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ABSTRACT

ENHANCING INDOORS ROBOTIC TRAVERSABILITY ESTIMATION WITH

SENSOR FUSION

Christos Sevastopoulos , Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Fillia Makedon

Generally speaking, traversability estimation illustrates the ability to navigate

or move through a particular environment (indoors or outdoors). Indoor environments

are governed by uncertainty and stochasticity arising from their complex structures

encapsulating both static elements like furniture and walls, as well as entities such as

moving humans. In our research, we underline the importance of blending semantic

and spatial information for ensuring secure navigation for a mobile robot. We show

that RGB sensors suffer from constrained situational awareness of the surroundings,

thus highlighting the need to incorporate spatial and geometric data, which can col-

laborate synergistically to enhance overall perception and safety. Towards this direc-

tion, we examine indoors traversability estimation both on higher-level (GO/NO-GO

decision) and also at a lower-level by identifying free-space zones that the robot can

safely traverse.

We combine visual data (RGB) and Laser Range Finder (LRF) information both

for annotating our dataset but also for enhancing the prediction compared to exclusive

reliance on RGB information. In the core of our experiments, we use Transformer-
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based architectures [1] due to 1) their efficacy in capturing spatial dependencies and

sequences of varying lengths, which are common in indoor environments where objects

are positioned in relation to each other 2) their notable transfer learning potential,

since we are fine-tuning on our custom collected dataset and we need rich pre-trained

features from a large scale dataset 3) their significant ability to handle multi-modal

input sequences, since we are using different modalities.

We investigate the efficiency of employing a Multi-Head Self-Attention module

as a fusion mechanism, leveraging its capability to assign varying weights across the

input sequence. Ultimately, in order to estimate free-space, we employed a method-

ology predicated on the assumption that, larger depth values correspond to regions

that the robot can safely traverse. Specifically, we implemented an efficient auto-

mated masking technique that leverages textural homogeneity, depth uniformity, and

positive scenes to create meaningful segments before fine-tuning on our dataset. Ap-

plications of this work can be found in the following domains: 1) Navigation of

autonomous agents or Mobility-impaired subjects 2) Safety in confined spaces such

as warehouse/vineyard patrol robots 3) Search & Rescue applications.
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CHAPTER 1

INTRODUCTION

In leading-edge mobile robotics research, a wide array of outdoor navigation ap-

plications such as planetary exploration, military operations, agricultural tasks etc.

entails the necessity of adapting to the conditions encountered and, in particular,

to address the challenges imposed by the terrain’s contextual complexity. For every

mobile robot, it is of indispensable importance to be able to identify its surroundings

and translate the information perceived by its sensors to a meaningful volume of re-

quired knowledge. Subsequently, it will obtain the capacity to determine whether it

can navigate in a safe while efficient manner. A vital part of autonomous navigation

implies that the perceived structure of the environment has to be precisely illustrated

in order to ensure whether a specific region can be traversed or not. Uneven terrains

characterized by dense vegetation, foliage and potential presence of obstacles create

a fundamental need to choose carefully between proprioceptive and exteroceptive sen-

sors: Proprioceptive sensors measure values regarding the state of the robot itself

(such as encoder clicks and joint angles) while exteroceptive sensors measure values

from the environment (such as temperature and distance). Therefore, it is apparent

that the selection of the sensors used has to be in accordance with each application’s

prerequisites and the robot’s structural design.

1.1 Introduction

Traversability illustrates the difficulty of moving through a specific region and

encompasses the suitability of the terrain for traverse based on its physical properties,
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such as slope, roughness, surface condition [2], as well as the mechanical character-

istics and capabilities of the robot. Furthermore, it might also establish a bedrock

for path planning algorithms since it is inevitably incorporated in terrain indices

(such as terrain roughness, terrain inclination) which are of central importance when

considering the optimal path [3].

Although traversability estimation was initially framed as a binary classifica-

tion problem [4], currently it can be viewed through the prism of multiple classes

categorization with respect to the levels of traverse facilitation. Being able to eval-

uate terrains’ traversability is a constitutional step towards designing a perception

system [5] for such rough and rugged terrains while processing voluminous data ac-

quired by different sensory techniques.

The emergence of Deep Computer Vision has expanded the field of traversabil-

ity estimation, enabling the detection of features that traditional geometry-based

approaches cannot access. It involves estimating compliance from visual information.

While geometrically, the presence of obstacles might suggest non-traversable paths,

a robot may still be able to navigate through compliant obstructions such as grass

and foliage. Therefore, it becomes crucial to explore whether deep learning vision

techniques can enhance environmental perception by adding semantic information to

geometric data. Numerous studies highlight the significance of traversability analysis

as a fundamental step in motion planning. Papadakis [4] provides a comprehensive

review of how multi-sensor data acquisition, incorporating laser, stereo, color informa-

tion, and accurate representation of vehicle-terrain interaction, can lead to meaningful

traversability estimation in structured and unstructured environments. On the other

hand, Kostavelis & Gasteratos [6] discuss various methods for extracting semantic

mapping information and their potential applications in mobile robotics, including

traversability assessment.

2



Figure 1.1 presents an overview of the contemporary advances in traversability

estimation through the prism of deep learning techniques as well as conventional

machine learning and non-trainable methods. Inferring terrain’s traversability from

geometric information can frequently bump into limitations as a consequence of the

problems’ high dimensionality while meaningful information is extracted from image

data.

Transformers

Figure 1.1: Overview of traversability estimation methods

On the grounds that data-driven methods can create structured representations

derived solely by the available data and thus do not require the personal expertise of

a human expert when it comes to accurate labelling and careful features’ selection,

it is arguable that they are favorable methods when handling large-scale data. How-

ever, both human-engineered and data-driven methods exhibit certain advantages

and limitations 1.2 [7].
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Figure 1.2: Facilitations and limitations between conventional vision and machine
learning/deep learning techniques

1.1.1 Challenges encountered in traversability estimation scenarios

Traversability estimation techniques, which are indispensable in the fields of

robotics and autonomous navigation, confront a plethora of formidable challenges.

These challenges encompass the limitations inherent to sensors, including their range,

field of view, and susceptibility to noise and calibration errors. The presence of dy-

namic environments, characterized by moving objects and people, introduces com-

plexity and uncertainty into the estimation process. Ambiguity can further con-

found the task in intricate terrains, where distinguishing between traversable and

non-traversable areas becomes arduous. Adapting to diverse terrains, different scales,

and the computational intricacies involved adds additional layers of complexity.

The integration of data from a variety of sensors to achieve accurate estimations,

effective training of machine learning models, and the need to account for environ-

mental variability are substantial hurdles in this endeavor. Moreover, ensuring safety,

assessing risks, and establishing rigorous validation standards remain pivotal concerns

in this field. The omnipresent real-time constraints impose demands on the efficiency

and reliability of traversability estimation techniques, making these challenges all the

more crucial to address. In Figure 1.3 we notice that challenges related to the envi-

4



Figure 1.3: Challenges in non-trainable methods

Figure 1.4: Dataset/Software/Hardware Challenges in ML,DL methods

ronment’s complexity as well as the inadequacy of computational resources have been

predominantly faced in non-trainable methods.

1.1.2 Challenges in Indoor Traversability Estimation

Indoor traversability estimation presents a multifaceted set of challenges, each

of which plays a crucial role in the complexity of this field.

1. Diverse Indoor Environments: Indoor spaces exhibit remarkable diversity,

ranging from cluttered and densely populated areas to meticulously structured

office layouts with open spaces in between. Navigating these distinct environ-

5



Figure 1.5: Environmental Challenges in ML,DL methods

ments necessitates adaptable algorithms capable of addressing varying degrees

of complexity.

2. Dynamic Environmental Factors: The presence of dynamic elements, such

as moving humans and objects, adds an inherent stochastic nature to indoor

environments. Predicting and responding to these dynamic changes poses a

significant challenge for traversability estimation systems.

3. Fluctuating Lighting Conditions: Lighting conditions indoors can fluctuate

dramatically. Spaces may transition from well-lit areas to dimly lit or shadowy

corners. These variations directly affect the performance of sensors and percep-

tion systems, demanding robust methods capable of handling diverse lighting

scenarios.

4. Reflective Surfaces and Obstacles: Indoor spaces often feature reflective

surfaces, including glass doors, mirrors, and polished floors. These surfaces

introduce complexities in sensor data interpretation, requiring specialized algo-

rithms to distinguish between obstacles and reflective elements.

Given these challenges, it becomes apparent that the integration of semantic

and spatial information is of paramount importance. Combining these two dimensions

6



offers a promising avenue to enhance indoor traversability estimation, enabling more

reliable and adaptable navigation in the diverse and dynamic indoor world.

1.1.3 Motivation & Significance of this Study

Figure 1.6: A sequence of frames depicting the importance of RGB and LRF fusion.
Upper row, right-most image: Due to the camera’s limited situation awareness, this
frame is erroneously labeled as traversable, despite the presence of an obstacle on the
left. Lower row: The LRF has wider FoV (blue graph) over the camera’s FoV (red
line), and thus it captures the obstacle’s position (green box) consistently.

In this study, we aim to address several critical questions. First and foremost,

we investigate whether relying solely on RGB information is sufficient for accurately

estimating the traversability of a given scene. Additionally, we delve into the limita-

tions associated with using RGB data exclusively. Specifically, we explore scenarios

where obstacles are situated outside the field of view of the camera. In such case,

relying solely on the RGB sensor, offers limited situation awareness in cases where

the robot is placed very close to an obstacle and needs to perform a turn to avoid

it (Figure 1.6). Driven by such limitation in surroundings’ awareness, we highlight

that perception is affected and certain methodological intervention may be necessary.
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Therefore, the necessity of incorporating spatial and geometric information, along

with the RGB, becomes apparent.

At a more granular level, it is imperative to identify the pre-trained features

that yield valuable insights for the downstream task. Specifically, the tasks we con-

sider in this study are 1) binary indoor traversability estimation and 2) free-space

segmentation. We also investigate the methods for integrating semantic and spatial

information, along with exploring the potential of depth information in representing

open spaces.

Overall, the methodology presented expands along the following axes:

1) RGB Binary Image Classification: To explore the effectiveness of using

only RGB images to distinguish between traversable (GO) and non-traversable (NO-

GO) scenes.

2) RGB-Laser Combination for Annotation: To investigate the potential

of combining RGB and Laser sensors for more accurate annotation of indoor environ-

ments. This dual-sensor approach enhances the quality of the labeled data used in

the trainable method.

3) RGB-Laser Fusion for Binary Prediction: To improve the accuracy of

traversability prediction. By integrating data from these two sources, this approach

aims to provide a more comprehensive understanding of the environment by leveraging

both semantic and spatial information.

4) RGB-D for Free-Space Segmentation: To perform free-space estimation

by leveraging RGB and depth information.

In the core of our experiments, we employ transformer-based architectures for

the following reasons:
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• Their efficacy in capturing spatial dependencies and sequences of vary-

ing lengths, which are common in indoor environments where objects are

positioned in relation to each other.

• Their potential for transfer learning, as we fine-tune them on our custom-

collected dataset.

• Their significant ability to handle multi-modal input sequences.

Through the aforementioned viewpoints, this study aims to advance the state-

of-the-art in indoor traversability estimation and free-space segmentation, ultimately

contributing to safer and more efficient navigation for a mobile robot.
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1.1.4 Thesis Outline

The structure of this thesis is as follows:

Chapter 2 presents the latest advancements in traversability estimation. We

scrutinize the diverse array of sensors employed, ranging from traditional to cutting-

edge technologies. Furthermore, we explore a spectrum of methods, encompassing

both trainable and non-trainable approaches, and examine the range of robotic plat-

forms utilized in this context. Chapter 3 introduces an indoor traversability estima-

tion technique based on Generative Adversarial Networks (GANs), which laid the

groundwork upon which our research is built. In this chapter, we underline the limi-

tations of this architecture, emphasizing its shortcomings in training/inference time,

and serves as a means of comparison with further experiments. In Chapter 4, we

introduce the methodology that will be employed in subsequent sections, namely

fine-tuning a transformer based architecture. We conduct fine-tuning experiments

aimed at gaining insights into how the relative distance between our robotic platform

and objects in the surroundings, renders the objects as obstacles and eventually im-

pacts our vision-based perception. Chapter 5 describes, how the method introduced

in Chapter 4 can be extended to multi-label classification. Chapter 6 portrays the

integration of an additional modality, specifically the Laser Range Finder (LRF), as a

method to enhance annotation and prediction. In Chapter 7, our attention shifts to-

wards the identification of free space through a depth-guided segmentation approach.

Finally, Chapter 8 presents conclusions based on our findings along with promising

avenues for future research, highlighting areas where further investigation is needed.
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CHAPTER 2

Comparing Non-trainable and Trainable Methods for Traversability Estimation in

Indoor and Outdoor Environments

2.1 Non-trainable

2.1.1 Grid-based Representation

To construct a suitable representation of the environment that encapsulates es-

sential knowledge about traversed areas, sensory information is processed using vari-

ous techniques, including occupancy grids, digital elevation maps, and traversability

maps. Specifically, the elevation map is structured as a two-dimensional regular grid,

with each cell storing both a height value and variance information. As the robot navi-

gates the environment and gathers new data, this map undergoes continuous updates.

Traditionally, terrain traversability computation relies on assessing the traversability

of individual grid cells within the elevation map. Elevation maps can be generated

using on-board sensors such as Lidars and IMUs, leveraging the geometric properties

of the adjacency grid, as detailed in [8]. This approach allows for the determination

of traversability within the map, laying the groundwork for effective motion planning

and navigation strategies.

Similar to the elevation map, the traversability map also adopts a regular grid

representation. Employing a 2D grid-based approach that leverages fused stereo and

visual data, this approach subdivides the environment into uniformly sized spatial

cells [9]. However, the key distinction from the occupancy grid-map lies in the fact

that each cell within the traversability map signifies the level of traversability rather

than the occupancy status of the observed space.
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A local traversability value is assigned to every cell within the elevation map,

and through the computation of the traversability map, the traversability of a specific

robot pose can be interpreted. The inherent directness and intuitiveness of traversabil-

ity maps are rooted in their ability to be constructed based on sensor-acquired data.

For instance, Wellhausen et al. [10] develop the traversability map by considering

three fundamental terrain characteristics: slope, terrain roughness, and step height.

In contrast, Fan et al. [11] represent the map as an aggregation of terrain properties

(e.g., height, risk) over a uniform grid. The estimation of traversability must account

for several potential challenges, including collision avoidance, step size, tip-over risk,

contact loss, slippage, and sensor uncertainty, in addition to addressing localization

errors. This holistic approach forms the basis for creating a planning framework,

treating the problem as a Model Predictive Control (MPC) problem.

Properly identifying and calculating the values of these aforementioned topo-

graphical characteristics, together with the robot’s mechanical capacity [12], an en-

riched traversability elevation map can be constructed. Consequently, it facilitates

dynamic exploration tasks since it is going to dictate the exact location on which e.g.

a walking robot can successfully land a valid step by adjusting its position and ori-

entation accordingly [13, 14]. Alternatively, the process of obtaining a traversability

map can serve as an intermediary step in calculating the robot’s control commands,

including steering and velocity adjustments.

For instance, Xie et al. [15] undertake the construction of a terrain map based on

laser sensor data. This terrain map is subsequently transformed into a traversability

map by assigning a Traversability Index (TI) value to each cell within the terrain map.

