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Abstract 

 
DEEPSIGN: A DEEP-LEARNING ARCHITECTURE FOR SIGN LANGUAGE 

RECOGNITION 

 

Jai Shah, MS  

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Vassilis Athitsos 

Sign languages are used by deaf people for communication. In sign languages, 

humans use hand gestures, body, facial expressions and movements to convey 

meaning. Humans can easily learn and understand sign languages, but automatic sign 

language recognition for machines is a challenging task. Using recent advances in the 

field of deep-learning, we introduce a fully automated deep-learning architecture for 

isolated sign language recognition. Our architecture tries to address three problems: 1) 

Satisfactory accuracy with limited data samples 2) Reducing chances of over-fitting when 

the data is limited 3) Automating recognition of isolated signs. Our architecture uses deep 

convolutional encoder-decoder architecture for capturing spatial information and LSTM 

architecture for capturing temporal information. With a vocabulary of 14 one-handed 

signs chosen from LSA64 Dataset, our architecture achieves an accuracy of 96.02% for 

top 3 predictions in signer dependent settings and an accuracy of 77.85% for top 3 

predictions in signer independent settings.  
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Chapter 1  

Introduction 
 

Sign Language Recognition is a difficult task for Computers. For humans, Sign 

Language Recognition is an easy task. Humans look for the location of the hands and the 

motion of the hands relative to each other for recognizing the Sign. More generally, Sign 

Language Recognition is a spatio-temporal learning problem which humans solve by 

locating where hands are at current timestep and remember the location of the hands in 

the previous timesteps by which humans can figure out the motion of the hands and 

recognize the sign.  

In this paper, we present DeepSign, a deep learning architecture for spatio-

temporal learning to recognize discrete Sign Language. Contrary to other deep learning 

approaches for Sign Language Recognition which requires lots of training data to learn, 

our method is specifically designed to learn from limited training data.   

The rest of the paper is as follows: In Chapter 2 we go over related work on Sign 

Language Recognition. In Chapter 3 we formulate the problem and give an overview of 

our method. In Chapter 4 we go over the Dataset. In Chapter 5 we briefly describe our 

deep learning architecture in detail. Then we go over the results that our model achieved 

in Chapter 6. In Chapter 7 we compare the performance of our model with traditional 

Dynamic Time Warping method on Sign Language Recognition. Finally, we conclude the 

paper in Chapter 7 by discussing our model and possible future work. 
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Chapter 2  

Related Work 
 

Sign Language Recognition is not a new problem in the field of Computer Vision. 

In the 90’s researchers used [1] Hidden Markov Approach for Sign Language Recognition 

because of their capability to capture temporal information. Researchers have also used 

extra hardware sensors [2], [3] as feature extractors and use classifiers on the extracted 

features. Above mentioned work dealt with static data and was not real-time. With the 

increasing popularity of deep neural networks and their capability to provide high-

performance, many researchers started using these new deep-learning techniques [4], [5] 

for sign language recognition which gave them better performance but still, they were 

dealing with static data. Recently, [6], [7], [8] have achieved real-time sign recognition 

performance with complex convolutional neural networks and they have worked on 

dynamic data. Deep Neural Network methods achieve high accuracy; however, they 

need a lot of training data. Previous literature has few shortcomings that we address with 

our work: 

• Introduce DeepSign, a new deep-learning architecture which achieves 

comparable results with limited training data 

• Automate sign-language recognition for isolated signs 
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Chapter 3  

Problem Formulation and Overview of Method 

Given a query video say Q we want to find its corresponding sign S. Our final 

goal is to learn a function A: Q →S that maps any query video Q belonging to a domain 

X to its corresponding sign S. Query video Q is a sequence of frames = (𝑞1, 𝑞2, … , 𝑞𝑡). 

This becomes a many-to-one problem because we want to map multiple inputs in a 

sequence to a single output.  

 
 

Figure 3-1 Many-To-One problem.  

