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ABSTRACT

On-Line Environment Adaptation for User Performance Optimization

Subharag Sarkar, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Manfred Huber

In today’s fast-paced and globally connected world, businesses are creating

products with more significance to user personalization and customization. This

has amplified the importance of capturing and learning user preferences as more in-

formation from users can lead to the designing and development of products that will

improve user engagement and performance. Numerous algorithms based on collabo-

rative filtering and recommender systems have been used to learn user preferences,

but almost all of them require big datasets to train on. This creates a dependency

on collecting more and more user information which might lead to ethical consid-

erations and privacy concerns. To solve this dependency, we are proposing a novel

architecture that aims to predict a user’s preference with minimal interactions and

that integrates it in an overall system to optimize user performance. The concept of

collaborative filtering in an embedding space is used where based on the information

from previous users, the architecture predicts the preference of the new user, with

minimal feedback interactions. This is then integrated with a second learning agent

that aims at optimizing task settings to optimize a user performance measure while

considering the predicted user preferences.
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In this dissertation, we have experimented with the structure of the architecture

as well as the tools and algorithms that are used to create the architecture. We

have then used parts of the architecture in two different domains to experiment and

understand the positive impact and usefulness of the research. In the end, we used

the complete architecture in a gaming domain and recorded its performance.

Applications in various domains have shown promising results where it has

effectively learned on-line about user preferences with minimal interaction with the

real user and shown the ability to optimize task contexts for the specific user without

the need for a large number of negative user experiences during learning.
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CHAPTER 1

Introduction

In today’s world which has become interconnected and technologically ad-

vanced, Personalization and Customization has become an integral aspect of

many industries. To make experiences more personalized and enhance user experi-

ence and performance, researchers have implemented many different methods to learn

more about user habits and preferences. In the realms of e-commerce, entertainment,

or even artificial intelligence, acquiring information about user preferences provides

an opportunity to customize and personalize experiences for users.

Learning user preferences has allowed businesses to create their products and

services to provide an experience to meet the individual’s needs. With these collected

data on the user’s behavior and preferences, either through implicit observation or

explicit feedback, the companies gain invaluable insights into customers’ desires, al-

lowing them to augment applications to more strongly engage customers, and increase

their satisfaction. For example, the largest online video streaming service, Netflix re-

leased a large-scale dataset containing 100 million ratings from half a million users.

They announced an open competition for the best collaborative filtering algorithm.

Matrix Factorization (Koren, Bell, and Volinsky 2009) based on linear algebra and

statistical analysis emerged as a state-of-the-art technique. This helped Netflix learn

more about its users and provided much better recommendations to them.

When it comes to Learning user preferences, huge amounts of data are collected

from user engagement and then used with various collaborative filtering algorithms

and recommender systems (Goldberg et al. 1992), (Resnick et al. 1994), (Xiang Wang

1



et al. 2019), (Cui et al. 2020), to learn about the users. All the methods presented

above, however, work only when big datasets are available. To reduce the reliance

on big datasets, it is imperative to design a system that not only learns a user’s

preference, thus creating a user behavior model, but also to do that with minimal

interaction. This reduces the burden of collecting huge amounts of information for a

user.

Learning user preferences has been a crucial technique to implement more per-

sonalization into our daily life, but there is another way, personalization and cus-

tomization among products can be achieved. With the information on user behavior,

a unique opportunity arises where companies can develop products with the capability

of adaptation. Products that can understand the user’s need and adapt themselves

to provide exactly what is required.

This simple idea has led us through this research. The Architecture which will

be introduced later, has a prime objective of not only understanding the user pref-

erences but also using that knowledge to adapt and improve the domain, to increase

the user’s productivity. To improve the efficiency of the product we need constant

interaction with the user, as the more the user is involved, the more information is

collected that will help train the product to adapt itself more to the user’s prefer-

ence. This constant involvement, however, can be arduous and tiresome and in the

real world no user will provide a copious amount of information before losing interest

completely. To solve this problem it is highly recommended to implement a user be-

havior model which generates user performance to a certain degree of certainty. The

Architecture developed implements one such behavior model which is trained with

minimal interaction with the real user. The model is shown to generate information

with good accuracy. Now with the help of this user behavior model, we can train the

product so that it learns how to adapt itself for that particular user.

2



The architecture proposed in the dissertation consists of two interacting learning

agents and can be divided broadly into two parts:

1.1 Outer Agent

The Outer Agent is the most important part of the architecture. It directly

influences the product to create the adaptations necessary to produce a more person-

alized experience. We have chosen a Reinforcement Learning (RL) agent as the Outer

Agent for the Architecture since generally no data regarding the optimal product for

the specific new user is available. Reinforcement Learning has an innate characteristic

of learning from experiences. It can be very versatile in learning about the user, to

find out the likes and dislikes and the changes that can lead to an improved experi-

ence for the user. In the Architecture, the Outer Agent works with both the real user

and also the second learning agent, the Inner Agent. It generates a certain state in

the product and sends it to the real user or the Inner Agent for feedback. With the

feedback it receives, it trains itself to understand the nuances of personalization. The

aim has been to make the Outer Agent interact more with the Inner Agent rather

than the real user. With the Inner agent, the Outer agent can learn really fast and

provide much better results to the real user with minimal learning interaction. Fig-

ure 1.1 shows how the Outer agent interacts with the real user and Inner Agent and

uses the feedback to train itself.

1.2 Inner Agent

The Inner Agent serves a very important task for the Architecture to work.

It generates a user behavior model which, with certain accuracy, generates reliable

information. To make a more accurate prediction we have used the concepts of Col-

3



Figure 1.1: Outer Agent

laborative Filtering. A user dataset with information from previous users’ experiences

and interactions is used to map an embedding space to capture characteristics of user

preferences in the target domain. We then use Gaussian Mixture Models to create

soft clusters out of this information. When some new user information is available

we use the information to find the clusters which are closely associated with new

user data and use them to generate predictions for the Inner Agent. To generate the

predictions, a Conditional GAN has been trained on the available user dataset. The

Inner Agent structure has been successful to generate good user behavior models in

all the Experimentations. Figure 1.2 shows how the Inner Agent is provided with

Domain information to generate user feedback.

In this dissertation, we evaluate this Architecture in three different domains to

see how well it performs.

4



Figure 1.2: Inner Agent

The remainder of this dissertation is structured as follows:

Chapter 2 gives a detailed description of all the background algorithms that

have been used to create this architecture.

In Chapter 3 we elaborate on the implementation of the architecture in an E-

Learning domain. We create an E-Learning platform based on the Felder Silverman

Learning Style Model (FSLSM) and Differentiated Pedagogy (Richard M Felder n.d.;

Zaoui Seghroucheni, Mohammed AL Achhab, and El Mohajir 2014) where the Outer

Agent takes control of the platform and trains itself to understand the needs of the

student and provide them with coursework that will improve their performance. For

the Inner Agent, we used a Conditional GAN to generate student feedback after

completing coursework. As a proof of concept, the architecture fared well in the

E-Learning domain.

In Chapter 4, we implement a part of the Architecture in an image domain. We

introduce the concepts and use of Siamese Network (Bromley et al. 1993), Collab-

orative Filtering, and Gaussian Mixture Models with Conditional GAN (Mirza and

Osindero 2014) to create a much more powerful metric to train an Inner Agent that

5



makes accurate predictions. When it is used to predict user likeness, it provided the

correct prediction 82% of the time in a domain with significant preference overlaps.

In Chapter 5, we implement the complete Architecture in a gaming domain.

We create the Inner Agent which has developed in Chapter 4. The Outer Agent

creates the game environment for the user and trains itself to learn how to manipulate

the parameters to make the game more engaging for the player. We also introduce

and use Facial Emotion Recognition (De Silva, Miyasato, and Nakatsu 1997) to get

information about the user while playing the game. This provides extra information

for the Outer Agent to be trained on. After experimentation, we get favorable results.

Chapter 6 concludes the dissertation by providing a synopsis of all the work

done and the results of the Experimentation.
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CHAPTER 2

Learning Model Background

2.1 Introduction

Before we delve into the aspects of the algorithm, this chapter will provide

information on all the underlying Machine Learning tools and techniques which have

been used to create the algorithm and also for the different experimentation and

validations.

2.2 Reinforcement Learning

Reinforcement Learning (RL) (Richard S Sutton 2018), is a dynamic and rapidly

evolving branch of Machine Learning where intelligent agents can learn to make deci-

sions and take actions in an environment to maximize a specific notion of cumulative

reward. Reinforcement Learning has gained significant attention and achieved re-

markable successes in a wide range of domains, including robotics, game playing,

autonomous systems, recommendation systems, and more.

Unlike traditional Machine Learning paradigms such as Supervised Learning

or Unsupervised Learning, where agents learn from labeled or unlabeled data, Rein-

forcement Learning emphasizes learning through interaction with the environment.

It draws inspiration from the way humans and animals learn through trial and er-

ror, exploring their surroundings and adapting their behavior based on feedback and

consequences.

The framework of Markov Decision Processes (Puterman 1990) is at the core

of Reinforcement Learning. MDPs model sequential decision-making problems where
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Figure 2.1: General Architecture of Reinforcement Learning

the agent interacts with the environment. An MDP consists of a set of states,

actions, transition probabilities, rewards, and a discount factor. Through the

interactions, the agent learns a policy, which is actually a mapping from states to

actions, with the aim of maximizing the long-term cumulative reward.

Over the years a number of different methods of Reinforcement Learning algo-

rithms have been introduced.

2.2.1 Value-Based Methods

Value-based methods aim to estimate the value of each state or state-action

pair. These methods are based on the concept of a value function, which predicts the

expected return an agent will receive from a given state or state-action pair. Notable

algorithms within this category are:

2.2.1.1 Q-Learning

Q-Learning (Watkins and Dayan 1992) is an off-policy algorithm that learns

the optimal action-value function, also known as the Q-function. It iteratively up-
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dates the Q-values based on the agent’s experience to converge toward the optimal

policy. Q-Learning is known for its ability to handle large state-action spaces and its

applicability in environments with unknown dynamics.

2.2.1.2 Deep Q-Networks (DQN)

DQN (Mnih et al. 2015) combines Q-Learning with deep neural networks to

approximate the Q-function. It employs a replay buffer and a separate target network

to stabilize learning. DQN has been successful in solving complex RL problems,

including playing Atari games at a human-level performance.

2.2.2 Policy-Based Methods

Policy-based methods optimize the policy directly while bypassing the estima-

tion of value functions. These algorithms aim to find the policy that maximizes the

expected cumulative reward. Notable algorithms within this category include:

2.2.2.1 Policy Gradient Methods

Policy gradient methods (Sutton et al. 1999) optimize the policy parameters by

directly estimating the gradient of the expected cumulative reward. By using tech-

niques such as the REINFORCE algorithm (Williams 1992), policy gradient methods

can learn both stochastic and deterministic policies.

2.2.2.2 Trust Region Policy Optimization (TRPO)

TRPO (Schulman, Levine, et al. 2015) is a policy optimization algorithm that

seeks to improve stability and monotonic improvement. It maintains a trust region

constraint on the policy update to ensure that the policy changes are not too large.
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TRPO has been successful in learning complex policies with high-dimensional action

spaces.

2.2.3 Actor-Critic Methods

Actor-Critic methods (Sutton 1988) combine the benefits of both value-based

and policy-based approaches. These algorithms maintain an actor, which learns the

policy, and a critic, which estimates the value function. The actor uses the critic’s

evaluations to update the policy parameters. Notable actor-critic algorithms include:

2.2.3.1 Advantage Actor-Critic (A2C)

A2C (Y. Wu et al. 2017) is a synchronous and online update variant of the

actor-critic algorithm. It uses the advantage function to estimate the quality of

actions taken relative to the average value function. A2C has been widely used due

to its simplicity and parallelizability.

