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ABSTRACT

MACROMODELING AND ACCELERATED SIMULATIONS OF ELECTRIC

MACHINES

AJAY PRATAP YADAV, Ph.D.

The University of Texas at Arlington, August 2021

Supervising Professors: Ali Davoudi

Electric machines are the most important element in the power grid. Given its

centennial legacy and the rise of electric vehicles and distributed energy resources, it is

imperative to bring new technologies into this area. This work tries to bridge the gap

between electric machines and innovative research domains such as convex optimiza-

tion and FPGA-based hardware acceleration. Problems of electric machine parameter

identification and real-time simulation are considered. A convex optimization-based

framework is designed to identify machine parameters. This tool is used to perform

the macromodeling of a synchronous machine from its magnetic-equivalent circuit

model. Furthermore, it is used to obtain induction machine parameters using limited

and non-intrusive measurements. Given that optimization-based methods are usually

offline, partial-update Kalman filter is investigated for online electric machine state

and parameter estimation. Finally, the hardware acceleration of electric machine

models executed on FPGA is studied.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Given that electric machines accounts for more than 65% of the industrial

load, industry-wide transition to efficient machines can save billions of dollars [1, 2].

Hence, accurate models and high-performance simulation tools are too important

to ignore. Electric machine models can be classified as physics-based models and

lumped-parameter models [1]. Physics-based models are derived from first principles,

hence, can provide high fidelity simulations that accurately mimic hardware. Popu-

lar physics-based models for electric machines are the finite-element methods (FEM)

and magnetic equivalent circuits (MEC) models. FEM models are computationally

expensive and mainly used for the final design verification. MEC modeling involves

representing the physical machine as magnetic circuits using geometry and materi-

als characteristics. This results in a less intensive model albeit at expense of some

accuracy. Lumped-parameter models are high-level models derived using simplifying

approximations, e.g., assuming sinusoidally distributed windings. Popular machine

representations such as phase-domain (PD), direct–quadrature (qd0 ), and voltage-

behind-reactance (VBR) models fall in this category. These models can be expressed

as differential-algebraic equations and used for most system-level studies. One of the

main advantages of such models is that they can be written using few parameters,

e.g., rotor resistance or magnetizing inductance.

Detailed laboratory tests have been designed to identify electric machine param-

eters, however, it is easier said than done [3, 4]. Factors such as size or the inability
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to separate the machine from attached equipment can make it impossible to run ex-

perimental tests. In the following chapters, we will present data-driven approaches

for machine characterization.

Real-time simulation of different physical systems has gain traction in recent

years [5, 6]. Such techniques enable testing the machine and controller performances

under real-world conditions without risking the device’s safety. Herein, we also present

an FPGA-based simulation of VBR machine models for a family of electric machines.

1.2 Outline

This thesis is organized as follows,

1.2.1 Chapter 2: Macromodeling of electric machines from ab initio mod-

els

1.2.1.1 Description

The Lumped-parameter qd0 model of a synchronous machine is extracted from

its physics-based magnetic-equivalent circuit model. Model extraction is formulated

as a weighted least square optimization that aims to minimize the mismatch between

the MEC model and target qd0 model. This problem being non-convex, cannot be

solved using standard methods, therefore, is solved using cone programming.

1.2.1.2 Authors’ Contribution

The author was the principal architect of this paper. Dr. Ali Davoudi super-

vised the work from inception to completion. Dr. Ramtin Madani and Dr. Tuncay

Altun provided underlying concepts on convex optimization.
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1.2.2 Chapter 3: Induction machine parameterization from limited tran-

sient data using convex optimization

1.2.2.1 Description

Induction machine parameters are identified using limited and non-intrusive

observations of available input voltages, stator currents, and rotor speed. Parameter

extraction is formulated as a non-convex estimation problem, which is solved using a

convex optimization framework. The proposed method is experimentally verified on

a squirrel-cage induction machine. This non-intrusive approach is especially useful

for setups where lab testing is not feasible (e.g., large-size machines).

1.2.2.2 Authors’ Contribution

The author was the principal architect of this paper. Dr. Ali Davoudi super-

vised the work from inception to completion. Dr. Ramtin Madani provided under-

lying concepts on convex optimization. Dr. Navid Amiri provided the experimental

data for an induction motor. Dr. Juri Jatskevich provided valuable comments during

manuscript preparation.

1.2.3 Chapter 4: PMSM Estimates from Intermittent Data

1.2.3.1 Description

Kalman filter is a standard tool in the industry for observer design. Recently,

it was proposed that partially performing the measurement update in an extended

Kalman filter can improve its handling of model uncertainties and nonlinearities

(hence, named partial-update Kalman Filter (PKF)). We have designed a variant

of PKF that is robust to losses in the measurement data.
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1.2.3.2 Authors’ Contribution

The author was the principal architect of this work. Dr. Mohammadreza

Davoodi was actively involved in the write-up and provided valuable help on the

derivations. Dr. Ali Davoudi supervised the work from inception to completion. Dr.

Nicholas Gans provided helpful feedback on Kalman filter.

1.2.4 Chapter 5: Hardware-assisted simulation of voltage-behind-reactance

models of electric machines on FPGA

1.2.4.1 Description

The acceleration of numerical simulations executed on Field-Programmable

Gate Arrays (FPGAs) for electric machines represented by voltage-behind-reactance

(VBR) models is studied. In this work, the objective is to merge the domains of op-

timization and FPGA. Given that FPGA deployment involves arranging hardware

circuits in an FPGA board, a set of different circuits could be designed to execute the

same function. Depending upon the requirements, a user could demand to minimize

the utilized area of FPGA (circuit size/resources) or the circuit latency. In this work,

we achieved the faster simulation of machine models on an FPGA by minimizing

latency.

1.2.4.2 Authors’ Contribution

The author was the principal architect of this work. Dr. Ali Davoudi super-

vised the work from inception to completion. Dr. Siyuan Xu performed the FPGA

deployment of the machine models. Dr. Benjamin Schafer provided useful comments

during manuscript preparation.

4



MACROMODELING OF ELECTRIC MACHINES FROM AB INITIO MODELS1

Authors: A. P. Yadav, T. Altun, R. Madani, and A. Davoudi.

Reprinted, with permission from all the co-authors.

Journal: IEEE Transactions on Energy Conversion [7].

DOI: 10.1109/TEC.2020.2970965

1Used with permission of the publisher, 2021. In reference to IEEE copyrighted material which
is used with permission in this thesis, the IEEE does not endorse any of the University of Texas
at Arlington’s (UTA) products or services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink. This is the authors’ accepted version of the article.

5



CHAPTER 2

MACROMODELING OF ELECTRIC MACHINES FROM AB INITIO

MODELS

Abstract

We extract the lumped-parameter model of a wound-rotor synchronous machine

from its physics-based magnetic-equivalent circuit model. Model extraction is

formulated as a weighted least square optimization with nonlinear constraints

in which time-domain trajectories of flux linkages, currents, and the electromag-

netic torque are used as input data to obtain the parameters of the qd0 model of

the machine. The resulting problem is non-convex and cannot be solved using

standard methods. The optimization problem is, therefore, convexified using a

cone programming relaxation. The solution to the relaxed problem is used as

an initial point for the interior-point method, leading to a reliable framework.

Accurate estimations on stator resistance, leakage and mutual inductances in

stator and rotor, rotor speed, effective turns-ratio between the field and stator

windings, and the number of poles are obtained. Estimated parameters are val-

idated against measured and estimated values reported in literature, and are

used to develop a behavioral qd0 macromodel of the machine.

2.1 Introduction

Electric machine models can be classified into lumped-parameter models, such

as abc phase-domain models, qd0 models, or voltage-behind reactance models [4],

6



Physical WRSM

subject to:

State equations 

Flux-current relation 

Torque equation 

MEC Model Macromodeling Process

d axis 0 axis

Lumped Parameter Model

q axis

minimize:

Figure 1: qd0 model extraction from the MEC model of a WRSM.

and those based on the first principles of physics (Maxwell equations), such as finite-

element methods (FEM) or magnetic equivalent circuits (MEC). Lumped-parameter

macromodels are suitable for system-level studies, drive-controller design, or hardware-

in-the-loop applications[4, 8]. FEM models are highly accurate and closely mimic the

hardware, but they are computationally expensive and mainly used for the final de-

sign verification. MEC modeling is an intuitive approach based on the circuit theory.

Herein, we extract the lumped parameters of a dynamic qd0 model from the data

generated by the MEC model. We use a mesh-based MEC model of a wound-rotor

synchronous machine (WRSM)[9, 10, 11, 12] as it exhibits better numerical properties

than its nodal-based counterpart [13]. WRSMs are used in various applications, e.g.,

aircraft generators, ship propulsion, and wind turbines [14]. qd0 model extraction

is analogous to replacing the spatially-distributed reluctance network of the MEC

model with equivalent lumped-parameter components (see Figure 1).

7



IEEE Std-115 [3] documents an array of tests to identify synchronous machine

parameters. Since it is not always feasible to run all the necessary tests, various

techniques estimate machine parameters using transient measurements [15, 16, 17,

18, 19]. In the absence of hardware measurement, high-fidelity physics-based models,

that closely mimic the experimental prototype, can be used instead. Furthermore,

detailed models provide access to a host of variables that might not be available

experimentally due to a limited sensory. [20] and [21] have used FEM models to

determine the parameters of equivalent circuits for induction machines. [22] has used

the data from a pulse test applied to the FEM model of a synchronous machine

to obtain its lumped-parameter model. However, MEC models have not yet been

exploited for such macromodeling purposes. Another aspect of our contribution is

the extraction methodology. While optimization methods based on convex relaxation

have found wide applications in power system areas [23, 24, 25], they have not yet

been properly explored for model extraction and parameter estimation of electric

machines [26, 27]. We formulate the parameter extraction process as a weighted

least-square problem with nonlinear constraints such that it minimizes the mismatch

between trajectories produced by the MEC model and those predicted by the qd0

model.

Due to the presence of nonlinear equality constraints, the proposed optimization

problem is non-convex and cannot be solved reliably using standard interior-point

method (IPM) solvers [28, 29, 30]. To eliminate the need for initialization we propose

a hybrid optimization framework based on cone programming relaxation. We relax

the original problem and feed the resulting solution to IPM in order to arrive at

fully-feasible and globally optimal solutions [31]. The contributions of this paper are

summarized below:
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� We have recovered machine parameters, namely stator resistance, rotor speed,

stator leakage inductance, q-axis magnetizing inductance, d-axis magnetizing

inductance, equivalent turns-ratio between the field and the stator windings,

and the number of poles. Extracted parameters are compared against those

values reported in literature.

� The model extraction is formulated as a non-convex optimization problem using

a hybrid cone programming and IPM approach.

� The extracted qd0 model is validated against the MEC model, and shown to

capture dominant dynamical modes with more than 20 times faster model exe-

cution.

The outline of the paper is as follows. Section 2.2 is a preliminary review on the

symbols and notations used throughout the paper. Section 2.3 presents the dynamic

MEC model and the target qd0 model for WRSM. Section 2.4 elaborates a discrete

qd0 model for WRSM, and formulates the parameter extraction process as a non-

convex optimization problem. Section 2.5 presents cone programming relaxation and

objective penalization. Section 2.6 studies the implementation process and results.

2.2 Notation

Matrices and vectors are presented as bold uppercase and lowercase variables,

respectively (e.g., X or x). xi denotes the ith element of vector x. Xij denotes the

element in the ith row and jth column of matrix X. Rn is the set of column vectors of

size n× 1. Rm×n is the set of matrices of size m×n. Sn denotes the set of symmetric

matrices of size n. 0m and 1m represent vectors of size m× 1 with all their elements

as 0 and 1, respectively. Similarly, 0m×n represents a matrix of size m × n with all

its element equal to 0. In is an identity matrix of size n. ||x||2 denotes the Euclidean

norm of the vector x. diag(x) gives a diagonal matrix with elements of the vector x

9



along its diagonal. diag(X) gives a vector with its elements the same as the diagonal

of the input matrix. diag(X,Y) produces a block diagonal matrix with input matrices

along its diagonal. (·)> indicates the transpose operation. ||x||2Z represents x>Zx.

〈X,Y〉 stands for the inner product of matrices X and Y. ¯ denotes the square of

a variable, e.g., x represents x2 for a scalar x and x is a vector with elements of x

squared.
√

x denotes an element-wise square root operation on vector x.

2.3 Ab Initio and lumped-parameter WRSM models

2.3.1 Dynamic MEC Model

This section presents a concise overview of the mesh-based MEC model of the

WRSM in [9, 10, 11, 12]. We have selected the static MEC model in [9] and formed a

dynamic MEC model using the procedure laid out in [12]. Therein, the field current

and rotor speed are assumed constant. Damper windings are ignored in [9, 10, 11].

Different segments of stator, rotor, and airgap are modeled using flux tubes to form a

magnetic circuit, as seen in Figure 1. Reluctance formulation is based on the geometry

and permeability information of respective flux tubes [12]. Kirchhoff’s voltage law on

individual loops gives

RΦ = F , (2.1)

where R ∈ Snl is the matrix of reluctances, Φ ∈ Rnl is vector of flux terms in each

loop, F ∈ Rnl is the vector of MMF sources, and nl is the number of loops. Note

that due to the rotor motion, the reluctances of the flux tubes in the airgap region in

matrix R changes with time and should be recalculated at every step. The elements

10



of F can be obtained as the product of winding turns and currents for each magnetic

loop. One can get the flux linkages, λabcs, using [11]

λabcs = PN>abcsΦst, (2.2)

where P is the number of poles, Nabcs is the turns matrix for stator windings, and

Φst represents the flux in loops corresponding to stator segments of magnetic circuit.

[12] has reformulated (2.1) such that flux linkages, λabcs, are the inputs and

winding currents, iabcs, are the output.

 R −csclNabcs(Ks)
−1

csclKsN
>
abcs 0


 Φ

iqd0s/cscl

 =

Nfld 0

0 csclI3/P


 ifld

λqd0s

 . (2.3)

The idea is to incorporate the machine dynamics into the otherwise static relation

of current and flux in (2.1). iqd0s and λqd0s are the currents and flux linkages of the

stator windings in the rotor reference frame. zqd0 = Kszabc, where z represents flux

linkages, currents, or voltages, and Ks is the reference frame transformation matrix

[4]. Nfld is the turns matrix for the field winding. ifld is the field current. cscl is

a scaling factor to condition (2.3). Equation (2.3) can be solved to obtain currents,

iqd0s, for given flux linkages, λqd0s.

State-space representation of a synchronous machine in the rotor reference-

frame is [4]

dλqs
dt

= vqs − rsiqs − ωrλds, (2.4a)

dλds
dt

= vds − rsids + ωrλqs, (2.4b)

dλ0s

dt
= v0s − rsi0s. (2.4c)
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vqs, vds, and v0s are the q-axis, d-axis, and 0-axis voltage terms. rs is the stator

resistance, and ωr is the rotor speed. Dynamic MEC model solves (2.3) and (2.4) in

tandem. The electromagnetic torque is calculated using [11]

TMEC
e =

(
P

2

)2 na∑
j=1

(
φaj
Paj

)2
∂Paj
∂θr

, (2.5)

where φaj and Paj represent flux and permeance for the jth loop in the airgap region.

na is the number of airgap loops (changing with the rotor position), and θr is the

rotor position.

2.3.2 qd0 Model

State-space representation of a lumped-parameter model is the same as (2.4).

However, the relation between flux linkages and currents is formulated as [4]

λqs = (Lls + Lmq)iqs, (2.6a)

λds = (Lls + Lmd)ids +
2

3

Nfld

Ns

Lmdifld, (2.6b)

λ0s = Llsi0s. (2.6c)

Lls is the leakage inductance of stator, Lmq and Lmd are the q- and d-axis magnetiz-

ing inductances, respectively. Nfld and Ns are the lumped equivalency of spatially-

distributed field winding and stator winding, respectively. The electromagnetic torque

becomes

Te =
3P

4
(λdsiqs − λqsids) . (2.7)
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qd0 parameter extraction from the MEC model is analogous to replacing the flux

linkage and current relation in (2.3) with (2.6).

2.4 Setting up the Model Extraction Procedure

In order to extract the qd0 model from the MEC model, one can compare

trajectories generated from (2.3), (2.4), and (2.5) with those predicted by (2.6), (2.4),

and (2.7) and minimize their mismatch. This requires one to discretize the qd0 model.

2.4.1 Discretizing Machine Dynamics

While a host of methods are available, (e.g., Tustin’s [32]), in this work, the

forward Euler method is adopted for its simplicity. The discretized state trajectory

for a general dynamic system dx
dt

= f(x) using the forward Euler method is

x[τ + 1] = x[τ ] +∆T × f(x) . (2.8)

x is the state, ∆T is the sampling time, and τ is the time instance. The qd0 model

in (2.4), (2.6), and (2.7) is discretized as

λ[τ + 1] = Aλ[τ ] +Ri[τ ] + v[τ ], (2.9a)

λ[τ ] = Li[τ ] + ` ifld, (2.9b)

Q× Te[τ ] =
3

4
λ>[τ ]Mi[τ ]. (2.9c)

λ[τ ] ∈ R3 and i[τ ] ∈ R3 are the flux linkages and currents, respectively, in the rotor

reference frame at time instance τ . The qd0 subscript is dropped for brevity. v[τ ]

13



in (2.9a) is the qd0 voltage terms times the sampling time, v[τ ] = vqd0[τ ] × ∆T .

Matrices A, R, L, `, M , and Q in (2.9) are defined as

A ,


1 −a 0

a 1 0

0 0 1

, R ,

−r 0 0

0 −r 0

0 0 −r

, (2.10a)

Q ,
1

P
, L ,


l1 0 0

0 l2 0

0 0 l3

, (2.10b)

` ,


0

l4

0

, M ,


0 −1 0

1 0 0

0 0 0

, (2.10c)

where a , ωr∆T , r , rs∆T , l1 , Lls + Lmq, l2 , Lls + Lmd, l3 , Lls, and l4 ,

2
3

Nfld
Ns

Lmd. The model extraction problem presented in following sections aims to

determine the values (a, r, l1, l2, l3, l4, Q) based on which machine parameters, ωr, rs,

Lls, Lmq, Lmd,
Nfld
Ns

, and P can be uniquely determined.

2.4.2 Problem Formulation

Suppose that we are given the vectors λMEC[τ ], iMEC[τ ], and TMEC
e [τ ] through-

out a discrete time horizon τ ∈ {1, 2, . . . , t}, representing flux linkages, currents, and

torque data from the MEC model, respectively. Then, the parameter extraction for

a qd0 model from the MEC data can be formulated as the following optimization

problem:

minimize
t∑

τ=1

∥∥∥∥λ[τ ]− λMEC[τ ]

∥∥∥∥2

Λα

+
t∑

τ=1

∥∥∥∥i[τ ]− iMEC[τ ]

∥∥∥∥2

Λβ

14



+
t∑

τ=1

γ
(
Te[τ ]− TMEC

e [τ ]
)2

(2.11a)

subject to

λ[τ+1]=λ[τ ]+a×
[
−λ2[τ ], λ1[τ ], 0

]>
−r × i[τ ]+v[τ ],

τ=1, 2, . . . , t−1 (2.11b)

λ[τ ] = diag{[l1, l2, l3]}i[τ ] + [0, l4, 0]> × ifld,

τ=1, 2, . . . , t (2.11c)

Q× Te[τ ] =
3

4
λ>[τ ]

[
−i2[τ ], i1[τ ], 0

]>
, τ=1, 2, . . . , t (2.11d)

variables{
λ[τ ] ∈ R3, i[τ ] ∈ R3, Te[τ ] ∈ R

}t
τ=1

,

a, l1, l2, l3, l4, r, Q ∈ R.

The 3× 3 matrices Λα and Λβ are defined as

Λα ,


α1 0 0

0 α2 0

0 0 α3

 , Λβ ,

β1 0 0

0 β2 0

0 0 β3

 . (2.12)

(α1, α2, α3), (β1, β2, β3) and γ are user-defined non-negative weights given to flux,

current and torque data, respectively.

The objective function in (2.11a) represents the total mismatch between the

MEC and qd0 trajectories. The equality constraint in (2.11b) represents the state

equation for the qd0 model. Constraints in (2.11c) and (2.11d) form the flux linkage-

current relationship and torque expressions, respectively. The auxiliary variable Q =

15



1/P is defined to reduce the order of torque equation from three (cubic) to two

(quadratic), which will help in the following convex formulation. To summarize, the

optimization problem in (2.11) minimizes the sum of scaled residuals for trajectories

of flux linkages, currents, and torque to uniquely obtain λ, i, Te, A, R, L, `, and Q

subject to the constraints in (2.11a) - (2.11d).

