̂(t) via the EKF recursions in Sec. 4.2.2.

5: Informative sensors j ∈ Sρ`,τ relocate themselves according to the sensor kinematics intro-

duced in Sec. 4.2.3.

6: Each head sensor Cρ`,τ propagates the state estimates ŝρ`(τ) to every sensor j that can be

reached from Cρ`,τ by a multi-hop path and satisfies ‖pj(τ)− p̂ρ`(τ |τ)‖2 < Rs. Then, the

candidate informative sets {Jρ`,τ+1}r̂(t)`=1 are formed.

7: The sensor selection scheme in Sec. 4.2.1 is carried out in each subset Jρ`,τ+1 to identify

the target-informative sets Sρ`,τ+1.

8: If target configuration has changed then go to step 1, otherwise go to step 2.

9: end for

is carried out by the head sensors, sensor communication also occurs among the infor-

mative sensors when adjusting their new location to avoid collision with closely located

sensors (Sec. 4.2.3). Specifically, sensor j receives 2|Nj| scalars from its neighbors, corre-

sponding to their two location coordinates, while it sends out its own location. It is worth

mentioning that the communication complexity for each sensor is linear with respect to its

neighborhood size |Nj|, and the upper bound number of present targets L. The latter lin-

ear cost advocates that the proposed framework is a communication-affordable distributed

approach.
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When applying the scheme in Sec. 4.2.1 during each coordinate cycle k and time

instant t each sensor j has to form the coefficients in Eq:(4.10), Eq:(4.9) with a computa-

tional complexity of the order O(|Nj|), while determining the roots of the two third-order

polynomial in Eq:(4.10), Eq:(4.9) involves determining the eigenvalues of two 3× 3 com-

panion matrices whose complexity is fixed and non-dependent on any algorithmic parame-

ters. The EKF in Sec. 4.2.2 can be carried out at a complexity of the order O(K2 + |Sρ|),

where K = 4 here and |Sρ| corresponds to the size of the target-informative subsets. The

kinematic rules implemented at the target-informative sensors in Sec. 4.2.3 have a compu-

tational complexity O(K).

4.4 Simulations

The tracking performance of the novel scheme is tested in a network with p = 80

sensors, which are deployed randomly in the region of [0, 15] × [0, 15]m2. The tracking

root mean-square error (RMSE) is studied and compared with the RMSE attained by the

tracking schemes in [86, 136]. The comparison is done using one target since the afore-

mentioned existing approaches can handle one target. Target ρ = 1 is initialized at location

[1.5, 11.5] and moves with velocities of [0.15, 0.1]m/s respectively along the x-axis and

y-axis. The tracking process is carried out for a total of 30s, with the state noise and obser-

vation noise variances set to be σ2
u = 0.08 and σ2

w = 0.08 (corresponding to a sensing SNR

of 11 dB). Fig.4.1 depicts in logarithmic scale the tracking RMSE (for better display) of i)

the novel approach proposed here; ii) the tracking scheme in [136]; and iii) the tracking ap-

proach in [86]. Note that for all the three tracking schemes, the initial position of the target

is found by applying the sparsity matrix decomposition scheme in Sec. 4.2.1, ensuring the

same initial error for all the three different tracking approaches. As corroborated by Fig.

4.1, our tracking scheme exhibits the lowest tracking RMSE. The approach in [136] attains
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the worst performance since the sensors can only move on a grid which reduces accuracy.

The scheme in [86] performs worse than our approach since it does not have an informative

sensor selection scheme, which results all sensors to move and participate in the tracking

process which may reduce accuracy when noisy sensors are utilized.
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Figure 4.1. Tracking RMSE versus time for a single-target setting..

Fig. 4.2 depicts the distance (in meters) between two moving sensors and the corre-

sponding moving target during the 30s tracking period. It can be seen that the distance is

decreasing with time which further implies that the proposed approach allows the informa-

tive sensors to closely follow the target.

Next, the performance of our novel tracking scheme is tested in a setting where the

number of targets is changing. Specifically, targets ρ = 1, 2 start moving at positions

[1.5, 11.5], [5, 7] and follow the dynamics in Eq:(4.1), with velocities of [0.15, 0.1]m/s and

[0.4, 0.13]m/s along the x-axis and y-axis respectively. Targets ρ = 1, 2 move in the field

for the time interval [1, 30]s and then are not sensed anymore. In the interval [15, 17]s, no

targets are present in the field. Then, targets ρ = 3, 4 start at positions [6.1, 4.8], [9.0, 4.0]

and move according to same state model followed by the first two for the time interval
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Figure 4.2. Distance between target and moving sensors versus time..

[32, 50]s but with velocities [0.03, 0.35]m/s and [0.25,−0.25]m/s. Again no targets are

present during the interval [50, 52]s. Then, three targets ρ = 5, 6, 7 start moving at positions

[15, 1.1], [13, 13.5] and [12, 6], according to Eq:(4.1), for the time interval [52, 70]s and

velocities [−0.1, 0]m/s for target ρ = 5, and [0.12,−0.03] for both ρ = 6, 7 along the

x-axis and y-axis respectively. Figure .4.3 depicts the original positions of the sensors

represented by blue circles.

Figs. 4.4-4.6 show snapshots of the configuration of the targets and the moving

sensors at different time instances. Details for the different curves and coloring on those

figures is given in the caption below the figures. From Fig. 4.4 it is clear that for the

first two targets, even though the targets move out of the original [0, 15] × [0, 15] region,

both targets are still tracked well as some of the sensors follow them closely. Note that only

informative sensors, on average around 10% of the total number of sensors, move according

to the proposed kinematic rules in Sec. 4.2.3, while the majority of other sensors which are

not close to the moving targets are not moving and maintain their original positions. Similar
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conclusions can be extracted from figs. 4.5-4.6, where different sets of targets are moving

on the field. It should be emphasized that it is not known that at t = 30 and t = 50 the

target configuration is changing. As discussed in Sec. 4.3, such changes can be determined

by having all sensors self-checking the energy level of their measurements, while the head

sensors monitor the informative sensor subsets whether they are empty or not.
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Figure 4.3. Original sensor network topology (before applying kinematic rules to the sen-
sors)..

The tracking RMSE for the above tracking setting is plotted in Fig. 4.7 in logarithmic

scale. The proposed tracking framework exploiting sensor mobility is compared with a

tracking scheme where sensors are stationary and not moving. In the immobile sensor

network, when the targets are moving away from the sensed field sensors willl acquire

less and less reliable measurements leading to the dramatic increase of the tracking RMSE

(blue dashed curves). In contrast, the proposed framework here enables sensors to follows

closely the targets and achieve a much lower tracking RMSE. So even though the targets

move out of the original sensed field, there is always a group of sensors keeping adjacent
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Figure 4.4. Snapshot of the trajectories of targets and moving sensors at time instant t =
30s..

to it, and can be selected again to provide accurate measurements. Note that in Fig. 4.7,

there are three discontinued curves which corresponds to the error of tracking the three

different groups of targets that appear and cease to exist in the monitored field at different

time periods. This leads to the RMSE discontinuity at time t = 31s and t = 51s since there

are no targets moving during that time interval and no need for tracking.