2.2.3.2 Proximal Policy Optimization (PPO)

PPO (Schulman, Wolski, et al. 2017) is an actor-critic algorithm that combines

ideas from both policy gradient methods and trusts region methods. PPO uses clipped

surrogate objective functions to limit policy changes and ensures stable and efficient

learning.

2.3 Siamese Networks

A Siamese Neural Network (Bromley et al. 1993) is an Artificial Neural Network

architecture that uses two identical sub-networks to establish an embedding space

that represents item similarity. The sub-networks process two separate input data

points, typically referred to as the ”anchor” and the ”comparison” samples. Each
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input passes through its respective network and generates embedding features. These

features are then compared to compute a similarity score or distance metric, indicating

the similarity or dissimilarity between the input pairs. To do this, the same weights

are used to compute output vectors for two different inputs which can be compared

to each other. The networks learn and extract relevant features that are invariant to

variations in the input domain. By enforcing this weight sharing, Siamese networks

encourage the network to learn discriminative features that are useful for comparing

and contrasting input pairs.

Figure 2.2: General Architecture of Siamese Network

Training the Siamese network involves optimizing the shared weights to mini-

mize a loss function that captures the similarity or dissimilarity between the samples.

The loss function aims to maximize the similarity score for similar pairs and minimize

it for dissimilar pairs. Commonly used loss functions for Siamese networks include

Contrastive loss, Triplet loss, and Binary cross-entropy loss.

2.3.1 Contrastive Loss

Contrastive loss encourages similar pairs to have a small distance or high sim-

ilarity score, while dissimilar pairs have a large distance or low similarity score. It
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penalizes pairs that violate these criteria and pushes the network to learn better

feature representations.

2.3.2 Triplet Loss

Triplet loss leverages a set of three samples: an anchor, a positive sample (sim-

ilar to the anchor), and a negative sample (dissimilar to the anchor). It encourages

the network to minimize the distance between the anchor and the positive sample

while maximizing the distance between the anchor and the negative sample.

2.3.3 Binary Cross-Entropy Loss

Binary cross-entropy loss is commonly used when the Siamese network is trained

as a binary classifier. It measures the dissimilarity between the predicted similarity

score and the ground truth label (similar or dissimilar).

The Siamese Network was first introduced in (Bromley et al. 1993) where it was

used to compare signatures. By learning distinctive signature embeddings, Siamese

Network can authenticate signatures and detect forged ones, aiding in fraud preven-

tion and document authentication.

After its introduction, the algorithm has been extensively used in face detec-

tion algorithms (H. Wu et al. 2017), with remarkable performances, particularly in

scenarios with variations in pose, lighting, and occlusions. By learning discriminative

face embeddings, the Siamese Network framework enables accurate and robust face

verification and identification.

(Koch, Zemel, Salakhutdinov, et al. 2015) incorporated the concept of Siamese

Network and one-shot learning to create a system that learns from a single example

of each class. By learning a generalized feature representation space, the Siamese
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Network can effectively recognize and match new instances based on their similarity

to a few reference samples.

(Sheng and Huber 2019) used the concept of Siamese Network on time series

data. The network is trained in a weakly supervised fashion using only information

about the similarity between data items to cluster behaviors based on sensor data.

Since the network learns to output embedding vectors for the input data that reflect

the similarity in terms of Euclidean distance, it is utilized as a weakly supervised

technique. It has yielded comparable performance to fully supervised methods with

reduced labeling overhead.

2.4 Gaussian Mixture Models

Clustering is an Unsupervised Learning problem aimed at grouping unlabeled

data. Several hard clustering algorithms are used most commonly. Their main dis-

advantage is that they associate each point with only one cluster which will not yield

good accuracy with datasets containing points that cater to multiple clusters as in

the case with overlapping user preferences. By contrast, a soft clustering technique

like Gaussian Mixture Model assumes that the dataset contains multiple Gaussian

distributions and that each data point can belong to each distribution with varied

degrees of probability. This notion offers a flexible and effective approach to modeling

complex data distributions. Each distribution contains the following parameters:

• A mean µ that defines the center of the cluster

• A covariance Σ that defines its width. In a multivariate scenario, it is equivalent

to the dimensions of an ellipsoid.

• A mixing probability π which defines how big or small each Gaussian function

is.
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GMMs represent a probability distribution as a weighted sum of Gaussian com-

ponents. Each component is characterized by its mean, covariance matrix, and mixing

probability or weight. The probability density function (PDF) of a GMM is defined

as follows:

P(x) = Σi(πi ∗N(x|µi,Σi))

where x represents the observed data, πi denotes the mixing probability or

weight of the i-th Gaussian component, N(x|µi,Σi) represents the probability density

function of the i-th Gaussian component with mean µi and covariance matrix Σi.

2.4.1 GMM using Gibbs Sampling

Gibbs Sampling (S. Geman and D. Geman 1984) is a Markov Chain Monte

Carlo (MCMC) technique that is used to estimate the parameters of GMMs. Gibbs

Sampling (Rasmussen 1999) enables us to estimate the latent variables, i.e., the com-

ponent assignments, by iterative sampling from their conditional distributions. This

process allows the model to gradually refine the assignments and learn the underly-

ing structure of the data distribution. By updating the component assignments and

GMM parameters iteratively, Gibbs Sampling helps to achieve a better approximation

of the true GMM parameters that characterize the observed data. The effectiveness

of Gibbs Sampling for estimating GMM parameters depends on the complexity and

size of the dataset which led to the introduction of the Expectation-Maximization

algorithm.

2.4.2 GMM using Expectation-Maximization

Learning a GMM involves estimating the parameters, i.e., the means, covariance

matrices, and mixing probability or weights of the Gaussian components, from the

given data. The most commonly used algorithm for GMM learning is the Expectation-
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Maximization (EM) algorithm (Xuan, Zhang, and Chai 2001), which iteratively per-

forms two steps:

2.4.2.1 Expectation Step (E-step)

The algorithm calculates the posterior probabilities or responsibilities of each

data point belonging to each Gaussian component. It uses the current estimates of

the GMM parameters to compute these probabilities.

2.4.2.2 Maximization Step (M-step)

The algorithm updates the parameters of the GMM based on the responsibilities

computed in the E-step. It maximizes the log-likelihood of the observed data with

respect to the parameters, iteratively improving the GMM fit.

The EM algorithm continues these steps until convergence, achieving a locally

optimal solution for the GMM parameters.

2.5 Generative Adversarial Network

Generative Adversarial Networks (GAN) (Goodfellow et al. 2014) have emerged

as a groundbreaking framework in the field of machine learning, specifically in the

domain of generative modeling. The framework introduces a paradigm where two

neural networks engage in a competitive zero-sum game. Here the Generator network

is indirectly trained by taking a random noise vector as input and transforming it

into a synthetic sample that aligns with the data distribution of the training set.

The Discriminator acts as a binary classifier, trying to predict whether the data

provided is from the training dataset or from the Generator. The constant struggle

of the Generator creating data and trying to pass them as original data and the
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Discriminator finding out the real and false data helps the generator to create more

realistic responses. Figure 2.3 illustrates the GAN

Figure 2.3: General Architecture of a Generative Adversarial Network

The basic GAN framework uses simple noise to generate meaningful data and

is not able to differentiate between different classes of data. For example, when given

an animal dataset to train, the GAN can learn to create images of different animals.

But it is not possible for the framework to generate images of one type of animal.

Since we need to generate data based on user type, we need to use a GAN framework

that can generate data based on some label that characterizes the type.

2.6 Conditional Generative Adversarial Networks

Conditional GAN (Mirza and Osindero 2014) is a machine learning framework,

that has emerged as an extension of Generative Adversarial Networks (GANs) al-

lowing controlled generation of data samples. While traditional GANs generate data

solely from random noise, CGANs use the core principle of GANs but add a condition

vector to the Generator and Discriminator networks, enabling the targeted genera-

tion of class-based data based on specific inputs. The Conditional Input represents

the labels for the actual data. This input, when fed to the Generator with the noise
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vector, trains to generate synthetic data for that label. The general architecture of a

Conditional GAN is shown in Figure 2.4

Figure 2.4: General Architecture of a Conditional GAN

The training process of CGAN involves optimizing the parameters of the Gen-

erator and Discriminator networks in an adversarial manner, with the inclusion of

Conditional Input.

2.6.1 Generator Training

The Generator aims to generate samples that not only fool the Discriminator

into classifying them as real but also align with the specified Conditional Input. The

Generator receives feedback from the Discriminator and adjusts its parameters to

improve the quality and alignment of the generated samples.

2.6.2 Discriminator Training

The Discriminator’s objective is to classify real and generated samples accu-

rately while considering the Conditional Input. It learns to distinguish between real
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samples and samples that deviate from the desired Conditional Input. The Discrim-

inator’s parameters are adjusted to improve its ability to discriminate between real

and generated samples based on both their realism and class label.

The training process involves alternating updates between the Generator and

Discriminator, with the Generator attempting to generate more realistic samples while

considering the conditioning information, and the Discriminator aiming to improve

its discrimination capabilities.
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CHAPTER 3

Personalized Learning Path Generation in E-Learning Systems using Reinforcement

Learning and Generative Adversarial Networks

3.1 Introduction

With the increasing prevalence of the Internet as a mode of communication

among individuals, and with its mounting importance for education, there has been a

growing focus on e-learning platforms and mechanisms. In addition, the acceleration

due to the pandemic resulted in increased adoption of online classes by universities.

This has increased interest and importance of E-learning and the challenge to in-

crease its efficiency in terms of conveying content effectively to individual learners.

While currently underutilized in many platforms, these systems promise to allow stu-

dents to control aspects of their training according to their own pace and can thus be

more adaptive to the individual student’s specific learning profile. To facilitate such

personalization, adaptive learning systems represent an important component of an e-

learning platform. They provide endless possibilities in terms of personalized learning

paths based on the needs, prerequisites, and more importantly learning style of the

individual learner. Most of the existing e-learning models are interested in building

a learner model based on the learner’s characteristics. Based on these, the adaptive

learning model provides specific learning objects to create a customized learning path

that controls the type and order in which content is presented. The quality of the

generated learning path here depends heavily on the correct identification of the im-

portant aspects of the learner’s characteristics which need to be determined either

through an expert or an automatic system from interactions of the learner with the
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e-learning system. In both cases, the number of learner interactions required will

generally have a detrimental effect on the learner’s experience as during interactions

suboptimal learning paths will be presented.

In this research work, we are proposing a model which automatically learns to gener-

ate Learning Objects (LO) that are appropriate for a specific learner type based on

Reinforcement Learning (RL)(Richard S Sutton 2018). To minimize required learner

interactions during system training, the approach integrates a generative learner-type

model that adapts to the specific learner and is used to train the RL system. The RL

agent takes the Felder Silverman Learning Style Model (FSLSM) (Richard M Felder

n.d.) and Differentiated Pedagogy (Zaoui Seghroucheni, M. AL Achhab, and El mo-

hajir 2015) into consideration and aims to select the best version out of multiple

versions of the same LO (Zaoui Seghroucheni, Mohammed AL Achhab, and El Mo-

hajir 2014). To reduce learner interactions during training, we build a Conditional

Generative Adversarial Network (CGAN) (Mirza and Osindero 2014) which is used

to mimic the characteristics of a student to help train the RL agent to provide the

best learning path for the learner. The next few sections are organized as follows: We

discuss related work which has taken place in this field of research. Then we elaborate

on Learning Models. We explain how the Learning Plan Personalization Framework

works followed by the experimentations and Results and ending with the Conclusion.

3.2 Related Work

Several approaches for personalizing learning paths and adapting content to

a learner’s profile have been proposed before. Those works are summarized in two

categories based on the way they assess information about the learner’s preferences

and learning style.