2.5 Convex Relaxation and Numerical Search

Without proper initialization, local search algorithms may fail to converge to

a globally optimal solution or even a feasible point. To address this issue, we use

cone programming relaxation followed by IPM to reliably solve the problem (2.11a)

- (2.11d). The proposed convex relaxation is explained next.

2.5.1 Cone Programming Relaxation

The original optimization problem in (2.11) is non-convex due to the presence

of bilinear terms:

� a λ2[τ ], a λ1[τ ] and r i[τ ] in (2.11b);

� l1 i1[τ ], l2 i2[τ ] and l3 i3[τ ] in (2.11c); as well as

� λ1[τ ] i2[τ ], λ2[τ ] i1[τ ] and Q Te[τ ] in (2.11d).

The aforementioned nonlinearity can be tackled by introducing new variable (i.e.,

lifting the problem). To this end, define

f [τ ] ,
[
aλ2[τ ], −aλ1[τ ], 0

]>
, (2.13a)

h[τ ] , r × i[τ ], (2.13b)

z[τ ] , diag{[l1, l2, l3]} i[τ ], (2.13c)

w[τ ] ,
[
λ1[τ ]i2[τ ], λ2[τ ]i1[τ ], 0

]>
, (2.13d)
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θ[τ ] , Q× Te[τ ]. (2.13e)

The aforementioned auxiliary terms participate in (2.11b) - (2.11d) and can be used

to simplify them, as we will demonstrate later. However, in order to streamline the

relaxation process, it is necessary to reformulate the definitions in (2.13) as follows:

√
(ā− a2)

(
λ̄2[τ ]− λ2[τ ]2

)
= |f1[τ ]− aλ2[τ ]|,√

(ā− a2)
(
λ̄1[τ ]− λ1[τ ]2

)
= |f2[τ ] + aλ1[τ ]|,

f3[τ ] = 0 τ=1, 2, . . . , t (2.14a)

√(
λ̄1[τ ]− λ1[τ ]2

)
(̄i2[τ ]− i2[τ ]2) = |w1[τ ]− λ1[τ ]i2[τ ]|,√(

λ̄2[τ ]− λ2[τ ]2
)

(̄i1[τ ]− i1[τ ]2) = |w2[τ ]− λ2[τ ]i1[τ ]|,

w3[τ ] = 0 τ=1, 2, . . . , t (2.14b)

√
diag{[l̄1 − l21, l̄2 − l22, l̄3 − l23]}(ī[τ ]− diag{i[τ ]}i[τ ])

= |z[τ ]− diag{[l1, l2, l3]} i[τ ]| τ=1, 2, . . . , t (2.14c)√
(r̄ − r2)(ī[τ ]− diag{i[τ ]}i[τ ])

= |h[τ ]− r × i[τ ]| τ=1, 2, . . . , t (2.14d)√
(Q̄−Q2)(T̄e[τ ]− Te[τ ]2)

= |θ[τ ]−Q× T̄e[τ ]| τ=1, 2, . . . , t (2.14e)

where

l̄1 , l21, l̄2 , l23, l̄3 , l23, (2.15a)
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ā , a2, r̄ , r2, Q̄ , Q2, (2.15b)

λ̄[τ ] , diag{λ[τ ]}λ[τ ], τ=1, 2, . . . , t (2.15c)

ī[τ ] , diag{i[τ ]}i[τ ], τ=1, 2, . . . , t (2.15d)

T̄e[τ ] , Te[τ ]2. τ=1, 2, . . . , t (2.15e)

It can be observed that the equations in (2.14) are equivalent to (2.13). In what

follows, we will transform all of equalities in (2.14) and (2.15), in order to arrive to a

convex relaxation:

minimize
t∑

τ=1

α>
(
λ̄[τ ] + diag{λMEC[τ ]}(λMEC[τ ]− 2λ[τ ])

)
+

t∑
τ=1

β>
(
ī[τ ] + diag{iMEC[τ ]}(iMEC[τ ]− 2i[τ ])

)
+

t∑
τ=1

γ
(
T̄e[τ ]− 2 TMEC

e [τ ]Te[τ ] + TMEC
e [τ ]2

)
(2.16a)

subject to

λ[τ+1]=λ[τ ]−f [τ ]−h[τ ]+v[τ ], τ=1, 2, . . . , t−1 (2.16b)

λ[τ ] = z[τ ] + [0, l4, 0]> × ifld, τ=1, 2, . . . , t (2.16c)

θ[τ ] =
3

4
(w2[τ ]− w1[τ ]), τ=1, 2, . . . , t (2.16d)

l̄1 ≥ l21, l̄2 ≥ l23, l̄3 ≥ l23, (2.16e)

ā ≥ a2, r̄ ≥ r2, Q̄ ≥ Q2, (2.16f)

λ̄[τ ] ≥ diag{λ[τ ]}λ[τ ], τ=1, 2, . . . , t (2.16g)

ī[τ ] ≥ diag{i[τ ]}i[τ ], τ=1, 2, . . . , t (2.16h)

T̄e[τ ] ≥ Te[τ ]2 τ=1, 2, . . . , t (2.16i)
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√
(ā− a2)

(
λ̄2[τ ]− λ2[τ ]2

)
≥ |f1[τ ]− aλ2[τ ]|,√

(ā− a2)
(
λ̄1[τ ]− λ1[τ ]2

)
≥ |f2[τ ] + aλ1[τ ]|,

f3[τ ] = 0 τ=1, 2, . . . , t (2.16j)

√(
λ̄1[τ ]− λ1[τ ]2

)
(̄i2[τ ]− i2[τ ]2) ≥ |w1[τ ]− λ1[τ ]i2[τ ]|,√(

λ̄2[τ ]− λ2[τ ]2
)

(̄i1[τ ]− i1[τ ]2) ≥ |w2[τ ]− λ2[τ ]i1[τ ]|,

w3[τ ] = 0 τ=1, 2, . . . , t (2.16k)

√
diag{[l̄1 − l21, l̄2 − l22, l̄3 − l23]}(ī[τ ]− diag{i[τ ]}i[τ ])

≥ |z[τ ]− diag{[l1, l2, l3]} i[τ ]| τ=1, 2, . . . , t (2.16l)√
(r̄ − r2)(ī[τ ]− diag{i[τ ]}i[τ ])

≥ |h[τ ]− r × i[τ ]| τ=1, 2, . . . , t (2.16m)√
(Q̄−Q2)(T̄e[τ ]− Te[τ ]2)

≥ |θ[τ ]−Q× T̄e[τ ]| τ=1, 2, . . . , t (2.16n)

variables{
λ[τ ], i[τ ], λ̄[τ ], ī[τ ],f [τ ],h[τ ], z[τ ],w[τ ] ∈ R3

}t
τ=1

,{
Te[τ ], T̄e[τ ] ∈ R

}t
τ=1

,

a, l1, l2, l3, l4, r, Q, ā, l̄1, l̄2, l̄3, r̄, Q̄ ∈ R.

The non-negative weights in the objective function in (2.16a) are α = diag(Λα)

and β = diag(Λβ). Equality constraints in (2.16b) - (2.16d) are the same as those

in (2.11b) - (2.11d) which describe the WRSM model equations. The inequalities
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in (2.16e) - (2.16k) implicitly impose (2.13) - (2.15) to preserve equivalency to the

original problem in (2.11) and the convexified problem in (2.16). It is straightforward

to observe that (2.16e) - (2.16k) are convex if formulated as linear matrix inequalities:

 ā fk[τ ]

fk[τ ] λ̄3−k[τ ]

�
(−1)3−ka

λ3−k[τ ]


(−1)3−ka

λ3−k[τ ]


>

k=1, 2 (2.17a)

λ̄k[τ ] wk[τ ]

wk[τ ] ī3−k[τ ]

 �
 λk[τ ]

i3−k[τ ]


 λk[τ ]

i3−k[τ ]


>

k=1, 2 (2.17b)

 l̄k zk[τ ]

zk[τ ] īk[τ ]

 �
 lk

ik[τ ]


 lk

ik[τ ]


>

k = 1, 2, 3 (2.17c)

 r̄ hk[τ ]

hk[τ ] īk[τ ]

 �
 r

ik[τ ]


 r

ik[τ ]


>

k = 1, 2, 3 (2.17d)

 Q̄ θ[τ ]

θ[τ ] T̄e,k[τ ]

 �
 Q

Te,k[τ ]


 Q

Te,k[τ ]


>

k = 1, 2, 3 (2.17e)

The optimization problem in (2.16) is a relaxation and its solution may not

be feasible for the original problem in (2.11). Nonetheless, the solution of convex

relaxation can be used as an initial point for any general-purpose IPM solver.

As an alternative to IPM, [33] proposes a penalization method to find feasible

and near-optimal solutions to problems of the form (2.11). This approach is regarded

as penalized convex relaxation. Let x̂ =
(
{λ̂[τ ], î[τ ], T̂e[τ ]}tτ=1, â, l̂1, l̂2, l̂3, r̂, Q̂

)
be an
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optimal solution for the convex problem (2.16). If x̂ is not feasible for the original

nonconvex problem, one can incorporate a penalty term of the form

κ
(
{λ̂[τ ], î[τ ], T̂e[τ ]}tτ=1, â, l̂1, l̂2, l̂3, r̂, Q̂

)
= ηa(ā− 2âa+ â2) + ηr(r̄ − 2r̂r + r̂2)

+ ηQ(Q̄− 2Q̂Q+ Q̂2) + ηl1(l̄1 − 2l̂1l1 + l̂21)

+ ηl2(l̄2 − 2l̂2l2 + l̂22) + ηl3(l̄3 − 2l̂3l3 + l̂23)

+ ηλ

t∑
τ=1

(1>3 λ̄[τ ]− 2λ̂>[τ ]λ[τ ] + λ̂>[τ ]λ̂[τ ])

+ ηi

t∑
τ=1

(1>3 ī[τ ]− 2î>[τ ]i[τ ] + î>[τ ]̂i[τ ])

+ ηTe

t∑
τ=1

(T̄e[τ ]− 2T̂e[τ ]Te[τ ] + T̂ 2
e ), (2.18)

in the objective function of relaxation, and solve additional rounds to obtain fully

feasible points with satisfactory objective values. In (2.18), the parameters

ηa, ηr, ηQ, ηl1 , ηl2 , ηl3 , ηλ, ηi, ηTe ≥ 0 are user-defined.

2.6 Model Generation and Verification

2.6.1 System Setup

The MEC model of a 2 kW WRSM is adopted from [9]. The machine is con-

structed using M19 steel laminations, and copper conductors are used for stator and

field windings. The optimization experiments are run on a workstation equipped with

Intel(R) Core i7-6700 CPU (4 cores) at 3.40 GHz and 32 GB of RAM with Windows

10. The conic optimization problem in (2.16) is solved using the SDPT3 4.0 [34] and

MOSEK [35] solver running on CVX [36] in the MATLAB 2017b environment. Local

search is implemented using MATPOWER Interior Point Solver (MIPS) [37].
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Figure 2: Time-domain transients for flux linkages, currents, and electromagnetic torque.

Operating condition is ifld = 0.25 A, ωr = 3600 RPM, vqs = 10 V, vds = 0 V, and v0s = 0.25

V. The sampling length is ∆T = 2.22 × 10−4s. Only the highlighted sections of the data

are used for model extraction.
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2.6.2 Training Data Generated by the Dynamic MEC Model

We have considered an unbalanced operation of the WRSM to generate training

data with non-zero zero-sequence flux linkage and current components. Zero initial

conditions are assumed for the states. Figure 2 shows the flux linkages, currents, and

electromagnetic torque waveforms generated using the MEC model. The highlighted

portions of plots in Figure 2, that include 100 data points, are used in parameter

extraction. More data points will improve the solution, albeit at the expense of

computational time.

2.6.3 Model Extraction Procedure

The optimization problem in Section 2.5.1 is first solved using cone program-

ming relaxation. The result is used as an initial condition for IPM. The tuning gains

for the relaxed problem are Λα = Λβ = diag {1, 1, 0.001} and γ = 1. A flat initial

condition is assumed with all unknown variables set to 1. The length of the time

horizon is t = 100. Conic relaxation solves (2.16) over a convexified version of the

feasible set of (2.11). Table 5 shows the relaxation results. The obtained set is not

necessarily a feasible point (e.g., see Lls), but can be a good initial point for IPM. In

comparison, in all of our experiments, five rounds of penalized relaxation (see (2.18))

resulted in feasible points and parameters similar to those of IPM.

The tuning gains for IPM are Λα = diag {104, 104, 104}, Λβ = diag {0.001, 0.001, 0.001},

and γ = 0.1. Table 2 tabulates the parameters extracted by IPM after solving (2.11).

These parameters are compared against those reported in [9] (corresponding to MEC-

BH1 model). Reference value of the stator resistance, rs = 0.1729 Ω, is directly

obtained in the MEC model [9] using equivalent length and area of the windings.

The reference value for the effective turns ratio between the field and stator wind-

ings,
Nfld
Ns

, is taken from that reported in [38]. As seen in Table 2, the percentage
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Table 1: Initial parameters obtained using a single run of convex relaxation: MEC-
BH1 (t = 100)

Parameter MEC [9, 38] Estimated %Mismatch
Parameters (w.r.t. MEC model)

ωr*(rad/sec) 376.99 376.98 0.0005
rs(Ω) 0.1729** 0.1729 0
Lls (mH) 0.83 0.27 67.47
Lmq (mH) 3.06 3.38 10.45
Lmd (mH) 4.71 5.19 10.19
Nfld
Ns

10.94 10.23 6.50

P 4 4.44*** -

*Electrical angular speed of the rotor. **Directly obtained from
the MEC model. ***The number of poles, P , takes even inte-
gers.

Table 2: Machine parameters extracted using hybrid cone programming relaxation
and IPM: MEC-BH1 (t = 100)

Parameter MEC [9, 38] Hardware [9] Estimated %Mismatch
Parameters (wrt MEC/Hardware)

ωr*(rad/sec) 376.99 376.99 377.10 0.02 / 0.02
rs(Ω) 0.1729** 0.21 0.1738 0.52 / 17.23
Lls (mH) 0.83 0.90 0.75 9.06 / 16.13
Lmq (mH) 3.06 3.07 2.94 3.74 / 4.05
Lmd (mH) 4.71 4.46 4.74 0.66 / 6.30
Nfld
Ns

10.94 Not available 11.16 2.00 / -

P 4 4 3.90*** - / -

*Electrical angular speed of the rotor. **Directly obtained from the MEC model.
***The number of poles, P , takes even integers.

Table 3: Machine parameters extracted using hybrid cone programming relaxation
and IPM: MEC-BH2 (t = 100)

Parameter MEC [9, 38] Hardware [9] Estimated %Mismatch
Parameters (wrt MEC/Hardware)

ωr*(rad/sec) 376.99 376.99 377.12 0.03 / 0.03
rs(Ω) 0.1729** 0.21 0.1737 0.46 / 17.28
Lls (mH) 0.82 0.90 0.74 9.75 / 17.77
Lmq (mH) 2.94 3.07 2.84 3.40 / 7.49
Lmd (mH) 4.33 4.46 4.34 0.23 / 2.69
Nfld
Ns

10.94 Not available 11.35 3.75 / -

P 4 4 3.89*** - / -

*Electrical angular speed of the rotor. **Directly obtained from the MEC model.
***The number of poles, P , takes even integers.
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mismatch for the estimated parameters w.r.t. MEC reference values is highest for

Lls at 9.06%, whereas the rest of the parameters are estimated within 3.8% accuracy.

Estimation error with respect to the hardware values is obviously higher given the

inherent mismatch between the original MEC model and the hardware prototype in

[9]. It should be noted that parameters reported for MEC model should be considered

for comparative purpose. [9] also proposed a second MEC model of WRSM, named

MEC-BH2, to address the discrepancy between the anhysteretic BH curve used in

the MEC model and BH curve obtained from the material used in the machine de-

sign. For completion, results for parameter extraction on MEC-BH2 model are also

provided in Table 3.

In the problem formulation in (2.11) and (2.16), transients of flux linkages, cur-

rents, and electromagnetic torque are also considered as optimization variables. The

IPM solution recovers these variables along with the machine parameters. Figure

3 compares the time-domain transients of input MEC data and the trajectories ob-

tained by the optimization process for MEC-BH1. The red curves in Figure 3 show

the data from the MEC model that is given as an input to the optimization algo-

rithm (the shaded portion of transients in Figure 2). The black curves are transients

obtained from the IPM algorithm applied to the optimization problem in (2.11). As

the low-order qd0 model cannot capture all dynamics generated by the MEC model,

the optimization algorithm will minimize the mismatch between the trajectories of

the input MEC model and the extracted qd0 model.

The leakage inductance, Lls, reported in[9], are obtained using the conventional

zero-sequence test as documented in[39]. Alternatively, the leakage inductance value

obtained here provides the best fit between the transients produced by MEC and

qd0 models. Figure 4 compares the zero-sequence flux linkage, λ0s, of MEC data

against transients produced by two qd0 models with two different sets of parameters.
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Table 4: Computations and Time durations for hybrid cone programming relaxation
and IPM

Test Case
Iterations Running Time

Convex IPM Convex(s) IPM(s) Total(s)
MEC-BH1 (t = 100) 38 8 6.01 5.78 11.79
MEC-BH2 (t = 100) 42 8 6.40 6.02 12.42

The waveform colored green (named ‘qd0 [3]’) corresponds to the qd0 model with

parameters taken from [9], while the waveform colored black (named ‘qd0 optimal’)

corresponds to the qd0 model with parameters from Table 2. It is evident from Figure

4 that the machine parameters obtained in this chapter provide a better fit to the

MEC data. Mean absolute percentage error (MAPE) [40] can be used to quantify the

errors between the curves in Figure 4. MAPE is defined as

MAPE =
100%

t

t∑
t=1

∣∣∣YMEC(t)− Y (t)

YMEC(t)

∣∣∣, (2.19)

where YMEC represents the transients from the MEC model and Y is the transients

produced by the qd0 models. The MAPEs for ‘qd0 [3]’ and ‘qd0 optimal’ compared

to the MEC data for Figure 4 are 40.04% and 37.42%, respectively.

Table 4 provides the iteration counts and times required for both cone pro-

gramming (CVX with the SDPT3 4.0 solver) and IPM (MIPS solver) methods. Note

that the longer time horizon also increases the computation time needed to obtain

the optimal solution, as the number of unknown variables (and equality constraints)

also increases.

2.6.4 MEC vs qd0 Model Comparison

The MEC model of the WRSM had been validated against a hardware prototype

[9]. Herein, we reproduce Figure 10a of [9] to compare our qd0 model against the
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Figure 3: Trajectories obtained from IPM compared with the MEC data for MEC-BH1

using t = 100. Apart from the machine parameters listed in Table 2, transients of flux

linkages (λqs, λds, λ0s), currents (iqs, ids, i0s), and electromagnetic torque (Te) are also

obtained from the solution to the optimization problem.
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Figure 5: Open-circuit operation of the static MEC model in [9] and the resulting qd0
model (ifld = 1 A, ωr = 1000 RPM).

validated MEC model. The WRSM is run under an open circuit with ifld = 1 A

and ωr = 1000 RPM. Figure 5 shows the phase-a voltage waveform for the extracted

qd0 model, and that obtained by the static MEC model. The harmonic effects of

the spatial distribution of stator slots are evident in the MEC model. The voltage

waveform produced by both models are in agreement.

Next, the qd0 model and the dynamic MEC model are simulated with ifld = 1

A, ωr = 3600 RPM, and a balanced load Rload = 20 Ω. The phase-a transients, as

seen in Figure 6, show that the resulting qd0 model mimic the essential dynamics of
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Figure 6: Flux linkage, current, voltage, and electric torque for the extracted qd0 model
compared against the MEC model, when connected to a balanced load (ifld = 1 A, ωr =
3600 RPM, Rload = 20 Ω).

the MEC model. The physical time for a 5-cycle (83.3 ms) simulation run for the

MEC and qd0 models are 0.8362 s and 0.0377 s, respectively. The qd0 model is more

than 20 times faster than the dynamic MEC model.

