University of Texas at Arlington MavMatrix

Civil Engineering Dissertations

Civil Engineering Department

2023

ARTIFICIAL INTELLIGENCE-BASED EVALUATION OF PIPELINE STRUCTURES USING MULTI-SENSOR ROBOTS

Mohammad Shaher MOH'D Rababeh

Follow this and additional works at: https://mavmatrix.uta.edu/civilengineering_dissertations

Part of the Civil Engineering Commons

Recommended Citation

Rababeh, Mohammad Shaher MOH'D, "ARTIFICIAL INTELLIGENCE-BASED EVALUATION OF PIPELINE STRUCTURES USING MULTI-SENSOR ROBOTS" (2023). *Civil Engineering Dissertations*. 356. https://mavmatrix.uta.edu/civilengineering_dissertations/356

This Dissertation is brought to you for free and open access by the Civil Engineering Department at MavMatrix. It has been accepted for inclusion in Civil Engineering Dissertations by an authorized administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

ARTIFICIAL INTELLIGENCE-BASED EVALUATION OF PIPELINE STRUCTURES USING MULTI-SENSOR ROBOTS

by

MOHAMMAD SHAHER RABABEH

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023

Acknowledgments

First and foremost, I would like to give my sincere gratitude and appreciation to my advisor and mentor, Dr. Ali Abolmaali. Thank you for always giving me the mentorship and motivation to make all this possible. I am most thankful to my co-advisor, Dr. Mohsen Shahandashti, for all the guidance and mentoring during my Ph.D. journey.

To my committee members, Professor Edmund Prater, Dr. Kyeong Rok Ryu, and Dr. Niloofar Parsaeifard, I appreciate your being on my committee and giving me guidance and feedback during this research.

Many thanks Trinity River Authority of Texas (TRA to Mr. Wes Pierce and Mr. Timothy Birdwell, for all the help and assistance they have provided to support this research. I would like also to thank the City of Mansfield, represented by Mr. Alex Whiteway for their help during this research.

To my parents, Professor Shaher Rababeh, my source of inspiration and guidance, and Nawal Othman, the most loving and supportive mother, thank you so very much for all the incomparable love and support you provided me during my Ph.D., Your unconditional care and encouragement have been the bedrock of this journey and my whole life. Without you, none of this would have been possible. I love you both and thank you for being with me on this journey.

To my sisters, Dr. Asma Rababeh and Dr. Serina Rababeh, and my brother Ameen Rababeh, I love you all so much, and thank you for the love and support you provided me during this time.

I would like to dedicate my dissertation to my Professor Shaher Rababeh and Nawal Othman.

Copyright © by Mohammad Shaher Rababeh 2023 All Rights Reserved

Abstract

ARTIFICIAL INTELLIGENCE-BASED EVALUATION OF PIPELINE STRUCTURES USING MULTI-SENSOR ROBOTS

Mohammad Shaher Rababeh, Ph.D. The University of Texas at Arlington, August 2023

Supervising Professor: Ali Abolmaali

All around the world, pipeline systems are safe, efficient, and cost-effective for transporting liquids such as stormwater and wastewater. However, different defects develop in pipeline structures with aging and use. Leaks and significant failures might create severe danger for the environment, and for humans in urban areas. This deterioration in pipelines happens under the influence of different factors. In general, observing and evaluating pipelines will allow us to understand its behavior under various conditions and how they are affected.

The most common way to assess and evaluate pipeline structures are inspections which can be performed utilizing different types of equipment and methods depending on the site condition and type of data desired or needed to be collected, major types of the inspections and its methods will be presented and discussed throughout this dissertation. The main multi sensor robotic boat was utilized in the inspections performed to collect the data set of this dissertation is the multi-sensor robotic boat designed and built by center of structural engineering simulation and pipeline inspection (CSER-PI) at the University of Texas at Arlington.

Several inspections were performed of sewer lines for the City of Mansfield and Trinity River authority the material of the inspected pipes were mainly reinforced concrete pipes (RCP), this collected data of approximately [7] miles formed the data set utilized for the research purpose of this dissertation.

One of the most significant problems in concrete pipes is corrosion due to the H_2S presence in the sewer pipe, corrosion in some of the cases such as the case of this dissertation can be the main factor causing the degradation of the pipe and pushing the pipe towards failure or the end of useful

service life. In this dissertation multiple types of models were constructed and utilized to analyze the data set and ultimately predict the corrosion rate in concrete pipe structures under various parameters.

Table of Contents

1	Intro	oduction	1
	1.1	Pipeline Inspection	1
	1.2	Problem Statement	2
	1.3	Research Objectives	2
	1.4	Research Scope and limitations	3
	1.5	Contributions of Dissertation	3
	1.6	Purpose of this Research	3
	1.7	Organization of this Dissertation	4
2	Back	kground	5
	2.1	Pipeline Structures	5
	2.2	Multi-Sensor Inspection	6
	2.3	Corrosion in Pipeline Structures	7
	2.4	Prediction Models	
3	Met	hodology	10
	3.1	Research Methodology	
	3.2	Research Goal and Objectives	
	3.3	Equipment	
	3.4	NASSCO Pipeline Assessment PACP, MACP, LACP	
4	Rest	ults of Sensor Robotic Inspections for City of Mansfield and Trinity River Aut	
			•
	4.1	City of Mansfield Project	26
	4.1.1		
	4.1.2 4.1.3		
	-		
	A 7	Trinity River Authorization	01
		Trinity River Authorization	
	4.2.1	Overview of The Inspected pipes	91
		Overview of The Inspected pipes Visual Observation	91 93
5	4.2.1 4.2.2 4.2.3	Overview of The Inspected pipes Visual Observation	91 93 103
5	4.2.1 4.2.2 4.2.3 Deve	Overview of The Inspected pipes Visual Observation MSI Results	91 93
5	4.2.1 4.2.2 4.2.3 Deve 123 5.1	Overview of The Inspected pipes Visual Observation MSI Results elopment of a Supervised Machine Learning Model based on Artificial Intelli Overview	91
5	4.2.1 4.2.2 4.2.3 <i>Deve</i> 123 5.1 5.2	Overview of The Inspected pipes Visual Observation MSI Results elopment of a Supervised Machine Learning Model based on Artificial Intelli Overview Descriptions of Variables	
5	4.2.1 4.2.2 4.2.3 Deve 123 5.1	Overview of The Inspected pipes Visual Observation MSI Results elopment of a Supervised Machine Learning Model based on Artificial Intelli Overview Descriptions of Variables Dependent Variable	

	5.4	Explanatory Data Analysis127
	5.5	Construction of Models
	5.5.1	Multiple linear regression
	5.5.2	Multiple linear regression with interactions132
	5.5.3	Polynomial regression with interactions133
	5.5.4	Random forest regression134
	5.5.5	Generalized boosted regression models134
	5.6	Evaluation and Selection of Models
	5.6.1	The coefficient of determination (R ²)135
	5.6.2	Adjusted coefficient of determination136
	5.6.3	Mean squared error (MSE) / root mean squared error (RMSE)
	5.6.4	Probability of observing data (p-value)
	5.7	Model selection
6	Guid	lelines
	6.1	Recommendations and Guidelines for Inspection Procedures and Methods141
	6.2	Recommendations and Guidelines for Procedure Obtained from Site Experience148
	6.3	Conclusion
7	Con	clusion
	7.1	Conclusion
	7.2	Future Work151
Re	eferenc	es 152

List of Figures

Figure 3-1 Overview of robotic pipeline inspection types	11
Figure 3-2 Crawler system utilizing CCTV and laser sensor.	13
Figure 3-3 The Counter and Counter stand mounted on truck bed	13
Figure 3-4 The crawler system	14
Figure 3-5 Multi Sensor robotic boat (MSI) designed and built by CSER/MSI	14
Figure 3-6 Multi Sensor robotic boat (MSI) second version for larger size pipes designed and	
built by CSER/MSI	
Figure 3-7 Multi Sensor robotic boat (MSI) third version for large size pipes designed and bui	
by CSER/MSI	15
Figure 3-8 Multi Sensor robotic boat (MSI) third version for smaller size pipes designed and	
built by CSER/MSI	
Figure 3-9 Multi Sensor robotic boat (MSI) design/build stages	
Figure 3-10 Multi Sensor robotic boat (MSI) design/build stages	
Figure 3-11 Multi Sensor robotic boat (MSI) design/build stages	
Figure 3-12 Multi Sensor robotic boat (MSI) design/build stages	
Figure 3-13 Multi Sensor robotic boat (MSI) design/build stages	
Figure 3-14 Sonar sensor	
Figure 3-15 LIDAR sensor	
Figure 3-16 CCTV	
Figure 3-17 Cable winch and counter stand being operated.	
Figure 3-18 MSA Tripod	
Figure 3-19 Various versions of the boat	
Figure 3-20 Deployment snapshoot	
Figure 3-21 Deployment snapshoot	
Figure 3-22 Deployment snapshoot	
Figure 3-23 List of structural code in PACP coding	
Figure 3-24 List of Operation and Maintenance codes used in PACP.	
Figure 4-1 Structural rating for each line	
Figure 4-2 Operational & maintenance rating for each line	
Figure 4-3 Average and minimum wall thickness of each line	
Figure 4-4 Debris Height Distribution for each line.	
Figure 4-5 Location of sanitary sewer pipelines	
Figure 4-6 Location of sanitary sewer pipelines	
Figure 4-7 NASSCO's PACP rating for five ft. pipe segments in Line 11064	
Figure 4-8 NASSCO's PACP rating for five ft. pipe segments in Line 11065	
Figure 4-9 NASSCO's PACP rating for every five ft. pipe segment in Line 11066	
Figure 4-10 NASSCO's PACP rating for every five ft. pipe segment in Line 11067	
Figure 4-11 NASSCO's PACP rating for every five ft. pipe segment in Line 11068	
Figure 4-12 NASSCO's PACP rating for every five ft. pipe segments in Line_11069	
Figure 4-13 NASSCO's PACP rating for every five ft pipe segments in Line_11070	
Figure 4-14 NASSCO's PACP rating for every five feet pipe segments in Line_12348	
Figure 4-15 NASSCO's PACP rating for every five feet pipe segments in Line_11071	
Figure 4-16 NASSCO's PACP rating for every five feet pipe segments in Line_11072	36

Figure 4-31NASSCO's PACP rating for every five feet pipe segments in UnknownPipe1 43 Figure 4-36 NASSCO's PACP rating for every five feet pipe segments in Line 14793 46 Figure 4-44 NASSCO's PACP rating for every five feet pipe segments in Line 11093 50 Figure 4-55 Loss of concrete and remaining wall thickness for line 11068 57 Figure 4-59 Loss of concrete and remaining wall thickness for line 11070 59

Figure 4-61 Loss of concrete and remaining wall thickness for line 12348	
Figure 4-62 Height of debris in line 12348	
Figure 4-63 Loss of concrete and remaining wall thickness for line 11071	
Figure 4-64 Height of debris in line 11071	
Figure 4-65 Loss of concrete and remaining wall thickness for line 11072	
Figure 4-66 Height of debris in line 11072	
Figure 4-67 Loss of concrete and remaining wall thickness for line 11073	63
Figure 4-68 Height of debris in line 11073	
Figure 4-69 Loss of concrete and remaining wall thickness for line 11074	64
Figure 4-70 Height of debris in line 11074	64
Figure 4-71 Loss of concrete and remaining wall thickness for line 11075	65
Figure 4-72 Height of debris in line 11075	
Figure 4-73 Loss of concrete and remaining wall thickness for line 11076	66
Figure 4-74 Height of debris in line 11076	
Figure 4-75 Slope deflection for line 15505 (flexible pipe)	
Figure 4-76 Height of debris in line 15505	67
Figure 4-77 Loss of concrete and remaining wall thickness for line 11189	
Figure 4-78 Height of debris in line 11189.	
Figure 4-79 Loss of concrete and remaining wall thickness for line 11077	
Figure 4-80 Height of debris in line 11077	
Figure 4-81 Loss of concrete and remaining wall thickness for line 12890	
Figure 4-82 Height of debris in line 12890	
Figure 4-83 Loss of concrete and remaining wall thickness for line 11078	
Figure 4-84 Height of debris in line 11078	
Figure 4-85 Loss of concrete and remaining wall thickness for line 11079	
Figure 4-86 Height of debris in line 11079	
Figure 4-87 Loss of concrete and remaining wall thickness for line 11080	
Figure 4-87 Loss of concrete and remaining wan the Riess for the 11080	
Figure 4-89 Loss of concrete and remaining wall thickness for line 11306	
Figure 4-90 Height of debris in line 11306	
Figure 4-90 fileight of debits in file 11500	
•	
Figure 4-92 Height of debris in line 11081	
Figure 4-93 Loss of concrete and remaining wall thickness for line 11082	
Figure 4-94 Height of debris in line 11082.	
Figure 4-95 Loss of concrete and remaining wall thickness for unknown Pipe 1	
Figure 4-96 Height of debris in unknown Pipe 1	
Figure 4-97 Loss of concrete and remaining wall thickness for line 11083	
Figure 4-98 Height of debris in line 11083	
Figure 4-99 Loss of concrete and remaining wall thickness for line 11084	
Figure 4-100 Height of debris in line 11084	
Figure 4-101 Loss of concrete and remaining wall thickness for line 11085	
Figure 4-102 Height of debris in line 11085	
Figure 4-103 Loss of concrete and remaining wall thickness for line 11086	
Figure 4-104 Height of debris in line 11086	81

Figure 4-105 Loss of concrete and remaining wall thickness for line 14793	01
Figure 4-105 Loss of concrete and remaining wan unckness for line 14793	
Figure 4-107 Loss of concrete and remaining wall thickness for line 11087	
Figure 4-108 Height of debris in line 11087	
Figure 4-109 Loss of concrete and remaining wall thickness for line 11088	
Figure 4-110 Height of debris in line 11088	
Figure 4-111 Loss of concrete and remaining wall thickness for line 11089	
Figure 4-112 Height of debris in line 11089	
Figure 4-113 Loss of concrete and remaining wall thickness for line 11090	
Figure 4-114 Height of debris in line 11090	
Figure 4-115 Loss of concrete and remaining wall thickness for line 11091	87
Figure 4-116 Height of debris in line 11091	
Figure 4-117 Loss of concrete and remaining wall thickness for line 12907	88
Figure 4-118 Height of debris in line 12907	88
Figure 4-119 Loss of concrete and remaining wall thickness for line 11092	89
Figure 4-120 Height of debris in line 11092	89
Figure 4-121 Loss of concrete and remaining wall thickness for line 11093	
Figure 4-122 Height of debris in line 11093	
Figure 4-123 Area map for Phase 1 of the TRA project	
Figure 4-124 Locations of sanitary sewer pipelines in Phase I	
Figure 4-125 NASSCO's PACP rating for every 5 ft. pipe segment in line 9502	
Figure 4-126 NASSCO's PACP rating for every 5 ft. pipe segment in line 9612	
Figure 4-127 NASSCO's PACP rating for every 5 ft. pipe segment in line 9503	
Figure 4-128 NASSCO's PACP rating for every 5 ft. pipe segment in line 9810	
Figure 4-129 NASSCO's PACP rating for every 5 ft. pipe segment in line 9506	
Figure 4-130 NASSCO's PACP rating for every 5 ft. pipe segment in line 9846	
Figure 4-131 NASSCO's PACP rating for every 5 ft. pipe segment in line 9507	
Figure 4-132 NASSCO's PACP rating for every 5 ft. pipe segment in line 9231	
Figure 4-133 NASSCO's PACP rating for every 5 ft. pipe segment in line 9509-9508	
Figure 4-134 NASSCO's PACP rating for every 5 ft. pipe segment in line 9260	
Figure 4-135 NASSCO's PACP rating for every 5 ft. pipe segment in line 9510	
Figure 4-136 NASSCO's PACP rating for every 5 ft. pipe segment in line 9295	
Figure 4-137 NASSCO's PACP rating for every 5 ft. pipe segment in line 9511	
Figure 4-138 NASSCO's PACP rating for every 5 ft. pipe segment in line 9334	
Figure 4-139 NASSCO's PACP rating for every 5 ft. pipe segment in line 955 ft.	
Figure 4-140 NASSCO's PACP rating for every 5 ft. pipe segment in line 9786	
Figure 4-141 NASSCO's PACP rating for every 5 ft. pipe segment in line 9799	
Figure 4-142 NASSCO's PACP rating for every 5 ft. pipe segment in line 9800	
Figure 4-142 NASSCO'S FACF fating for every 5 ft. pipe segment in fine 9800	
Figure 4-145 Example plot from post-processed MSI data for rigid pipe.	
Figure 4-144 Example plot from post-processed WS1 data for figure pipe	
Figure 4-146 Debris height and CSA blocked for line 9502	
Figure 4-147 Maximum corrosion and remaining wall thickness (%) for line 9612	
Figure 4-148 Debris height and CSA blocked for line 9612.	100

Figure 4-149 Maximum corrosion and remaining wall thickness (%) for line 9503	107
Figure 4-150 Debris height and CSA blocked for line 9503.	107
Figure 4-151 Maximum corrosion and remaining wall thickness (%) for line 9810	108
Figure 4-152 Debris height and CSA blocked for line 9810.	108
Figure 4-153 Maximum corrosion and remaining wall thickness (%) for line 9506	109
Figure 4-154 Debris height and CSA blocked for line 9506.	109
Figure 4-155 Maximum corrosion and remaining wall thickness (%) for line 9846	110
Figure 4-156 Debris height and CSA blocked for line 9846.	
Figure 4-157 Maximum corrosion and remaining wall thickness (%) for line 9507	111
Figure 4-158 Debris height and CSA blocked for line 9507.	111
Figure 4-159 Maximum corrosion and remaining wall thickness (%) for line 9231	112
Figure 4-160 Debris height and CSA blocked for line 9231.	112
Figure 4-161 Maximum corrosion and remaining wall thickness (%) for line 9509-9508	113
Figure 4-162 Debris height and CSA blocked for line 9509-9508	113
Figure 4-163 Maximum corrosion and remaining wall thickness (%) for line 9260	114
Figure 4-164 Debris height and CSA blocked for line 9260.	
Figure 4-165 Maximum corrosion and remaining wall thickness (%) for line 9510	115
Figure 4-166 Debris height and CSA blocked for line 9510.	
Figure 4-167 Mean and maximum corrosion for line 9295	116
Figure 4-168 Debris height and CSA blocked for line 9295.	116
Figure 4-169 Maximum corrosion and remaining wall thickness (%) for line 9511	117
Figure 4-170 Debris height and CSA blocked for line 9511.	117
Figure 4-171 Maximum corrosion and remaining wall thickness (%) for line 9334	118
Figure 4-172 Debris height and CSA blocked for line 9334.	118
Figure 4-173 Maximum corrosion and remaining wall thickness (%) for line 9512	119
Figure 4-174 Debris height and CSA blocked for line 9512.	119
Figure 4-175 Maximum corrosion and remaining wall thickness (%) for line 9786	120
Figure 4-176 Debris height and CSA blocked for line 9786.	120
Figure 4-177 Pipe deflection for line 9799	
Figure 4-178 Debris height and CSA blocked for line 9799.	121
Figure 4-179 Pipe deflection for line 9800	122
Figure 4-180 Debris height and CSA blocked for line 9800.	122
Figure 5-1 Flowchart of model development	123
Figure 5-2 Corrosion process in sewer lines (Wells et al., 2009)	125
Figure 5-3 Correlation heatmap standardized data	129
Figure 5-4 Box plots of variables	130
Figure 5-5 Multiple linear regression	131
Figure 5-6 Random Forest regression	137
Figure 5-7 Actual vs Predicted corrosion rate different models performed	138
Figure 5-8 Predicted Vs Actual Corrosion Rate for model 8	
Figure 5-9 Relative influence of independent variables, based on random forest regression	
	139
Figure 6-1 Confined space entry	
Figure 6-2 Multi gas detector	142

Figure 6-3 Air blower used prior to confined space entry	143
Figure 6-4 Example of an obstacle found in manholes	144
Figure 6-5 Parachutes	146

List of Tables

Table 4-1 Worst Structural Ratings Reported 26 Table 4.1 Worst Structural Ratings Reported 26
Table 4-2 Summary of lines inspected in Phase I of the TRA project. 92
Table 5-1 Diameters of Pipelines in Inches 124
Table 5-2 Variables Considered in the Model 127
Table 5-3 Statistical Summary for Averaged Data 128
Table 5-4 Models Summary-Standardized Data 140
Table 7-1 Corrosion rate Actual vs predicted. 152

1 Introduction

1.1 Pipeline Inspection

Approximately half of the investment in the United States infrastructure is made in sewer and water supply networks; in 2019, that amounted to more than \$3 billion (Shook et al.,1998). According to the Failure to Act report by ASCE in 2016, the deteriorating infrastructure will cost the U.S. economy \$238 billion by 2025, as the underground assets that were installed long ago have been weakened by time and are at risk of leaks, breaks, and consequential damage to third parties, thus increasing the risk of failure.

Pipeline inspections have been performed since the 1960s and are still considered the primary method for assessing the condition and determining the remaining service life of pipelines. When robots were introduced for performing the inspections, closed circuit television (CCTV) was used to record different types of robots carrying out inspections. Andrews et al. 1998 conducted a study that employed a combination of CCTV and sonar, wherein the sonar device captured information below the water and the CCTV captured information above the water. Since then, some of the disadvantages of both systems have been overcome and replaced with technology and artificial intelligence (AI), and robotic systems have been modified and improved for pipeline inspections. Among these improvements is the addition of sensors, which has enhanced and improved the data collection process, reduced the human error element, and resulted in better, more accurate pipeline inspections.

According to Tur et al. (2010), inspection robots for pipeline structures are complex systems that involve many aspects, from structure design and motion mechanism to sensing capabilities, communication, and energy management. Their study also espoused that two primary kinds of sensors are needed for in-pipe inspection devices: those related to navigation and those that detect problems inside the pipe. Roth et al. (1998) found that some directions were followed to increase the capabilities of existing pipe robots for inspection and repair. Ismail et al. (2013) supported the use of robots for pipeline inspections because of their ability to mitigate or possibly even remove humans from work that is performed in dangerous environments. The rapidity of technological advancements in the use of robots for inspecting pipeline structures was touted by Nayak et al.

(2014), who emphasized the importance and complexity of the design process. Factors such as mobility, size and shape, stability, and other parameters have to be considered so that the robots are able to enter pipes of sizes and diameter that may be inaccessible or difficult for humans to enter or navigate.

1.2 Problem Statement

This research focuses on the use of multi-sensor robotics and artificial intelligence to predict the main parameter that directly impacts the service life of pipeline structures. Human error was a major factor in earlier inspections that were performed by utilizing closed circuit television (CCTV), as the defects observed in the pipes were analyzed and coded based on the observer's judgment, guided by the National Association of Sewer Service Companies, or NASSCO. The addition of multi-sensors such as sonar and lidar enabled the detection of corrosion in ductile pipes and deformation in brittle pipes, structural and operational defects, the height of debris, etc. and indicated that the parameters impacting the pipeline's service life are predictable, using artificial intelligence. According to Tur et al. (2010), a significant drawback of ultrasonic devices is their inability to simultaneously inspect both the flooded and dry parts of a pipe because the optimal operating frequencies in water and air are different. This research seeks to utilize MSI robots to perform inspections on various pipe conditions, employing artificial intelligence algorithms that use the collected dataset to analyze the pipeline and then predict the main parameter that significantly impacts its service life.

1.3 Research Objectives

This research presents the use of robots equipped with multi-sensors and integrated with artificial intelligence to predict the remaining service life of pipeline structures, using the corrosion of pipe wall thickness as the main parameter. The dataset was obtained from an MSI inspection of approximately seven miles of pipelines in two locations, the city of Mansfield, Texas, and the Trinity River Authority. Artificial intelligence algorithms were designed to analyze and evaluate the data and to identify the parameters and their impact on the service life of the pipelines, considering the corrosion of concrete in pipeline thickness. The long-term research goal is to

predict the degradation of the pipes, using the main parameters directly impacting the pipelines' remaining service life.

1.4 Research Scope and limitations

This dataset for this research is based on the data collected by the UTA-CSER-PI multi-sensor robotic boat throughout inspections performed for two projects: one for the City of Mansfield and one for the Trinity River Authority (TRA). Samples were collected from reinforced concrete pipes (RCPs) with diameters of 30, 36, 39, 42, 48, and 54 inches and different lengths that were 9, 29, 31, 32, 33, 51, 52 years old.

1.5 Contributions of Dissertation

Contribution 1: Development of target specific MSI robots capable of performing pipeline inspections on pipes made of various materials and existing under varying conditions.

Contribution 2: Employment of a dataset and artificial intelligence algorithms to analyze and evaluate the pipelines.

Contribution 3: Determination of the most critical parameter for predicting a pipeline's service life and conduction of a sensitivity analysis to compare the performance of the pipe under various parameters.

Contribution 4: Analysis and prediction of the service life of each 5 ft. segment of corroded reinforced concrete pipe to facilitate the replacement or point repair for each segment, which will significantly reduce the cost and time of the repair.

1.6 Purpose of this Research

The purpose of this research was to develop a unique assessment tool for predicting the remaining service life of pipelines under various conditions. This was accomplished by collecting extensive sonar and lidar data on the integrity of the pipeline structure for use in developing an AI model to identify critical paraments and depict the degradation of the parameter impacting the service life. The data was collected from two projects performed by UTA CSER-PI: the Trinity River Authority and the City of Mansfield.

or TRA, and the City of Mansfield. Data from these two projects formed the dataset utilized in the analysis section of this research.

1.7 Organization of this Dissertation

This dissertation follows a seven-chapter format: Introduction, Background, Methodology, Inspection results, Results, Guidelines for Pipeline Inspections, and Conclusion. Chapter 2 discusses the literature review and includes a detailed background of the study: pipeline inspections, challenges in pipeline inspections, sensors utilized, etc. Chapter 3 describes the methodology of the research, including the specific objectives, hypothesis, and approach. Chapter 4 presents the inspection results in detail. Chapter 5 presents the Artificial Intelligence models development and the best model selection and discusses the results of the analysis, and Chapter 6 discusses the prescribed steps and processes for conducting inspections. Chapter 7 provides a discussion of the conclusions drawn from the study's findings, and recommendations for potential future research.

2 Background

2.1 Pipeline Structures

Sewer systems are comprised of pipelines and are considered by many to be one of the most critical infrastructure systems. Unfortunately, in the United States, sewer networks are deteriorating due to age, and many have reached the end of their service life. Tafuri et al. (2002) stated that "The structural integrity of these sewer pipelines is decreasing due to corrosion and deterioration," and it is apparent that an extensive and proactive assessment of the pipeline's condition is vital to ensuring its remaining service life. Interpreting the data efficiently is essential, including detecting the pipe defects and evaluating and assessing the level of deterioration to decide where maintenance and/or repair is needed (EPA 2006). This task is performed by the Environmental Protection Agency (EPA), as they assess the condition of pipelines to understand and perform maintenance that is needed to enhance their operation Lichte. (2006).

Pipeline inspections have been conducted since the 1960s, and later, CCTV recordings made it possible to observe different types of robots inspecting pipes. A study by the Trenchless Technology Network (TNN) in 2002 introduced several alternative technologies such as sonar, lidar, lasers, etc. that provide an extensive array of information. It is important to note that CCTV footage is most commonly used to classify the current condition of the pipe and note any defects Salihu et al. (2023), and those viewing or operating the CCTV footage should be trained and certified in identifying and classifying defects according to the pipeline grading system. According to Guo et al. (2009), the detection of defects depends on experience, working conditions, and other limitations. Zuo et al. (2019) mentioned that the lifespan of pipes can be increased with adequate maintenance and rehab programs.

According to Iurchenko et al. (2016), effective sewer maintenance must be both environmentally sound and sustainable, as the failure of pipeline structures in urban regions presents a range of environmental risks that affect the quality of the water, soil, and air due to the types of gases in sewers caused by the biodegrading of waste in the pipelines Salihu et al. (2023). Held et al. (2006) concluded that pipeline failures are due to the infiltration of wastewater in the ground. Alzraiee et al. (2015) presented those environmental factors, including groundwater, waste, and soil type, effect of sewers and stormwater pipes deterioration. Salman et al. (2012) espoused that the

complexity of sewer rehabilitation in urban cities is due to the high number of sewer pipelines and limited resources. Salihu et al. (2023) presented that age, material, length, and size, along with other parameters, affect the deterioration of pipelines.

Held et al. (2006) observed that sewer pipeline failure leads to the infiltration of wastewater into the ground, eventually reaching and contaminating the groundwater, which is intended for drinking purposes. Zuo et al. (2019) emphasized that the longevity of pipes can be extended through effective maintenance and rehabilitation programs. To assess the condition of pipes, inspections are conducted using the widely used Closed-Circuit Television (CCTV) method. This method involves the use of cameras to capture continuous footage of the internal surface of sewer pipelines above the flow line Kaddoura. (2015). Specialists interpret the videos and footage, drawing conclusions about the sewer's condition. Each pipeline is evaluated individually and rated based on the frequency and severity of defects, typically using a five-grade scale Sarshar et al. (2009). As noted by Salman and Salem (2012), rehabilitating sewer systems in urban areas poses challenges due to the high number of pipelines and limited resources. Therefore, it is crucial to have an efficient and accurate tool for managing pipes based on their condition.

2.2 Multi-Sensor Inspection

The primary sensors used in pipeline inspections, lidar, sonar, and CCTV, each have advantages and disadvantages. Light detection and ranging, or lidar, allows for an accurate and precise location of an object's distance. There are several sensors utilized in pipeline inspection. The main sensors are Lidar, Sonar, and CCTV. Each of these sensors have advantages and disadvantages. Light detection and ranging, or Lidar allows for accurate and precise location of an object's distance. There are advantages and disadvantages in using Lidar. Lidar data can be collected quickly with high accuracy rates and data can be utilized during the day in addition to night while not affected by extreme weather conditions, such as sunlight. However, there are disadvantages to Lidar. Lidar consists of large datasets making it difficult to interpret, and also the laser beam may impact the eye in situations where the beam is powerful.