In the first category, the systems use implicit methods based on analysis (Carchiolo
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et al. 2007), (Nabila Bousbia 2010), and observation (Schiaffino, Garcia, and Amandi

2008), (K. Graf S. n.d.) to identify learning styles. This method is used so that the

learner does not have to perform additional tasks such as filling out multiple forms.

In addition, this approach is more intuitive for the learner as it does not require the

learner to be aware of which content presentation and learning style works best for

them. However, this method can also be unreliable because the learner might engage

in other activities that might be misleading to the designer.

In the second category, the systems use explicit methods to identify the learning

styles, such as e-questionnaires (Tzouveli, Mylonas, and Kollias 2008), (Bontchev and

Vassilev 2012), (S. Graf et al. 2007), learners expressing their preference (Guerrero-

Roldán and Alfonso n.d.), personal characteristics (Eyssautier et al. n.d.), or using

FSLSM (Felder n.d.), (Papanikolaou et al. 2003). These approaches build on the

learner’s understanding of their strengths and weaknesses and might, particularly in

the context of younger learners or learners with cognitive limitations. It also yields

answers that do not represent what is most effective for the individual.

In both categories, the information gathered either implicitly or explicitly is then

used to propose types of learning objects in the end.

The works presented above do not question the cognitive level of the learning object.

The learning objects (LO) are assumed to be valid for all learners. To address this

problem, the authors of (Zaoui Seghroucheni, Mohammed AL Achhab, and El Moha-

jir 2014) proposed a version model of each LO. The authors of (Honey and Mumford

1986) used this proposed model as it solves the non-leading path problem and offers

the relevant versions for the learner. They used a Bayesian network with FSLSM

(Felder n.d.) and Differentiated Pedagogy (Zaoui Seghroucheni, M. AL Achhab, and

El mohajir 2015) to create multiple versions. Our approach takes a similar approach

and improves upon the work in (Honey and Mumford 1986) by using a Reinforce-
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ment Learning agent to find the learning path. This removes the dependency on

e-questionnaires and Bayesian networks and streamlines the learning path agent re-

sponsible to generate the correct learning path.

3.3 Learning Model

The system proposed here builds its personalization and learning paths based

on the Felder Silverman Learning Style Model (FSLSM) and Differentiated Pedagogy

by adapting Learning Objects (LO) and the course content.

3.3.1 Felder Silverman Learning Style Model

There are numerous learning style models presented in the literature. Models

from Honey and Mumford (Honey and Mumford 1986), David A. Kolb (Kolb 2014),

and Felder and Silverman (Felder 2002) have different classifications and descriptions

of the types of learning. The Felder Silverman model provides better detail of the

learner’s learning style by perceiving the preferences on four learning dimensions,

whereas the other models create group styles of learners. Therefore, this work is

based on the Felder Silverman Learning Style Model (Richard M Felder n.d.). The

Felder Silverman model is also the most appropriate for hypermedia courseware ac-

cording to (Carver, Howard, and Lane 1999). (Brown 2006), (Popescu, Badica, and

Trigano 2008). (Sangineto et al. 2008) also show this model’s popularity and jus-

tify our choice for this work. Moreover, they show that FSLSM has been widely

validated on student data. Although other models might have proper theoretical

foundations, FSLSM contains realistic recommendations which personalize learner

profiles for teaching (Popescu, Badica, and Trigano 2008).
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Dimension Types Definition

A/R Active Work on it

Reflective Thinking about it

S/I Sensing Learning the Facts

Intuitive Learning the Concepts

V/V Visual Requires Pictures and Videos

Verbal Requires Lectures and Readings

S/G Sequential Working Step by Step

Global Finding the Big Picture

Table 3.1: Learning Style Dimensions in FSLSM

3.3.1.1 The Perception of Different Learning Styles

FSLSM differentiates learning styles along four dimensions that broadly char-

acterize the way the learner addresses problems, the type of knowledge the learner

acquires, the most effective way information is to be presented, and the way a topic

is learned, as shown in the following table:

More specifically, the four dimensions of FSLSM (Centre for Teaching Excel-

lence n.d.) which are characterized by the individual preferences of the learners divide

learning styles into categories. Elaborating on the dimensions, they are:

Active/Reflective:

Active: These learners like to work actively with the information provided. They

like to talk and try the subject to learn effectively.

Reflective: These learners like to think and grasp the information properly before

they act on it.
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Sensing/Intuitive:

Sensing: These learners like to work with absolute information. They like all the

details and facts and like to work with data that is already proven. They like practical

applications.

Intuitive: These learners understand information, which is more abstract, original,

and oriented. They are big-picture people who understand general trends.

Visual/Verbal:

Visual: Visual presentations, charts, pictures, and diagrams are used for these learn-

ers.

Verbal: These types of learners prefer verbal explanations, both written and spoken.

Sequential/Global:

Sequential: These types of learners prefer linear organized information which is log-

ically sequenced and works in a systematic way.

Global: These learners organize information holistically and randomly without con-

nections. They are scattered and disorganized in their thinking but creative.

3.3.2 Differentiated Pedagogy

As indicated in the FSLSM, students learn in different ways and when creating

adaptive learning content, the goal is thus to optimize all learning situations. There-

fore, it is imperative to use every educational resource available so that the learner

is presented with the most rewarding teaching situations that help improve learn-

ing. Differentiated Pedagogy is aimed at enabling this through the personalization of

course content and learning objects.
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3.3.2.1 Aspects of Differentiation

Philippe Meiriu in his paper (Meiriu 1999) stated that it is essential that a

learning space is defined for learning activities to be exercised. The three pillars

of learning are the Teacher, the Learner, and the Knowledge. Meiriu states

that some learning situations often fail since they attach importance to only the

knowledge and teaching and not to the learner, for which the whole platform is built.

Differentiated Pedagogy should always consider these three pillars equally because

the interaction between them is what success is dependent on.

3.3.2.2 Differentiation of Content

The lesson’s content should be differentiated based on the knowledge the learner

already possesses. For the basic content, the standards followed by district and state

should be covered. There might be learners who are completely unfamiliar with the

lesson, while there will be some who have partial knowledge of the lesson, learners

with a mistaken understanding of the content, or learners with complete mastery.

This differentiation is required to meet the needs of the different learners and can be

designed based on the different areas of Bloom’s Taxonomy (Bloom et al. 1956). So,

learners with no previous knowledge are required to complete tasks on the lower levels

of Bloom’s Taxonomy: Knowledge, Comprehension, and Application. Partial

mastery learners can work on Application, Analysis, and Evaluation. Learners

with complete mastery, finally, can finish the Evaluation and Synthesis areas.
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3.3.3 Adaptation of Course

Every type of Learner has a different learning style. The course should be

adapted based on the requirement. Figure 3.1 shows an example of the available

elements in a course that can be customized to personalize a learning path. Ac-

tive learners learn by trying out things and working actively, so the coursework for

them should be designed in a way that includes a greater number of exercises with

assessments presented at the beginning and end of the chapter. Since they are less

interested in examples, fewer examples will be fine for them. Reflective learners on

the other hand require less emphasis on exercise and self-assessments. They should

be initially provided with the learning material and then with examples. Sensing

learners learn from examples and concrete data. Hence examples should increase as

well as exercises. Intuitive learners like challenges so exercises and self-assessments

are more important for them. Since Sequential learners like linear steps, they should

be first presented with learning material, then examples, assessments, and then exer-

cises. Global learners, in contrast, need an overview of the coursework. They require

many examples after the learning material.

3.3.3.1 The Structure of the Course

To address adaptability, there are generally multiple versions of each Learn-

ing Object. The course can thus be represented as a quadruple Course = EXRC,

EXMP, THCON, ASMT:

EXRC = Set of Exercises

EXMP = Set of Examples

THCON = Set of Theoretical Content

ASMT = Set of Assessment
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Figure 3.1: Key Elements of a Course

EXRC =
∑n

i ER(i) where ER=Un
i V(i)

EXMP =
∑n

i EM(j) where EM=Un
j V(j)

THCON =
∑n

i TC(k) where TC=Un
k V(k)

ASMT =
∑n

i AS(l) where AS=Un
l V(l)

Where V(i), V(j), V(k), and V(l) are the learning object versions available.

Finally, the course representation is:

COURSE=
∑n

i (Un
i V(i) + Un

j V(j) + Un
k V(k) +Un

l V(l))

3.3.3.2 The Versioning of Learning Objects

According to (CSE n.d.), the reason behind using multiple versions is Differen-

tiated Pedagogy which helps students of different ages, skills, and abilities to achieve

academic success by following different routes. It also creates a flexible framework
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where diversified learning helps the student achieve their goal (Przesmycki 2003),

(Wiley 2003).

3.3.4 Learning Objects

Learning Objects (LO) represent the elements used in lesson plans and thus

form the entities that a learning path is defined over. There are different definitions

of Learning Objects. Figure 3.2 shows a simple Learning Object. Some examples of

these are:

Figure 3.2: A Learning Object

• ”For this standard (Draft Standard for Learning Object Metadata v6.1), a

Learning Object is defined as any entity, digital or non-digital, that may be

used for learning, education or training” (IEEE Learning Technology Standards

Committee 2001).

• ”...Learning Object... [is] ‘Any digital resource that can be reused to support

learning.’ This definition includes anything that can be delivered across the

network on demand, be it large or small. Examples of smaller reusable digital

resources include digital images or photos, live data feeds (like stock tickers),

live or prerecorded video or audio snippets, small bits of text, animations, and
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smaller web-delivered applications, like a Java calculator. Examples of larger

reusable digital resources include entire web pages that combine text, images,

and other media or applications to deliver complete experiences, such as a com-

plete instructional event” (Latorre et al. 2009).

• ”Learning Objects is a new way of thinking about learning content. Tradition-

ally, content comes in a several-hour chunk. Learning Objects are much smaller

units of learning, typically ranging from 2 minutes to 15 minutes” (L’Allier

1997).

• ”[A Learning Object] is defined as the smallest independent structural experi-

ence that contains an objective, a learning activity, and an assessment.”(Mirza

and Osindero 2014).

3.3.4.1 Metadata for LOs

Metadata is any type of information that refers to or describes aspects of an-

other information. It is known as “data about data”. Metadata is used in information

management since it supports administrative operations which include searching, dis-

playing summaries, and configuring interfaces. It creates a level of indirection that

allows systems to manage resources without getting into the depth of the informa-

tion. In the context of e-learning, information about the learning object, such as

descriptions, subject classifications, and relations between learning objects can be

stored in the metadata. So, when a learning object is searched in the repository, it is

the metadata that is used for seamless searching. A learning object is a combination

of the metadata and the content. The metadata can contain several basic elements,

including the ones shown in Figure 3.3.

Taking the recommendation of Differentiated Pedagogy, and the adaptation

of the course model chosen, the following versions are used here to emphasize the
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Figure 3.3: Metadata Elements

Figure 3.4: The Different Versions of the Same LO

Learning Object. In the example shown in Figure 3.4 (and used in the experiments

in this paper), each LO has four versions:

VM: a multimedia version.

VR: a version with a reminder of the previous LO.
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VD: a version with a deeper level of knowledge.

VA: a standard version.

To accommodate the new changes in the LO, the metadata is augmented to look like

Figure 3.5:

Figure 3.5: Metadata Elements after Adding new Versions

The new changes in the metadata will help to not overload the system as well

as to eliminate the versions which are not used.

3.4 Learning Plan Personalization Framework

The goal of the approach presented in this research is to introduce a framework

where we utilize the learning models and the adaptive learning objects to create

personalized learning paths for each individual student. The architecture tries to

create these learning paths true to the student’s capability of maximal performance

while limiting the sub-optimal learning paths during the training of the architecture.