2.7 Summary

The macromodel of a 2 kW WRSM is successfully extracted from its dynamic

MEC model. The parameter extraction process is formulated as an optimization prob-

lem; This problem is first covexified using a cone programming relaxation method and,

then, the resulting solution is used to initialize the IPM solver. We have successfully
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extracted all the machine parameters within 4% accuracy with respect to the original

MEC model; The leakage inductance, Lls, was estimated within 10% accuracy. The

extracted qd0 model is compared against MEC model, and exhibits acceptable fidelity

with an appreciable gain in the simulation speed. Future work could include model

extraction for a more general qd0 model that accounts for spatial harmonics. This

would be a compromise between the MEC model and the classical qd0 model with

constant inductance terms. We envision that adding any general form of qd0 model

would change the equality constraints of the optimization problem. To accommodate

non-sinusoidal winding distributions, the flux linkage-current relation in (2.6) will in-

clude rotor-position-dependent inductance terms. Therefore, the equality constraints

in (2.11c) will be updated to include expressions that are products of time-varying in-

ductances and winding currents (instead of time-invariant inductances and currents).

Given the circumferential motion of the rotor, additional equality constraints would

be needed to address the periodicity of inductances.
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CHAPTER 3

INDUCTION MACHINE PARAMETERIZATION FROM LIMITED

TRANSIENT DATA USING CONVEX OPTIMIZATION

Abstract

This paper identifies the parameters of an induction machine using limited and

non-intrusive observations of available input voltages, stator currents, and the

rotor speed. Parameter extraction is formulated as a non-convex estimation

problem, which is then relaxed to a convex conic optimization problem. While

the resulting relaxation could exhibit a satisfactory performance, there might

be cases where the solution of convex relaxation fails to satisfy the dynamic

equations of the machine. This is remedied through a local search approach

initiated using the solution obtained from the relaxed problem. The proposed

method is experimentally verified on a squirrel-cage induction machine with

missing measured data. Using the measured signals as the benchmark, time-

domain transients produced by the parameters estimated using the proposed

method show almost 20% better match compared to time-domain transients

produced by the parameters obtained via conventional testing.

3.1 Introduction

Accurate machine characterization is needed for drive design and control, diag-

nostics and condition monitoring, controller/hardware-in-the-loop applications. Given

that induction machines constitute a significant portion of loads in the grid, proper

32



machine characterization is crucial to analysis of power system dynamics [42]. Mis-

match between the actual and estimated parameter sets can deteriorate the drive

performance [43]. Reliable data for most machines are not accessible, and excessive

testing may not always be practical. Informative reviews on parameter identification

of induction machines are presented in [44] and [27]. Conventionally, estimating pa-

rameters involves intrusive testing, e.g., IEEE Std. 112[45]. One popular approach

is to excite the machine with predetermined signals and monitor its response while

maintaining a standstill rotor[46, 47, 48], which is suitable for ‘self-commissioning’

[49, 50]. In general, intrusive testings require isolated access to the machine, addi-

tional measurement equipment, and interruption of machine operation which might

not be always feasible. For example, the locked-rotor test draws in large currents

and could become impractical for some industrial setups. It is desirable to extract

machine parameters from (preferably a single) transients during normal operation

[51]. For example, [52] utilizes different portions of current and voltage transients to

approximate conventional test scenarios.

The main parameters of interest for an induction machine are stator and ro-

tor resistances, magnetizing inductance, stator and rotor leakage inductances, and

mechanical inertia. Various methodologies exist for non-intrusive parameterization

of induction machines, e.g., observer-based estimators [53, 54] or least-square regres-

sion [55, 26]. Observer-based methods, such as Kalman filters, can estimate system

states and a subset of machine parameters using measured signals from the machine

terminals. However, Kalman filters require proper initialization and noise covariance

matrices [56]. [55] reformulates the machine model in terms of K -parameters, assum-

ing slow-varying rotor speed, resulting in a standard linear least-square regression

problem. [26] and [57] further extend this work to incorporate time-varying speed

into the final regression problem. However, this involves estimating first- and second-
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order derivatives for certain current and flux-linkage terms, and are susceptible to

noisy measurements. Usually, all these methods perform estimations using measure-

ments of stator currents, input voltages, and rotor speed. [58] estimated machine

parameters using only stator currents and voltages. This could, potentially, result in

an ill-conditioned problem which would require an estimate for speed trajectory or an

excellent initial guess, or could only offer a subset of parameters. Equivalent circuit

model of an induction machine could be found using geometrical and electrical data

[59, 60]. [61] employed finite-element model of an induction machine to extract its

equivalent circuit model. [7] obtained the machine parameters from a high-fidelity

magnetic-equivalent circuit model. Such methods require expert knowledge on the

underlying complex models, manufacturing/fabrication errors, or material defects,

and inherent the approximation present in the primary modeling effort.

One could employ nonlinear constraint optimization [62], [63] to minimize an

objective function (usually, the norm of error between measured and predicted out-

puts) subject to machine model equations. A major challenge is the inherent non-

convexity of the resulting optimization problem. Newton’s method might not cor-

rectly converge without proper initialization. Various workarounds to tackle this

limitation include (1) use of good initial conditions (from self-commissioning [50],[64]

or conventional tests), (2) employing heuristics, e.g, enforcing box constraints on ma-

chine parameters[65], or (3) executing multiple optimization runs from different initial

points [63]. Metaheuristic optimization techniques, e.g., genetic algorithms, can cir-

cumvent non-convexity albeit at a higher computational cost [66], [67, 68, 69]. In the

context of power system estimation, [31] proposes a convex optimization approach to

offer a good initial condition for the follow-up Newton’s method. [7] has extracted

parameters from magnetic equivalent circuit model of a synchronous machine using
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conic relaxation, assuming availability of all inputs and states, which is not a valid

assumption for a physical machine.

We leverage the convex optimization framework to parameterize an induction

machine using only limited samples of measurable signals. Herein, we assume a no-

load operation and use data from start-up transients. The problem of non-convexity

is tackled by formulating it in a higher-dimensional space and imposing conic con-

straints. Unlike original equations, the relaxed formulation can be solved efficiently

using off-the-shelf solvers. To properly enforce machine dynamics, we feed the out-

come of convex relaxation to a local search algorithm to obtain the desired near-

optimal solution. Figure 7 provides an overview of the proposed approach, with its

salient features summarized as follows:

� This method is non-intrusive; Parameters are identified using only limited sam-

ples of start-up transients.

� The proposed method does not require a priori knowledge of most machine

parameters, which makes it suitable for refurbished or re-wounded machines.

� Machine parameters, including stator and rotor resistances, stator and rotor

leakage inductances, magnetizing inductance, mechanical inertia, and the fric-

tion coefficient, are simultaneously identified.

� The proposed method reformulates a non-convex optimization problem into a

tractable convex approximation. Detailed treatment of this transformation is

provided. A penalized improvement of this convex relaxation is also discussed

and verified using a test example.

� The proposed method is experimentally verified for an induction motor proto-

type, and is shown to converge even with missing points in available signals.

Convergence is achieved with 80% of the measurement data. Robustness of the

proposed method to noisy data is discussed.
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Subject to:
   State Equation 
   Flux-Current Equation 
   Torque Equation 

Model Identification Process
Minimize:

Limited Samples of
Measurable Signals

Physical Machine

Unmeasurable Signals

Machine Parameters

Conic Relaxation

Local Search

Figure 7: Overview of the proposed model identification method.

� The set of machine parameters extracted by the proposed method are shown

to result in a better match with the measured transients compared to the pa-

rameter set obtained by the conventional methods. Particularly, the proposed

method has resulted in 12.5%-30% reduction in error when matching the stator

currents, and 8.7% improvement when matching with the rotor speed transients.

3.2 Notations

Vectors and matrices are represented using bold lowercase and uppercase vari-

ables, respectively (e.g., y and Y ). The jth element of vector y is yj. In denotes

a size n identity matrix. The notation diag{y} represents a diagonal matrix with

the vector y forming the diagonal. For an n × n symmetric positive-definite matrix

Z and the vector y ∈ Rn, the norm notation ‖y‖Z denotes
√
y>Zy. ⊗ stands

for the Kronecker product. Symbol ·̌ represents the vectorization operator, i.e.,

λ̌ ,
[
λ[1]>,λ[2]>,λ[3]> . . .

]>
. Set A is convex if, for every y1,y2 ∈ A and any

ρ ∈ [0, 1], ρy1 + (1− ρ)y2 ∈ A [70].
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3.3 Discrete-time Model of an Induction Machine

We present the classic dynamic model of an induction machine, and then adopt

its discrete-time representation.

3.3.1 Machine Model

The induction machine model, in the arbitrary reference frame, is given by [4]

dλ(t)

dt
= ω

[
−λds(t), λqs(t),−λdr(t), λqr(t)

]>
+

ωr(t)
[
0, 0, λdr(t),−λqr(t)

]>
−Ri(t)+v(t), (3.1a)

λ(t) = Li(t), (3.1b)

where λ(t), i(t), and v(t) are the vectors of flux linkages, currents, and voltages,

respectively, defined as

λ(t) , [λqs(t), λds(t), λqr(t), λdr(t)]
>, (3.2a)

i(t) , [iqs(t), ids(t), iqr(t), idr(t)]
>, (3.2b)

v(t) , [vqs(t), vds(t), vqr(t), vdr(t)]
>. (3.2c)

Subscripts qs, ds, qr, and dr denote q-axis stator, d -axis stator, q-axis rotor, and

d -axis rotor terms, respectively. Zero-sequence terms are neglected in this balanced

representation. R = diag {[rs, rs, rr, rr]} and L is

L =



Ls 0 Lm 0

0 Ls 0 Lm

Lm 0 Lr 0

0 Lm 0 Lr


. (3.3)
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ω represents the speed of the chosen reference frame, ωr(t) is the rotor speed, rs is the

stator resistance, rr is the rotor resistance, Ls is the stator self-inductance, Lr is the

rotor self-inductance, and Lm is the magnetizing inductance. Stator and rotor leakage

inductances can be obtained as Lls = Ls − Lm and Llr = Lr − Lm, respectively. We

assume an induction machine with shorted rotor bars, i.e., vqr = vdr = 0.

The dynamics of the mechanical subsystem is [4]

dωr(t)

dt
=

P

2J
(Te(t)− Tm(t)) , (3.4)

where P is the number of poles, J is the lumped mechanical inertia, Te is the electro-

magnetic torque, and Tm is the mechanical (load) torque. In this chapter, we consider

the start-up transient of an induction machine under free acceleration, where only fric-

tion torque is present. The equivalent friction torque can be found by subtracting

the machine loss from the input power at the steady state, no-load operation. For

simplicity, we assume that the friction coefficient has a linear relation with the rotor

mechanical speed. The load torque is

Tm(t) = Bωr(t)/(P/2). (3.5)

B is the total effective friction coefficient [51]. Electromagnetic torque is

Te(t) =
3

4
P (λds(t)iqs(t)− λqs(t)ids(t)) . (3.6)
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3.3.2 Discrete-time Representation

The machine model is discretized using the forward Euler method as it results

in a simple explicit equations which eases the derivation of upcoming relaxation for-

mulations. The discrete-time representation of (3.1), (3.4), and (3.6) become

λ[n+1] = λ[n] +∆T
(
ω
[
−λds[n], λqs[n],−λdr[n], λqr[n]

]>
+ ωr[n]

[
0, 0, λdr[n],−λqr[n]

]>
−Ri[n]+v[n]

)
, (3.7a)

Qwωr[n+ 1] = Qwωr[n]+
∆T

2

(
Te[n]− 2Bωr[n]

P

)
, (3.7b)

λ[n] = Li[n], (3.7c)

Te[n] =
3

4
Pλ>[n]

[
− ids[n], iqs[n], 0, 0

]>
. (3.7d)

n ∈ T represents a time horizon with T , {1, 2, 3, . . . , τ}, and ∆T is the sampling

time interval. The variable Qw , J/P is defined to ensure that (3.7b) remains

of degree two (quadratic), which will be helpful in the upcoming convex relaxation

formulations. Note that P is a known constant.

3.4 Parameter Extraction Procedure

Let iMEA[n] and ωMEA
r [n] denote the values of measured currents and rotor

speeds, respectively, for n ∈ T . Let S denote the set of different discrete-time horizons

such as T . The parameter identification problem is formulated as a weighted least-

square optimization that minimizes the mismatch between predicted state variables

in the discrete-time model (3.7) and the measured signals over S,

minimize∑
n∈S

∥∥∥∥diag{ι[n]}
(
i[n]−iMEA[n]

)∥∥∥∥2

Λ

+γιω[n]
(
ωr[n]−ωMEA

r [n]
)2

(3.8a)

subject to
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λ[n+1]=λ[n]+∆T
(
ω
[
−λds[n], λqs[n],−λdr[n], λqr[n]

]>
+

ωr[n]
[
0, 0, λdr[n],−λqr[n]

]>
−diag{[rs, rs, rr, rr]} i[n]+v[n]

)
, (3.8b)

Qwωr[n+1]=Qwωr[n]+
∆T

2

(
Te[n]− 2Bωr[n]

P

)
, (3.8c)

λ[n] = Lm

[
iqr[n], idr[n], iqs[n], ids[n]

]>
+ diag {[Ls, Ls, Lr, Lr]} i[n], (3.8d)

Te[n] =
3

4
Pλ>[n]

[
− ids[n], iqs[n], 0, 0

]>
, (3.8e)

variables{
λ[n], i[n] ∈ R4, Te[n], ωr[n] ∈ R

}
n∈S ,

rs, rr, Ls, Lr, Lm, Qw, B ∈ R.

Λ = diag{[α1, α2, α3, α4]} and γ contain non-negative weights to normalize current

and speed terms, respectively. ι[n] ∈ {0, 1}4 and ιw[n] ∈ {0, 1} represent binary

flags indicating the availability of the nth data sample. Since rotor-side currents are

hard to measure, it is reasonable to assume that ι3[n] = ι4[n] = 0 (corresponding

to the rotor currents), and ι1[n] = ι2[n] = 1 (corresponding to the stator currents).

Similarly, ιw[n] is 1 or 0 depending upon the availability of speed measurement. The

objective function (3.8a) represents the mismatch between the measured signals and

the transients predicted by the estimated parameter set. The objective function de-

notes the sum of squared residuals (same as a least-squares regression). The equality

constraints (3.8b) – (3.8e) reflect the discrete-time machine model (3.7a) – (3.7d).

The induction machine model presented in (3.1), (3.4), and (3.6) are reflected within

the optimization formulation. The unknown variables in the optimization problem

(3.8) are separately listed below the constraints for convenience. The optimization

problem (3.8a) – (3.8e) solves for flux linkages λ, currents i, torque Te, and speed
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ωr in S, as well as the parameters (rs, rr, Ls, Lr, Lm, Qw, B), while minimizing the

objective function, subject to machine dynamics. Measured data for stator currents

(iqs and ids), input voltage (v), and rotor speed (ωr), and the number of poles, P , are

assumed known.

Observe that due to the the absence of rotor-side measurements, the estimation

problem (3.8a) – (3.8e) suffers from solution ambiguity [71]. This is obvious from

rotor-side flux linkage and current relations (see (3.7c)), where the expression Lriqr

(or Lridr) can take identical values for different Lr and iqr (or idr) in absence of

rotor-side current measurements. To resolve this, we assume that the ratio Ls/Lr is

known. It should be noted that if the NEMA design letter is known for the machine,

the ratio Ls/Lr can be obtained from IEEE Std 112 [45, 72]. Inspired by [55, 57, 26],

we assume Ls/Lr = 1. Note that any other known Ls/Lr ratio would would not affect

the optimization process.

The optimization problem (3.8a) – (3.8e) is non-convex because of the following

bilinear terms:

� ωrλqr, ωrλdr and rsiqs, rsids, rriqr, rridr in (3.8b);

� Qwωr and Bωr in (3.8c);

� Lsiqs, Lsids, Lriqr, Lridr and Lmiqr, Lmidr, Lmiqs, Lmids in (3.8d);

� λqsids and λdsiqs in (3.8e).

Problem of non-convexity makes the optimization problem hard to solve, and standard

tools, such as Newton’s method, might not converge to the right solution without

good initialization. In the following section, we transform this problem into a convex

optimization formulation which could be solved in polynomial time using off-the-shelf

solvers [70, 36].
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3.5 Conic Relaxation and Numerical Search

To remedy the presence of non-convex bilinear terms, we introduce additional

variables (lifting) and employ conic relaxation to derive a convex optimization for-

mulation for the problem (3.8a) – (3.8e).

3.5.1 Lifting

Non-convexity due to nonlinear terms (e.g., ωrλdr and rsiqs) can be addressed

by variable substitution. As a result, the objective function (3.8a) and constraints

(3.8b) – (3.8e) can be rewritten as linear (convex) functions of variables in (3.8a)

– (3.8e) and newly-defined auxiliary variables. This process is known as lifting in

which the original optimization problem is cast into a higher dimensional space and

the entire non-convexity is captured in the definition of auxiliary variables.

For every n ∈ S, define the following additional variables

f [n] , ωr[n]
[
0, 0, λdr[n],−λqr[n]

]>
, (3.9a)

g[n] , diag {[rs, rs, rr, rr]} i[n], (3.9b)

h[n] , Lsi[n], (3.9c)

z[n] , Lm

[
iqr[n], idr[n], iqs[n], ids[n]

]>
, (3.9d)

y[n] ,
[
λqs[n]ids[n], λds[n]iqs[n], 0, 0

]>
, (3.9e)

θ[n] , Qwωr[n], φ[n] , Bωr[n], (3.9f)

λ̄[n] , diag{λ[n]}λ[n], ī[n] , diag{i[n]}i[n], (3.9g)

ω̄r[n] , ω2
r [n], T̄e[n] , T 2

e [n]. (3.9h)
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Define

r̄s , r2
s , r̄r , r2

r , Q̄w , Q2
w, (3.9i)

L̄m , L2
m, L̄s , L2

s, B̄ , B2. (3.9j)

There are two new sets of variables in above formulation: Those like f [n] that repre-

sent the non-convex terms, and those like r̄s that denote squared variable. The need

for such formulations will become clear in what follows. The optimization problem

(3.8a) – (3.8e) can now be reformulated in terms of the auxiliary variables (3.9a)

– (3.9j). However, additional constraints need to be included in the optimization

problem to account for (3.9a) – (3.9j). A standard approach in convex optimiza-

tion to represent bilinear expressions is using matrix equalities [7]. For example,

g1[n] = rsiqs[n] in (3.9b) can be enforced as

 r̄s g1[n]

g1[n] ī1[n]

=

 rs

iqs[n]


 rs

iqs[n]


>

. (3.10)

Expressing (3.9a) – (3.9j) as matrix equalities is helpful as they can be easily convex-

ified. Variables such as r̄s that denote squared variable are used to enforce equality

conditions. Hence, problem (3.8a) – (3.8e) can now be reformulated as

minimize∑
n∈S

ι>[n]Λ
(
ī[n] + diag{iMEA[n]}(iMEA[n]− 2i[n])

)
+ γιw[n]

(
ω̄r[n]− 2 ωMEA

r [n]ωr[n] + ωMEA
r [n]2

)
(3.11a)

subject to

λ[n+ 1]=λ[n]+∆T
(
ω
[
−λds[n], λqs[n],−λdr[n], λqr[n]

]>
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+ f [n]− g[n] + v[n]
)
, (3.11b)

θ[n+ 1] = θ[n] +
∆T

2

(
Te[n]− 2φ[n]

P

)
, (3.11c)

λ[n] = z[n] + h[n], (3.11d)

Te[n] =
3P

4
(y2[n]− y1[n]), (3.11e)

 ω̄r[n] (−1)kfk[n]

(−1)kfk[n] λ̄7−k[n]

=

−ωr[n]

λ7−k[n]


−ωr[n]

λ7−k[n]


>

,

f5−k[n] = 0, k = 3, 4. (3.11f)

 r̄s gk[n]

gk[n] īk[n]

=

 rs

ik[n]


 rs

ik[n]


>

, k = 1, 2. (3.11g)

 r̄r gk[n]

gk[n] īk[n]

=

 rr

ik[n]


 rr

ik[n]


>

, k = 3, 4. (3.11h)

 L̄s hk[n]

hk[n] īk[n]

=

 Ls

ik[n]


 Ls

ik[n]


>

, k = 1, 2, 3, 4. (3.11i)

 L̄m zk[n]

zk[n] īk+2[n]

=

 Lm

ik+2[n]


 Lm

ik+2[n]


>

, k = 1, 2. (3.11j)

 L̄m zk[n]

zk[n] īk−2[n]

=

 Lm

ik−2[n]


 Lm

ik−2[n]


>

, k = 3, 4. (3.11k)
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λ̄k[n] yk[n]

yk[n] ī3−k[n]

=

 λk[n]

i3−k[n]


 λk[n]

i3−k[n]


>

,

y2+k[n] = 0, k = 1, 2. (3.11l)

 Q̄w θ[n]

θ[n] ω̄r[n]

=

 Qw

ωr[n]


 Qw

ωr[n]


>

,

 B̄ φ[n]

φ[n] ω̄r[n]

=

 B

ωr[n]


 B

ωr[n]


>

, (3.11m)

variables{
λ[n], λ̄[n], i[n], ī[n],f [n], g[n],h[n], z[n],y[n] ∈ R4

}
n∈S ,{

Te[n], T̄e[n], ωr[n], ω̄r[n], θ[n], φ[n] ∈ R
}
n∈S ,

rs, r̄s, rr, r̄r, Ls, L̄s, Lm, L̄m, Qw, Q̄w, B, B̄ ∈ R.