Ultimately, employing a one-dimensional histogram known as the Traversability Field

Histogram, the robot can navigate efficiently towards its intended destination.
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In another approach, Martin et al. [16] emphasize, through their experimen-

tal work, how the utilization of onboard sensors such as GPS, accelerometers, and

gyroscopes can facilitate the generation of traversability costmaps. These costmaps

encompass four essential traversability metrics: power consumption, longitudinal slip,

lateral slip, and vehicle orientation. These metrics provide valuable input for planning

and executing efficient robotic navigation strategies.

2.1.2 Conventional Computer Vision

In the early days of Computer Vision (CV), traversability estimation heavily

relied on making predictions based on the output generated by obstacle detection

algorithms. A notable system, as presented by Thrun [17], leveraged monocular

color vision data. This system focused on the analysis of individual pixels and their

local visual attributes, such as intensity, color, edges, and texture. The crux of this

approach centered around detecting pixels that exhibited dissimilarities in appearance

compared to the ground and classifying them as obstacles. In essence, any discrepancy

between a single pixel and the ground’s appearance was identified and categorized as

an obstacle.

Similarly, in the work of Huertas et al. [18], the emphasis was placed on dis-

cerning the boundaries of tree trunks against the background, a task determined by

an edge detection algorithm. This early pioneering work in Computer Vision laid the

foundation for more advanced traversability estimation techniques that have since

evolved and integrated a broader spectrum of sensing and analysis capabilities.

Stereo imagery, along with color,hue,texture information can be practical in

efforts of building a multi-algorithm approach [19] that is independently detecting

numerous obstacles of governing characteristics such as tree trunks, water, excessive

slope etc. by taking into account the terrain’s attributes. Using stereo modelling and
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outliers detection, Bajracharya et al. [20] build a uniform terrain mapping system that

incorporates information on elevation,slope,roughness along with categorization of

positive and negative obstacles.In specific, they focus on distinguishing thin structures

with respect to the large amount of depth singularities and rich textural information

involved, such as grass or sparse bushes, that cannot pose a genuine threat to the

robot’s safety.

Based on terrain features, such as slope and roughness, Castejon et al. [21] esti-

mate the traversability characteristics, by exploiting the power of Voronoi Diagrams

to model the XY dimensions of the outdoor environment as well as creating a quali-

tative representation that defines the traversability model. The latter provides useful

geometrical information for constructing the Digital Elevation Map that eventually

contributes in discretizing the workspace and isolate the cells that offer traversability

information. As a means to execute a traversability analysis in complex catacomb-

like environments, Bogoslavskyi et al. [22] perform experiments on a mobile robot

solely collecting input from depth images drawn by a Kinect-style sensor. They use

a sequential way of extracting the traversability interpretation starting from local

traversability as a result of a single depth image and afterwards, proceed with inte-

grating all the single-image traversability estimates, into a local traversability map.

The way to ensure the efficacy of their method is to perform a pixel by pixel compari-

son between the traversability estimates and the custom-made structures with known

3D geometry. During certain evaluation trials, it is found that the traversable regions

were dependent on a specific steering of the robot and thus their method is facing

serious limitations.

14



2.2 Conventional Machine Learning

Early efforts at integrating sensory input with machine learning techniques pri-

marily focused on obstacle detection and decision-making based on environmental

cues.

For instance, Dima et al. [23] introduced a framework that harnessed the power

of multiple sensors, including lasers, cameras, and infrared imagery. This sensor fusion

approach aimed to detect humans, negative obstacles, and assess terrain traversability.

It achieved this by combining the strengths of three different classifiers (AdaBoost,

stacked generalization, experts) using manually collected data. This method exem-

plified how diverse sensory data could be leveraged for comprehensive environmental

perception.

Pomerleau [24] explored the enhancement of autonomous driving through hu-

man demonstrations. By training an Artificial Neural Network (ANN) with camera

input and incorporating domain-specific knowledge, the network demonstrated im-

proved accuracy in steering an autonomous vehicle. This approach showcased the

potential of machine learning techniques in autonomous navigation.

In environments characterized by significant uncertainty, regression methods

played a pivotal role in traversability estimation. Ho et al. [25] utilized Gaussian

Process (GP) Regression to predict a planetary rover’s attitude and configuration

angles by learning from experience on unstructured terrain. This method relied on

formulating the GP regression problem effectively, using exteroceptive data as training

input. It aimed to directly calculate traversability by estimating the kernel function’s

architecture to monitor vehicle states and uncertainty propagation. GP regression

offered a continuous representation of the terrain, facilitating accurate traversability

estimation even in areas with limited exteroceptive data. The authors suggested that
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combining exteroceptive and proprioceptive learning could yield more comprehensive

and precise traversability maps.

Extending the Gaussian Process regression model, Oliveira et al. [26] introduced

an Uncertain-Inputs GP model. This model allowed for the consideration of local-

ization and execution noise while modeling terrain roughness using vibration data

as an input. By doing so, it provided a means to scrutinize the impact of noise on

traversability estimation, showcasing the adaptability of GP regression in handling

various sources of uncertainty in terrain analysis.

The Support Vector Machine (SVM), a kernel-based method known for its ap-

plications in classification, regression, and novelty detection, has gained widespread

adoption due to its capability to make decisive classification decisions for new input

vectors rather than providing probabilistic outputs [27]. One of its primary strengths

lies in finding solutions that maximize the margin between distinct classes. In the

context of road traversability detection, Bellone et al. [28] employ a carefully selected

feature set generated through normal vector analysis. Their hypothesis suggests that

using a normalized descriptor enriched with both geometric and color data enhances

the generalization of the spatial descriptor. Their proposed descriptor, in conjunction

with SVM employing four different kernels, demonstrates superior efficiency com-

pared to certain standard descriptors, enabling the detection of road traversability

from point clouds acquired in outdoor environments.

In a similar fashion, Zhou et al. [29] employ the AdaBoost algorithm in con-

junction with Fuzzy SVM for feature selection on 3D point cloud data representing

the ground surface. Their objective is to create a self-supervised visual learning sys-

tem for terrain surface detection, particularly in forest environments. To train the

classifier, they utilize a triangulated irregular network (TIN) to model the ground

plane and extract training points from the 3D point cloud dataset. This approach
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showcases how advanced machine learning techniques can be leveraged to address the

specific challenges posed by complex natural environments.

An alternative approach involves harnessing combined color and depth descrip-

tors to generate a textural descriptor, as described by [30]. These textural features,

along with color information, serve as both training and testing inputs for an SVM

classifier, facilitating terrain classification in areas covered with sand, grass, pavement,

gravel, and litterfall. This method demonstrates the power of utilizing multi-modal

data to improve terrain classification accuracy.

In another research endeavor, Kingry et al. [31] emphasize the significance of

textural features in terrain classification. They extract key features from visual-

spectrum images and employ an Artificial Neural Network (ANN) to identify terrain

types such as grass, concrete, asphalt, mulch, gravel, and dirt. This approach show-

cases the effectiveness of machine learning techniques in discerning terrain character-

istics from visual data.

Kim et al. [32] present a novel approach to unsupervised learning for terrain

traversability prediction. They use stereo vision to autonomously collect labeled vi-

sual features corresponding to traversable or non-traversable examples. These labeled

features are then fed into an online classifier learning algorithm. The operation of

this algorithm consists of identifying and collecting appearance feature vectors from

training examples and classifying newly collected image patches based on the learned

models. The efficiency of this mechanism lies in utilizing labeled data collected within

a specific time window for training, allowing the algorithm to effectively map input im-

age patches to terrain map cells. Consequently, the output highlights areas classified

as traversable, non-traversable, or unknown. Through experiments, it was demon-

strated that this online learning approach enabled the robot to reach a goal location

even when surrounded by densely packed tall grass, whereas a conventional planner
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relying solely on estimating cost maps from elevation maps computed through stereo

ranging proved unsuccessful due to limitations in feature space representation.

Happold et al. [33] undertake an ambitious effort that involves the fusion of

geometry and traversability data to generate a comprehensive terrain assessment.

Their approach utilizes a Multi-Layer Perceptron (MLP) with a single hidden layer,

trained in a supervised manner using stereo images. The training data comprises

eight-dimensional geometric vectors that capture various features, including slope,

density, height, vertical distance, and more.

To collect the training data, the LAGR (Learning Applied to Ground Vehicles)

platform acquires stereo image pairs, and a human expert labels each explored cell

based on the perceived difficulty of traversing that specific cell, categorizing them as

low, intermediate, high, or lethal. With a total of 4000 labeled cells, the analysis

reveals that height and slope are the most influential features for determining terrain

traversability.

To further enhance the terrain assessment, the classification derived from geom-

etry features is integrated with color information, resulting in the creation of a cost

map. This cost map serves as a valuable resource for path planning, enabling more

informed decision-making during robot navigation in complex environments. This ap-

proach underscores the significance of incorporating both geometric and color-based

data for robust terrain assessment and path planning.

2.2.1 Probabilistic

Thrun [17] makes a statement of fundamental gist that ’As robots are moving

away from factory floors into increasingly unstructured environments,the ability to

cope with uncertainty is critical for building successful robots’
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Navigation in outdoor complex environments encapsulates the need to handle

the uncertainty risen as an amalgam of different factors such as sensors’ noise and

error, robot’s mechanical limitations and most importantly the environment’s unpre-

dictable nature which renders its modelling as a quite challenging task. A plethora of

approaches that can represent uncertainty using probabilistic distributions and mod-

elling has been introduced for deriving terrain traversability. In the work of Ollis et

al. [34], the robot learns to calculate terrain costs through human demonstration, in-

dicating the likelihood of obstacle presence. This learning process combines Bayesian

estimates with geometric information gathered through stereo vision. The result-

ing terrain costs follow a specific distribution, allowing the determination of path

traversability. It is inferred that cells with higher feature values are less traversable,

providing valuable insights for navigation. Similarly, in another approach described

in [35], training data is generated during a safe journey in which a human operator

guides the robot. Human input is utilized without presuming correlations between

features and traversability. The Positive Naive Bayes (NB) classifier is applied to esti-

mate the frequencies of observed features, thereby determining the parameters of the

probability distribution for traversability. This approach results in the formulation

of a traversability map that serves as a powerful tool for representing safe paths for

the robot to follow. To further enhance detection accuracy, Sock et al. [36] utilize the

Bayes’ formula, which combines input from independent sources to estimate a single

entity. They fuse traversability maps obtained from a visual camera and a LIDAR

using this formula. The resulting map is modeled as a Markov Random Field, and the

cells are updated independently, allowing for a more robust and accurate assessment

of traversability in various environments.

Another regularly implemented technique which aims to autonomously improve

traversability estimation capabilities in unknown terrains is the use of a self-learning
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framework where 3D information corresponding to a densely vegetated terrain is ex-

tracted from the point cloud and is afterwards fed, through the form of geometric

features, to a geometry-based classifier [37]. The main rationale en route to estimate

the ground’s traversability implies that the geometry classifier supervises a second

color-based classifier and hence an iterative process that the system is retrained while

new labelled data enriches the representation of the ground’s model which is con-

structed with the use of Gaussian Mixture Models (GMM). Leveraging the advan-

tages that a self-learning framework offers reciprocally with the use of superpixels as

visual primitives, Kim et al. [38] employ vision sensing to estimate the traversability

of the terrain based on its appearance instead of using the geometric stereo vision

information. Their superpixel-based approach which produces higher levels of accu-

racy on image region classification, involving features containing color and texture

information in RGB, computes traversability using Bayes’ rule along with a modified

k-nearest neighborhood (k-NN) algorithm. As a way to distinguish between known

and unknown regions, i.e. frontiers of the traversability map obtained by laser scans

during autonomous exploration, Tang et al. [39] make use of the reachability map

that reduces the traversability map’s dimension. By enforcing the k-means clustering

method on the frontier candidates, along with the use of the A* Algorithm for finding

the optimal paths, the cells on the grip map are being labelled as reachable,dangerous

or unknown. Furthermore, defining the boundaries, upper and lower, of the terrain

map Fankhauser et al. [40] propose a mapping approach using proprioceptive sens-

ing (kinematic and inertial measurements) relying on the current pose of the robot

that is being constantly updated as well as the noise and uncertainty of the sensor

and roll,pitch angles respectively. The gist of their method is built upon creating a

robust robot-centric elevation map that generates its data through the uncertainty

derived from the robot’s incremental motion in the form of mathematical equations.
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Although their experiments using legged robotic hardware managed to apprehend

and make use of the environment’s uncertainty, their implementation seems to be

facing limitations that the authors manage to address for maps of larger size along

with localization singularities due to their platform-specific method. Similarly, an-

other platform-specific effort that the proposed robot-centric mapping system aiming

to derive traversability using laser-based 3D SLAM is illustrated by Droeschel et

al. [41]. Using proprioceptive sensing (IMU and local odometry) along with rotating

laser scanner measurements that in the surface element representation are going to

be interpreted as Gaussian Mixture Model observations, a pose graph is assembled

by the maps of all the adjacent key poses in the direction of successfully computing

the robot’s localization. By performing graph optimization, local dense 3D maps are

constructed and integrated to a global one that yields information for the robot’s real

time pose and can ultimately provide traversability costs for rough terrain navigation

for each map cell.

The work of [42] adopts a holistic approach that takes into account both the

topographical properties of the terrain and the kinematic and dynamic configuration

of the robot, which directly affect its motion. Their terrain traversability assessment

method is prediction-based and relies on the Rapidly-exploring Random Tree (RRT)

algorithm. The algorithm begins by creating a reference map for prediction. This

reference map is generated through prior experiments conducted on rough terrains.

Once the reference map is established, the algorithm determines the path for the

walking robot to follow based on this reference information. Traversability is assessed

by evaluating various factors, including footholds, feet trajectories, and other con-

straints among the cells of the map. This comprehensive approach ensures that both

terrain characteristics and the robot’s capabilities are considered when determining
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the traversability of a given path, ultimately leading to more informed navigation

decisions.

2.3 Trainable Methods

2.4 Deep Learning

While conventional machine learning techniques can face serious restrictions in

terms of being able to process the collected data in their initial state, Deep Learn-

ing methods offer the prospect of creating better representations and thus leading

to better understanding without onerous engineering struggles. A Deep Learning

asset that can go beyond conventional machine learning methods in traversability

estimation scenarios is that it offers the prospect of creating implicit relationships

among data. Traversability estimation has been examined from the various perspec-

tives of unsupervised,semi-supervised,supervised and self-supervised learning. Con-

temporary methods, are often associated with models being trained in an end-to-end

supervised fashion, as a means to simplifying the training process. Equivalently, un-

supervised and semi-supervised methods that use pretrained models’ features shortly

before training on a supervised dataset for a specific downstream task have been

a sharing a large amount of popularity too. A common approach in deep vision

traversability estimation techniques pinpointed by the latest research efforts, is to

process an input RGB image through a series of pre-processing techniques and con-

volutional layers of a self-supervised network, before the meaningful features are fed

to a traversability prediction network, i.e., a classifier (Figure 5.1).

