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RESOLUTION SPATIAL TRANSCRIPTOMICS

Abstract

In this thesis, we present an innovative framework centered around the application of Random
Forest Regression to forecast the prospective distribution of cells expressing the Sog-D gene (active
cells) during the embryogenesis process in Drosophila. Our methodology specifically targets the
Anterior-to-posterior (AP) and Dorsal-to-Ventral (DV) axes, unraveling the intricacies of gene ex-
pression control in living organisms at super-resolution, single-molecule resolution through whole
embryo spatial transcriptomics imaging. The Random Forest Regression model serves as a pivotal
tool in predicting the succeeding stage’s active cell distribution, capitalizing on the insights obtained
from the preceding stage. We integrate temporally resolved, spatial point processes into our anal-
ysis, incorporating Ripley’s K-function alongside the cell’s state at each embryogenesis stage. Our
approach yields an average predictive accuracy for active cell distribution, providing a valuable tool
akin to RNAVelocity for spatially resolved developmental biology. This framework empowers
researchers to extrapolate future spatially resolved gene expression from a singular data point, lever-
aging features derived from spatial point processes. Through this thesis, we contribute to advancing
the understanding of developmental biology, offering a robust methodology for predicting gene
expression dynamics at sub-cellular resolutions.
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1
Introduction

In recent years, the landscape of biological research has undergone a transformative evolution,

driven by remarkable technological advancements that empower scientists to unravel the intrica-

cies of embryogenesis. High-resolution imaging techniques, such as those enabled by advancements

in microscopy and live-cell imaging, have emerged as crucial tools, facilitating the capture of intri-

cate details during embryonic development. These techniques provide unprecedented insights into

the regulatory mechanisms governing gene expression patterns14,17. This technological progress is
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particularly crucial in the context of contemporary genomics, where understanding the intricate or-

chestration of gene regulation is a central challenge. Deciphering how gene expression dynamically

shapes spatiotemporal outputs throughout development has become a paramount goal.

The early Drosophila embryo, a well-established model system, stands as a paradigmatic example,

offering profound insights into the nuanced control of patterning orchestrated by enhancers. This

model has revealed intricate complexities and the dynamic nature inherent in the patterning pro-

cess. Notably, certain genes are influenced by multiple transiently acting enhancers, orchestrating

sequential changes in expression, while others are governed by enhancers with prolonged effects that

support spatial alterations over time7,3,19.

Despite significant strides in genetic and live imaging techniques, the analytical methodologies

to fully exploit the wealth of information embedded within real-time imaging of transcriptional dy-

namics have lagged behind the field. Current methodologies predominantly rely on static parameter

cell and transcript tracking techniques, leaving room for innovation and advancement in analytical

approaches6,18. To address this gap, our study introduces a quantitative approach aimed at system-

atically assessing mutant enhancer phenotypes. We collected data from wet lab collaborators con-

sisting of live images expressing genes and developed newmethods providing crucial information on

the timing, levels, and spatial domains of gene expression.

In the utilization of transgenic fly lines, our investigation incorporates live imaging of the GFP

signal associated with the MS2 stem-loop reporter sequence. This uniqueMS2 cassette, comprising

24 repeats of a DNA sequence, generates an RNA stem-loop upon transcription. The stem-loop

structure selectively binds to the phage MS2 coat protein (MCP), fused to GFP, resulting in a robust

green signal within the nuclei of Drosophila embryos at sites of nascent transcript production. The

imaging protocol, optimized for both spatial coverage and temporal resolution, utilizes a Zeiss LSM

900 and captures the entire dorsal-ventral (DV) axis of embryos over a 2-hour period at a notably

improved interval of 30 seconds per scan compared to prior studies.
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Acknowledging the dynamic nature of spatial outputs during embryonic development, our

study pioneers an image-processing approach to gather information across both time and space.