The framework can be divided into two branches:

• The Inner Agent (Student Simulation Agent): Machine learning ap-

proaches like Conditional GAN are used to create this student simulation agent

that will help us to train the architecture with minimal original learner inter-

action.
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• The Outer Agent (Learning Path Agent): Reinforcement Learning is used

to create this agent that is trained to find the optimal learning path for each

student.

Figure 3.6: Outer Agent Interaction with Original Student

Figure 3.6 shows the overall architecture when interacting with the real student

learner while Figure 3.7 shows it when interacting with the student simulator. Here

the Outer Agent aims to learn the best learning path for the specific learner while

the task of the Inner Agent is to learn to best anticipate and simulate the actions

and rewards obtained by the specific learner. As we are taking an implicit learn-

ing style inference approach, this agent uses performance feedback from the learner’s

progress and employs Reinforcement Learning to determine the best learning objects

and learning sequence. To reduce the need for frequent interactions by the learner,

the framework employs the inner agent as a simulation of the learner’s performance.
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Figure 3.7: Outer Agent Interaction with Inner Agent

For this, a Conditional Generative Adversarial Network (CGAN) is trained using pre-

vious experiences with other learners that provide a simulation for learner reactions.

During the training of the outer lesson plan agent, the system uses sparse interactions

with the actual learner to infer probabilistic learner-type attributes which condition

the CGAN student simulation model towards the specific learner, allowing its output

to be used to mimic student responses and thus to serve to train the outer agent

without actual learner actions. The goal here is to minimize negative experiences

by the learner due to inappropriate Learning Object sequences while maintaining

the flexibility of the Outer Agent to derive the lesson plan that achieves the highest

performance with the specific learner.
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3.4.1 Machine Learning Approaches

The two interconnected learning agents in the proposed framework use two

different learning approaches. The Outer Agent that learns the lesson plan uses

Reinforcement Learning (RL) to optimize the performance of the learner by modifying

the learning path. RL agent is used here to avoid the need for hand-coded learning

types and corresponding, predetermined learning path choices for those types, thus

extending the flexibility of the personalization. The Inner Agent which is aimed

at adapting rapidly to provide a simulation of the learner’s reactions to different

learning objects utilizes a Conditional Generative Adversarial Network (CGAN) due

to its ability to learn to generate realistic behavior even in non-deterministic situations

where the same response can cause the different performance of the learner at different

times.

3.4.1.1 Reinforcement Learning

In our architecture, the Learning Objects can be presented as actions in a

learning environment Markov Decision Process where the agent must find the best

possible learning path for the student. Using just the performance feedback from the

learner, this approach can learn sequences of Learning Objects (i.e. a learning path)

that maximize the overall performance of the learner (i.e. perceived reward) without

the need for prior knowledge of learner type or promising learning path options.

3.4.1.2 Conditional Generative Adversarial Network

We have extensively used the CGAN architecture to train the Generator for

each individual type of student using an initial set of student learners. Once presented

with a new learner, the likelihood of each condition label can be inferred from a small
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number of learner interactions and the resulting performance results, allowing it to

provide simulated life-like data that can be used to train the Outer Agent in the

Architecture with limited need for actual student interaction.

3.4.2 Student Reward Simulation Model

To train this Architecture we need student participation to determine the best

learning path for a specific student as no prior knowledge about the student is assumed

to be available. To perform the initial evaluation in this research, a set of synthetic

student models are used instead of real participants to reduce the amount of trial and

error during development and to obtain more repeatable values instead of relying on

interaction with real students for long durations. For this, we have developed a simple

student simulator that is based on some assumptions that are informed by FSLSM

and generates learner data with particular random distribution which is used instead

of feedback from the real students. This not only addresses the repeatability of the

experiments but also helps us show the efficiency of the architecture in the context of

different learner types. For this, we have created an 8 x 8 table for 8 prototypical types

of students from FSLSM and 8 corresponding learning styles, and we design reward

distributions for each combination that represent higher performance for more suitable

lesson plans and learning Objects. Rewards for each learner type - learning style

combination are assumed here to be normally distributed with different means and

variances for different combinations, with higher means representing better choices

for the specific learner type. This provides a solid starting point to use the student

simulator to generate a reward for each coursework provided by the outer agent.

Then, that reward is used to train the agent. The reward distribution generated

also considers several internal variables that represent real-life conditions that affect

learning performance, such as motivation and concentration. In the model, we also
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consider how previous performance increases or decreases the current performance of

the student. With these conditions, we attempt to mimic the real-life performance of

a student which helps train our agent.

3.4.3 The Inner Agent

The Inner Agent is an integral part of the framework. The main objective of

the Inner Agent is to provide near-accurate simulations of real student data which

will help train the outer agent effectively. If the Inner Agent is unable to provide

accurate simulations, the Outer Agent would struggle to generate optimal learning

paths for the student. Once a new student starts using the system, the Inner Agent

attempts to identify the learner-type parameters for the Generators and use it to

generate appropriate performance and reward data for the specific, new student in

lieu of having to present actual lesson plans to the student. So, when we use these

Generators, the generated data should be comparable to the real student which helps

us train the architecture. The Inner Agent can be divided into two subparts:

Figure 3.8: Generator Architecture of CGAN

3.4.3.1 Conditional GAN

The Inner Agent is aimed at providing a simulation of the specific student

using only a small number of observations of the performance of the student. To
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Figure 3.9: Discriminator Architecture of CGAN

learn realistic data Generators (or simulators), Generative Adversarial Networks have

become one of the machine learning tools of choice due to their ability to learn to

generate realistic “fake” data in probabilistic domains from an original dataset. We

have seen GAN used in numerous image processing problems and the results it has

provided in terms of generating realistic images or videos have shown the prowess

of the approach. The motivation to use CGAN here is to create Generators for

different learner types from the data of a set of individuals. The CGAN with an

appropriate set of conditions (learner type) is then used as a stand-in for a specific real

student to train the Outer Agent without needing exorbitant amounts of real learner

interactions. The Generators here are trained on student data from individuals of

each learner type. Figure 3.8 shows the concept of the Conditional Generator with

its Conditional learning style Input that is ultimately inferred from the limited

number of interactions with the specific user. Figure 3.9 shows the basic architecture

of the Discriminator that is used to train the Generator in the CGAN architecture.

The Generator is one of the pillars of the proposed learning path personalization

architecture and it is imperative that the Generator provides valid data for the agent

to train itself properly. To address the learning setting for our experiments, we have
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trained eight Generators, one for each of the student types using a set of synthetic

individuals using the probabilistic behavior model described in the previous section.

Each Generator has learned the trend of the reward generated by students of each

type, hence when the Generator is used, the data generated is comparable to the

student feedback. These 8 CGAN Generator models are part of the Inner Agent.

This Inner Agent helps train the Outer Agent to derive an optimal learning path for

the new student learner.

3.4.3.2 Generator Model Selection

When the framework is used, for the first coursework, the framework randomly

chooses and presents it to the student (in our experiments represented by a student

reward simulator). This provides performance feedback based on how well the learning

path helped teach the student. This feedback is used to update the outer RL agent. In

addition, a distribution of rewards is generated from all the Inner Agent Generators

for that action, and the probability of the student type is updated based on the

likelihood that the actual student feedback could have been generated by each of

the Generators. This is done by finding the probability density function of each

distribution and choosing the one with the highest softmax value. The Generator

with the highest likelihood is the most likely to represent the student type of the

student we are working with. We then use this model to train the RL agent for a

considerable amount of time before it interacts with the student again. This loop

continues until the RL agent learns the optimal learning path for the student. The

sooner the correct Generator model is chosen, the faster the optimal learning path is

achieved.
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3.4.4 The Outer Agent

In the proposed framework, the aim of the Outer Agent is to learn the optimal

Learning path and the learning objects which maximize the performance of each

individual student. Reinforcement Learning can be a very powerful tool when it

comes to learning behaviors. It does not require knowledge of the best behavioral

strategy beforehand. Since it generates its own training data to train itself when other

information in terms of the state and reward is provided, using the RL algorithm to

generate the agent helps us create better personalization. The outer agent uses the

RL algorithm to decide which learning path should be provided to the student. The

training of the agent has been divided into two parts. The real student interaction

and the training using the Generator models.

During the real student interaction phase, for the first iteration, we provide

the learning path to the actual student and wait for the student’s feedback i.e., the

action it chooses, and the reward generated. When we get the feedback, we use this

information to train the Outer Agent. We also use this information to update our

probabilistic estimate of the student type used to condition the Generators in the

Inner Agent. Thus, it helps us to better choose the most appropriate Generator.

Figure 3.6 explains the interaction between the Outer Agent and the student.

The Generator interaction phase uses the Generator that best fits the data

observed from the real student to train the RL algorithm in the Outer Agent to

improve its accuracy. This limits actual student interaction requirements. Once the

Outer Agent is trained with the Generator, it again interacts with the real student,

providing additional performance data to update the Generator type selection and

providing improved lesson plans to the learner. Figure 3.7 shows the interaction

between the Inner and Outer agents.
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3.4.5 Operation of The Architecture

In the proposed architecture, the Outer Agent (learning the learning path) and

the Inner Agent (identifying learner style and generating simulated learner data)

tightly interact during training. In the experiments performed, the Student Reward

Simulator Model has been used in lieu of real students. This helps us achieve more

repeatable results and helps us to test all student learner types. Firstly, the RL

agent chooses a learning path (Action) and provides the option to the student as

depicted in Figure 3.6. The student (in our experiments represented by a student

reward simulator) follows the learning path and provides performance feedback based

on how well the learning path helped teach the student. This feedback is used to

update the outer RL agent. In addition, a distribution of rewards is generated from

all the inner agent Generators for that action, and the probability of the student type

is updated based on the likelihood that the actual student feedback could have been

generated by each of the Generators. This is done by finding the probability density

function of each distribution and choosing the one with the highest softmax value.

The Generator with the highest likelihood is the most likely to represent the student

type of the student we are working with. We then used this model to train the RL

agent for a considerable amount of time before it interacted with the student again

as depicted in Figure 3.7. This loop continues until the RL agent learns the optimal

learning path for the student.

3.5 Results

We run the Architecture twice to investigate the operation of the Architecture

and its ability to adapt to the learner without excessive need for real learner interac-

tions while also limiting negative learner experiences. We run it once solely using real
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student interactions and once using the student data and the Generators. Figure 3.10

shows the number of real student interactions for the two scenarios for the 8 learner

types with blue bars indicating the setting without use of the Generator and orange

bars indicating the use of the Generator.

Figure 3.10: Performance of the Architecture with and Without Inner Agent

As we can see in these results When the CGAN-based Inner Agent is used

effectively to estimate the learner characteristics, the real student interactions are

significantly reduced for all learner types. When the CGAN-based Inner Agent is

used, the Generator adds simulated learner reactions to train the Outer Agent. This,

in turn, dramatically reduces the negative experiences of the learner with the system

during training and helps us achieve the goal of minimal student interaction to train

our agents.
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3.6 Conclusion

In this research work, we have presented a framework for the adaptation of

learning objects and learning paths using Reinforcement learning. The proposed

approach is built on the concepts of FSLSM and Differentiated Pedagogy to create

coursework that can be used in the adaptive model. The framework is aimed at

minimizing the need for explicit student-type modeling while reducing the number

of learner interactions needed to learn the best learning path. The model works by

generating limited amounts of original data while a student interacts. This data is

then used to condition a CGAN-based Generator which helps train the RL agent

for a considerable time before it interacts with the student again to generate new

original data. Experiments with different learner types showed that the use of the

Generator significantly reduces the number of real student interactions needed before

the optimal learning path is learned, thus illustrating the architecture’s benefit. In

the future, we intend to develop a Generator that can be used for all students and

not only for a fixed number of types. This will help further generalize the adaptive

model.
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CHAPTER 4

Capturing Preferences of New Users in Generative Tasks with Minimal Interactions

Collaborative Filtering Using Siamese Networks and Soft Clustering

4.1 Introduction

With the popularity of the Internet and the advent of smartphones, there has

been a great increase in Internet traffic. There are approximately 5.16 billion Internet

users, out of which approximately 4.76 billion are social media users (Petrosyan 2023).