2.4.1 Supervised

Supervised learning has emerged as a powerful tool for traversability compu-

tation in rough terrains, primarily due to its effectiveness in predicting and classi-
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Figure 2.1: A typical pipeline describing the process of identifying the meaningful
features through a series of convolutions before determining the traversability output
through a subsequent convolutional network and a Fully Connected (or more) layer

fying terrains and regions based on specific class labels. The core concept in super-

vised learning involves mapping input sensory data to a target value, often indicating

whether the terrain is traversable or not, after a training set has been acquired. In the

study presented in [43], the focus is on investigating whether a traversability classi-

fier trained on synthetic heightmaps can perform well on real heightmaps. In essence,

the traversability estimation problem is framed as a heightmap classification problem,

where the determination of whether a specific patch is traversable relies on comparing

the outcomes of a standard computer-vision feature extraction technique with those

of a Convolutional Neural Network (CNN). The deep learning architecture developed

for this task consists of adjacent convolutional and max-pooling layers, followed by a

Fully Convolutional (FC) layer with two output neurons. The results indicate that

the CNN estimator outperforms feature-based approaches on both synthetic and real-

world heightmaps. Furthermore, it is noteworthy that the training conducted in a

simulation environment successfully transfers to traversability maps that reflect pre-

viously unseen real-world terrains. This finding highlights the potential for leveraging

synthetic data for training models that can perform well in real-world scenarios, a

promising approach in traversability estimation.
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In the interest of performing long-range terrain segmentation using RGB stereo

images in outdoor environments, Zhang et al. [44] design an end-to-end training deep

CNN architecture aiming to augment the network’s generalization efficiency. An

encoder-decoder scheme using input feature and reference maps (calculated by the

disparity images) is used. In particular, the encoder includes five layer ensembles

consisting of convolutional layers followed by batch normalization ones right before the

ReLU activation function and the pooling layers. The decoder uses upsampling layers

that perform a deconvolution operation on the input features maps before the latter

being processed by the aforementioned ensemble. It is reported that the introduction

of the reference maps at the 1st, 3rd, and 5th ensemble layers provided a good balance

between the segmentation guidance and the noise suppression. Subsequently, the

output of the decoder is fed into a multi-class softmax classifier to generate predicted

labels while performing pixel-wise classification. For their experiments, the used six

hand-labeled image datasets containing RGB images and the disparity maps drawn

from areas of dirt, foliage, natural obstacles (trees and dense shrubs), mulch etc.

Subsequently, each pixel is classified into one of three terrain classes of traversable,

non-traversable, and unknown regions respectively.

An assessment of terrain traversability for performing autonomous classification

of Martian terrains is explored in [45] where a framework named Soil Property and

Object Classifier (SPOC) that provides pixel-by-pixel image classification into one

of 17 terrain classes is constructed upon a CNN. In a supervised fashion, human

experts append the imagery dataset with new classes while the Mars Rover explores

different sorts of terrains. A fully differentiable and trained for 6 hours end-to-end

Fully Convolutional network , including multiple stages of filtering, various CNN layer

dimensions (64,128,256,512) and downsampling, is used as the understructure before

an upsampled penultimate layer classifies the input raw image (orbital or ground).
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The output of the classification acts as the input to the cost function of the optimal

route planner for landing site traversability analysis and also for building a robust

slip prediction model.

The work by Tai et al. [46] explores the development of a human-inspired system

trained in a supervised manner, which involves fusing Convolutional Neural Networks

(CNNs) with a decision-making process. This system is designed to control a robot’s

exploration of an indoor environment, where the network’s output generates control

commands for the robot. In terms of the deep learning model employed, the input

consists of a depth map. This input is processed through a series of three repeated

layers that include convolutional operations, activation functions, and pooling layers.

Following this, there is a fully connected layer with five nodes, each corresponding to

one of the robot’s possible states, including moving forward and various turning ac-

tions. The training dataset is comprised of indoor depth information collected using

a Turtlebot equipped with a Kinect sensor. Human operators define the ground-truth

data, and the robot’s decision-making actions are designed to mimic human-inspired

intelligence. This approach showcases the potential of combining deep learning with

decision-making processes to enable a robot to explore and navigate indoor environ-

ments in a manner reminiscent of human decision-making.

Pfeiffer et al. [47] use a global motion planner, through which the robot learns a

navigation policy in a supervised manner. They feed a CNN with fused pre-processed

collected laser data with the relative goal position. Their CNN architecture encom-

passes two residual building blocks including shortcut connections that can address

training complexity. Moreover, they train and test two CNN models in simulation

(with a small differentiation in their dimensions), before expanding to a real platform

that traverses an area with obstacles such as tables, chairs etc. Their results indicate

that their model was not only able to learn the desired navigation strategies but also
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to transfer the knowledge among different unseen environments. However, some im-

pediments occur with the rise of the environment’s complexity since it is stated that

the CNN is not able to act as global path planner.

In contrast with methods that exhibit pure adherence to frames’ binary classi-

fication as traversable or not, Palazzo et al. [48] design a supervised model that can

analyze multiple traversability routes through the medium of the encoder-decoder ar-

chitecture. Notably, while the problem is examined as a regression one, their aim is to

estimate and predict the traversability costs of various routes even on scenarios that

no labels are provided. Using collected RGB images as inputs, the utilized architec-

ture consists of a fully convolutional network module for feature extraction, followed

by two layers; a convolutional and a fully-connected respectively. The bottom line

of their method lies on training a model to predict correct traversability scores on

the source dataset, while carrying out unsupervised domain adaptation on the target

data.

2.4.2 Self-Supervised

Self-supervised learning (SSL) is a form of supervised learning that human inter-

vention, in terms of labeling, is not necessitated. In specific, the agent investigates a

partition of unlabeled data, interprets it, and then, by developing a reliable represen-

tation, it is able to produce the labels missing and thus develop a sturdy perspective

about the remaining part while automatically creating a labeled dataset. A key as-

pect of SSL that renders it as the contemporary most promising direction towards

traversability estimation in unknown environments, is the ability to establish larger

proportions of data efficiency in deep learning models that aim, as a consequence of

reduced demand, for hand-labeled training data. Subsequently, it battles against the

pure reliance on extensive amounts of data, and it is proven to be highly beneficial
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especially for scenarios that involve updated data collections for different tasks as

described by [49].

One of the first endeavors in determining long-range traversability using short-

range data and self-supervision is described in [42]. In pursuance of training a vision

classifier for a four-wheeled rover in a Martian-like rough terrain, the authors present

two self-supervised approaches for local and distant terrain classification respectively.

Short range data input, acquired both from vision and vibration sensors, creates a

”local training” framework fusing texture,color and geometry information for all the

encountered classes i.e rock,sand, grass. Using the short range training, the second

approach for ”remote training” employs stereo processing to identify the distance

to patches in the image and, by position estimation, to identify when the rover has

driven over a particular patch of the terrain. Consequently, long-range data was

classified with respect to the classes having previously been identified for the ”local”

scenario. Collecting data while the rover traverses the terrain and setting a threshold

for the data points collected for the visual classifier, training was realized with an

SVM classifier, and by fusing the class likelihoods of the color, visual texture, and

geometric sensing modes using Naive Bayes, terrain classification is performed.

Another work, interpolating a long-range vision classifier trained in self-supervision

is portrayed by Hadsell et al. [50]. The classifier’s output allow successful detection

of trees, obstacles etc., by having the horizon as its perspective, and thus determining

the traversability of the input large image patch patches. With regards to the features

extractors involved, a total of four approaches working in an interleaved fashion is

presented, each one being trained with either labeled or unlabeled offline data. The

efficiency reported in their results is produced by the use of a multi-layer CNN that

was initialized with deep belief net training, consisting of two convolutional and max-
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pooling between them layers, which was responsible for independently pretraining

each layer in both unsupervised and supervised manners.

Recent advances in Deep Learning have spurred significant research attention

towards addressing the novelty detection problem in indoor and outdoor robot nav-

igation. Notably, Richter and Roy [51] have presented a distinctive approach that

tackles the issue of novelty detection using autoencoders, regardless of the extent of

training the robot has received. In their methodology, the robot iteratively collects

training data, self-labels it, and feeds it into a conventional feedforward neural net-

work. This network comprises three hidden layers with sigmoid activation functions,

followed by a softmax output layer that predicts collisions or lack thereof. Simul-

taneously, an autoencoder is employed, featuring three hidden sigmoid layers and a

sigmoid output layer. The autoencoder’s role is to reconstruct similar inputs and

assess whether the new images closely resemble those in the training data. In the

event of the autoencoder detecting something novel in the environment, the robot

makes a decision towards a safe behavior. Otherwise, it continues to augment its fa-

miliarity with known environment types. However, it’s important to note that there

may be instances of misclassification of novelty in images, which could arise from

inadequate training of the collision predictor. To mitigate this issue, the authors ad-

dress it by matching the size and architecture of the hidden layers in both networks.

This thoughtful approach aims to enhance the accuracy and reliability of the novelty

detection system.

Wellhausen et al. [52] follow a similar approach in their study, where the robot

collects RGB-D images in a self-supervised manner and is trained on a dataset con-

sisting of 10,000 training image patches corresponding to traversable areas. The key

component of their approach is the utilization of autoencoders for novelty detection.

In terms of the architecture of the autoencoders used in their study, the encoder
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consists of three consecutive blocks. Each block includes a convolutional layer with

a kernel size of 5, followed by a Rectified Linear Unit (ReLU) activation function.

The first two blocks are followed by a MaxPooling layer, while the final block is

followed by an additional convolutional layer with a kernel size of 1. On the other

hand, the decoder in their architecture mirrors the encoder’s structure but employs

nearest-neighbor upscaling layers instead of max-pooling layers. This design allows

the autoencoder to effectively reconstruct input data and assess whether the new im-

ages align with those in the training dataset, enabling the robot to detect novelty in

its environment and make appropriate decisions accordingly.

A deep neural network architecture consisting of multiple stream as a means to

address the learning of features of different modalities, is presented by Valada et al.

in [53] where using the convoluted mixture of deep experts (CMoDE) fusion technique,

they provide a semantic segmentation technique that relies heavily on the use of

ResNet [54] and dilated convolutions. They perform platform-specific experiments

on a forested environment incorporating scenarios of detrimental nature for the robot

such as low-lighting, motion blur,occlusions etc. Regardless of the absence of prior

map, their tests showed that the robot could successfully traverse the trail by using

on the fly semantic segmentation.

An alternative approach adopting self-supervised learning is presented by Shah

et al. [55] where traversability is determined upon learning a traversability function

’T’ which describes whether any controller can successfully navigate among collected

observations (RGB images). This aforementioned navigation policy shall also take

into account the environment’s physics, rather than pure geometry, in order to de-

cide which objects, tall grass for instance, are traversable or not. Subsequently, the

ultimate goal of the policy is to successfully predict the estimated number of time

steps required by a controller P to navigate from one observation to another. Both T
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and P architectures encompass the use of a MobileNet encoder [56] followed by three

dense layers that, using supervised learning, they project 1024-dimensional latents

from the collected images to 50 class labels and 3 waypoint outputs corresponding

to the relative pose between the collected observations for the cases of T and P re-

spectively. These two learnt functions along with past gathered experience gained

by arbitrarily chosen trajectories is unified to a system ’VinG’ that governs a goal-

oriented behaviour that solely relies on offline experience. En route to introducing

a path planning framework that leverages learning of terrain’s visual representations

used in combination with unlabelled human navigation demonstrations, Sikand et

al. [57] present a work that aims to create a mapping from the representation space

to the terrain costs that the robot encounters while traversing a specific terrain. Vi-

sual data is collected during a self-supervised procedure in which the robot traverses

a setting including sidewalks,trees,and terrains of grass,dirt etc. With a small hu-

man demonstration intervention, the datasets created, comprise of triplets of image

patches corresponding to an anchor patch, a similar patch that portrays the same

image as the anchor but from a different viewpoint and dissimilar one that includes

information of patches that the human avoids choose and are far from the embedding

space. As a means to form the visual representation, a CNN with two convolutional

layers followed by three fully connected layers is used.

A conjointment of supervision between an unsupervised acoustic proprioceptive

classifier that self-supervises an exteroceptive visual one is explored by Zurn et al. [58].

The robot equipped with both a stereo camera and a microphone, traverses various

complex terrains and collects visual (terrain patches) and audio (vehicle-terrain in-

teraction) data respectively. This is achieved by associating the visual features of

a ground’s patch right in front of the robot with the auditory features that corre-

spond to the area that the robot is traversing. Projecting the camera images into a
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birds-eye-view perspective, they act as weakly labeled training data for the semantic

segmentation network trained in an unsupervised manner. By teleoperating a rubber-

wheeled robot, they collect visual (24 thousand images) and auditory data (4 hours of

video) of five different terrains: asphalt, grass, cobblestone, parking lot, and gravel.

In regard to the architecture used, the authors implement an encoder/decoder archi-

tecture for the audio data and the MobileNet V2 model (pretrained on the ImageNet

dataset) for the visual feature extraction network. Moreover, for the semantic seg-

mentation of the terrains, they adopt the AdapNet++ network with an EfficientNet

backbone. Their self-supervised exteroceptive semantic segmentation model achieved

a comparable performance to supervised learning with manually labeled data.

An automated self-supervised learning method and the corresponding predic-

tion of navigation-relevant terrain properties is presented in [59]. Specifically, they

conduct their experiments using the ANYmal robot [60] by measuring the interac-

tion, during locomotion, between the robot’s sensorized feet and the terrain and then

projecting the robot’s footholds into camera images. Using this foothold projection

system, they annotate semantic classes in the images by assigning a semantic label

to each time step in the sequence while human annotation is only implicated in ob-

serving and marking the possible transitions between terrain types with a concrete

time stamp and the terrain’s type. The possible terrain types involved are asphalt,

gravel path, grass, dirt, and sand. A learnt, while walking, terrain property, called

ground reaction score, provides an alternative way to generate the footholds’ labels

in a self-supervised way. For the semantic segmentation purposes of this study, the

authors use a CNN which architecture is based on ERFNet [61]. By tele-operating

the robot through different environments, they collect a dataset of 70000 training

and 15000 validation images respectively. Ultimately, in addition to the application
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of their approach to a legged robot like ANYmal, it is mentioned that it could be

deployed to other types of ground robots as well.

2.4.3 Unsupervised and Semi-Supervised

Semi-supervised and unsupervised learning provide auspicious ground for focus-

ing on the essential segments rather than precise pixel-wise classification that require

labelling of the training images.

One preceding method is described by Shneier et al. [62] using range and color

information, build unsupervised models solely derived from the geometry and ap-

pearance of the scene. These models are learnt using clusters of neighboring data, ex-

tracted from the same physical region and can enclose an estimate of the traversability

cost. However, due to the fact that the features learnt within the models are self-

sufficient, not requiring any range data, causes the association between the region

models and the traversability estimation to be uncertain for distant regions.

In recent research, a fundamental aim of the use of unsupervised learning in

traversability estimation problems is to to learn a particular set of features that

can be transferred to the network that will subsequently be trained on a specific

downstream task (such as image classification) which determines traversable areas.

Transfer learning approaches normally require a large-volume training dataset (e.g.,

Pascal VOC, KiTTi, ImageNet) to train, and by using the pre-trained weights of a

model, a classification task can yield higher levels of accuracy and abstraction.