The optimization problem (3.11a) – (3.11m) is equivalent to (3.8a) – (3.8e). The

objective function (3.11a) and constraints (3.11b) – (3.11e) are now expressed as

linear equations using auxiliary variables to achieve convexification. The updated

objective function (3.11a) is formulated as an algebraic expansion of (3.8a). Con-

sidering the assumption Ls/Lr = 1, variable Lr is replaced by Ls in the problem

formulation. Matrix equalities (3.11f) – (3.11m) enforce (3.9a) – (3.9j). However,

problem (3.11a) – (3.11m) is still non-convex due to these matrix equalities (3.11f)

– (3.11m). In the following subsection, these equality conditions are relaxed which

make the optimization problem convex.
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3.5.2 Conic Relaxation

Relaxation aims to formulate a convex approximation of a non-convex optimiza-

tion problem. Such a formulation is favorable because its every minimum is a global

minimum that can be readily obtained. Usually, relaxation is achieved by eliminating

or modifying the constraints that lead to non-convexity [70]. For the problem (3.11a)

– (3.11m), relaxed formulation can be obtained by transforming all matrix equalities

in (3.11f) – (3.11m) to matrix inequalities as shown in the following.

Definition 1. Define C as the set of vectors c ∈ R5 that satisfy

c1 c3

c3 c2

 �
c4

c5


c4

c5


>

. (3.12)

It is straightforward to observe that C is a convex set [70].

minimize∑
n∈S

ι>[n]Λ
(
ī[n] + diag{iMEA[n]}(iMEA[n]− 2i[n])

)
+ γιw[n]

(
ω̄r[n]− 2 ωMEA

r [n]ωr[n] + ωMEA
r [n]2

)
(3.13a)

subject to

Machine model equations: (3.11b) – (3.11e) (3.13b)[
ω̄r[n], λ̄7−k[n], (−1)kfk[n],−ωr[n], λ7−k[n]

]>
∈ C

f5−k[n] = 0, k=3, 4. (3.13c)

[
r̄s, īk[n], gk[n], rs, ik[n]

]>
∈ C, k=1, 2.
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[
r̄r, īk[n], gk[n], rr, ik[n]

]>
∈ C, k=3, 4. (3.13d)

[
L̄s, īk[n], hk[n], Ls, ik[n]

]>
∈C, k=1, 2, 3, 4. (3.13e)

[
L̄m, īk+2[n], zk[n], Lm, ik+2[n]

]>
∈ C, k=1, 2.[

L̄m, īk−2[n], zk[n], Lm, ik−2[n]
]>
∈ C, k=3, 4. (3.13f)

[
λ̄k[n], ī3−k[n], yk[n], λk[n], i3−k[n]

]>
∈ C,

y2+k[n] = 0, k=1, 2. (3.13g)

[
Q̄w, ω̄r[n], θ[n], Qw, ωr[n]

]>
∈ C,[

B̄, ω̄r[n], φ[n], B, ωr[n]
]>
∈ C, (3.13h)

r̄s ≥ r2
s , r̄r ≥ r2

r , L̄s ≥ L2
s, (3.13i)

L̄m ≥ L2
m, Q̄w ≥ Q2

w, B̄ ≥ B2 (3.13j)

λ̄[n] ≥ diag{λ[n]}λ[n], (3.13k)

ī[n] ≥ diag{i[n]}i[n], (3.13l)

ω̄r[n] ≥ ω2
r [n] (3.13m)

T̄e[n] ≥ T 2
e [n]. (3.13n)

variables{
λ[n], λ̄[n], i[n], ī[n],f [n], g[n],h[n], z[n],y[n] ∈ R4

}
n∈S ,{

Te[n], T̄e[n], ωr[n], ω̄r[n], θ[n], φ[n] ∈ R
}
n∈S ,

rs, r̄s, rr, r̄r, Ls, L̄s, Lm, L̄m, Qw, Q̄w, B, B̄ ∈ R.
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(3.13c) – (3.13n) implicitly impose the matrix equalities (3.11f) – (3.11m). (3.13c) –

(3.13n) are same as (3.11f) – (3.11m) except for the equality/inequality condition. A

new notation using C is used for compactness. If the solution to the relaxed problem

(3.13a) – (3.13n) satisfies (3.11f) – (3.11m) (probably unlikely), then the relaxation

is declared as exact[70]. Otherwise, the obtained solution is infeasible for the problem

(3.8a) – (3.8e). To assess the solution obtained from conic relaxation, we solve (3.13a)

– (3.13n) for the startup transient of an induction machine. We consider a simulated

case study where the relaxed problem is solved under different scenarios. The machine

model used in the numerical simulation is constructed using the parameters obtained

via conventional test as seen in Table 5. The machine model is simulated with zero

initial conditions and with the input voltage of 220 V (line-to-line). First, to establish

a benchmark, rotor currents are intentionally assumed to be available. We then

consider the realistic scenario that rotor currents are unavailable. Figure 8a shows

the estimated currents i, speed ωr, and torque Te (part of the optimization solution)

for a scenario when the rotor currents are available with Λ = diag{[0.1, 0.1, 0.1, 0.1]}

and γ = 0.1. The result obtained from conic relaxation is near optimal as evident from

the estimated waveforms. However, the absence of rotor current measurements (with

Λ = diag{[0.1, 0.1, 0, 0]} and γ = 0.1), leads to poor estimates for rotor currents and

torque (see Figure 8b). (3.13a) – (3.13n) is a convex approximation to the original

problem in (3.8a) – (3.8e), leading to an approximate solution in Figure 8b.

3.5.3 Incorporating Penalty

The solution from the conic relaxation can be further improved by incorpo-

rating penalty terms into the objective function [33]. Let îqr and îdr denote rough
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Figure 8: Assessment of the estimates obtained from conic relaxation.

guesses for q-axis and d-axis rotor currents. Therefore, one can augment the objective

function (3.13a) with the penalty term

κ =
∑
n∈S

ηiqr (̄iqr[n]− 2̂iqr[n]iqr[n] + î2qr[n])

+ ηidr (̄idr[n]− 2̂idr[n]idr[n] + î2dr[n]). (3.14)

ηiqr and ηidr are user-defined non-negative gains with īqr , i2qr and īdr , i2dr. The

penalty term in (3.14) incentivizes the optimization solver to search around the neigh-

borhood of guessed rotor currents. The penalty term (3.14) is a convex reformulation

for ηiqr(iqr[n]− îqr[n])2 +ηidr(idr[n]− îdr[n])2. A decent guess for rotor currents can be
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Figure 10: Local search results for the example in Fig. 8, which is initialized with
the solution of the penalized conic relaxation in Fig. 8c.

îqr[n] ≈ −iqs[n] and îdr[n] ≈ −ids[n] during the startup [58]. Similarly, at the steady

state, îqr[n] ≈ 0 and îdr[n] ≈ 0. Figure 8c shows the results for the relaxed problem

(3.13a) – (3.13n) when the objective function (3.13a) is augmented with the penalty

term (3.14). Penalization significantly improves the results for the relaxed problem

(with Λ = diag{[0.1, 0.1, 0, 0]}, γ = 0.1, and ηiqr = ηidr = 1).

3.5.4 Local Search

As discussed in Section 3.5.2, the solution to the relaxed optimization problem

(3.13a) – (3.13n) could be infeasible for the original problem (3.8a) – (3.8e). It can,

however, serve as an excellent initial condition to a local search algorithm[31]. To solve
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the estimation problem using an iterative Newton’s method, we need to formulate the

Karush-Kuhn-Tucker (KKT) conditions [70]. By defining the optimization variable

as

x ,
[
λ̌>, ǐ>, Ť>e , ω̌

>
r , Ls, Lm, rs, rr, Qw, B

]>
, (3.15)

the equality constraint (3.8b) – (3.8e) can then be cast as

E(x) , [E1(x)> E2(x)> E3(x)> E4(x)>]> = 0, (3.16)

where

E1(x),
(
K1 −K2

)
λ̌−∆T

(
(diag {K4ω̌r}⊗I4)N1K2λ̌

+ ωN2K2λ̌− (Iτ−1⊗R)K2ǐ+K2v̌
)
, (3.17a)

E2(x),QwK3ω̌r −K4

(
Qwω̌r+

∆T

2
(Ťe−

2B

P
ω̌r)
)
, (3.17b)

E3(x), λ̌− (Iτ ⊗ diag {[Ls, Ls, Ls, Ls]})ǐ− LmN3ǐ, (3.17c)

E4(x), Ťe −
3P

4
diag{(Iτ ⊗ d>2 )λ̌}(Iτ ⊗ d>1 )ǐ+

3P

4
diag{(Iτ ⊗ d>1 )λ̌}(Iτ ⊗ d>2 )ǐ. (3.17d)

K1 , [04(τ−1)×4, I4(τ−1)], K2 , [I4(τ−1),04(τ−1)×4], K3 , [0τ−1, Iτ−1], and K4 ,

[Iτ−1,0τ−1] and

N1 , Iτ−1 ⊗ (d3d
>
4 − d4d

>
3 ), (3.18a)

N2 , Iτ−1 ⊗ (−d1d
>
2 + d2d

>
1 − d3d

>
4 + d4d

>
3 ), (3.18b)

N3 , Iτ ⊗ (d1d
>
3 + d2d

>
4 + d3d

>
1 + d4d

>
2 ). (3.18c)

x denotes the concatenated form of the optimization variable. Symbol ·̌ represents

the vectorization operator (see notations). E1(x), E2(x), E3(x), and E4(x) are the
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J
(
x
)

=


∇λ̌E1 ∇ǐE1 0 ∇ω̌rE1 0 0 ∇rsE1 ∇rrE1 0 0

0 0 ∇ŤeE2 ∇ω̌rE2 0 0 0 0 ∇QwE2 ∇BE2

∇λ̌E3 ∇ǐE3 0 0 ∇LsE3 ∇LmE3 0 0 0 0
∇λ̌E4 ∇ǐE4 ∇ŤeE4 0 0 0 0 0 0 0


(3.19)

vectorized form of machine model (3.7). Variables K1−K4 and N1−N3 are defined to

achieve vectorization. (d1,d2,d3,d4) are the standard basis of R4. One can formulate

the Jacobian matrix J
(
x
)

for the constraints (3.17a) – (3.17d) in the form of (3.19).

In (3.19), ∇{·} denotes the derivative with respect to the subscript variable, e.g.,

∇λ̌E1 is the derivative of E1 with respect to λ̌. Additionally, the Lagrangian

function L of the optimization problem (3.8a) – (3.8e) can be cast as

L
(
x;ν

)
,(ǐ− ǐMEA)>

(
diag{ι̌}(Iτ ⊗Λ)

)
(ǐ− ǐMEA)

+ γ(ω̌r − ω̌MEA
r )>diag{ι̌ω}(ω̌r − ω̌MEA

r ) + ν>E(x), (3.20)

where ν is the vector of Lagrange multipliers, ǐMEA and ω̌MEA
r denote vectorized cur-

rent and speed measurements. The gradient of L with respect to x can be formulated

as

G
(
x; ν

)
, 2×

[
0,
((

diag{ι̌}(Iτ ⊗Λ)
)
(ǐ− ǐMEA)

)>
,0,

γ
(

diag{ι̌ω}(ω̌r − ω̌MEA
r )

)>
,0
]

+ ν>J
(
x
)
. (3.21)

Finally, the Hessian of L is

H
(
x; ν

)
,

H11 H12

H>12 0

 , (3.22)
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where

H11,



0 ∂2L
∂λ̌∂ǐ

0 ∂2L
∂λ̌∂ω̌r

∂2L
∂ǐ∂λ̌

∂2L
∂ǐ2

0 0

0 0 0 0

∂2L
∂ω̌r∂λ̌

0 0 ∂2L
∂ω̌2

r


, (3.23a)

H12,



0 0 0 0 0 0

∂2L
∂ǐ∂Ls

∂2L
∂ǐ∂Lm

∂2L
∂ǐ∂rs

∂2L
∂ǐ∂rr

0 0

0 0 0 0 0 0

0 0 0 0 ∂2L
∂ω̌r∂Qw

∂2L
∂ω̌r∂B


. (3.23b)

Newton steps of the form


∆x

∆ν

=−


H
(
x; ν

)
J
(
x
)>

J
(
x
)

0


−1

G
(
x; ν

)>
E(x)

 , (3.24)

converge to a solution that meets the KKT optimality conditions. Figure 10 shows

the results for the example presented in Figure 8, when the solution of the penalized

conic relaxation (Fig. 8c) initializes a local search procedure. Figure 9 shows the

steps needed to solve the estimation problem (3.8a) – (3.8e).

3.6 Experimental Studies

3.6.1 Numerical and Experimental Setups

The numerical studies are performed on a workstation using Windows 10 equipped

with quad-core Intel® CoreTM i7-6700 with 32 GB RAM. The relaxed optimization

problem (3.13a) – (3.13n) is solved using the SDPT3 4.0 [34] solver in the CVX [36]
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1. Three-phase power supply. 
2. Mechanical load (DC machine 
  operating as a generator).
3. Measurement and data acquisition.
4. Three-phase induction machine. 
5. Data monitoring and recording. 
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Figure 11: Hardware setup used to measure machine transients and characteristics.

environment on MATLAB 2019a. MATPOWER Interior Point Solver (MIPS) [73]

version 1.3.1 performs the local search. MIPS solves (3.24) using the formulations of

objective function and equality constraints (3.8a) – (3.8e), Jacobian matrix (3.19),

Hessian matrix (3.22), and the solution of the relaxed optimization problem (3.13a)

– (3.13n) as an initial condition. The termination tolerances for the MIPS solver,

namely, gradtol, feastol, comptol, and costtol are selected as 10−8, 10−8, 10−6,

and 10−6, respectively. The maximum iteration count is set to 50.

Figure 11 shows the experimental setup used for measurement acquisition. The

four-pole motor is excited with a voltage of 220 V (line-to-line). The measured data

is demonstrated in Fig. 12. For comparison, machine parameters have also been

identified through standard intrusive characterization tests[45]. These conventional

tests include dc stator resistance measurements, locked rotor test (used for identifying
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Figure 12: Measured startup transients for the underlying induction machine. The
highlighted portion of the transients are used for parameter identification.

rotor resistance along with stator and rotor leakage inductances), no-load test (used

for identifying magnetizing inductance), no-load deceleration test (used for identifying

total lumped inertia of the machine and dynamometer), and no-load startup test (used

for identifying start-up impedance of the machine).

3.6.2 Parameter Extraction from Measurement

Parameters such as leakage inductance and inertia are more dominant during

transients, whereas magnetizing inductance has a prominent effect at the steady state.
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Hence, limited data from both acceleration and steady-state phases of the measured

waveforms are used for the model identification procedure. Sampling time of 100 µs is

used in the measured data shown in Fig. 12. The highlighted portions of the data is

used for parameter extraction. Synchronous reference frame is chosen for the machine

model with ω = 120π. The non-negative weights for the relaxed problem (3.13a)

– (3.13n) and the local search (3.8a) – (3.8e) are Λ = diag {[0.1, 0.1, 0, 0]} and

γ = 0.1, with binary flags as ι = [1, 1, 0, 0]> and ιw = 1. While choosing Λ and γ, one

should note that (1) larger gain implies higher priority for the optimization solver,

and (2) gains can be used to normalize the order of terms in the objective function.

For example, Λ = diag {[1, 1, 0, 0]} and γ = 1 or Λ = diag {[0.01, 0.01, 0, 0]} and

γ = 0.01 are also viable options. The gains for penalty terms in (3.14) are set as

ηiqr = ηidr = 1. The optimization problem (3.13a) – (3.13n), with the penalty

term (3.14), is first solved. The outcome of this relaxation is then used as an initial

point for the local search (3.24) (see Fig. 9). A single run of convex relaxation

takes approximately 185 seconds (including all overheads) on average. Local search

concludes within 60 seconds. Table 5 compares the machine parameters estimated

by the proposed method against parameters extracted using conventional tests. In

addition to resistances, inductances, and inertia terms, we could estimate the friction

coefficient as well. Table 5 also lists the values of objective function (3.8a) that, for

the proposed method, is almost half of that predicted by parameters obtained from

conventional tests. Since rotor current measurements are not available, (3.8a) takes

the following form

∑
n∈S

α1ι1[n](iqs[n]−iMEA
qs [n])2+α2ι2[n](ids[n]−iMEA

ds [n])2 (3.25)

+γιω[n]
(
ωr[n]−ωMEA

r [n]
)2
.
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Figure 13: Estimated parameters listed in Table 5 are used to simulate the induction
machine model from zero initial conditions. The resulting current and speed wave-
forms are compared against measured data.

The aggregate value of (3.25) is attributed to individual mismatch expressions for

stator currents (iqs and ids) and rotor speed (ωr). For the proposed method, the

contribution due to the first expression in (3.25) is about 10.5, the second expression

is 14.4, and the last expression is 623.4. For parameters obtained from conventional

tests, respective expressions contribute about 27.3 (mismatch in iqs), 34.0 (mismatch

in ids), and 1173.9 (mismatch in ωr). The absolute value of (3.25) depends on

user-defined coefficients α1, α2, and γ. Therefore, one should consider the relative

improvement in the value of the objective function obtained by the proposed method,

as shown in the last column of Table 5. Moreover, as opposed to multiple interruptive

and intrusive tests needed in the conventional approach, our method extracts machine

parameters from measured data obtained during the machine’s normal operation.

Two dynamic models built using two sets of machine parameters, one extracted

using the proposed method and another obtained via conventional methods, are con-
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listed in Table 5. Stator currents are compared against measurements.
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Table 5: Machine parameters extracted using the conventional tests and the proposed
method

Methodology Ls (H) Lm (H) Lr (H) rs (Ω) rr (Ω) J (kg.m2) B (N.m.s/rad) Objective fn (3.8a)
Proposed Method 0.3149 0.3040 0.3149 4.50 3.45 0.0041 0.0089 648.3
Conventional Tests 0.3207 0.3087 0.3207 4.52 3.23 0.0037 - 1235.2

sidered. Figures 13 and 14 compare the stator currents and speed waveforms obtained

from simulating the machine models using the two sets of parameters listed in Table

5. Figure 15 shows the trajectories of both stator and rotor flux linkages and currents

in the qd -axis. The machine model is simulated with zero initial conditions. Param-

eters obtained from the proposed method result in an excellent fit to the measured

data as evident from Fig. 13. Figure 14 shows a zoomed-in view of a portion of stator

current in Figure 13. It is evident that the time-domain transients predicted by the

parameters obtained by the proposed method match better with the measured signal

compared to transients predicted by the parameters obtained using the conventional

methods. This fit can be quantified using metrics like the root-mean-square error

(RMSE) or the 2-norm error defined as

RMSE =

√√√√ 1

N

N∑
i=1

(xMEA
i − xEST

i )2, (3.26a)

2-norm error =

√∑N
i=1(xMEA

i − xEST
i )2√∑N

i=1(xMEA
i )2

× 100. (3.26b)

xEST
i and xMEA

i are the ith samples of the estimated and measured signals, respec-

tively. N denotes the number of samples considered. Table 6 lists RMSE and 2-norm

error values while comparing the two sets of machine waveforms against real mea-

surements. Parameters extracted by the proposed method result in lower RMSE and

2-norm error as compared to the parameter obtained from conventional tests. Table
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Table 6: Quantification of the mismatch against measurement

Signal
RMSE 2-norm

Proposed
method

Conventional
tests

Proposed
method

Conventional
tests

Percentage Improved

ia 0.433 0.625 6.847 9.882 30.7
ib 0.455 0.520 7.188 8.216 12.5
ic 0.441 0.593 7.076 9.514 25.6
ωr 3.70 4.05 1.227 1.343 8.7

Average 19.3

6 lists the percentage reduction in error values against parameters from conventional

tests. RMSE reduces from 0.625 to 0.433 for the phase-a current, a 30% percent im-

provement. The RMSE for rotor speed has improved by more than 8%. On average,

we see a 19.3% improvement in error. Percentage improvements in Table 6 are the

same for both RMSE and 2-norm metrics.