Second, sonar is a system utilized for detection of objects under water and measuring the water's depth by emitting sound pulses. The main advantage for sonar is that it is utilized to find and identify objects under water in an efficient manner. There are also disadvantages to sonar which is

that the sonar relies on the sound emitted by the target, which may cause noise and/or other interruptions. With closed-circuit television, or CCTV, a visual is provided to be able to view the footage and any abnormalities present in the pipeline. The downside to CCTV is that it may be costly, which creates a reluctancy. A study by Guo et al. (2008) mentioned that CCTV has become the most widespread technology used for pipeline inspection and that the footage provided by the CCTV during these types of inspections gives information of the condition of the pipes which are then utilized for analysis. Although, as mentioned in the study by Guo et al (2008), CCTV the footage recorded during inspection are viewed by human operations for detection and classification.

Guo et al. (2008) presents that automated pipeline defect classification has been limited by data techniques, image analysis and pattern recognition. The research study also mentioned the importance of pipe condition assessment so that various defects can be detected by the operator. With the use of advanced technologies and computer vision, the interpretation of inspection data will allow a guidance and selection for the pipeline inspection Guo et al. (2008).

2.3 Corrosion in Pipeline Structures

Historically, reactive management has been used to mitigate the deterioration of sewer pipes. Corrosion of concrete pipes is due to the acid and bacteria on the crown of the pipes Mansfield et al. (2023). Studies and extensive inspection from the 1980s demonstrated that the extent of the corrosion resulted in the reinforced bars to also be corroded, with a cost estimate from \$100M to \$1B. Several millions of dollars are being spent on the repair and maintenance of corroded pipeline structures Parande et al. (2005). Two major causes of corrosion in pipes include: conventional acid attack caused by low pH discharged into the sewer system and the hydrogen sulfide corrosion attack. The reason behind deterioration is the H₂S in the concrete pipes, which also attacks the concrete floor. Parande et al. (2005) mentions that "H₂S is the most corrosive agents that leads to the rapid deterioration of concrete pipelines in sewers." The research study also states that at normal sewage pH levels, one-quarter to one-third of dissolved sulfide exists as molecular H₂S, released to the air. Flat sewer slopes producing oxygen-deficient; steep slopes and high flow velocities are some of the factors affecting increased sulfide in the sewer. It is important to note that H₂S is released as a gas and will spread in the air Parande et al. (2005).

Throughout their service life, buried concrete sewer pipes face various structural and environmental stressors. Research conducted in the past has highlighted hydrogen sulfide (H₂S) corrosion as a major contributor to the degradation of these concrete pipes Alexander and Fourie (2011). When H₂S is present in wastewater and undergoes a chemical reaction with oxygen, O_2 , it generates a highly corrosive substance called sulfuric acid, H₂SO₄. This, in turn accelerates the deterioration process of the concrete sewer pipes, leading to swift structural decay Zamanian et al. (2023).

2.4 Prediction Models

AI-based models utilize an unsupervised, multilinear regression technique in combination with Weibull analysis. The Weibull deterioration curve analysis reveals that concrete pipes have an estimated useful service life of 79 years, while vitrified clay pipes have a projected service life of 48 years Salihu et al. (2023). Studies have shown that regression models present R-squared values of 71.18% for vitrified clay sewer pipes, 71.47% for concrete sewer pipes, 81.51% for ductile iron sewer pipes, and 73.69% for concrete stormwater pipes. Sensitivity analyses have been conducted under different scenarios to illustrate the influence of various factors on sewer pipes. Among these factors, pipe diameter exerts a significant impact on sewer pipe deterioration, while it has minimal effect on stormwater pipes.

Several models utilizing artificial intelligence have been used for the prediction of the service life. In crafting a sustainable development plan under limited capital resources for concrete sewer maintenance, it is crucial to allocate funding and efforts effectively, guided by a comprehensive understanding of sewer condition Cheung et al. (1996). Accurate prediction of the life expectancy of existing concrete sewers is of paramount importance for infrastructure managers to prioritize evaluation efforts and funding allocations Mahmoodian et al. (2012).

To achieve precise predictions of a concrete sewer pipe's lifespan, it is essential to consider uncertainties Ahammed et al. (1997). Therefore, rather than relying solely on deterministic models, the introduction and development of probabilistic models and risk assessments are warranted. These approaches can account for various factors that may affect the deterioration process, leading

to more reliable and informed decision-making in managing concrete sewer infrastructure (Kienow et al. 2004).

3 Methodology

3.1 Research Methodology

The methodology of this research was conceived by striving to answer the following questions:

- What is a robotic pipeline inspection?
- Why is it important?
- How is it performed?

First and foremost, a robotic pipeline inspection utilizes robots (crawlers or boats) to investigate a targeted pipeline and collect data via CCTV, sonar, and lidar that can be used to evaluate and analyze its condition by considering several parameters, such as visual observation, height of the debris, and corrosion/deformation. In addition to the parameters listed, the date of installation; diameter, slope, and length of the pipe are also considered. Three techniques are employed: CCTV, sonar, and lidar. CCTV data is utilized to determine structural, operational, and maintenance defects, using the National Association of Sewer Service Companies (NASSCO) PACP grading criteria. Sonar data reveals the height of debris accumulated in the pipe or the existence of cracks, and lidar data is used to indicate the deformation and/or corrosion on the pipe wall. These combined data ultimately reveal the most significant parameter, predict how its development will directly impact the remaining service life of the pipeline, and provide an opportunity to repair and/or replace the severely defective pipeline segments before they fail. Robotic pipeline inspections depend on several conditions: flow inside the pipe, type of pipe, size/diameter of the line, and the number of axis points (manholes). Figure 3-1 shows an overview of a robotic pipeline inspection.

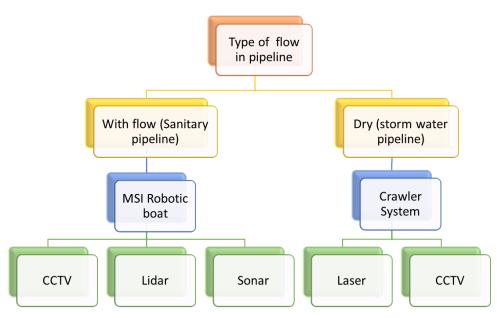


Figure 3-1 Overview of robotic pipeline inspection types

The crawler system and the MSI robotic boat system are implemented for pipeline inspections. For the crawler system, pipeline inspections are usually performed in line segments, with each line representing the manhole-to-manhole segment of the pipe. The inspections are performed from the upstream manhole to the downstream manhole, unless limitations due to site conditions, e.g., limited access and/or abnormalities in the flow conditions prevent it. The following steps are taken to initiate the crawler system. The crawler is connected to the inspector general and lowered into the upstream manhole, where its driven remotely to the downstream manhole, and is pulled up. MSI robotic boat pipeline inspections are also usually performed in line segments, and each line represents the manhole-to-manhole segment of the pipe. Most inspections are performed from the upstream manhole to the downstream manhole unless there are limitations due to site conditions, e.g., limited access and/or abnormalities in the flow conditions. The following steps are essential when utilizing the MSI robotic boat system. First, a parachute is connected to the boat, and the boat is connected to a winch. The parachute follows the boat to keep the boat under tension from both directions, which helps keep it in the center of the pipe and enhances the accuracy of the data collection process. The boat is dependent on the flow to the downstream manhole, where the parachute is pulled up at the end of the observation.

Several of the challenges inherent in pipeline inspections conducted by crawlers are limited access and complex curves in the pipes. Access, which is limited by the crawlers' inability to travel more than 1,000 ft. in one direction, can be remedied by providing more access points (manholes) and using each for two runs (in opposite directions). Complex curves in the pipes result in high friction on the winch cable driving the crawler, roller and tiger tails can be used to overcome the increased friction of the curve and prevent the cable from tearing or fracturing. Smaller wheels can also replace the original larger wheels of the crawler for pipelines with a diameter of less than 18 inches to enable greater maneuverability.

The MSI robotic boat has its own set of challenges, the most significant of which is the high risk of contaminants, such as hydrogen sulfide (H_2S). This hazard can be mitigated by utilizing a gas detector to take gas concentration readings at the bottom, middle, and top of the confined space inside the manhole to determine the amount of air blowing required to make it safe. For pipelines with a diameter larger than 60 inches, a boat with a larger-than-standard parachute is required to add stability and help it stay in the center while traveling. For pipelines with flow depths less than six inches, adjustable wheels must be installed on the lower part of the boat to protect the sonar sensor from dragging along the pipe and render more accurate results underwater.

3.2 Research Goal and Objectives

The goal of this research was to predict the rate of corrosion in concrete pipeline structures which would directly affect the remaining service life of pipelines by employing a multi-sensor robot integrated with artificial intelligence.

3.3 Equipment

The various types of equipment were used for this research study are shown in the figures below.

Figure 3-2 Crawler system utilizing CCTV and laser sensor.

Figure 3-3 The Counter and Counter stand mounted on truck bed.

Figure 3-3 represent the counter stand mounted on the truck and MSI winch cable.

Figure 3-4 The crawler system

Figure 3-4 illustrates the crawler, inspector general, and cable winch.

Figure 3-5 Multi Sensor robotic boat (MSI) designed and built by CSER/MSI

Figure 3-6 Multi Sensor robotic boat (MSI) second version for larger size pipes designed and built by CSER/MSI

Figure 3-7 Multi Sensor robotic boat (MSI) third version for large size pipes designed and built by CSER/MSI

Figure 3-8 Multi Sensor robotic boat (MSI) third version for smaller size pipes designed and built by CSER/MSI

Figure 3-5, 3-6, 3-7, 3-8 represents the different versions and types MSI Robotic Boat designed and built by CSER/MSI, that are used for different pipe types and sizes.

Figure 3-9 Multi Sensor robotic boat (MSI) design/build stages

Figure 3-10 Multi Sensor robotic boat (MSI) design/build stages

Figure 3-11 Multi Sensor robotic boat (MSI) design/build stages

Figures 3-6, 3-7, and 3-8 present the boat's structure. Figures 3-10 and 3-11 show two metal plates, with a sealed main cabin on the top plate. The boat has front and rear metal-welded guards, as

shown in Figure 3-9, that are used to protect the CCTV and front lights, as well as the connection cables going into the main computer cabin. The heavy-duty front and back eyebolts connect the boat to the cable winch and parachute.

Figure 3-12 Multi Sensor robotic boat (MSI) design/build stages

Figure 3-13 Multi Sensor robotic boat (MSI) design/build stages

Figure 3-10 shows the sonar holder and protector at the bottom plate. Sonar and lidar sensors and HD CCTV were added to the MSI robotic boat, as illustrated in Figures 3-11 to 3-13.

Figure 3-14 Sonar sensor

Figure 3-15 LIDAR sensor

Figure 3-16 CCTV

Next, the cable winch and counter stand, also designed by CSER/MSI, as shown in Figure 3-14.

Figure 3-17 Cable winch and counter stand being operated.

The cable winch and counter stand were operated by pulling the winch rope through the counter stand and then connecting it to the boat. The counter recorded the length of the cable pulled by the boat inside the pipe to measure the number of feet from the boat to the upstream manhole. Other equipment utilized for the pipeline inspection included gas detectors that took gas concentration readings inside the manhole, a drift parachute that kept the boat stable (under tension) and created a platform of flow that enabled it to stay in the center of the pipe, generators that provided electricity for the MSI system, MSA Tri-pods, as shown in Figure 3-15 provided access to the manholes, air blowers that decreased the concentration of toxic gases in the confined spaces below the manholes, tiger tails, and manhole rollers, a flatbed truck for loading the equipment, a winch that was operated from on- board, and lastly PPE gear.

Figure 3-18 MSA Tripod

Throughout this research, several different versions of the boat were built. These are shown in Figure 3-16, with various sensors utilized throughout the process.

Figure 3-19 Various versions of the boat

Figure 3-20 Deployment snapshoot

Figure 3-21 Deployment snapshoot

Figure 3-22 Deployment snapshoot

Figures 3-17, 3-18, and 3-19 represent the MSI Robotic Boat's on-site deployment process and steps.

3.4 NASSCO Pipeline Assessment PACP, MACP, LACP

The sewer pipeline systems were visually inspected throughout this research by coding the pipes according to the Pipeline Assessment and Certification Program (PACP). The coding system utilizes CCTV videos of the typical line (manhole-to-manhole), and each pipeline has a table, scoring, codes, and pictures corresponding to structural and operation and maintenance (O&M) defects. Each defect is rated from 1 to 5, with five being the most significant and 1 being minor, and the defect code and other specific information, such as percentages or clock positions, correlate with a particular condition grade from a table in the PACP manual. The grade is assigned by PACP, not the operator, either manually, by looking it up in the PACP manual or automatically through NASSCO-certified software, and it is used to calculate a score for the entire segment by adding together all of the scores throughout the line, from manhole-to-manhole. Segment scores can also be used to develop consistent "likelihood of failure" (LoF) values, which can be used with "consequence of failure" (CoF) values to create risk assessments within an overall asset management program. For example, if a pipe exhibits structural defects such as cracks, fractures, or broken sections, the defect is assigned a condition grade based on what is observed and its severity level. A single crack, defined as a broken line that is not visibly open and runs lengthwise down the pipe, is coded as a crack longitudinal (CL), which is associated with a grade of 2. If the crack is open, it is defined as a fracture longitudinal (FL), and the condition grade increases to 3. If the pipe pieces become displaced, it is coded as broken (B), and the grade increases to a 4; however, if soil or a void is visible behind the broken pipe wall (BSV or BVV), it is a grade 5. A complete segment inspection might also include several structural and O&M defects.

C CRACK 4-3 CL Longitudinal CC Circumferential CM Multiple CS Spiral CH Hinge (2, 3, 4)	F FRACTURE 4-9 FL Longitudinal FC Circumferential FM Multiple FS Spiral FH Hinge (2, 3, 4)	B BROKEN 4-17 BSV Soil Visible BVV Void Visible	H HOLE 4-21 HSV Soil Visible HVV Void Visible	D DEFORMED 4-25 (Rigid) DR Deformed Rigid No modifiers used.	D DEFORMED 4-25 (Flexible) DFBR Bulging Round DFBI Bulging Inv.Curv. DFC Creasing DFE Elliptical	D DEFORMED 4-25 (Brick) DTBR Bulging Round DTBI Bulging Inv.Curv.
X COLLAPSE 4-37 X Collapse No descriptors and no modifiers used.	J JOINT 4-43 JOS Offset Small JOM Offset Medium JOL Offset Large	J JOINT 4-43 JOSD Offset Small Defect JOMD Offset Medium Defect JOLD Offset Large Defect	J JOINT 4-43 JSS Separation Small JSM Separation Med. JSL Separation Large	J JOINT 4-43 JAS Angular Small JAM Angular Medium JAL Angular Large	S SURFACE 4-51 DAMAGE SRI Roughness Increased SAV Aggregate Visible SAP Aggregate Projecting SAM Aggregate Missing	S SURFACE 4-51 DAMAGE SRV Reinforcement Visible SRP Reinforcemt. Corroded SRC Reinforcemt. Corroded SMW Missing Wall
S SURFACE 4-51 DAMAGE	LF LINING 4-67 FEATURES	LF LINING 4-67 FEATURES	LF LINING 4-67 FEATURES	WF WELD 4-85 FAILURE	RP POINT REPAIR 4-89 RPL Liner RPLD Liner Defective	RP POINT REPAIR 4-89 RPR Replacement RPRD Replimt. Defective
SSS Surface Spalling SSC Surface Spalling Coating SCP Chemical Attack SZ Other	LFAC Abdrrd Connection LFAS Annular Space LFB Blistered Lining LFCS Service Cut Shifted	LFD Detached LFDC Discoloration LFDE Defective End LFDL Delamination	LFOC Overcut Service LFRS Resin Slug LFUC Undercut Service LFW Wrinkled LFZ Other	WFC Circumferential WFL Longitudinal WFM Multiple WFS Spiral WFZ Other	RPD Patch RPP Patch RPPD Patch Defective	RPZ Other RPZD Other Defective

Figure 3-23 List of structural code in PACP coding

D DEPOSITS 5-3 (Attached) DAE Encrustation DAGS Grease DAR Ragging DAZ Other	D DEPOSITS 5-4 (Settled) DSF Fine DSGV Gravel DSC Hard/Compact DSZ Other	D DEPOSITS 5-4 (Ingress) DNF Fine (silt/sand) DNGV Gravel DNZ Other	R ROOTS 5-11 (Fine) RFB Barrel RFL Lateral RFC Connection RFJ Joint	R ROOTS 5-11 (Medium) RMB Barrel RML Lateral RMC Connection RMJ Joint	R ROOTS 5-11 (Ball) RBB Barrel RBL Lateral RBC Connection RBJ Joint	R ROOTS 5-11 (Tap) RTB Barrel RTL Lateral RTC Connection RTJ Joint
I INFILTRATION 5-19 IS Stain ISB Barrel ISC Connection ISJ Joint ISL Lateral	I INFILTRATION 5-19 W Weeper WB Barrel WC Connection WJ Joint WL Lateral	I INFILTRATION 5-19 ID Dripper IDB Barrel IDC Connection IDJ Joint IDL Lateral	I INFILTRATION 5-19 IR Runner IRB Barrel IRC Connection IRJ Joint IRL Lateral	I INFILTRATION 5-19 IG Gusher IGB Barrel IGC Connection IGJ Joint IGL Lateral	OB OBSTACLES 5-31 OBSTRUCTIONS OBB Brick or Masonry OBC Object Through Connection OBI Object Intruding Through Wall	OB OBSTACLES 5-31 OBSTRUCTIONS OBJ Object in Joint OBN Pipe Material in Invert OBN Construction Debris OBP External Pipe Cable
OB OBSTACLES 5-31 OBSTRUCTIONS OBR Rocks OBS Built In Structure OBZ Other	V VERMIN 5-45 VR Rat VC Cockroach VZ Other	G GROUT TEST 5-49 & SEAL GTP Grout Test Passed GTPJ Joint GTPL Lateral GTF Grout Test Failed GTFJ Joint GTFL Lateral	G GROUT TEST 5-49 & SEAL GTU Grout Test Unable GTUJ Joint GTUL Lateral GRT Grout Test Location			

Figure 3-24 List of Operation and Maintenance codes used in PACP.

Figures 3-20 and 3-21 illustrate the lists of the structural code in the PACP code and the operation and maintenance codes used in PACP, respectively.

4 Results of Sensor Robotic Inspections for City of Mansfield and Trinity River Authority Projects

4.1 City of Mansfield Project

An advanced robotic multi-sensor inspection device equipped with sonar, lidar, and video capabilities was used to assess the condition of more than 3 miles (16,167 feet) of a concrete sanitary sewer pipeline in Mansfield, Texas. The data provided by the CCTV was analyzed, and the pipes were assessed and graded according to the NASSCO PACP rating system of 1 through 5, with 1 indicating excellent condition and 5 indicating a severely compromised state that portends failure. Three sections were assigned a rating of 4 due to missing aggregate and visible reinforcement, and one section was assigned a rating of 5 due to corrosion of the reinforcement. The O & M rating of 5 was due to very high efflorescence and indicated a need for immediate attention. The CCTV showed several locations with rough pipe surfaces, grease and other deposits, visible aggregates, tap factory activity, etc. The locations of the most critical sections (those with a structural PACP rating of 4 and above) are presented in Table 4-1. The efflorescence in each line that resulted in the O&M rating is tabulated in the PACP table. The graph presented in Figure 4.1 and 4.2 summarizes the PACP ratings by showing the percentage of both structural and O&M rating systems for each pipeline.

SN	Distance from starting manhole (ft.)	Structural Rating	O&M Rating	Remarks			
	Line_11064						
1	45 to 50	5	-	Corroded Reinforcement found			
2	55 to 60	4	-	Missing Aggregate			
	Line_11086						
1	275 to 280	4	-	Reinforcement Visible			
Line_11089							
1	80 to 85	4	-	Reinforcement Visible			

Table 4-1	Worst	Structural	Ratings	Reported
-----------	-------	------------	---------	----------

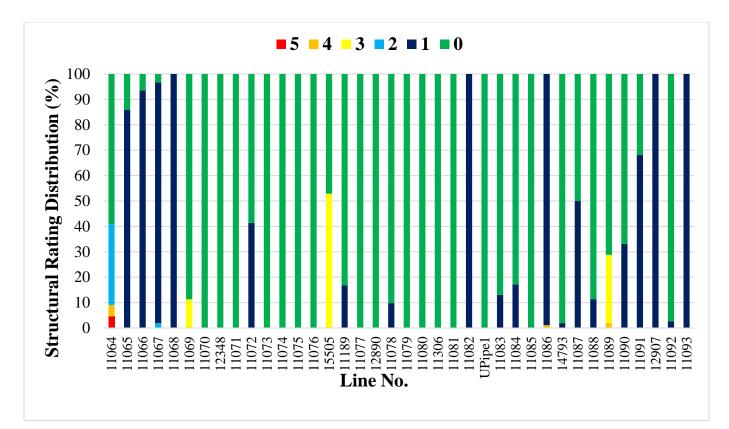


Figure 4-1 Structural rating for each line

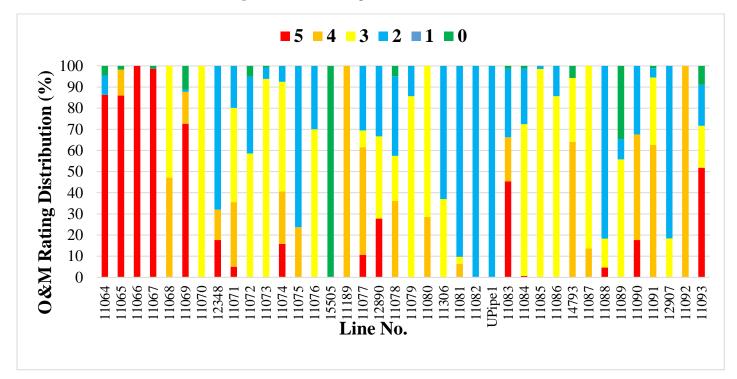


Figure 4-2 Operational & maintenance rating for each line

A. 2D lidar revealed that although there was almost an inch of corrosion in some areas, which might expose the rebars in the future, none of the pipes were corroded to the extent that they need immediate attention. The CCTV, however, revealed projecting aggregates in some sections that need be addressed soon. The graph below shows the average and minimum wall thickness of each line.

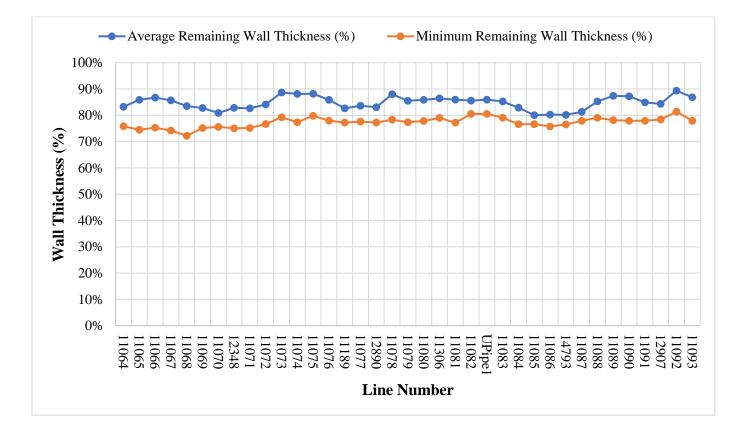


Figure 4-3 Average and minimum wall thickness of each line

B. Scanning sonar was used to map the underwater surface of the pipes and locate and measure any underwater debris, The debris height was used to calculate the percentage of pipe cross sections that were blocked, which causes decreased hydraulic efficiency. Of the 38 lines inspected, 35 were found to have minor problems with accumulated debris less than 5 inches high. Lines 11083 and 11084 and a few other sections had debris heights of more than 5 inches and less than 7 inches. The most critical sections, with consistently higher debris height and very

high-water levels, were found in line 15505, the only flexible pipe encountered. The debris height gradually increased from the upstream manhole and decreased after approximately 80 feet. The graph below shows the average and maximum debris height for each line.

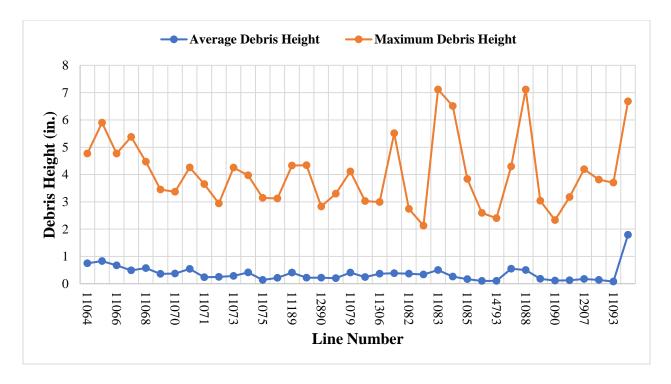


Figure 4-4 Debris Height Distribution for each line.

4.1.1 Overview of Inspected Pipelines

This section presents the findings of inspections performed on 38 sewer pipelines, totaling 16,167 ft., in the city of Mansfield, Texas. Figure 4-5 shows an area map of the pipelines, and Figure 4-6 shows the locations of the segments of the sanitary sewer pipelines that were inspected. Table 1 in Appendix A provides a summary of all the lines inspected during this project.

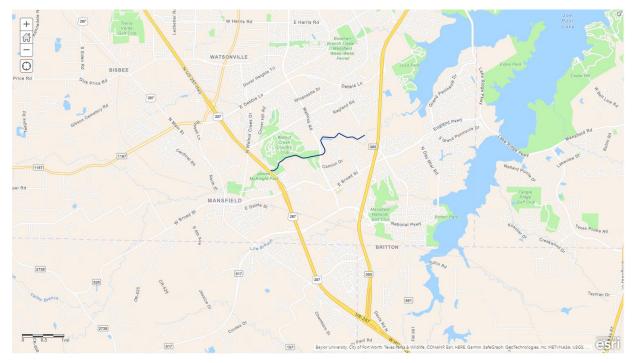


Figure 4-5 Location of sanitary sewer pipelines

Figure 4-6 Location of sanitary sewer pipelines

4.1.2 Visual Observation

The CCTV data indicated minor structural and major operational and maintenance defects in the sewer lines. Several sections of the lines were revealed to have a rough surface, almost all of them have high efflorescence, and some have projecting or missing aggregates. Although most of the defects are not critical at this point, they need to be monitored, repaired, or replaced in a timely

manner to ensure that the serviceability and structural integrity of the sewer pipeline meet the loading and environmental requirements.

The CCTV data was evaluated based on the NASSCO PACP manual, and the structural and maintenance defects in the lines were rated from 0 to 5, with 0 being excellent and 5 being the worst. Details of the inspection are presented for each line in the PACP format in Table 4-7. The distance was calculated from the upstream manhole to the downstream manhole, and the defect codes and dimensions complied with NASSCO's PACP standard. In addition to the defect table, the quick rating, overall rating, and rating index were calculated for both structural and O&M defects and are presented for each line. The following tables are a sample of the PACP grading for the first five of the 38 lines inspected in Mansfield.