By concentrating on one lateral half of the embryos, our goal is to predict the distribution of ac-

tive cells(both horizontally and vertically) at each stage of embryo development. Inspired by in-

novative concepts such as RNA velocity11 and spatial proteomics data analysis utilizing Ripley’s

K-function4, our proposed pipeline integrates a novel feature extraction method and analysis frame-

work. This innovative approach holds the promise of predicting the future distribution of cells

expressing the Sog-D gene, thereby contributing substantially to a deeper understanding of the intri-

cate dynamics of gene expression during embryogenesis.

This work was inspired by previous pioneers in the field11,4, shaping the trajectory of our re-

search. Furthermore, recent studies such as9 have emphasized the importance of integrating multi-

omic approaches in understanding gene regulation dynamics, providing a broader context for our

endeavors. The convergence of advanced imaging techniques and cutting-edge analytical methods

represents a frontier in contemporary genomics research, offering unprecedented opportunities to

decipher the complexities of gene expression regulation during embryogenesis.
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2
Paper

Abstract

In this paper, we introduce a pipeline based on Random Forest Regression to predict the future dis-

tribution of cells that are expressed by the Sog-D gene (active cells) in both the Anterior to posterior

(AP) and the Dorsal to Ventral (DV) axis of the Drosophila in embryogenesis process. This method

provides insights into how cells and living organisms control gene expression in super-resolution

4



whole embryo spatial transcriptomics imaging at sub-cellular, single-molecule resolution. A Ran-

dom Forest Regression model was used to predict the next stage active distribution based on the

previous one. To achieve this goal, we leveraged temporally resolved, spatial point processes by in-

cluding Ripley’s K-function in conjunction with the cell’s state in each stage of embryogenesis and

found average predictive accuracy of active cell distribution. This tool is analogous to RNAVeloc-

ity for spatially resolved developmental biology, from one data point we can predict future spatially

resolved gene expression using features from the spatial point processes.

Index terms—Random Forest, Regression, Dorpsophila, Sog-D, Ripley’s K-function, transcrip-

tomics, embryogenesis

2.1 Introduction

Recent technological advances have made it possible to capture high-resolution images from the em-

bryogenesis process that help researchers to study gene expression patterns.10,5. One of the major

challenges of the modern genomics era is to better understand how gene expression is regulated to

support spatiotemporal outputs that change over the course of development. The early Drosophila

embryo has served as a paradigm for how enhancers control patterning and has demonstrated that

the patterning process is complex and dynamic. It is known that multiple, transiently acting en-

hancers act sequentially to support changing outputs of expression for some genes5,13,16, whereas

other genes are controlled by enhancers that act over a longer period and support changing spatial

outputs over time. For example, expression of the gene short gastrulation (sog) is driven by at least

two co-acting enhancers that support temporally dynamic expression. Live imaging experiments

offer the capacity to analyze gene expression dynamics with increased temporal resolution and linear

quantification. However, genetic and live imaging techniques have outpaced analysis techniques to

harvest the bountiful information contained within real-time movies of transcriptional dynamics
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with modern methods confined to static parameter cell and transcript tracking methods10,12,1. To

assess these mutant enhancer phenotypes systematically, we developed a quantitative approach to

measure the spatiotemporal outputs of enhancer-drivenMS2-yellow reporter constructs as captured

by in vivo imaging to provide information about the timing, levels, and spatial domains of expres-

sion. Using transgenic fly lines, we conducted live imaging of the GFP signal associated with the

MS2 stem-loop reporter sequence. This MS2 cassette contains 24 repeats of a DNA sequence that

produces an RNA stem loop when transcribed. The stem-loop structure is specifically bound by

the phage MS2 coat protein (MCP). MCP fused to GFP binds to MS2-containing transcripts (i.e.,

sog_Distal.MS2) producing a strong green signal within the nuclei of Drosophila embryos at sites

of nascent transcript production. In this system, the nuclear GFP signal is only observed as a single

dot for every nucleus corresponding to nascent transcription of the one copy of the MS2-containing

reporter transgene site integrated into the genome. Furthermore, the nuclear periphery is marked

by a fusion of RFP to nuclear pore protein (Nup-RFP)14. The imaging protocol was optimized to

provide spatial information across the entire dorsal-ventral (DV) axis of embryos with the fastest

temporal resolution that also retains embryo viability. In brief, embryos were imaged on Zeiss LSM