 
So, we can re-write learning function A: Q → S to A: (𝑞1, 𝑞2, … , 𝑞𝑡) →S where we simply 

substitute Q to (𝑞1, 𝑞2, … , 𝑞𝑡). We want a first model, that we call Model-1, to learn a 

function E: Q → F that maps input sequence (𝑞1, 𝑞2, … , 𝑞𝑡) to feature sequence 

(𝑓1, 𝑓2, … , 𝑓𝑡) by minimizing the Mean Squared Error loss function: 

𝑀. 𝑆. 𝐸𝐿𝑜𝑠𝑠 = (𝑥– 𝑦)2                     (1) 

where x is the image pixels which is fed as input to the Model-1 and y is the pixels 

predicted by the Model-1. 



 

4 
 

 

Figure 3-2: Model-1 Overview to learn E: Q → F by minimizing M.S.E Loss. 

 

Figure 3-3: Model-2 Overview to learn M: F → S by minimizing Cross-Entropy. To 

calculate the error, the prediction in the last time step is used. 
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We want a second model, that we call Model-2, to learn a function M: F → S that maps 

feature sequence (𝑓1, 𝑓2, … , 𝑓𝑡) to its sign S by minimizing the Cross-Entropy loss function:  

𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 = − ∑    𝑝(𝑥)𝑙𝑜𝑔 𝑞(𝑥)                    (2) 

where p(x) is the probability distribution of actual target and q(x) is probability distribution 

predicted by the Model-2. By combining Model-1 and Model-2 together we wish to learn 

the goal function A: Q → S. 
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Chapter 4  

     Dataset 

We used LSA64 dataset [9] to evaluate our model’s performance. Originally the dataset 

includes 3200 videos. 10 non-expert subjects were asked to execute 5 repetitions of 64 

different types of signs.  

 

Table - 4.1: The H column is the hand column. The column H specifies whether the sign 

was performed with the right hand or both hands. Only the first 14 signs highlighted by 

red border were used for the experimentation. 
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These 64 chosen were the signs which are commonly used in LSA lexicon which 

includes nouns and verbs. Table - 4.1 shows the list of signs which has id, name and 

hands as columns for each sign. It consists of 42 one-handed signs and 22 two-handed 

signs. We have only used first 14 one-handed signs for recognition. Gloves were used by 

each subject. Each subject wore a magenta colored glove in the right hand and a 

fluorescent green colored glove in the left hand. Few samples of the dataset can be seen 

in Figure 4.1. 

 

Figure 4.1: Sample snapshots from LSA64 Dataset. 

The 14 signs we used consisted of 700 videos in total. Each sign has 50 videos. 

For every sign, 20 videos were used for testing and 30 videos were used for training. In 

total out of 700 videos and we used 280 videos for testing and 430 videos for training. No 

extra information of gloves was used in our pipeline. Our pipeline can be used for any 

isolated sign language data. 
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Chapter 5 Approach 

Our Approach has 1) Preprocessing step and 2)Training step. 

 
5.1 Preprocessing step 

In the preprocessing step, we used the [10] SSD model pre-trained by 

TensorFlow API on the COCO dataset to detect the person in each individual frame. We 

apply background subtraction on each frame to capture the motion information and we 

extract the pixels within the bounding-box provided by the SSD model. We find the edges 

in the frame and combine the background subtraction frame with the edge frame. We 

finally normalize the pixel values to be either 0 or 1.  

 

  

  

Figure 5-1: Object detection results. 
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(a) 

 
(b) 

Figure 5-2: Preprocessing step results. 
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5.2 Training Step 

The training step of our pipeline is a two-stage training. Training is performed 

from scratch, no pre-trained information is used. In the first stage of training, we use a 

Convolutional Encoder-Decoder Architecture to capture the spatial information. In the 

second stage, we use a LSTM network to capture the temporal information.  

 

5.2.1 Stage-1 Training Architecture 

The stage-1 training uses Model-1 for training to learn the function E: Q → F. 

Model-1 is an Encoder-Decoder Architecture. 

 
Table 5-1: Structure of the encoder network. The input and output size are described in 

rows x cols x # filters. The structure is inspired by inception[11]. 