3.6.3 Estimation with Missing Data Points

We now test the resilience of the proposed method against loss in measured

data. We assume that indicators ι[n] and ιw[n] take the value 1 with a probability

of 0.8, such that random data points for stator currents and rotor speed are flagged

as unavailable in (3.8a) and (3.13a). This is implemented using the rand function

(uniformly distributed pseudorandom numbers) in MATLAB. Figure 16 compares

the estimated current and speed trajectories against the input measurements. Signal

loss is shown by zeros along the time axis for illustration purposes (lost data are not

necessarily zero in value). The optimization algorithm successfully reproduces the

entire current trajectory along with machine parameters.

3.6.4 Impact of Noisy Input Data

The machine model is first simulated assuming the parameters listed in Table

5 (conventional tests values) and, then, the resulting state transients are polluted
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Figure 16: Stator currents and rotor speed transients, considering lossy measurement,
predicted by the estimated parameters versus input measurement. The red dots along
the time-axis represent the instances of data loss.

Table 7: Parameter sets obtained from noisy data

Machine Parameters 0% noise 2% noise 5% noise

Ls 0.3207 0.3216 0.3193
Lm 0.3087 0.3096 0.3074
Lr 0.3207 0.3216 0.3193
rs 4.52 4.57 4.38
rr 3.23 3.18 3.27
J 0.0037 0.0036 0.0038
B 0.0089 0.0087 0.0085
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Figure 17: Simulated machine transients polluted with different noise levels.
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Table 8: Estimation results under various sampling times

Machine Parameters ∆T = 50 µs ∆T = 100 µs ∆T = 200 µs ∆T = 300 µs

Ls 0.3153 0.3149 0.3068 0.3412
Lm 0.3043 0.3040 0.2958 0.3300
Lr 0.3153 0.3149 0.3068 0.3412
rs 4.51 4.50 4.44 4.68
rr 3.44 3.45 3.52 3.26
J 0.0041 0.0041 0.0042 0.0040
B 0.0089 0.0089 0.0077 0.0091

with noise signals with zero mean and 2%/5% standard deviations. Figure 17 shows

both the noise-free and distorted transients. Table 7 lists the parameters obtained

under different noise scenarios. As seen, estimated parameters, in presence of noisy

data, are in good agreement with those obtained from noise-free data. In practice,

low-pass filtering effects of acquisition devices eliminate severe noisy data. Interested

readers can refer to [74] for a detailed theoretical analysis on the impact of noise on

the performance of conic relaxation equipped a weighted least squared estimator, and

to [75, 76] for the treatment of process or measurement noise in estimation process.

3.6.5 Impact of Sampling Time

For a given time horizon of data, increasing sampling time interval ∆T reduces

the number of data points used in the estimation process. On the other hand, ∆T

should be sufficiently small to have fidelity with the original machine equations. Using

available data from Figure 12, Table 8 lists parameters extracted under different

sampling time intervals. As ∆T is increased, estimated parameters start to deviate

due to errors induced by the discretization process. Figure 18 compares the measured

data against machine transients simulated using the parameters sets in the last two

columns of Table 8 (and their respective sampling times). Notice that, particularly,

at ∆T=300µs, simulated transients clearly deviate from their measured counterparts.
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Figure 18: Machine transients simulated under different ∆T s, with parameter sets
obtained under those ∆T s, compared to hardware measurement.

3.7 Summary

We extract the parameters of an induction machine in a non-intrusive manner

using startup transients. The non-convex parameter identification problem is convex-

ified using conic relaxation, whose output is transformed into an accurate solution

for the machine dynamical equations using a local search. The proposed method is

experimentally shown to identify machine parameters, even with intermittent losses

in measured data. These parameters are shown to result in a better match with the

measured signals compared to those obtained using conventional tests (nearly a 20%

improvement in matching transient waveforms). Future research direction includes

expanding this approach to more comprehensive machine models (e.g., with variable

parameters).
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CHAPTER 4

PMSM ESTIMATES FROM INTERMITTENT DATA

Abstract

The partial-update Kalman filter (PKF) is an extension of the Schmidt Kalman

filter, which can improve capabilities of the conventional extended Kalman filter

for handling the model uncertainties and nonlinearities. Herein, we adapt the

PKF to estimate the states and parameters of electric machines, particularly

in cases with intermittent observations. To account for missing data within

the filter, arrival of new measurements is treated as a Bernoulli process. We

show that the estimation error of the proposed filter remains bounded if the

system satisfies mild assumptions. Moreover, we show that the prediction error

covariance matrix is guaranteed to be bounded if the observation arrival rate has

a lower bound. Hardware experiments validate this technique for a permanent

magnet synchronous motor.

4.1 Introduction

Accurate and robust estimation of states and parameters of electric machines are

needed for drive design and control, system-level studies, or condition monitoring [77].

State estimation usually involves observer design for hard-to-measure signals such as

flux linkages or rotor currents. Parameter estimation obtains a set of parameters, such

as resistances and inductances, in the machine model. Online estimation approaches,

e.g., Kalman filter, are indispensable as machine parameters can change during the
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Figure 19: Overview of the partial-update Kalman filter. Estimates for states/pa-
rameters are obtained as weighted sums of the time update and measurement update
terms. Loss of data is modeled using a binary random variable γk.

machine operation. Kalman filter-based estimators are popular due to their simple

yet stochastic structure, which incorporates both process and measurement noises.

Popular Kalman filter applications in electric machines include (1) state estimation,

e.g., flux or speed[78, 79], (2) parameter estimation [53], and (3) condition monitoring

during machine operation [80]. While Kalman filters are intended for linear systems,

an extended Kalman filter (EKF) can be used for nonlinear systems such as electric

machines [81]. Limitations of EKF include (1) error due to linearizing nonlinear

system equations, (2) filter tuning, i.e., finding correct noise covariance matrices, and

(3) ensuring a stable operation. In this chapter, we address these issues through

a partial-update Kalman filter and validate our findings on a permanent magnet

synchronous motor (PMSM).
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Nuisance parameters denote those variables (such as static biases) that are not

required to be estimated, but whose uncertainties need to be accounted for better

accuracy of estimate variables of interest. In such cases, the Schmidt Kalman filter

(SKF) accounts for uncertainties in system parameters and provide better estimates

compared to standard Kalman filter [82]. Therein, nuisance parameters are added

as a part of the state vector to incorporate model uncertainties into the estimates.

However, these parameters are only considered, and not estimated, i.e., even though

they are not estimated directly, the state estimates and covariance are updated based

on an estimated parameter covariance [82]. In this way, the parameter uncertainty is

propagated through the dynamic system while avoiding issues regarding simultaneous

estimation of states and nuisance parameters (such as increased computational cost

and possible instabilities) [83]. SKFs can be especially helpful for parameters with

low observability. Such scenarios can also occur in machine applications, e.g., the load

torque can often act as a nuisance parameter in an estimation problem. However, the

treatment on nuisance parameters is fairly limited in the context of electric machines.

Partial-update Kalman filter (PKF) is a hybrid approach between SKF and

EKF that can improve upon the performances of both by tuning gains [84]. A partial

update (a percentage of the measurement update) of a certain state/parameter is

considered, which corresponds to the evolution and observation processes and the filter

application. Herein, we adopt the PKF to estimate PMSM states and parameters.

Filter equations are obtained by a slight modification of the measurement update

stage of the EKF equations. This enables handling a wider range of uncertainties and

nonlinearities as compared to the standard EKF, while maintaining its simplicity and

low computational costs [85].

In practice, not all machine states are observable from its terminal measure-

ments. Moreover, measured signals can be noisy, or lost due to faulty sensory devices.
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This intermittency in observed data can significantly degrade the estimation perfor-

mance [86]. Stability and convergence of the estimation process for linear, extended,

unscented, and Cubature Kalman filters in the presence of intermittent observations

have been studied in [87, 88, 89, 90]. To the best of our knowledge, there are no results

reported in the literature on stability and convergence properties of PKF subject to

intermittent measurements. The salient contributions of this paper are summarized

as follows

� The PKF is implemented for state and parameter estimation problems in a

PMSM. The estimation algorithm is further extended to accommodate missing

measured data.

� The error dynamics of the proposed filter are analyzed. Expression on the

critical arrival rate of measurement data is derived under which the filter is

stable and accurate.

� This method is verified through simulated and experimental studies for PMSM

under varying operating conditions.

This paper is arranged as follows. Section 4.2 provides the notations and pre-

liminaries. Section 4.3 summarizes machine models, their augmentation, and their

discretization. In Section 4.4, the implementation of EKF and PKF, as well as in-

corporating measurement losses, are studied. In Section 4.5, the feasibility of PKF

to perform machine estimates despite measurement loss is investigated by bounding

the estimation and covariance matrix errors. Section 4.6 investigates the theoretical

results for a PMSM using both numerical simulation and hardware measurement.

Section 4.7 provides summary remarks.
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4.2 Notation and Preliminaries

R denotes the field of real numbers, and Rn represents the set of n-dimensional

real vectors. Given a matrix A, let A> and A−1 denote, respectively, its transpose

and its inverse. The identity matrix with dimension n is denoted by In. ‖.‖ stands

for the euclidean norm of vectors and the spectral norm of matrices, and ‖.‖2 denotes

the L2-norm of vectors. E[x] represents the expectation (expected value) of x. λmin(.)

and λmax(.), respectively, denote the smallest and the largest eigenvalues of a real

matrix.

The following lemmas and theorems will be needed later.

Lemma 1: [89] For any two vectors x,y ∈ Rn, and the scalar ϑ > 0, the

following inequality holds

xy> + yx> ≤ ϑxx> + ϑ−1yy>. (4.1)

Lemma 2: [91] Assume that matrices A ∈ Rm×n, B ∈ Rm×n, and C ∈ Rn×n,

if A > 0 and C > 0, then

A−1 > B(B>AB + C)−1B>. (4.2)

Theorem 1. If a stochastic process Vk(ζk) satisfies the following conditions:

v||ζk||2 ≤ Vk(ζk) ≤ v̄||ζk||2, (4.3)

E[Vk(ζk)]− Vk−1(ζk−1) ≤ µ− αVk−1(ζk−1), (4.4)

where scalars v, v̄, µ > 0 and 0 < α ≤ 1, then the stochastic process is exponentially

bounded in a mean-square sense, i.e. E[‖ζk‖2] ≤ v̄
vE[‖ζ0‖2](1−α)k + µ

v
∑k−1

i=1 (1−α)i.
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Proof: Please see [92, 90].

4.3 Augmented Models of Electric Machines

Herein, we discuss the dynamic model of a PMSM for use in the estimation

algorithm, its augmentation, and discretization.

4.3.1 Permanent-magnet Synchronous Motor Model

PMSM model in q/d -reference frame is as follows [93]

Ld
dids
dt

= vds −Rsids + PpωmLqiqs, (4.5a)

Lq
diqs
dt

= vqs −Rsiqs − PpωmLdids − Ppωmλm, (4.5b)

Jm
dωm
dt

= Te − dmωm − TL, (4.5c)

dθm
dt

= ωm, (4.5d)

Te =
3Pp
2

(λmiqs + (Ld − Lq)iqsids). (4.5e)

iqs, ids, vqs, and vds are the currents and voltages in the q/d -reference frame. Rs is the

stator resistance, Ld and Lq are the q/d -axes inductances, λm is the flux linkage of

the permanent magnet, and Pp represents the pole-pairs. The mechanical subsystem

states are the rotor speed ωm and rotor position θm. Lastly, Jm, dm, Te, and TL are

the inertia, friction coefficient, electromagnetic torque, and load torque, respectively.

The PMSM model in stationary axes (α/β-reference frame) is favorable in speed

sensorless applications, as the stator currents and voltages measurements (in abc-
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reference) are easily transformed to stationary axes representation. In such a case,

the PMSM states are [isα, isβ, ωm, θm]>, with

fd
fq

 =

 cos(Ppθm) sin(Ppθm)

− sin(Ppθm) cos(Ppθm)


fα
fβ

 . (4.6)

[fd, fq]
> and [fα, fβ]> denote currents and voltages in q/d - and α/β-reference frames,

respectively. As per (4.6), the voltage equations for PMSM in α/β-reference frame

becomes

Ls
disα
dt

= vsα −Rsisα + λmPpωm sin(Ppθm), (4.7a)

Ls
disβ
dt

= vsβ −Rsisβ − λmPpωm cos(Ppθm). (4.7b)

In this chapter, we consider a surface-mounted PMSM where inductances Ls = Lq =

Ld. The state equations for rotor speed ωm and position θm take the same form as

(4.5c) and (4.5d), with a modified formulation for Te. The complete PMSM model

in stationary axes can be found in [93].

4.3.2 Model Augmentation for Parameter Estimation

Machine dynamics in (4.5) can be compactly written as dx(t)
dt

= F(x(t),u(t)),

where x(t) and u(t) denote the system states and inputs, respectively. For the PMSM

model in (4.5), it is straightforward to see that x , [iqs, ids, ωm, θm]> and u ,

[vqs, vds]
>. To facilitate parameter estimation via Kalman filters, machine models

are usually augmented with additional state equations representing the parameters of

interest [53]. Let p denote the set of parameters that need to be estimated. Assuming
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time-invariant or slowly-varying parameter values, their dynamics can be written as

dp
dt
≈ 0. Hence, the overall system considered for estimation becomes

d

dt

x(t)

p

 =

F(x(t),u(t))

0

 . (4.8)

For consistency, we have slightly abused notations by using F(x(t),u(t)) instead of

the more accurate F(x(t),p,u(t)).

4.3.3 Discretization of Augmented Machine Equations

The augmented system (4.8) needs to be discretized to obtain a formulation

suited for the Kalman filter. Herein, the forward Euler method is used for its simplic-

ity. In this chapter, we intend to present estimator formulations that can be easily

extended to any machine type. Hence, the Kalman filter equations are written for

the following general discrete-time system


xk+1 = f(xk,uk,wk),

yk = h(xk,vk).

(4.9)

Interested readers can refer to [94] for details on formulating (4.8) into (4.9) af-

ter discretization. Variables xk ∈ Rn, uk ∈ Rp, and yk ∈ Rm are the state, in-

put, and measurement vectors, respectively, at time instance k. Continuously dif-

ferentiable functions f and h represent the system and output models, respectively.

wk ∼ N (0,Qk) and vk ∼ N (0,Rk) denote process and measurement noise, which are

assumed uncorrelated. Noise is inherently present in actual physical systems, hence,

it is incorporated within the model (4.9). Process noise wk accounts for the modeling
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inaccuracies as well as external disturbance inputs, while the measurement noise vk

represents measurement/sensing error in the output signals.

4.4 Partial-update Kalman Filter with Intermittent Observations

In this section, we first describe a summary of the extended Kalman filtering

framework in the presence of intermittent observations. Then, we establish the filter

equations for the PKF without and with intermittent measurements.

4.4.1 Extended Kalman Filter

In a Kalman filter and its nonlinear variant, EKF, the state estimates are per-

formed in a recursive fashion using two stages, time update (also known as a priori)

and measurement update (also known as a posteriori). In the time-update stage, an

estimate of the state xk is denoted as x̂k|k−1, which represents the estimate at the kth

time instance based on measurements {y1,y2, . . . ,yk−1}. In the measurement update

stage, the estimate of the state xk is denoted as x̂k|k which represents the estimate

based on measurements {y1,y2, . . . ,yk−1,yk}. Given that Kalman filter is designed

for linear systems, formulations for EKF require linearization of the system model at

the operating condition. Since the functions f at (x̂k|k,uk,0) and h at (x̂k|k−1,0) are

continuously differentiable, they can be written using Taylor expansion as

f(xk,uk,wk) = f(x̂k|k,uk,0) + Ak(xk − x̂k|k) + Gkwk

+ φ(xk, x̂k|k,uk,wk), (4.10)

h(xk,vk) = h(x̂k|k−1,0) + Ck(xk − x̂k|k−1) + Dkvk

+ X (xk, x̂k|k−1,vk), (4.11)
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where Ak = ∂f
∂x

(x̂k|k,uk,0), Ck = ∂h
∂x

(x̂k|k−1,0), Gk = ∂f
∂w

(x̂k|k,uk,0), and Dk =

∂h
∂v

(x̂k|k−1,0). φ and X denote functions representing higher order terms. Thereafter,

the time update and measurement update equations for the EKF can be written as

[95]

4.4.1.1 Time Update

x̂k+1|k = f(x̂k|k,uk,0), (4.12)

Pk+1|k = AkPk|kA
>
k + Qk. (4.13)

4.4.1.2 Measurement Update

Kk+1 = Pk+1|kC
>
k+1

[
Ck+1Pk+1|kC

>
k+1 + Rk+1

]−1
, (4.14)

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − h(x̂k+1|k,0)

)
, (4.15)

Pk+1|k+1 = (In −Kk+1Ck+1)Pk+1|k. (4.16)

Matrices Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
>] and Pk+1|k+1 = E[(xk+1 −

x̂k+1|k+1)(xk+1 − x̂k+1|k+1)>] denote the estimation error covariance matrix for the

time update and measurement update, respectively. Kk denotes the Kalman gain.

Qk and Rk are the covariances for the process and measurement noises, as discussed

in Section 4.3.3. The results from (4.15) and (4.16) are taken as the outputs from

the EKF.

4.4.2 EKF with Intermittent Loss in Measurements

Herein, we consider a case in which estimation needs to be performed under

lossy measurements or intermittent observations [87]. In such cases, the arrival of the

observation at time k is defined as a Bernoulli process γk with the parameter κ, where

probability Pr {γk = 1} = κ, hence, Pr {γk = 0} = 1 − κ. In order to incorporate
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intermittent observations, the measurement update equations in EKF are modified

as [87]

x̂k+1|k+1 = x̂k+1|k+γk+1Kk+1

(
yk+1−h(x̂k+1|k,0)

)
, (4.17)

Pk+1|k+1 =(In − γk+1Kk+1Ck+1)Pk+1|k. (4.18)

Note that to obtain the above equations, it has been assumed that the actual

value of γk+1 along with the measurement yk+1 are being transmitted to the filter

[87, 88].

4.4.3 Partial-update Kalman Filter

The PKF finds the estimates for states and the estimation error covariance

matrix as a convex combination of results from the time update and the measurement

update of the EKF. For every time instance k, the element-wise representation for the

PKF is [84, 85]

x̂ipkf = ρix̂
i
k+1|k + (1− ρi)x̂ik+1|k+1, (4.19)

Pij
pkf = ρiρjP

ij
k+1|k + (1− ρiρj)Pij

k+1|k+1. (4.20)

x̂ipkf is the state estimate via partial-update Kalman filter, where superscript i denotes

the ith element of the state vector. Pij
pkf is the estimation error covariance matrix

with superscript ij representing the matrix element in the ith row and jth column.

ρi = 1 − βi, where βi ∈ [0, 1] is the weight percentage of the measurement update

used. For βi = 0 and βi = 1, the PKF reduces to the Schmidt (with no measurement

update) and the EKF (with full measurement update), respectively.
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Figure 20: Overview of the PKF. Weighted average of the time and measurement
updates in (4.19) is the same as an additional term (highlighted green) in the con-
ventional extended Kalman filter (see (4.25)).

Note that the PKF formulations has a three-stage form compared to the EKF

which involves only two stages. Equations (4.19) and (4.20) can be reorganized in

order to give the PKF a two-stage form. Vectorizing (4.19) while using (4.15) results

in

x̂pkf = Γx̂k+1|k + (In − Γ)x̂k+1|k+1,

= Γx̂k+1|k+(In−Γ)
(
x̂k+1|k+Kk+1

(
yk+1−h(x̂k+1|k,0)

))
,

= x̂k+1|k+K̃k+1

(
yk+1−h(x̂k+1|k,0)

)
, (4.21)

where K̃k = (In − Γ)Kk and Γ = diag {ρ1, ρ2, . . . , ρn}. Similarly, (4.20) can be

vectorized as (see Section III in [85])

Ppkf = (In −Kk+1Ck+1)Pk+1|k + ΓKk+1Ck+1Pk+1|kΓ. (4.22)

Note that (4.21) and (4.22) resemble the measurement update form of the

EKF in (4.15) and (4.16), respectively, and are functions of time update terms. In
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the following sections, we will replace the subscript ‘pkf’ with k + 1|k + 1 in (4.21)

and (4.22) to have a formulation similar to EKF.