Next, a tracking setting is considered with two targets where one of targets splits

into two targets at a certain time. Similarly to the previous tracking scenario, two targets

ρ = 1, 2 initialized at positions [1.6, 11.5], [5.4, 7] (indicated by the blue stars) start moving

according to the dynamics in (4.1), with velocities of v1 = [v1,x, v1,y] = [0.15, 0.1]m/s and

v2 = [v2,x, v2,y] = [0.4, 0.13]m/s, respectively. As t = 30, the second target stops moving

while the first one splits into two targets. Target ρ = 3 continues to move according to

the dynamics of target ρ = 1, while target ρ = 4 moves with velocities vx = 0.4m/s

and vy = −0.5m/s along the x-axis and y-axis. The two new targets move for the time

interval [31, 42]s. The splitting point is indicated by the green star in Fig. 4.8. Fig. 4.8
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Figure 4.5. Snapshot of the trajectories of targets and moving sensors at time instant t =
50s..

shows the trajectories of the targets and some moving sensors, details on the coloring and

curve types used can be found in the caption of Fig. 4.8 . The target trajectories in Fig.

4.8 are depicted by blue dashed lines for the time interval [1, 30]s and by blue crossed

lines after t = 30s. When sensors do not move, the violet estimated trajectories indicate

that the split of targets cannot be followed, while target ρ = 1 cannot be tracked after a

while since is moving away from the immobile sensors. When the kinematic rules in Sec.

4.2.3 are employed, informative sensors follow closely the targets as depicted by the black

dashed sensor trajectories. Note that the corresponding estimated red trajectories accurately

follow the multiple targets present in the field. As before, the tracking RMSE (logarithm)

is compared for the cases where sensors cannot move with the case where the approach

in Sec. 4.2.3 is applied. As Fig. 4.9 shows, our active tracking scheme outperforms in

terms of tracking accuracy the utilization of stationary sensors. Notice that in Fig. 4.9,

after the target splits, tracking using stationary sensors performs much better than before
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Figure 4.6. Snapshot of the trajectories of targets and moving sensors at time instant t =
70s.

splitting. The reason is that when using stationary sensors, for the second tracking phase

(t = [31, 42]s), there are more sensors originally located close to the trajectories of the

targets, compared to the first tracking phase (t = [1, 30]s) which makes the tracking error

much smaller than the first 30s, though the performance when using stationary sensors is

still worse than tracking using our sensor mobility-based tracking scheme.

4.5 Concluding Remarks

A novel framework combining sparse matrix factorization with proper kinematic

rules enable multiple mobile sensors to track multiple targets. An norm-one/norm-two

regularized matrix decomposition formulation is utilized to perform sensor-to-target asso-

ciation and select the target informative sensors. Optimal kinematic rules are obtained by

minimizing the covariances of parallel extended Kalman filters that track multiple targets

using only target-informative sensors. The modified barrier method is utilized to obtain
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the sensors’ location updates while ensuring that the moving sensors remain connected.

Numerical tests in multi-sensor networks, corroborate that our novel scheme outperforms

related approaches and accurately tracks multiple targets utilizing only a small percentage

of moving sensors that closely follow the targets.
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Figure 4.8. Tracking multiple objects .
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CHAPTER 5

Regularized Kernel Matrix Decomposition in Thermal Video Multi-Object Tracking

5.1 Problem Setting and Preliminaries

Consider a sequence of frames forming a video in which the frames contain multiple

nonstationary/moving objects of interest that need to be detected/identified and tracked.

Depending on the model of the used camera, videos may be acquired at different resolution

conditions which results in video frames of various dimensionality [96], [11]. Let Ft the

frame of the available video sequence at time instant t of dimensions fx × fy. Further,

let xm,nt (f) denote the pixel intensity of the (m,n)-th pixel of frame Ft at time instant t

where m = 1, . . . , fx and n = 1, . . . , fy. For simplicity in exposition xt(f) ∈ Rp×1, with

p = fx · fy denotes a super vector that contains all the pixels of frame Ft placed in there

from top to bottom and left to right. For the sake of simplicity later on we will omit the f

index in xt(f).

There is an unknown number of objects in the video that we are interested in tracking,

and M denotes the maximum number of objects that can be present in a frame. Let P tm

denote the set of pixel indices corresponding to the mth object at time instant t, i.e., P tm :=

{[xm,1,t, ym,1,t], . . . , [xm,Nm,t, ym,Nm,t]} indicate the coordinates of the pixels of the mth

object at time instant t. The pixels corresponding to an object at time instant t, say P tm, are

not known. In order to model the movement of each of the objects we will focus on how

the coordinates of the centroid pixel of each object evolve in time. The centroid pixel for

the mth object at time instant t is defined as

ctm := bN−1
m

Nm∑
i=1

[xm,n,t, ym,n,t]c,
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with bc denoting the floor operator, and intuitively it describes the center point of the mth

moving object.

When the video sequence is acquired at a high frame rate, it can be assumed that

that objects’ centroid pixels move from frame to frame according to a constant velocity

moving model [7]. The velocity can be kept constant for a certain number of pixels and

then changed if necessary. Specifically, the m-th object’s centroid state vector is denoted

as sm(t) := [(ctm)T ,vtm], where vtm is a 2 × 1 vector that contains the velocity across the

horizontal and vertical axis. The state vector sm(t − 1) is assumed to evolve according to

the following model:

sm(t) = Fsm(t− 1) + um(t), m = 1, . . . ,M (5.1)

where F ∈ R4×4 is the state transition matrix, while um(t) denotes zero-mean Gaussian

noise with covariance Σu. The matrices F and Σu have the following structure (e.g., see

[7])

F =



1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1


, (5.2)

Σu = σ2
u

(∆T )3/3 · I2 (∆T )2/2 · I2

(∆T )2/2 · I2 ∆T · I2

 , (5.3)

where ∆T corresponds to the inter-frame interval, σ2
u is a nonnegative constant controlling

the variance of the noise entries in um(t), while I2 denotes the 2 × 2 identity matrix.

The pixel coordinates [xm,1,t, ym,1,t] take integer values though the state noise um(t) being

Gaussian and subsequently the state can take real values. Though, we can control the state

noise standard deviation such that 3σu (3− σ bounds) is equal to a small number of pixels
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that model any deviation from the constant velocity movement. Thus, the noise will take

values within the interval [−3σu, 3σu] with probability 99.7%. Despite the fact that the

centroid cm(t) assumes real values it can model at an acceptable level of accuracy the

movement of the video objects from frame to frame.

5.1.1 Kernel-Based Object Pixel Correlations

As stated earlier the pixel corresponding to an object are unknown, thus it is essen-

tial to identify the objects before attempting to track them. To cluster the pixels of interest

according to an object they belong to, we will utilize statistical correlations that pixels be-

longing to the same object exhibit. Pixels of an object are expected to have similar intensity

(different from the background pixels) which subsequently makes them correlated.

Pixels belonging to the same object exhibit nonlinear dependencies in general [53],

thus employing a linear covariance matrix will not identify correlated components. To

this end, we account for the nonlinear dependencies in the pixels of frame Ft, namely

xt := vec(Ft) by utilizing nonlinear mappings φx(xt) that are applied row-wise across

the entries of xt and map each pixel in xf , in a higher dimensional space where linear

correlations can be exploited. Specifically, the mapping φx results a fxfy ×D matrix

φx(xt) := [φx(xt(1)), . . . ,φx(xt(fxfy))]
T , (5.4)

where D corresponds to the dimensionality of the transformed pixel vector φx(xt(i)) for

i = 1, . . . , fxfy.