 
The Encoder-Decoder architecture performs the reconstruction. The Encoder learns the 

hidden representation of every frame and the Decoder tries to regenerate the frame from 

the hidden representation. Our Encoder Network’s architecture is based on [11] Inception 

Architecture. The Encoder Network is a series of convolutional layers and max-pooling 

layers, to down-sample the original input which is at the end followed by a fully connected 

layer. 

Layer Kernel Stride Padding In-size Out-size 

Covolution1 3x3 1x1 SAME 240 x 240 x 1 240 x 240 x 16 

Leaky Relu    240 x 240 x 16 240 x 240 x 16 

Inception-1    240 x 240 x 16 240 x 240 x 16 

Max-Pooling-1 2x2 2x2 SAME 240 x 240 x 16 120 x 120 x 16 

Inception-2    120 x 120 x 16 120 x 120 x 8 

Max-Pooling-2 2x2 2x2 SAME 120 x 120 x 8 60 x 60 x 8 

Inception-3    60 x 60 x 8 60 x 60 x 8 

Max-Pooling-3 2x2 2x2 SAME 60 x 60 x 8 30 x 30 x 8 

Fully-Connected-1    30 x 30 x 8 1x512 

Leaky Relu    1x512 1x512 
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Figure 5-3: Inception Module with dimensionality reduction. The key idea of inception 

module is to deploy multiple convolutions, with multiple filters and pooling layers 

simultaneously in parallel within the same layer. 

 

Our Decoder Network tries to regenerate the frame from the hidden 

representation. Since the input image is used as the target, our Stage-1 training is an 

unsupervised learning problem. The Decoder takes the hidden representation as input 

and upsamples it to the original input. Usually, upsampling results are produced by 

deconvolution operations. However, these deconvolution operations produce checkboard 

artifacts and hence, we decided to resize using nearest-neighbor interpolation for 

upsampling and then do a convolution layer.  

In general, using an autoencoder means that, at test time, input videos should 

come from a similar distribution as the training videos, since autoencoders are data 

specific. However, the person detection and background subtraction applied in the pre-
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processing steps make sure that, after preprocessing the data are similarly structured 

(only upper body visible, no background). 

 
Table 5-2: Structure of the decoder network. The input and output size are described in 

rows x cols x # filters. The structure uses a nearest-neighbor interpolation up-sampling 

technique. 

 

This Stage-1 training architecture helps in three ways: 

1) It performs dimensionality reduction  

2) It captures the spatial information by learning the hidden representation of 

the frames. 

3) It reduces the chances of overfitting when the training data is not large.  

The Encoder-Decoder architecture forces the encoder network to learn the most 

important features in the frames and hence, this makes this architecture best suited for a 

problem where the number of training data is limited. Using large size networks like [11], 

[12] increases the chances of overfitting in such cases where the number of training 

Layer Kernel Stride Padding In-size Out-size 

Fully-Connected-1    1x7200 30 x 30 x 8 

Leaky Relu    30 x 30 x 8 30 x 30 x 8 

1Convolution-4 3x3 1x1 SAME 30 x 30 x 8 30 x 30 x 8 

Leaky Relu    30 x 30 x 8 30 x 30 x 8 

2Upsample-1    30 x 30 x 8 60 x 60 x 8 

3Convolution-5 3x3 1x1 SAME 60 x 60 x 8 60 x 60 x 8 

Leaky Relu    60 x 60 x 8 60 x 60 x 8 

4Upsample-2    60 x 60 x 8 120 x 120 x 8 

5Convolution-6 3x3 1x1 SAME 120 x 120 x 8 120 x 120 x 8 

Leaky Relu    120 x 120 x 8 120 x 120 x 8 

6Upsample-3    120 x 120 x 8 240 x 240 x 8 

7Convolution-7 3x3 1x1 SAME 240 x 240 x 8 240 x 240 x 16 

Leaky Relu    240 x 240 x 16 240 x 240 x 16 

8Logits  3x3 1x1 SAME 240 x 240 x 16 240x240x1 

Sigmoid 3   240 x 240 x 1 240x240x1 
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samples is limited. But the two-stage training is not end-to-end training and hence this 

makes the training difficult. 