An instance of a deep-learning-based architecture, considering the unsupervised

problem as supervised, that aims to train a generative model is served by using Gen-

erative Adversarial Networks (GANs) [17]. GANs have enjoyed wide use in computer

vision research over the span of the previous decade and can automatically train a

generative model while using both a generative and a discriminative model.
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Hirose et al. [63] employ transfer learning to train a model for indoor traversabil-

ity estimation using positive examples generated by an on-board fisheye camera at-

tached to a Turtlebot, along with an attached laptop, over a time window of 7.2

hours. Their model architecture includes two standard CNNs, which form the ad-

versarial modules—an essential part of the Generative Adversarial Network (GAN)

framework. These modules consist of a generator and a discriminator, both trained

in a supervised fashion. Notably, the authors find that even a small amount of anno-

tation can lead to a significant improvement in performance. The generator takes a

latent vector z as input, generated by an additional network called the inverse gener-

ator, which is trained concurrently with the generator and discriminator. To enhance

the accuracy of their unsupervised method, they introduce an additional Fully Con-

nected (FC) layer, which is trained in a supervised manner to classify scenes as ”GO”

or ”NO-GO.” This linear classifier uses GAN knowledge extracted from three specific

GAN features. To assess the network’s effectiveness, a saliency map is employed to

highlight meaningful segments of the images. These segments typically correspond

to the right and left sides of the input images and play a crucial role in determining

indoor traversability, as they indicate the presence of walls or corridors. Ultimately,

the authors suggest that their approach could be a valuable tool in the development

of cost maps, which are crucial for robot navigation and motion planning in indoor

environments.

Extending their work in performing GAN predictions for indoor traversabil-

ity scenarios, Hirose et al. [64] introduce the GONet framework that uses the same

aforementioned idea of semi-supervised learning incorporating a small amount of neg-

ative training data that can be proven to be more advantageous than solely including

positive data, in improving traversability estimation. Indicatively, the GONet archi-

tecture consists of two models, one responsible for extracting features from positive
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automatically labeled examples of traversable areas extracted by a fisheye camera

mounted on a robot and the second which performs the final classification after been

trained on both positive and negative examples. Additionally, in order to exploit

the temporal nature of the collected data, an LSTM unit that captures the temporal

dependencies in the data is added, creating a new separate model named GONet+T,

and the output it yields is further fed to aa fully connected layer responsible for sub-

sequently predicting the traversability probability. Strengthening the performance of

GONet, a second extension named is introduced. GONet+TS is trained identically

as the GONet+T and addresses the limitations in prediction owing to environment’s

structural complexity captured in stereo images. Performing indoor experiments with

the TurtleBot2 platform and using the saliency map, despite the effectiveness pre-

sented in all methods performed, GONet+T and GONet+TS highlighted smoother

predictions in indoors traversability estimation than GONet due to the inclusion of

the LSTM layer.

Utilizing GONet’s application with VUNet, a dynamic-scene view synthesis

method [65], the authors present a unified system that can single out the traversable

areas in the robot’s vicinity. VUNet is the result of combining two supplementary

networks SNET and DNet that have the ability to model static and dynamic trans-

formations based on robot’s actions. SNET is responsible for predicting static (S)

and DNET for predicting dynamic (D) changes in the parts of the environment due

to robot motion respectively. SNEt’s architecture is based on the encoder-decoder

scheme, and ought to the fact that the sampling procedure reuses original pixels of the

input image, sharper images are generated. On the other hand, DNet is built upon

a conditional adversarial network architecture. As a consequence, due to the bifold

character of that synthesized approach, both static (e.g., walls, windows, stairs) and

dynamic (e.g., humans) components of the environment can be predicted from differ-
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ent camera poses in future time steps. In order to estimate future traversability, two

applications based on assisted teleoperation are introduced i.e. early obstacle detec-

tion (moving pedestrians) and multi-path future traversability estimation. As inputs

to VUNEt, the last two acquired images and a virtual navigation command, i.e., a

linear and angular velocity are used. During the first experiment, VUNet predicts

the motion of the human in the image and informs the teleoperator using warning

signals and emergency stop commands. With regards to the second application, the

system is able to generate virtual velocities for five different paths around the robot,

and hence by predicting the images using scene view method, it can compute the

traversability for each of the paths.

Using GONet and VUNet as a solid baseline, an 8-convolutional layer archi-

tecture named PoliNet [24] is trained to learn the Model Predictive Control-policy

(MPC) for performing safe visual navigation of a mobile robot with mere human

supervision. Concretely, by combining VUNet-360 (a variant of VUNet that uses

input from a 360 camera) with the aforementioned traversability estimation network

GONet, PoliNet can produce the velocity commands necessary for the robot to suc-

cessfully follow a visual path in a safe manner. The control policy tries minimize

the difference between an image taken from the 360 camera at time t and the next

sub-goal image in the trajectory. Hence, the control policy is responsible for finding

the appropriate location in a way that the current image looks similar to the one

of the sub-goal’s. PoliNet is trained offline before getting transferred to the online

setup. Data was collected both in simulation and in the real world. With regards

to the real data, the robot was teleoperated and gathered a total of 10 a half hours

of 360-camera RGB images. Although their experiments show their method to be

generally robust, there were instances in which the robot was not able to circumvent
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large obstacles, mainly due to the fact that traversability was only considered as a

soft constraint in the optimization problem.

Training GANs occasionally suffers from an array of reasons such as catastrophic

forgetting [66] as well as difficulties in convergence, mode collapse and instability, due

to design-related issues such as network architecture, appropriate selection of objec-

tive function, etc. [67]. For the cases of gathering data in an unsupervised manner or

with scarce labels, such as an autonomous visual data collection by a mobile robot,

recent advances in self-supervised contrastive learning offer the advantage of optimiz-

ing the learning capabilities of the designed model or operating in conjunction with

the semi-supervised learning approach that is tailored to the downstream task that is

examined. For instance, Goh et al. [68] use the popular approach of SimCLR [69] to

perform a martian terrain segmentation analysis with limited data corresponding to

classes such as oil, bedrock, sand, big rock, rover and background. Using supervised

contrastive learning, Gao et al. [70] manually label a set of anchor patches in their

effort to efficiently create a feature representation that is able to distinguish different

traversability regions. Shah & Levine [71] combine (a) the output of a heuristic model

trained on teleoperated prior data using the contrastive InfoNCE loss function [72];

with (b) the output of a local traversability model towards successful path planning.

2.4.4 Deep Reinforcement Learning

As described by Sutton [73], in uncharted territory-where one would expect

learning to be most beneficial-an agent must be able to learn from his own experience.

Reinforcement learning (RL) enables a robot to autonomously discover an optimal

behavior through trial-and error interactions [74]. What differentiates the field of

robotics in terms of applying reinforcement learning to, is the amount of challenges

encompassed. One major arduousness is the high dimensionality and complexity of
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the states involved as well as the adversity in performing a complete and noise-free

observation of the true state. What is more, another considerable difficulty that RL

is facing in Robotics, derives from the fact that interactions between a mechanical

system and its environment can harm the platform or any humans involved. How-

ever, RL can be proven to be an effective arrow in the quiver when the robot is

navigating through complex and dynamic environments [75]. On top of that, conven-

tional RL algorithms fused with Deep Learning, can handle many practical problems,

where the incorporated states of the Markov Decision Process exhibit high levels of

dimensionality and thus optimal policies are easier to be learnt.

An end-to-end deep reinforcement learning approach for a mobile robot navi-

gating an unknown environment is portrayed by Tai & Liu [76] in which the inputs

are raw depth images and the control commands serve as the outputs. As a means to

create a feature representation, they use a CNN architecture with three convolutional

layers which weights are initialized by a pre-trained model and three fully-connected

layers for exploration policy learning. Since the robot is navigating in an indoor

environment filled with obstacles, the feedback in terms of negative reward is ob-

tained by the potential collision between the robot and obstacles. After training

the model for many thousands of iterations, simulative and real-world indoor exper-

iments demonstrated efficacy in obstacle avoidance along with improvement in the

traversable areas detection. A dueling architecture (Figure ??) named D3QN was

initiated in the work of Xie et al. [77] in the pursuance of obstacle avoidance using

the concepts of convolution and deep Q Learning as its main foundations. It consists

of a fully convolutional neural network, that outputs depth information from an RGB

image which has previously been blended with additional noise and blur to adapt to

real-world scenarios, followed by a deep Q network [78] that encloses a convolutional

and a dueling network [59] while the main hypothesis implies that the training, taking

37



place in simulation (Gazebo), will provide adequate knowledge to be transferred to

real-world implementations. In terms of training speed, it was proven that the D3QN

architecture is almost twice faster than DQN, highlighting its efficiency on obstacle

avoidance scenarios and, consequently in efforts of determining traversable obstacle-

free regions. Zhang et al. [79] present an architecture that accepts depth images along

with the environment’s obtained elevation map and the robot’s 3D orientation as the

inputs, which are fused and fed into an Advantage Actor-Critic (A3C) model [80].

Before their merging, depth and elevation map information is each passed through

a four layered convolutional structure followed by a pooling layer whereas the 3D

orientation is passed directly to a fully connected layer and then merged with the

elevation information. All input sources are then concatenated and fed to an LSTM

that can improve capturing the underlying states of a partially observed environment.

Eventually, the actor and critic components consist of a fully connected layer each

with the difference that in the actor part the output vector’s values are normalized

by the Softmax function. Although both training and testing phases took place in

a simulative 3D environment with varying levels of terrain’s traversability, their re-

sults showed that the agent sufficiently learnt to traverse different terrains towards

a predefined goal location, and occasionally around non-traversable objects, with an

average Deep RL decision-making time of 0.074 seconds.

An off-policy algorithm [81] acting as a powerful tool in improving the learning

capabilities of an end-to-end RL approach, named BADGR (Berkeley Autonomous

Driving Ground Robot), uses a self-supervised data labelling mechanism that is not

built upon any human supervision or SLAM techniques in simulation. By collecting

data using a random control policy, collisions are detected either by LIDAR or IMU

as the robot stores the sensory observations along with the corresponding actions

taken. Events are labeled in a self-supervised manner by the collected dataset and
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then appended to it. Input RGB images act as the current observation that along

with a future sequence of actions such as control commands, future events can be

predicted. As far as the model’s architecture is concerned, the input images are fed

into three convolutional and 4 fully connected layers each one followed (except for

the last one) by a ReLU activation function, in order to form the initial hidden state

of a recurrent LSTM unit that will handle each future action and yield the corre-

sponding predicted future event After deploying the BADGR system in real-world

environments, it was shown that, by using only 42 hours of autonomously collected

data, it could successfully traverse areas of tall vegetation and bumpy terrains.

By taking the history of proprioceptive states into account, Lee et al. [82] under-

take the rough terrain traversability estimation as a temporal problem that requires

a robust controller to produce the appropriate actuation. In this context, a sequen-

tial Temporal Convolutional Network (TCN), comprised of convolutional layers each

followed by a ReLU activation function, uses input from joint encoders and IMU and,

accordingly, implicitly learns to analyze contact and slippage events while a four-

legged robot is navigating in complex terrains including those of mud,sand,snow etc.

Towards this goal, they claim that direct RL techniques might not be fruitful due to

large time processing and thus a teacher-student policy is selected instead. First, the

teacher policy based on ground-truth knowledge concerning the interaction between

the robot and the terrain, is trained on simulation. Afterwards, it supervises a stu-

dent learning and the eventual student policy acts on the real robot. An additional

concept introduced during the training stage, that enhances the robustness of the

method is encapsulated on the adaptive nature of synthesized terrains in order for

the controller to traverse them. Finally, as a means to integrate the neural network

to regulate the controller, the Policies Modulating Trajectory Generators (PMTG) is

employed.
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Other methods include the implementation of deep inverse reinforcement learn-

ing [83] for determining off-road traversability [84]. Towards this direction, the au-

thors propose a two-CNN structure that encompasses the vehicle kinematics in the

states (2D poses) which unavoidably leads to an increase of the state-space complex-

ity. In their experiments, data is collected from a laser scanner which, is transformed

to input features for a five-layered fully convolutional network structure that by re-

currently applying a convolution layer for 120 and 150 times per network, the value

iteration is completed with noticeable reduction of the computational burden.

2.4.4.1 Transformer-based Architectures

Pre-training transformers [85] [86], paves the pathway to create rich represen-

tations that can be thereupon used for fine-tuning on the desired downstream tasks.

ViT (Vision Transformer) [1] has been the cornerstone in modern Computer

Vision applications. Relying on self-attention-based architectures, ViT-based meth-

ods have shown outstanding results in image classification tasks [1,87–89] surpassing

conventional methods such as Convolutional Neural Networks [90]. Furthermore, a

plethora of contemporary research endeavors in the field of robotics and autonomous

driving, reveals the indispensable role that ViT exhibits, in the extraction of semantic

information

Although transformer-based models’ efficiency is dependent on very large datasets,

pre-trained ViT networks encode representations that are rich in semantic features

and can be fine-tuned to the desired downstream image classification tasks [91, 92].

ViT’s strength derives from multiple reasons as highlighted by Raghu et al. [90], but

the following two are vital the methodology that this dissertation implements: 1) the

large amount of global information in their lower layers; and 2) the preservation of

input spatial information even at their final layers. Furthermore, transformer-based
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frameworks have also played a prominent role in semantic segmentation-related re-

search endeavors, due to the efficiency and robustness they exhibit in creating rich

representations. Specifically, SegFormer [93] has gained widespread popularity due to

its ability to leverage multi-scale features as outputs and to combine local and global

attention.

Strudel et al. [94] extend the use of ViT, and introduce Segmenter, a transformer-

based model for semantic segmentation. Generally speaking, the hierarchical struc-

ture is highly suitable for tasks involving pixel-level predictions, such as semantic

segmentation and object detection. SegFormer [95] combines ViT-architecture with

lightweight Multilayer Perceptron (MLP) decoders, and has shown significant effi-

ciency for semantic segmentation tasks. Other transformer-based models highlight-

ing the diverse applicability of such in computer vision tasks can be found in [96]

with particular focus on image restoration, in [97] addressing image classification,

object detection, and semantic segmentation, and in [98] specifically targeting the

segmentation of medical imaging.

Owing to their proficiency in handling inputs as sequences, transformers can

capture long-range correlations, enabling robust multi-modal frameworks. Multi-

Head Self-Attention (MHSA) [99] constitutes the main component of a ViT, con-

tributing to much of its success over ResNet [100], the uncontested state of the art

in Computer Vision. MHSA can be a powerful tool in controlling the mixture of

information among different parts of an input sequence and thus leading to richer

representations. As described by Tsai et al. [101], the multi-head cross-modal at-

tention module is responsible for updating each modality’s sequence via low-level

external information. Eventually, the cross-modal transformer learns to correlate

meaningful elements across different modalities. Endeavors in robotics fusing modal-

ities through the use of the MHSA module include navigation using natural instruc-
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tions and graph [102], multi-robot collaboration for unknown environment explo-

ration [103], and UAV-driven segmentation [104].
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CHAPTER 3

GAN-based indoors traversability estimation

3.1 Overview

Training on simulation data has proven invaluable in applying machine learning

in robotics. However, when looking at robot vision in particular, simulated images

cannot be directly used no matter how realistic the image rendering is, as many

physical parameters (temperature, humidity, wear-and-tear in time) vary and affect

texture and lighting in ways that cannot be encoded in the simulation. In this chapter

we examine a different approach for leveraging simulated environments: We build two

environments on Unity, acquire simulated visual datasets, and used them to reproduce

experiments originally carried out in a physical environment. The purpose of this work

is to explore whether these simulated environments can act as test-beds for further

deep learning experiments as well as experiment with a GAN-based architecture as a

feature extractor for binary traversability estimation.

3.2 Methodology

Our experiment replicates the network architecture proposed by Hirose et al.