The nonlinear mapping φx should be selected such that the covariance matrix of

the transformed frames exhibits a block diagonal structure. For example Fig. 5.1 display

the nonzero entries of kernel (Gaussian kernel was used) covariance matrix obtained from

a sequence of frames in which a white object moves in black background. Clearly, the
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covariance matrix has a block diagonal structure after properly permuting the rows and

columns that contain the nonzero entries.

Figure 5.1. Sparse structure of kernel covariance matrix..

Thus, after properly selecting a kernel (see details later on) the covariance of the

transformed data φx(xt) can be written as

E[(φx(xt)− E[φx(xt)])(φx(xt)− E[φx(xt)])
T ]

= Prbdiag(B1,t,B2,t, . . . ,BM,t)Pc, (5.5)

where Bm denotes the mth diagonal block of size Nm ×Nm indicating how the Nm pixels

of objectm are correlated, while pixels belonging to different component are assumed to be

uncorrelated. Further, Pr and Pc corresponds to arbitrary unknown perturbation matrices

of the rows and columns.

The first challenge will be to locate the pixels of each object, which pertains to iden-

tifying where the entries of each of the M diagonal blocks are located in the transformed

covariance matrix in (5.5), which boils down to estimating the size of each diagonal block

Nm, as well as the indices of the pixels that belong to themth diagonal block. In the follow-

ing section we will formulate this as a sparse matrix factorization problem, while properly

selecting the Gaussian kernel parameters to induce a covariance matrix with block diagonal
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structure. Then, once the pixels of an object have been determined we will proceed with

tracking the estimated centroid of each of the objects.

5.2 Multi-Object Pixel Clustering

5.2.1 Kernel Covariance Estimation

In order to estimate the covariance matrix of the transformed data in (5.5) we will

rely on sample-averaging, where after applying a proper transformation to the pixel vectors

to obtain φx(xt) we estimate the covariance of the transformed data as follows

Σ̂φx,t =
1

F
Σt·F
τ=(t−1)·F+1(φx(xτ )− φ̄x,t) · (φx(xτ )− φ̄x,t)T

=
1

F
Σt·F
τ=(t−1)·F+1[φx(xτ )φ

T
x (xτ )− φ(xτ )φ̄

T
x,t

− φ̄x,tφTx (xτ ) + φ̄x,tφ̄
T
x,t] (5.6)

where φ̄x,t := F−1Σt·F
τ=(t−1)·F+1φx(xτ ) corresponds to the sample-average estimate of the

mean of the transformed frame pixels, while F corresponds to the number of frames that

the objects are virtually stationary and occupy the same area in the frames. The higher

the sampling rate is the larger F can be chosen while assuming the objects are stationary

within the time interval [(t− 1)F + 1, tF ].

Applying the kernel trick (assuming a proper nonlinear mapping φx(·) is used; see

details in [49,58,95,120]) the inner products involved in calculating the entries ofφx(xτ )φ
T
x (xτ )

can be found using a proper positive definite kernel function K(x1(i),x2(j)) whose two

arguments correspond to pixels i and j from frame pixel vectors x1 and x2 respectively,

i.e., the kernel trick implies that the inner product 〈φx(x1(i)),φx(x2(j))〉 can be evaluated
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from a proper scalar kernel function K(x1,x2). Utilizing this property the first term in Eq.

(5.6) can be rewritten as

1

F
Σt·F
τ=(t−1)·F+1φx(xτ )φ

T
x (xτ ) =

1

F
Σt·F
τ=(t−1)·F+1K(xτ ,xτ ), (5.7)

where K is a fxfy×fxfy matrix whose (i, j)-th entry is given as [K]i,j = K(xτ (i),xτ (j)).

Similarly, the second and third summation terms in Eq. (5.6) can be expressed as

1

F
Σt·F
τ=(t−1)·F+1φx(xτ )φ̄

T
x,t(x, t)

=
1

F
Σt·F
τ=(t−1)·F+1φx(xτ )

1

F
Σt·F
τ ′=(t−1)·F+1φx

T (x′τ )

=
1

F
· 1

F
Σt·F
τ=(t−1)·F+1Σt·F

τ ′=(t−1)·F+1φx(xτ )φx
T (x′τ )

=
1

F 2
Σt·F
τ,τ ′=(t−1)·F+1K(xτ ,xτ ′), (5.8)

while the fourth summation term in Eq. (5.6) gives

1

F
Σt·F
τ=(t−1)·F+1φ̄x,tφ̄

T
x,t

=
1

F 2
Σt·F
τ ′=(t−1)·F+1φx(xτ ′)Σ

t·F
τ ′′=(t−1)·F+1φ

T
x (xτ ′′)

=
1

F 2
Σt·F
τ ′′=(t−1)·F+1 K(xτ ′ ,xτ ′′). (5.9)

Notice that the matrix in Eq. (5.9) is the same with the one obtained in (5.8), thus the

covariance matrix of the transformed data can be calculated with the aid of the kernel

function K(·, ·) as follows

Σφx,t
=

1

F
Σt·F
τ=(t−1)·F+1K(xτ ,xτ )

− 1

F 2
Σt·F
τ ′′=(t−1)·F+1 K(xτ ′ ,xτ ′′). (5.10)

A kernel utilized in image pixel classification successfully [46], [89] is the Gaussian radial

basis function (RBF) in which the (i, j) entry of matrix K used earlier can be expressed as

K(xτ (i),xτ (j)) = exp

(
−(xτ (i)− xτ (j))

2

2σ2

)
, (5.11)
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where the variance σ2 is a crucial parameter that controls the degree of inter-pixel correla-

tion. Details on how to select this parameters will be given in Sec. 5.5.

5.2.2 Kernel Covariance Sparse Factorization

Given the block diagonal structure that the covariance matrix of the properly trans-

formed data exhibits, we will try to determine sparse factors g1, . . . ,gM such that Σ̂φx,t
≈∑M

m=1 gmgTm, while the support of each of the factors gm will indicate the indices of the

entries belonging to a block of correlated pixels in Σ̂φx,t
that belong to the same object.

The idea of utilizing sparse matrix decomposition to identify correlated data was first pro-

posed in [101] and here it is generalized under the realm of kernel-based nonlinear data

transformations.

Single Object:

We start with the case where there is only one moving object in the frames of the video

sequence. A standard least-squares based matrix decomposition scheme would minimize

the Frobenius norm-based cost ‖Σφx,t
−MtM

T
t ‖2

F with respect to the factor estimates

Mt ∈ Rp×1. However, such a formulation does not take into account the sparse structure

of Mt. To this end, the following minimization framework is proposed:

M̂t := arg min
Mt

‖Σφx,t
−MtM

T
t ‖2

F + λ‖Mt‖1, (5.12)

where the norm-one term ‖ · ‖1 is utilized to induce sparsity in the column vector Mt,

see e.g., [114], [137], in the column of Mt whose support will point to those pixels in a

collection of F frames that contain the object of interest within interval [(t−1)F +1, t ·F ].