 

 

Figure 5-4: Encoder-decoder architecture. 

 

5.2.2 Stage-2 Training Architecture 

The stage-2 training uses Model-2 for training to learn the function M: F → S. 

Model-2 is a LSTM architecture. In the second stage, we experiment with unidirectional 

LSTM and with bidirectional LSTM. LSTM networks are used to explicitly consider the 

sequence of encodings coming from Encoder. The LSTM architecture helps in learning 

temporal information in the videos. The LSTM network uses [13] LSTM cells which learn 

long-range temporal relationships between the sequences.  
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Figure 5-5: LSTM Cell. Each LSTM cell remembers  𝑐𝑡(Eq. 5). This value may be 

diminished or erased through a multiplicative interaction with the forget gate 𝑓𝑡(Eq. 4) or 

additively modified by the current input 𝑥𝑡 multiplied by the activation of the input gate 

𝑖𝑡  (Eq. 3). The output gate 𝑜𝑡 controls the emission of ℎ𝑡, the stored memory 

𝑐𝑡  transformed by the hyperbolic tangent nonlinearity (Eq. 6,7). 

 

Given input sequence 𝑥 = (𝑥1, 𝑥2 … , 𝑥𝑡) a LSTM network computes hidden state 

sequence ℎ = (ℎ1, ℎ2 … ℎ𝑡)  and output sequence  𝑦 = (𝑦1, 𝑦2 … , 𝑦𝑡). The hidden state of a 

LSTM cell is calculated as follows: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡 + 𝑏𝑖)                                       (3) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                (4) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)      (5) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                                (6) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)                                                             (7) 
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where 𝑖𝑡 = input gate, 𝑓𝑡 = forget gate, 𝑜𝑡 = output gate, 𝑐𝑡 = cell state, and 𝜎 = sigmoidal 

activation function. The Input gate tells whether to update the current state using the 

previous state. The Forget gate decides whether to forget the previous hidden state or 

not. The Cell state keeps only the necessary information. The Output gate filters the 

emission of the cell state. A unidirectional LSTM layer is a layer with stacked LSTM cells 

and these layers share weights across time. We freeze the Encoder Network from Stage-

1 training and pass the encodings coming from the Encoder Network as input to the 

Model-2: LSTM architecture. For unidirectional LSTM architecture (See Figure 5-5) we 

used two layers of LSTM with 128 stacked LSTM cells in each layer which is followed by 

a SoftMax layer which makes the predictions for every encoded sequence.  
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Figure 5-6 Unidirectional LSTM Architecture. Encoder outputs are processed forward 

through time and upwards through two layers of stacked LSTMs. A SoftMax layer 

predicts the class at each time step. The parameters of the Encoder network and 

SoftMax classifier are shared across time steps. 

 

A bidirectional LSTM consists of two LSTM layers, where one layer operates in the 

forward time direction and the other layer operates in the backward time direction (see 

Figure 5-6). Because of layers operating in forward and backward direction the 

bidirectional LSTMs has the advantage over unidirectional LSTMs, the output at each 

timestep uses information from both the past and the future timesteps. For bidirectional 

LSTM architecture, we used two layers of bidirectional LSTM with 128 stacked cells in 
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each layer which is followed by SoftMax layer for making predictions for each encoded 

sequence.  

 

Figure 5-7 Bidirectional LSTM Architecture. Encoder outputs are processed forward 

through time and upwards through two bidirectional layers of stacked LSTMs. A SoftMax 

layer predicts the class at each time step. The parameters of the Encoder network and 

SoftMax classifier are shared across time steps. 