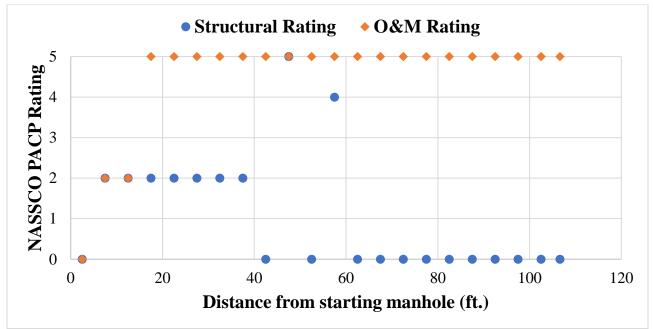


Figure 4-7 NASSCO's PACP rating for five ft. pipe segments in Line 11064

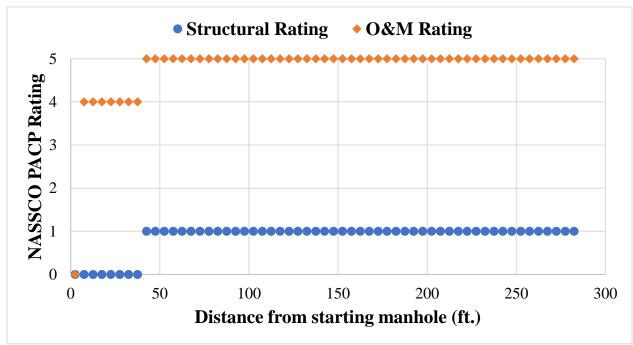


Figure 4-8 NASSCO's PACP rating for five ft. pipe segments in Line 11065

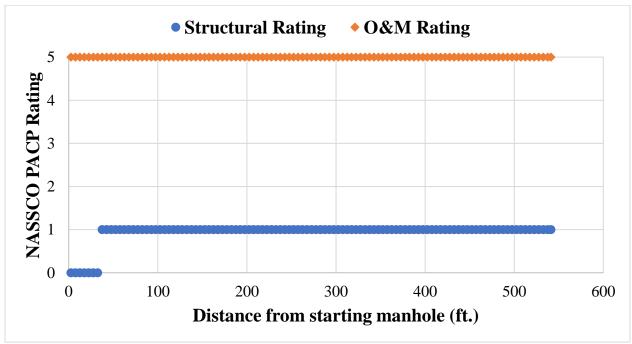


Figure 4-9 NASSCO's PACP rating for every five ft. pipe segment in Line 11066

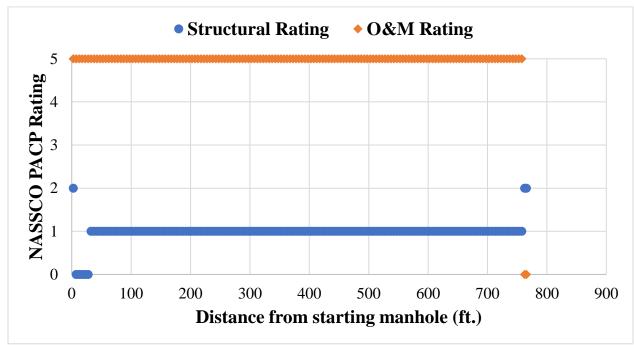


Figure 4-10 NASSCO's PACP rating for every five ft. pipe segment in Line 11067

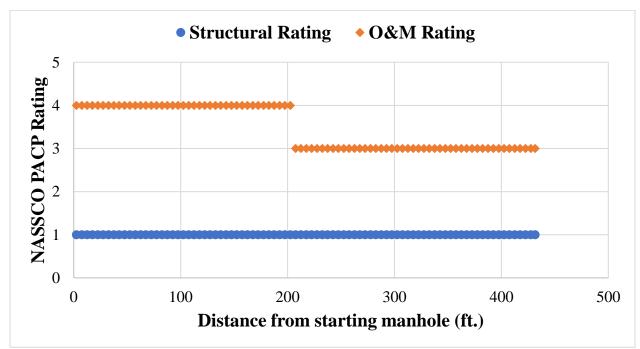


Figure 4-11 NASSCO's PACP rating for every five ft. pipe segment in Line 11068

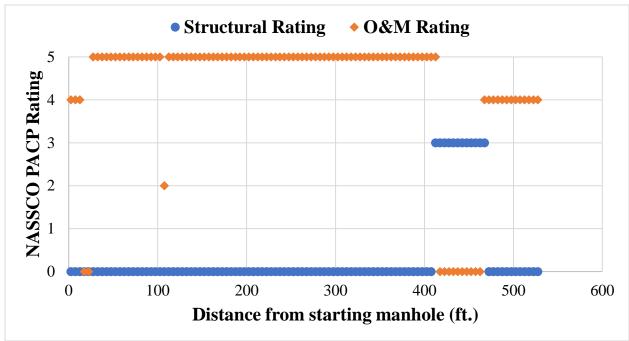


Figure 4-12 NASSCO's PACP rating for every five ft. pipe segments in Line_11069



Figure 4-13 NASSCO's PACP rating for every five ft pipe segments in Line_11070

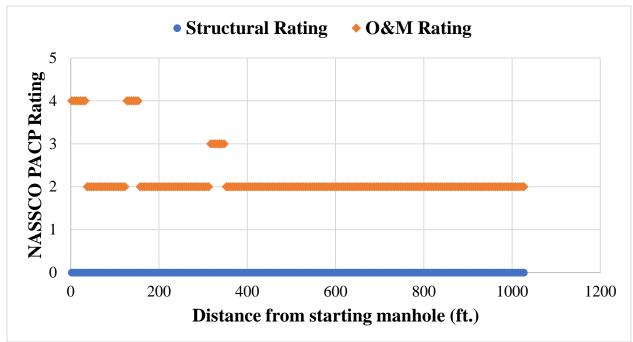
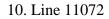



Figure 4-14 NASSCO's PACP rating for every five feet pipe segments in Line_12348

- Structural Rating O&M Rating **NASSCO PACP Rating Distance from starting manhole (ft.)**
- 9. Line 11071

Figure 4-15 NASSCO's PACP rating for every five feet pipe segments in Line_11071

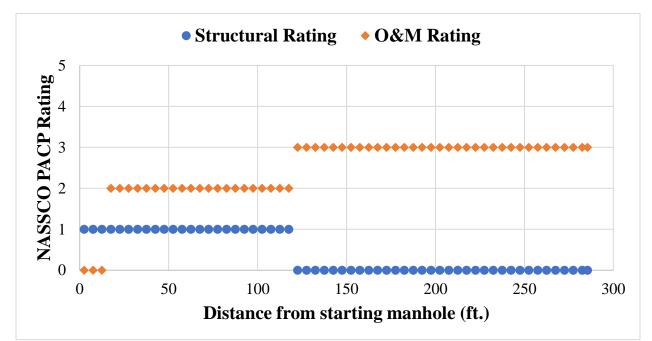


Figure 4-16 NASSCO's PACP rating for every five feet pipe segments in Line_11072

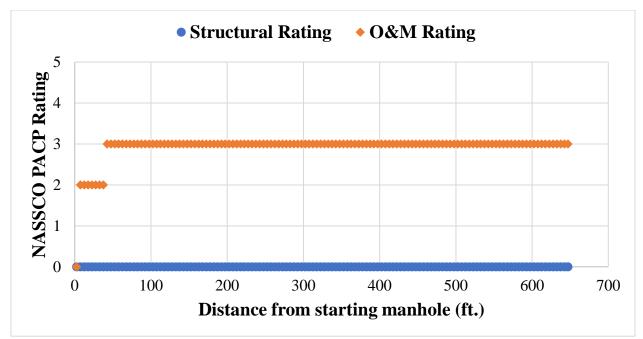
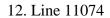



Figure 4-17 NASSCO's PACP rating for every five feet pipe segments in Line_11073

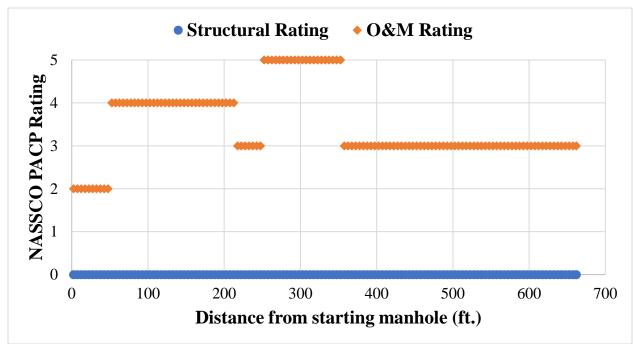


Figure 4-18 NASSCO's PACP rating for every five feet pipe segments in Line_11074

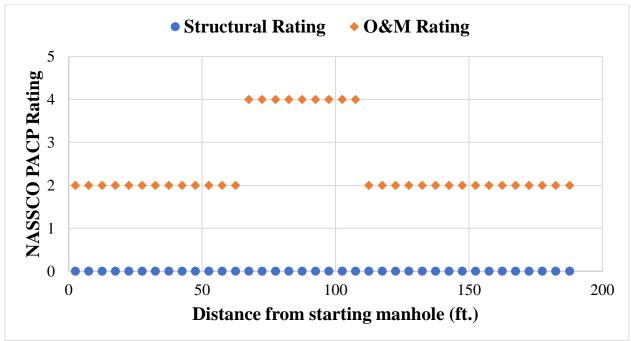


Figure 4-19 NASSCO's PACP rating for every five feet pipe segments in Line_11075

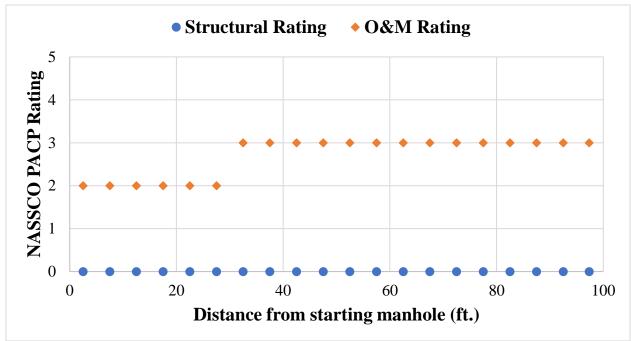


Figure 4-20 NASSCO's PACP rating for every five feet pipe segments in Line_11076

15. Line 15505

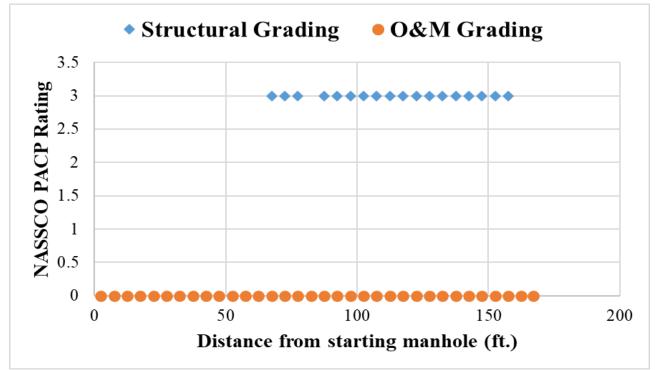


Figure 4-21 NASSCO's PACP rating for every five feet pipe segments in Line_15505

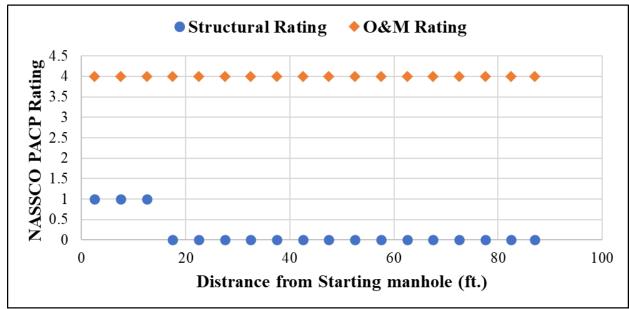


Figure 4-22 NASSCO's PACP rating for every five feet pipe segments in Line_11189

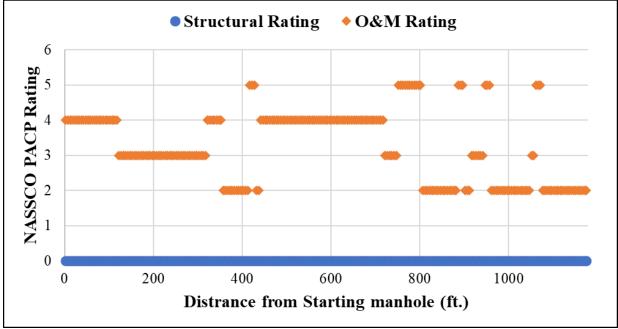
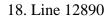



Figure 4-23 NASSCO's PACP rating for every five feet pipe segments in Line_11077

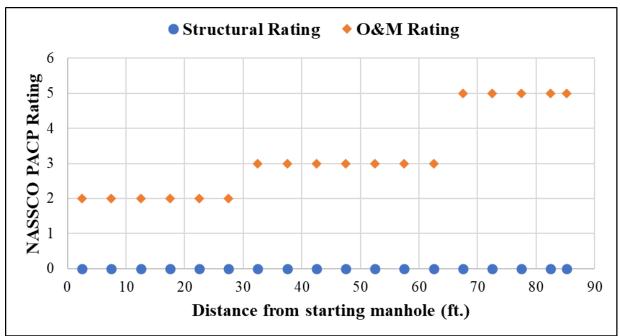


Figure 4-24 NASSCO's PACP rating for every five feet pipe segments in Line_12890

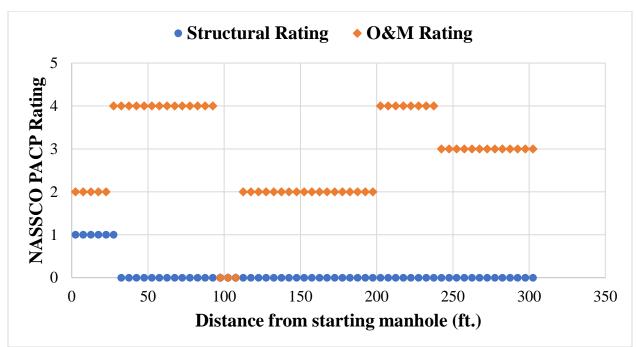


Figure 4-25 NASSCO's PACP rating for every five feet pipe segments in Line_11078

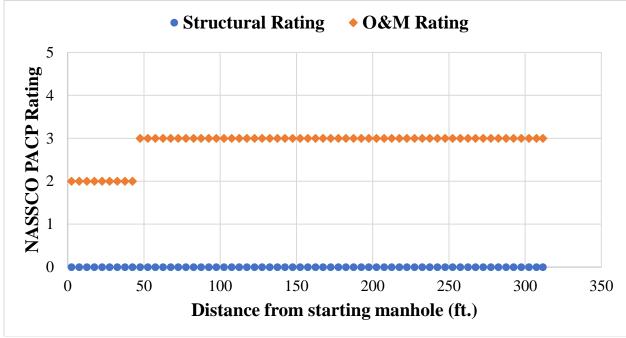


Figure 4-26 NASSCO's PACP rating for every five feet pipe segments in Line_11079

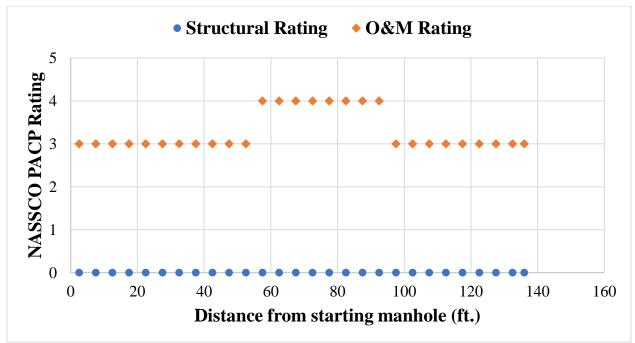
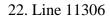



Figure 4-27 NASSCO's PACP rating for every five feet pipe segments in Line_11080

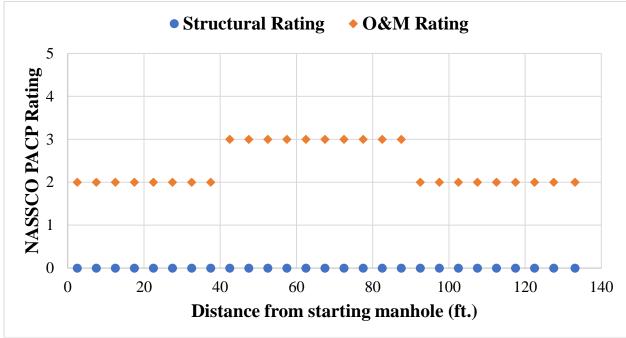


Figure 4-28 NASSCO's PACP rating for every five feet pipe segments in Line_11306

^{23.} Line 11081

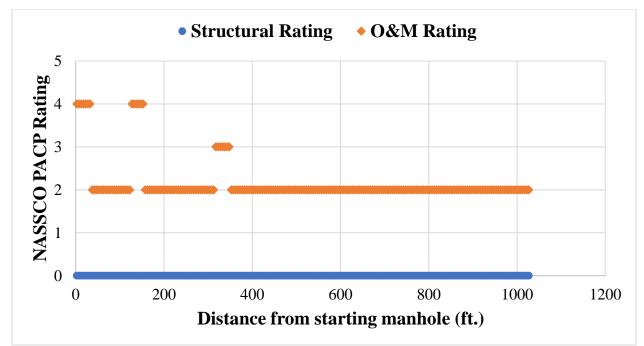
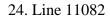



Figure 4-29 NASSCO's PACP rating for every five feet pipe segments in Line_11081

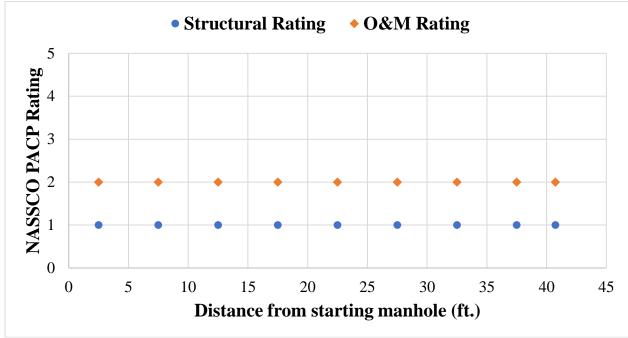
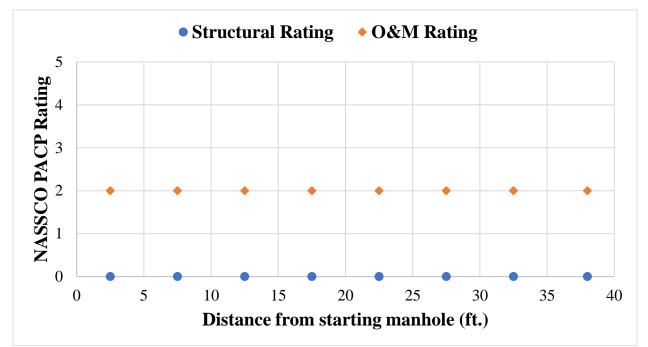



Figure 4-30 NASSCO's PACP rating for every five feet pipe segments in Line_11082

25. Line Unknown

Figure 4-31NASSCO's PACP rating for every five feet pipe segments in UnknownPipe1

Figure 4-32 NASSCO's PACP rating for every five feet pipe segments in Line_11083

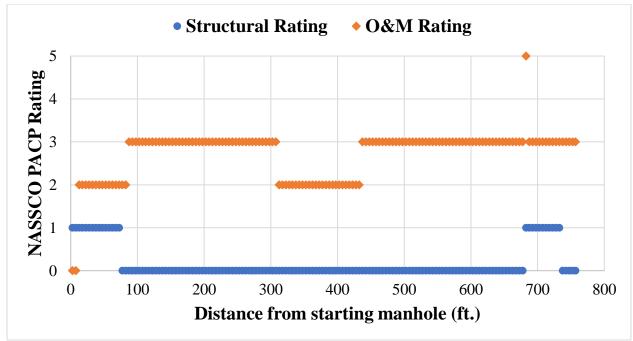
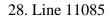



Figure 4-33 NASSCO's PACP rating for every five feet pipe segments in Line_11084

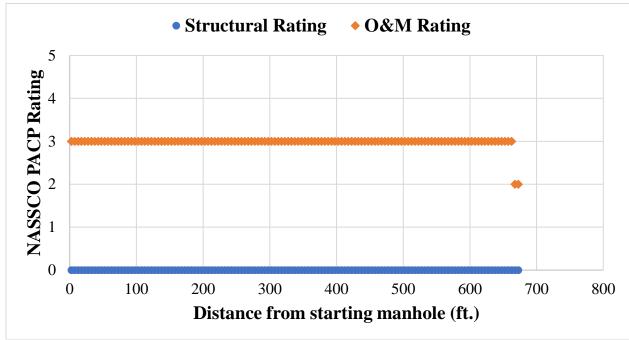


Figure 4-34 NASSCO's PACP rating for every five feet pipe segments in Line_11085

^{29.} Line 11086

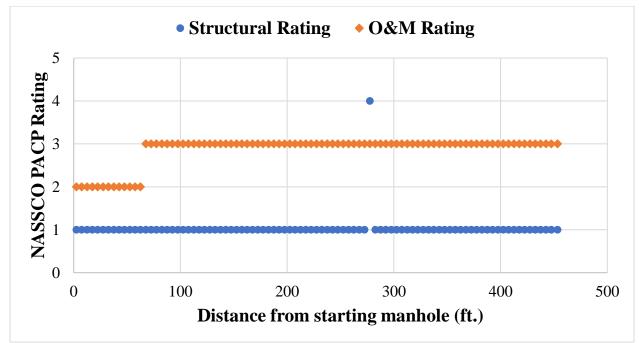
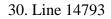



Figure 4-35 NASSCO's PACP rating for every five feet pipe segments in Line_11086

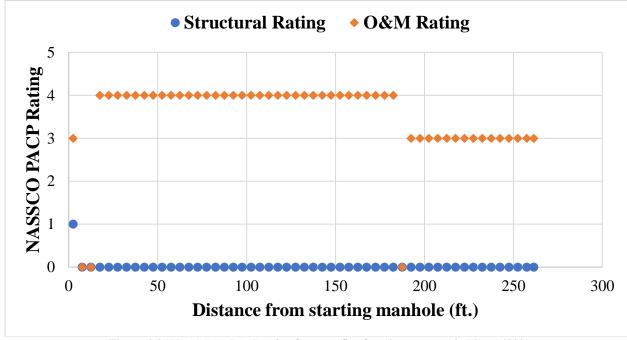


Figure 4-36 NASSCO's PACP rating for every five feet pipe segments in Line_14793

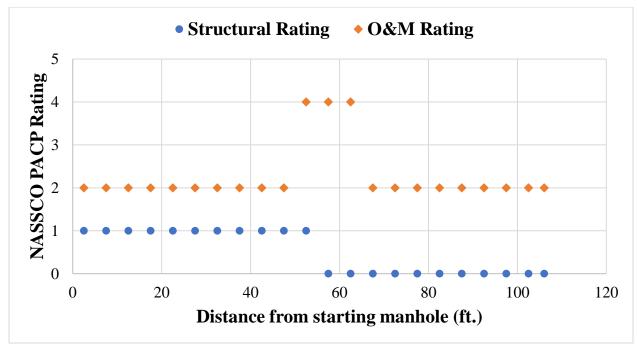


Figure 4-37 NASSCO's PACP rating for every five feet pipe segments in Line_11087

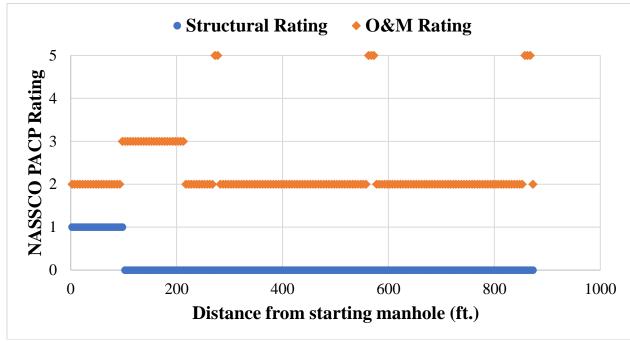


Figure 4-38 NASSCO's PACP rating for every five feet pipe segments in Line_11088

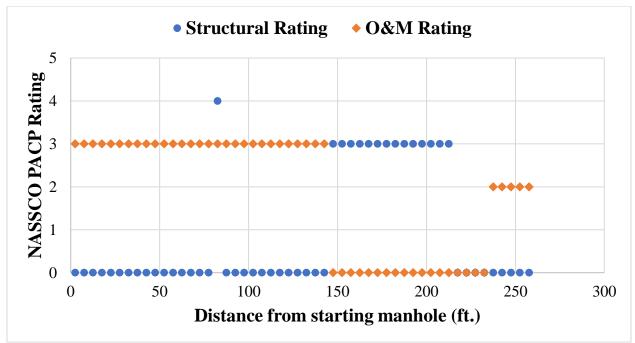


Figure 4-39 NASSCO's PACP rating for every five feet pipe segments in Line_11089

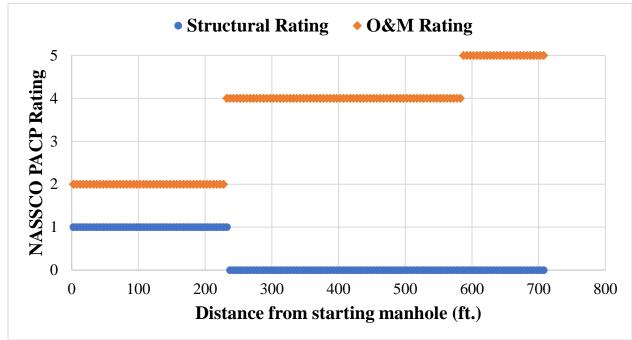


Figure 4-40 NASSCO's PACP rating for every five feet pipe segments in Line_11090

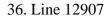



Figure 4-41 NASSCO's PACP rating for every five feet pipe segments in Line_11091

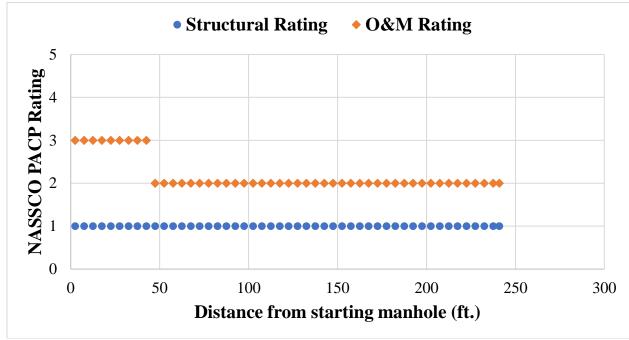


Figure 4-42 NASSCO's PACP rating for every five feet pipe segments in Line_12907

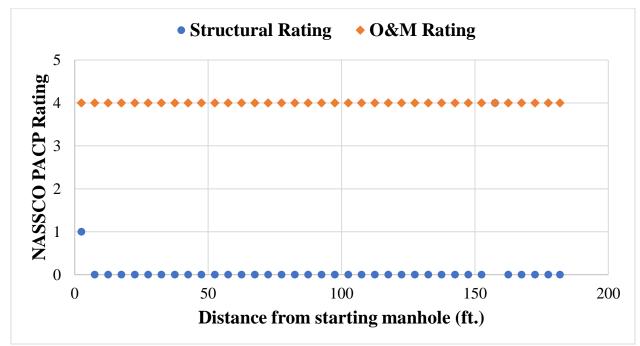
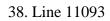



Figure 4-43 NASSCO's PACP rating for every five feet pipe segments in Line_11092

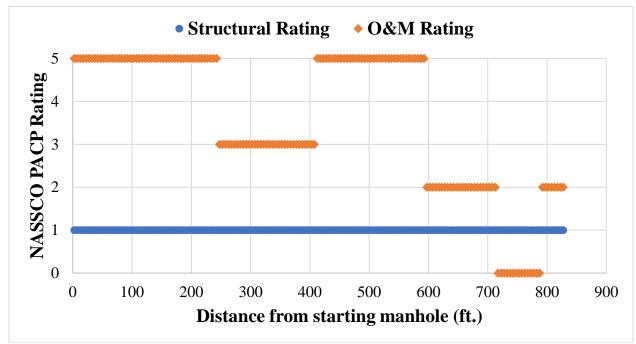


Figure 4-44 NASSCO's PACP rating for every five feet pipe segments in Line_11093

4.1.3 MSI Results

The robot was equipped with lidar and sonar sensors to provide additional quantitative data such as numerical measurements. The lidar sensor was used to map the surface of the pipe above the water line, and the data collected was used to calculate the amount of corrosion in the reinforced concrete pipes. (The loss of clear cover of concrete exposes the reinforcement and makes the pipes susceptible to corrosion and highly prone to failure.) The sonar sensor was installed at the bottom of the robotic boat to map the underwater surface of the pipe and provide valuable information about the condition of the pipe under water, such as debris and blockages. The height of the debris was calculated based on the sonar readings and was used to calculate the percentage of each pipe section that is blocked. The robotic boat accurately mapped the surface of each pipe, the loss of concrete was calculated based on the lidar data, and the result was overlapped with the sonar scan to provide a picture of the full cross section of the pipe. Plots from post-processed MSI data for flexible and rigid pipes are shown in Figures 4-45 and 4-46, respectively. Calculations were performed for each foot of the pipe segments, and graphs depicting the results are shown in the figures below.