The parameter λ is the sparsity controlling coefficient that determines the number of zeros

in Mt, i.e., the larger λ is, the more zero entries will be contained in the optimal solution

M̂t.

121



The cost in Eq. (5.12) is nonconvex with respect to (wrt) Mt. To overcome this

obstacle an iterative minimization scheme is derived next using coordinate descent strate-

gies [10]. The cost in Eq. (5.12) is minimized recursively wrt one entry of Mt, namely

Mt(j) while keeping all other entries in Mt fixed to their latest updates.

Minimization of the cost in Eq. (5.12) wrt Mt(j) while fixing the remaining variables

to their latest update during coordinate cycle k gives the following solution for updating

M̂k
t (j):

M̂k
t (j) = arg min

Mt(j)
2 ·

p∑
µ=1,µ6=j

[Σφx,t
(j, µ)−Mt(j)M̂

k−1
t (µ)]2

+ λ|Mt(j)|+ [Σφx,t
(j, j)−M2

t (j)]
2. (5.13)

Discarding the terms that do not depend on Mt(j) and applying proper algebraic manipu-

lations, the cost in Eq.(5.13) can be rewritten as:

Jk(j) = (Mt(j))
4 + λ|Mt(j)|

+ (Mt(j))
2[2

p∑
µ=1,µ 6=j

[M̂k−1
t (µ)]2 − 2δk(j, j)]

−Mt(j)[4
∑

µ=1,µ 6=j

δk(j, µ)M̂k−1
t (µ)] (5.14)

where

δk(j, µ) := Σφx,t
(j, µ)− M̂k−1

t (j)M̂k−1
t (µ) (5.15)

for j, µ = 1, . . . , p. Given the most recent update M̂k−1
t from coordinate cycle k − 1, as

shown in Appendix A, the update for M̂k
t (j) will be the value which achieves the minimum
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cost in Eq.(5.14) among the following candidates: i) 0; ii) the real positive roots of the

third-degree polynomial:

4 · h3 + 4(
∑

µ=1,µ6=j

[M̂k−1
t (µ)]2 − δk(j, j)) · h

− 4(

p∑
µ=1,µ 6=j

δk(j, µ)M̂k−1
t (µ)) + λ = 0 (5.16)

iii) the real negative roots of the third-degree polynomial:

4 · h3 + 4(
∑

µ=1,µ6=j

[M̂k−1
t (µ)]2 − δk(j, j)) · h

− 4(

p∑
µ=1,µ6=j

δk(j, µ)M̂k−1
t (µ))− λ = 0 (5.17)

To obtain the roots for the above two third-degree polynomial, we utilized compan-

ion matrices, [50]. The proposed sparsity-aware kernel matrix decomposition algorithm is

tabulated as Algorithm 1. In fact, convergence to at least a stationary point of the cost in

Eq. (5.12) is established in Appendix B.

Algorithm 6 Sparse Kernel Covariance Factorization
1: Using frames within time interval [(t− 1) · F + 1, t · F ]:

2: Form the kernel covariance matrix using Eq. (5.10)

3: Initialize Mt(j)’s as 0’s

4: for k = 1, 2, . . . , κ do

5: Evaluate δk(j, µ) for j, µ = 1, . . . , p via Eq. (5.15).

6: Determine the updates {M̂k
t (j)} after determining the positive roots of Eq. (5.16) and the

negative roots of Eq. (5.17).

7: If ‖Mk
t −Mk−1

t ‖ ≤ ε, where ε is the desired error threshold then break.

8: end for
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After determining the sparse factor M̂k
t , the nonzero entries’ indices (support) of

M̂k
t will point to the moving object pixels within the frame sequence during time interval

[(t− 1)F + 1, tF ]. Next, we generalize the pixel classification framework in the presence

of multiple objects.

5.2.3 Multiple Objects

In the presence of multiple objects in a frame sequence the sparse factorization for-

mulation in Eq. (5.12) can be employed by introducing multiple columns in Mt and em-

ploying the same coordinate descent process described earlier. One challenge in the pres-

ence of multiple objects is the correlation among objects that have similar pixel intensities

and/or texture. In this case, the sparse factorization framework may return sparse factors

M̂t that contain nonzero values in entries corresponding to pixels of more than one objects.

Thus, it may be necessary to do some extra clustering among these pixels to separate them

according to the object they correspond to. This process will enable to split the objects that

may appear at the same sparse factor and enable us to track them individually.

To split the objects that may be present in a sparse factor returned by the sparse

factorization algorithm we rely on the property that pixels corresponding to the same object

present in a sparse factor M̂t should be neighboring and thus closer (in terms of Euclidean

distance) compared to pixels corresponding a different object (that in general is placed at a

different part of the frame).

Let P t denote the nonzero entries of M̂k
t which indicates the moving objects’ pix-

els, from which the coordinates zi for each pixel i ∈ P t can be further extracted. Then,

we employ K-means clustering, see [47], aiming at partitioning the P t pixels into Zt clus-
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ters {Ξ1, . . . ,ΞZt} according to the similarity their corresponding coordinates zi, i ∈ P t

exhibit. K-means clusters the pixels by minimizing the following formulation

arg min
Ξ

Zt∑
j=1

∑
zi∈Ξj

‖zi − ξj‖2 (5.18)

where ξj corresponds to the mean of cluster Ξj

In this way, P t pixels will be clustered into Zt clusters, centered at ξj, j = 1, . . . , Zt corre-

sponding to the different moving objects contained within a sparse factor obtained via Alg.

1. If two clusters’ centroid coordinates are too close to each other:

‖ξj − ξj′‖2 ≤ εd, (5.19)

where εd is a predefined distance, we will decrease the initial number of clusters to Zt − 1.

By setting an upper limitMup on the number of moving objects, we will adjust the required

number of clusters Zt in the aforementioned way. So that eventually Zt would equal the

real but unknown number of objects, here M in the video.

5.3 Frame Object Tracking

Once the pixels P tm corresponding to object m have been determined, the objects

centroid pixel can be determined as described earlier and Kalman filtering will be utilized

to accurately track the location of each detected object within the video sequence. Recall

that the state vector sm(t) contains the location coordinates, as well as the velocity at which

the object’s centroid is moving along each of the two dimensions present in each frame. It

should be emphasized that there may be some errors when clustering the pixels according

to the objects they belong too, in which case let P̂ tm denote the estimated pixel locations

corresponds to objectm, while ĉtm corresponds to the corresponding estimate of the object’s
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centroid pixel. The following measurement model can be utilized to associate ĉtm with the

state vector sm(t) as follows

ĉtm = H(t)sm(t) + wm(t) = ctm + wm(t), m = 1, . . . ,M, (5.20)

where

H(t) =

 1 0 0 0

0 1 0 0

 ,
while wm(t) corresponds to the localization error that may be present in ĉtm when utilizing

the sparse factorization approach in Sec. III. It is assumed here that the noise wm(t) is zero

mean with variance σ2
w · I2×2. After numerical testing, the noise variance is found to lie

below 3 pixel distance. Thus, the variance is set as σ2
w = 3.