These LSTM architectures are trained by backpropagation through time. 
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Chapter 6  

Training and Inference 
 

All the architectures were trained on a Nvidia Geforce GTX 1080 GPU. We used 

the Tensorflow deep learning framework for out experimentation. Our code is publicly 

available on Github (https://github.com/jayshah19949596/ASL-Thesis2). Our 

experimental results show that the bidirectional LSTM architecture performs better than 

the unidirectional LSTM architecture. We heavily used the Tensorboard tool for 

visualization and to keep track of inference results. All the Figures presented in this 

section are taken from Tensorboard results. 

6.1 Stage-1 Signer Dependent Training 

Stage-1 training is a frame-level training. 30 fps was used to read the video. 

Every frame was resized to 240x240 which was fed as input to the model. The inputs to 

the model were the targets and hence stage-1 learning is unsupervised learning. The 

Encoder-Decoder architecture was trained for 150 epochs. It took approximately 3.5 days 

to train the model from scratch on 420 videos. The batch size was of varying length. We 

use mean-squared error as the loss function. We used Adam optimizer as the 

optimization algorithm with a learning rate of 0.001. There were 280 videos in the test set. 

6.2 Stage-1 Signer Dependent Inference 

Figure 6-2 shows the batch-loss graph for every batch step. The graph gradually 

decreased. 

https://github.com/jayshah19949596/ASL-Thesis2
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Figure 6-1: Tensorboard signer dependent encoder-decoder main graph. 

 

 

Figure 6-2: Encoder-decoder batch loss graph in stage-1 signer dependent 

training. 
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(a) 

 

(b) 

Figure 6-3: Stage-1 regeneration results with signer dependent training. Left 

images are the input to the Encoder-Decoder Network. Right images are the regenerated 

image by the Encoder-Decoder Network. 

 

6.3 Stage-2 Signer Dependent Training 

For the Stage-2 training, the Encoder network is frozen and the Encoder’s 

encoding vector is given as input sequence to the LSTM architecture. Unidirectional 

LSTM was trained for 60 epochs and bidirectional LSTM model was trained for 50 

epochs. For both, it took approximately 1.5 days to complete training. During our 
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experiments, we found that unidirectional LSTM was overfitting the training data to a 

certain extent and hence we settled with the model trained for 50 epochs. We used [16] 

dropout with keep probability of 0.85 for every LSTM layer. Dropout is a regularization 

technique which reduces overfitting in neural networks by making the signal skip some 

neurons in the network. We used a batch size of 1 due to GPU memory constraints. The 

number of time steps used was of varying length for unidirectional LSTM architecture. 

The maximum number of time steps used for the bidirectional LSTM was 40. For the 

bidirectional LSTM random sampling was used to extract 40 frames out of the total 

number of frames if the total number of frames were greater than 40. The loss function 

used was cross-entropy. We used Adam optimizer as the optimization algorithm, with a 

learning rate of 0.001.  
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6.4 Stage-2 Signer Dependent Inference 

For both architectures, we used random-cross validation to evaluate validation 

accuracy during training. 

 

 

6.4.1 Unidirectional LSTM 

 
Figure 6-4: Tensorboard signer dependent unidirectional LSTM main graph. 

 



 

23 
 

 

Figure 6-5: Unidirectional LSTM step-loss graph in stage-2 signer dependent 

training. 

 

 

Figure 6-6: Unidirectional LSTM validation accuracy graph in stage-2 signer 

dependent training. 

Table 6-1 shows the evaluation results of Unidirectional LSTM on the test set. 

Top – 1 Top – 3 Top – 5 

64.28% 90.71 % 96.07 % 

Table 6-1: Unidirectional LSTM Signer Dependent Accuracy Table. 
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6.4.2 Bidirectional LSTM 

 
Figure 6-7: Tensorboard signer dependent bidirectional LSTM main graph. 
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Figure 6-8: Bidirectional LSTM step-loss graph in stage-2 signer              

dependent training. 

 

Figure 6-9: Bidirectional LSTM validation accuracy graph in stage-2 signer 

dependent training. 

Top – 1 Top – 3 Top – 5 

66.08% 96.02 % 98.20 % 

Table 6-2: Bidirectional LSTM Signer Dependent Accuracy Table. 
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With our experimental results, bidirectional LSTM out-performed unidirectional 

LSTM. Especially in top 3 predictions, bidirectional LSTM out-performed unidirectional 

LSTM with a nice margin. 