4.4.4 PKF with Intermittent Measurement

In this chapter, we extend the PKF in [84, 85] to incorporate losses within

measurement signals. Taking the EKF with measurement loss (4.17), (4.18), and

combining them with the single update form of the PKF (4.21), (4.22), the PKF

for measurement loss can be formulated as

4.4.4.1 Time Update

x̂k+1|k = f(x̂k|k,uk,0), (4.23)

Pk+1|k = AkPk|kA
>
k + Qk. (4.24)

4.4.4.2 Measurement Update

x̂k+1|k+1 = x̂k+1|k+γk+1K̃k+1

(
yk+1−h(x̂k+1|k,0)

)
, (4.25)

Pk+1|k+1 =Pk+1|k − γk+1Kk+1Ck+1Pk+1|k

+ γk+1ΓKk+1Ck+1Pk+1|kΓ. (4.26)

Fig. 20 shows the block diagram for the PKF. Given K̃k = (In − Γ)Kk, the PKF

can be obtained by adding an additional block (shaded green in Fig. 20) within the

conventional EKF.
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4.5 Bounds on the Estimation Error and the Error Covariance Matrix

In this section, we investigate the feasibility of the PKF (4.23) – (4.26) for

estimation despite measurement loss.

4.5.1 Error Dynamics of the PKF

The a priori and a posteriori estimation errors can be defined as ek+1|k =

(xk+1 − x̂k+1|k) and ek+1|k+1 = (xk+1 − x̂k+1|k+1), respectively. Per the formulations

of the PKF in (4.23) and (4.25), and Taylor expansions in (4.10) and (4.11), the

estimation error dynamics can be formulated as

ek|k = (In − γkK̃kCk)ek|k−1 − γkK̃kDkvk

− γkK̃kX (xk, x̂k|k−1,vk), (4.27)

ek+1|k = Akek|k + Gkwk + φ(xk, x̂k|k,uk,wk). (4.28)

By combining (4.27) and (4.28), it can be obtained that

ek+1|k = Ak(In − γkK̃kCk)ek|k−1 + rk + sk, (4.29)

where 
rk , φ(xk, x̂k|k,uk,wk)− γkAkK̃kX (xk, x̂k|k−1,vk),

sk , Gkwk − γkAkK̃kDkvk.

(4.30)

We now present the conditions that ensure that the estimation error and the

prediction error covariance matrix from the PKF remain bounded, under the following

two assumptions.
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Assumption 1. There exist positive scalars ā, c̄, d̄, ḡ, Γ̄ , q̄, r̄, q, and r, such that

‖Ak‖ ≤ ā, ‖Ck‖ ≤ c̄, ‖Dk‖ ≤ d̄, ‖Gk‖ ≤ ḡ, ‖Γk‖ ≤ Γ̄ and qIn ≤ Qk ≤ q̄In, rIm ≤

Rk ≤ r̄Im.

Assumption 2. There exist positive constant scalars p̄ and p such that pIn ≤

Pk+1|k+1 ≤ Pk+1|k ≤ p̄In.

Moreover, we assume that the residuals of the Taylor expansion in (4.10) and (4.11)

are bounded in a neighborhood of the point of expansion. Indeed, for all ‖xk−x̂k|k‖2 ≤

δφ and ‖xk − x̂k|k−1‖2 ≤ δX , there holds


‖φ(xk, x̂k|k,uk,wk)‖2 ≤ εφ‖xk − x̂k|k‖2

2,

‖X (xk, x̂k|k−1,vk)‖2 ≤ εX‖xk − x̂k|k−1‖2
2.

(4.31)

where δφ, δX , εφ, εX are bounded positive real numbers.

4.5.2 Boundedness of the Estimation Error

The main goal of this section is to show that the estimation error is stocastically

bounded.

Theorem 2. Consider the proposed PKF (4.23) – (4.26). If assumptions 1 and 2

are satisfied, there exists a real scalar 0 < α < 1 such that

(In − γkKkCk)
>A>k P−1

k+1|kAk(In − γkKkCk)≤(1− α)P−1
k|k−1. (4.32)

Proof: From (4.24), we have [88]

Pk+1|k = AkPk|kA
>
k + Qk >

(
1 +

q

2ā2 + p̄

)
AkPk|kA

>
k . (4.33)
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By adding and subtracting γk+1Pk+1|kC
>
k+1K

>
k+1 to the right side of (4.26), and since

γk = γ2
k, we can derive

Pk|k = (In − γkKkCk)Pk|k−1(In − γkKkCk)
>

+ γkKkRkK
>
k + γkΓKkCkPk|k−1Γ. (4.34)

Multiplying
[
Ck+1Pk+1|kC

>
k+1 + Rk+1

]
K>k from right on both sides of (4.14), we can

show

KkCkPk|k−1 = Kk

[
CkPk|k−1C

>
k + Rk

]
K>k . (4.35)

By combining (4.33), (4.34), and (4.35), we have

Pk+1|k >
(

1 +
q

2ā2 + p̄

)
Ak

(
(In − γkKkCk)Pk|k−1

(In − γkKkCk)
> + γkKkRkK

>
k +

γkΓKk(CkPk|k−1C
>
k + Rk)K

>
k Γ
)
A>k .

(4.36)

From the fact that Pk+1|k,Rk+1 > 0, we have

Pk+1|k >
(

1 +
q

2ā2 + p̄

)
Ak(In − γkKkCk)

×Pk|k−1(In − γkKkCk)
>A>k .

(4.37)

The rest of proof is similar to Lemma 6.3 in [88], and is omitted here for brevity. �

Now, we are able to state the main results of this section.

Theorem 3. Consider the nonlinear system (4.9), and the PKF equations (4.23)

– (4.26). If assumptions 1 and 2 are satisfied, and for a bound δ > 0 on the initial
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estimation error, i.e. E[‖e1|0‖2] ≤ δ, the estimation error ek+1|k is exponentially

bounded in a mean-square sense.

Proof: We define a Lyapunov function Vk(ek|k−1) = e>k|k−1P
−1
k|k−1ek|k−1. As per

(4.29), this function becomes

Vk+1(ek+1|k) =

e>k|k−1(In − γkK̃kCk)
>A>k P−1

k+1|kAk(In − γkK̃kCk)ek|k−1

+ r>k P−1
k+1|k[2Ak(In − γkK̃kCk)ek|k−1 + rk]

+ s>k P−1
k+1|k[2Ak(In − γkK̃kCk)ek|k−1 + 2rk + sk]. (4.38)

The Lyapunov function in (4.38) can be rewritten as

Vk+1(ek+1|k) = µ1k + µ2k + µ3k + (4.39)

e>k|k−1(In − γkKkCk)
>A>k P−1

k+1|kAk(In − γkKkCk)ek|k−1,

where

µ1k = e>k|k−1[(In − γkKkCk)
>A>k P−1

k+1|kAk(γkΓKkCk)]ek|k−1

+ e>k|k−1[(γkΓKkCk)
>A>k P−1

k+1|kAk(In − γkKkCk)]ek|k−1

+ e>k|k−1[(γkΓKkCk)
>A>k P−1

k+1|kAk(γkΓKkCk)]ek|k−1,

µ2k = r>k P−1
k+1|k[2Ak(In − γkK̃kCk)ek|k−1 + rk],

µ3k = s>k P−1
k+1|k[2Ak(In − γkK̃kCk)ek|k−1 + 2rk + sk].

The upper bound of the last expression in (4.39) can be obtained using Theorem

2. Moreover, from Lemma 3.2 and Lemma 3.3 in [92], one can show that µ2k and
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µ3k have upper bounds. Substituting (4.32) into Vk+1(ek+1|k), taking the conditional

expectation, and following the results of [92, 88], we have

E[Vk+1(ek+1|k)] ≤ (1− α)Vk(ek|k−1) + E[µ1k]+µ̄2 + µ̄3. (4.40)

µ̄2 = κ1ε1, µ̄3 = κ2ε2, κ1, κ2 are positive bounds depending on positive real numbers in

Assumption 1, Assumption 2, and (4.31), ε1 is a function of εφ, εX , and ε2 is a positive

bound on stochastic noise covariance matrices, i.e., E[vkv
>
k ] ≤ ε2

2Im, E[wkw
>
k ] ≤ ε2

2In.

It remains to show that E[µ1k] is also bounded by a positive constant. Both

sides of E[µ1k] are scalars. Using Lemma 1 and computing the trace of E[µ1k], and

by considering E[ek|k−1e
>
k|k−1] = Pk|k−1, we have

E[µ1k] ≤ tr[ϑMk(In − γkKkCk)Pk|k−1(In − γkKkCk)
>Mk

+ ϑ−1(γkΓKkCk)
>Pk|k−1(γkΓKkCk)

+ (γkΓKkCk)
>Mk(γkΓKkCk)Pk|k−1], (4.41)

where Mk = A>k P−1
k+1|kAk. It is clear that E[µ1k] has a positive upper bound µ̄1.

Then, (4.40) can be extended as

E[Vk+1(ek+1|k)]− Vk(ek|k−1) ≤ µ̄− αVk(ek|k−1), (4.42)

where µ̄ = µ̄1 + µ̄2 + µ̄3.

Equation (4.42) takes the form similar to a bounded stochastic process in

Theorem 1. Hence, the proposed PKF for measurement loss will be bounded in the

mean-square sense. �

The proof of the Theorem 3 is based on the boundedness assumption of the

estimation error covariance matrix. However, this assumption can be violated when
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γk = 0 for infinitely many k [88]. Consequently, the behavior of the error covari-

ance matrix will be analyzed, and an upper bound for its expectation in presence of

measurement losses will be derived.

4.5.3 Boundedness of the Error Covariance Matrix

In the following theorem, the boundedness of the error covariance matrix will

be shown.

Theorem 4. Suppose that Assumption 1 holds, and the linearized form of the non-

linear system (4.9) satisfies a modified uniform observability condition as in [88].

Then, there exists a constant p̄ > 0, such that

E[Pk+1|k] ≤ p̄In, (4.43)

provided that

� C−1
k exists and satisfies ‖C−1

k ‖ ≤ c−1, and the measurement data arrival prob-

ability satisfies γ > 1− ā−2−Γ̄ 2

1−Γ̄ 2 ,

or

� the data arrival probability satisfies γ > 1−ā−2

λ−Γ̄ 2 , where 0 < λ < λ0 ≤ 1, and λ0

will be later defined in (4.52).

Proof: Two different cases are considered.

Case 1: The Ck matrix is invertible. By combining (4.14), (4.24) and (4.26),

the prediction error covariance matrix becomes

Pk+1|k=Ak

(
Pk|k−1−γkPk|k−1C

>
k

[
CkPk|k−1C

>
k +Rk

]−1

CkPk|k−1+γkΓPk|k−1C
>
k

[
CkPk|k−1C

>
k +Rk

]−1

CkPk|k−1Γ
)
A>k + Qk.

(4.44)
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Consider γkΓPk|k−1C
>
k

[
CkPk|k−1C

>
k + Rk

]−1
CkPk|k−1Γ in (4.44). Using the matrix

inversion lemma (A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1, and defining A ,

CkPk|k−1C
>
k and B , Rk, we derive

Pk+1|k = Ak

(
Pk|k−1 − γkPk|k−1C

>
k

[
CkPk|k−1C

>
k + Rk

]−1

CkPk|k−1 + γkΓ
(
Pk|k−1 −C−1

k

[
C−>k P−1

k|k−1C
−1
k + R−1

k

]−1

C−>k
)
Γ
)
A>k + Qk. (4.45)

Since −ΓC−1
k

[
C−>k P−1

k|k−1C
−1
k + R−1

k

]−1

C−>k Γ is a symmetric negative term, there

exist an ε > 0 such that

Pk+1|k ≤ Ak

(
Pk|k−1 − γkPk|k−1C

>
k

[
CkPk|k−1C

>
k + Rk

]−1

CkPk|k−1 + γkΓPk|k−1Γ + γkεIn
)
A>k + Qk. (4.46)

Using the inequality (A + B)−1 > A−1 −A−1BA−1, and defining A , CkPk|k−1C
>
k

and B , Rk, we have [90]

Pk+1|k ≤ (1− γk)AkPk|k−1A
>
k + γkAkC

−1
k RkC

−>
k A>k

+ γkAkΓPk|k−1ΓA>k + γkεAkA
>
k + Qk.

(4.47)

Considering the bounds of matrices in Assumption 1,

Pk+1|k ≤ (1− γk + γkΓ̄
2)AkPk|k−1A

>
k

+ γk(r̄/c̄
2 + ε)AkA

>
k + q̄In.

(4.48)
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Define γ = E[γk] and assume that E[P1|0] > 0. Then,

E[P2|1] ≤ E[(1− γ + γΓ̄ 2)ā2P1|0 + γā2(r̄/c̄2 + ε)In + q̄In]

≤ (1− γ + γΓ̄ 2)ā2pIn + pIn,

(4.49)

where p = max(‖P1|0‖, γā2(r̄/c̄2 + ε) + q̄). Iterating, and by using an induction

algorithm, we can show that:

E[Pk+1|k] < p
k−1∑
j=0

[(1− γ + γΓ̄ 2)ā2]jIn. (4.50)

The upper bound in (4.43) is concluded from (4.50). Moreover, the sum in (4.50)

converges when γ > 1−ā−2

1−Γ̄ 2 = 1− ā−2−Γ̄ 2

1−Γ̄ 2 .

Case 2: The Ck matrix is not invertible. Applying Lemma 2 to

γkΓPk|k−1C
>
k

[
CkPk|k−1C

>
k + Rk

]−1
CkPk|k−1Γ in (4.44) gives

Pk+1|k ≤ Ak

(
Pk|k−1−γkPk|k−1C

>
k

[
CkPk|k−1C

>
k + Rk

]−1

CkPk|k−1+γkΓPk|k−1Γ
)
A>k + Qk. (4.51)

Based on Lemma 2, we can define 0 < λ < λ0 ≤ 1, where

λ0 = min{λmin[C>k

(
CkPk|k−1C

>
k +Rk

)−1
Ck]/λmax[P−1

k|k−1],

k = {1, ..., N}}, (4.52)

such that

λP−1
k|k−1 < C>k

(
CkPk|k−1C

>
k + Rk

)−1
Ck. (4.53)

85



By combining (4.51) and (4.53), we have

Pk+1|k≤ Ak

(
Pk|k−1−λγkPk|k−1+γkΓPk|k−1Γ

)
A>k +Qk. (4.54)

Consequently, similar to the Case 1, it can be concluded that

E[Pk+1|k] < p
k−1∑
j=0

[(1− λγ + γΓ̄ 2)ā2]jIn, (4.55)

where p = max(‖P1|0‖, q̄). Moreover, (4.55) converges when γ > 1−ā−2

λ−Γ̄ 2 . This

completes the proof. �

Remark 1. The assumption of invertible Ck could be restrictive. However, in most

existing work, e.g., [88, 96, 89, 90], this is a necessary assumption for finding the

bound of Pk+1|k. Compared to [88, 96, 89, 90], we have shown that, even for the case

of singular Ck, the Pk+1|k matrix is bounded and a minimum critical value for data

loss exists.

Remark 2. For the case of EKF (Γ = 0), and considering the assumption on the

invertible Ck matrix, the critical value γ is γ > 1 − ā−2 which corroborates with the

results of [88].

4.6 Validation and Verification

In this section, we show that PKF can outperform the conventional EKF in

the estimation process, and validate the PKF using the PMSM hardware. Nominal

parameters of the PMSM are provided in [97]. The machine models and Kalman

filters are simulated in the Simulink 10.1 environment.
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Figure 21: Comparison between estimates from (a) EKF and (b) PKF. EKF stability
issues can be addressed in PKF through partial update using Γ.

4.6.1 Advantages of PKF over EKF

4.6.1.1 Stability

One of the main drawbacks for EKF is stability issues, e.g., linearization in EKF

can induce error in the estimation which could cause instability. We present a simu-

lated case study on the PMSM model, with a speed-sensorless application where an

observer needs to estimate rotor speed/position and flux linkage using stator current

and voltage measurements. Given that position information is unavailable, the PMSM

model in α/β-reference frame is chosen. The PMSM model is simulated with an ini-

tial state [4, 2, 50, 0]> assuming process noise and measurement noise covariances as

diag{10−4, 10−4, 10−4, 10−4} and diag{10−1, 10−1}, respectively. The augmented state

vector for both filters is [isα, isβ, ωm, θm, λm]> with stator currents [isα, isβ]> as out-
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put measurements, and stator voltages [vsα, vsβ]> as inputs. The voltage and current

signals generated from this simulation are sampled at 10 µs and fed to both EKF

and PKF for estimations. To highlight the effectiveness of PKF, we consider an un-

likely scenario where both EKF and PKF are designed assuming accurate knowledge

of the covariance matrices and initial conditions. Hence, the filters are initialized

with an initial augmented state x0 = [4, 2, 50, 0, 0]>, error covariance P0 = I5, mea-

surement noise covariance R = diag{10−1, 10−1}, and the process noise covariance

of Q = diag{10−4, 10−4, 10−4, 10−4, 10−6}. Note that due to model augmentation in

the Kalman filter, the sizes of x0 and Q have increased (see Section 4.3). Fig. 21

compares the results from both EKF and PKF showing the estimates for speed, po-

sition, and magnet flux linkage. The PKF can provide better convergence in such

cases due to its ability to control the measurement update with variable Γ. We chose

Γ = diag{0.2, 0.2, 0.2, 0.2, 0.75}, denoting 80% measurement update for system states

[isα, isβ, ωm, θm]> and only 25% measurement update for the slow-varying parameter

λm [85]. EKF becomes unstable while the PKF maintains its stability due to the

partial nature of measurement update.

4.6.1.2 Uncertain Nuisance Parameter

Nuisance parameters are machine parameters that are imprecisely known, and

their true values are not necessarily needed to be estimated. However, the uncertain-

ties in these parameters need to be accounted for an overall accurate estimation. A

straightforward way to handle this would be to include these parameters in the system

state (model augmentation) and estimate them along with the states, although, this

could lead to a divergence similar to Fig. 21a. Another approach is to employ the

Schmidt Kalman filter, wherein the nuisance parameters are only ‘considered’ during
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Figure 22: Comparison between estimates from (a) EKF when there is no nuisance
parameter in the system (ideal case), (b) EKF with λm as nuisance parameter in sys-
tem, (c) PKF with nuisance parameter λm only being ‘considered’ but not estimated,
similar to the Schmidt Kalman filter.

the time update stage of the filter [84]. The PKF can be designed to mimic such

properties of the SKF through the variable Γ. We present a case to make this point.

Consider a similar scenario where the PMSM model is simulated with initial

state [4, 2, 50, 0]> with process noise and measurement noise covariances

diag{10−4, 10−4, 10−4, 10−4} and diag{10−1, 10−1}, respectively. The objective is to

only estimate rotor speed and position from stator currents and voltages. How-

ever, there is uncertainty in the parameter λm with its value being around 0.004

(mean) with a standard deviation of 0.001. Fig. 22 compares the results from

three different filters, assuming accurate knowledge of noise covariance matrices.

Fig. 22a shows the estimates from the EKF when there is no nuisance param-

eter, and λm is known accurately. Fig. 22b shows the EKF estimates assum-
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Figure 23: PMSM hardware setup. PMSM is controlled using the FOC speed control
implemented on the Speedgoat real-time target machine.

ing λm = 0.004 (ignoring the uncertainty). It is evident from speed estimates in

Fig. 22b that the presence of nuisance parameters can deteriorate the Kalman

filter’s accuracy. In such a scenario, the PKF could be designed that will only

‘consider’ the uncertainty in λm during time update stage. The PKF is initialized

with an augmented state x0 = [4, 2, 50, 0, 0.004]>, error covariance P0 = I5, mea-

surement noise covariance R = diag{10−1, 10−1}, and process noise covariance of

Q = diag{10−4, 10−4, 10−4, 10−4, 10−6}, and Γ = diag{0.8, 0.8, 0.8, 0.8, 1}. Note that

with this choice of Γ, the measurement update stage for the parameter λm is not per-

formed, and the filter tries to mimic an SKF filter known to tackle the uncertainties

due to a nuisance parameter.

In the above cases, with the further tuning of the EKF, some initial conditions

and covariance matrices could be found that results in an acceptable estimation.

Nevertheless, the purpose was to show how partial updates in the Kalman filter can

be helpful if tuning of EKF is not improving final results.
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4.6.2 Hardware Validation of PMSM Estimations

A PMSM, with the given specifications and controlled using field-oriented con-

trol (FOC) deployed on a Speedgoat real-time target machine [98], is considered in

Fig. 23. Herein, we run the PKF under two scenarios: 1) sensorless speed esti-

mation (assuming speed measurements are unavailable); 2) Online PMSM parme-

terization. The machine states, outputs, and inputs for the first case are chosen

as x = [isα, isβ, ωm, θm]>, y = [isα, isβ]>, and u = [vsα, vsβ]>, respectively. Note

that the machine equations are assumed in the α/β stationary reference frame.