Since big social media companies are handling such a huge population, there are

pressures to understand, capture and cater to user preferences with the underlying

objective of captivating the user and generating revenues. Over the years several

Recommender Systems with state-of-the-art collaborative filtering algorithms have

been proposed. These algorithms use huge datasets and expensive computations to

learn user preferences. However, they become difficult to use if there is very little

information about the user. Prediction of user preferences is a challenge. But when

the objective is to learn them without requiring the user to provide a profile or a

significant number of interactions, it is much harder to achieve.

The novel architecture in this paper is trying to address this problem by aiming

to predict a user’s preference with minimal interactions. For this, it uses the concept

of collaborative filtering in an embedding space where, based on the information

from the previous user, the Architecture predicts the preference of the new user, with

minimal feedback interactions. A robust Siamese Network (Bromley et al. 1993) is

used which takes user data from previous episodes and generates an embedding space

for the dataset. After the embedding space is created, a Gaussian Mixture Model
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generates soft clusters in this space that help predict the preferences of the new

user. A Conditional GAN (Mirza and Osindero 2014) is then used, which utilizes the

embedding space vector from the soft clusters as the Conditional Input to generate

new data. This data is provided to the new user for feedback which the Architecture

uses to adjust the clusters and thus the predicted preferences. To test the approach,

an image generation domain has been used where the goal is to learn to generate

images that match the user’s preference based on minimal interactions.

In the next few sections, we will discuss related works in this field. Then we

will introduce the underlying learning theories of the different machine-learning tools

and the framework is introduced with a discussion on the details of the architecture.

Next, we will elaborate on the Experimentation and Results and conclude

4.2 Related Work

Capturing user preferences is a difficult problem as acquiring information di-

rectly from the user can be prone to error. Indirect methods when used to reduce

error, have been computationally expensive and time-consuming. Still, capturing user

preferences accurately helps understand and respond to the needs of the user, which

is why enterprises have collected large amounts of information on users. This infor-

mation in collaboration with AI techniques has generated learning models that have

gained a deeper understanding of user interaction. These Recommender Systems have

automated the complex generation of recommendations based on the data analysis,

but to achieve good accuracy they usually require huge amounts of information and

computation.

In one of the first commercial recommendation systems, called Tapestry (Gold-

berg et al. 1992), the term “collaborative filtering” was introduced. The system

recommended documents from newsgroups to users. The aim was to use social col-
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laboration to understand the user requirements and thus save users from large vol-

umes of preference questionnaires or document interactions. Collaborative filtering

analyzes all user data to find good user-item pair matches. In contrast, the earlier

methodology of content filtering was based on information retrieval. After the early

success of collaborative filtering in the Group lens system (Resnick et al. 1994), the

problem was mapped to classification, where dimensionality reduction was used to

improve the solution.

When Netflix, an online video streaming service released a large-scale dataset

containing 100 million ratings from half a million users and announced an open com-

petition for the best collaborative filtering algorithm, Matrix Factorization (Koren,

Bell, and Volinsky 2009) based on linear algebra and statistical analysis emerged as

a state of the art technique.

Later, a new recommendation framework (Xiang Wang et al. 2019) was pro-

posed which exploits user-item graphs to propagate an embedding. This has led to

modeling expressive high-order connections in the graph. Collaborative filtering was

also used in IoT scenarios (Cui et al. 2020), where time correlation coefficient and

K-means clustering has been used to group similar users for an accurate recommen-

dation.

The works presented above are all based on the notion that big datasets are

available that help train the Recommender System. In contrast, our approach is

based on the notion of accurately predicting user preference with minimal interaction.

Information from previous users is taken into account to develop an embedding space,

but the amount of data used is comparably lower. This lessens the dependency on

big datasets to train and make accurate predictions.
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4.3 Learning framework

4.3.1 Dataset:

To develop and initially evaluate the framework, the Fashion-Mnist dataset

(Zalandor 2017) has been used for experimentation. This dataset, examples of which

are shown in Figure 4.1, was chosen due to the following properties:

• Each image is 28x28 grayscale, which makes it easier to create an initial neural

network for processing.

• The dataset contains images from 10 different fashion items where each item

is visually different while sharing lower-level features, facilitating overlapping

preferences.

Figure 4.1: Examples from Fashion-Mnist Dataset
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4.3.2 Siamese Network

The primary objective of the Siamese Network in this approach is to create an

embedding space for the collaborative filter to work on. Figure 4.2 shows the internal

structure of the Siamese Network. It includes the following three layers:

• Input Layer - Here image pairs of two types are sent as input. A Like-Like

pair contains two images liked by the same user. They can be of similar or

different classes. A Like-Dislike pair contains two images that can again be of

the same class but have to be from two different users.

• Embedding Layer - In this layer, we use two similar Branch Networks which

share the same weights for updating. The networks take each image from the

Input Layer as input and then convert them into embedding vectors which are

fed as input to the Decision Layer.

• Decision Layer - The first Layer which takes both outputs from the Embed-

ding Layer is the Euclidean distance layer which computes the distance between

the two embedding vectors. The images from the same user will generate em-

bedding vectors close to each other whereas images from different users will

generate embedding vectors far from each other. The concatenated output goes

through a fully connected layer to predict either 1 (Same User) or 0 (Different

User).

Based on the true and predicted answer for the pair, the network is trained. Binary

Cross Entropy as the loss function and Adam as the optimizer are used for the ex-

periment. Since they predict similarity and dissimilarity, the branch networks are

trained with the same weights. Once the Siamese Network is trained, the embed-

ding vectors of the images from previous users are used to generate a distribution in

the latent embedding space. These embedding vectors are used to find clusters using
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Figure 4.2: Architecture of Siamese Network

Gaussian Mixture Models and they also serve as a Conditional Input to a Conditional

Generative Adversarial Network to generate sample images.

4.3.3 Conditional Generative Adversarial Network

The main motivation for using the Conditional GAN is to provide the Architec-

ture the power to create its own data. This ability will aid the Architecture to learn

user preferences faster. Here the CGAN is trained with user data collected during

experimentation. For the Conditional Input of the CGAN, the Branching Network

of the Siamese network is used to generate embedding vectors for each image. The

architecture is designed as follows:
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(a) Generator. (b) Discriminator.
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Figure 4.3: Architecture of Conditional GAN.

• Condition Generation - We use the Embedding Layer of the Siamese

Network, where all the user data is sent as input and an embedding vector is

generated. This gives us the ”Conditional Input” for the CGAN.

• Generator Computation - The Conditional Input is concatenated with a

noise vector and sent to the generator. The generator uses this input to generate

an image of the same dimension as in the original Fashion-Mnist dataset.

• Discriminator Computation and Training - The Conditional Input and

the image (either from the source dataset or from the Generator) are con-

catenated and sent to the Discriminator. The Discriminator outputs 1 or 0

depending on whether it predicts that the image is from the source or from the

Generator, and based on this the Generator is trained to learn to create images

that the Discriminator can not distinguish from the originals.

Figure 4.3(a) and (b) show the Generator and Discriminator network structures,

respectively, and Figure 4.3(c) shows their integration into the CGAN architecture.

4.3.4 Gaussian Mixture Model for New User Preferences

The Branching Network from Siamese Network takes all the images from previ-

ous users and generates embedding vectors which create the embedding space. These
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unlabeled vectors in the embedding space will be used to bootstrap and structure the

user preference for new users. When the model works on predicting the preference of

a new user, the new user might prefer images from different clusters (previous user

preferences) or sub-cluster combinations. The goal is to capture these by building a

Gaussian Mixture Model for the new user’s likes and dislikes, capturing them in the

form of soft clusters in the embedding space. This implicitly assumes that the struc-

ture of the embedding space captures basic commonalities related to human tastes.

Note that we are not assuming that resulting user preferences fall into a type that is

already present among previous users (as is done generally in collaborative filtering)

but only that the embedding space captures basic underlying data properties in light

of human preferences. The training algorithm works in a semi-supervised fashion,

treating user feedback as preference labels while assigning no labels to other users’

data. The presence of liked and disliked examples leads to a small modification where

each Gaussian also receives a cluster label, assigning it to either the liked or disliked

class for the user. The complete algorithm operates in the following way:

• Initialization - For initialization, K-means Clustering is a good choice. The

value of the cluster number k is defined by the elbow method. These clusters

provide a starting point for the Gaussian Mixture model to train itself. The

mixing probability or weights π is initialized according to the data distribution,

and as initially, no data for the new user is available, membership in the liked

or disliked distribution for each Gaussian is initialized randomly.

• Expectation-Maximization - The EM algorithm finds the maximum likeli-

hood of a vector among all the clusters. It is divided into two steps:

E-Step - In the E-Step the posterior probabilities (Expectation value) of each

data point are computed with the given π, µ, and Σ. For data points that

received feedback from the new user, posterior probabilities for all Gaussians
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that have the opposite liked or disliked label as the feedback indicates are set

to 0.

M-Step- In the M-Step, π, µ, and Σ are updated by maximizing the log-

likelihood with respect to the parameters. Once data points with user feedback

are available, cluster labels for all Gaussians are updated according to the like-

lihood of the cluster generating liked or disliked data points from the set that

the user provided feedback on.

The E-M step continues until the algorithm converges. The architecture is shown in

Figure 4.4

Figure 4.4: Architecture of Gaussian Mixture Model
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4.3.5 Prediction Model

The Prediction Model interacts directly with new users and based on their

feedback predicts the images a user might like. The following steps are used for the

model to work.

Figure 4.5: Architecture of Prediction Model

• Initially there is no user information, so a cluster from the embedding space is

chosen randomly and the corresponding µ and Σ are used to pick a vector from

that cluster.
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• This vector is then used as the Conditional Input for the CGAN. The generated

image is shown to the user and the feedback is recorded as ”Liked” or ”Disliked”.

The embedding vector is also added to the dataset.

• The EM algorithm is called to update the Gaussian Mixture Model based on

the latest dataset and user feedback. During the EM step, the new images for

the new user are updated differently. If the user has liked or disliked the image,

its Expectation value for all the predefined clusters which the model thinks

has the opposite label is set to 0. This process moves the clusters every time,

customizing the prediction for the new user.

• After the EM step, the predicted labels are updated. For each cluster, we find

the probability density values of the liked images (li) and disliked images (di),

and then use the formula (li− di)/(li+ di). If the value is greater than 0, then

the cluster is liked, otherwise, it is disliked.

• The model runs for at most 100 iterations. Initially, it explores 90% of the

time with a decay of 20% every 20 iterations. This initially promotes explo-

ration and slowly moves towards exploitation. At each iteration, Precision,

Recall, and Accuracy are evaluated and training is stopped if a threshold is

crossed. For the experiment, the threshold for (Precision, Recall, and Accu-

racy) is (80%,50%,50%). We use a higher Precision value than Recall since we

want the model to learn to present liked images early but are not as interested

in covering all interests of the user.

The Model is shown in Figure 4.5
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4.4 Experiments and Results

In this section, each of the components, as well as the complete approach, is

tested and evaluated.

4.4.1 Siamese Network

The Siamese Network was trained with user-consistent and user-inconsistent

pairs. The network ran for 250 epochs and achieved a testing accuracy of 97% and

validation accuracy of 95%. The training loss is 0.11 and the validation loss is 0.21.

The training curves are shown in Figure 4.6.