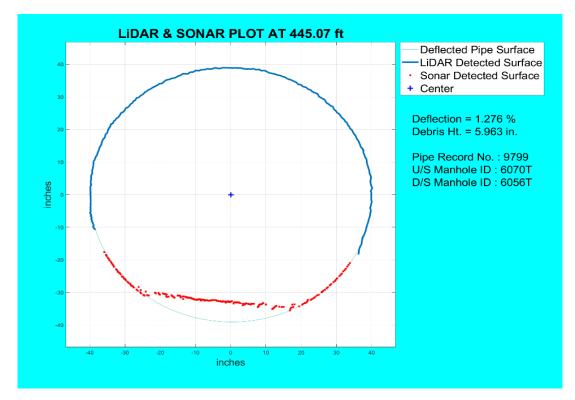


Figure 4-45 Plot from post-processed MSI data for flexible pipe

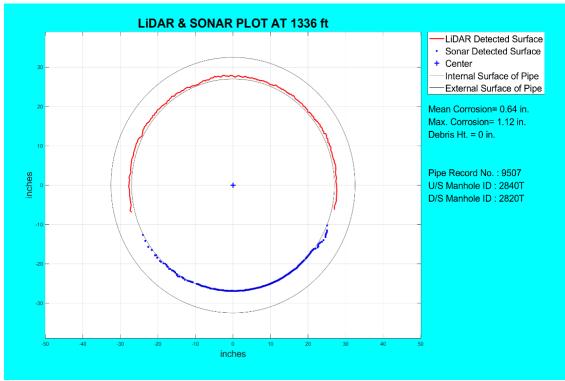


Figure 4-46 Plot from post-processed MSI data for rigid pipe

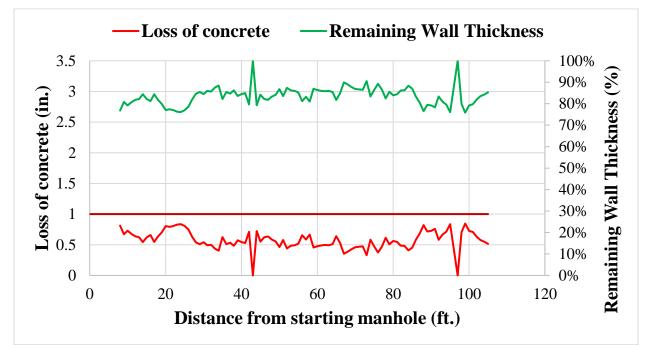


Figure 4-47 Loss of concrete and remaining wall thickness for line 11064

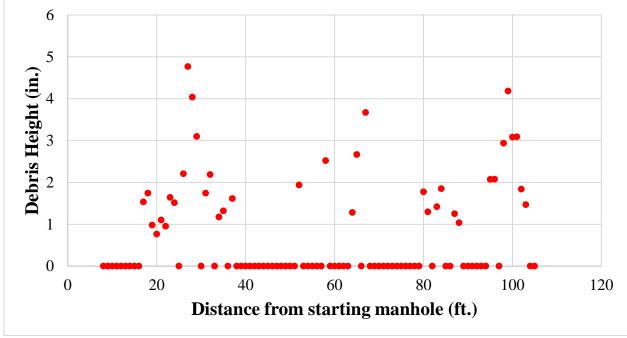


Figure 4-48 Height of debris in line 11064

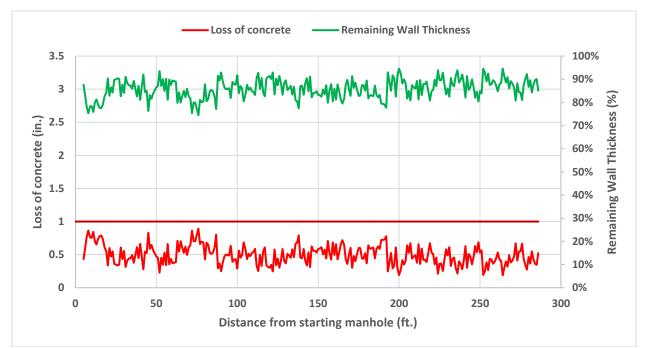


Figure 4-49 Loss of concrete and remaining wall thickness for line 11065

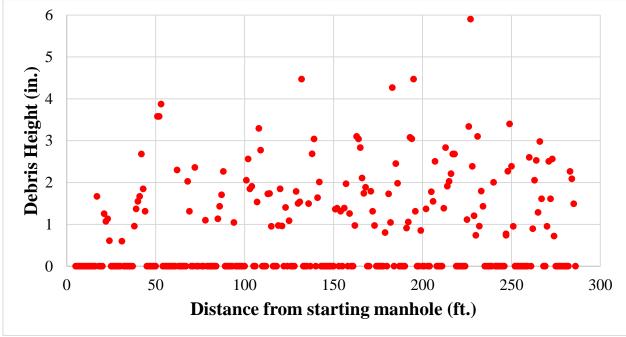


Figure 4-50 Height of debris in line 11065

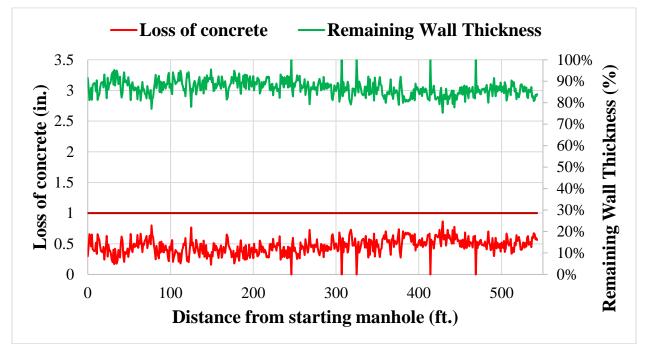


Figure 4-51 Loss of concrete and remaining wall thickness for line 11066

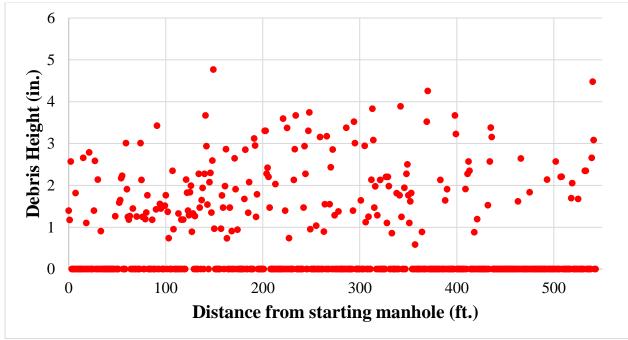


Figure 4-52 Height of debris in line 11066

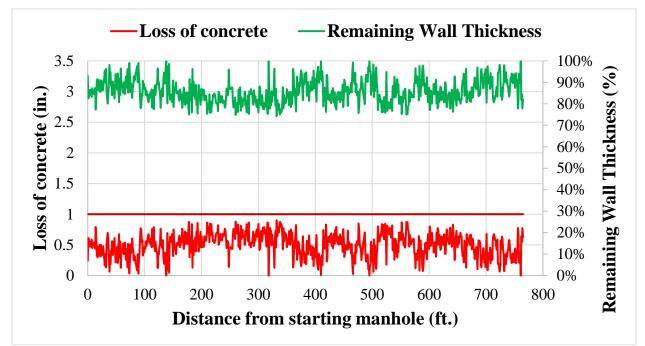


Figure 4-53 Loss of concrete and remaining wall thickness for line 11067

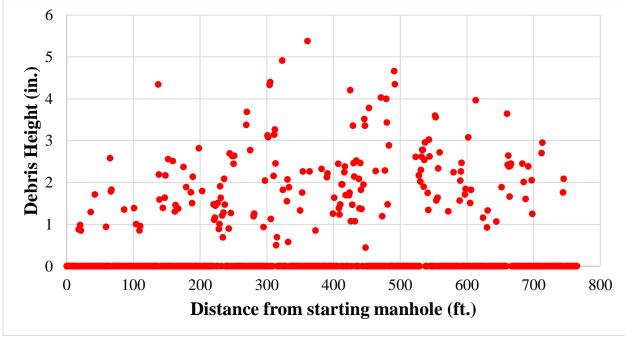


Figure 4-54 Height of debris in line 11067

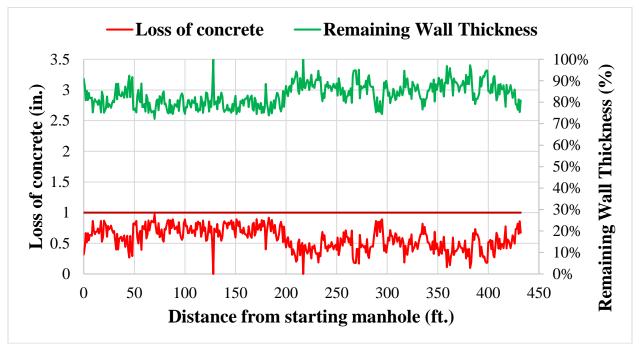


Figure 4-55 Loss of concrete and remaining wall thickness for line 11068

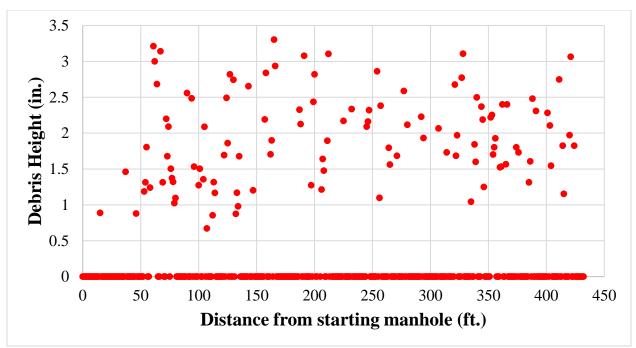


Figure 4-56 Height of debris in line 11068

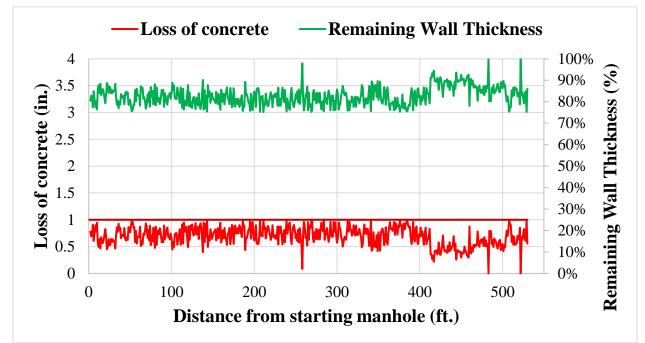


Figure 4-57 Loss of concrete and remaining wall thickness for line 11069

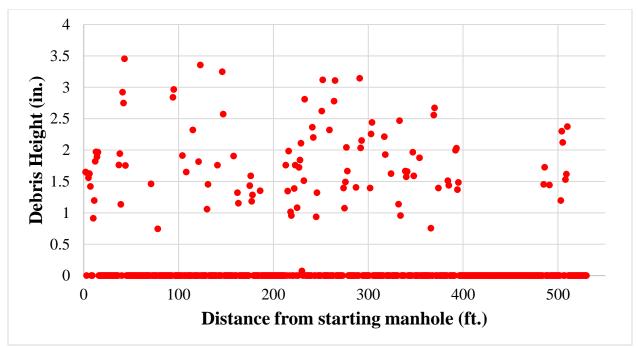


Figure 4-58 Height of debris in line 11069

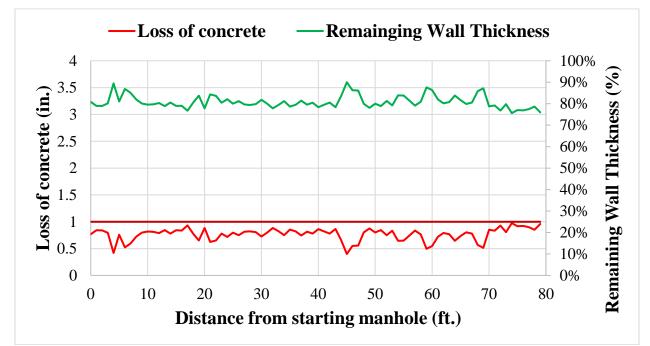


Figure 4-59 Loss of concrete and remaining wall thickness for line 11070

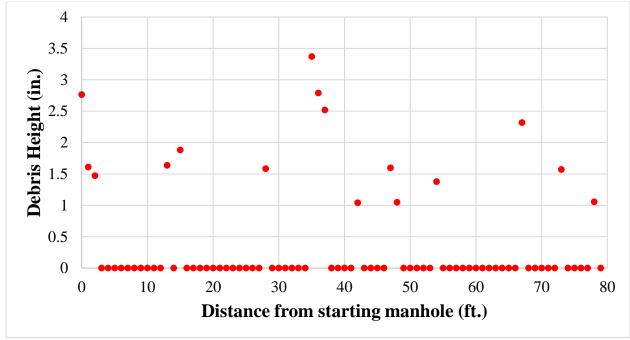


Figure 4-60 Height of debris in line 11070

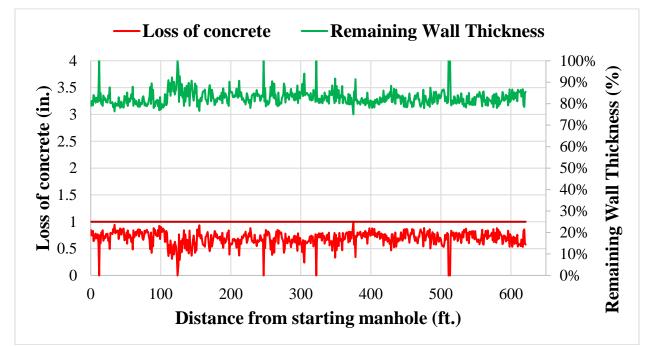


Figure 4-61 Loss of concrete and remaining wall thickness for line 12348

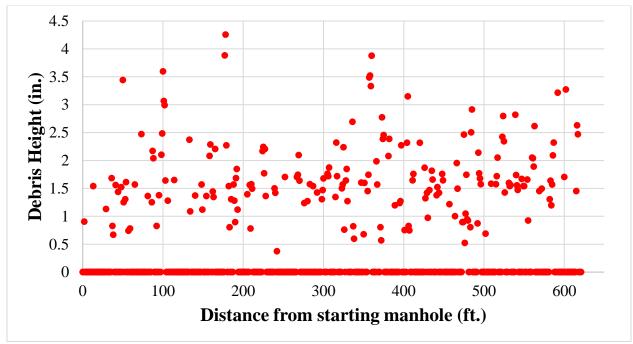


Figure 4-62 Height of debris in line 12348

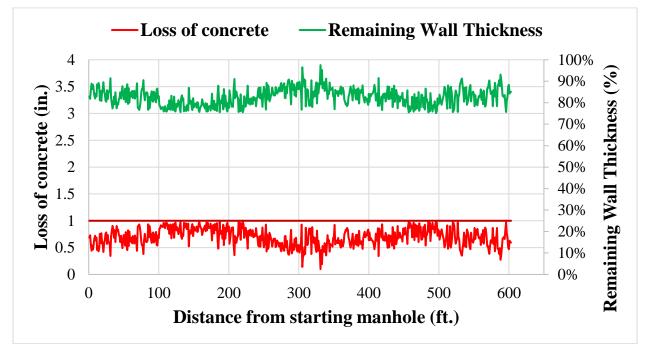


Figure 4-63 Loss of concrete and remaining wall thickness for line 11071



Figure 4-64 Height of debris in line 11071

10. Line 11072

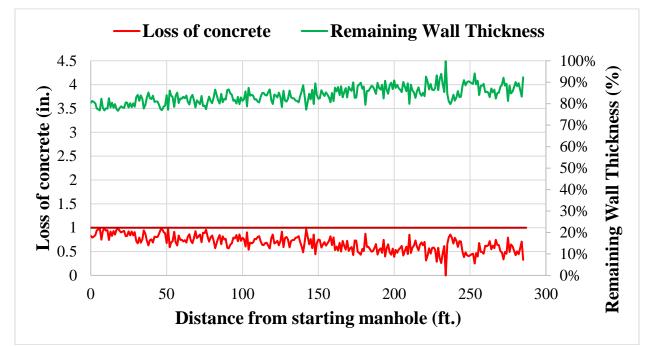


Figure 4-65 Loss of concrete and remaining wall thickness for line 11072

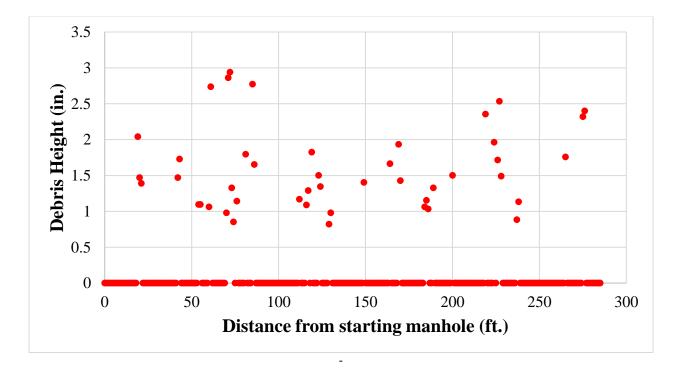


Figure 4-66 Height of debris in line 11072

11. Line 11073

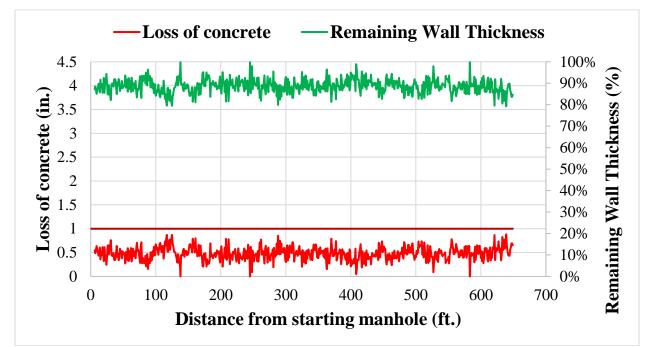


Figure 4-67 Loss of concrete and remaining wall thickness for line 11073

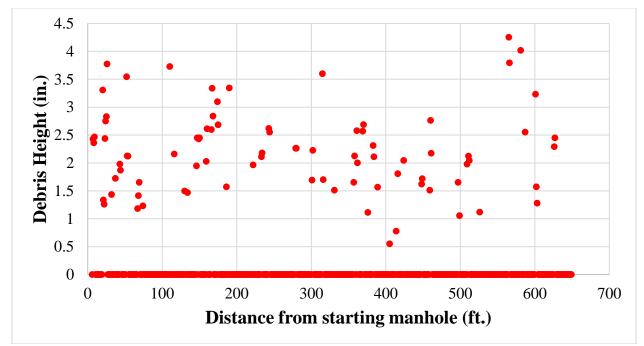


Figure 4-68 Height of debris in line 11073

12. Line 11074

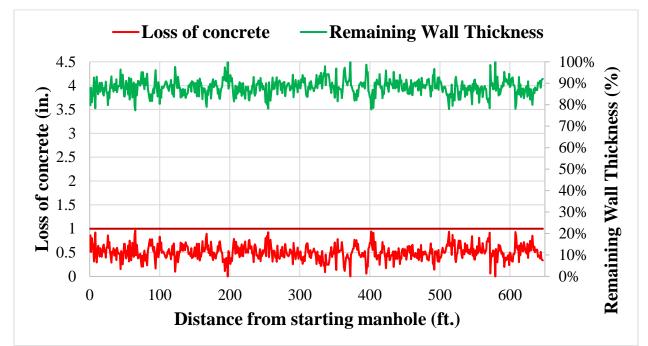


Figure 4-69 Loss of concrete and remaining wall thickness for line 11074

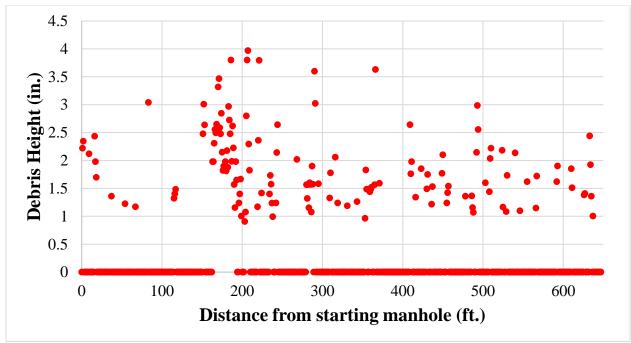


Figure 4-70 Height of debris in line 11074

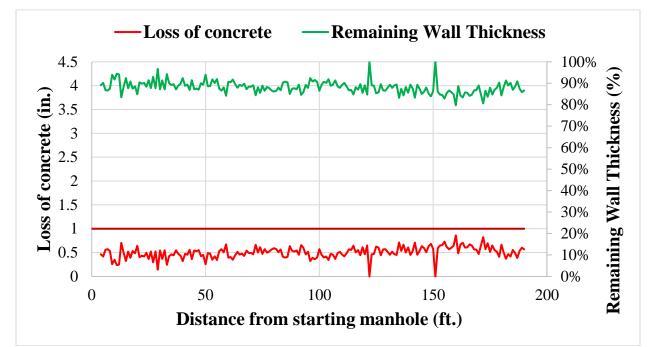


Figure 4-71 Loss of concrete and remaining wall thickness for line 11075

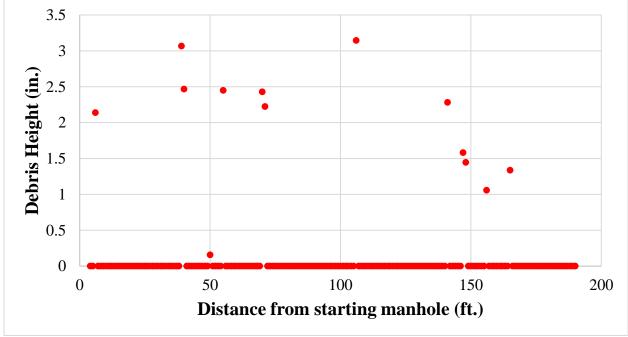


Figure 4-72 Height of debris in line 11075

14. Line 11076

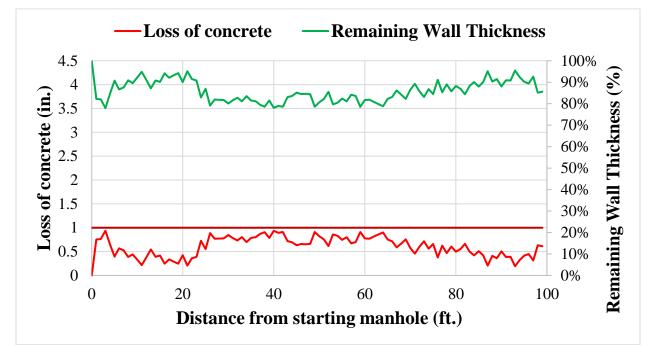


Figure 4-73 Loss of concrete and remaining wall thickness for line 11076

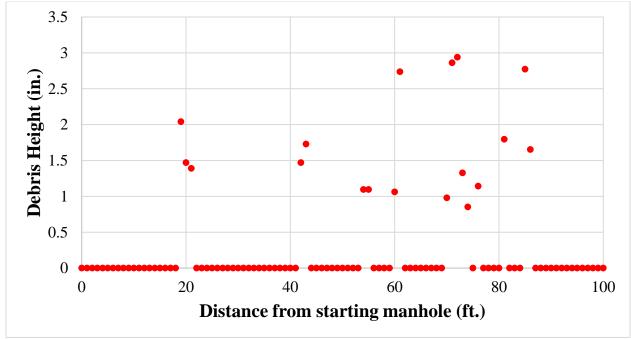
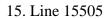
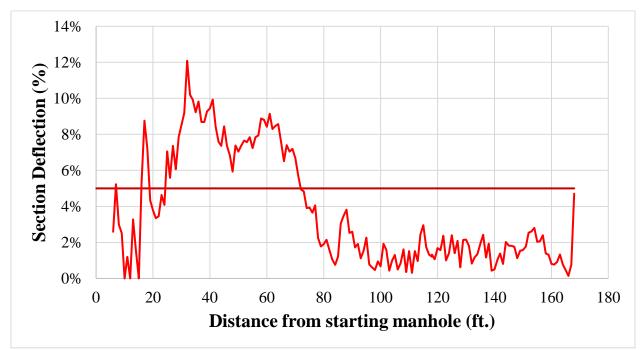




Figure 4-74 Height of debris in line 11076

Figure 4-75 Slope deflection for line 15505 (flexible pipe)

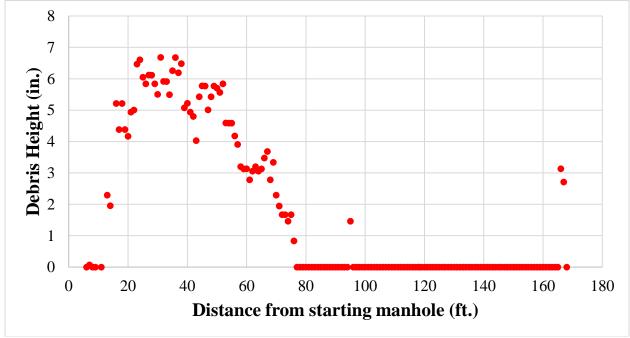
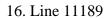