[63,64], namely a Deep Convolutional Generative Adversarial Network (DCGAN) en-

semble of two adversarial modules, i.e., a generator (Gen) and a discriminator (Dis),

along with a third network, the inverse generator (Gen−1). The inverse generator is

trained on the real-image dataset and outputs the value of the latent vector z that is

fed as an input to the Generator (Figure 5.1). All three networks (Gen, Dis, Gen−1),

are built as standard CNN which are trained simultaneously in an unsupervised man-

43



Figure 3.1: The Residual Loss (R), Discriminator Loss (D), and Discriminator Fea-
ture (F) tensors are reshaped and concatenated before being used as inputs for the
fully convolutional classifier.

ner. Three tensors R,D, F are extracted from the discriminator and used as features

for an additional classifier layer that decides if the scene encountered by the robot is

GO or NOT GO. Specifically:

• R corresponds to the Residual Loss and is expressed as the pixel-wise absolute

difference between real and generated images.

• D corresponds to the Discriminator Loss and is expressed as the absolute differ-

ence between the last convolutional layer features of the discriminator applied

to the real data, and the same layer features applied to the generated images.

• F corresponds to the Discriminator feature expressed as the last convolutional

layer features of the discriminator applied to the real data.

These tensors are reshaped into vectors and concatenated into the classifier input.

The classifier is a Fully Convolutional (FC) layer trained in a supervised way on a

small amount of both positive and negative annotated images. The FC layer is trained

to output the final ’GO’ or ’NO-GO’ decision (Figure 3.1).
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Figure 3.2: Training images (Warehouse)

Figure 3.3: Training images (Vineyard)

3.2.1 Training

We have collected images through the robot autonomous navigation in Unity

and randomly split the runs between training and testing. For both the indoor (Fig-

ure 3.2) and outdoor (Figure 3.3) scenario the resulting dataset, collected in a self-

supervised manner, consists of approximately 17000 positive training images. On top

of that, an additional 1% of manually labelled negative images, along with an equal

number of positive ones arbitrarily selected from the large dataset, is used in order

to train and test the FC layer. We conduct our experiments on a Intel(R) Core(TM)

i7-5820K CPU @ 3.30GHz, using Nvidia Cuda 11.4 GPU. Using the Pytorch Frame-

work and Python 3.8.10, we train for a total of 60 epochs using a learning rate of

0.00001, Adam optimizer with beta1 = 0.85.
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Features Accuracy [%] Recall [%] Precision [%] F1 score
Vineyard environment

R+D+F 90 97 85 91
R+D 75 76 74 75
D+F 84 86 85 84
R+F 96 95 95 95

R 51 53 76 36
D 85 85 84 86
F 95 92 91 93

Warehouse environment
R+D+F 94 94 90 92

R+D 79 80 81 79
D+F 88 91 87 90
R+F 90 90 90 92

R 53 51 41 34
D 80 80 78 79
F 93 93 91 92

Physical experiment, as reported by hirose2017go
R+D+F 94.25 95.75 92.96 94.33

R+D 91.63 94.00 89.74 91.81
D+F 93.00 96.50 90.19 93.24

R + F 93.13 95.00 91.56 93.25
R 85.38 83.50 86.75 85.10
D 91.63 94.50 89.36 91.86
F 92.25 95.50 89.67 92.49

Table 3.1: Results on the test dataset using networks of different variations for the
simulated environments

3.3 Results

We evaluate the environment’s suitability by assessing each network on the test

datasets. Specifically, in order to measure the performance of each network, we use

accuracy, recall, precision, and F1 score as metrics (Table 3.1).

The following points support our claim that the same conclusions are reached

about the method from the simulated and the physical experiments:

• The F feature is the one that performs best by itself, and R is the feature that

performs worst, although the differences are more pronounced in the simulated
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experiments than in the physical experiments. So the simulated experiments

rank the features correctly, but give an exaggerated impression of their perfor-

mance relative to each other.

• Among the two-features models, those that include F perform better than the

one that does not. This observation is conforming to the physical experiment,

although, similarly to above, the differences are more distinct in the simulated

experiments.

• In the RDF model, recall is higher than precision, pointing to the direction of

making the model more specific in order to improve accuracy. This observation

is accordant with the physical experiment.

• Regarding the individual features, both the simulated and the physical experi-

ments show that D and F need to be more specific.

On the other hand, the following points run counter to our above-mentioned claim:

• In the vineyard scenario, dropping the D feature increases the levels of perfor-

mance, although in the physical data all features provide some information and

the RDF model is the most performant one.

• Among the two-features models, those that exclude R perform better than the

one that does not. This observation is not consistent with the physical exper-

iment, where the experiment that excludes D performs equally well as the one

that excludes R.

• Regarding the precision and recall of the R feature, the physical experiments

show that R needs to be generalized to increase recall, but the simulated exper-

iments give mixed results.

Overall, we notice that our results are in relative accordance with the results obtained

using the physical platform and the highest accuracy was achieved using the ensemble

of RDF features for the warehouse environments which is more abundant in features
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than the vineyard. Inevitably, some limitations are faced due to the conventionalized

nature of the simulated environment. Enriching the environment with more elements

of physics and stochasticity as well as integration with a physical platform constitute

the main avenues of our future research.

3.4 Discussion & Challenges Encountered

We created two simulated indoor and outdoor Unity environments. and through

GAN-based deep learning experimentation we aim to test our main hypothesis that

the simulated environments provide a solid groundwork for robot vision problems.

We have found that our approach is valid for the purpose of feature selection, as

the relative ranking of the models using different mixtures of features is consistent

between the simulated and the physical experiments. Inevitably, some limitations

are faced due to the conventionalized nature of the simulated environment. What

is more, we noticed that the architecture used (three networks trained concurrently)

1) requires a lot of computational power 2) is quite difficult to converge. Generally

speaking, GANs suffer from a number of reasons such as catastrophic forgetting [66],

as well as difficulties in convergence, mode collapse and instability due to design [67].
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CHAPTER 4

RGB-based indoor traversability estimation

4.1 Overview

In this chapter, we delve into ViT, a transformer-based architecture that will

constitute the cornerstone of our research endeavors. We want to leverage the notion

of transfer learning from a large pretrained-backbone and highlight its dominance

against CNN-based pretrained backbones (GAN-based, ResNet). In particular we

are fine-tuning a ViT on our custom collected dataset while exploring the notion that

the relative distance between the robotic platform and an object, is what determines

whether this object is actually an obstacle or not.

4.2 Methodology

In the core of our fine-tuning approach relies on a Vision Transformer (ViT)

encoder, which consists of a series of self-attention and feed-forward layers. ViT en-

coders have proven to be highly effective in achieving both strong generalization and

handling large-scale datasets. In our research, we employ a pre-trained ViT model

that has been trained on ImageNet-21k using the self-supervised Masked Autoen-

coders (MAE) technique [105].

The MAE technique involves the following steps:

1) Masking Random Patches: Random patches of an input image are masked,

effectively hiding certain portions of the image.

2) Encoder (ViT) Processing: The encoder, based on the ViT architecture, is

applied only to the visible parts of the image, which are the unmasked regions.
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3) Decoder Operation: The decoder operates on both the masked tokens and the

encoded patches. This process aims to reconstruct the missing pixels in the masked

regions.

After the pre-training phase using MAE, the decoder component is discarded,

and the pre-trained encoder is retained. This encoder is then fine-tuned on specific

image classification tasks. This approach aligns with our fine-tuning methodology,

where we aim to fine-tune the pre-trained ViT encoder on our dataset, focusing on

the task of indoor traversability estimation.

In our case, the fine-tuned encoder is used to classify RGB scenes encountered by

the robot in its surroundings, ultimately determining whether these scenes correspond

to traversable areas. By leveraging the pre-trained ViT encoder’s ability to capture

rich features and representations, we aim to improve the accuracy of our indoor

traversability estimation models.

It has been shown that MAE have the ability to learn visual scene semantics

in a holistic manner and that accounts for choosing these pre-trained weights for

our task. Besides, MAE have also shown substantial efficiency in transfer learning

tasks such as object detection, instance segmentation, and semantic segmentation

which makes it as a reliable pre-training approach for our traversability estimation

task. We also experiment with the Vit-B/16 base model, pre-trained on ImageNet-

21k [1], [85]. This represents a standard ViT approach that can be supported by the

available computational resources and also serves as a comparison against ViTMAE.

The pre-training phase plays a crucial role in enabling our model to learn a rich

inner representation of images. This representation captures meaningful features that

are valuable for our traversability estimation task. To leverage this representation ef-

fectively, we employ supervised fine-tuning, which involves attaching a projection

head to the pre-trained model. The projection head consists of two fully-connected
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Figure 4.1: Overview of the method

layers. The pre-trained ViT model generates a feature vector with a size of 768x1

for each input image. This feature vector is then passed through the projection

head, which performs classification to determine whether the encountered scene is

traversable (GO) or non-traversable (NO-GO), as illustrated in Figure 4.1. We opt

for this relatively simple network structure to mitigate the risk of overfitting, given

the limited amount of annotated data available for our task. The inclusion of a fully-

connected layer before the final classifier has been shown to enhance the model’s

accuracy compared to using a single linear layer alone. This design choice helps im-

prove the model’s ability to capture relevant features and make accurate predictions.

4.3 Experimental Setup

4.3.1 Dataset Collection and Annotation

Figure 4.2: Dataset illustration, Sets 1 to 5 (from left to right)
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4.3.2 Dataset collection

In our experiments we used the Summit-XL Steel robotic platform4.3 to gather

data. A human operator directly teleoperated the robot with a wireless PS4 controller.

We used ROS Melodic1 and the message filters data synchronization package2. to

operate the robot and to record the RGB, laser range finder, IMU, and encoder

channels.

Figure 4.3: The Summit-XL steel platform used in our experiments

1http://wiki.ros.org/melodic
2http://wiki.ros.org/messagefilters
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The robot was deployed in five different buildings around the University of

Texas, Arlington (UTA) campus. We navigated the robot in hallways and areas of

shifting illumination and various objects. In the occurrence of a possible interference

with a human or an object, the operator stopped the robot before getting too close.

The dataset collection process led to a total number of 24432 images. Each set

presents the following attributes:

• Set 1: Features dark illumination, dense and voluminous objects, narrow paths

for robot traversal, and unique object structures.

• Set 2: Exhibits bright illumination, includes scenes with walls, fewer static

objects, and static/moving humans.

• Set 3: Shows moderate illumination, contains chairs and table booths, and

includes static/moving humans.

• Set 4: Presents bright illumination, features long hallways, and encounters a

smaller number of objects.

• Set 5: Displays bright illumination, represents a laboratory setting with work-

stations, includes static obstacles, and static humans.

Given the uniform academic nature of the data collection environment, it is

expected that certain object classes such as chairs, desks, hallways, and doors would

be present in all buildings. However, these objects exhibit variations in geometry and

appearance due to differences in lighting conditions. Among the five sets, Sets 1 and

5 demonstrate the most prominent disparities compared to the other three sets, as

depicted in Figure 4.2.

4.3.3 Dataset Annotation

Experiments were carried out by teleoperating the robotic platform around

university buildings and hallways. We applied a similar labelling process as the one
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described by Hirose et al. [64]. Specifically, we used extracted velocity from the

odometry provided by the robot platform’s encoders. We set a threshold value of 1

m/s (heuristic value) and we consider a time window of 2.5 seconds. If within this

window, all robot’s wheels’ velocity vt is constantly above the threshold value of 1

m/s and the robot is moving forwards, then we determine that the central frame

during this window portrays a traversable scene. We also ignore images captured

while the robot is turning. We determine that the frame encountered in time t is

positive (traversable), if vt ≥ 1 or unlabeled, otherwise.

The rationale behind the selection of images for supervised fine-tuning was to

create a dataset in an empirical fashion that includes a balanced number of positive

and negative images. Additionally, it includes scenes where certain objects (chairs,

trash bins, desks, corridors) are drawn from different environments, exhibit differ-

ent geometric and color properties, and can appear as obstacles or not due to their

location witnessed by the robot’s front camera.

As for the positive images used in the experiments, we initially randomly chose

a certain proportion from the positive labelled dataset, and we discarded hallway im-

ages that, although they present vast amounts of homogeneity, were collected during

different runs of the same environment and thus they did not substantially contribute

towards features’ variety. Since we did not use any other modality (i.e. laser) for the

automated labelling procedure, there were instances of noise in the positive images,

such as humans showing up unexpectedly. We manually removed this instances from

the positive set and complemented the dataset with other positive examples.

With regards to the negative images, we used the unlabeled dataset to manually

select frames that include a plethora of static obstacles, dangerous areas, or humans

that appear in the proximity of the robot. As a means to act towards an enhanced

direction of safety, we also included ambivalent scenes that for instance, a human
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subject is moving away from the robot, but due to the uncertainty that might govern

humans’ moves, we decided to label these frames as negative too.

4.3.4 Fine-tuning

We used the PyTorch3 framework as the basis of our experiments. Training was

done on a machine with 2 Titan RTX GPUs (24GB GDDR6 RAM, 4608 Cuda Cores).

We used horizontal flip as a dataset augmentation technique. Using the cross-entropy

loss function, we trained for 50 epochs unless an early stopping callback terminated

the trial upon observed convergence. As training parameters we used: batch size =

16, learning rate = 0.01 and weight decay = 5e-4. For the fine-tuned transformer we

freeze all deeper layers and replace the classifier head with the projection head that

consists of two fully-connected layers; the last one performs the classification. We

fine-tuned the layers using stochastic gradient descent (SGD).

4.4 Results

We perform an ablation study to evaluate the performance of our fine-tuning

method on our custom dataset. We perform 5-fold cross validation on four buildings

selected for training and the remaining one for testing. By folding on the buildings,

we exploit the visual dissimilarity between semantically equivalent classes (chairs

and desks) between buildings. This comparison enables us to evaluate the ability of

the proposed method to generalize beyond learning visual representations of specific

objects.

After experimenting with 600, 800, 1000, 1200 data instances we noticed that

the best performance of the supervised classifier is achieved when using 1200 sam-

ples for each set i.e 600 for positive and 600 for negative. Using the same projection

3https://pytorch.org
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head architecture, we also fine-tune a deep residual network (ResNet) [106], in par-

ticular the ResNet50 variant, that has been pre-trained on ImageNet-21k. We chose

ResNet50 ought to the fact that it produced the best results compared to its other

ResNet counterparts (ResNet10, 18, 34) for our small dataset. Similarly to above,

we replaced the classifier with the projection head for the classification, and the best

results were achieved using a learning rate of 0.001.

Furthermore, we train a GAN ensemble network following the methodology

described in [64]. Due to our limited size custom dataset, we used the LORIS indoors

dataset [107] that bears some resemblance to ours, as the one to train the feature

extraction module on. Specifically, we used approximately 65k images collected from

indoor scenes (home, office, market, cafe, corridor). Ultimately, we train from scratch

a small convolutional network of four convolutional and two fully connected layers

that each, except for the final, is followed by a ReLu activation function. Accuracy

is chosen as the performance metrics of the experiments conducted and Table 7.1

summarizes the best results achieved by each network configuration.

To further evaluate our fine-tuning method we perform a direct one vs one test

set comparison. This will enable us to monitor the strengths of generalization of the

fine-tuning method. For both fine-tuned ViT and ResNet, we choose the datasets

that, after performing 5-fold cross validation, presented the maximum (Set 5) and

minimum (Set 1) accuracy. The results are shown in Tables 4.2 and 4.3, respectively.