6.5 Stage-1 Signer Independent Training 

Stage-1 Signer Independent training used exactly the same settings as the 

Signer dependent training but the model was trained for more number of epochs. 

6.6 Stage-1 Signer Independent Inference 

Figure 6-10. shows the batch-loss graph for every batch step. The graph 

gradually decreased. 

 

 

Figure 6-10: Encoder-decoder batch loss graph in stage-1 signer independent 

training. 
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(a) 

 

(b) 

Figure 6-11: Stage-1 regeneration results with signer independent training. Left 

Image is the input to the Encoder-Decoder Network. Right side is the regenerated image 

by the Encoder-Decoder Network. 
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6.7 Stage-2 Signer Independent Training 

For the Stage-2 signer independent training used exactly the same settings as 

the Stage-2 signer dependent training. 

  

6.8 Stage-2 Signer Independent Inference 

For both architectures, we used random-cross validation to evaluate validation 

accuracy during training. 

 

 

6.8.1 Unidirectional LSTM 

 
Figure 6-12: Tensorboard signer independent unidirectional LSTM main graph. 
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Figure 6-13: Unidirectional LSTM step-loss graph in stage-2 signer independent 

training. 

 

Figure 6-14: Unidirectional LSTM validation accuracy graph in stage-2 signer 

independent training. 

Top – 1 Top – 3 Top – 5 

50.35% 71.68 % 81.00 % 

Table 6-3: Unidirectional LSTM Signer Independent Accuracy Table 
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6.8.2 Bidirectional LSTM 

 
Figure 6-15: Tensorboard signer independent bidirectional LSTM main graph. 

 
Top – 1 Top – 3 Top – 5 

57.14% 77.85 % 86.42 % 

Table 6-4: Bidirectional LSTM Signer Independent Accuracy Table. 

Even in signer independent experiments, bidirectional LSTM out-performed 

unidirectional LSTM. 
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6.9 Model performance when scaling data 

We also experimented with 20 training samples per class to see how well our 

model performs when we scale down the data. We used 280 videos for training and 420 

videos for testing. We used random sample cross-validation by splitting rule of 70-30.  

 

Figure 6-16: Unidirectional LSTM and Bidirectional LSTM step-loss graph in stage-2 

signer dependent training with 20 training samples. 

 

 

Figure 6-17: Unidirectional LSTM and Bidirectional LSTM validation accuracy graph in 

stage-2 signer dependent training with 20 training samples. 
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Table 6-5 shows the comparison of the performance of the model with 30 training 

samples per class and 20 training samples per class with signer dependent settings.  

              Accuracy 
 

Model 

Top - 1 Top - 3 Top - 5 Training 
samples per 

class 

Epochs 

Encoder-BiLSTM 66.08 96.02 98.20 30 50 

Encoder-LSTM 64.28 90.71 96.07 30 50 

Encoder-BiLSTM 73.88 93.64 97.88 20 90 

Encoder-LSTM 60.70 89.71 94.83 20 70 

Table 6-5: Accuracy Table when data is scaled. 
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Chapter 7  

Comparing results with DTW 
 

We compare the performance of our models with Dynamic Time Warping 

approach mentioned in [14]. Dynamic Time Warping is a novel method for Sign 

Language Recognition when you have limited training data. The hand co-ordinates and 

the face co-ordinates required in Dynamic Time Warping were obtained from [15] 

OpenPose framework.   

7.1 Dynamic Time Warping 

Dynamic Time Warping (DTW) is a novel method which is used for measuring the 

similarity between two sequences of different lengths. DTW finds similarity between 

sequences by computing a distance score.  