Although, the distribution of the noise wm(t) is unknown in (5.20) and not neces-

sarily Gaussian, the Kalman filter will still provide the linear minimum mean-square esti-

mation for the state and observation models in (5.1) and (5.20). The object state estimator

and corresponding error covariance matrix, obtained by the Kalman filter for object m are

denoted here as ŝm(t|t) and Pm(t|t), respectively. The prediction step in the Kalman filter

used here, see e.g. [63], involves the following updating recursions for the state estimator

and corresponding covariance at time instant t

ŝm(t|t− 1) = Fŝm(t− 1|t− 1) (5.21)

P̂m(t|t− 1) = FP̂m(t− 1|t− 1)FT + Σu. (5.22)

The estimated centroid ĉtm will then be used to carry out the correction step of the Kalman

filter which involves the following updating recursions:

ŝm(t|t) = ŝm(t|t− 1) + Gm(t) · [ĉtm −H(t)ŝm(t|t− 1)] (5.23)

Pm(t|t) = (I−Gm(t)H(t))Pm(t|t− 1) (5.24)
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for m = 1, . . . ,M), while the matrix Gm(t) which corresponds to the Kalman gain can be

evaluated as

Gm(t) = Pm(t|t− 1)HT (t)(σ2
w · I2×2 + H(t)Pm(t|t− 1)HT (t))−1. (5.25)

A separate Kalman filter is implemented for each of the M objects determined using Alg.

1. Each of these filters is using the estimated centroid ĉtm found at every time instant t.

5.4 Real-Time Object Identification and Tracking

5.4.1 Dealing with Large Frames

One may notice that the proposed matrix decomposition scheme may involve high

dimension computations in the initialization stage when determining Mt ∈ Rp∗1, espe-

cially when the video resolution is very high. To deal with this issue, we resort to a divide

and conquer strategy. We split the fxfy × fxfy kernel covariance matrix into smaller parts

corresponding to smaller regions of a frame with size % × % where % � fxfy. For each of

these smaller regions we obtain M̂j
t for j = 1, . . . , J using Alg. 1 on the kernel covariance

matrix Σ̂φ
xj
,t

that corresponds to subframe xtj that corresponds to a smaller region of the

frame xt at time instant t, and J = fxfy
%2

. Then, smaller sparse factor M̂j
ts are stacked as

follows

M̂t = [{M̂1
t}T , . . . , {M̂J

t }T ]T , (5.26)

to construct the sparse factor M̂t ∈ Rp∗1 corresponding to the kernel covariance matrix

Σ̂φx,t
of the entire frames xt. It is worth noting that M̂t is acquired without the need of

factorizing the much larger in size fxfy×fxfy kernel covariance matrix Σ̂φx,t
. Proceeding

as before, the nonzeros entries of M̂t can be utilized to estimate the Pt object pixels. After

implementing the K-means clustering method on the Pt pixels, cluster centriods will serve

as the initialization positions of the objects in the filtering stage. Further, the pixel subsets
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P tm are also used to estimate the width and height of a rectangular subframe, say width w0
s

and height h0
s, that surrounds the pixels of each moving object in the frame.

5.4.2 Object Identification and Tracking

Next, it is outlined how the Kalman filter and the sparse kernel factorization algo-

rithm interact with each other to track multiple moving objects in a given video sequence.

During the start-up stage, a number of Fs frames will be utilized to evaluate the kernel

covariance matrix. After applying Alg. 1 using the divide and conquer implementation in

Sec. (5.4.1), the nonzero entries in the acquired sparse vector M̂0 will point to the pixels

of the moving objects in the video.

From M̂0, we can extract the pixels which form the detected moving objects. Here

the object size in Sec. (5.4.1), namely w0
s and h0

s will be rectified further to ws and hs which

satisfies ws ≥ w0
s ,mod(ws, %) = 0 and hs ≥ h0

s,mod(hs, %) = 0.. This results in a slightly

larger sub-region for each object in which smaller region % × % can be further divided. In

the next time instance, we will just incorporate the pixels around the predicted centroid

position ŝm(t|t − 1) from Kalman filter Eq. (5.21) to form the object kernel covariance

matrix Σ̂φx,t,m
following Eq. (5.6) in which x contains the pixels xi,j with x- and y-

coordinates within the intervals

[ŝm(t|t− 1)]1 − ws/2 ≤ i ≤ [ŝm(t|t− 1)]1 + ws/2

[ŝm(t|t− 1)]2 − hs/2 ≤ j ≤ [ŝm(t|t− 1)]2 + hs/2. (5.27)

Similarly to the initialization stage, the divide and conquer implementation is carried

out in the kernel covariance matrix Σ̂φx,t,m
for each object separately to acquire the pix-

els which corresponds to the moving object m at the current time instant. This approach

reduces the computational complexity since each object allocated areas is further split into

smaller regions.
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To account for newborn or disappearing objects in the video resulting a time-varying

number of objects we can periodically generate and factorize the kernel covariance matrix

in the entire video frame. The complete algorithm is outline below:

Algorithm 7 Real-Time Multi-Object Identification and Tracking
1: Start-up stage (t = 0)/Reconfiguration (t%Tc = 0): For Fs consecutive frames, the kernel

covariance matrix is formed according to Eq. (5.6) and Algorithm 1 is applied in the entire

frames to determine moving objects in the input frame sequence.

2: for t = 1, 2, . . . , do

3: Gather frames within time interval [(t− 1) · F + 1, t · F ]

4: Using the F acquired frames form the kernel covariance matrix Σφx,t,m
with pixels in a

rectangular region of size ws × hs with centroid of [ŝm(t|t− 1)]1:2 for m = 1, . . . ,M

5: Apply Algorithm 1 to Σφx,t,m
and acquire the nonzero entries in M̂m

t

6: Apply Kalman filter for each of the M objects, i.e., Eqs. (5.21)-(5.25) to track each of the

M objects’ centroid pixel.

7: end for

5.5 Synthetic Numerical Tests

The performance of proposed scheme is first tested on a synthetic frame sequence

that contains three rectangular objects that move independently of each other. Video back-

ground contains randomly generated Gaussian noise with variance 20, while the objects

consist of pixel with intensity varying between 240 to 255. The synthetic video contains 60

frames, during which object 1 moves from the left to the right, object 2 moves from the top

to the bottom of the frame and object 3 moves from the right to the left. The frame size is

100 by 100, while all the objects are of size 10 by 10. The true coordinates of each object’s

centroid pixel are recorded as the ground truth to evaluate our proposed tracking scheme.
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To select a proper kernel variance, firstly we empirically choose a variance range [0.001, 1],

by checking the kernel covariance matrix formed with different variances in the variance

range, we select the variance value which manifests the desired block diagonal structure in

the kernel covariance matrix. The value is set as σ2 = 0.01. Three sample images are given

in Figs. 5.2, 5.3, 5.4, with frame indices 20, 40, and 60. The objects are marked out by a

dark-colored circle to show how it captures the momentary location of each of the the rect-

angular moving objects. The tracking root mean squared-error (RMSE) which quantifies

the number of pixels by which the estimated centroid pixel coordinates is missing the true

centroid of each object is depicted in Fig. 5.5. It is clear that both the proposed tracking

scheme and the scheme in [135] localizes the moving objects within 3 pixels of accuracy.

Though, the approach in [135] requires prior knowledge of objects’ initial coordinates and

a proper search window size which our scheme can generate by itself and without the need

of any prior information.

Figure 5.2. Tracking result for frame 24 in synthetic video sequence..