900 continuously over the course of 2hr at an interval of 30s per scan (twice as fast compared to

previous studies). Importantly, this imaging protocol is not phototoxic to embryos. Because spatial

outputs likely change in time across the embryo for many gene expression patterns, we developed an

image-processing approach to collect detailed information in both time and space by capturing one

lateral half of the embryos. With this qualified imaging dataset, our goal was to predict the distribu-

tion of active cells in each stage of the embryo development. Several methods have been proposed

for the efficient prediction of temporal variables. Authors in11 proposed a novel concept called

RNA velocity, which is defined as the time derivative of the gene expression. This concept allows

for the estimation of the future state of individual cells in standard scRNA-seq protocols. In4, au-

thors proposed a method to capture spatial proteomics data to map cell states in order to predict
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cancer patient survival. They utilized Ripley’s K-function for capturing spatial features which in-

spired us in our proposed pipeline. We developed a feature extraction method and analysis pipeline

that can be used to predict the future distribution of cells in which the Sog-D gene is expressed.

2.2 Methods

We generated super resolution live imaging data expressing sog gene (control) and sog-D gene (case)

in early embryo ofDrosophila (9 case, 4 control). We conduct pre-processing, feature extraction,

training, and testing Fig.2.1. Both the training and testing phases incorporate identical pre-processing

and feature extraction steps. The videos shows real time images from embryonic development,

which were manually given stage development labels: NC 13 early, NC 13 late, NC 14 A, NC 14

B, NC 14 C, NC 14 D. In the pre-processing step, we used a generalist, deep learning-based seg-

mentation method called Cellpose, which can precisely segment cells in each frame of the embryo

development. Active cells were identified based on prevalance of green pixels indicative of gene ex-

pression within the cell, and the active mask underwent feature extraction. During this stage, the

masked images underwent a gridding procedure with a predetermined size. Subsequently, the entire

imaging dataset was transformed into a tabular format, taking into account the spatial information

of each cell. We utilized four different metrics to capture both local and global features in a frame

includingm1,m2 for both AP and DV axes, Ripley’s k-function, and n (total number of cells in

each grid). Here,m1 andm2 denote the first and second moments, respectively, capturing the dis-

tribution of active cells at each stage. Furthermore, Ripley’s k-function was employed to analyze

spatial correlation and quantify deviations from a random spatial distribution. Equation 2.1 illus-

trates the formula for calculating Ripley’s k-function. Where, A is the area under each window with

a constant radius, n is the number of data points, dij is the distance between two points, and eij is an

edge correction weight. Then, the tabular data went through two steps of averaging on each stage
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Figure 2.1: Implemented pipeline, starting with the imaging process, followed by subsequent stages involving pre‐
processing, feature extracting, training ,and testing. These steps collectively aim to predict the distribution of active cells
for the next stage.

and time correcting. Since our goal is to predict the distribution of active cells in each stage and we

have different numbers of frames for each stage, we averaged the whole feature values based on each

stage. Also, to account for temporal alignment, we implemented a one-stage shift in features, where

we utilized the features from the previous stage in the prediction of the current stage. Following the

completion of the feature extraction process, the dataset undergoes preparation for training a ran-

dom forest regression model, a supervised learning algorithm. The outcome of this pipeline is the

count of active cells within each grid at a given stage, determined by the features from the preceding

stage. Subsequent to training the model, its performance is evaluated using test data. During test-

ing, all pre-processing and feature extraction steps are replicated, and the pre-trained random forest

regression model is employed to forecast the count of active cells for each grid across various stages.