Figure 4-76 Height of debris in line 15505

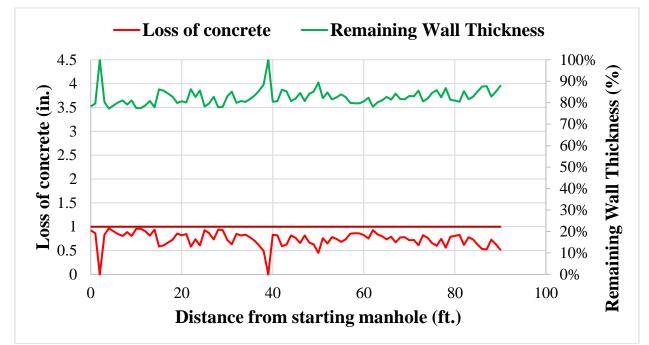


Figure 4-77 Loss of concrete and remaining wall thickness for line 11189

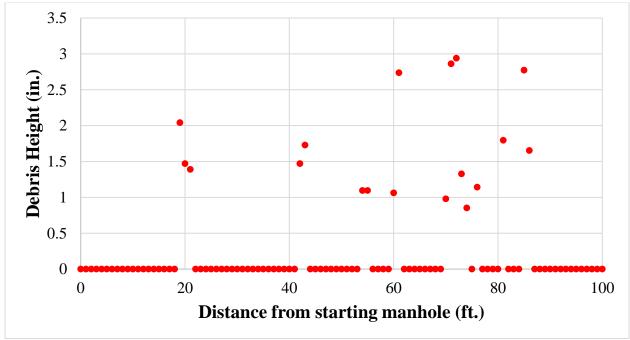


Figure 4-78 Height of debris in line 11189

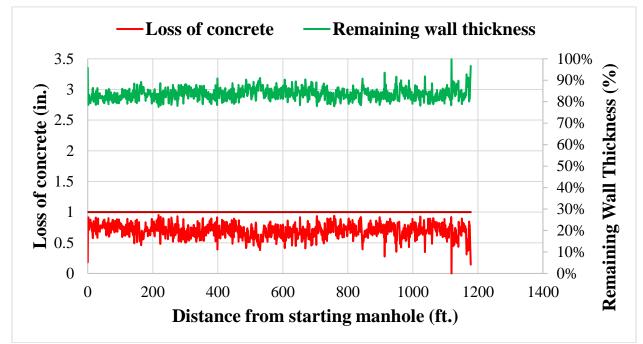


Figure 4-79 Loss of concrete and remaining wall thickness for line 11077

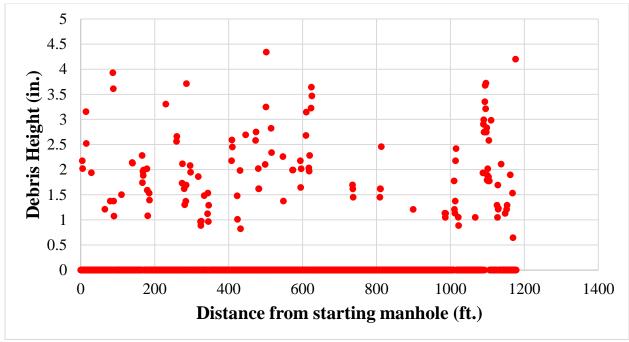


Figure 4-80 Height of debris in line 11077

18. Line 12890

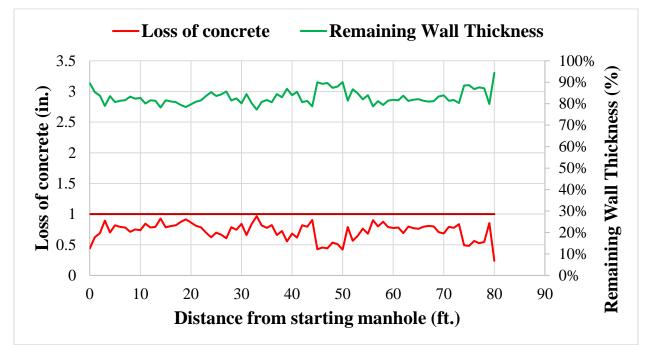


Figure 4-81 Loss of concrete and remaining wall thickness for line 12890

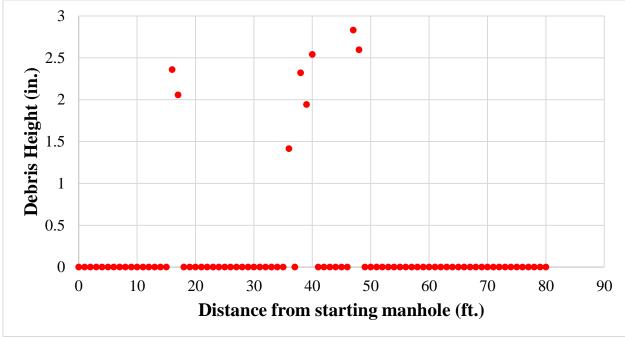


Figure 4-82 Height of debris in line 12890

19. Line 11078

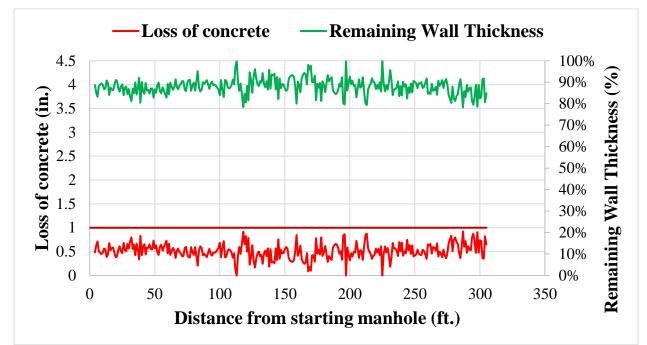


Figure 4-83 Loss of concrete and remaining wall thickness for line 11078

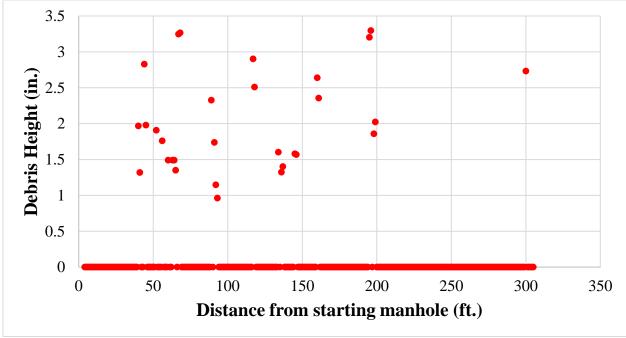


Figure 4-84 Height of debris in line 11078

20. Line 11079

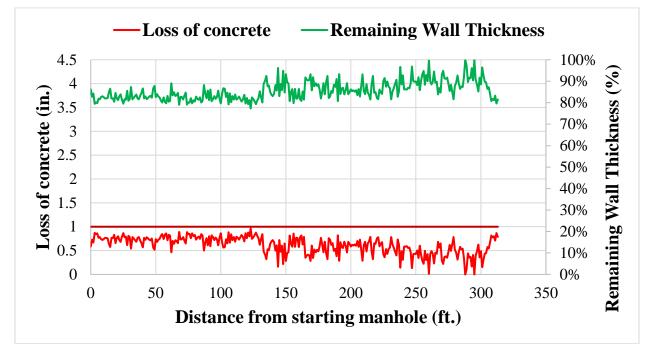


Figure 4-85 Loss of concrete and remaining wall thickness for line 11079

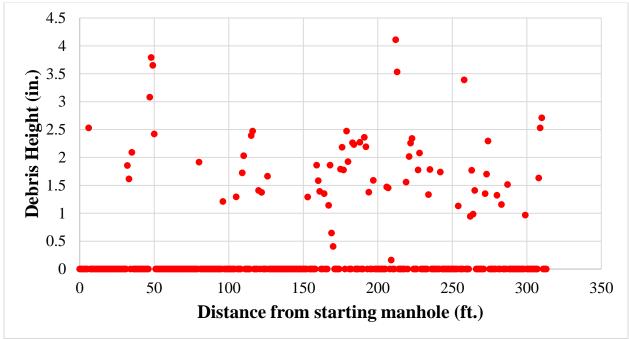


Figure 4-86 Height of debris in line 11079

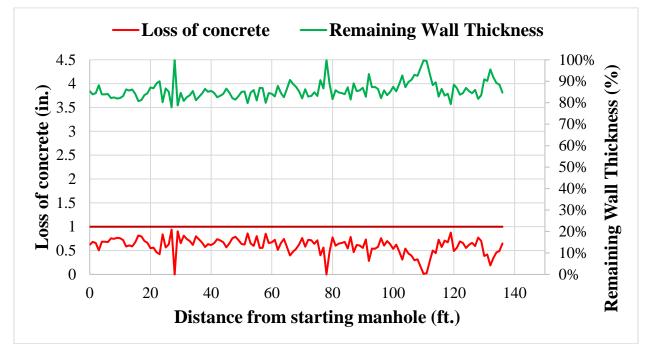


Figure 4-87 Loss of concrete and remaining wall thickness for line 11080

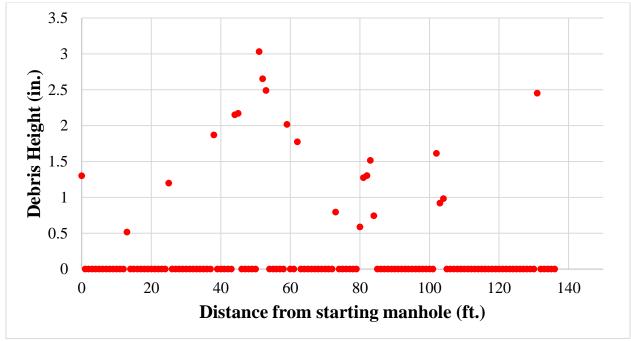


Figure 4-88 Height of debris in line 11080

22. Line 11306

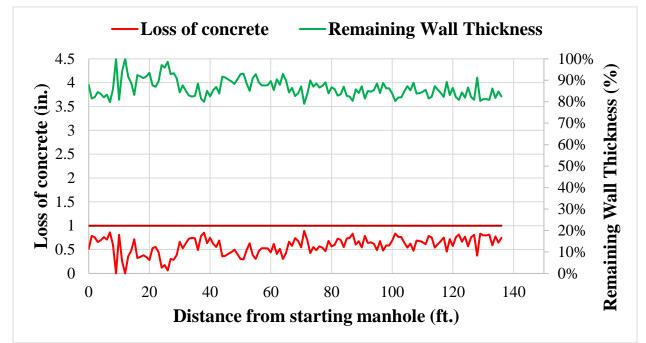


Figure 4-89 Loss of concrete and remaining wall thickness for line 11306

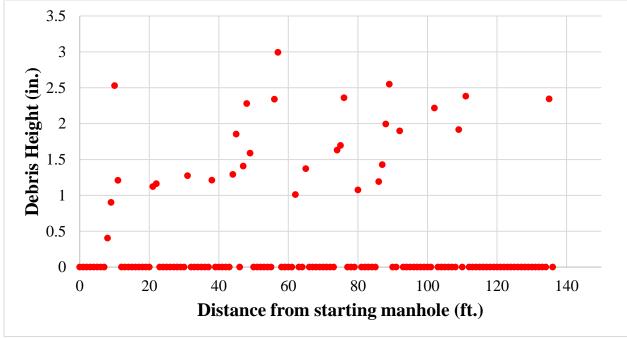


Figure 4-90 Height of debris in line 11306

Figure 4-91 Loss of concrete and remaining wall thickness for line 11081

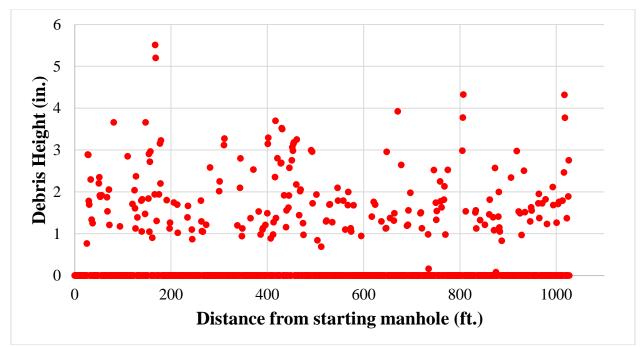


Figure 4-92 Height of debris in line 11081

24. Line 11082



Figure 4-93 Loss of concrete and remaining wall thickness for line 11082

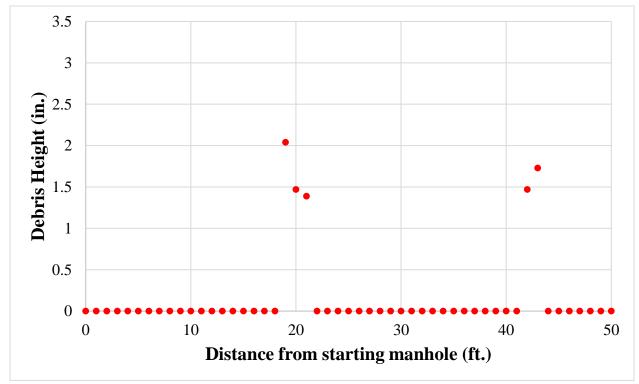


Figure 4-94 Height of debris in line 11082

25. Unknown Pipe 1

Figure 4-95 Loss of concrete and remaining wall thickness for unknown Pipe 1

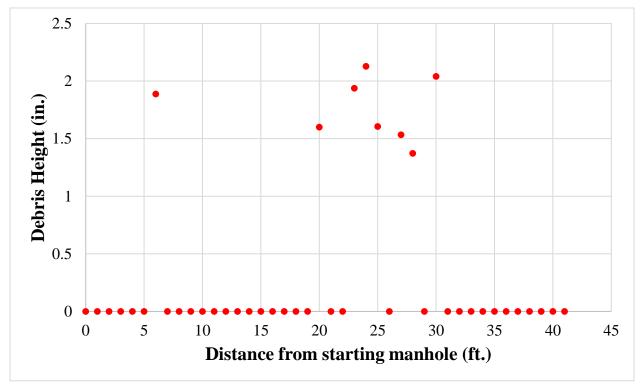


Figure 4-96 Height of debris in unknown Pipe 1

26. Line 11083

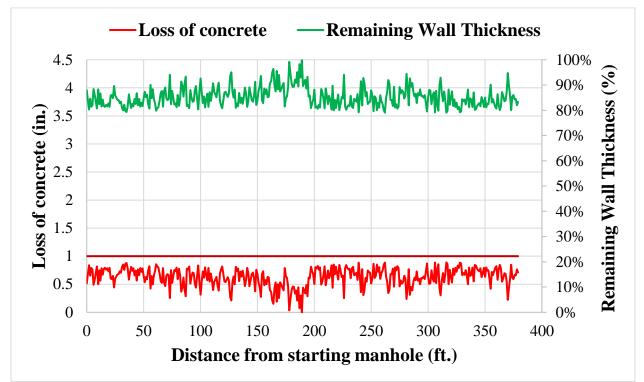


Figure 4-97 Loss of concrete and remaining wall thickness for line 11083

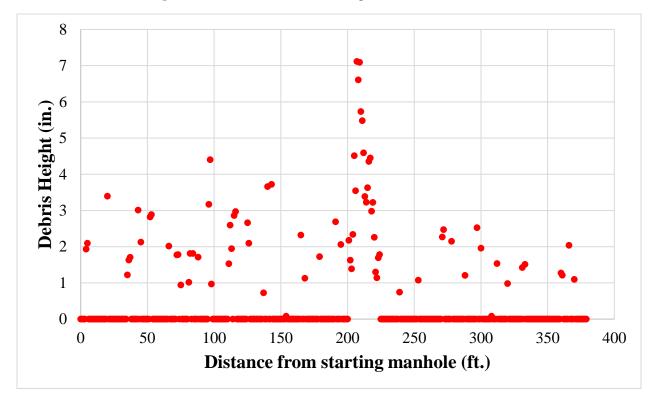


Figure 4-98 Height of debris in line 11083

27. Line 11084

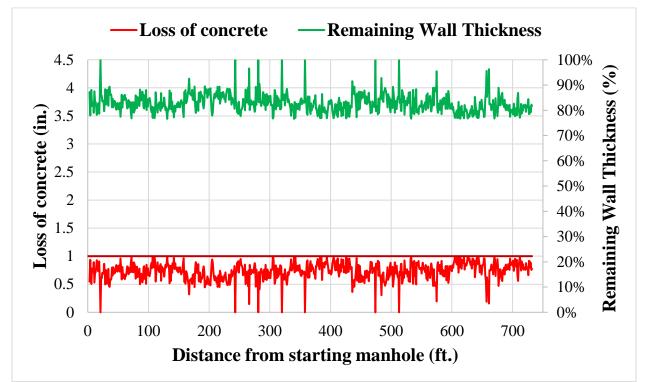


Figure 4-99 Loss of concrete and remaining wall thickness for line 11084

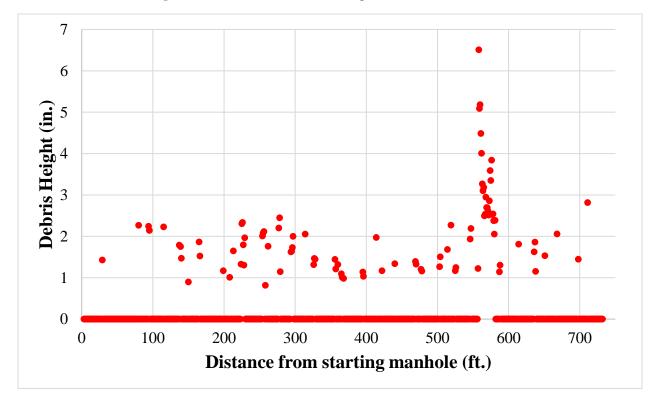


Figure 4-100 Height of debris in line 11084

28. Line 11085

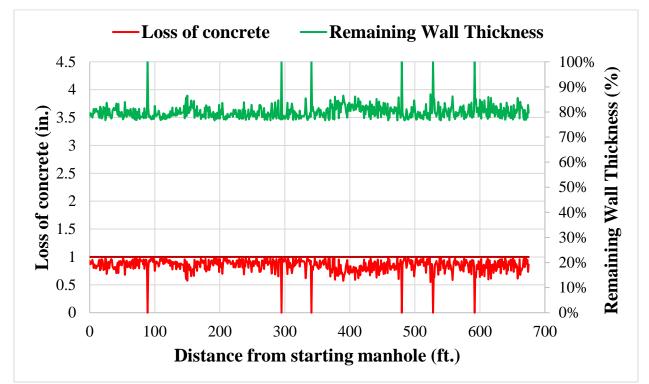


Figure 4-101 Loss of concrete and remaining wall thickness for line 11085

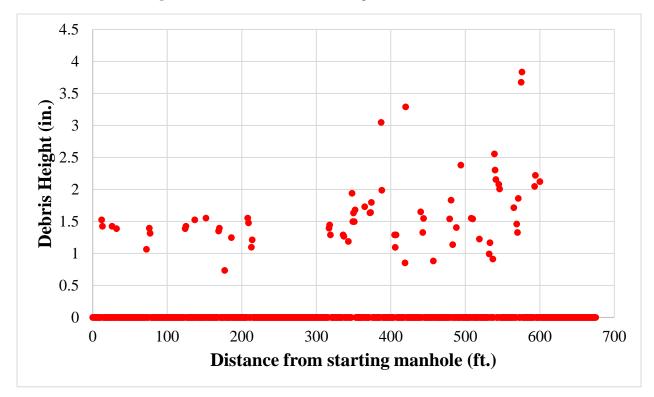


Figure 4-102 Height of debris in line 11085

29. Line 11086

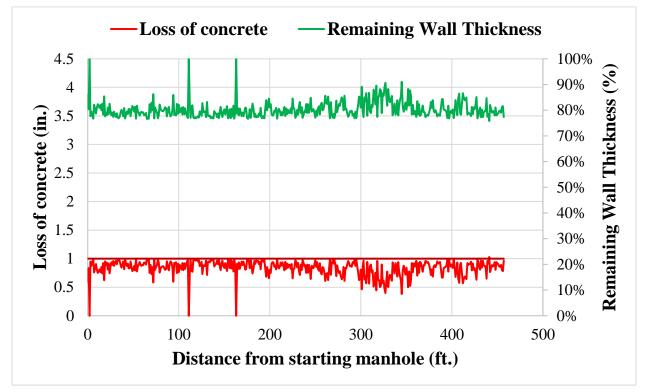


Figure 4-103 Loss of concrete and remaining wall thickness for line 11086

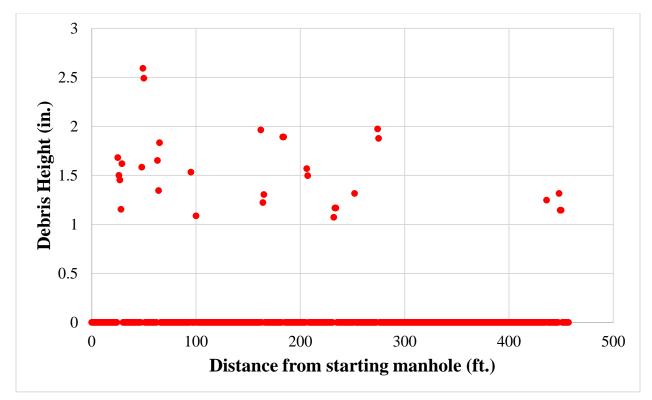


Figure 4-104 Height of debris in line 11086

30. Line 14793

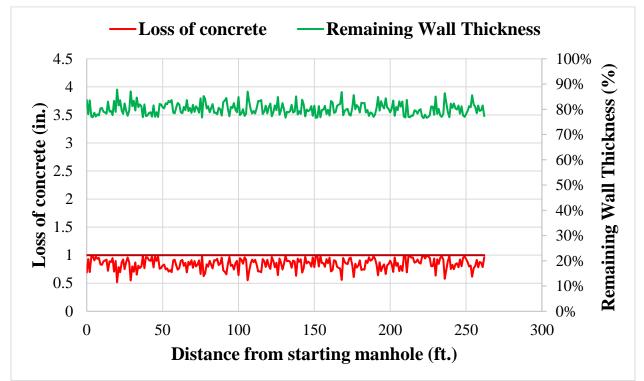


Figure 4-105 Loss of concrete and remaining wall thickness for line 14793

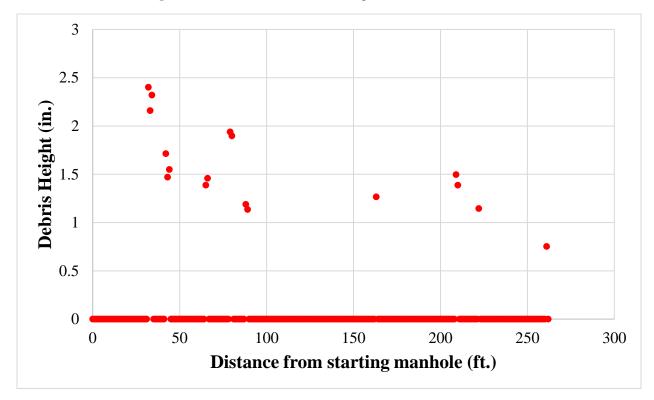


Figure 4-106 Height of debris in line 14793

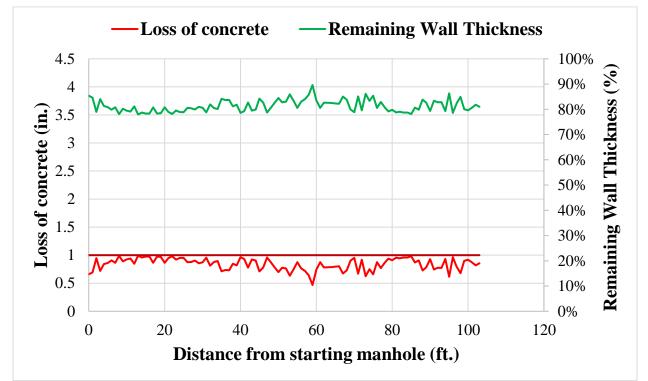


Figure 4-107 Loss of concrete and remaining wall thickness for line 11087

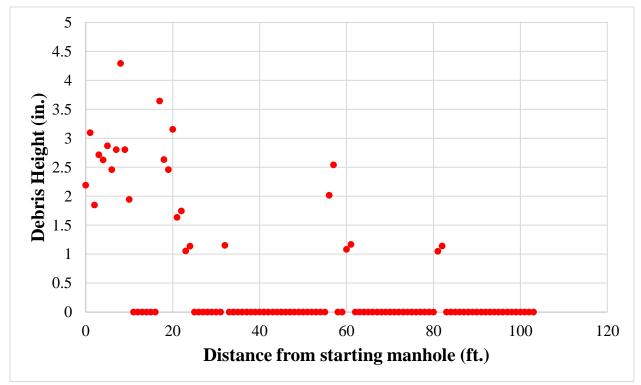


Figure 4-108 Height of debris in line 11087

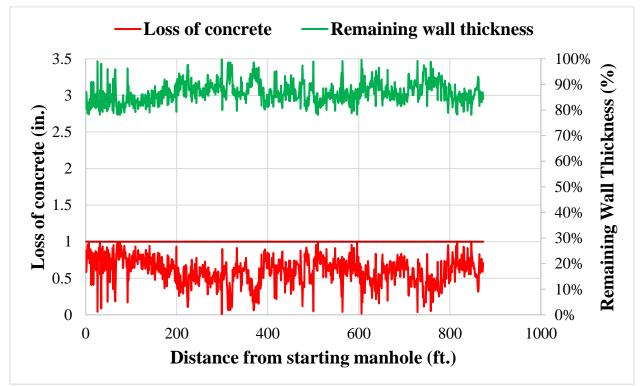


Figure 4-109 Loss of concrete and remaining wall thickness for line 11088

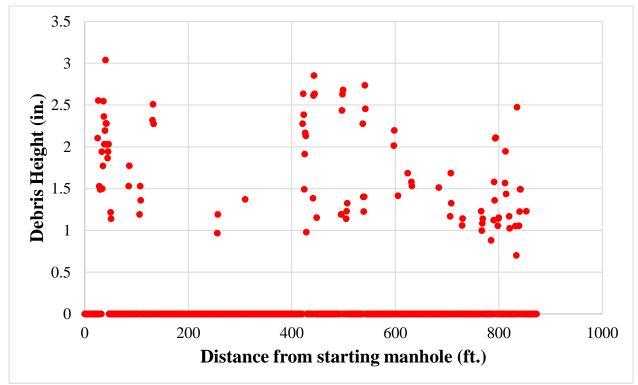


Figure 4-110 Height of debris in line 11088

33. Line 11089

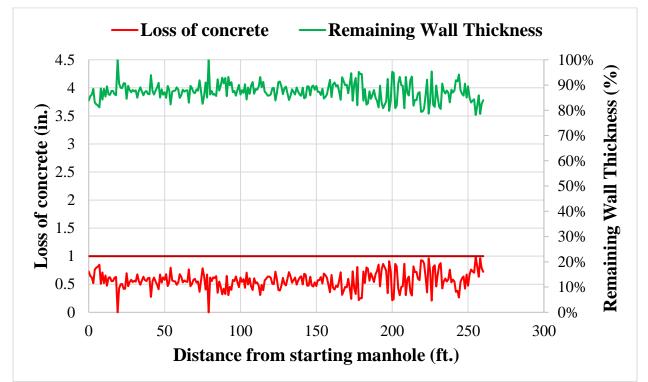


Figure 4-111 Loss of concrete and remaining wall thickness for line 11089

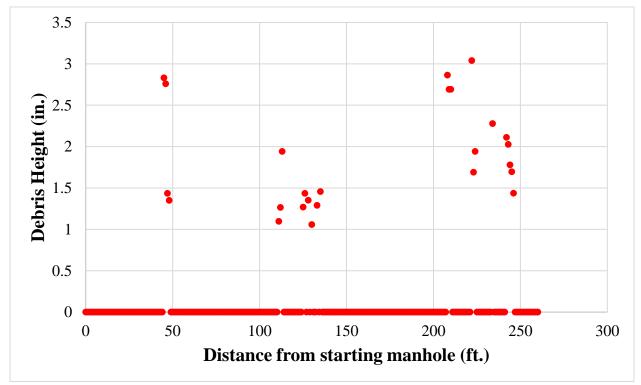


Figure 4-112 Height of debris in line 11089

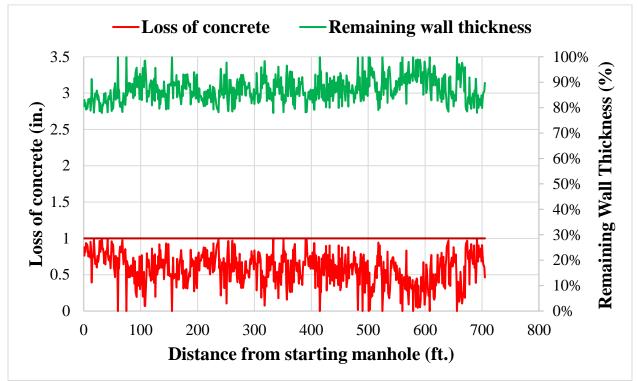


Figure 4-113 Loss of concrete and remaining wall thickness for line 11090

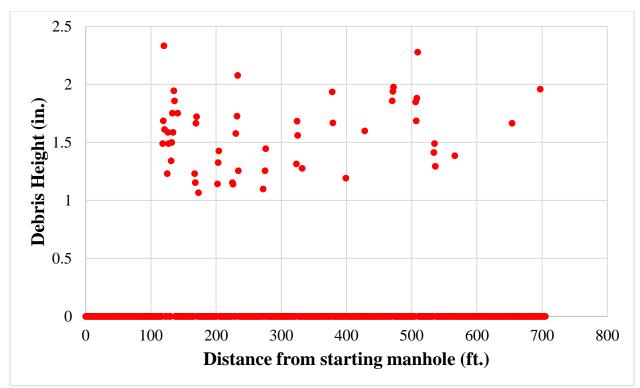


Figure 4-114 Height of debris in line 11090

35. Line 11091

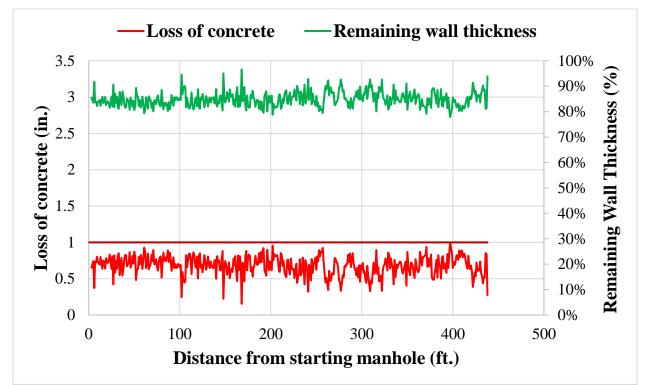


Figure 4-115 Loss of concrete and remaining wall thickness for line 11091

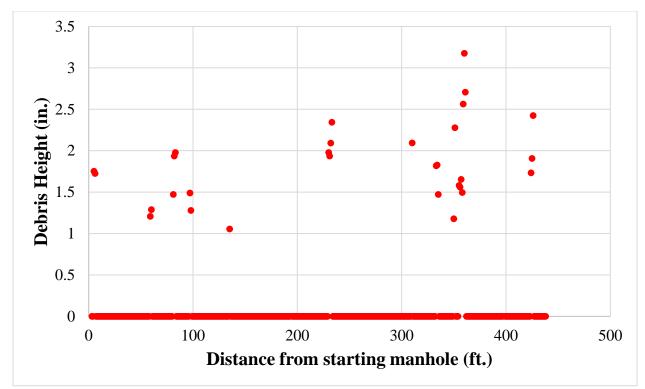


Figure 4-116 Height of debris in line 11091

36. Line 12907

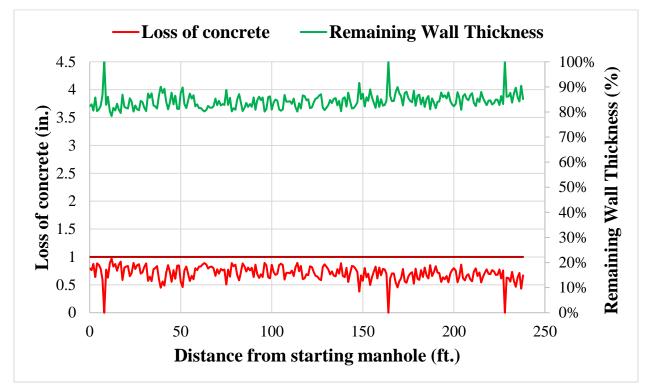


Figure 4-117 Loss of concrete and remaining wall thickness for line 12907

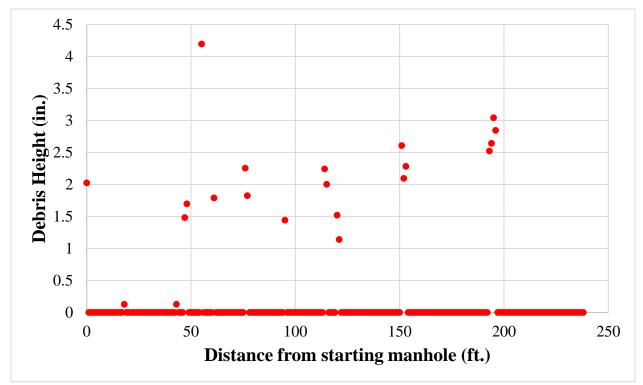


Figure 4-118 Height of debris in line 12907

37. Line 11092

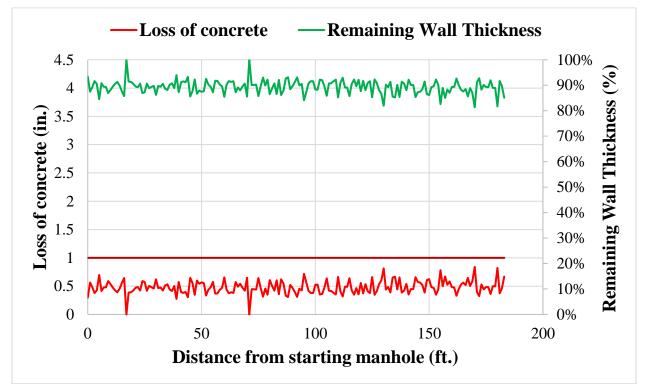


Figure 4-119 Loss of concrete and remaining wall thickness for line 11092

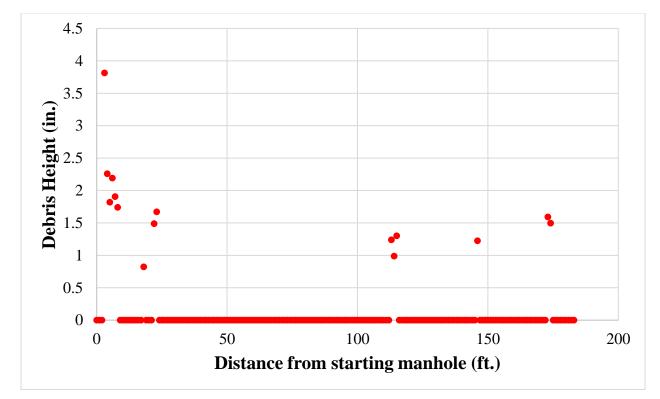


Figure 4-120 Height of debris in line 11092

38. Line 11093

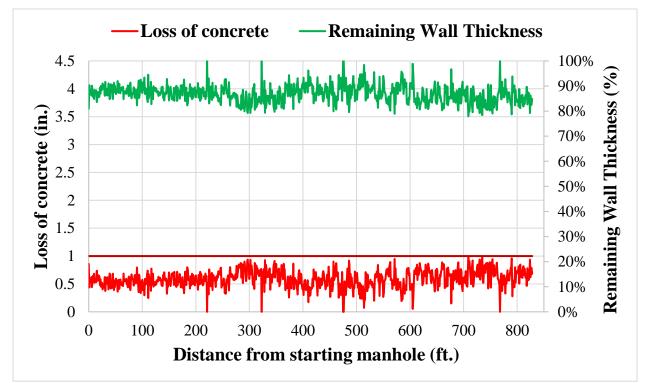


Figure 4-121 Loss of concrete and remaining wall thickness for line 11093

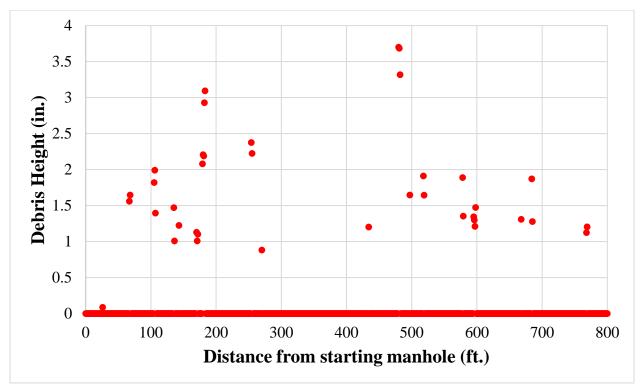


Figure 4-122 Height of debris in line 11093

4.2 Trinity River Authorization

An advanced robotic multi-sensor inspection device equipped with sonar, lidar, and video capabilities was used to assess the condition of approximately 3.5 miles (17,580.5 ft.) of concrete sanitary sewer pipelines in Arlington, Texas. The condition of the pipes were graded according to the NASSCO PACP rating system of 1 through 5, with 1 being the best and 5 indicating severe damage with strong potential for failure.

4.2.1 Overview of The Inspected pipes

The first phase of sewer pipeline inspections performed for the Trinity River Authority in Arlington, Texas consisted of inspecting 19 lines that totaled 17,580.5 ft., or approximately 3.5 miles.

CNI	Record		DS MH ID	Diameter	Pipe	Length (ft.)	
SN	No.	US MH ID		(in.)	Material	GIS	CCTV
1	9502	2780T	2760T	54	RCP	1278	1165.25
2	9612	40T	2760T	39	RCP	1313	1273.82
3	9503	2800T	2780T	54	RCP	1003	997.55
4	9810	60T	40T	39	RCP	1000	996.42
5	9506	2820T	2800T	54	RCP	1001	1008
6	9846	80T	60T	39	RCP	1000	1001
7	9507	2840T	2820T	54	RCP	1970	1980
8	9231	100T	80T	39	RCP	1968	1971
9	9508	2850T	2840T	54	RCP	575	- 1575.65
10	9509	2860T	2850T	54	RCP	997	
11	9260	120T	100T	39	RCP	1582	1576.79
12	9510	2880T	2860T	54	RCP	366	370.46
13	9295	140T	120T	42	DIP	350	355.76
14	9511	2900T	2880T	54	RCP	604	600.57
15	9334	160T	140T	39	RCP	622	585.73
16	9512	2920T	2900T	54	RCP	397	394.38
17	9786	6032T	2920T	54	RCP	227.2	199.66
18	9799	6070T	6056T	78	FRP	614.2	609.76
19	9800	6080T	6070T	78	FRP	713.1	707.77

Table 4-2 Summary of lines inspected in Phase I of the TRA project.

The area map for Phase 1 is depicted in Figure 4-123; the boundaries of the project are circled in red. Figure 4-124 shows the location of the sanitary sewer pipelines corresponding to the segments of Table 4-2.