5.6 Multi-Object Detection and Tracking in Thermal Video

Next, the proposed tracking scheme is tested on a video sequences extracted from

the datasets available on the OTCBVS website [75], where a Raytheon L-3 Thermal-Eye
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Figure 5.3. Tracking result for frame 44 in synthetic video sequence..

Figure 5.4. Tracking result for frame 64 in synthetic video sequence..

2000AS infrared sensor is utilized to acquire 8-bit grayscale images (with a resolution of

320 × 240 pixels per frame). The first image sequence is extracted from the OTCBVS

dataset 05, i.e, terravic motion infrared database. In this video sequence, a man with a

weapon moves from the left to the right with deformation. Six sample frames are presented

in Fig. 5.6, 5.7, 5.8. Even though the shape of the target varies with the non-rigid movement

of the limbs, our novel algorithm is able to detect the person and tracks the target accurately

(the white box surrounding the objects is the estimated area where the algorithm thinks

there is an object). Frames 243 and 282 are zoomed in to show the accuracy of the bounding

box our proposed tracking scheme generated, see Figs. 5.9, 5.10.

Another experiment is conducted on another video sequence extracted from the OTCBVS

database. In this sequence, there are two pedestrians one of which moves from the left to

the right, while the other pedestrian moves from the right to the left. Six sample frames are
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Figure 5.5. Tracking root mean squared-error (RMSE) for the synthetic video sequence..

Figure 5.6. Tracking results for frames 231 and 240 in sequence 1..

displayed in Fig. 5.11, 5.12, 5.13. For better view of how our proposed tracking scheme

manages to localize both pedestrians, frames 251 and 360 are zoomed in and displayed in

Fig. 5.14, 5.15, 5.16, and5.17. The tracking RMSE for our proposed method and the track-

ing scheme in [135] is compared in Fig. 5.18. It can be observed that our tracking scheme

outperforms the scheme in [135] for both pedestrians, and it is worth noting that for our

scheme, the average tracking error for most of the tracking time is below 4 pixels.

5.7 Tracking with Missing Pixels

Oftentimes, videos may be corrupted due to camera or storage issues, resulting miss-

ing pixels in the video frames. Here, our tracking scheme is tested in the scenario where a

portion of the frame pixels are missing (their intensity is set to 0). Here, two sample frames

224, 252 with a 5% random pixel loss are provided to display the tracking result. Notice

that the tracking performance of the pedestrian on the left is not as good as the pedestrian
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Figure 5.7. Tracking results for frames 243 and 267 in sequence 1..

Figure 5.8. Tracking results for frames 282 and 288 in sequence 1..

on the right, since the left sided pedestrian occupies a smaller number of pixels which

results a larger portion of the object to disappear in the presence of missing pixels. For

the pedestrian on the right, despite the loss of several pixels, our tracking scheme enables

precise localization.

5.8 Concluding Remarks

A novel multi-object detection and tracking algorithm was put forth in video se-

quences. The task of identifying objects in a sequence of frames was transformed in a

sparse kernel covariance factorization problem, where the support of the estimated sparse

factors point to the pixels of each object present in a frame. To this end, a sparsity-aware

kernel covariance matrix factorization scheme, based on norm-1 regularization was pro-

posed and minimized utilizing a coordinate descent approach. After objects are success-

fully determined, Kalman filtering is implemented cooperatively with the sparse kernel

covariance factorization scheme to allow accurate tracking of each object’s centroid pix-

els. Numerical tests on different video datasets validate the effectiveness of our proposed
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Figure 5.9. Frames 243 in sequence 1 zoomed in to demonstrate the accurate tracking of
the area where the moving object resides in the frame..

Figure 5.10. Frames 282 in sequence 1 zoomed in to demonstrate the accurate tracking of
the area where the moving object resides in the frame..

video tracking mechanism in the presence of multiple objects, and corroborate the im-

proved tracking performance over existing alternatives.
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Figure 5.11. Tracking results for frames 240 and 264 in sequence 2..

Figure 5.12. Tracking results for frames 282 and 318 in sequence 2..

Figure 5.13. Tracking results for frames 336 and 360 in sequence 2..

Figure 5.14. Frame 251 in sequence 2 zoomed in for pedestrian on the left..
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Figure 5.15. Frame 251 in sequence 2 zoomed in for pedestrian on the right..

Figure 5.16. Frame 360 in sequence 2 zoomed in for pedestrian on the left..

Figure 5.17. Frame 360 in sequence 2 zoomed in for pedestrian on the right..

Figure 5.18. OTCBVS Thermal Video tracking RMSE..
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Figure 5.19. Tracking in the presence of missing pixels for frame 224..

Figure 5.20. Tracking in the presence of missing pixels for frame 252..
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CHAPTER 6

FUTURE RESEARCH

6.1 Tracking Multiple Maneuvering Targets

In our previous works, it is assumed that the targets are moving in a constant velocity

model. However in real cases, targets may not adhere to a single moving model, possibly

targets may move or evolve under different moving models at different time instances, e.g.,

constant velocity, constant acceleration, constant turn, etc. There are a plethora of works

coping with the problem of tracking maneuvering targets. The most popular method is

the interacting multiple model method in which several pre-assumed models are mixed to-

gether by transitioning from model to model with a transition probability matrix, the state

estimator is evaluated as the combination of the state estimators across all the aforemen-

tioned pre-assumed model, see in [6, 39, 92]. Limitations of this IMM method involve: i)

They do not account for the time instances when exactly the maneuver happens, whereas

the maneuver time may be vital in some applications; and ii) Several possible models has to

be assumed first, however the assumed models may not cover the real moving trajectories

of the targets. To address the aforementioned two issues, we will propose a method which

can detect model changes and later make changes to the filtering model accordingly, thus

achieving more accurate tracking performance.

6.2 Object Tracking using Multi-modal Video Sequencies

Thermal cameras normally output gray scale imaging, which results a lower data pro-

cessing complexity, while RGB cameras output triple loads of information that corresponds

to red, green, blue color data. Combining both thermal heat features and visible colors from

138



RGB video could potentially lead to more robust tracking. There are already some research

efforts that propose fusion of thermal and RGB visible data, e.g, [48], [45], [34]. The work

in [34] relies on the contour saliency map, to fuse together object locations and contours

from both thermal and color sensors and eventually extract the object silhouette features,

thus obtaining improved tracking performance. However, the method is computationally

expensive since it aims at constructing a complete object contour. In [48], data fusion is

implemented to fuse thermal and visible data, resulting in an illumination-invariant face

image. In the latter work, decision fusion combines the matching score generated from in-

dividual face recognition models. We would like to exploit the inter-pixel correlations from

both visible and thermal data so as to take advantage of heat and color information of mov-

ing objects in a video. Moreover, we are interested developing our thermal video tracking

scheme so that it will be capable of handling tough but common tracking scenarios, e.g.,

object occlusion and scaling.
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APPENDIX A

Proof of Eqs. (2.9), (2.10) and (2.12)
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Let Mt(j, `) = y, while setting the rest minimization variables in (4.8) to their most

up-to-date values at the end of cycle k − 1. It follows that M̂k
t (j, `) is the minimizer of

arg min
y
y4 + c1 · y2 + c2 · y + λρt, s. to |y| ≤ t, (A.1)

where

c1 = 2
∑

i∈Nj [M̂
k−1
t (i, `)]2−2ζkt,Σ(j, j, `)+φ, and c2 = −4

∑
i∈Nj ζ

k
t,Σ(j, i, `)M̂k−1

t (i, `).