7.1.1 Computing the Similarity Score  

Let X be a sign video which is a sequence of frames (𝑥1, 𝑥2, … , 𝑥𝑛). For every 

frame 𝑥𝑡   at timestamp t compute its corresponding feature 𝑓𝑡(𝑥𝑡) at timestamp t which is 

a function of 𝑥𝑡. The feature 𝑓𝑡 at timestamp t is the concatenation of two features: 

                             𝑓𝑡(𝑥𝑡) = [𝐿𝑑(𝑥𝑡), 𝑂𝑑(𝑥𝑡)]                       (8) 

Where,  

 𝐿𝑑(𝑥𝑡)  = The (x, y) wrist location of the signer’s hand at frame t  

𝑂𝑑(𝑥𝑡)  = The unit vector which is direction of motion form 𝐿𝑑(𝑥𝑡−1) to 𝐿𝑑(𝑥𝑡+1) 

Given two video X and Y DTW a warping path W between the feature of X and Y: 
 

𝑊 = ((𝑓1(𝑥1), 𝑓1(𝑦1)), . . . , (𝑓𝑛(𝑥𝑛), 𝑓𝑛(𝑦𝑛)))        (9) 

The distance score 𝐷(𝑊, 𝑋, 𝑌) of a warping path W is the sum of individual 

distance scores d(Xfi(xi), Yfi(yi))  
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  𝐷(𝑊, 𝑋, 𝑌) = ∑ 𝑑(𝑋𝑓𝑖(𝑥𝑖), 𝑌𝑓𝑖(𝑦𝑖))                        (10)𝑛
𝑖=1            

The distance scored is a weighted linear combination of individual Euclidean 

distances between the features extracted from frames: 

𝑑(𝑋𝑓𝑖(𝑥𝑖), 𝑌𝑓𝑖(𝑦𝑖)) = ||𝐿𝑑(𝑥𝑡) − 𝐿𝑑(𝑦𝑡)|| +  ||𝑂𝑑(𝑥𝑡) − 𝑂𝑑(𝑦𝑡)||    (11)     

where ||·|| stands for Euclidean Distance. 

The DTW distance 𝐷𝑇𝑊(𝑋, 𝑌)between sign videos X and Y is defined as the cost of the 

lowest-cost warping path between X and Y: 

                                       𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛𝑊𝐷(𝑊, 𝑋, 𝑌)                    (12)        

 
7.1.2 Feature extraction with OpenPose 

OpenPose was used for extracting the 𝐿𝑑(𝑥𝑡) feature. 

 

Figure 7-1: OpenPose pose estimation output. 



 

35 
 

 

OpenPose stores the coordinates of the key-points in a JSON format. The 

coordinate of the 4th key-point represents 𝐿𝑑(𝑥𝑡) for that frame. 

 

7.2 Comparing all models 

                      Accuracy 
Method 

Top - 1 Top - 3 Top - 5 Signer 
Independent 

Epochs 

Encoder with Bi-LSTM 66.08 96.02 98.20 No 50 

Encoder with LSTM 64.28 90.71 96.07 No 50 

DTW 58.21 86.64 93.21 No - 

Encoder with Bi-LSTM 57.14 77.85 86.42 Yes 120 

Encoder with LSTM 50.35 71.68 81.00 Yes 120 

Encoder-BiLSTM 73.88 93.64 97.88 No 20 

Encoder-LSTM 60.70 89.71 94.83 No 20 

Table 7-1: Accuracy Table or all models. 

 

Table 7-1 shows comparative results for the five methods where accuracy is the 

quantitative measure used to evaluate the individual method and compare with other 

methods. Our both models clearly outperform DTW in all the cases.  
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Chapter 8  

Discussion & Future Work 
 

We introduced a new deep learning architecture called DeepSign for Sign 

Language Recognition. DeepSign uses Encoder Decoder Architecture to extract 

important and unique features which is helpful in the classification. Deep Learning 

architectures when designed carefully, can outperform traditional methods on a dataset 

limited training data.  

We can incorporate more sophisticated techniques like visual attention, hand 

shape recognition, hand detection in the model to improve the results. Currently, the 

model gets confused between the sign having the same motion so by techniques like 

visual attention, hand shape recognition, hand detection we can make the model 

distinguish between the two signs with the same motion. 
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