4.5 Results and Discussion

Table 7.1 presents the results of the ablation study. Overall, we notice that

the fine-tuned ViTMAE outruns all other networks while exhibiting important levels

of consistency. This is in consensus with the results in literature [1], [90] that ViT

can show remarkable performance while outperforming CNNs in image classification
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tasks, and in this case reinforced by the MAE training that includes the notion of

learning visual semantics holistically. As far as ViT-B/16 is concerned, there were

scenarios in which ResNet performed slightly better or in a quite comparable fashion.

Hence, we can infer that for our small dataset that contains open paths as well,

ViT-B/16 does not demonstrate adequate enhancement in performance compared to

ResNet50. Ensemble GAN performance is poor, due to the difficulty in training all

the networks of the ensemble with an adequate number of data. Finally, our custom

supervised CNN achieved relatively low accuracy for practical purposes.

Set 1 presents the smallest amounts of accuracy due to being the one with the

most uniquely distinct features in terms of visual information. Namely, compared to

the others sets, Set 1 is the one with the least bright illumination as well as areas

with dense and more voluminous objects and hence this set is largely differentiated.

On the other hand, the high levels of performance on Set 5 can be justified by the

fact that this set is the most balanced in terms of varying features. It includes more

balanced levels of information regarding ambience illumination and less surprising

object location patterns.

Table 4.1: 5-fold cross-validation results

Accuracy[%] Testing Set 1 Testing Set 2 Testing Set 3 Testing Set 4 Testing Set 5

ViTMAE 79.05 90.16 83.41 89.75 92.00
ViT-B/16 77.68 82.74 79.33 85.35 85.78
ResNet50 78.10 83.66 76.91 87.83 87.41

Ensemble GAN [64] 69.41 65.08 63.26 69.58 66.16
Custom CNN 75.25 71.03 68.83 71.75 84.16

Tables 4.2, 4.3 report the individual performances on Sets 5 and 1 respectively.

Aside from the fact that less data is used for training, we observe that ViTMAE is the

most performant one. ViTMAE performance convincingly surpasses the performance
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Table 4.2: Individual Results by Testing on Set 5

Accuracy[%] Train on Set 1 Train on Set 2 Train on Set 3 Train on Set 4
ViTMAE 85.50 87.25 87.58 84.66

ResNet50 65.90 75.33 85.25 80.00

Table 4.3: Individual Results by Testing on Set 1

Accuracy[%] Train on Set 2 Train on Set 3 Train on Set 4 Train on Set 5
ViTMAE 77.08 81.58 75.90 82.00

ResNet50 67.33 75.33 63.50 75.60

of ResNet50 and proves that adaptation to new unseen environments is achieved with

satisfactory accuracy. The lowest accuracy achieved when testing on Set 1 (Table

4.3) is noted when training on either Set 2 or Set 4. This is noticed due to the fact

that both Sets 2 and 4 include brighter and open space areas. Contrarily, on Table

4.2 we observe that when training on Set 1 and testing on Set 5, the performance

remains at high standards, because of the more distinct negative areas that are richer

in feature representation. Hence, the attribute of our dataset that construes an object

as an obstacle given its relative position, seems to be exploited at full extent when

using a Vision Transformer pre-trained with MAE.

As a means to examine the semantic relevance of the extracted features, we

performed a two dimensional t-SNE [108] embedding and visualized our dataset in

Figure 4.4.
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Figure 4.4: t-SNE embedding of features

We present the results on Set 5, when training on Sets 1, 2, 3, 4 combined,

that attained the highest levels of accuracy. By observing this visualization, we can

witness considerable amounts of spatial correlation. In specific, the x,y axes denote

the outputs of the feature extractor as mentioned in Figure 4.1. Hence, we can infer

that the features learnt, contain significant amount of semantic information needed

for this binary image classification task.

4.6 Discussion & Challenges Encountered

We address a traversability estimation problem as a binary classification task

among scenes that encompass objects during a mobile robot navigation. We show that

transferring features using a Vision Transformer can act as a powerful paradigm for

traversability estimation tasks in small datasets such our collected custom one. Fine-

tuning a Vision Transformer pre-trained with MAE, led to a stronger performance

than the one of a fine-tuned well-established state-of-the-art deep architecture for

image classification such as ResNet. This work produced a high-level understanding
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of the encountered scene in the vicinity of the robot. It was noted that the perception

algorithm managed to have satisfactory performance on distinguishing between ob-

jects that can possibly act as obstacles within the robot’s trajectory. However there

are two main limitations. First, the labelling method, can be quite cumbersome when

it comes to annotating large amounts of negative data and second, the lack of spatial

information that can be the input to a motion planner. Along with the previous two

aforementioned challenges, enriching the algorithm’s perception with specific labels

could provide some additional insight on the scene understanding.

In the following chapters we show how to address these limitations.
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CHAPTER 5

RGB-based indoor multi-label classification using RGB instances

5.1 Overview

This work presents a method for extracting high-level semantic information

through successful landmark detection using RGB images. In particular, the focus is

placed on the presence of particular labels (open path, humans, staircase, doorways,

obstacles) in the encountered scene, which can be a fundamental source of information

enhancing scene understanding, and paving the path towards the safe navigation of

the mobile unit. Experiments are conducted using a manual wheelchair to gather

image instances from four indoor academic environments consisting of multiple labels.

5.2 Methodology

We expanded the use of the fine-tuned ViT model to perform multi-label image

classification on wide-lens image data collected using a manual wheelchair. The overall

approach follows a similar pipeline to the one described in Section 3.1.1. However,

there is a distinction in the final output, where the model classifies images into one or

more of the following classes: open path, doorways, staircase, humans, and obstacles

(Figure 5.1). To handle multi-label classification, we employ the BCEWithLogitsLoss

loss function. This loss function combines a Sigmoid layer and the Binary Cross-

Entropy (BCE) loss in a single class, making it suitable for multi-label classification

tasks.

lc(x, y) = L = {l1, ...lN}T , ln = −wn[ynlogσ(xn) + (1 − yn)(1 − logσ(xn))]
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Figure 5.1: Pipeline of the proposed method

(5.1)

The choice of using the BCEWithLogitsLoss version of the Binary Cross-Entropy

(BCE) loss is motivated by its superior numerical stability. This variant of the loss

function employs the log-sum-exp trick, which helps mitigate numerical issues and in-

stability that can arise during training, especially in situations involving large datasets

and complex models.

5.3 Experimental setup

5.3.1 Hardware

Throughout the experimental process, a human operator navigated a standard

wheelchair in four different buildings around the University of Texas, Arlington (UTA)

campus. Data were recorded using a GoPro HERO10 camera, that records in 60

frames per second and it is mounted on the wheelchair seat (Figure 5.2). For each

building, the wheelchair was navigated in safe areas such as hallways, doorways while

encountering static (chairs, bins, tables, lockers) or dynamic (humans) obstacles.

Also, ascending and descending staircases are targeted, as additional areas of interest.
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Figure 5.2: The configuration used for the experiments consists of a GoPro HERO10
camera mounted on the seat of the manual wheelchair

5.3.2 Data Collection and Processing

Data were recorded for approximately 150 minutes and created a dataset of 2704

images. The initial image size was 1920x1080 pixels before resized to 224x224 pixels,

to match the resolution of the pretrained dataset. All images were manually labeled.

The dataset includes 2119 single-labeled images and 585 instances that comprise of

various combinations of the labels (open-path, humans, staircase, doorway, obstacles).

Among the multi-labeled images, 367 instances are described by two-labels and 218

instances by three-labels. Sets 1, 2, 3, 4 include 678, 697, 659, 670 image instances

respectively. The labelling process is identical to the one presented in Chapter 4
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5.3.3 Fine-tuning

For the conducted experiments, Pytorch1 is used as the backbone framework.

Training was done on a machine with 2 Titan RTX (24GB GDDR6 RAM, 4608

CUDA Cores) GPUs. Horizontal flip is performed as a means to augment the dataset.

Training is taking place for 50 epochs, using the BCE loss function unless an early

stopping callback terminated the trial upon observed convergence. Furthermore, the

training parameters used were: batch size = 16, learning rate = 0.01 and weight

decay = 5e-4. For the fine-tuning part, all transformer’s deeper layers are frozen and

the classifier is replaced with two fully-connected layers; the last one performs the

classification. Layers were fine-tuned using stochastic gradient descent (SGD).

5.4 Results

To evaluate the performance of the proposed fine-tuned method on the custom

dataset, an ablation study is conducted. Four-fold cross validation is performed on

three buildings selected for training and the remaining one for testing. The rationale

behind folding on the buildings is to exploit the visual dissimilarity between seman-

tically equivalent classes between buildings. This comparison is going to help us

evaluate the ability of the proposed method to generalize beyond learning visual rep-

resentations of specific landmarks. Utilizing the same architecture for the projection

head, a deep residual network(ResNet50) that has been pre-trained on ImageNet-21k,

is fine-tuned. The classifier is replaced with the projection head for the classification.

Additionally, a GAN ensemble network is trained following the methodology

described by Hirose et al. in [64]. We use the GO Stanford2 dataset and pre-train on

approximately 75k unlabeled fisheye images. Finally, a small convolutional network

1https://pytorch.org/
2https://cvgl.stanford.edu/gonet/dataset
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is trained, comprising of four convolutional and two fully connected layers that each,

except for the final, is followed by a ReLU activation function. Hamming loss is

chosen as the performance metrics (as suggested in [109]) since it only penalizes the

individual labels and we experiment with different values for τ . For both fine-tuned

ViT and ResNet, the datasets that, after performing 4-fold cross validation, presented

the highest (Set 4) and minimum (Set 3) hamming loss, are chosen. The results are

shown in Figure 5.3.

The focus of this work’s approach is heavily dependent on landmarks’ detection

and this is crucial to ensure safe wheelchair navigation. The detection of staircases,

humans and miscellaneous static obstacles is prioritized by assigning a lower value

for τ . Since humans’ motion is governed by uncertainty and it is crucial to act in a

conservative manner, given that predictions must align with the axis of safety, the best

results in terms of humans detection, are achieved when τhumans = 0.15. Similarly,

the best detection results for staircases, static obstacles, doorways and open paths

were achieved when τstairs = 0.17, τobstacles = 0.18, τdoorways = 0.15, τopen = 0.80

respectively.
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Figure 5.3: Methods’ performance for various values of the threshold τ using the
Hamming loss metric. Larger Hamming loss implies lower network performance

Figure 5.3 presents the results of the ablation study. Fine-tuned ViTMAE out-

performs all other networks while displaying critical levels of consistency. This is in

consensus with the results in literature [1], [90] in which ViT’s performance can signif-

icantly outrun CNNs’ in image classification tasks. This argument is also supported

by the fact that MAE training includes the notion of learning visual semantics holis-

tically. With regards to ViT-base-patch16-224, it does not demonstrate significant

improvement compared to ResNet50. GAN’s performance is lower, due to the diffi-

culty in training the ensemble’s networks with an adequate number of data whereas

the custom fully supervised CNN did not exhibit major amounts of efficiency for

practical tasks.
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The lowest values of hamming loss, implying high levels of performance, are

observed for Set 3. This is due to the fact that Set 3 displays considerable amounts of

balance with respect to varying illumination and object features. Contrariwise, Set

4 presents the largest amounts of hamming loss because it is the one with the most

uniquely distinct features in terms of visual information. Compared to the others

sets, Set 4 is significantly more differentiated including the darkest of illumination

as well as areas with dense concentration of bulky objects. The best performance of

V iTMAE is achieved when using τ values = [0.15, 0.17, 0.18, 0.15, 0.80] for humans,

staircases, static obstacles, doorways and open paths respectively.
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Figure 5.4: Graph of test hamming loss against fraction of training data used for Set
3

Figure 5.4 displays a comparison between the hamming loss as computed by

fine-tuning the MAE and ResNet50 on Set 3 that exhibits the best performance. In

specific, the fine-tuned V iTMAE convincingly outperforms fine-tuned ResNet50, with

the performance margin, described by the hamming loss, widening as the fraction of
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Figure 5.5: Comparison between the two prevalent fine-tuning methods for the ”hu-
mans” label when testing on Set 3 for different amounts of training data

training data increases. Additionally, it is noticed that even for a small amount of

training data available, V iTMAE’s hamming loss is smaller than the ResNet50 one.

This shows that V iTMAE can be largely beneficial in scenarios where only a small

amount of training instances is available. In Figure 5.5, the recall is examined as ob-

served in Set 3 for the images that include the ”humans” label. V iTMAE consistently

achieves around 86% recall for training sets larger than 40%, while ResNet50 achieves

lower performance. Hence, it can be inferred that V iTMAE can sufficiently address

the presence of humans in the scene. Overall, the attribute of our dataset that con-

strues an object as an obstacle given its relative position, seems to be exploited at

full extent with the use of a Vision Transformer pre-trained with MAE.

The confusion matrices depicted in Figure 5.6 provide an illustrative represen-

tation of the V iTMAE’s best performance as noted on Set 3. Overall, the detection

performance achieves high levels of efficiency. In addition, the results are consis-

tent along the various labels irrespective of the notable differences among the sets,
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Figure 5.6: Confusion matrices for each label as observed in V iTMAE’s best perfor-
mance on Set 3

which were collected in different buildings. This can be attributed to the presence of

pre-trained self-attention layers along with the property that Masked Autoencoders

portray, which is to learn visual scene semantics in a comprehensive manner. The

aforementioned arguments reinforce the claim that ViTs provide generalizable solu-

tions to the multi-label classification problem for small datasets.

5.5 Discussion

A method that extracts high-level semantic information regarding the scene’s

navigability through landmark detection, is proposed. Experiments were conducted

in different indoors environments using a manually driven wheelchair and a wide-

lens camera. The results indicated that our multi-label classification method achieves

high performance without the loss of generalization and enriches scene understanding.
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Therefore, the proposed approach can act as a preceding step before designing the

motion planning (autonomous or not) of a manual wheelchair.

Furthermore, the results showed that fine-tuning a Vision Transformer can act

as a powerful tool for multi-label classification tasks in small datasets. We show that

fine-tuning a Vision Transformer pre-trained with MAE, led to a stronger performance

compared to state-of-the-art deep architecture for image classification such as ResNet.

However, the lack of spatial information is again a challenge for labelling and also

for prediction. The utilization and fusion of additional modalities (depth, laser),

that, along with RGB images, could lead to deeper evaluation of the scene as well as

incorporating spatial information.
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CHAPTER 6

RGB-Laser Range Finder Image Classification

6.1 Overview

In this approach, we propose a dual-stream, semi-supervised, attention-based

approach that employs feature fusion of RGB and Laser Range Finder (LRF) modali-

ties. Our method leverages the strength of two powerful transformer-based networks,

i.e. Vision Transformer (ViT) and SegFormer, along with LRF information, to ad-

equately predict whether the scene encountered in the image is safe for a robot to

traverse. Towards this effort, we introduce an automated labelling system profiting

from the combination of raw velocity readings and laser scanning information. More-

over, we aim to show that overall GO/NO-GO detection is enhanced by fusing RGB

and laser modalities through the employment of a Multi-Head Self-Attention (MHSA)

module.