Figure 4.6: Accuracy of Siamese Network
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These results show that the Siamese network is able to learn consistent embed-

ding of the distinguishing characteristics of existing user data with high precision.

4.4.2 Gaussian Mixture Model

Using the embedding space and the existing user data without labels, a Gaussian

Mixture Model with 18 clusters (chosen by the elbow method) is trained and then

customized using new user feedback. The clusters are shown in Figure 4.7, where (a)

displays the clusters before training with the new user’s feedback, and (b) shows the

clusters after training, where red clusters are Disliked and green clusters are Liked.

Figure 4.7: Soft Clusters in Embedding Space Before (a) and After (b) User Interac-
tion

This figure shows that the system is able to form distinct clusters that align with

the users, indicating that it can identify relevant characteristics within the embedding

space.
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Figure 4.8: Iterations Required to Train User Model for Each of the 50 Users With-
out Previous User Gaussian Mixture Model (left) and With Previous User Gaussian
Mixture Model for Collaborative Filtering (right).

4.4.3 Prediction Model

Once the Gaussian Mixture is pre-trained, the prediction and feedback process

is started with a set of 50 new users with randomly initialized preferences defined as

subsets of the Fashion-Mnist categories. To compare the efficiency of the proposed

architecture, another experiment is set up with the same number of clusters but where

the Gaussian Mixtures do not utilize previous users’ data but only the new user’s

data points and feedback. This corresponds to the situation where no collaborative

filtering is used but preferences are learned in a supervised way using the pre-trained

embedding space. Figure 4.8 shows the number of iterations the models required in

each condition to reach the prediction thresholds for each of the new users and how

many Liked and Disliked images each user has seen during the training process. The

use of the collaborative filtering approach by pre-trained Gaussian Mixtures (shown

in the right figure) significantly reduces the need for user feedback compared to the

baseline (shown on the left) and thus increases the efficiency of the architecture. Using

this, the system is able to learn preference distributions relatively fast, with many

users having to rate less than 20 images. However, the results also show that there still
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is significant variance among users, indicating the potential for improvement in the

way data points are generated from the Mixture distribution. Focusing more on liked

clusters should here increase precision at the cost of recall with fewer disliked images,

while focusing longer on exploration should yield higher recall but more disliked

images. The model with no pre-trained Gaussian Mixture (shown in the right figure),

required significantly more interactions with only 3 instances where fewer than 40

images were shown. For the rest of the users, the model completed its run of displaying

all 100 images and never reached the desired thresholds.

To check how efficient the proposed user preference learning approach is in

predicting user preferences, we generated 100 images from each liked and disliked

cluster according to the trained user-specific Gaussian Mixture model’s predicted

preference for the user. These images were then tested against the actual preference of

the user and precision and recall values were computed. Precision shows how well the

model can generate items matching each user’s preference while Recall measures how

comprehensively the user’s preferences are captured. Figure 4.9 shows the precision

and recall for each of the 50 new users for the proposed model with the pre-trained

Gaussian Mixture from previous users’ data.

The model achieved an average precision of 81.9% and an average recall of

71.3% across all 50 users. By contrast, the model without the pre-trained mixture

only achieved an average precision of 36.6% and an average recall of 37.2%.

Figure 4.10 similarly shows the model accuracy value for each user using the

pre-trained Mixtures.

The average accuracy here is 82.67%, which contrasts with only 60.18% without

the collaborative pre-training. These results again demonstrate the ability of the

proposed architecture to learn effective user preferences with limited interactions and

illustrate the importance of the approach’s ability to utilize previous users’ data.
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Figure 4.9: Precision and Recall of Prediction Model

Figure 4.10: Accuracy of Predictive Model
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4.5 Conclusion and Future Work

This research work presents a novel framework that uses the concept of collab-

orative filtering in conjunction with a Siamese Network, Gaussian Mixture Models,

and CGAN to create a predictive model. This predictive model generates an accurate

preference prediction for new users with limited amounts of user-specific data. For

this, it establishes a user preference distribution as a Gaussian Mixture Model on an

embedding space learned by a Siamese Network using other users’ data. Results in

an image generation domain show that the system is capable to embed important

general preference characteristics. It successfully uses these to build a user preference

distribution of unknown preferences from limited feedback and generate training data

efficiently using a Conditional GAN network. While the results presented here are

promising, the used exploration and exploitation policy is very simple and could be

improved upon in terms of reducing false-positive exposures using other exploration

strategies. We can also use exploration strategies that are more targeted to a specific

task to further improve the experience of users with the system.
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CHAPTER 5

Adaptive Task Presentation to Improve User Performance in a Gaming Domain

5.1 Introduction

Learning user behavior models in the gaming domain has always been a fasci-

nating field of research. Understanding how the player will behave provides a lot of

information that can be effectively used to make decisions on game designs. This can

lead to more captivating and interesting games, that can keep the players engaged as

long as possible. Various game design methods are implemented, such as procedural

generation which generates game levels on the go based on some rules and regulations

decided by the game designer. But what happens if the vision of the game designer

does not align with the player? This can lead to bad game design resulting in a loss

of interest among players. So what if the rules and regulations for the game design

are influenced by the user behavior model? It will lead to developing game levels that

are personalized to the specific player’s interest. It can not only learn user behavior

but also adapt itself to generate game levels that will be interesting for the user, thus

leading to increase interest from the player.

The goal of this research is to introduce a novel architecture that can not only

learn about user behavior but also learn and generate game levels with the aim of

increasing user interest in the game. For this, an RL agent (Richard S Sutton 2018)

(Outer Agent) has been used which will learn to generate Game levels and will be

trained based on how the user performed while playing the game level. Facial Emotion

(De Silva, Miyasato, and Nakatsu 1997) is captured and used as a parameter of user

performance. The concepts of Embedding space, Collaborative filtering (Goldberg
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et al. 1992), and Conditional GAN (Mirza and Osindero 2014) are used to create an

Inner Agent which learns about the user behavior, including their emotional actions

and helps to train the Outer Agent to create more meaningful and interesting game

levels. One of the main goals of the architecture is to learn about the user behavior

with minimal interactions, where the Outer Agent is trained more on the Inner Agent

and gets periodic exposure to the real user to validate its training.

The next sections will elaborate on related works, then provide an overview of

the tools used in the learning framework and how the whole architecture is connected.

This is followed by the experimentation carried out and the results received, ending

with conclusions.

5.2 Related Work

Researchers have always been interested in predicting players’ gameplay. It

provides valuable information about how the player uses the information present in

the game to develop a strategy to increase their chances of winning. (Erev and

Roth 1998) showed how simple learning models with motivation by the psychology

of learning can model player interaction with the goal to predict accurate gameplay.

Though the experimentation is done on simple games, (Mahlmann et al. 2010) shows

the implication of predicting player behavior in video games. They chose a major

commercial title Tomb Raider: Underworld (TRU), where a large-scale set of in-

game player behavior data is used to train various supervised learning algorithms

that will predict when the player might stop playing, and also the time required to

finish the game. (Harrison and Roberts 2011) presented a data-driven solution to

design user behavior models. The models were tested on the achievement data from

the game World of Warcraft.
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Though the aforementioned research has been successful in predicting user be-

havior models, they were not directly used to aid game design or build adaptive

games. (S. C. Bakkes, Spronck, and Lankveld 2012) shows the potential of using this

information to create interesting and effective AI and also creating an opportunity for

game developers to personalize the player’s gameplay as a whole, by providing new

user-driven game mechanics. To show how well player models can be used to create

personalized games, (S. Bakkes, Tan, and Pisan 2012) provides a literature overview

on the concept of personalizing games.

In all the work presented above we see that to generate a good user behavior

model, a huge amount of user information is required and there is an opportunity

to use this information to create adaptable and personalized games. The novel Ar-

chitecture introduced in this research aims to predict player behavior with minimal

interaction with the player. This reduces the dependence on huge datasets. The

Architecture also uses this knowledge to train a Reinforcement Learning agent that

strives to create personalized and adaptable gameplay for the individual player.

5.3 Game and Learning Framework

Before we explain the learning framework and its training, let us elaborate on

the Game domain which has been developed for the research work. The Game has

been developed from the tutorial posted on youtube (Russ 2020). It is a simple 2d

platformer game, where the player moves around the environment to reach the door

(the end point of the level). In between it has to climb blocks, dodge enemies and

lava, and also collect coins. Once it reaches the door the game moves to the next game

level. Figure 5.1 shows the game in the tutorial. The reward is based on the number

of coins collected and whether the player reached the endpoint. One problem with the

game is that if the player dies (by colliding with the enemy or lava), it restarts from
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the beginning of the game level. Since this can lead to more frustration among

Figure 5.1: Game Level

players, we introduced a 3-life option at the game level. So now when they start

playing the game, they start with three lives. Every time they die, they lose one life.

When there is no more life left, the game ends. Figure 5.2 shows the new addition to
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the game. To add a little more difficulty to the game we time-bounded the game

Figure 5.2: Game Level with extra lives

levels. Each game level will contain an internal timer and the player has to complete

the level before the timer ends. This new addition will display the proficiency of each

player under stress and provide valuable information about the player. Figure 5.3
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displays the final form of the game. When the player interacts with the Game level,

Figure 5.3: Final Game level

the performance is registered. The number of total jumps tried, the number of total

jumps made, the number of total enemies averted, the total number of coins collected,

and if the player finished the level or not are recorded as player performance.
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Integrating this into the learning architecture presented in this dissertation, the

Outer Agent is responsible for creating specific game levels by generating the Game

states. It interacts with both the player and the Inner Agent to train itself. The

Outer Agent receives the current game state and player Emotion Information and

then generates the game state corresponding to the next game level to present to the

player. Initially, it here largely explores the space of possible game states but over time

increasingly exploits the learned knowledge. Based on the reward the Outer Agent

receives, which is extracted from the performance data captured from the player and

environment, the Outer Agent is trained using Q-Learning. In the beginning, after

the real user has interacted with the Outer Agent, the user performance is used to

generate an embedding vector which helps locate the clusters that are more likely

to provide a better prediction for the new player. Once that is learned, the Inner

Agent produces performance predictions and with it significantly larger amounts of

data to train the Outer Agent for some time before it interacts with the real user

again. The goal here is to minimize user frustration resulting from negative game

experiences due to inappropriately easy or hard game levels by reducing the number

of real user interactions required during training. The complete framework is depicted

in Figure 5.4

5.4 Learning Framework Implementation

5.4.1 Game State

The Game environment state is a vector of size 10. It contains all the impor-

tant parameters required to generate the Game level. Each parameter, directly and

indirectly, influences the performance of the player. The information in each data

point is as follows:
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Figure 5.4: Learning Framework

• Trajectory 1: This feature informs the availability of the first goal trajectory

at the game level. It is always set to 1.

• Time 1: This feature stores the time which according to the game is required

to complete the first trajectory.

• Trajectory 2: This feature informs about the availability of a second goal

trajectory at the game level. It can store values 0 or 1.

• Time 2: This feature stores the time which according to the game is required

to complete the second trajectory.

• Side Trajectory: This feature informs the availability of a side trajectory, i.e.

a trajectory that does not lead to the goal but instead to a dead end. It is

available only if there is no second trajectory. It can store values 0 or 1.

• Time 3: This feature stores the time which according to the game is required

to traverse the side trajectory.
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• Jumps: This feature stores the number of jumps required to traverse the game

level.

• Enemy: This feature stores the number of enemies in the game level.

• Coins: This feature stores the number of coins to collect in the game level.

• Heart: This feature stores the number of hearts to collect in the game level.

Fig 5.5 shows the Game Environment State for each Game level.