(A.2)

After evaluating the derivatives of the cost in (G.1) wrt y and t and applying the Karush-

Kuhn-Tucker optimality conditions [10] it follows that y∗ := M̂k
t (j, `) should satisfy

4(y∗)3 +2c1y
∗+ c2 +µ∗1−µ∗2 = 0 and−µ∗1−µ∗2 +λ` = 0, where µ∗1 and µ∗2 are the optimal

multipliers corresponding to the inequality constraints of (G.1). Note that µ∗1 ≥ 0, µ∗2 ≥ 0,

while the complementary slackness conditions impose that µ∗1(y∗−t∗) = µ∗2(−t∗−y∗) = 0.

If y∗ > 0 the slackness conditions imply that µ∗2 = 0 from which it follows that µ∗1 = λ`.

Substituting the latter values in 4(y∗)3 + 2c1y
∗ + c2 + µ∗1 − µ∗2 = 0 gives (2.9). Similarly,

the negative candidate minimizers of (G.1) can be obtained by the roots of (2.10). Differ-

entiating the cost in (4.8) with respect to σj,t and setting the derivative equal to zero we can

obtain (2.12). �
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Let h({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}mj=1) denote the cost given in (4.8) which is defined

over Rm(L+1)×1, and let’s define

h0({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}mj=1) :=
∑m

j=1

∑
j′∈Nj

[Σ̂x,t(j, j
′)

−
∑L

l=1 Mt(j, l)Mt(j
′, l)]2 + φ

∑L
`=1 ‖Mt,:`‖2

2.

Further, consider the level set

H0
t := {{Mt(j, ρ)}m,Lj,ρ=1 : h({Mt(j, ρ)}m,Lj=1,ρ=1, {σj,t}mj=1) ≤ h(M̂0

t )}, (B.1)

where M̂0
t is the m×L matrix used to initialize Alg. 1 and selected such that ‖M̂0

t‖1 <∞

from which it follows that h(Ĥ0) < ∞, while the noise variances σj,t,0 = 0 for j =

1, . . . ,m. Then, from (H.1) and the form of h(·) it follows that the member matrices Mt of

H0
t satisfy

L∑
`=1

m∑
j=1

λ`|Mt(j, `)| ≤ h(M̂0
t ) <∞.

Thus, the setH0 is closed and bounded (compact). Also, h(·) is continuous onH0.

Recall that the cost involved in updating M̂k
t (j, `) can be written as Jkt (j, `) := y4 +

c1y
2 + c2y + λρ|y|, [cf. (G.1)]. If c2 6= 0 then after determining the monotonicity of

Jkt (j, `) it follows that it has a unique minimizer. If c2 = 0, then Jk(j, ρ) is symmetric

around zero. In that case if c1 > 0 then the unique minimizer of Jkt (j, ρ) is 0. Though, if

c1 < 0 then Jkt (j, ρ) has two minimizers with the same magnitude but different sign. In

that case we can consistently select the positive (or negative) minimizer ensuring a unique

minimizer per iteration. Function h(·) satisfies the regularization conditions outlined in

[112, (A1)]. In detail, the domain of h0(·) is formed by matrices whose entries satisfy

Mt(j, `) ∈ (−∞,+∞). Then, domain(h0) = (−∞,∞)m(L+1)×1 is an open set. Further,

h0(·) is Gâteaux differentiable over domain(h0). The Gâteaux derivative is

h′0(M; ∆M) := lim
ε→0

[h0(M + ε∆M)− h0(M)]/ε. (B.2)

143



After carrying out the necessary algebraic operations it follows readily that h′0(M; ∆M)

exists for all ∆M ∈ domain(h0), and it is equal to

−2tr[(E� (Σ̂x,t −MtM
T
t ))(E� (Mt∆

T
M + ∆MMT

t )] + 1T (Mt �∆M)1.

The aforementioned properties ensure convergence of the Alg. 1 iterates to a stationary

point of h(·) [112, Thm. 4.1 (c)]. �
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Starting from the cost equation in (3.8), and using a common H for all Hτ as justified

earlier the cost can be rewritten as follows:

t∑
τ=t−K+1

(xτ −Hsτ )
TΣ−1

w (xτ −Hsτ ) +
t∑

τ=t−K+1

(sτ − Fsτ−1)TQ−1(sτ − Fsτ−1)

+ (st−K − ŝt−K)TM−1
t−K|t−K(st−K − ŝt−K) +

∑r
ρ=1 λρ‖hρ‖1

= (st−K − ŝt−K)TM−1
t−K|t−K(st−K − ŝt−K) +

∑r
ρ=1 λρ‖hρ‖1

+ (Fst−K − st−K+1)TQ−1(Fst−K − st−K+1) + . . .+ (Fst−1 − st)
TQ−1(Fst−1 − st)

+ (xt−K+1 −Hst−K+1)TΣ−1
w (xt−K+1 −Hst−K+1) + . . .+ (xt −Hst)

TΣ−1
w (xt −Hst)

= (xα − Fαsα)TQ−1
α (xα − Fαsα) +

∑r
ρ=1 λρ‖hρ‖1 (C.1)

where sα, xα, Qα, and Fα are given in equations (3.9), (3.10), and (3.12), respectively. The

gradient of (C.1) w.r.t sα is∇sαJt,K({sτ}tτ=t−K ,H) = −2FT
αQ−1

α (xα −Fαsα). By setting

the derivative to zero, the result in (3.9) follows. �
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When it comes to update matrix Ht, while fixing the state vectors to their most up-to-

date values only the first and last term in (3.7) are relevant. The matrix Ht will be updated

by minimizing (3.7) on an entry-wise manner. To this end, the vector yκ−1
i,t in (3.14) is

formed to help isolate the optimization variable h ≡ Ĥ(i, ρ) from same-row entries which

are fixed to their most up-to-date values Ĥκ−1
t (i, `), ` 6= ρ, ` = 1, . . . , r. Thus, (3.13) is

minimized on an entry-by-entry coordinate fashion.