6.2 Methodology

6.2.1 Multi-Head Self-Attention

Multi-Head Self-Attention (MHSA) is a key mechanism in deep learning, par-

ticularly in the context of neural networks and natural language processing tasks. It’s

an extension of the standard self-attention mechanism, allowing a neural network to

weigh the importance of different parts of an input sequence when making predictions

or generating representations. In MHSA, the input sequence is linearly transformed

into three sets of vectors: Query (Q), Key (K), and Value (V ). These transforma-
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tions allow the network to learn different aspects of the input sequence. This can be

mathematically represented as:

Q = XWQ, K = XWK , V = XW V

Where: X is the input sequence, WQ, WK , and W V are learnable weight

matrices.

6.2.1.1 Scaled Dot-Product Attention

For each position in the input sequence, MHSA calculates the attention score

by taking the dot product of the Query vector for that position with the Key vectors

for all positions in the sequence. The scores are then scaled to prevent gradients

from becoming too small or too large. This operation reflects how much each posi-

tion should attend to other positions in the sequence. The attention scores can be

calculated as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Where: softmax is the softmax function, dk is the dimension of the Key vectors.

MHSA employs multiple attention heads in parallel. Each head projects the

input into different subspaces and calculates attention scores independently. These

multiple attention heads capture different patterns and relationships within the input

sequence, providing the model with a richer set of information. The output of each

head is concatenated and linearly transformed to obtain the final output:

MHSA(X) = Concat(head1, head2, . . . , headh)WO
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Where: h is the number of attention heads, Concat denotes concatenation, WO

is a learnable weight matrix.

6.2.2 Advantages and Applications

MHSA has become a fundamental building block in many state-of-the-art deep

learning models due to its ability to capture long-range dependencies in sequences,

parallelization, interpretable representations, and adaptability to various types of

data. What is more, it has found applications in various natural language processing

tasks, including machine translation, text summarization, named entity recognition,

and language modeling.
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FCL + ReLULRF input

concat

tensorLRF measurements
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Figure 6.1: Proposed Methodology

6.2.3 Our Approach

In this effort, we proposed a dual-stream architecture that exploits feature fu-

sion from two pre-trained backbone architectures, that have been trained on two

closely related tasks, i.e. image classification and semantic segmentation. Particu-

larly, we are using two networks pretrained on ImageNet-1K: 1) a ViT pre-trained

in a self-supervised manner using the Masked Siamese Networks technique [110] and
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2) a SegFormer. The core idea is to combine contextual information from the two

aforementioned backbone architectures, that have been trained to perform semantic

interpretation in a general (image-level) and more fine-grained (pixel-level) degree.

Pre-trained ViT is reinforced by the Masked Siamese Networks (MSN) tech-

nique [110], a crucial ability to learn representations with high semantic information,

is introduced through matching masked prototypes with unmatched patches, given

two views of the same image. MSN exhibits excellence in transfer-learning tasks and

especially in cases where labeled data are limited. This attribute is in consensus with

the goal of the task, which is to examine the accuracy, in terms of detection, and the

ability to generalize in cases where the number of labeled data is insufficient to train

a larger model from scratch.

On the other end, the SegFormer is merging the Transformer’s architectural

backbone with a lightweight decoder. In contrast to ViT, its Mix Transformer en-

coder (MiT) does not use any positional encodings and can generate multi-level fea-

ture maps (both high-resolution fine features and low-resolution coarse features) due

to its hierarchical structure. Furthermore, a series of lightweight (few number of

parameters) Multi-Layer Perceptrons (MLP) is used as a decoder, that exhibits the

attribute of combining both local and global attention, and eventually creates power-

ful and meaningful representations accompanied by strong generalization capabilities.

This last aspect, along the dominant multi-scale feature learning ability of the Seg-

Former’s encoder, can be proven to be crucial for our method; in specific we use

a pre-trained on ImageNet-1K SegFormer-B0 and replace the classification head for

fine-tuning on our dataset.

As a mechanism to enrich the semantic information, before training, we con-

catenate the RGB feature vectors extracted from both the ViT and the SegFormer.

Furthermore, the MHSA module has displayed remarkable adaptability in fusing
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modalities due to its unique characteristic of computing the attention weights for

the input and producing an output vector with encoded information on how each

segment of information should be combined with the rest. Therefore, driven by this

unique property of the MHSA module, we aim to fuse RGB and laser features as a

means to exploit the source of semantic and spatial information of the encountered

scene.

For the supervised fine-tuning structure, we use a simple projection head con-

sisting of two fully-connected (FC) layers, each followed by a ReLU activation func-

tion. The first FC layer is trained using the combined weights from the two pre-trained

networks, ViT and SegFormer respectively. In particular, we replace the classifier

heads of the pre-trained ViT and SegFormer with two layers which dimensions are

768x1 and 256x1 respectively, before concatenating them and producing one 1x1024

RGB feature vector. On the other end, the raw LRF measurements are fed to a

1x1081 tensor. RGB and laser input are passed through two FC layers (1024x512

and 1081x512 respectively), before fed to the MHSA module that uses 8 heads and

performs the fusion. Ultimately, the GO/NO-GO scene classification is performed by

a 512x2 linear FC layer (Figure 6.1).

6.3 Experimental Setup

6.3.1 Data Collection & Annotation

As in Chapter 4 we are using the dataset gathered by the experimental pro-

cess tele-operating the robotic platform around university buildings and hallways.

However the labelling method differentiates as a means to include spatial informa-

tion. Especially, by using the PU method that learns from positive and unlabeled

data [111], we aim to divide each source set corresponding to each domain, into two
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subsequent subsets filled with positive and unlabeled image instances respectively.

In our previous work 4, we noticed that relying only on the wheels’ velocity could

result in an error-prone automated annotation. To enhance the reliability of the

automated annotation process, we incorporated information from the laser scanner.

This addition allows for a more comprehensive understanding of the surroundings and

helps address challenges arising from situations where humans appear unexpectedly

or when odometry data alone is insufficient.

The labelling process is similar to the one described by Hirose et al. [64], yet

supplemented with laser information. Specifically, we examined the velocities corre-

sponding to all four wheels of the robot and define a heuristic threshold value of 1

m/s and a time window of 2.5 seconds. We set the following three conditions to be

concurrently satisfied:

• If within this window, for each wheel, the velocity value vt is constantly above

the threshold value of 1 m/s

• The robot is moving forwards (or turning)

• There is no obstacle within a range of 1.2 meters from the laser sensor. This is

a heuristic value that takes into consideration the size of the robot

If all the above conditions are true, we determine that the central frame, during this

window, portrays a traversable scene and it is labelled as positive. For any other

cases not adhering to the above conditions, the frame is unlabeled. Initially, using

the above process, we labeled the entirety of the dataset. Afterwards, two datasets

depicting the positive and the unlabeled respectively, were created. For training the

supervised model, we utilized a combination of automatically labeled positive data

and carefully selected negative samples. The negative samples were chosen from the

unlabeled dataset and represented non-traversable scenes, including static obstacles,

narrow paths, staircases, and humans.
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6.3.2 Implementation Details

We used the PyTorch1 framework as the basis of our experiments. Training was

done on a machine with 2 Titan RTX GPUs (24GB GDDR6 RAM, 4608 Cuda Cores).

Using the standard cross-entropy loss function, we trained for 50 epochs unless an

early stopping callback terminated the trial upon observed convergence. As training

parameters we used: batch size = 16, learning rate = 0.01 and weight decay = 5e-

4. The fine-tuning of the layers was accomplished using stochastic gradient descent

(SGD). All images’ initial dimensions of 640x480 pixels were re-scaled to 224x224

using the default PyTorch interpolation.

6.4 Results

Table 6.1: Accuracy[%] per method for 5-fold cross-validation

Method Test on Set 1 Test on Set 2 Test on Set 3 Test on Set 4 Test on Set 5
RGBV iT,SEG + LRF 84.77 89.22 93.38 91.66 89.73

RGBV iT,SEG 82.48 89.57 90.28 91.85 87.15
RGBV iT + LRF 83.11 80.33 87.94 86.57 85.60
RGBSEG + LRF 80.93 82.28 85.66 84.19 83.55

RGBV iT 79.24 84.19 86.34 85.21 83.42
RGBSEG 78.76 85.29 84.64 83.92 82.30

6.4.1 Ablation Study

We implement a 5-fold cross-validation on all five domains of the collected

dataset, using 4 folds for training and the remaining one for testing. By folding on

the different buildings, we aim to exploit the visual dissimilarity between semantically

equivalent classes that occur throughout the dataset. This comparison enables us to

1https://pytorch.org
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evaluate the ability of the proposed method to generalize beyond learning visual

representations of specific objects. After experimenting with different numbers of

data instances for each set, we noticed that the best performance of the supervised

classifier is achieved when using 2800 samples i.e. 1400 for positive and 1400 for

negative, except for Set 1 that due to its limited size, 1400 images are used in total

(700 positive, 700 negative).

Table 7.1 presents the results of the cross-validation for different RGB and LRF

combinations. We observe that, the fused RGBV iT,SEG+LRF ensemble is, overall, the

most performant method. Specifically, in domains that include robust and distinct

obstacles, such as Set 1 and Set 5, the integration of spatial information (through

the use of laser) with RGB features from both pre-trained networks, contributes

to the overall detection performance. Additionally, it surpasses by a large margin

the efficacy of the methods that use RGB features from only one pretrained RGB

network (RGBV iT + LRF, RGBV iT,SEG+LRF, RGBV iT , RGBSEG). This highlights

the importance of using both pretrained ViT and SegFormer RGB features. On

the other hand, in domains that are mostly described by open paths, such as Set 2

and Set 4, we note that the performances of RGBV iT,SEG+LRF and RGBV iT,SEG are

comparable. As a consequence, the effect of semantic homogeneity in training samples

is demonstrated; for some domains, the dependence on purely semantic information

seems to be adequate enough for the classification task. This argument reinforces

the notion that, data annotation using laser information can genuinely influence and

boost the overall detection performance. For the remaining of the paper, we denote

”RGBV iT,SEG+LRF” as ”RGB+LRF” and ”RGBV iT,SEG ”as ”RGBonly”.
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6.4.2 Domain transferability

In order to determine the transferability potential of the RGB+LRF method,

we perform one-versus-one domain evaluation. We choose Sets 1 and 4 as the training

sets, since they exhibit the largest and smallest concentration of obstacles respectively.

Thereupon, we carry out individual testing on each of the remaining four sets, using

the RGB+LRF and the RGBonly methods. Since the dataset becomes less balanced,

the F1-score is used as a metrics to take into account both the false positives and

false negatives. Results are shown in Figure 6.3 and both methods, display relatively

adequate transferability capacity. We observe that the inclusion of spatial informa-

tion is yielding improved results especially between domains of spatial homogeneity,

including obstacles and compact structures (Set 1). In addition, the use of laser is

proving its efficiency in addressing different domain illumination. This is noted by

the performance of RGB+LRF, for instance when 1) training on Set 1 (dark illumi-

nation) and testing on Set 5 (bright illumination) and 2) training on Set 4 (bright

illumination) and testing on Set 1 (dark illumination).

6.4.3 Pre-trained features and training dataset size

To examine the performance of RGB+LRF with respect to the proportion of

used training data, we evaluate on Set 3 (best accuracy) and Set 1 (worst accuracy).

In Figure ??, we observe that RGB+LRF exhibits decent efficiency for both sets, even

when the fraction of available training data is significantly low. These findings assert

that the proposed method’s performance is mostly influenced by the utilization of the

pre-trained RGB features, extracted from the ViT and the SegFormer. Therefore, it

becomes apparent that only a small number of task-specific labels is required. The

aforementioned argument is aligned with the idea of exploiting a pre-trained ViT with
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Figure 6.3: Transferability performance when training on Set 1 (left) and Set 4 (right)

the MSN technique and also a SegFormer, to achieve adequate generalizability with

scarce training samples.
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6.4.4 Optimal selection of the number of MHSA heads

We experiment with a different number of heads (h) for the MHSA module. The

value of h should divide the embedded dimension of the Multi-Head Self-Attention

layer, which in our case is 512. As illustrated in Figure 6.4, the RGB+LRF method

achieves best results on Set 3, for h = 8. This is in accordance with the results

presented in literature [112], and state that a larger number of heads can lead to

increased performance. Nonetheless, we notice a degradation in performance, due

to the fact that a sharper increase from 8 heads and above, is accompanied by a

significant rise of the model’s learnable parameters.
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6.4.5 Significance of laser annotation

Figure 6.5 shows the performance given two automated annotation techniques:

velocity and laser against solely velocity, as noted on Set 3 (best performance). We

observe that the RGB+LRF fusion method achieves better results when using both

laser and velocity for annotation, resulting in higher true positive rates given the

false positive rate. What is more, AUC (Area under the ROC Curve) reaches a value

of 0.931, which is equivalent to a likelihood of 93.1% for the fine-tuned RGB+LRF

model to distinguish between a GO and a NO-GO class when using laser for the

annotation.

6.5 Discussion & Challenges

Initially, we show that by combining the collected velocity readings with laser

scans, a compact automated annotation framework is created. Moreover, we show

that the feature fusion of RGB and laser modalities, through the use of two strong pre-

trained networks (ViT and SegFormer) and the Multi-Head Self-Attention (MHSA)
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module, can lead to better detection efficacy and transferability among different do-

mains. Enriching our dataset with instances from additional domains of different

illumination and objects’ structures, even including outdoor conditions, may serve

as a further experimental point of comparison. The findings suggest that this fu-

sion strategy significantly improves detection efficacy and the adaptability of models

across diverse domains.

While the architecture described in this chapter offers merits in terms of pre-

diction, it should be noted that the overall architecture demands a significant amount

of computational resources. This can pose a challenge when deploying the algorithm,

depending on the available hardware. Furthermore, while a high-level understanding

of estimating traversable scenes may be an important step in grasping the scene’s se-

mantics, real-time navigation demands that the agent possesses spatial insight about

the environment. Therefore, one pending challenge that needs to be addressed is

determining specific traversable segments within complex scenes.
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CHAPTER 7

Free-space Segmentation

7.1 Overview

Driven by the need to understand traversable regions and deviating from strictly

examining high-level traversability estimation techniques, we propose an indoors free-

space segmentation method that associates large depth values with navigable regions.

This method leverages an unsupervised masking technique that, using positive in-

stances, generates segmentation labels based on textural homogeneity and depth uni-

formity. Moreover, we generate superpixels corresponding to areas of higher depth

and align them with features extracted from a Dense Prediction Transformer (DPT).

7.1.1 Overall Methodology

Dense Prediction
Transformer

DASP
Algorithm

Feature
Representation

SegFormer
RGB
input

Generated
depth map

Free-space
segmentation
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Superpixel
Alignment Clustering

Estimated
free-space
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Figure 7.1: Proposed methodology

Figure 7.1 illustrates the proposed methodology’s architecture. Our approach is

based on the central hypothesis that areas classified as traversable free-space will gen-

erally exhibit greater depth values. To validate this hypothesis, we focus on training

a refined semantic segmentation model using positive RGB indoor instances that the
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robot can safely traverse, such as hallways and wide paths. Our method relies solely

on the RGB data we collected, while for generating the depth maps, we utilized the

depth estimation model provided by Niantic Labs [113], allowing to extract valuable

depth information from the aforementioned RGB instances.

Additionally, we propose an unsupervised mask generation framework that

leverages depth information to capture textural homogeneity and depth uniformity

as indicators of free space. Subsequently, we evaluate the performance of the model

on challenging scenarios where free space is present yet restricted due to the presence

of cluttered objects.