K̂r =
A

n(n− 1)

n∑
i=1

n∑
i=1,j̸=i

1(dij ≤ r)eij (2.1)
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2.3 Experiment and Results

2.3.1 Main study

As outlined in the methodology section, during the feature extraction phase, square grids were ap-

plied to images, and the number of active cells within each grid was predicted. The key challenge

was selecting the optimal grid size to enhance performance on test data. Consequently, we repli-

cated the entire process of pre-processing and feature extraction for four distinct grid sizes: 250,

125, 62.5, and 31.25 (where the grid size of ’n’ indicates the division of the entire image into n*n

squares). We used three different metrics to calculate the model performance on test data for differ-

ent grid sizes which are rmse (root mean squared error), mae (mean absolute error), and Kullback-

Leibler (KL) Divergence. Fig.2.2 shows the experiment for different grid sizes. Our analysis revealed

the same increasing trend in both rmse and mae as the grid size increases from 31.25 to 250 which

indicated that a smaller grid size corresponds to a lower error. KL Divergence, which we also uti-

lized as a metric, measures how one probability distribution diverges from a second one. Thus, the

smaller value for it shows that the two distributions are closer to each other. We used this criterion

to see how well the pipeline can capture the trends in the active cell distribution. The KL Diver-

gence for these four different grid sizes showed a different trend. Increasing the grid size from 31.25

to 250 yielded a decrease in KL Divergence. We had two options, the first one was to select 31.25

based on the lower rmse and mae. However, the problem was the average size of the cell was ap-

proximately 36 so if we set the grid size to 31.25 we have just one cell in each grid which changes the

problem to a classification of active or inactive for each grid which was not our purpose. Another

option was to select the optimal grid size based on KLDivergence, which finally, We selected the

grid size of 62.5 over 31.25. The decision of selecting 63.5 over 125.0 although the 125 had lower

KL Divergence, is attributed to the computational constraints of calculating Ripley’s k-function for

larger grid sizes in our setup.
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Figure 2.3: The distribution of active cells for the best (A), median (B), and worst (C) accuracy based on mae values. For
each A, B, and C from left to right stages are NC 14 A‐D. For each stage, the top and right plots show the distribution of
active cells along the AP and DV axis respectively. The middle plot shows the absolute error in each grid.

In subsequent experiment, we conducted an ablation study to discern the relative importance

of features, identifying those deemed crucial for inclusion in the final release and those that may

be omitted. Table 2.1 indicates the performance of different combinations of features. It can be

concluded that features of the first row including Ripley’s k-function and n are the most important

features that we used for training and testing the pipeline. All reported mae values underwent the

K-fold cross-validation method to mitigate the influence of random results.

To visualize the performance of the pipeline with selected features and parameters we tested the

pre-trained model on the test dataset. Fig 2.3 shows the distribution of active cells for the best, me-
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Feature list mae
n, Ripley’s k-function 4.53

m2_DV, n, Ripley’s k-function 4.73
m1_DV, n, Ripley’s k-function 4.75

m1_DV, m2_AP, n, Ripley’s k-function 4.77
m2_AP, n, Ripley’s k-function 4.77

Table 2.1: The average mae value on K‐fold cross‐validation over test dataset for different combinations of features for
ablation study.

dian and the worst prediction based on the average mae values.

2.3.2 Case and control study

As we had 4 videos for case (transgenic) and 9 for control, we randomly selected 3 videos from each

group for training and 1 for testing. Then, we averaged the AP_mae,DV_mae, andmean_mae for

the whole case and control experiments and calculated the difference between case and control for

each of these metrics and the results were 1.86, -0.689, and 0.58 respectively. We also utilized cross-

validation to avoid overfitting. These results show there is a difference between the performance of

our pipeline on case and control in AP_mean andmean_mae. In other words, our method works

better in predicting along AP axis and the mean of AP and DV on control data in comparison with

the case one. However, the negative difference between case and control forDV_mae indicates that

the pipeline works better in predicting the distribution on the DV axis of the case compared to the

control. In order to substantiate this assertion, we conducted two additional experiments: First, we

leveragedMixed-Effects modelling, which can account for both fixed effects (like the group: case or

control) and random effects (like the variation within videos and stages). The mixed-effects model