The minimization problem in (3.13) is equal to

Ĥκ
t (i, ρ) := arg min

h
σ−2
w ‖yκ−1

i,t − šρ,t · h)‖2
2 + λρt, s. to− t ≤ h ≤ t (D.1)

Introducing the Lagrangian multipliers ν1 and ν2, the derivative of the Lagrangian function

w.r.t. h is given by

∇hL(h, ν1, ν2) = 2σ−2
w hšρ,t · šTρ,t − 2σ−2

w yκ−1
i,t · šTρ,t + ν1 − ν2 (D.2)

After applying the KKT optimality conditions [10], it follows readily that the optimal so-

lution of (D.1) is given by (3.15). �
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Derivation for (3.23)
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The cost function in (3.23) can be rewritten as follows:

p∑
j=1

t∑
τ=t−K

(ξ1(τ)xj(τ)− ξ1(τ)Hj:sτ,j)
TΣ−1

w (ξ1(τ)xj(τ)− ξ1(τ)Hj:sτ,j)

+
1

p

p∑
j=1

t∑
τ=t−K

(ξ1(τ)sτ,j − ξ1(τ)Fsτ−1,j)
TQ−1(ξ1(τ)sτ,j − ξ1(τ)Fsτ−1,j)

+
1

p

p∑
j=1

t∑
τ=t−K

(ξ2(τ)sτ,j − ξ2(τ)ŝt−K,j)
TM−1

t−K|t−K,j(ξ2(τ)sτ,j − ξ2(τ)ŝt−K,j)

=

p∑
j=1

t∑
τ=t−K

(ξ1(τ)xj(τ)− ξ1(τ)Hj:sτ,j)
2σ−2

w

+

p∑
j=1

t∑
τ=t−K

‖p−1/2Q−1/2(ξ1(τ)sτ,j − ξ1(τ)Fsτ−1,j)‖2
2 (E.1)

+

p∑
j=1

t∑
τ=t−K

‖p−1/2M
−1/2
t−K|t−K,j(ξ2(τ)sτ,j − ξ2(τ)ŝt−K,j)‖2

2

=

p∑
j=1

t∑
τ=t−K

∥∥∥∥∥∥∥∥∥∥


ξ1(τ)σ−1

w xj(τ)

ξ1(τ)(pQ)−
1
2 Fsτ−1,j

ξ2(τ)p−1/2M
− 1

2

t−K|t−K,j ŝt−K,j

−


ξ1(τ)σ−1
w Hj:

ξ1(τ)(pQ)−
1
2

ξ2(τ)p−1/2M
− 1

2

t−K|t−K,j

 · sτ,j
∥∥∥∥∥∥∥∥∥∥

2

2
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Derivation for ADMM updating equations in Ch. 3.3
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Differentiating the augmented Lagrangian in (3.27), w.r.t sτ,j gives

∇sτ,jLa = −2GT
τ,j(ξτ,j −Gτ,jsτ,j) (F.1)

+
∑
j′∈Nj

(vj
′,k+1
τ,j (κ) + ωj

′,k+1
τ,j (κ)) + c

∑
j′∈Nj

(sτ,j − zj
′,k+1
τ,j (κ)) +c

∑
j′∈Nj

(sτ,j − zj,k+1
τ,j′ (κ))

Setting the latter gradient equal to 0 (first-order optimality conditions), it follows for j =

1, . . . , p and τ = t−K, . . . , t that

sk+1
τ,j (κ+ 1) =(2GT

τ,jGτ,j + 2c|Nj|Ir×r)−1 (F.2)

× [2GT
τ,jξj −

∑
j′∈Nj

(vj
′,k+1
τ,j (κ) + ωj

′,k+1
τ,j (κ)) + c

∑
j′∈Nj

(zj
′,k+1
τ,j (κ) + zj,k+1

τ,j′ (κ))]

The gradient of the augmented Lagrangian function in (3.27) w.r.t zj
′

τ,j is

∇
zj
′
τ,j

La = c[zj
′

τ,j − sk+1
τ,j (κ+ 1)] + c[zj

′

τ,j − sk+1
τ,j′ (κ+ 1)]− [vj

′,k+1
τ,j (κ) + ωj,k+1

τ,j′ (κ)]

Thus, by setting the latter gradient equal to zero we obtain the updating formula in (3.34)

for j = 1, . . . , p, j′ ∈ Nj and τ = t−K, . . . , t. �
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Let Mt(j) = h, while setting the rest minimization variables in (5.12) to their most

up-to-date values at the end of cycle k − 1. It follows that M̂k
t (j) is the minimizer of

arg min
h
h4 + c1 · h2 + c2 · h+ λt, s. to |h| ≤ t, (G.1)

where

c1 = 2
∑p

i,i 6=j[M̂
k−1
t (i)]2 − 2δk(j, j) + φ, and (G.2)

c2 = −4
∑p

i,i 6=j δ
k(j, i)M̂k−1

t (i). (G.3)

After evaluating the derivatives of the cost in (G.1) wrt h and t and applying the Karush-

Kuhn-Tucker optimality conditions [10] it follows that h∗ := M̂k
t (j) should satisfy 4(h∗)3+

2c1h
∗+c2 +µ∗1−µ∗2 = 0 and−µ∗1−µ∗2 +λ = 0, where µ∗1 and µ∗2 are the optimal multipliers

corresponding to the inequality constraints of (G.1). Note that µ∗1 ≥ 0, µ∗2 ≥ 0, while the

complementary slackness conditions impose that µ∗1(h∗ − t∗) = µ∗2(−t∗ − h∗) = 0. If

h∗ > 0 the slackness conditions imply that µ∗2 = 0 from which it follows that µ∗1 = λ.

Substituting the latter values in 4(h∗)3 + 2c1h
∗ + c2 + µ∗1 − µ∗2 = 0 gives (5.16). Similarly,

the negative candidate minimizers of (G.1) can be obtained by the roots of (5.17). �
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Let `({Mt(j)}pj=1) denote the cost in (5.12) which is defined over Rp×1, and let’s

define

`0({Mt(j)}pj=1, ) :=
∑p

j=1

∑p
j′=1[Σ̂φx,t(j, j

′)−Mt(j)Mt(j
′)]2

Further, consider the following level set:

L0
t := {{Mt(j)}pj : `({Mt(j)}pj=1) ≤ `(M̂0

t )}, (H.1)

where M̂0
t is the p× 1 matrix used to initialize Alg. 1 and selected such that ‖M̂0

t‖1 <∞,

from which it follows that h(Ĥ0) < ∞. Then, from (H.1) and the form of `(·) it follows

that the member matrices Mt ofH0
t satisfy

p∑
j=1

λ`|Mt(j)| ≤ `(M̂0
t ) <∞.

Thus, the level set L0 is closed and bounded (compact). Also, `(·) is continuous on L0.

Recall from [cf. (G.1)] that the cost involved in updating M̂k
t (j) can be written as Jkt (j) :=

h4 + c1h
2 + c2h+λ|h| . If c2 6= 0 then after determining the monotonicity of Jkt (j), it has a

unique minimizer. And if c2 = 0, then Jk(j) is symmetric around zero. In that case if c1 >

0 then the unique minimizer of Jkt (j) is 0. Though, if c1 < 0 then Jkt (j) has two minimizers

with the same magnitude but different sign. In that case we can consistently select the

positive (or negative) minimizer ensuring a unique minimizer per iteration. Function `(·)

satisfies the regularization conditions outlined in [112, (A1)]. In detail, the domain of `0(·)

is formed by matrices whose entries satisfy Mt(j) ∈ (−∞,+∞). Then, domain(`0) =

(−∞,∞)p×1 is an open set. Further, `0(·) is Gâteaux differentiable over domain(`0). The

Gâteaux derivative is

`′0(M; ∆M) := lim
ε→0

[`0(M + ε∆M)− `0(M)]/ε. (H.2)

After carrying out the necessary algebraic operations it follows readily that `′0(M; ∆M)

exists for all ∆M ∈ domain(`0), and it equals

−2tr[(Σ̂x,t −MtM
T
t )(Mt∆

T
M + ∆MMT

t )] + 1T (Mt �∆M)1.
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The aforementioned properties ensure that Alg. 1 iterates to converge to a stationary point

of `(·) [112, Thm. 4.1 (c)]. �
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