7.1.2 Mask Annotation

To generate annotation masks for free-space segmentation, we build upon the

following main hypothesis: Free space is expected to be depicted by textural homo-

geneity in conjunction with depth uniformity. This means, that in order to search for

free space in the image, we consider these particular superpixels that are character-

ized by similarity in both color and depth information. Therefore, we use a superpixel

oversegmentation algorithm to generate unsupervised free-space masks by capturing

intra-region similarities towards producing meaningful segments: the Depth-Adaptive

Superpixels (DASP) algorithm [114].

Overall, our method is influenced by the findings and approaches outlined

in [115], however we differentiate in the sense that ”seed” superpixels are gener-

ated through the guidance of depth information. In lieu of empirically computing the

parameters that define the location prior, we use the DASP algorithm to generate

the seeds needed for segmentation.
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Figure 7.2: Upper row: RGB-D pair Bottom row: On the left, the DASP algorithm
performs oversegmentation, dividing the image into superpixels. On the right, the
seeds generated by the DASP algorithm, described by the dotted area, represent the
area with the greatest depth

7.1.3 Features Extraction

We intend to associate superpixel clusters with features that have been ex-

tracted by a Dense Prediction Transformer [116], that uses the Vision Transformer

(ViT) architecture as a backbone for dense prediction tasks such as semantic segmen-

tation. DPT leverages the strengths of 1) Transformers, known for their ability to

model long-range dependencies, and 2) Convolutional Neural Networks (CNNs) that

can efficiently process and encode spatial information within the input images. Con-

sequently, DPT allows for efficient capture of both local and global information. We

remove the last layer of the pre-trained Intel’s DPT-Large1 model, and the resulting

1https://github.com/isl-org/DPT
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extracted features, in the form of a vector of size 577x1024, exhibit rich high-level

semantic information as well as spatial details at a higher resolution.

7.1.4 DASP

DASP utilizes spectral graph theory to calculate segments through graph cuts.

Essentially, it creates a graph where each pixel is represented as a node, and the edges

represent the similarity between pixels. The similarity computation takes into account

both color and depth information and this distinctive property is of fundamental

importance for our method i.e. estimating segments that exhibit the largest depth.

An additional asset that DASP displays and can be substantial towards estimating

the segments of higher importance, is the generation of segmentation seeds that are

expected to be associated with free space. DASP achieves this by calculating the

depth gradient of the input image and clustering it, to eventually obtain a collection

of initial segmentation seeds. Hence, instead of relying on a location prior as in [114],

we can utilize the seed coordinates that guide the segmentation towards areas of larger

depth (Figure 7.2).

7.1.5 Superpixel alignment

To establish a spatial association between the distinct features derived from

the DPT and the coherent superpixels generated by the DASP algorithm, we use

a sophisticated technique known as superpixel alignment inspired by the work by

Tsutsui et al. [115] and influenced by the concept of RoIAlign [116].

Firstly, a selection of ten representative locations is made within each super-

pixel, forming crucial anchor points within these coherent regions. Next, for each

of these chosen anchor points, the algorithm identifies the four nearest neighbors of
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each selected pixel for the bilinear interpolation. This process creates a local context

around each anchor point, facilitating a focused examination of the surrounding area.

In order to effectively associate the features extracted by the DPT with the

representative anchor points within superpixels, the technique of bilinear interpola-

tion is implemented. Specifically, it estimates the features at the anchor points by

considering the features of the nearby pixels, and thus seamlessly integrating the two

sets of information. By projecting the features extracted from the neighboring pixels

onto the representative anchor points using bilinear interpolation, a direct alignment

between DPT features and superpixels is achieved.

As a result, this alignment is crucial in ensuring that the information extracted

by the DPT accurately corresponds to the meaningful regions represented by the su-

perpixels. Afterwards, we employ average pooling to aggregate the features within

each superpixel and therefore generate a comprehensive representation of the super-

pixels’ characteristics.

7.1.6 Superpixel clustering

We aim to guide the segmentation towards traversable areas that exhibit the

largest depth. Therefore, we cluster superpixels with respect to the semantic features

and additionally, we select the cluster that corresponds to the area with the largest

depth. As highlighted by Weikersdorfer et al. [114], the density of superpixel clusters

in the image space is computed from the depth image. For detailed information on

how this density is computed, the reader is referred to the original article.

The steps of the DASP algorithm can be summarized as follows: 1) the den-

sity of the depth-adaptive superpixel clusters is calculated based on the depth input

image 2) an initial set of cluster centers is obtained by applying a Poisson disc sam-

pling method 3) these sampled cluster centers are utilized in a density-adaptive local
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iterative clustering algorithm to assign pixels to their respective cluster centers. We

anticipate that the superpixels representing open areas will have lower density val-

ues.This is because there are fewer superpixels/clusters required to represent those

areas due to their relatively uniform or homogeneous nature.

Consequently, our objective is to identify the clusters within the Poisson disk

distribution that are most likely to define free space. For a given depth image, we

estimate the superpixel density values, and using the k-means clustering technique,

we single out the clusters. In a similar fashion to [115], the initial cluster is encouraged

to include pixels associated with free space by positioning its cluster center as the

average of features weighted by their spatial distribution. In contrast, the rest of the

clusters have a repelling weight assigned to their members, prompting them to spread

out spatially from their previous location.

7.1.7 Fine-tune a SegFormer

Using the masks produced at the previous step, we fine-tune a SegFormer model

on our custom-collected dataset. The SegFormer is merging the Transformer’s archi-

tectural backbone with a lightweight decoder. In contrast to ViT, its Mix Transformer

encoder (MiT) does not use any positional encodings and can generate multi-level fea-

ture maps (both high-resolution fine features and low-resolution coarse features) due

to its hierarchical structure. Furthermore, a series of lightweight (fewer number of

parameters) Multi-Layer Perceptrons (MLP) is used as a decoder, that exhibits the

attribute of combining both local and global attention, and eventually creates power-

ful and meaningful representations accompanied by strong generalization capabilities.

This last aspect, along the dominant multi-scale feature learning ability of the Seg-

Former’s encoder, can be proven to be crucial for our method; specifically, we use
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a SegFormer-B0 pre-trained on ImageNet-1K, and replace the classification head for

fine-tuning on our dataset.

7.1.8 Implementation Details

We used the PyTorch2 framework as the basis of our experiments. Training was

done on a machine with 2 Titan RTX GPUs (24GB GDDR6 RAM, 4608 Cuda Cores).

Using the standard cross-entropy loss function, we trained for 50 epochs unless an

early stopping callback terminated the trial upon observed convergence. As training

parameters we used: batch size = 16, learning rate = 0.01 and weight decay = 5e-

4. The fine-tuning of the layers was accomplished using stochastic gradient descent

(SGD). All images’ initial dimensions of 640x480 pixels were re-scaled to 224x224

using the default PyTorch interpolation. In the following sections, we present the

best results achieved when using 1800 of positive instances for training, and 453

challenging instances for testing.

7.1.9 Performance Analysis

We train our method on the positive instances and test on the challenging ones.

For our experiments, the standard semantic segmentation metrics, Intersection over

Union (IoU) is used and we found that the best results were achieved for k=5 clusters.

Table 7.1 provides a summary of the performance of different methods under

various input and model configurations in terms of IoU scores. Overall, the results

show that incorporating depth information improves the accuracy of free-space seg-

mentation compared to using only RGB images. We observe that our method, using

the aforementioned unsupervised annotation framework, outperforms the correspond-

ing SegNet-based method from [3] while also maintaining comparable performance

2https://pytorch.org
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versus its supervised counterparts. Moreover, our approach demonstrates consider-

able adaptability, by performing well when fine-tuning with different model architec-

tures i.e. U-Net and SegNet.

7.1.10 Impact of the number of training data used

Figure 7.3 illustrates the correlation between the number of training instances

and the accuracy in free-space segmentation. The number of positive data used, plays

a crucial role in the learning process of our method since, it helps the algorithm learn

a wider range of patterns and variations associated with traversable areas. We notice

that initially, as the number of instances increases, the IoU scores show a significant

improvement. However, beyond the threshold of 1800 images (84%), it is observed

that a further increase of the number of instances has a diminishing impact on the

IoU scores. These findings indicate that even with a limited dataset, the proposed

method achieves satisfactory performance, reinforced by the substantial ability of the

SegFormer to capture complex spatial dependencies.

Figure 7.3: Method’s performance for different number of training instances
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7.1.11 Effect of the number of clusters

Figure 7.4 illustrates the relationship between the IoU performance and the

number of clusters used in k-means. Increasing the number of clusters leads to im-

proved segmentation performance, ought to the gradually increasing capability of the

algorithm to capture depth and texture variations. It should also be remarked that

after a certain number of clusters, for instance k = 6, we note a steady degradation in

performance due to over-segmentation caused by the fine-grained clusters, capturing

noise and redundant details.

Figure 7.4: Method’s performance for different number of clusters

7.1.12 Qualitative results

Figure 7.5 presents some qualitative results on the test dataset. We compare the

performance of our method, that uses RGB information during training to generate

masks, against the method presented by [3] and only uses RGB. Overall, it is noted

that incorporating depth information enhances the accuracy of free-space prediction
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(a) Input Images (b) Ground truth
(c) Prediction with
RGB

(d) Prediction with
RGB+Depth

Figure 7.5: Illustrative examples of the method’s performance, last two rows depict
erroneous results
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compared to relying solely on RGB data. That is because depth information can

provide valuable cues for free-space segmentation in the narrow passages along with

some depth discontinuities, that help distinguishing the objects’ edges and bound-

aries from the surrounding free-space regions. SegFormer’s proficiency to effectively

capture the long-range dependencies and spatial information, along with the features

of the pretrained DPT within in the input data, is of instrumental importance. It

enables the proposed algorithm to accurately differentiate between free-space regions

and obstacles, even in challenging scenarios with objects, doors, and varying textures.

Besides, the use of positive instances during training, allowed the algorithm to

prioritize the distinctive features and areas depicting free-space regions. However,

some erroneous, false positive predictions were noted (last two rows in Figure 7.5) as

well. This can be attributed to the presence of certain objects, which creates visual

similarities with free space regions, consequently leading to misclassifications.

Upon examining the corresponding depth maps in Figure 7.6, it becomes evident

that the accurate information provided by the depth map does not have an impact

on the observed misclassifications. Hence, we can confidently conclude that these

errors are a result of our method’s performance. More specifically, in the example of

row 5/Figure 7.5, the error can be attributed to the fact that the algorithm does not

consider the height of the encountered furniture (in this case the instructor’s lectern),

which highlights the challenge of ambiguous semantics. Also, with respect to the sixth

row of Figure 7.5, the tile positioned against the wall leads to a misunderstanding

of texture, because it resembles a traversable surface that the algorithm has been

previously trained on.
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Figure 7.6: Depth maps for the wrong predictions (for rows 5 and 6 respectively) of
Figure 7.5

Table 7.1: Performance of each method given different inputs

Method RGB Depth Training Data Model IoU Score
[3] ✓ × Automated SegNet 0.773
[3] ✓ ✓ Automated SegNet 0.801

Ours ✓ × Automated SegFormer 0.813
Ours ✓ ✓ Automated SegFormer 0.844
Ours ✓ ✓ Hand-labeled SegFormer 0.878
Ours ✓ ✓ Automated U-Net 0.813
Ours ✓ ✓ Hand-labeled U-Net 0.849
Ours ✓ ✓ Automated SegNet 0.824
Ours ✓ ✓ Hand-labeled SegNet 0.862

7.1.13 Discussion

Erroneous classifications established an avenue for future research. One ap-

proach could to tackle this error would be leveraging the additional context provided

by 3D point clouds by considering both visual cues and the physical positions and

heights of objects. Also, experimenting with larger and more diverse datasets of in-

door environments could contribute to further refining the algorithm’s performance

and generalizability.

Our error analysis shows that future research should be directed towards ad-

dressing misclassifications due to misleading texture. The area under the chair (row
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5, Fig. 7.5) and the tile propped against the wall (row 6, Fig. 7.5) are characteris-

tic examples: The algorithm correctly correlates the texture of tiles with traversable

space, but fails to take into account the placement and position of the tile. This

is an instance of the more general problem of how to combine common-sense (and,

generally, structured) knowledge with machine learning. Future work can explore a

more explicit combination between textural and geometric features. Such an approach

would allow the system to represent findings such as ”tiles propped up are obstacles”

and ”depending on height, overhead obstacles might make the area under them non-

traversable” without jeopardizing the generalization that ”tiles are normally laid over

traversable areas”.
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CHAPTER 8

Conclusion and Future Directions

In this chapter, we elaborate on the research findings presented in this the-

sis and discuss potential future research directions in the field of improving indoors

traversability estimation.

8.1 Summary of Findings

This study aims to explore various aspects of estimating indoors traversability

estimation. At a higher level, we demonstrate that relying solely on semantic infor-

mation cannot ensure secure navigation within the environment, primarily because of

the RGB sensor’s constrained situational awareness. This underscores the importance

of incorporating spatial and geometric information, which can complement each other

in a collaborative manner to enhance overall perception and safety.

We initially gathered a dataset comprising of various scenes including static and

dynamic objects that can pose a threat to the robot’s safety. Afterwards, different ap-

proaches and perspectives regarding the sensory input used to infer the traversability

of indoor scenes, were examined. One of the key findings is the effectiveness of fus-

ing multiple modalities, particularly combining visual data with Laser Range Finder

(LRF) information. This fusion of modalities has shown promise in improving the

accuracy of traversability estimation especially in scenes with cluttered objects and

when examining the transferability of the method between two domains that were

governed by levels of different ambience lighting.

97



The Vision Transformer (ViT) has played a crucial role in our research, show-

casing its potential for feature extraction. By fine-tuning a pre-trained ViT model on

our down-stream task (either image classification or semantic segmentation), we have

witness improved algorithm’s performance. With respect to free-space segmentation,

we utilized a method that assumes that larger depth values correspond to areas with

higher traversability. We employ an efficient automated masking technique that lever-

ages textural homogeneity, depth uniformity, and positive scenes to create meaningful

segments. Finally, we fine-tuned a SegFormer model on our custom-collected dataset,

training on positive instances and testing on challenging ones, achieving satisfactory

performance.

Nevertheless, the experiments we conducted, exposed certain limitations, in-

cluding susceptibility to sensor noise, issues arising from occlusions, and the dynamic

nature of indoor environments. These challenges underscore the need for the devel-

opment of robust and adaptable traversability estimation methods. Future research

in this domain could focus on several promising avenues:

• Integration of 3D Point Clouds: Leveraging richer spatial information from 3D

point clouds in conjunction with visual data can help mitigate challenges related

to occlusions and object heights. This approach can enhance the algorithm’s

ability to infer traversability accurately.

• Larger and More Diverse Datasets: Expanding the dataset to include a wider

variety of indoor environments, encompassing various lighting conditions, lay-

outs, and scenarios, can enhance the algorithm’s generalizability. A more di-

verse dataset will better prepare the algorithm for real-world indoor navigation

challenges.

• Real-Time Feedback and Learning: Implementing mechanisms for real-time

feedback and learning can enable the algorithm to continuously adapt and im-
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prove its traversability estimation prediction based on the robot’s interactions

with the environment.

• Multi-Robot Collaboration: Exploring how multiple robots can collaborate to

share information and collectively estimate traversability in complex indoor

environments. This collaborative approach might also include aerial information

from drones using various modalities such as infrared information.
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8.2 Published Implementations

All published implementations described in Chapters 3-7 are publicly available,

along with the datasets used, and can be accessed at the following github repository

https://github.com/ChristosSev.
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