Figure 5.5: Game State

5.4.2 User Performance Dataset

The User Performance dataset contains performance vectors of the player for

a particular game level and also the Emotional information captured using FER

while the performance takes place. This dataset provides invaluable information

on the player’s emotional state as well as their proficiency in the game. The User

Performance is here captured in terms of the following features:

• Mood Positive: This feature stores information on whether the user is in

a positive mood. The ”Mood Positive” feature and ”Mood Negative” feature

total a value of 1.

• Mood Negative: This feature stores information on whether the user is in a

negative mood. The calculation of the player’s emotional state will be explained

in detail in the next section.

• Jump Ratio: This feature stores the ratio of successful jumps out of the total

number of tries.
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• Enemy Ratio: This feature stores the ratio of successfully evading the enemy

out of the total number of tries.

• Life Remaining: This feature stores the number of lives available after the

game level.

• Coin Ratio: This feature stores the ratio of successfully collecting the coins

out of the total number available.

• Finished Game: This feature stores 1 if the player won and 0 if the player

lost.

Figure 5.6 shows the User Performance Dataset for each gameplay.

Figure 5.6: User Performance Vector

5.4.3 Facial Emotion Recognition

Behind every performance and action, there are two aspects always in play:

The physical aspect, where the user is following the rules and taking the actions to

register their performance, and the emotional aspect, which is dependent on what

the player is feeling and how the player is processing the impact of the game on them.

It is easier to register and store the physical aspect of performance, but to effectively

understand the player’s performance it is imperative to take the emotional aspect into

consideration as well. Reading and storing the emotional aspect directly through

direct questioning can be very invasive and uncomfortable and would not provide

valuable information in the end. Hence there is a requirement for a non-invasive

method, which will record the information with a certain amount of accuracy.

69



Since the beginning of recorded history, it has been observed that facial expres-

sions of human beings have been a good way of predicting emotions. Most people

consciously or subconsciously, express their emotions through their facial expressions.

Hence, if facial expressions can be effectively predicted by an algorithm, emotional

information can be estimated and stored in a non-invasive manner. There has been

research on Facial Emotion Recognition using Multimodal information, (De Silva,

Miyasato, and Nakatsu 1997) where both audio and video are used to effectively pre-

dict human emotion. To remove the dependency on the Multi-modal aspect, The

Facial Emotion Recognition (FER) (Shenk et al. 2021) library in Python is used for

detecting Facial emotions.

It is an open-source Python library built and maintained by Justin Shenk

and used for sentiment analysis of images and videos. The library uses MTCNN

(Multi Cascade Convolutional Network) (Sun, Xiaogang Wang, and Tang 2013). The

MTCNN framework can constructively do both face detection and face alignment.

It uses a process of three stages of Convolutional Networks that recognize faces and

landmark locations like eyes, nose, and mouth. The FER library detects emotion in

the following way:

• MTCNN: It is a parameter of the constructor. When it is set to True, the

library uses the MTCNN algorithm to detect faces. When set to ”False”, the

library uses the default OpenCV Haar cascade classifier (Soo 2014).

• Detect emotion(): This function in the library classifies the detection of

emotion and registers the output of 7 categories, namely ’Anger’, ’Disgust’,

’Fear’, ’Happy’, ’Sad’, ’Surprise’, ’Neutral’, All the emotions are calculated and

the output is put on a scale of 0 to 1.

For our research, we have clubbed the seven emotions into two. ’Anger’, ’Dis-

gust’, ’Fear’, and ’Sad’ has been clubbed together into one classifier called ’Negative’,
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whereas ’Happy’, ’Surprise’, and ’Neutral’ are clubbed together into ’Positive’. This

reduces the number of features from seven to two but still keeps their relevance in

the output. Figure 5.7 shows the new classifiers.

Figure 5.7: Output of Facial Emotion Recognition

5.4.4 Inner Agent

The goal of the Inner Agent is to rapidly build a predictive, generative model of

the specific user playing the game. It is based on the approach in the previous chapter,

using a Siamese Network to build a user-type embedding, GMM to characterize the

user in this embedding space, and a Conditional GAN to predict user performance

data for new game levels.

5.4.4.1 Siamese Network

The Siamese Network (Bromley et al. 1993) has emerged as a powerful tool

for similarity learning tasks. With their ability to learn discriminative features and

handle limited labeled data, Siamese networks can be used to generate embedding
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spaces for the dataset. This embedding space stores relevant information about old

and new users which helps in predicting user preferences. The Network can be divided

into three components:

Input Layer:

For the input of the Siamese Network, we concatenate the game environment

and the corresponding user performance. This concatenation not only provides in-

formation about the game level but also the inherent performance of the user for

the game level, making the dataset rich in information. Once this concatenation is

achieved, We generate user-consistent pairs and user-inconsistent pairs for the Siamese

Network to train on. Figure 5.8 shows the dimension of the input data.

Figure 5.8: Input of Siamese Network

Branching Network:

The Branching Networks are two identical neural networks that receive each of

the data from either the user-consistent pair or user-inconsistent pair and output an

embedding vector which the Decision Component uses to find out whether the data

belongs to the same user or a different user. The Branching networks are trained with
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the same weights since sharing the same weights ensures consistency in the embedding

space and means that there are fewer parameters to learn during training and they

can produce good results with a relatively small amount of training data. Figure 5.9

shows the Branching network. The Siamese network uses two of these Branching

Networks.

Figure 5.9: Branching Network

Decision Component:

The third component of the Siamese Network is the Decision Module. The

Decision Component, shown in Figure 5.10 receives the output of the two identical

Branching Networks and outputs either 0 (dissimilar) or 1 (similar). Firstly, the

Figure 5.10: Decision Component

outputs of the branching network go through a Lambda Layer, where the Euclidean
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Distance of the embedding vectors is measured. The output goes through Batch

Normalization, after which, it goes through a fully connected dense layer with sigmoid

activation to predict whether the pair of inputs is similar or dissimilar. To train the

Siamese Network, Binary Cross entropy is used as the loss function and RMSprop is

used as the Optimizer. Figure 5.11 shows the complete Siamese Network.

Figure 5.11: Siamese Network

Once the Siamese Network is trained, the data (Game Environment + User

Performance) is provided as input to the Branching Network which generates the

corresponding embedding vectors. These embedding vectors are further used in the

Conditional GAN and Gaussian Mixture Models.

5.4.4.2 Conditional GAN

The Conditional GAN (Mirza and Osindero 2014) is one of the most important

tools in the Architecture. It comprises the Inner Agent aspect of the Architecture

in conjunction with the Gaussian Mixture Model. The objective of the CGAN is to

generate User Performance predictions for the new user on unseen game levels. This
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will enable us to train our Reinforcement Learning agent without frequent interaction

with the real user. The three important parts of the CGAN are:

Conditional Input:

Generative Adversarial Networks (Goodfellow et al. 2014) are really good at

generating information but when it comes to generating data based on class labels,

a GAN cannot make that distinction. Hence CGAN becomes a more powerful alter-

native to GAN. The Conditional Input is the distinguishing factor. With the help

of Conditional Input, the CGAN can generate class-based data. For our research,

the Conditional Input for the CGAN is the concatenation of the Game Environment,

Emotional data, and Embedding vector from the Siamese network as shown in Fig-

ure 5.12.

Figure 5.12: Conditional Input

This particular combination provides a proper class label characterizing the spe-

cific user and game environment and can be used to generate data (User performance)

with the CGAN.
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Discriminator:

The job of the Discriminator is to predict whether the data it received is from

the data source, or from the Generator. It will receive a batch of performance data

from both the source and the Generator, together with the corresponding Conditional

Input, and based on this the Generator is trained to try to distinguish real and simu-

lated user performance data. Figure 5.13 shows the Discriminator architecture. The

architecture is very similar to the branching networks used in the Siamese Network.

The only difference is that in the Branching network the output is a 2d vector whereas

in the Discriminator, it is a single output stating 0 for false and 1 for true.

Figure 5.13: Discriminator

Generator:

The Generator network’s main goal is to trick the Discriminator. The Generator

receives the Conditional Input and a Noise Vector as input and it generates a piece

of information similar to the original performance data. This information is fed to

the Discriminator and based on the prediction, the Generator is trained. Figure 5.14

shows the Generator architecture.

This constant battle between the Generator and Discriminator in a zero-sum

game trains the Generator to generate user performance data closely resembling the

actual user performance for the particular Conditional Input. Figure 5.15 shows the

workflow of the complete CGAN architecture.
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Figure 5.14: Generator

Figure 5.15: Conditional GAN

5.4.4.3 Gaussian Mixture Model

After the Siamese Network is trained, the Branching Network is used to generate

embedding vectors for all the previous user data that is available. These embedding

vectors will create the embedding space. Once the unlabeled embedding vectors from

previous users are ready, they will be used to bootstrap and structure the user pref-

erence for new users. This is based on the notion that the new user might have

similar characteristics with multiple previous users and hence might belong to dif-

ferent clusters or sub-cluster combinations within the embedding space formed by

previous users’ data. To capture this nuance, a Gaussian Mixture Model is used. The
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model builds based on whether embedding vectors generate correct or incorrect user

performances for the new user and captures them in the form of soft clusters in the

embedding space, implicitly assuming that the embedding space structure captures

the basic commonalities related to human performance variations. The complete

algorithm operates in the following way:

• Initialization - Before training the Gaussian Mixture Model, first we use the

silhouette score method to determine the correct cluster number k. Once the

cluster number is available, we initialize the embedding space using K-means

Clustering. The data distribution is used to initialize the mixing probability

or weights π. In the beginning, since no data for the new user is available,

membership in the matching or non-matching distribution for each Gaussian is

initialized randomly.

• Expectation-Maximization - Here the EM algorithm is applied to find the

maximum likelihood of a vector among all the clusters. It is divided into two

steps:

E-Step - In the E-Step the Expectation value or the posterior probabilities of

each data point are computed with the initial π, µ, and Σ. For the data points

that received feedback from the new user, the posterior probabilities for all the

Gaussians that have the opposite match label as the feedback indicates are set

to 0.

M-Step - In the M-Step, we update the π, µ, and Σ values by maximizing

the log-likelihood with respect to the parameters. Once all the data points

with user feedback are available, the cluster labels for all the Gaussians are

updated according to the likelihood of the cluster generating user-matching or

non-matching data points from the set that the user provided feedback on.
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The E-M step will continue until the algorithm converges. In the end, it will display

all the clusters which align with new user performance and also the clusters which do

not. The architecture is shown in Figure 5.16.

Figure 5.16: Architecture of Gaussian Mixture Model
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5.4.5 Outer Agent

5.4.5.1 Reinforcement Learning

For the Outer Agent, we use a Reinforcement Learning Agent. The RL agent

is shown to be a robust agent which learns from its own experiences. It creates a bal-

ance between Exploration, where it explores the environment using random actions,

effectively generating random game levels, and Exploitation where the agent uses

the acquired knowledge to choose the best action in that particular state, generating

what it thinks is the best next game level for the user given the previous level and

current emotional state. Since the RL agent learns from its own experiences, training

it only on real user information can require numerous gameplays which is often infea-

sible and usually frustrating due to the number of non-user-optimized levels that will

be presented. To solve this problem, the RL agent gets trained with both the user

performance and also the simulated performance generated by the Inner Agent. 10

actions have been chosen for the agent where each action provides a game state to

be generated. The states available to the RL agent are the concatenation of the last

action + Emotion data from the gameplay. Q learning is used to train the RL agent.

5.5 Training of Learning Framework

Now that all the underlying dependencies have been explained, let us elaborate

on how the architecture works in conjunction with all the parts.