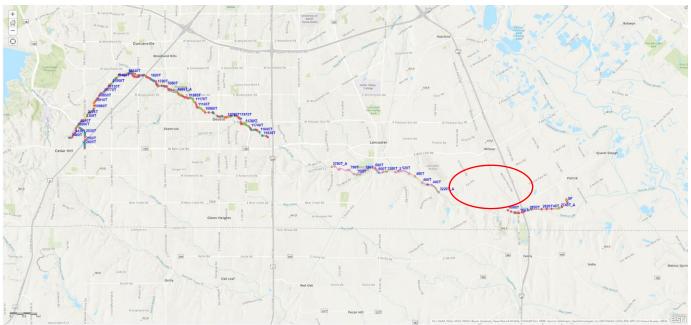


Figure 4-123 Area map for Phase 1 of the TRA project

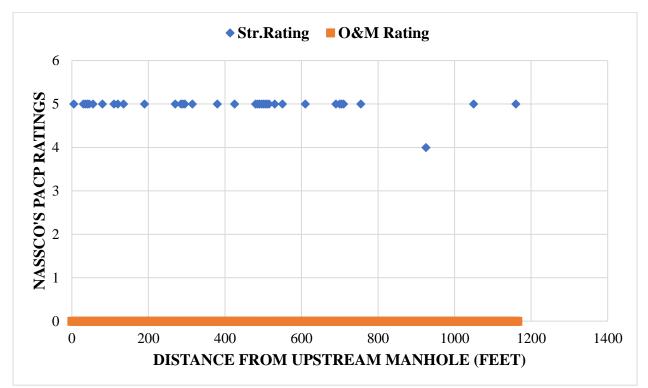


Figure 4-124 Locations of sanitary sewer pipelines in Phase I

4.2.2 Visual Observation

The CCTV data indicates that several sections of the sewer line have damaged surfaces, exposed and critically corroded rebars, missing concrete covers, etc. Severe structural defects observed portend immediate failure of the system and must be repaired or replaced as soon as possible to ensure their serviceability and structural integrity and to meet loading and environmental requirements.

The details of the inspections are presented in the PACP format for each line. The distance was calculated from one manhole to the next. The defect codes and dimensions comply with the NASSCO's PACP standard. In addition to the defect table, the quick rating, overall rating, and rating index were calculated for both the structural and O&M defects and are presented for each line. Appendix I contains snapshots that were taken at every five feet of all the lines.

1. Line 9502

Figure 4-125 NASSCO's PACP rating for every 5 ft. pipe segment in line 9502.

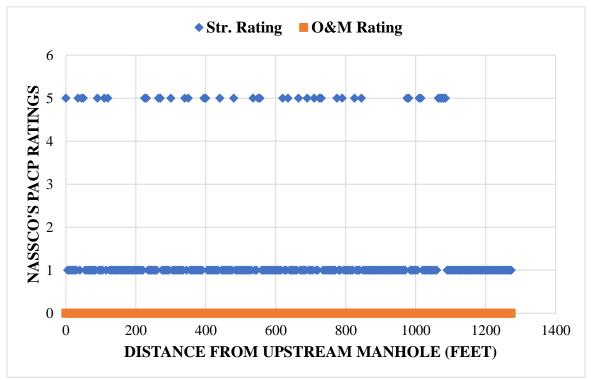


Figure 4-126 NASSCO's PACP rating for every 5 ft. pipe segment in line 9612.

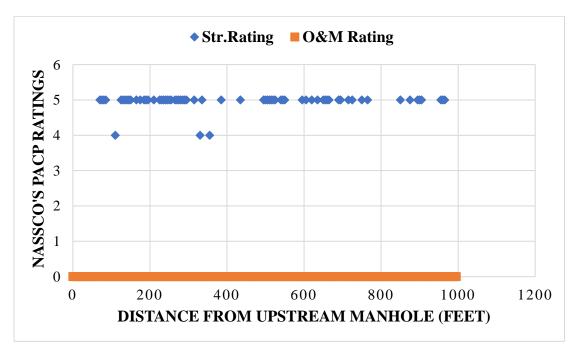
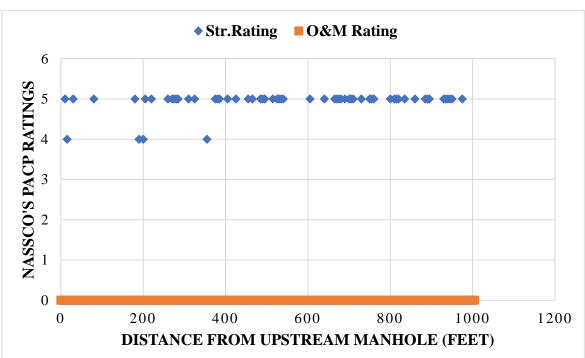



Figure 4-127 NASSCO's PACP rating for every 5 ft. pipe segment in line 9503.

Figure 4-128 NASSCO's PACP rating for every 5 ft. pipe segment in line 9810.

5. Line 9506

Figure 4-129 NASSCO's PACP rating for every 5 ft. pipe segment in line 9506.

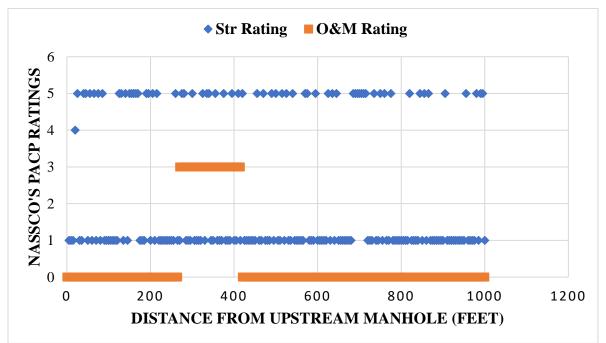


Figure 4-130 NASSCO's PACP rating for every 5 ft. pipe segment in line 9846.

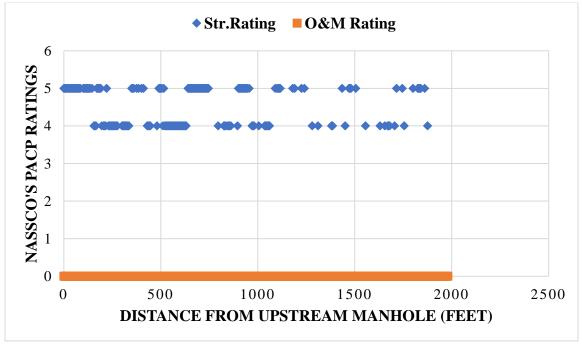


Figure 4-131 NASSCO's PACP rating for every 5 ft. pipe segment in line 9507.

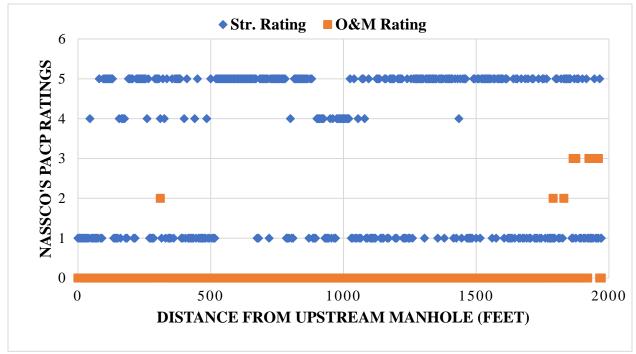
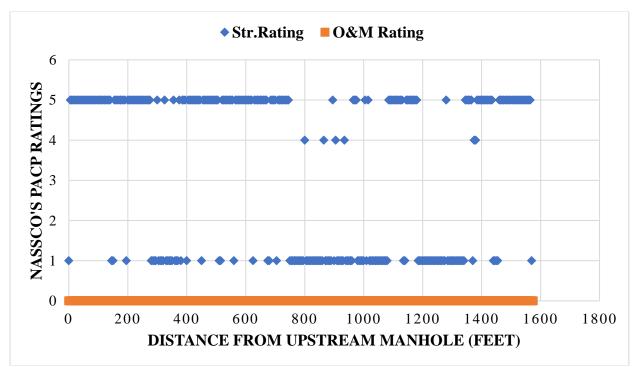



Figure 4-132 NASSCO's PACP rating for every 5 ft. pipe segment in line 9231.

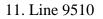

9. Line 9509-9508

Figure 4-133 NASSCO's PACP rating for every 5 ft. pipe segment in line 9509-9508

10. Line 9260

Figure 4-134 NASSCO's PACP rating for every 5 ft. pipe segment in line 9260.

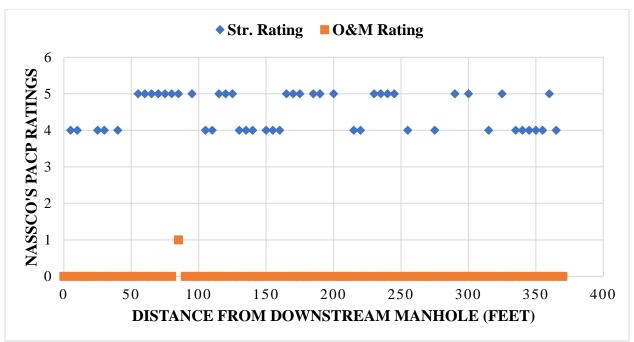


Figure 4-135 NASSCO's PACP rating for every 5 ft. pipe segment in line 9510.

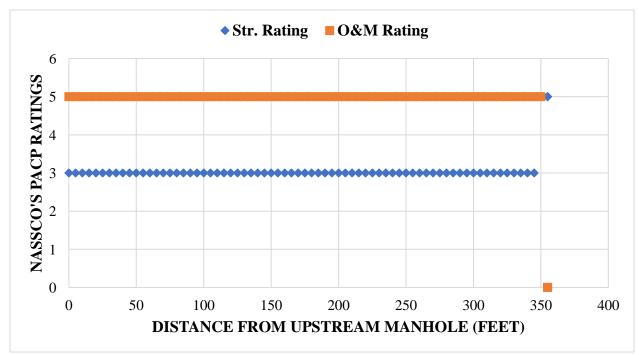


Figure 4-136 NASSCO's PACP rating for every 5 ft. pipe segment in line 9295.

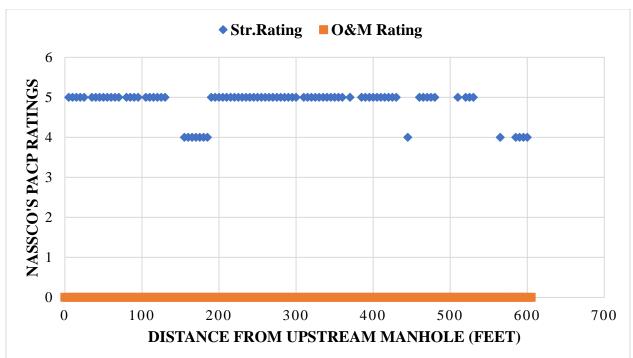
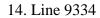



Figure 4-137 NASSCO's PACP rating for every 5 ft. pipe segment in line 9511.

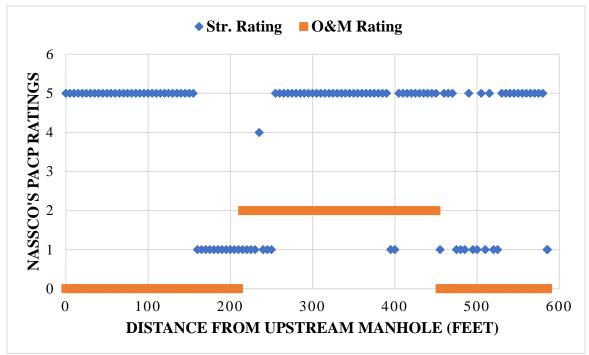
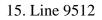



Figure 4-138 NASSCO's PACP rating for every 5 ft. pipe segment in line 9334.

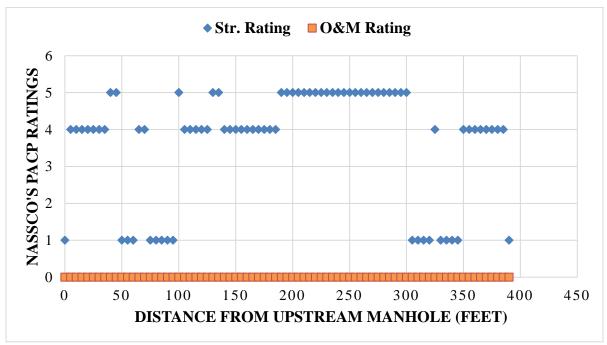
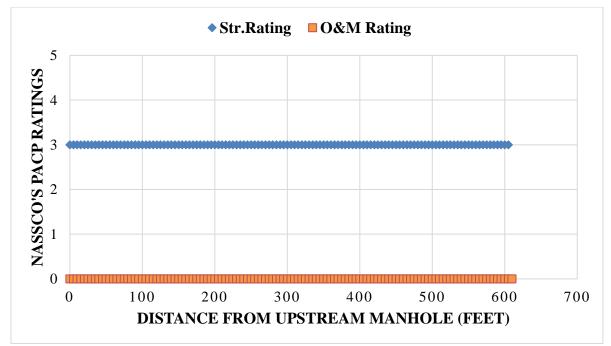
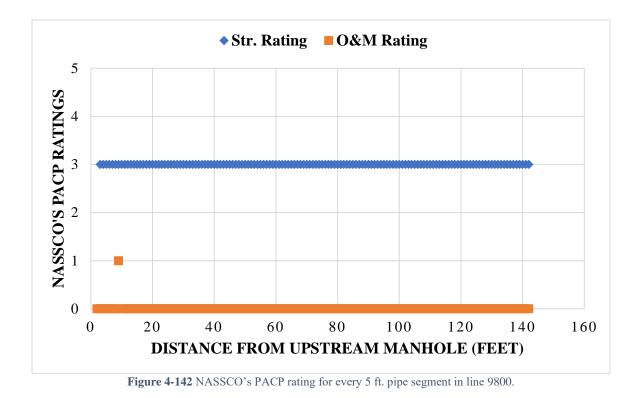



Figure 4-139 NASSCO's PACP rating for every 5 ft. pipe segment in line 9512.

16. Line 9786


Figure 4-140 NASSCO's PACP rating for every 5 ft. pipe segment in line 9786.

17. Line 9799

Figure 4-141 NASSCO's PACP rating for every 5 ft. pipe segment in line 9799.

18. Line 9800

4.2.3 MSI Results

The UTA CSER's inspection robot is equipped with lidar and sonar sensors that provide numerical measurements and other information that enhance the quantitative data derived from other devices. The lidar sensor mapped the surface of the pipe above the water line, and the data it collected was used to calculate the loss of thickness in the reinforced concrete pipe walls. (The loss of concrete's clear cover leaves reinforcements exposed, making them susceptible to corrosion and highly prone to failure.) The lidar data was used to calculate the deflection of flexible pipes like ductile iron (DI) and fiber reinforced pipe (FRP), to ensure that they did not exceed the deflection limits established by ASTM and AWWA (7.5% and 5%, respectively).

The sonar sensor was installed at the bottom of the Robot to map the underwater surface of the pipe, since CCTV and lidar can only provide information on the surface that is above water. The sonar can detect debris or blockages present under the water level inside the pipe, and the height of the debris, calculated based on the sonar readings, is used to calculate the percentage of blockage in the pipe.

The UTA CSER robot used for inspections is highly accurate in mapping the surface of the pipes, and the lidar sensors provided data that facilitated calculating the loss of concrete or deflection for both rigid and flexible pipes. The results for each pipe segment were overlapped with the correlating sonar scan to present the full cross section of the pipe. Examples of plots from post- processed MSI data for flexible and rigid pipes are shown in Figure 4-143 and Figure 4-144, respectively. Calculations were performed for each foot of pipe segment, and graphs are presented hereafter for each inspected line.

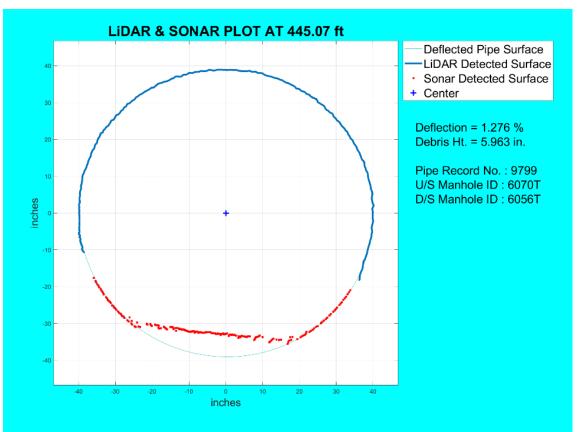


Figure 4-143 Example plot from post-processed MSI data for flexible pipe.



Figure 4-144 Example plot from post-processed MSI data for rigid pipe.

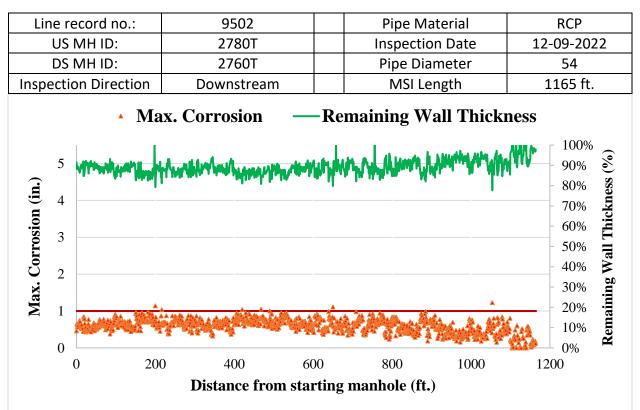


Figure 4-145 Maximum corrosion and remaining wall thickness (%) for line 9502

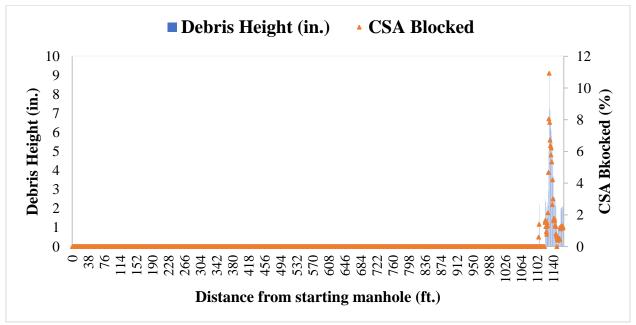


Figure 4-146 Debris height and CSA blocked for line 9502.

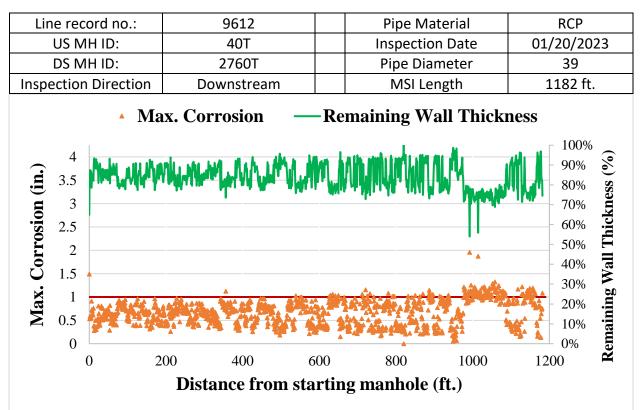


Figure 4-147 Maximum corrosion and remaining wall thickness (%) for line 9612

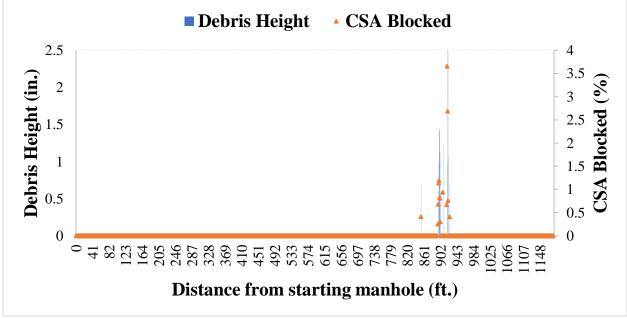


Figure 4-148 Debris height and CSA blocked for line 9612.

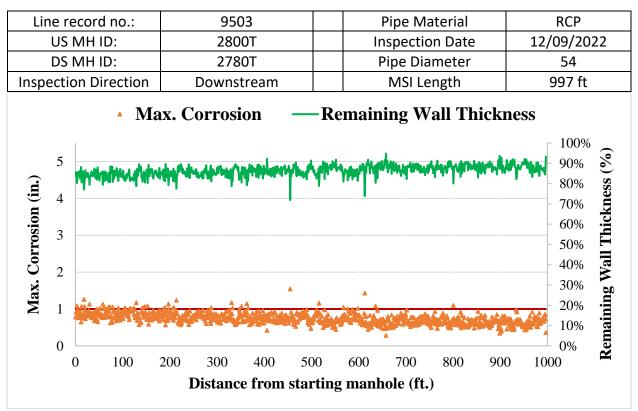


Figure 4-149 Maximum corrosion and remaining wall thickness (%) for line 9503

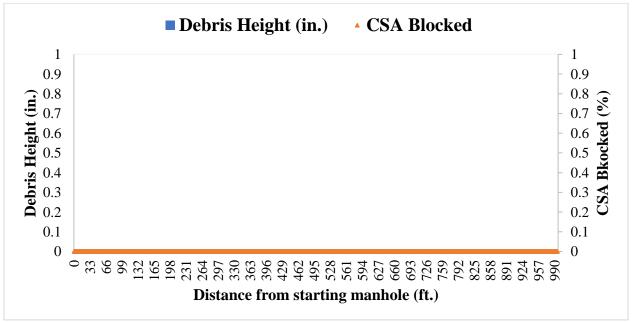


Figure 4-150 Debris height and CSA blocked for line 9503.

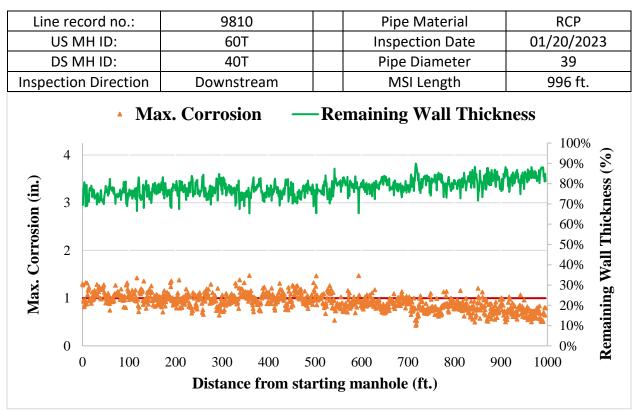


Figure 4-151 Maximum corrosion and remaining wall thickness (%) for line 9810

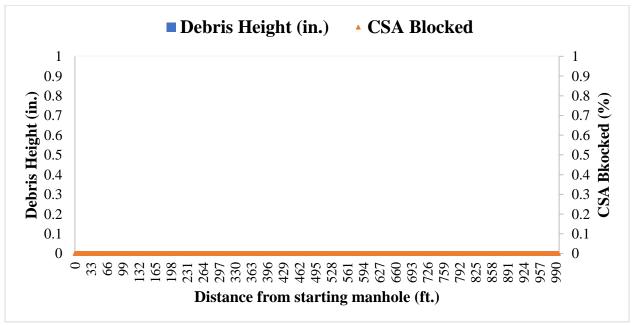


Figure 4-152 Debris height and CSA blocked for line 9810.

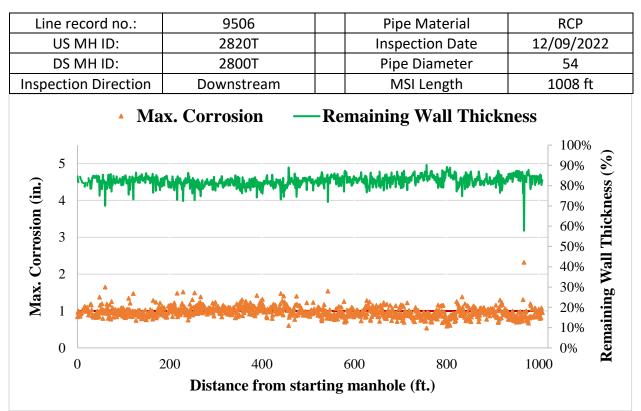


Figure 4-153 Maximum corrosion and remaining wall thickness (%) for line 9506

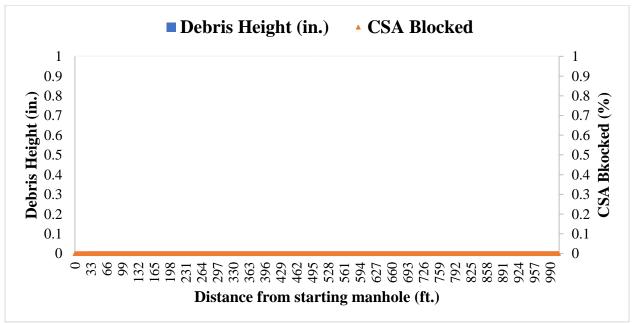


Figure 4-154 Debris height and CSA blocked for line 9506.

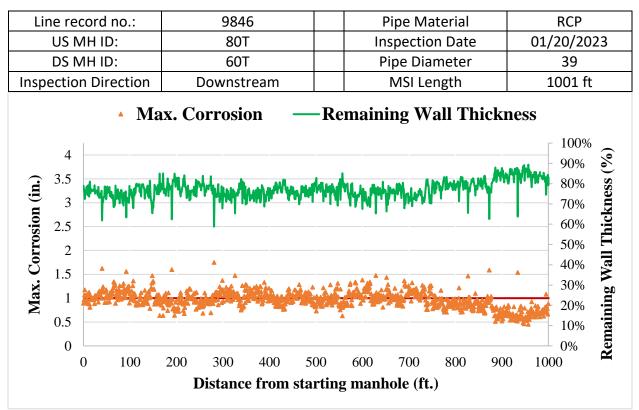


Figure 4-155 Maximum corrosion and remaining wall thickness (%) for line 9846

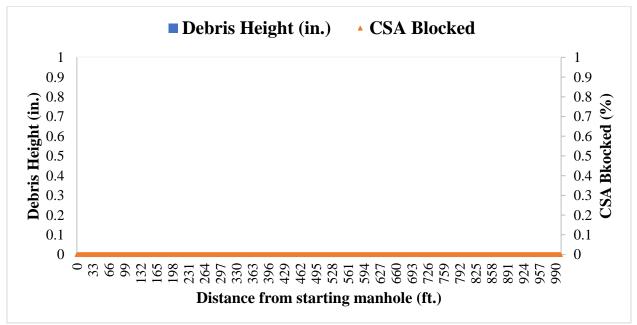


Figure 4-156 Debris height and CSA blocked for line 9846.

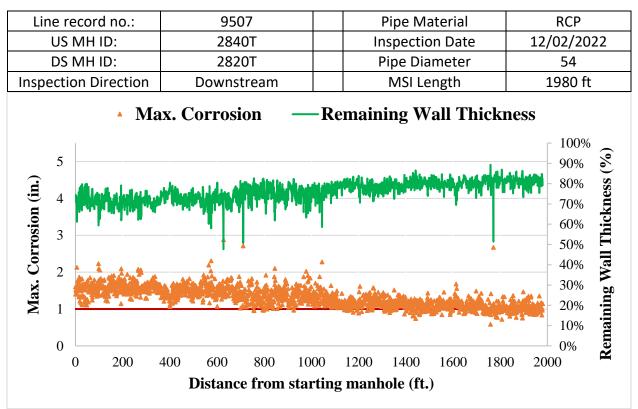


Figure 4-157 Maximum corrosion and remaining wall thickness (%) for line 9507

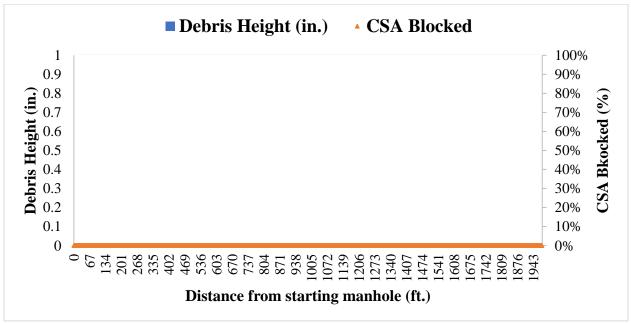


Figure 4-158 Debris height and CSA blocked for line 9507.

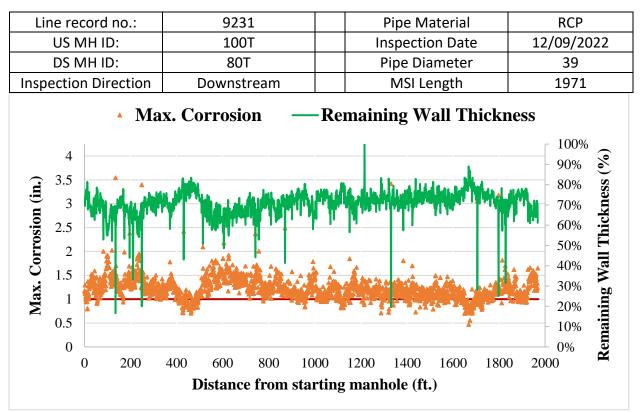


Figure 4-159 Maximum corrosion and remaining wall thickness (%) for line 9231

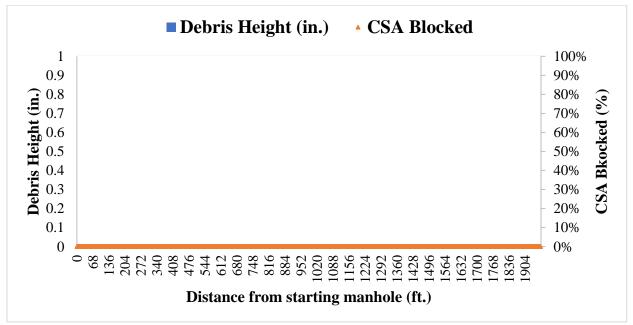


Figure 4-160 Debris height and CSA blocked for line 9231.

9. Line 9509-9508

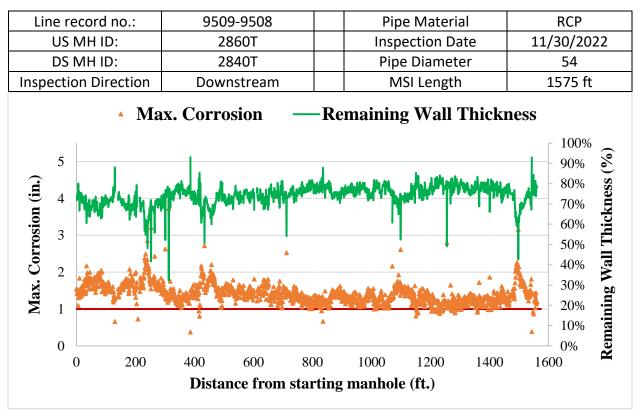


Figure 4-161 Maximum corrosion and remaining wall thickness (%) for line 9509-9508

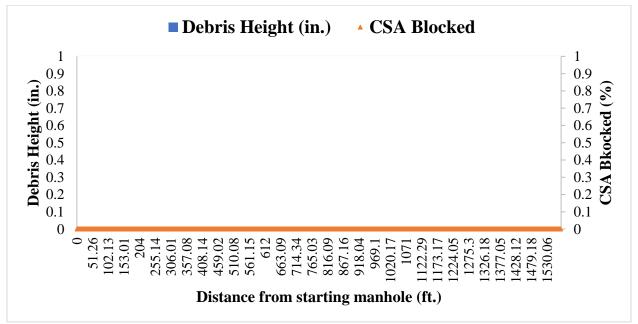


Figure 4-162 Debris height and CSA blocked for line 9509-9508.