can help in understanding the influence of these fixed and random effects on our dependent vari-

ables likeDV_mae, AP_mae,mean_mae. The goal is to understand whether there is a significant

difference in any metrics between the case and control groups, accounting for the variability intro-

duced by different stages. The control group has, on average, a lower AP_mae compared to the case
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by about 1.828 units with the P_value of 0.003. It shows based on this test, there is a statistically sig-

nificant difference in AP_mae between case and control groups. However, the result forDV_mae

shows the control group has a higher value by 0.714 units and 0.231 P_value. Also, the result for

mean_mae indicates control has a higher value by -0.557 units and 0.347 P_value. Two latter results

forDV_mae andmean_mae cannot indicate any significant difference between case and control

because of the high P_values. In addition, we implemented another empirical hypothesis testing

called Bootstrap method. Bootstrap methods can be used to estimate the distribution of our met-

rics under the null hypothesis. To implement the bootstrap, we used the same metrics as previous

method. we drew samples from the original dataset with replacement, to create a new dataset. Then,

for each bootstrap sample, we computed the statistics of interest which areDV_mae, AP_mae,

andmean_mae. By analyzing this bootstrap distribution we can find the confidence intervals for

each metric. Fig 2.4 shows the Bootstrap distribution of the mean difference in AP_mae,DV_mae,

andmean_mae. It indicates that with 95% confidence interval the mean difference of AP_mae,

(AP_mae(case) - AP_mae(control)) was between [0.69061964 3.11528348]. It can be concluded

that with 95% confidence interval the AP_mae for case is at least 0.69061964 units higher than case,

which means the performance of the pipeline is better for control outperforms case one. These

ranges forDV_mae andmean_mae are respectively, [-1.65878863 0.27041668] and [-0.33784703

1.5450897 ]. It can be seen that forDV_mae andmean_mae the ranges include zero means the

performance of control can be better, equal, or worse than the case. The results with the Bootstrap

method confirm the results derived from the mixed-effects method, which makes sense given that

large amounts of training data are needed to model transgenic effects.
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Figure 2.4: The Bootstrap Distribution of Mean Difference in AP_mae, DV_mae, and mean_mae between case and
control in 1000 iterations.

2.4 Conclusion

Our work presents several key contributions. Firstly, we have developed a novel and optimized

imaging technology that delivers spatial information throughout the entire DV axis of an embryo.

Secondly, we introduce an automated pipeline that effectively discriminates cell types with high ac-

curacy. Lastly, our approach enables the accurate prediction of the stage-level distribution of active

cells, based on data from the preceding stage.

2.5 Compliance with Ethical Standards

All animal experiments were approved by the UTA IACUC review board. This study was per-

formed in line with the principles of the Declaration of Helsinki. Approval was granted by the

Ethics Committee of my institution.
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3
Conclusion

3.1 Challenges

Wewere able to use the novel imaging technique with our automated pipeline to predict the stage-

level distribution of active cells using the information from previous stages even though we had less

data. This is a major advance for the field. Despite these promising results, achieving them yielded

substantial difficulties that had to be overcome. One of the major challenges we faced was select-
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ing the optimal grid size to accommodate enough active cells after the segmentation as the grid size

cannot be less than the cell size. Also, we were limited by computational time to get Ripley’s k for

active cell distribution in each grid when it became smaller. Thus, we did the entire process over 5

grid sizes and found 63.5 to be the most optimal.

There were a few challenges during and after segmentation. Before cell segmentation, we had

to resize images to a proper size where we don’t lose information and after multiple tests, we final-

ized the size to be 1000*1000. The green pixels in the image signify genes being expressed. Thus,

after segmentation of raw images to identify active cells we had to check the intensity of green pixels

which was quite uncertain initially but by modifying the intensity value to capture active cells with

multiple iterations, we fixed a certain value which was verified by a biologist and obtained a good

accuracy.