Furthermore, we assume that the mechanical load is unknown (similar to [99]),

hence, the machine model is augmented with p = TL, with dTL
dt
≈ 0. PMSM

measurements are sampled every 10 µs. The noise covariance matrices are Q =

diag{10−2, 10−2, 10−1, π/24, 0.045} and R = diag{10−4, 10−4} with

Γ = diag{0.1, 0.1, 0.1, 0.1, 0.1}. Fig. 24a shows the estimated results from PKF op-

erating under measurements with 20% loss in data. This loss is modeled using the

Bernoulli Binary Generator block in Simulink. The rotor speed is step-changed at

times 1.6 s, 2.7 s, and 4.3 s, approximately. From Fig. 24a, it is clear that the PKF

continues to provide accurate speed estimations during multiple changes in speed

along with other machine states.

Since machines’ conditions can vary, an online parameter estimator could be

incorporated within the drive. Herein, we consider a case similar to [81] for an on-

line estimation of machine state and permanent magnet flux linkage. Note that the

PKF is designed assuming available speed measurements. In this case, the PMSM

model is considered in the q/d -reference frame. The augmented state can be formed

as x , [ids, iqs, ωm, θm, λm]>, output as y , [ids, iqs, ωm]>, and input as u , [vds, vqs]
>.

PMSM measurements are sampled every 10 µs with Q = diag{10−1, 10−1, 5, 10−1, 10−6},
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Figure 24: (a) Sensorless speed and load torque estimation. (b) Online parameter
estimation. Estimations are performed with 20% loss in measurement data. PKF
continues to provide accurate estimations during step changes in speed.

R = diag{10−3, 10−2, 10−1}, Γ = diag{0, 0, 0.1, 0.1, 0.75}, and 20% data loss. Figure

24b shows successful estimation results for machine states and parameter λm.

4.7 Summary

We have extended the PKF to estimate the states and parameters of PMSMs.

We have proposed a variant of PKF to incorporate measurement loss in the incoming

data. Through case studies, we have highlighted the advantages of PKF over EKF,

while handling system instabilities and nuisance parameters, and validated PKF in

estimating parameters and states using experimental PMSM studies.
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CHAPTER 5

HARDWARE-ASSISTED SIMULATION OF

VOLTAGE-BEHIND-REACTANCE MODELS OF ELECTRIC

MACHINES ON FPGA

Abstract

This paper studies the acceleration of numerical simulations executed on Field-

Programmable Gate Arrays (FPGAs) for electric machines presented by voltage-

behind-reactance (VBR) models. In VBR models, the stator dynamics are mod-

eled in abc coordinates, while the rotor dynamics are formulated in qd reference

frame. Both induction motors and synchronous generators, operating without

and with magnetic saturation, are considered. Once VBR models of these ma-

chine types are reviewed, their dynamic models are discretized using Runge-

Kutta numerical routines. The detailed mapping of such discrete models to

FPGA is provided using High-Level Synthesis, which directly converts untimed

descriptions into VHDL or Verilog. An automated method finds the fastest

FPGA architecture by finding the best set of synthesis options. Experimen-

tal results show that our FPGA-based acceleration flow leads to about 92-168

times average simulation speed-up for various machine types compared to the

MATLAB simulation.
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5.1 Introduction

Lumped-parameter models of electric machines could be broadly classified into

abc phase-domain models (PD), qd reference-frame models (QD), and the voltage-

behind-reactance (VBR) models. In the latter form, the stator dynamics are modeled

in abc coordinates, while the rotor dynamics are formulated in qd reference frame

[101]. This facilitates an easy interface with the external electrical network, such

as electric drives or the power grid, easy integration in nodal-variable-based simula-

tion packages, and partitioned stator and rotor dynamics resulting in an improved

eigenstructure with better numerical stability. Early VBR-type modeling of elec-

tric machines can be traced back to 1927 [102], with various formulations becoming

available since (e.g., for unsaturated [103] and saturated [104] synchronous machines

models). Discretization of state equations provides equivalent difference equations

for electromagnetic transient simulation studies of unsaturated [105, 101, 106] or sat-

urated machine models [107, 108]. While PD, QD, and VBR models are essentially

interchangeable in the continuous-time domain, when discretized using a numerical

integration routine, the VBR model exhibits better numerical accuracy and simula-

tion efficiency versus PD models [109]. However, the presence of dynamic saliency

results in the need to update the state equations (during transient simulation) mak-

ing VBR models computationally expensive. This has led to the development of

constant-parameter VBR models [110].

Numerical operation of integration algorithms can be discretized into simple

arithmetic units (e.g., addition and multiplication), and implemented on a reconfig-

urable digital logic platform like a Field-Programmable Gate Array (FPGA). This

approach exploits the inherent massive parallelism of many applications which, in

turn, translates into significant speed-ups compared to the sequential execution of

the same application on an off-the-shelf processor. Modern FPGAs have embedded
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hard macros such as digital signal processor (DSP)-blocks and embedded memory, or

even embedded ARM processors like in Xilinx’s Zynq FPGA and Intel’s Cyclone V

system-on-a-chip (SoC) FPGA. Electric machine models can be mapped onto these

devices with a limited need for off-chip resources, making them suitable candidates

for hardware-assisted simulation acceleration. Moreover, the flexible connectivity in-

terface to FPGAs, and their very low I/O latency, allow them to be reconfigured with

a variety of controller hardware, and make them a suitable choice for hardware- or

software-in-the-loop studies [111, 112, 113]. One main challenge with FPGAs is that

they are typically programmed using a low-level hardware description language (HDL)

such as Verilog or VHDL. These languages require the programmer to have expert

knowledge of the hardware in order to efficiently map the target application on the

FPGA. This impediment makes them less attractive compared to existing high-level

software solutions, more time consuming, and prone to unintended mistakes.

To enhance the FPGA user base, their vendors have resorted to programming

them with High-Level Synthesis (HLS), that accepts an untimed behavioral descrip-

tion (such as C or C++) as an input, and automatically generates efficient Verilog

or VHDL codes. Off-the-shelf solutions such as MATLAB’s HDL Coder [114] can

automatically generate a synthesizable VHDL/Verilog code directly from MATLAB

and map it onto an FPGA. Unfortunately, this approach only works with a handful of

dedicated FPGAs, as the I/O interfaces are fixed, and not with modern programmable

SoC FPGAs with embedded ARM processors. Furthermore, MATLAB’s HDL coder

synthesizes the code into a specific architectural template. In contrast, HLS tools,

that take as an input C or C++, allow to automatically generate a set of optimal

design variants with unique area versus performance trade-offs, a.k.a. Design Space

Exploration (DSE). This enables an optimal FPGA design with the least model la-

tency.
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An overview of FPGA-based simulation of electric machines can be found in [1].

Comprehensive treatment on implementing models of DC machine and QD models

of AC machines on an FPGA is provided in [115]. [116] has presented FPGA-based

simulation of nonlinear MEC model of a faulted electric machine. [6] has designed a

model decomposition technique to perform real-time simulation of large-scale energy

systems, such as microgrids, on multiple FPGA devices. [117] proposed a robust

numerical interface for power hardware-in-the-loop applications using FPGAs. [118]

implements the QD model of induction machine on FPGA with 54 times gain in

simulation speed when compared to an offline simulation in MATLAB. Following the

seminal work in [103], there has been consistent progress in VBR modeling techniques.

Recently, [119, 120] have developed VBR models for multi-phase electric machine

systems often used in AC-DC energy conversion systems. However, adaptation of

VBR models for FPGA implementation is very limited e.g., [121] has designed an

FPGA-based grid simulator, that includes an approximate constant-parameter VBR

model of an unsaturated machine. The salient contributions of this paper are given

below:

• Provide an overview of exact VBR models of induction motors and synchronous

generators operating in unsaturated or saturated regions, and discretize result-

ing models using a fourth-order Runge-Kutta approach.

• Use HLS to quickly map these models onto FPGAs with little requirement for

hardware background of target FPGAs.

• Present an automatic search method based on the gradient descent and genetic

algorithm to find the fastest FPGA implementation. A detailed comparison is

provided between the default HLS FPGA implementation and the fastest HLS

FPGA implementation of the VBR models.
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• Present extensive studies highlighting the speedup of FPGA-based versus software-

based simulations.

5.2 VBR Models of Electric Machines

This section provides a brief overview of dynamic VBR models for synchronous

machines [101, 103] and induction machines [106], and their treatment when dealing

with magnetic saturation (synchronous [108], induction [107]).

5.2.1 Synchronous Machines

We consider a synchronous machine with two damper windings along the q-

axis, kq1 and kq2, and one field winding, fd, and one damper winding, kd, along the

d -axis. Damper windings are shorted, and vfd is applied to the field winding. Motor

convention is assumed with currents treated as positive when flowing into the machine.

Stator currents and rotor flux linkages are adopted as the state variables[101], leading

to 

d
dt

[L
′′

abcs(θr)iabcs] = vabcs −Rsiabcs − e
′′

abcs

d
dt
λj = − rj

Llj
(λj − λmq); j = kq1, kq2.

d
dt
λj = − rj

Llj
(λj − λmd) + vj; j = fd, kd.

(5.1)

iabcs and vabcs are the stator currents and voltages, respectively. Rs is a diagonal

matrix with the stator resistance value, rs. λj is the flux linkage of the rotor winding

(damper or field winding). rj and Llj are the resistor and leakage inductance of

the corresponding rotor winding, respectively. λmq and λmd are the magnetizing flux

linkages in corresponding axes,

98




λmq = L

′′
mq

(
λkq1
Llkq1

+
λkq2
Llkq2

+ iqs

)
λmd = L

′′

md

(
λkd
Llkd

+
λfd
Llfd

+ ids

) . (5.2)

The sub-transient inductance matrix, L
′′

abcs, is defined as

L
′′
abcs(θr) =


LS(2θr) LM (2θr − 2π

3 ) LM (2θr + 2π
3 )

LM (2θr − 2π
3 ) LS(2θr − 4π

3 ) LM (2θr)

LM (2θr + 2π
3 ) LM (2θr) LS(2θr + 4π

3 )

 . (5.3)

The sub-transient voltage is e
′′

abcs = [Kr
s]
−1[e

′′
q e

′′

d 0]T , where Kr
s is the transformation

matrix from stator to rotor reference frames. e
′′
q , e

′′

d , L
′′

md, L
′′
mq, LS and LM are detailed

in [101].

5.2.2 Induction Machines

There are several VBR formulations of an induction machine with different

numerical properties[106]. We adopt the VBR-III formulation, that offers diagonal

resistance and inductance matrices for a three-phase, wye-connected machine. A

squirrel-cage machine with shorted rotor windings is considered. The state equations

for the electric subsystem are


LD

d
dt

iabcs = vabcs −RDiabcs − e
′′

abcs

d
dt
λqr = − rr

Llr
(λqr − λmq)

d
dt
λdr = − rr

Llr
(λdr − λmd)

. (5.4)

λqr and λdr are the q/d -axis rotor flux linkages. The magnetizing flux linkage terms

in corresponding axes are
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λmq = L

′′
m

(
iqs + λqr

Llr

)
λmd = L

′′
m

(
ids + λdr

Llr

) , (5.5)

where L
′′
m = (1/Lm + 1/Llr)

−1. Lm and Llr are the mutual and the rotor leakage

inductances, respectively. The diagonal resistance, RD, and inductance matrices,

LD, have rs + (L
′′2
m/L2

lr)rr and Lls + L
′′
m as respective elements. rs and rr are the

respective resistances of stator and rotor windings. The sub-transient voltage is

e
′′

abcs = [Kr
s]
−1

[
e
′′
q e

′′

d 0

]T
, with e

′′
q and e

′′

d detailed in [106].

5.2.3 Treatment of Magnetic Saturation

The two key issues when incorporating magnetic saturation are (i) dynamic

saliency due to rotor structure, and (ii) formulation of saturation characteristic. As-

suming a constant saliency factor, SF , an anisotropic salient-pole machine can be

represented as an isotropic one with the following main flux linkage, λm, and magne-

tizing current, im, [108]


λm =

√
λ2
md + (λmq/SF )2

im =
√
i2md + (SF imq)2

. (5.6)

The relationship between λm and im is modeled using an arctangent function [122],

and approximated as

λm = LDim + λres, (5.7)
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where LD = ∂λm/∂im and λres are dynamic inductance and residual flux, respectively

[108]. This linear expression for λm can be projected to qd-axes as λmq, λmd, λresq,

and λresd.

5.2.3.1 Incorporating saturation in synchronous machine models

The state equations for a saturated synchronous machine have the same struc-

ture as those of the unsaturated machine in (5.1), but the expressions for inductance

terms, magnetizing flux linkages, and sub-transient variables change due to the effect

of magnetic saturation [108] to include the saliency factor, SF , dynamic inductance,

LD, or residual flux, λresq.

5.2.3.2 Incorporating saturation in induction machine models

The state-space model for a saturated induction machine is given in [107]


L
′′

abcsat
d
dt

iabcs = vabcs −Rsiabcs − e
′′

abcsat

d
dt
λqr = − rr

Llr
(λqr − λmq)

d
dt
λdr = − rr

Llr
(λdr − λmd)

, (5.8)

where 
λmq = L

′′
D

(
iqs + λqr

Llr

)
+ LD

′′

LD
λresq

λmd = L
′′
D

(
ids + λdr

Llr

)
+ LD

′′

LD
λresd

, (5.9)

and L
′′
D = (1/LD + 1/Llr)

−1. Rs is a diagonal matrix with stator resistances, rs, as

elements. e
′′

abcsat is the sub-transient voltage term. The sub-transient inductance,

L
′′

abcsat, is
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L
′′

abcsat =


Lls + 2

3
L
′′
D −L

′′
D

3
−L

′′
D

3

−L
′′
D

3
Lls + 2

3
L
′′
D −L

′′
D

3

−L
′′
D

3
−L

′′
D

3
Lls + 2

3
L
′′
D

 . (5.10)

5.2.4 Mechanical Subsystem

In all the above VBR models, the mechanical subsystem is



d
dt
θr = ωr

d
dt
ωr = p

2J
(Te − Tm)

Te = 3p
4

(λmdiqs − λmqids)

. (5.11)

θr is its rotor position and ωr is the angular speed. Te and Tm are the electromagnetic

and mechanical torques, respectively. p is the number of poles and J is the inertia.

iqs and ids are the q- and d -axis stator currents transformed from iabcs.

5.3 Discretization and Numerical Integration

Dynamic VBR models discussed in the previous section can be simulated using

various numerical routines. Consider a dynamic system,

dx

dt
= f(t,x); x(t0) = x0. (5.12)

x, t0, and x0 represent the state, initial time, and initial state, respectively. For the

induction machine in (5.4), this becomes

x =

[
iabcs λqr λdr ωr θr

]T
, (5.13)
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f =



L−1
D (vabcs −RDiabcs − e

′′

abcs)

− rr
Llr

(λqr − λmq)

− rr
Llr

(λdr − λmd)
P
2J

(3P
4

(λmdiqs − λmqids)− Tm)

ωr


. (5.14)

The 4th-order Runge-Kutta (RK4) numerical integration routine [123], with a

step size of h, can be formulated for (5.12) as


xn = xn−1 + h

6
(k1 + 2k2 + 2k3 + k4)

tn = tn−1 + h

, (5.15)

where xn and tn are state and time at the nth instant. The definitions of coefficients

k1 − k4 are standard



k1 = f(tn−1,xn−1)

k2 = f(tn−1 + 0.5h,xn−1 + 0.5hk1)

k3 = f(tn−1 + 0.5h,xn−1 + 0.5hk2)

k4 = f(tn−1 + h,xn−1 + hk3)

. (5.16)

This 4th-order approximation provides an acceptable trade-off between accuracy

and computational cost. Other integration routines, such as Gears methods, can be

similarly adopted [124]. Appendix 6.1 discusses the choice of step size that ensures

the numerical stability of RK4.
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5.4 Field Programmable Gate Arrays

FPGAs are arrays of logic blocks, with different numbers of lookup tables

(LUTs) and flip-flops, connected by programmable wires (switch boxes) [125]. Such

architectural flexibility allows FPGA to implement any logic function. The maximum

achievable clock frequency depends on the depth of the logic circuit (logic delay) and

the wiring needed to connect the logic blocks (wire delay). FPGAs can have up to 35

billion transistors [126] which allows designers to deploy large-scale microelectronic

systems. FPGAs are increasingly used as low-cost hardware accelerators to rival

parallel computers handling heavy computations [127]. FPGA-assisted simulation

accelerations has found application in particle assembly [128], image processing [129],

and financial portfolio simulation [130].

Figure 25 shows a block diagram of a traditional FPGA using Xilinx’s nota-

tion for logic blocks, called Configurable Logic Blocks (CLBs). These logic blocks

are alternatively referred to, by Intel®, as Adaptive Logic Modules (ALMs). Mod-

ern FPGAs have columns of embedded memory and Digital Signal Processing (DSP)

blocks. Figure 25 shows a traditional flow to configurate an FPGA [127]. Tradition-

ally, the user writes Verilog or VHDL codes to describe the circuit to be mapped.

The logic synthesis tool then converts this code into a gate netlist which is, in turn,

passed to the mapper and place and router. Finally, a bitstream that configures the

internal resources of the FPGA is generated. This flow has recently been extended

to synthesize untimed software descriptions through High-Level Synthesis.

5.5 High-Level Synthesis

Expert knowledge on hardware needed to program FPGAs is the main imped-

iment to their large-scale adaption. The US Bureau of Labor Statistics reported in
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Figure 25: Overview of FPGA’s configuration flow and internal structure.

2017 that the ratio of software engineers to hardware engineers almost doubled since

2010 [131]. Since models to be accelerated on FPGAs are almost always developed

initially using a high-level programming language like ANSI-C, C++, or MATLAB,

it makes sense to have a direct flow between these high-level programming languages

and the hardware implementation without resorting to low-level hardware description

languages. FPGA vendors have released tools that enable this path through HLS –

a synthesis process that accepts an untimed behavioral description such as ANSI-C,

and produces hardware description in Verilog or VHDL [132]. This approach widens

the user base while significantly reducing the time to map an algorithmic description

to hardware. Another distinct advantage of HLS is that once the algorithmic descrip-

tion is fixed, HLS can automatically generate design variants with different resource

utilization (e.g., area) versus performance trade-offs. This is possible because certain

operations, referred to as explorable operations, such as loops, functions, and arrays

can be synthesized on an FPGA in different ways leading to different areas and per-

105



formance. For example, arrays can be mapped to registers or memory, and loops can

be unrolled or pipelined[133]. These options can be selected using synthesis directives

as pragmas that are added to the behavioral description as comments[132].

Figure 26 shows a sample code along with pragmas. The code snippet shows a

behavioral description that computes the moving average of eight numbers [134]. The

synthesis of the array that holds the eight values can be controlled through pragma1.

This allows the array to be synthesized as RAM, registers, or fully expanded. The

addition loop can be fully or partially unrolled, not unrolled, or pipelined (pragma2 ).

Different combinations of these pragma settings lead to multiple implementations of

this behavioral description as shown by the red curve in Figure 2. The main challenge,

for a non-expert, is to determine the right combination of pragmas to generate the

desired circuit. This is a non-trivial task, especially for complex descriptions, as the

synthesis option combinations increase exponentially with the number of explorable

operations [135]. To mitigate that, we investigate an automatic HLS design space

explorer to find the synthesis options that lead to the fastest implementation of VBR

models of electric machines on an FPGA.

HLS design space exploration can be cast as a multi-objective optimization

problem that aims to minimize conflicting design parameters. Typically, these pa-

rameters are the design area (A), which in our case is the FPGA’s resource utilized,

and the performance parameter such as latency (L) defined as the number of clock

cycles required to generate a new output [135]. The ultimate goal of HLS DSE is to

find a set of Pareto-optimal designs [132]. These designs form the Pareto front (P̄F ),

where P̄F is composed of the dominant designs P̄F = {d1, d2, . . . , dn} such that, for

any design, di ∈ P̄F ,

A(di) ≤ A(dq) and L(di) ≤ L(dq), (5.17)
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Figure 26: Design space exploration to find the arithmetic average of 8 numbers with
pragmas that lead to the fastest implementation (HLSHP ).

where dq 6∈ P̄F . In other words, a design is Pareto-optimal if there is no other

candidate in the search space that exhibits less latency or smaller area than di. Since

the search space grows superlinearly with the number of explorable synthesis options,

it is often not possible to claim Pareto-optimality for larger designs[132]. The designs

obtained are often called non-dominated or dominating designs. Therefore, heuristics

are needed for HLS DSE. An overview of various heuristics is provided in [132].