5.5.1 Pre-processing

Before the architecture starts working and interacting with users, we can pre-

process some of the information. Firstly, the Siamese Network is trained with available

user-consistent and user-inconsistent pairs. Once the Siamese Network is trained, the
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Branching network is used to generate all the embedding vectors. Using these embed-

ding vectors the Gaussian Mixture Model is trained. Similarly, the embedding vectors

in conjunction with the game environment are also used to train the CGAN. From

the previous user dataset, we also compute the covariance of all the performances

and find the average of that data as a measure of the natural variability of the aver-

age user, which will later be used to determine whether simulated performance data

from the Inner Agent is sufficiently similar to real user performance in the same envi-

ronment to be considered matching or if it is sufficiently dissimilar to be considered

non-matching. Once all the training is completed, The Branching Network, The Gen-

erator, the Gaussian Mixture Models, and the average of all covariance data is ready

for the Architecture. Figure 5.17 displays the operation during pre-processing of the

Inner Agent.

Figure 5.17: Pre-Processing of Inner Agent

5.5.2 Interaction with Real Player

After the pre-processing of the Inner Agent is completed, the Architecture can

start interacting with real users. The Architecture interacts with the user in each

81



iteration once with an upper limit of 100 iterations for training. In the beginning, the

Emotion data of the user is captured and sent to the Outer Agent (Reinforcement

Learning Agent). With the help of this information, the Outer Agent chooses a Game

state which is then used to generate a Game environment. Since the Outer Agent has

no prior information, a random action will be chosen. The new user is provided with

the Game environment. The user plays the game and the performance is recorded

and stored, including the Facial Emotions data. Once the information is ready, we

first train the Outer Agent.

5.5.2.1 Training Outer Agent

We use the User performance to train the Outer agent using Q-Learning. Once

the training is completed, we generate the embedding vector and sent all the infor-

mation required to update the labels for the Clusters.

5.5.2.2 Update Cluster Labels

We have the original user performance and the new embedding vector. This

embedding vector is used to generate 10 simulated performances for the same envi-

ronment and Emotion data using the CGAN Generator and an average is calculated.

We then subtract the original performance from the average simulated performance

and divide the difference by the average of all covariance. Once it is done, we cal-

culate the L2 norm value and call it normdiff. This value shows how close the

simulated performance is to the real performance in terms of the number of standard

deviations and thus corresponds to a likelihood that the simulated performance could

occur from the real performance distribution of the user.

Next, we randomly generate 10 embedding vectors for each cluster. We use

each of the vectors to generate simulated performance. Then we calculate the L2
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norm value and call it diff. So if(diff <= 2*normdiff), then the embedding vector

is labeled as positive, i.e. it represents a predicted performance that matches the

user performance. if(diff > 2*normdiff), then the embedding vector is labeled as

negative, i.e. it is unlikely to reflect the performance of the actual user. After all the

embedding vectors from the cluster are calculated, if there are more positive points

than negative, the cluster is matching, or else it is non-matching. This is done for

all the clusters. We also store all these embedding vectors as labeled data and their

positive and negative classifications as Outcome, to help update the GMM.

5.5.2.3 Updating the GMM

After updating the label, we update the GMM by running the E-M step first

over the embedding dataset. Once it is trained, we use the E-M step again for the

labeled data but it will be updated in a special way. For each of the labeled data, if the

outcome is positive, the expectation value for the non-matching clusters is changed

to 0. If the outcome is negative, the expectation value for the matching clusters is

changed to 0. Once all the updates are completed, we check if the GMM requires

retraining.

5.5.2.4 Retraining the GMM

Out of the labeled data, for each matching cluster, if there are more negative

vectors than positive ones, we retrain the GMM with one extra cluster. The notion

is that if there are more negative examples in a matching cluster there is a chance of

a hidden cluster that will be available after retraining.

After Completing all these steps, the Outer Agent interacts exclusively with

the Inner Agent for a considerable amount of time. Figure 5.18 shows the workflow

of the Architecture when interacting with the User.
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Figure 5.18: Interaction with Real Player

5.5.3 Interaction with Inner Agent

Once the Outer Agent has interacted with the Real user and trained itself with

the user performance, it interacts with the Inner Agent n number of times. The value

of n is set to 100. The Emotion data from the previous encounter is recorded and sent

to The Outer Agent. The Outer Agent returns a Game state. A matching cluster is

randomly chosen, and from that matching cluster, an embedding vector is selected.

The Game state, Emotion data, and the Embedding vector are sent to the CGAN

Generator as Conditional Input and simulated performance is generated. We extract

the Emotion data which will be used in the next iteration. Based on the performance,

whether the Inner Agent has won or lost, the Outer Agent is updated. Figure 5.19

shows the workflow where the Outer Agent trains with the Inner Agent.

After training with the Inner Agent, the Outer Agent will interact directly with

the User and this complete loop will continue with Evaluation in regular intervals to

check if the Outer Agent is successful in generating good Game states for the user.
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Figure 5.19: Interaction with Inner Agent

5.5.4 Evaluations

After every 3 interactions with the real user, we evaluate the Outer Agent to

find out if it has learned a good policy that generates personalized Game states for

the user. In the beginning, we handpick one Game state which is used to record

the user performance. After that, the Outer Agent chooses the next 10 Game states

based on the performance. After all the performances are recorded the average re-

ward is calculated and stored with the Interaction number with the real player. This

information is used in the Results.
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5.6 Experimentation and Results

In this section, each of the components, as well as the complete approach, is

tested and evaluated.

5.6.1 Inner Agent

5.6.1.1 Siamese Network

The Siamese Network was trained with both user-consistent and user-inconsistent

pairs. The network ran for 500 epochs and achieved a training accuracy of 75% and

validation accuracy of 76%. The training loss and validation loss is 0.4. The training

curves are shown in Figure 5.20.

Figure 5.20: Accuracy of Siamese Network
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These results show that the Siamese network is able to learn consistent embed-

ding of the distinguishing characteristics of existing user data with good precision.

5.6.1.2 Gaussian Mixture Model

Using the embedding space and the existing user data without labels, a Gaussian

Mixture Model with 4 clusters (chosen by the Silhouette score method) is trained and

then customized using new user feedback. The clusters are shown in Figure 5.21. The

Top left picture displays the embedding space before training and the remaining three

pictures show the embedding space after training for three different users. As it can

be seen to predict the user effectively, the Inner Agent found some hidden clusters

which are now being displayed. The clusters in the shade of red do not align with

user performance and the clusters in the shade of green align with user performance.

5.6.2 Inner Agent

To check the effectiveness of the Inner Agent in the architecture, we have to

find out how many interactions the Outer Agent requires to learn the largest three

performances of each agent. For this, we run two experiments. In the first experiment,

the Outer Agent interacts only with the Real player. The Inner Agent is not used.

In the second experiment, the Outer Agent interacts both with the real player and

the Inner Agent. In both experiments, the Outer Agent interacts with the player 100

times, and in the second experiment, the Outer Agent interacts with Inner Agent 100

times after each interaction with the real player. Once the experiments are run, we

find out how many interactions with the player are required to register the 3 largest

performances by the Outer Agent. Figure 5.22 shows the two charts. When the Inner

Agent is used, for many of the players, the Outer Agent required less interaction
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Figure 5.21: Soft Clusters in Embedding Space Before Training (Top Left) and After
Training for three different Users

with the player to achieve the 3 largest performance. In comparison, the experiment

without Inner Agent required more interactions. However, looking at the information

also suggest that the Outer Agent has not been trained sufficiently in both cases,

leading to instabilities in the top rewards and large differences in the points in time

when the highest utilities are achieved. Figure 5.23 shows the number of interactions

required by the Outer Agent to achieve the highest performance in both experiments.

As can be seen, when the Inner Agent is used, many of the players require fewer

interactions. However, again the Outer Agent does not seem to have fully converged,

making it harder to interpret the results and suggesting that some changes to the

Outer Agent might be required to stabilize its performance.
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Figure 5.22: Interactions required for Largest 3 rewards without Inner Agent (Left)
and With Inner Agent (Right)

Figure 5.23: Iterations required for the Largest reward with and without Inner Agent

5.6.3 Outer Agent

Once the Outer Agent is trained for the user, We use it to see if provides better

results. First, we hand-pick 5 Game states. The user plays each of them 10 times and

the performance is averaged. In the end, we get 5 averaged reward values. Next, we

choose the Outer Agent to create 5 Game states. The user plays each state 10 times

and the performance is averaged. we then compare the reward from the performance
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based on Outer Agent with the rewards for the hand-picked Game states. As we can

see in Figure 5.24, for most of the Users, the respective Outer Agents have learned

well and produced higher rewards than when using the hand-picked game states.

Figure 5.24: Average Performance of User in Fixed Game Levels vs Levels Generated
by the Outer Agent

5.7 Conclusion

This chapter introduced an extended system architecture that has learned to

adapt the domain Environment based on user preference, with minimal interaction.

An Outer Agent based on Reinforcement Learning is trained to manipulate and adapt

the Game environment based on user preference by providing Game states. Emotion
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data is also extracted from the user which helps in the training of the Outer Agent.

The Outer Agent interacts with the real user at intervals while getting trained on

simulated performance provided by the Inner Agent. The Inner Agent utilizes a

Siamese Network which develops Embedding Vectors. A Gaussian Mixture Model is

used to create soft clusters over the embedding vectors to capture the behavior of the

specific user. The Embedding vectors in addition to the Game state and Emotion

data are used as Conditional Input to train a CGAN that will generate simulated

performances. Experimentation has shown promising results where the Outer Agent

has successfully created Game states which improve user performance.
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CHAPTER 6

Conclusion

Personalization without the need for massive amounts of data from a specific

user is an important capability to build systems that can improve the performance of a

user by adapting the task environment. This dissertation introduces an architecture to

achieve this through the interaction of an Inner Agent which attempts to learn a model

of the user bootstrapped by other user’s data, and an Outer Agent, which attempts

to learn the environment adaptation based on the user feedback using Reinforcement

Learning.

The dissertation then used the Architecture in the context of various domain

problems and displayed its effectiveness in solving them. In Chapter 1, we introduce

the problem, the effect it has, and how the Architecture will be solving the problem.

In Chapter 2 we provide a summarised introduction to all the various Super-

vised, Unsupervised, and Reinforcement Learning tools used to create this Architec-

ture.

In Chapter 3 for proof of concept, we create the Architecture to work with

the E-learning domain. The task to solve is to understand the student’s learning

preferences and provide them with the correct course material version to improve

their learning. The architecture was successful in predicting the student’s learning

preferences and created an E-learning system to provide the students with correct

coursework based on FSLSM and Differentiated Pedagogy.

In Chapter 4, we work on creating an efficient and accurate Inner Agent. We

create a predictive model which is tasked to learn the user preference and display
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images that the user will like and avoid disliked images. To solve this problem, the

concept of collaborative filtering, Siamese Network, and Gaussian Mixture Models

are included. The Inner Agent learns to map the new users as a soft cluster that can

contain the preferences of multiple previous users and based on that information, it

generates images the user might like or dislike. The Inner Agent has been successful

in learning about individual users’ likenesses with minimal interaction.

Finally, in Chapter 5, the new Inner Agent is introduced in the Architecture

and it is tasked to train an Outer Agent which based on the player’s preference

generates interesting Game states. To solve this problem Facial Emotion Recognition

algorithm is used which generates Emotion data to train the Outer agent. The Outer

agent interacts with the real player and trains itself. After this, the inner Agent learns

about the real player and generates a behavior model mimicking the real player. This

behavior model is then used extensively to train the Outer Agent with intervals where

the Outer Agent interacts with the real player. The architecture effectively learns

about the player’s preferences and uses that knowledge to train the Outer Agent to

generate game levels specially created for the player.

Through the experiments in these domains, we have shown how effectively the

Architecture can learn and perform in various domains. This displays the power of

Reinforcement Learning, Conditional GANs, Gaussian Mixture Models, and Siamese

Networks when used in unison to learn to adapt the environment to user preference

and also to generate user behavior models.
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