10. Line 9260

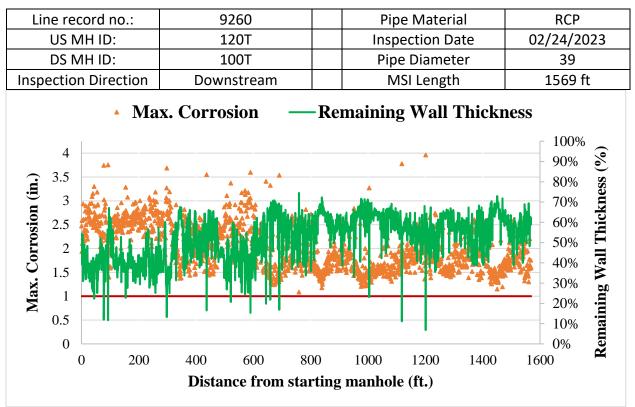


Figure 4-163 Maximum corrosion and remaining wall thickness (%) for line 9260

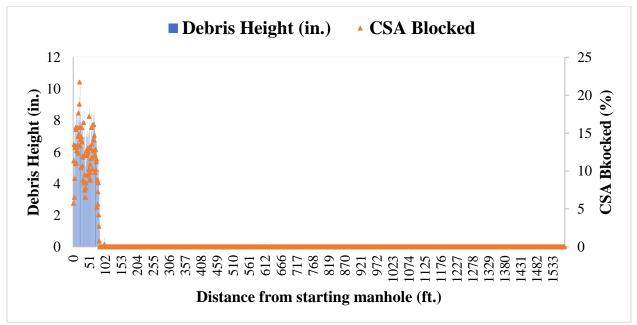


Figure 4-164 Debris height and CSA blocked for line 9260.

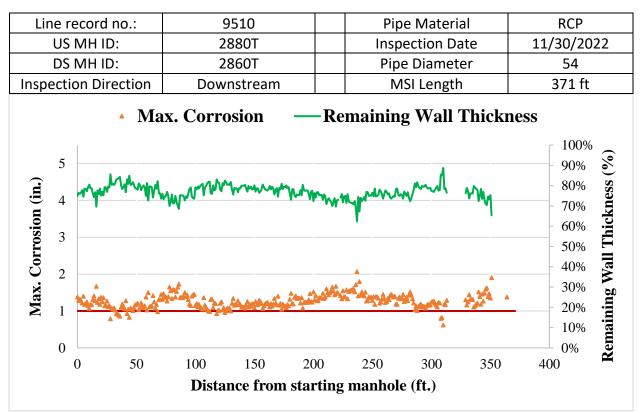


Figure 4-165 Maximum corrosion and remaining wall thickness (%) for line 9510

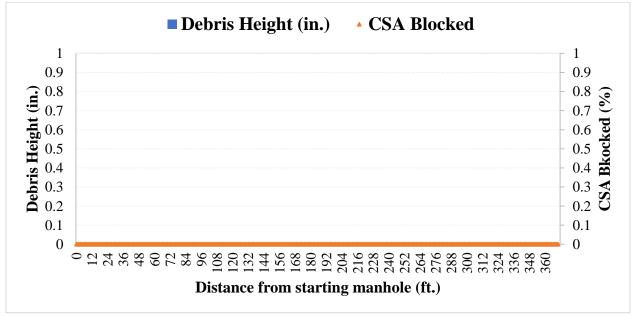


Figure 4-166 Debris height and CSA blocked for line 9510.

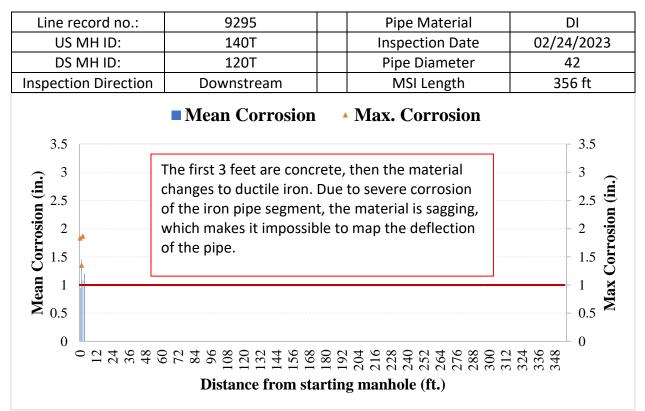


Figure 4-167 Mean and maximum corrosion for line 9295

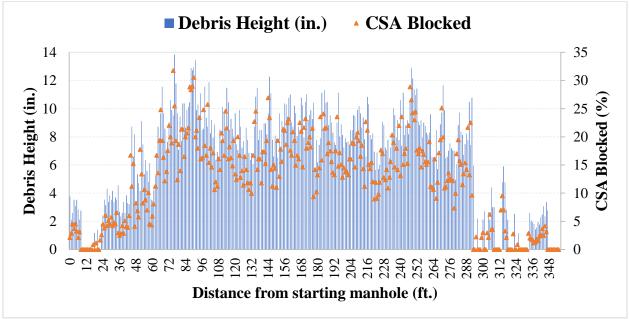


Figure 4-168 Debris height and CSA blocked for line 9295.

13. Line 9511

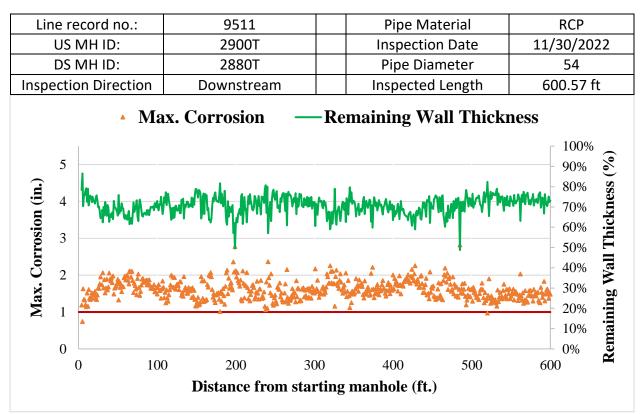


Figure 4-169 Maximum corrosion and remaining wall thickness (%) for line 9511

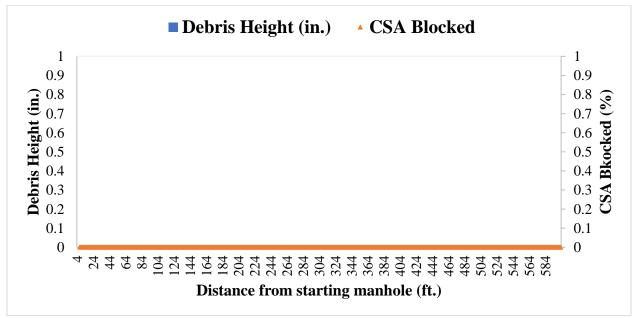


Figure 4-170 Debris height and CSA blocked for line 9511.

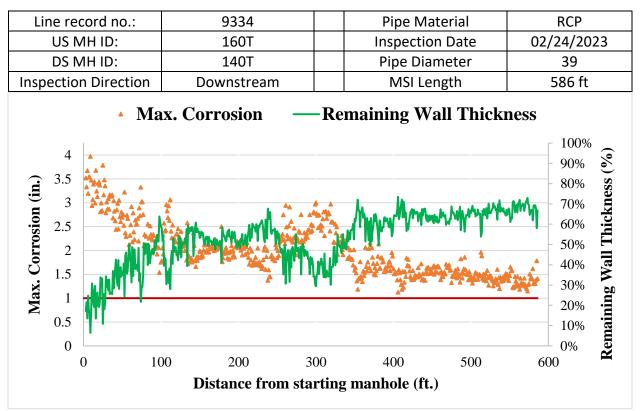


Figure 4-171 Maximum corrosion and remaining wall thickness (%) for line 9334

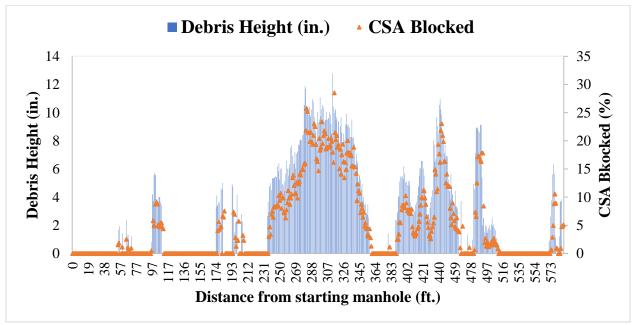


Figure 4-172 Debris height and CSA blocked for line 9334.

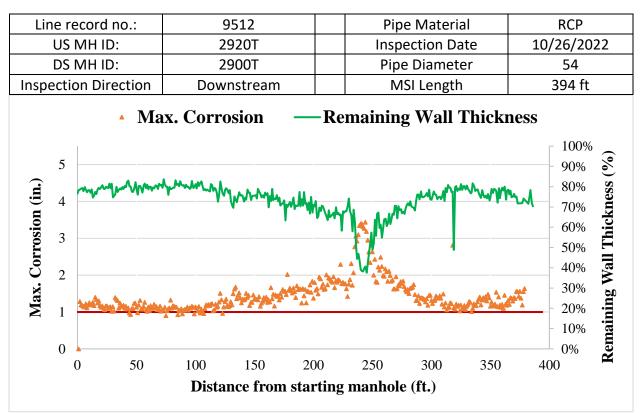


Figure 4-173 Maximum corrosion and remaining wall thickness (%) for line 9512

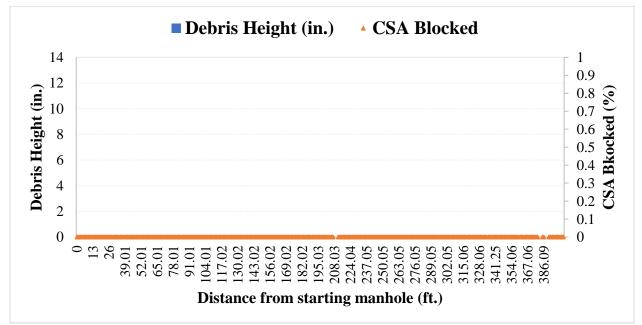


Figure 4-174 Debris height and CSA blocked for line 9512.

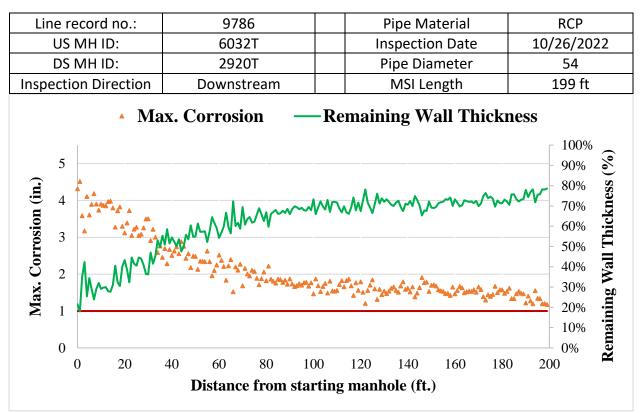


Figure 4-175 Maximum corrosion and remaining wall thickness (%) for line 9786

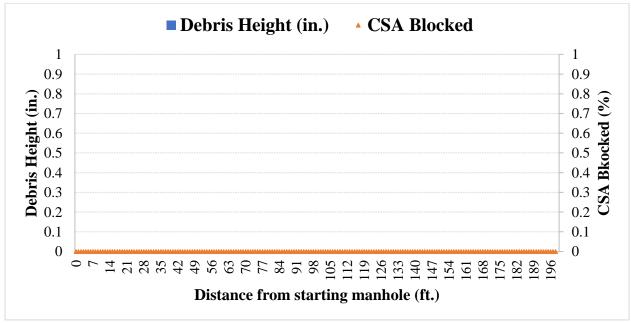


Figure 4-176 Debris height and CSA blocked for line 9786.

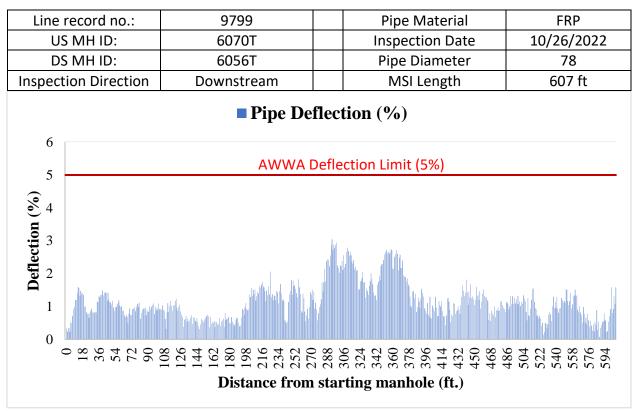


Figure 4-177 Pipe deflection for line 9799

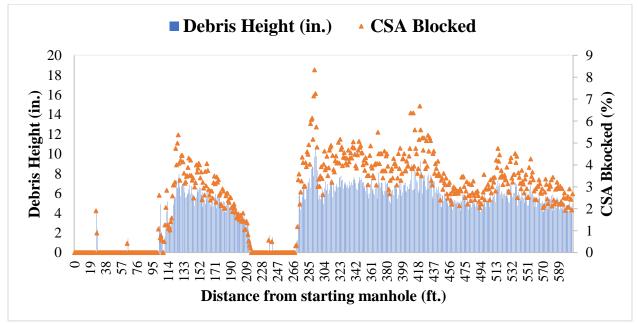


Figure 4-178 Debris height and CSA blocked for line 9799.

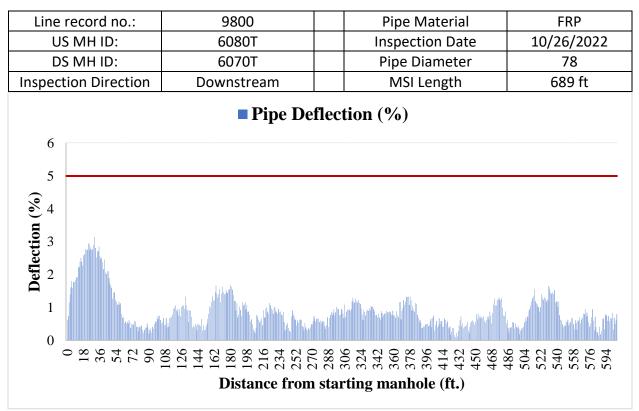


Figure 4-179 Pipe deflection for line 9800

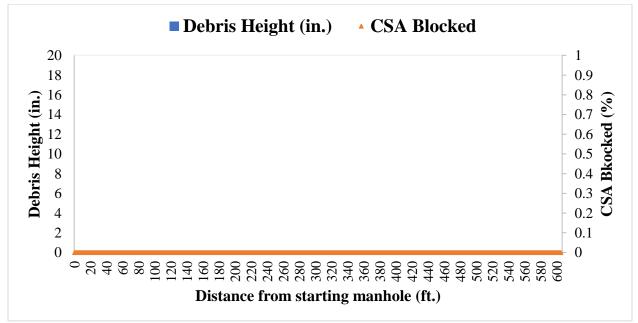


Figure 4-180 Debris height and CSA blocked for line 9800.

5 Development of a Supervised Machine Learning Model based on Artificial Intelligence

5.1 Overview

This chapter provides a comprehensive overview of the supervised machine learning algorithms used to develop a model that can predict corrosion by evaluating validation and performance metrics. The identification and selection of the variables are discussed and the correlation among the independent variables is assessed. The dataset was divided into training and testing sets, and preprocessing steps such as filtration and standardization were performed. Statistical programming language R 4.3.1 was employed for the data analysis, preprocessing, and construction. Multiple models were created and tested, and the best model was selected.

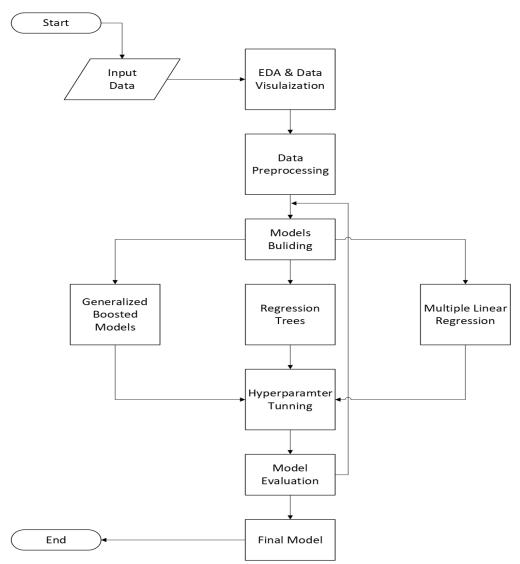


Figure 5-1 Flowchart of model development

5.2 Descriptions of Variables

5.2.1 Dependent Variable

A PACP evaluation of the CCTV data collected on the Trinity River Authority and the City of Mansfield sewer pipes revealed that corrosion is the primary cause of degradation. A few other structural defects, such as cracks, holes, broken parts, and joint offsets, were observed, but corrosion was identified as the predominant structural defect responsible for the overall deterioration.

5.2.2 Independent Variables

The following independent variables were selected for this study based on their potential influence on the research outcomes.

5.2.2.1 Diameter

Previous research has identified a pipe's diameter as a physical property that correlates robustly with corrosion. Rajani and Makar (2000) avowed that small-diameter pipes deteriorate faster than those with a larger diameter, due to the influence of the corroded area on the structural resistance of the pipeline. Rajani and Tesfamariam (2007) demonstrated that the extent of bedding loss also significantly impacts smaller-diameter pipes. Larger pipes are more susceptible to external loads and are more prone to corrosion at points of contact with the soil because of their larger surface area. The range of pipe diameters investigated for this study is presented in Table 5.1.

Trinity River Authority	City of Mansfield		
30	36		
36	39		
39	42		
42	48		
-	54		

5.2.2.2 Age

Multiple studies have indicated that the age of a pipe has a significant impact on its overall condition and that the number of breakages that occur annually increase exponentially with the age of the pipe Al-Barqawi and Zayed (2006); Davis et al. (2007); Wang et al. (2010).

5.2.2.3 Depth of Flow

Depth of flow is another independent variable that affects corrosion rate, as shown in Figure 5-2 Wells et al. (2009).

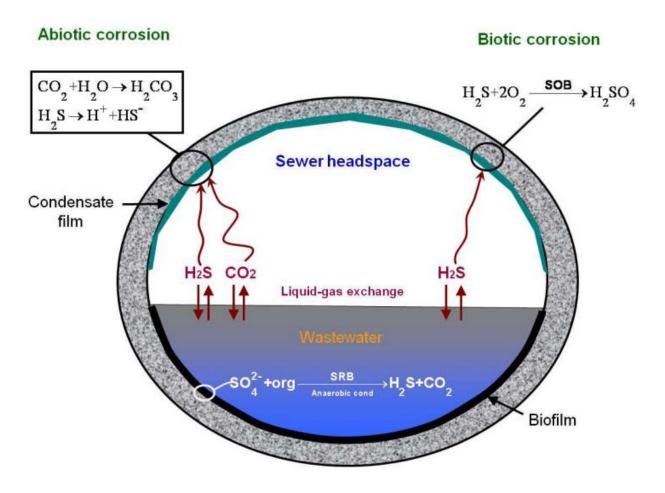


Figure 5-2 Corrosion process in sewer lines (Wells et al., 2009)

5.2.2.4 Pipe Slope

Sewer pipes with flat slopes experience reduced velocity that results in wastewater being retained longer in the pipes. This increases the likelihood of hydrogen sulfide gas being generated and converted to sulfuric acid and accelerates the rate of corrosion in cementitious pipes like concrete and mortar Ana et al. (2009); Ayoub et al. (2004). Jeong et al. (2005) found that pipes with steeper

slopes deteriorate more rapidly; thus, the slope of the pipe was considered an independent variable in this research.

5.2.2.5 Length of Pipe

Shorter pipelines are commonly used in urban areas, where the risk of breakage is greater. Longer pipelines, however, are predominantly found in rural areas characterized by stable conditions, as it is more likely that issues will occur along their length Wang et al. (2009).

5.2.2.6 Debris Height

The height of the debris is treated as an independent variable in this study.

5.2.2.7 Distance From Upstream Manhole

In this study, we consider the distance from the upstream manhole as a variable independent of other factors. This choice is rooted in the analysis of CCTV videos and the categorization of structural defects based on PACP standards. Through this analysis, it has become evident that in many instances, when pipe sections observed are located closer to manholes, there is a greater likelihood of experiencing elevated corrosion rates and heightened exposure of reinforcements.

5.3 Data Description & Preprocessing

The dataset used to develop the artificial intelligence model consisted of merged data obtained from the City of Mansfield and Trinity River Authority projects. A total of 35,044 data points were collected for every foot of pipeline inspected, and after removing outliers for maximum corrosion, debris height, and age, 34,974 data points were available. Since each precast pipeline is 8 to10 ft. long, the characteristics and condition of each pipe were based on each 5 ft. of line inspected; thus, the 34,974 data points yielded to 6,994 for this research study.

Eight (8) of the 15 variables initially present (maximum corrosion, debris height, slop, distance from upstream, depth of flow, total length of pipe, age, and pipe diameter) were included in the dataset. All of them are numerical and were chosen based on their high correlation with the nine different readings for each line. Some readings, such as maximum corrosion and debris height, were collected through site inspections; structural data was observed from the collected CCTV footage. Corrosion was designated as a dependent variable; the remaining seven variables served as independent variables. A list of the variables and their roles are presented in Table (5-3) below.

 Table 5-2 Variables Considered in the Model

Dependent Variable (Y)	Independent Variable (X1)	Independe nt Variable (X ₂)	Independent Variable (X3)	Independent Variable (X4)	Independent Variable (X5)	Independent Variable (X ₆)	Independent Variable (X ₇)
Corrosion (in)	Debris Height	Slope	Distance from Upstream	Depth of Flow	Total Length of Pipe	Age	Pipe Diameter

Several pre-processing steps were involved in preparing the data for the development of a new model. The outliers in maximum corrosion, debris height, and age were removed, as were any missing values caused by sensor reading errors, which constituted a small percentage of the data. Once the data was filtered from the outliers, the data was standardized according to the following equation, and a moving average with a window size of 5 ft. was applied to each data point. These pre-processing steps ensured that the data was ready for the subsequent stages of the analysis.

$$z = \frac{x - \mu}{\sigma}$$

z = the standardized value of a data point.

x = the original value of the data point.

 μ = the mean of the feature.

 σ = the standard deviation of the feature.

5.4 Explanatory Data Analysis

Explanatory data analysis (EDA) focuses on acquiring a deeper understanding of the data, identifying anomalies or errors, and generating hypotheses for further investigation by employing a range of techniques and visualizations to delve into the data and detect patterns and reveal meaningful insights Tukey, (1977). By performing EDA, we established familiarity with the dataset and its underlying structure so that we could apply machine learning methods or more advanced descriptive statistics, which entail computing summary metrics such as mean, median, standard deviation, and percentiles. These statistics provide valuable information about the central tendency, variability, and distribution of the data Samuel & Stanley, (1991).

Variable	vars	Ν	Mean	Standard deviation	Median	min	max	range
Corrosion (in)	1	6994	0.911748	0.449547482	0.781039	0	3.242249	3.242249
Debris Height (in)	2	6994	0.275268	1.056779083	0	0	11.86226	11.86226
Slope	3	6994	0.217113	0.059799535	0.2	0.12	0.331	0.211
Distance from US	4	6994	0.513648	0.301726011	0.508956	0.00101	1.543662	1.542652
Depth of Flow	5	6994	9.077745	3.139121641	7.8	3.9	21.6	17.7
Total Length MSI	6	6994	960.5239	515.8126864	996	41	1980	1939
Age	7	6994	35.68084	8.42661114	32	9	52	43
Pipe Diameter	8	6994	43.19588	7.031525519	39	30	54	24

Table 5-3 Statistical Summary for Averaged Data

Data visualization is another integral component of EDA, as visual representations such as histograms and box plots offer graphical insights into the data and facilitate the identification of patterns, outliers, relationships between variables, and potential trends. Furthermore, EDA uses correlation coefficients or matrices to explore relationships between variables and enables the identification of solid correlations or predictive relationships among them.

The heat map presented in Figure 5-3 illustrates the correlation among various variables in the dataset after it has undergone averaging and standardization. The map represents correlations using colors, with positive correlations depicted in blue, negative correlations in red, and neutral correlations in white. The intensity of the color indicates the strength of the correlation, with darker colors representing stronger correlations.

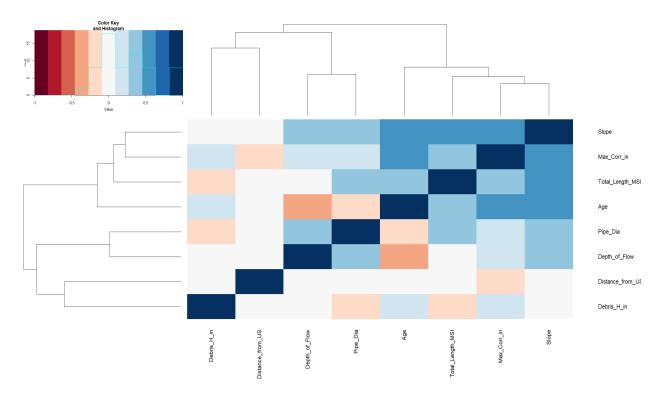


Figure 5-3 Correlation heatmap standardized data

It is evident from the heat map that the dependent variable, corrosion, exhibits the strongest positive correlation with the independent variable, slope, followed by the independent variables, age and length of the pipe. Conversely, the most pronounced negative correlation was observed between corrosion and the distance from the upstream manhole. This finding supports the rationale behind including the distance from the upstream manhole as one of the independent variables, as it appears to have a significant role in influencing corrosion.

The box plots shown in Figure 5-4 illustrates the variables, with each box representing the interquartile range (between the 25th and 75th percentiles); the middle line represents the median. Outliers are shown as individual points outside the box, revealing the variable distributions. An examination of the figure reveals that the pipe diameter distribution is concentrated in the lower half of the data, indicating a close grouping of the data points; conversely, the length of the slope exhibits a wider spread and less concentration of data points.

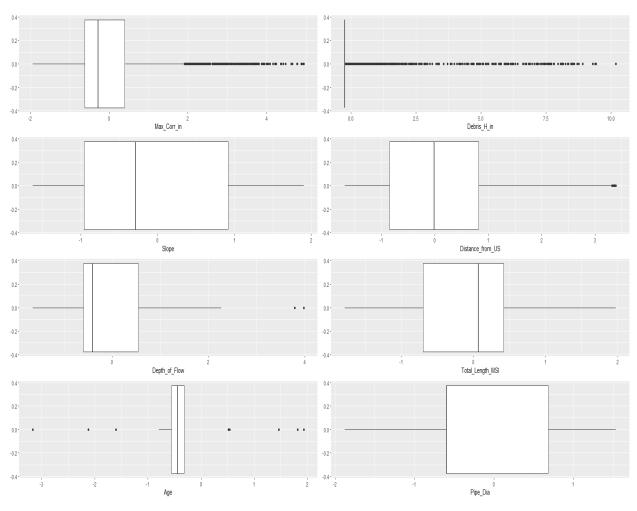


Figure 5-4 Box plots of variables

Figure 5-5 illustrates the regression between the dependent and predictor variables and demonstrates both positive and negative correlations. Specifically, there is a positive correlation between the slope and corrosion, as well as between age and corrosion. Conversely, the correlation between the distance from the upstream manhole and corrosion is negative. This observation helps explain why this particular variable was included in the analysis.

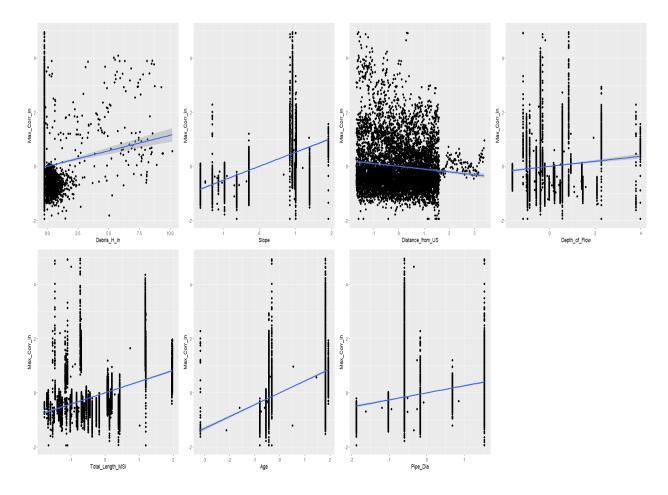


Figure 5-5 Multiple linear regression

5.5 Construction of Models

Multiple regression models were developed and evaluated to identify the most effective model for predicting the corrosion rate. They encompassed a variety of regression techniques and methodologies for analyzing the relationship between input variables and how rapidly the pipes corroded. The goal was to identify the model that provides the most accurate and reliable predictions of corrosion by rigorously evaluating and comparing the models.

5.5.1 Multiple linear regression

Multiple linear regression is a statistical modeling technique employed to examine the relationships between a dependent variable and two or more independent variables. It builds upon the principles of simple linear regression, which focuses on a single independent variable by accommodating multiple predictors Jobson, (1991); Montgomery et al. (2021).

The objective of utilizing multiple linear regression is to develop a mathematical equation that effectively represents the relationship between the dependent variable and the independent variables. This equation can be expressed as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

In this equation, Y denotes the dependent variable, while $X_1, X_2, ..., X_n$ represent the independent variables. The intercept term is denoted by β_0 , and $\beta_1, \beta_2, ..., \beta_n$ correspond to the regression coefficients associated with each independent variable.

The coefficients (β values) in the multiple linear regression model indicate the anticipated change in the dependent variable with a one-unit alteration in the respective independent variable, assuming all other independent variables remain constant. The model calculates the coefficients by minimizing the sum of the squared differences between the observed values of the dependent variable and the predicted values obtained using the independent variables. By estimating these coefficients, the multiple linear regression model provides insights into the relationships and impacts of the independent variables on the dependent variable and explains how changes in independent variables influence the dependent variable, while accounting for the influence of other variables in the model.