In this work, we are not interested in finding the Pareto frontier, rather the

fastest implementation that can accelerate the simulation of a given VBR model.

When synthesizing the behavioral description with no pragmas, the HLS tool will use

a default set of options. For example, for the sample code in Figure 26, the default
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ALGORITHM 1: Complete MATLAB-to-FPGA hardware acceler-
ation flow

input : MATLABinput, ftarget, T echlib
MATLABinput: Behavioral description written in MATLAB
ftarget: Target synthesis frequency
TechLib: Technology library

output: Design.bit/.sof
Design.bit/.sof : configuration bitstream for FPGA

1 /* Phase I: Manual Code Refinement */
2 Csynth ←MATLAB to C(MATLABinput);
3 Ctaps ← C insert taps(Csynth);
4 sim report← sim C code(Ctaps);
5 Copt hw ← data type refinement(Csynth, sim report);
6 /* Phase II: Fastest Architecture Search*/
7 HLSHP ← HLS DSE(Copt hw, ftarget, T echlib);
8 RTLHP ← extract fastest design(HLSHP );
9 Design.bit/.sof ← logic synth(RTLHP );

10 return(Design.bit/.sof );

HLS setting leads to the design HLSdefault = {A = 580, L = 8} (green circle in Figure

26), with an area of 580 LUTs and the latency of 8 clock cycles. The goal in this

work is to find the set of pragmas that lead to the fastest possible implementation,

HLSHP . This is achieved if pragma1 is set to register and pragma 2 is set to fully

unroll the loop. In this case, HLSHP = {A = 610, L = 1}, which implies that the

area has increased from 580 to 610, while the latency has decreased from 8 to 1, i.e.,

the new circuit has become 8 times faster.

5.6 Model Deployment on FPGAs

In this section, we detail how the dynamic VBR models are accelerated on an

FPGA using HLS. Once the dynamic VBR models in Section 5.2 are discretized using

the Runge-Kutta routine in Section 5.3, they can be deployed on FPGA boards for

an accelerated execution of numerical simulation.

Figure 27 and Algorithm 1 highlight the two distinct phases of the hardware

implementation flow. The first phase manually re-implements the MATLAB code into
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ANSI-C, as available HLS tools [136] mainly supports ANSI-C and C++. MATLAB

also offers a direct MATLAB-to-HDL synthesis tool called HDL coder [137]. However,

one shortcoming of HDL coder is that it has a limited number of synthesis options that

do not allow tailoring the implementation to different designers’ preferences (e.g., low

power or high performance). The second phase automatically generates the FPGA

configuration file by, first, finding the fastest hardware implementation using HLS

design-space exploration and, then, performing logic synthesis, place and route, and

finally, generating the bitstream to configure the FPGA (.bit or .sof depending on

the FPGA vendor). These two phases of hardware implementation flow are detailed

in what follows.

Phase I: Manual Code Refinement: First, the original MATLAB code is manually

translated into a synthesizable C code (ANSI-C) (line 2 in Algorithm 1). This step

is shown in Algorithm 1 to be achieved using the function MATLAB to C for a con-

cise representation. The result is an ANSI-C description that is synthesizable, but

has not been fully optimized (Csynth). Problems that can benefit from FPGA-based

hardware acceleration are commonly those with fixed-point data type that can be

performed in parallel [138]. As the floating-point data types used in the MATLAB

environment could require too many logic resources, they are refined using fixed-point

data types supported by the HLS tool. To help further optimize the resulting hard-

ware, different trigonometric functions used in VBR models of Section 5.2 (e.g., to

treat saturation) are also refined. HLS tool vendors typically provide a library with

synthesizable mathematical functions. The precision of these trigonometric functions

is automatically set based on an iterative process that guarantees matching their out-

puts with reference outputs obtained from the original MATLAB code. This ensures

that no numerical stability issue appears when running the accelerated algorithms on
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Figure 27: MATLAB-to-FPGA hardware acceleration flow.

the FPGA. For this purpose, the bitwidth of the signals are reduced to the smallest

allowable bitwidth that does not introduce any error, by automatically inserting taps

into the converted C code through a simple Python script (line 3 in Algorithm 1,

using function C insert taps). These taps record all values of the tapped signals in

a simulation report (sim report) when the C descriptions are compiled and executed

with the given test data (line 4 in Algorithm 1, using function sim C code). The

maximum range and precision of each signal is computed, and every internal signal is

adjusted accordingly by specifying it as a fixed-point data type (line 5 in Algorithm

1, using function data type refinement). The result is a refined behavioral description

optimized for HLS (Copt hw).
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Phase II: Fastest Architecture Search: The resulting behavioral description is,

in turn, passed to an automated HLS DSE to find the fastest implementation (micro-

architecture) for a given VBR model.

Problem Formulation: Given a behavioral description in ANSI-C (C) to be accelerated

on an FPGA, a library of synthesis directives as pragmas P that form a search space

RP
C , and a commercial HLS tool (HLS) that can estimate the performance in terms of

latency L(HLS,C, P ) and resource utilization Ri(HLS,C, P ), find the configuration

c ∈ RP
C , in a given time limit, such that c fits in the FPGA and the latency is

minimized. This problem can be formulated as

min L

subject to Ri ≤ RFPGA , (5.18)

where L is the latency to be minimized and Ri is the FPGA resource that has to be

smaller than available FPGA resources (RFPGA). In other words, the optimal design

fits in a given FPGA and minimizes the clock cycles to generate a new output. This

step is represented by function HLS DSE in line 7 of Algorithm 1.

Because the combination of synthesis options increases exponentially with the

number of explorable operations, an exhaustive enumerations of all the combinations

is not possible. Thus, we tailor two meta-heuristics to find the fastest implementations

(line 7 in Algorithm 1), namely, gradient descent and genetic algorithm, and compare

their results.

Gradient Descent Search: We start from a random set of pragma combinations c1 =

{P1, P2, . . . , Pn}, and synthesize it using HLS to obtain the Latency, L1, and the
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resource utilization, R1. This initial configuration c1 is updated by following the

steepest descent (largest gradient). One limitation of this approach is that it requires

the objective function to be differentiable to find the configuration that leads to

the largest gradient. We leverage the finite difference method to approximate the

gradient value by using the HLS tool as a black box. Given a candidate configuration

cj perturbed from the current configuration ci, we approximate the gradient as

Gradient(cj, ci) =
L(cj)− L(ci)

R(cj)−R(ci)
. (5.19)

Given the current configuration, ci, the next candidate configuration, cj, (as per the

steepest descent) can be obtained by perturbing a fixed percentage of the pragmas in

ci, and computing their latency and resource utilization for (5.19). The configuration

with the largest gradient is chosen next. Experimentally, we observed that a pertur-

bation rate of 20% led to satisfactory results. To ensure (near) optimal solution, we

have repeated this process for different initial seeds.

Genetic Algorithm Search: Each explorable operation (array, function, or loops) rep-

resents a gene to which a synthesis directive, in the form of pragma, is assigned. A

set of genes builds a chromosome (an HLS design). The genetic algorithm starts by

generating a random population of unique design combinations of chromosomes. This

initial population then generates new chromosomes using evolution-based techniques

of selection, crossover, and mutation. The crossover and mutation rates for the ge-

netic algorithm are 0.8 and 0.1, respectively. Interested readers can refer to [133] for

a detailed treatment on genetic algorithm-based design space exploration.

The result of these explorations is the fastest micro-architecture, HLSHP , that

is passed on to the FPGA’s back-end tools that synthesizes this Verilog code, places

and routes it, and generates the configuration bitstream for the FPGA. This stage is
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fully automated (lines 8-9 in Algorithm 1, using functions extract fastest design and

logic synth [139]). RTLHP and Design.bit/.sof represent the Register-transfer-level

design and bitstream file, respectively, for HLSHP .

5.7 Comparative Studies

FPGA prototypes of various machine types, for models reviewed in Section 5.2

and discretized using numerical routines in Section 5.3, are developed using the design

protocols offered in Section 5.6. The following studies are inspired by and the machine

parameters are adopted from [4]. These machine parameters are provided in Appendix

6.2. The machine models are simulated in the MATLAB environment via scripts (.m

file format) using the fourth-order Runge-Kutta routine with a fixed step size of 0.5

ms. The Simulink environment, and the inbuilt ordinary differential equation (ode)

solver routines in the MATLAB environment, are avoided (due to their overhead) to

ensure that both MATLAB and FPGA environments numerically execute the same

set of equations, which allows for a fair comparison. Simulation runs on FPGAs are

compared against their original MATLAB simulation runs to deduce the comparative

gain in the simulation speed. This gain is defined as the average acceleration observed

over several runs. Simulations are executed on a 1.6 GHz machine, with an Intel(R)

Xeon(R) CPU E5-2603 v3 processor and 32 GB of RAM, running Linux Fedora Core

20. The version of MATLAB used is 2018a. The HLS tool, the logic synthesis

tool, and the target FPGA board are CyberWorkBench v.6.1 [136], Quartus II v.17.0

[140], and Terasic DE1-SoC board with an Intel Cyclone V FPGA 5CSEMA5F31C6,

respectively.

Each model refined in ANSI-C is explored using the gradient descent and ge-

netic algorithm explorers. In all scenarios, both explorers led to the same fastest

implementation (HLSHP ). We compare the results of the fastest implementation
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reported by the explorers versus the default implementation when the ANSI-C code

is directly synthesized (HLSdefault). Tables 9 and 10 summarize the experimental

results. Table 9 provides the FPGA resource utilization, for each machine model, as

well as the maximum clock frequency and circuit latency. Table 10 shows dynamic

performances predicted using MATLAB and FPGA. It can be observed that, in all

four cases, the transients produced from both MATLAB and FPGA are identical (see

Figures 28, 29, 30, and 31).

First, the VBR model of a synchronous machine, connected to an infinite bus,

is simulated with a sudden change in the input torque (see Figure 28). The FPGA

execution is 69× and 101× faster than those of MATLAB for the HLSdefault and

HLSHP , respectively. Table 9(a) shows the FPGA resources required for these two

FPGA implementations. Next, free acceleration (no load) operation of an induction

machine under rated line-to-line voltage is considered. The speedups obtained in

this case are 136× and 271× for the HLSdefault and HLSHP , respectively, while an

excellent match between the traces resulting from two implementations are reported

in Figure 29. Table 9(b) shows the resources and timing information of the FPGA

implementation.

The next set of experiments consider VBR models of electric machines operat-

ing with magnetic saturation. The VBR model of a low-speed synchronous machine is

simulated under a three-phase fault condition. Table 9(c) details the resource utiliza-

tion for the VBR model deployment on the target FPGA. Comparison of numerical

model executions in MATLAB and FPGA, reflected in Figure 30, shows a speedup

of 74× and 114× for the HLSdefault and HLSHP , respectively. Finally, an induction

machine model operating under saturated conditions is considered for a single-phase

voltage sag scenario. Phase a is set to 50% of the rated voltage for 0.1 s while, to

ensure saturation, the input voltages are 10% higher than the rated voltage. Ta-
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Table 9: FPGA resource utilization to implement different VBR models

VBR model of a synchronous machine (a)

Resources HLSdefault HLSHP
Number of Registers 12,731 13,887
Number of ALMs 20,658/32,070 (64%) 22,144/32,070 (69%)
BlockRAM bits 202,752/4,065,280 (5%) 202,752/4,065,280 (5%)
RAM Blocks 30/397 (8%) 30/397 (8%)
Number of DSPs 50/87 (57%) 50/87 (57%)
Max frequency (MHz) 49.05 50.2
Latency (clk cycles) 173 155

VBR model of an induction machine (b)

Number of Registers 6,504 10,252
Number of ALMs 11,216/32,070 (35% ) 18,321/32,070 (57%)
BLockRAM bits 168,960/4,065,280 (4% ) 105,336/4,065,280 (3%)
RAM Blocks 20/397 (5% ) 15/397 (4%)
Number of DSPs 28/87 (32% ) 38/87 (44%)
Max frequency (MHz) 48.62 49.2
Latency (clk cycles) 108 75

VBR model of a saturated synchronous machine (c)

Number of Registers 66,010 75,363
Number of ALMs 28,847/32,070 (90%) 34,488/30,488 (95%)
BlockRAM bits 2,862,592/4,065,280(70%) 2,099,640 (52%)
RAM Blocks 230/397 (58%) 180/397 (45%)
Number of DSPs 87/87 (100%) 87/87 (100%)
Max frequency (MHz) 84.75 82.11
Latency (clk cycles) 276 201

VBR model of a saturated induction machine (d)

Number of Registers 39,021 55,387
Number of ALMs 22,280/32,070 (69%) 26,852
BLockRAM bits 1,455,872/4,065,280 (36%) 1,234,499 (30%)
RAM Blocks 110/397 (28%) 100 (25%)
Number of DSPs 85/87 (98%) 85/87 (98%)
Max frequency (MHz) 81.75 83.4
Latency (clk cycles) 227 199

ble 9(d) summarizes the FPGA resources needed to deploy the corresponding VBR

model. While an excellent match between MATLAB and FPGA transients are re-

ported in Figure 31, 88× and 186× simulation speedups are achieved for HLSdefault

and HLSHP , respectively.

From Table 9, it can be observed that the HLSHP implementation requires

more registers, ALMs (LUTs), and DSP macros than the default implementation

(HLSdefault), while needing less BlockRAM. This is because, while minimizing la-

tency, the explorer generates a set of synthesis attributes (pragmas) that prefer reg-

115



Time

MATLAB

FPGA

Time

Time

Time

375

376

377

378

9 10 11 12 13 14 15

Time, s

0

1

2

20

-20

0

20

-20

0

20

-20

0

i a
s
, 
k
A

i b
s
, 
k
A

i c
s
, 
k
A

w
r
, 
ra

d
/s

T
e
, 
N

.m

Figure 28: Dynamic performance of the VBR model of a synchronous machine, de-
ployed in MATLAB and FPGA environments, under a sudden change in the input
torque from 0 to 1.11× 106 N.m at t = 10 s.

isters instead of memories (as registers are faster and can be accessed in parallel).

Moreover, these (near) optimal sets of pragmas exploit parallelism by aggressively

unrolling loops and inlining functions. As shown, this leads to hardware designs that

require a larger amount of resources, while leading to shorter latencies and, hence,

shorter simulation runtime.

Table 10 summarizes the speedups achieved by the two hardware implementa-

tions compared to the original MATLAB simulation. On average, the default HLS

implementation (HLSdefault) leads to a speedup of 92×, while the implementation

found by the explorer (HLS DSE) leads to an average speedup of 168×. This is

1.83× gain over the performance that default HLS would have provided.
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Figure 29: Simulated induction machine dynamics, based on VBR model in both
MATLAB and FPGA environments, under free-acceleration conditions.

5.8 Summary

Voltage-behind-reactance models of electric machines are becoming popular due

to the ease of network interfacing offered by their phase-domain (abc) representation

of the stator subsystem [141, 107, 105, 142]. FPGA deployment of dynamic models of

electric machines is very useful to accelerate the simulation and hardware-in-the-loop

applications. By eliminating overheads in simulation software environments (e.g.,

MATLAB), a noticeable acceleration of the numerical simulation is expected. VBR

models of synchronous machines and induction motors, operating in the linear or

saturated regions, are automatically deployed on an FPGA platform.
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Figure 30: Three-phase fault (at t = 10 s) for VBR model of a saturated synchronous
machine implemented in both MATLAB and FPGA environments.

Another aspect of this work is the design space explorer that obtains the fastest

architecture for mapping machine models on FPGA. This is achieved by formulating

the DSE search as a multi-objective optimization problem, and solved using both

gradient descent and genetic algorithm methods. The performance of the fastest HLS

FPGA implementation (obtained from DSE) is compared against the default HLS

FPGA implementation for the considered VBR models. Future directions include

achieving multi-resolution simulation on FPGA that would take advantage of the

118



-500

0

500
MATLAB

FPGA

0.5

1

1.5

355

360

365

2.9 3 3.1 3.2 3.3 3.4 3.5

Time, s

-500

0

500

i a
s
, 
A

l
m

, 
V

s
w
r
, 
ra

d
/s

T
e
, 
N

.m

Figure 31: Time-domain transients obtained from both MATLAB and FPGA imple-
mentations of the VBR model of a saturated induction machine under phase a voltage
sag (vas = 0.5 p.u.) during t = 3 s to t = 3.1 s.

decoupled rotor and stator dynamics to be solved with different solvers and step

sizes, and employing approximate constant-parameter VBR models that lead to a

time-invariant inductance terms and a faster execution [142, 109, 110].
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Table 10: Running time comparison between MATLAB and FPGA implementations
of VBR models of different machines types

Models
Running Time Speedup Speedup

MATLAB [s] HLSdefault [ms] HLSHP [ms] MATLAB vs. HLSdefault MATLAB vs. HLSHP

Synchronous machine 10.91 157.39 108.45 69 101
Induction machine 1.57 11.52 5.80 136 271
Saturated synchronous machine 7.19 97.69 63.28 74 114
Saturated induction machine 2.44 27.77 13.09 88 186

Average = 92 Average = 168
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CHAPTER 6

CONCLUSION

Electric machine models are identified using techniques based on convex opti-

mization and Kalman filter. These data-driven methods extract machine parameters

using transient measurements during normal operation, without resorting to labora-

tory tests. First, a qd0 model of a synchronous machine is extracted from its MEC

model using cone programming. The developed approach, which uses both convex

optimization and local search, is further extended for induction machine parameter

identification. Herein, robustness to lossy data is also considered. Second, an online

partial-update Kalman filter is designed for PMSM estimation problems for lossy in-

coming measurements. Finally, faster FPGA-based simulation of machine models is

achieved by minimizing latency.

Future extension of this work could explore a more general qd0 models for

model extraction. One could also consider scenarios with time-varying parameters.

Multi-resolution simulation on FPGA that would take advantage of the decoupled

rotor and stator dynamics in VBR models is another interesting research direction.

Finally, we hope to bring in tools from machine learning, such as neural networks, for

the macromodeling of electric machines.
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APPENDIX A

6.1 Appendix A: Discussion on The Choice of Step size

The stability characteristics of a multi-step integration routine can be deter-

mined using its stability function [143]. For the classical RK4 method, the stability

function, q(z), becomes

q(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
, (6.1)

where z = hσ. h is the step size and σ is eigenvalue of the linearized machine model.

To ensure numerical stability, |q(z)| ≤ 1. Step size, h = 0.5 ms, is chosen as a good

trade-off between accuracy and performance. Interested readers can refer to Figure 9

in [106] and Figure 10 in [101] that report the relative error against the step size for

the VBR models of induction machine and synchronous machine, respectively.

6.2 Appendix A: Machine Parameters

Parameters for different machines are adopted from [4]

1. Unsaturated synchronous machine: 26 kV, 835 MVA, p = 2, rs = 0.00243Ω,Xls =

0.1538Ω,Xd = 1.457Ω, r′kq1 = 0.00144Ω,X ′lkq1 = 0.6578Ω, r′kq2 = 0.00681Ω,X ′lkq2 =

0.07602Ω, r′fd = 0.00075Ω,X ′lfd = 0.1145Ω, r′kd = 0.01080Ω,X ′lkd = 0.06577Ω,Xq =

1.457 Ω, J = 0.0658× 106 kgm2.

2. Unsaturated induction machine: 3 hp, 220 V, p = 4, rs = 0.435 Ω, Xls =

0.754 Ω, XM = 26.13 Ω, X ′lr = 0.754 Ω, r′r = 0.816 Ω, J = 0.089 kgm2.

122



3. Saturated synchronous machine: 20 kV, 325 MVA, p = 64, rs = 0.00243Ω,Xls =

0.1478Ω,Xq = 0.5911Ω, r′kq2 = 0.01675Ω,X ′lkq2 = 0.1267Ω,Xd = 1.0467Ω, r′fd =

0.00050 Ω,X ′lfd = 0.2523 Ω, r′kd = 0.01736 Ω,X ′lkd = 0.1970 Ω, J = 35.1 × 106

kgm2. Saturation characteristics parameters: τT = 0.3, λT = 43.3962, Md =

331.1652, Ma = 730.5857.

4. Saturated induction machine: 50 hp, 460 V, p = 4, rs = 0.087 Ω, Xls =

0.302 Ω, XM = 13.08 Ω, X ′lr = 0.302 Ω, r′r = 0.228 Ω, J = 1.662 kgm2.

Saturation characteristics parameters: τT = 20, λT = 0.82, Md = 62.75, Ma =

88.95.
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