There are still multiple challenges remaining such as aligning the grouped cell portion in the

image to get better gene expression coverage. Also, there are some cells having gene expressions that

were missed out by the cellpose segmentation due to the deformed structure of the cell and blurred

portions which arose due to cells being 3D and we were segmenting them in 2D.We also need more

data to have a wide coverage of later cell stages and not limited by the initial ones.

In the future, we anticipate having more videos to capture different gene expressions and predict

the underlying distribution. Also, more ways can be explored to predict active cell distribution of

later stages with just a few initial stages. Accuracy for predicting active cell distribution along the

DV axis can also be improved by tuning the features after we get more data on various case and con-

trol gene expressions.
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3.2 Future Directions

I am planning to join the UTA Ph.D. program and extend this initial computational modeling work

into larger-scale LLM research with the goal of detecting biosynthetic gene clusters improving pre-

vious work at Merck Research Lab8 building upon previous computational BGCwork at Merck,

Princeton, and Stanford. Biosynthetic gene clusters (BGCs) are groups of genes in the genome of

an organism that are responsible for the production of a specific natural product or bioactive com-

pound. These clusters typically include genes encoding enzymes involved in the biosynthesis of

the compound, as well as genes for regulatory elements and other supporting functions. Natural

products produced by BGCs include antibiotics, antifungals, anticancer agents, and other bioactive

molecules8,15.

The DeepBGC8 paper demonstrates reduced false positive rates and an improved ability to iden-

tify novel BGC classes compared to existing machine-learning tools. Additionally, random forest

classifiers are employed to accurately predict BGC product classes and potential chemical activity.

The application of DeepBGC to bacterial genomes reveals previously undetectable putative BGCs,

suggesting the potential for the discovery of natural products with novel biological activities. The

enhanced accuracy and classification capabilities of DeepBGCmake it a valuable tool for in-silico

BGC identification.

The updated version 6 of ”antibiotics and secondary metabolite analysis shell—antiSMASH”2

is introduced, enhancing microbial genome mining for natural product discovery. This widely

used tool now supports 71 cluster types, displays modular structures of Multi-modular Biosyn-

thetic Gene Clusters (BGCs), incorporates a new BGC comparison algorithm, integrates results

from other prediction tools, and improves the detection of tailoring enzymes in RiPP clusters. anti-

SMASH 6 provides researchers with advanced features and expanded capabilities for the characteri-

zation of BGCs in bacteria and fungi, thereby facilitating the discovery of novel natural products.
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The ongoing research focuses on computationally detecting Biosynthetic Gene Clusters (BGCs),

and my role involves advancing the current state of this field. I plan to enhance BGC detection

through innovative approaches and methodologies. Subsequently, I aim to collaborate with Pro-

fessor Joe Buanomo in the field of chemistry to computationally validate the predicted metabolites

using Mass Spectrometry. This collaborative effort seeks to bridge the computational predictions

with experimental validation, providing a comprehensive and robust exploration of natural product

discovery.

BERT-like tokenization and Language Models (LLMs) can significantly enhance the effectiveness

of the DeepBGC8 strategy described in the paper. By employing BERT-like tokenization, which

captures contextual information and relationships between words, the model gains a more nuanced

understanding of the biosynthetic gene clusters (BGCs) and their associated natural products. This

allows DeepBGC to better discern subtle patterns in genomic data, reducing false positive rates in

BGC identification. Additionally, LLMs contribute by leveraging pre-trained language representa-

tions, enabling the model to generalize across various genomic sequences and identify novel BGC

classes more accurately. The comprehensive contextual information provided by BERT-like tok-

enization, coupled with the generalization capabilities of LLMs, empowers DeepBGC to offer im-

proved precision in BGC identification and classification, ultimately advancing the state of in-silico

BGC exploration for natural product discovery.

Understanding the nuances of gene expression during the research for the prediction of future

states in single molecule spatial transcriptomic and usage of statistical machine learning methods

along with various projects involving application over multiplexed codex images with the usage

of deep learning over various tissue and proteomics data I will be pursuing modeling of biological

systems at a larger scale.
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