5.5.2 Multiple linear regression with interactions

Multiple linear regression with interactions is an extension of the standard multiple linear regression model, as it incorporates interaction terms between independent variables. In this approach, the model considers both the main effects of the independent variables and the combined effects or interactions among them. In multiple linear regression with interactions, the model equation is expanded to include interaction terms that are created by multiplying two or more independent variables together, and the interaction terms capture the joint effect or interaction between the respective independent variables Aiken & West, (1991).

The expanded model equation can be expressed as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \beta_{ij} x_i x_j$$

where:

Y is the dependent variable being predicted.

 $X_1, X_2, ..., X_n$ are the independent variables.

 β_0 , β_1 , β_2 , ..., β_n are the regression coefficients representing the main effects of the independent variables.

 β_{ij} represents the regression coefficient for the interaction term between the i-th and j-th independent variables.

X_i*X_j represents the interaction between the i-th and j-th independent variables.

5.5.3 Polynomial regression with interactions

Polynomial regression with interactions expands on the standard polynomial regression model by incorporating interaction terms between the polynomial features. This methodology enables modeling both the polynomial relationships among independent variables and their interactions.

The model equation incorporates polynomial terms created by raising the independent variables to various powers (e.g., squared, cubed, etc.) that allow for capturing nonlinear associations between the independent variables and the dependent variable. When interactions are included, the model equation is augmented with additional terms that represent the product of two or more polynomial features, and the interaction terms account for the combined effects or interactions among the polynomial features Draper, & Smith (1998).

The expanded model equation can be expressed as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \beta_{ij} (xi^K * XJ^I)$$

The dependent variable is denoted as Y, and X₁, X₂, ..., X_n represent the independent variables. The intercept term is represented by β_0 , while β_1 , β_2 , ..., β_n are the coefficients associated with the polynomial features of the independent variables. The interaction terms are denoted by β_{12} , β_{13} , ..., β_{ij} , capturing the coefficients associated with the interactions among the variables.

By incorporating polynomial terms and interaction terms, polynomial regression with interactions enables the capture of nonlinear relationships and the exploration of how the interactions among the polynomial features influence the dependent variable. This approach provides flexibility in modeling complex relationships that extend beyond what can be represented by linear models.

5.5.4 Random forest regression

A regression tree is a type of supervised machine learning model that utilizes a tree structure to construct a regression model and categorizes data into smaller subsets until the final response variable can be predicted. This non-parametric regression model does not yield an equation but instead relies on independent variables to determine the outcome variable.

When constructing a regression tree, machine learning algorithms systematically divide the data into smaller nodes, based on the features used in the training set, and the process continues until the leaf stage is reached and further division is not possible. The objective of node splitting is to optimize the information gained at each split, which is often a key consideration in dividing a node into multiple nodes. The final response variable is determined by averaging the variables present in the leaf node. The regression tree is a widely used regression machine learning algorithm, due to its simplicity and accuracy. The corrosion prediction model that was constructed based upon random forest regression exhibited the best model validation results Breiman, (2001).

5.5.5 Generalized boosted regression models.

The advanced machine learning approach for constructing generalized boosted regression models (GBM) merges boosting principles with regression. GBM operates as an ensemble method by sequentially building a group of weak regression models and combining them to form a robust predictive model. The weak regression models, which are often decision trees, are trained in a step-by-step manner, with each subsequent model focusing on capturing patterns that the previous models may have missed and minimizing errors or residuals left behind by previous models. By continually incorporating additional weak models and assigning more weight to data points with larger residuals, the ensemble progressively enhances the overall predictive performance Friedman, (2001).

The term "generalized" in GBMs highlights its adaptability in handling a wide range of regression problems. It can effectively address diverse response variables, including continuous, categorical, and even survival data, by appropriately selecting the loss function and adjusting the algorithm.

GBM is esteemed for its ability to capture intricate non-linear relationships, manage interactions, and seamlessly handle missing values. It finds extensive applications in predictive modeling and has demonstrated success in various domains, such as finance, healthcare, and marketing.

5.6 Evaluation and Selection of Models

The selection of the best predictive model is based on model performance metrics, which are quantitative measures used to assess their effectiveness and accuracy Liu et al. (2011).

5.6.1 The coefficient of determination (\mathbb{R}^2)

The coefficient of determination, also known as the multiple correlation coefficient, is a widely accepted concept in classical regression analysis Rao (1973). It is defined as the proportion of variance that is explained by the regression model, which makes it a valuable metric for evaluating its ability to predict the dependent variable based on the independent variables Nagelkerke, (1991). The coefficient of determination can be calculated using the following equation:

$$R^2 = 1 - \frac{SSR}{SST}$$

SSR is the residual sum of squares, using the following equation:

$$SSR = \sum_{i} (y_i - f_i)^2$$

SST is the total sum of squares, using the following equation:

$$SST = \sum_{i} (y_i - y)^2$$

where y_i is i^{th} observed value.

f_i is ith predicted value.

 $\bar{\boldsymbol{y}}$ is the mean of the observed data.

The validation metric is referred to as the unadjusted R^2 because it assumes an equal level of predictive capability among all independent variables Pokharel, (2021).

5.6.2 Adjusted coefficient of determination

One limitation of R^2 is that its value increases and approaches such as additional explanatory variables, regardless of their relevance, are included in the model and can lead to overestimation of the model's performance. To mitigate this issue, a correction for the degrees of freedom is applied to R^2 , resulting in an adjusted R-squared metric denoted as R_i or adjusted R'. The adjusted R-squared considers the number of variables in the model and provides a more reliable measure of the model's goodness of fit Srivastava et al. (1995).

$$R^{2}_{adj} = 1 - \frac{(1 - R^{2})(N - 1)}{N - p - 1}$$

Where:

 R^2 = Unadjusted R^2 .

N= Total sample size.

P= Number of predictors.

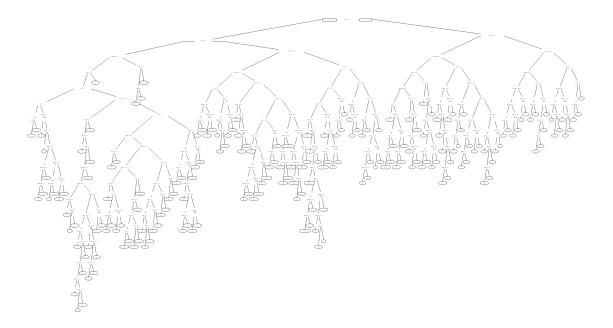
5.6.3 Mean squared error (MSE) / root mean squared error (RMSE)

In mathematical terms, RMSE is the square root of the average of the squared errors, while MSE represents the average of the squared errors. Both MSE and RMSE serve as cost functions for regression models, quantifying the average error between the predicted values and the actual values. The unit of RMSE matches that of the target variable, making it a meaningful measure. Therefore, in regression analysis, a lower RMSE value is desirable, as it indicates that the predicted values align closely with the actual values, reflecting higher accuracy (Pokharel, 2021).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_i)^2$$
$$RMSE = \sqrt{MSE}$$

Where: n = Number of data.

 $Y_i = Actual value.$


 $f_i = Predicted value.$

5.6.4 Probability of observing data (p-value)

The p-value is the probability of observing the data or more extreme data under the assumption that the null hypothesis is true Biau et al. (2019). It quantifies the level of significance or the strength of evidence against the null hypothesis. In general, when the p-value falls below a predefined significance level (often set at 0.05), the outcome is deemed statistically significant, leading to the rejection of the null hypothesis. Conversely, if the p-value exceeds the significance level, there is inadequate evidence to reject the null hypothesis Hung et al. (1997).

5.7 Model selection

After evaluating multiple regression models and analyzing their performance metrics, the random forest regression model was found to be the top performer and most accurate. Figure 5-6 showcases the decision tree obtained from implementing random forest regression, using the merged dataset from the TRA and City of Mansfield. It is important to note that the default number of trees was utilized for this model.

Figure 5-6 Random Forest regression

Figure 5-7 demonstrate the actual versus the predicted corrosion rates resulted from all models performed.

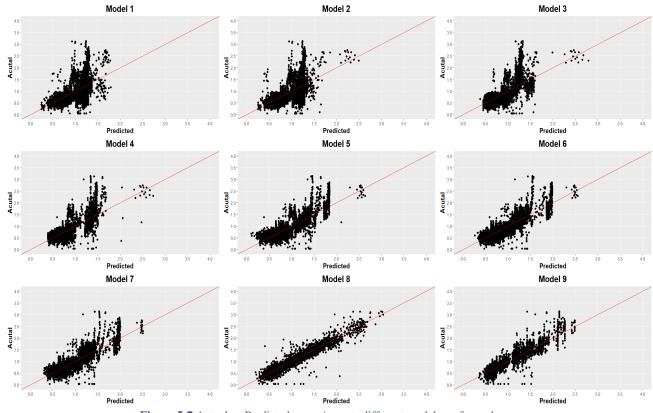


Figure 5-7 Actual vs Predicted corrosion rate different models performed

Figure 5-8 demonstrates the result of predicting the corrosion rate resulted from performing random forest regression, which is the model with the best performance matrices as can also be noted from Table 5-4.

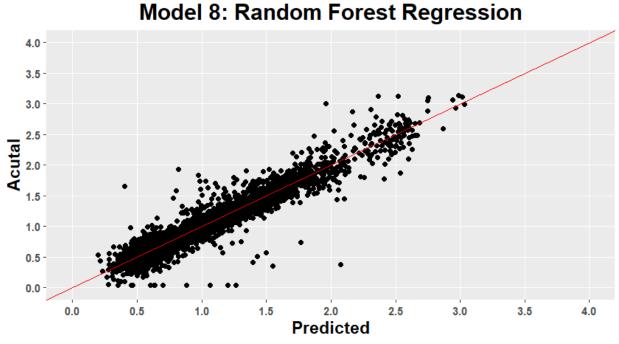


Figure 5-8 Predicted Vs Actual Corrosion Rate for model 8.

Figure 5-9 shows that random forest regression reveals the relative influence of each independent variable. The analysis indicated that the total length of the pipe had the most influence on predicting the corrosion rate in our case studies, followed by slope and age.

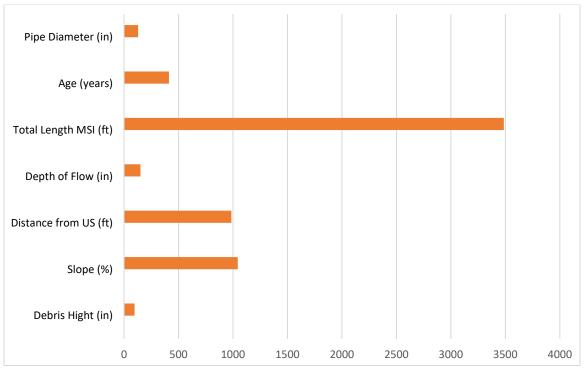


Figure 5-9 Relative influence of independent variables, based on random forest regression tree.

Table below 5-4, provides information on all the models used to analyze the data set.

Model#	Model	R- squared	Adj. R- squared	p-value	RMSE	MAE
1	Multiple Linear Regression	0.4057	0.4051	<0.001***	0.7360	0.5147
2	Multiple Linear Regression with Interactions	0.4203	0.4194	<0.001***	0.7280	0.5057
3	Polynomial Regression with interactions – Degree 2	0.4960	0.4947	<0.001***	0.6792	0.4832
4	Polynomial Regression with interactions – Degree 3	0.5851	0.5836	<0.001***	0.6177	0.4177
5	Polynomial Regression with interactions – Degree 4	0.6878	0.6863	<0.001***	0.5400	0.3741
6	Polynomial Regression with interactions – Degree 5	0.7392	0.7377	<0.001***	0.5069	0.3464
7	Polynomial Regression with interactions – Degree 6	0.7421	0.7404	<0.001***	0.5082	0.3465
8	Random Forest	0.9131	0.9130	<0.001***	0.2813	0.1871
9	GBM: Generalized Boosted Regression Models	0.8424	0.8423	<0.001***	0.3813	0.2626
10	Lasso Regression	0.3424	0.3417	<0.001***	0.7978	0.5471
11	Ridge Regression	0.4019	0.4013	<0.001***	0.7387	0.5168

 Table 5-4 Models Summary-Standardized Data

6 Guidelines

6.1 Recommendations and Guidelines for Inspection Procedures and Methods

Pipeline inspections are vital and complicated. One size does not fit all, and the selection of the most effective procedure is dependent on a wide range of considerations. Engineering firms, researchers, and students who perform pipeline inspections as part of their work or research apply their knowledge and guidelines provided by the Occupational Safety and Health Association (OSHA) to assess the site conditions and parameters and select the procedure that will provide the most reliable data.

Safety is of high importance in pipe inspections, and it is essential that those responsible for deploying the robot take advantage of OSHA's training and have earned the Confined Space Entry Certificate. The safety and regulations for confined space entry (29 CFR 1910.146) were designed to protect users and employees and are relevant for both employers and employees, as employers are tasked with ensuring that the pipelines access points (manholes) are confined spaces, which would need special training and equipment. The equipment used must also be approved by OSHA and includes but is not limited to a harness and tripod with a deployment winch backed up by a safety winch; personal protective equipment (PPE) such as a hard hat, safety vest, and safety boots; multi-gas detectors; and air blowers.

Figure 6-1 Confined space entry

Figure 6-2 Multi gas detector

Figure 6-3 Air blower used prior to confined space entry

Pipeline inspections must be scheduled in advance, but one of the most important factors, weather, is rarely predictable and can cause challenges before, during, and after the inspection. Rain is an example of weather that can adversely affect site conditions, and greater accumulations worsen its effect. If it rains on an unpaved site shortly before or on the day the inspection is planned, mud may cause the truck and/or van to get stuck, team members performing the inspections may not be able to move around the site safely, and the ground may be too unstable for a safe entry setup. Another factor is that heavy rainfall and infiltration from the groundwater can affect the pipe's flow, causing flow levels to rise to the extent that the deployment team cannot perform the inspection.

Site accessibility is another major factor in pipe inspections, and the location of manholes in small spaces and/or areas where large vehicles such as trucks and vans cannot reach them requires careful consideration. The location and surroundings of the targeted manhole must be assessed prior to an inspection to decide whether the site should be cleared to facilitate vehicle access or whether smaller vehicles, such as utility terrain vehicles (UTVs) should be employed.

When traffic control and/or road closures are needed, government officials need to be contacted as soon as the need is apparent. Coordination and communication with the stakeholders (owners,

consultants, subcontractors) is also vitally important to prevent misunderstandings that could result in delaying the inspection.

When all of the above conditions have been met, it is highly recommended that the team leader perform a preliminary walk or recon to actually stand on the site to assess its condition and ensure that it meets all the safety specifications. It is recommended that most, if not all, of the targeted manholes be opened to make sure that there are no abnormalities that require special attention. Figure 5-5 illustrates an old, corroded pipe that is no longer in service but is blocking the manhole from which the team needs to deploy. In this case, professional cleaning will have to be performed prior to the inspection.

Figure 6-4 Example of an obstacle found in manholes

The deployment team needs to take gas readings and assess the flow inside the manhole to ensure that is workable, as it can vary in a short amount of time (from morning to afternoon). The team leader should talk with the person who has been assigned to enter the manhole about what they may encounter, as unexpected conditions, such as a multiple-line intersection, also known as a junction box, can cause confusion. Regulations set forth by OSHA need to be followed during the deployment, beginning with a trained and certified person entering the manhole. The conditions observed by the person who enters the manhole determine the general deployment method: Option A, which goes with the flow from upstream to downstream, or Option B, which goes against the flow from downstream to upstream. The selection depends on various parameters, the most crucial of which are flow speed and depth. If the flow speed is sufficient to take the boat from the upstream manhole (Point A) to the downstream manhole (Point B), then option A is preferred. Option B is only chosen in abnormal situations where the flow velocity is shallow, and the water depth is too low. Options A and B are similar, except for the first step of deployment, which will be explained later in the guidelines.

Option A Methods and Procedures

Step 1. The team leader asks the person who has descended into the manhole to look for any abnormalities in the pipe. Once the pipe has been deemed workable, the team leader gives the green light to continue the inspection.

Step 2. The size of the parachute is determined based on the flow height estimated by the person in the manhole.

Step 3. The MSI robotic system is checked that is working and recording to confirm that everything is working correctly prior to sending it.

Step 4. The back of the boat is tied to the counter winch cable and the boat is lowered, parachute first, to the person inside the manhole.

Step 5. The person in the manholes ensures that the parachute stays above the water until the boat is correctly positioned in the pipe.

Step 6. After making sure that there are no tangles and/or twists in the parachute that could cause the boat to flip, the parachute is deployed in front of the boat.

Step 7. Once the parachute is deployed, it pulls the boat firmly with the approximate velocity of the pipe's flow. If the flow velocity is high, it is expected that the boat will launch at a higher speed, making it more challenging to pull it back in the event of mistakes.

Step 8. After the boat is launched and everything looks good, the tiger tail is sent to the person in the manhole so that he can position it to protect the winch cable from sharp angles.

Step 9. The person in the manhole ascends from the manhole, and a roller is put on the top of the manhole to eliminate any friction on the lid.

Step 10. It is highly recommended that the boat be tracked as it enters or passes by every intermediate manhole between the upstream (deployment) manhole to the downstream (pull-out) manhole as it might get stuck due to any blockage or debris build up.

Step 11. After the boat reaches the downstream manhole, a rope or hook is used to retrieve it and end the run. Rarely, in abnormal situations, a person needs to enter the confined space to collect the boat.

Option B Methods and Procedures

The procedures outlined for Option A are the same as for Option B, except that after Step 1, the person in the manhole informs the team leader that the flow velocity is too low to carry the boat the length of the pipe. The team leader then decides whether to continue with Option B. The differences between Option A and Option B are small. For Option B, the size of the parachute is smaller than for Option A, and it can be substituted by any small floating object that can be connected to the winch cable. The cable is sent with the flow to the other end of the line, where it will be collected, then is tied to the front of the boat instead of the back. No parachute is necessary because the deployment is performed from the downstream manhole to the upstream manhole against the flow, and the tension that pulls the boat originates from the cable winch.

Figure 6-5 Parachutes

Some of the challenges most commonly encountered during inspection procedures are described below, along with recommendations for overcoming them, but it not an exclusive list. Unexpected and new obstacles that require an engineer's judgement are always possible.

- If the area surrounding the upstream manhole is too confined and/or tight to align the cable winch with the direction of the flow, it is recommended that the cable winch be parked in the opposite direction of the flow and that a 90-degree deployment be performed. The critical point in such deployment is utilizing manhole rollers and more than one tiger tail to decrease the friction to 90 degrees.
- 2. If the depth of the flow is relatively low (below 10% of the pipe's diameter), a larger-sized parachute will collapse and the loss of tension in front of the boat will result in it not being centered and unable to reach the downstream manhole. When the flow velocity is sufficient to carry the boat, it is recommended that the smallest parachute possible be used; however, if even the smallest parachute proves to be insufficient, tying the front (nose) of the smallest parachute to reduce its size even more might help. To summarize, low flow levels require a smaller parachute and vice versa.
- 3. When the flow levels are so low that the boat is not expected to be buoyant, wheels can be attached to the bottom of the boat to prevent the sonar sensors (or any other sensors or wires) on the boat's bottom from dragging on the bottom of the pipe and being damaged.
- 4. While tracking a boat passing through manholes, as specified in Step 10, the observer may note that the boat has gotten stuck. The following are some reasons that this can occur, as well as recommended solutions.
 - a. The boat stops because of a sharp bends that develop very high friction on the back cable. The solution to this is to ask the winch operator to release the cable from the wheel of the winch to the extent possible so that a fiberglass rod or other similar tool can be used to free the boat. If the situation is more involved and this is not possible, then a person may need to enter the space to free the boat.
 - b. The boat gets stuck in a high level of debris that has built up in the pipe. (When this is the cause, the boat is stuck, but the winch cable still floats in front of it.) The only solution to this scenario is for a person to enter the area to assess whether it is possible to clean up the debris so that the boat can proceed or whether the line needs a deep cleaning that requires using machinery. In this case, the inspection will have to be discontinued.
 - c. If it appears that the boat got stuck between two intermediate manholes, the procedure is to open all the previous manholes in the order that they were passed

through to locate the cable. At this point, a confined space entry will be necessary to investigate the cause of the stop and/or blockage to decide whether the obstacle can be removed, or the boat needs to be pulled up and the inspection ended.

6.2 Recommendations and Guidelines for Procedure Obtained from Site Experience

The data derived from the site inspections performed for the TRA and City of Mansfield projects were utilized for this dissertation and research. The three boats utilized for the inspections were designed and built by UTA CSER-PI in accordance with the site conditions. It was noted that the speed at which the boat travelled, and the intervals of the sensors' scans varied for Option A, which is based on upstream-to-downstream runs, as each pipe has its own flow depth and speed characteristics. Typically, the flow speed is relatively high in large-diameter sewer pipes, and since the boat travels with the flow, holding it back to keep it at a lower velocity is not recommended, as it will cause stability problems for the boat as it travels downstream, specifically as it encounters curves. For this reason, the boat needs to move at the speed of the flow, which in most cases is more than 32 ft/min., which according to NASSCO. Any defects should be coded per the PACP on a maximum speed of 32 ft/min if it is being done during inspection.

We did not perform the PACP coding during the inspection; however, we collected all the data, including the CCTV recordings, on-site and took them to the office to perform the analysis. We increased the speed of the boat traveling downstream to correlate with the flow rate, which kept the boat stable and enabled it to collect accurate data, but it should be noted that this only works if the sensors' specifications or speed of scanning can be adjusted to a smaller interval of scans, so that the scanning is done at a faster speed, to keep up with the speed of the boat. Otherwise, the scan would miss sections, due to the difference in the speed of scanning and the speed of the boat. The following are some recommendations for scan intervals for flow speeds higher than 32ft/min.

- If the boat is traveling at a 50ft/min., the recommended lidar scan interval is 0.3-0.5 seconds.
- If the boat speed is 100ft/min., the recommended lidar scan interval is 0.1 seconds. Readings for the same section may be duplicated and averaged at the end, increasing the accuracy of the data collection process.

• Higher speeds are possible for the CCTV, but the camera used for the recording should be capable of higher frame rates with higher speeds.

6.3 Conclusion

The inspections performed for this research showed that the scan interval can be adjusted for the site conditions and needs. High boat speeds and short scan intervals that can be implemented without affecting the quality of the data collected result in more time-efficient inspections and thus higher productivity levels.

7 Conclusion

7.1 Conclusion

Concrete sewer pipeline inspections were conducted for the City of Mansfield and Trinity River Authority (TRA), yielding valuable insights for enhancing the overall inspection process. The recommendations and proposed methodologies for Multi Sensor Inspection (MSI) encompassed various stages. These included pre-inspection preparations, crucial communication and coordination among stakeholders and officials whenever necessary, meticulous on-site procedures and setup, the utilization of specialized inspection equipment, and the consideration of different deployment options.

Upon completion of the inspections, a comprehensive analysis was undertaken on the collected data, leading to significant results. Moreover, the study aimed to construct predictive models for corrosion rates in concrete pipes using artificial intelligence techniques. The selection of the optimal model was based on rigorous performance metrics evaluation.

In the context of the data analysis, it was evident that all the variables taken into consideration played vital roles. Among these, specific parameters emerged as particularly influential in determining corrosion rates. These included pipe length, slope, age of the pipes, distance from the upstream manhole, and the presence of structural defects in the inspected lines. Notably, the evaluation of defects revealed that 26% of the points exhibited grade 1 defects, 1.6% had grade 2 defects, another 1.6% displayed grade 3 defects, 5% exhibited grade 4 defects, and 20% were marked by grade 5 defects. These findings collectively contribute to an enhanced understanding of factors impacting corrosion rates and provide valuable insights for future maintenance and management strategies.

Table 7-1 represents a comparison between the corrosion rates observed during on-site inspections and the corrosion rates predicted by the random forest regression model developed. The outcomes demonstrated remarkable promise, as evidenced by the contents of the table.

Corrosion actual (in)	Corrosion predicted (in)
2112 points (30.1%) of inspected	2120 points (30.3%) of inspected
line segments had corrosion more	line segments had corrosion more
than 1 inch.	than 1 inch.
705 points (10%) of inspected line	699 points (9.99%) of inspected line
segments had corrosion more than	segments had corrosion more than
1.5 inch.	1.5 inch.
183 points (2.61%) of inspected line	178 points (2.54%) of inspected line
segments had corrosion more than 2	segments had corrosion more than 2
inch.	inch.

Table 5-1 Corrosion rate Actual vs predicted.

7.2 Future Work

This future work of this research study is promising. The potential expansion of this research is to improve the MSI robots and additional sensors such as H_2S gas detectors to the design of the robotic system. Since prediction of corrosion has been an essential part of this research, including new parameters to evaluate correlation to the prediction of the corrosion will be an extension to the study Also, expansion of the sample size to various pipe diameters and parameters and predicting the corrosion under these parameters will be analyzed and assessed as well as utilizing other models to evaluate the fit to our study.

References

- Guo, W., Soibelman, L., & Garrett, J. H. (2009). Automated defect detection for Sewer Pipeline Inspection and condition assessment. *Automation in Construction*, 18(5), 587–596. <u>https://doi.org/10.1016/j.autcon.2008.12.003</u>
- Salihu, C., Mohandes, S. R., Kineber, A. F., Hosseini, M. R., Elghaish, F., & Zayed, T. (2023a). A deterioration model for sewer pipes using CCTV and artificial intelligence. *Buildings*, 13(4), 952. <u>https://doi.org/10.3390/buildings13040952</u>
- Salihu, C., Mohandes, S. R., Kineber, A. F., Hosseini, M. R., Elghaish, F., & Zayed, T. (2023a). A deterioration model for sewer pipes using CCTV and artificial intelligence. *Buildings*, 13(4), 952. <u>https://doi.org/10.3390/buildings13040952</u>
- Parande, A. K., Ramsamy, P. L., Ethirajan, S., Rao, C. R. K., & Palanisamy, N. (2006, March). Deterioration of reinforced concrete in sewer environments. In *Proceedings of the Institution of Civil Engineers-Municipal Engineer* (Vol. 159, No. 1, pp. 11-20). Thomas Telford Ltd.
- Li, X., Khademi, F., Liu, Y., Akbari, M., Wang, C., Bond, P. L., ... & Jiang, G. (2019). Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. *Journal of environmental management*, 234, 431-439.
- Mahmoodian, M., & Alani, A. M. (2013). Multi-failure mode assessment of buried concrete pipes subjected to time-dependent deterioration, using system reliability analysis. *Journal of failure analysis and prevention*, 13, 634-642.
- Sulikowski, J., & Kozubal, J. (2016). The durability of a concrete sewer pipeline under deterioration by sulphate and chloride corrosion. *Procedia Engineering*, *153*, 698-705.
- Wang, Y., Li, P., Liu, H., Wang, W., Guo, Y., & Wang, L. (2022). The Effect of Microbiologically Induced Concrete Corrosion in Sewer on the Bearing Capacity of Reinforced Concrete Pipes: Full-Scale Experimental Investigation. *Buildings*, 12(11), 1996.
- Kuliczkowska, E., & Parka, A. (2019). The structural integrity of corroded concrete sewers. *Engineering Failure Analysis*, 104, 409-421.
- Vladeanu, G., & Matthews, J. (2019). Wastewater pipe condition rating model using multicriteria decision analysis. *Journal of Water Resources Planning and Management*, 145(12), 04019058.
- Mirats Tur, J. M., & Garthwaite, W. (2010). Robotic devices for water main in-pipe inspection: A survey. *Journal of Field Robotics*, 27(4), 491-508.

- Roth, H., Schilling, K., Futterknecht, S., Weigele, U., Reisch, M., & Ravensburg-Weingarten, F. (1998, July). Inspection- and repair robots for waste water pipes—A challenge to sensorics and locomotion. In IEEE International Symposium on Industrial Electronics, 1998
- Guo, W., Soibelman, L., & Garrett Jr, J. H. (2009). Automated defect detection for sewer pipeline inspection and condition assessment. *Automation in Construction*, *18*(5), 587-596.
- A.N. Tafuri, A. Selvakumar, Wastewater collection system infrastructure research needs, U.S Environmental Protection Agency, Edinson, 2002, p. 26.
- Zamanian, S., Hur, J., & Shafieezadeh, A. (2021). Significant variables for leakage and collapse of buried concrete sewer pipes: A global sensitivity analysis via Bayesian additive regression trees and Sobol'indices. *Structure and infrastructure engineering*, 17(5), 676-688.
- Iurchenko, V.; Lebedeva, E.; Brigada, E. Environmental safety of the sewage disposal by the sewerage pipelines. Procedia Eng. 2016, 134, 181–186.
- Held, I.; Wolf, L.; Eiswirth, M.; Hötzl, H. Impacts of Sewer Leakage on Urban Groundwater: Review of a Case Study in Germany; Springer: Dordrecht, The Netherlands, 2006; pp. 189–204.
- Zuo, J.; Ye, X.; Hu, X.; Yu, Z. Urban Pipe Assessment Method and Its Application in Two Chinese Cities; Springer: Cham, Switzerland, 2019; pp. 195–231.
- Kaddoura, K. Automated Sewer Inspection Analysis and Condition Assessment. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2015.
- Sarshar, N.; Halfawy, M.; Hengmeechai, J. Video processing techniques for assisted CCTV inspection and condition rating of sewers. J. Water Manag. Model. 2009, 21, 1–20.
- Salman, B.; Salem, O. Modeling failure of wastewater collection lines using various sectionlevel regression models. J. Infrastruct. Syst. 2012, 18, 146–154.
- Salihu, C.; Hussein, M.; Mohandes, S.R.; Zayed, T. Towards a comprehensive review of the deterioration factors and modeling for sewer pipelines: A hybrid of bibliometric, scientometric, and meta-analysis approach. J. Clean. Prod. 2022, 351, 131460.
- Alzraiee, H.; Bakry, I.; Zayed, T. Destructive analysis-based testing for cured-in-place pipe. J. Perform. Constr. Facil. 2015, 29, 04014095.
- Salman, B.; Salem, O. Risk assessment of wastewater collection lines using failure models and criticality ratings. J. Pipeline Syst. Eng. Pract. 2012, 3, 68–76.
- Srivastava, A. K., Srivastava, V. K., & Ullah, A. (1995). The coefficient of determination and its adjusted version in linear regression models. *Econometric reviews*, *14*(2), 229-240.

- Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of determination. *biometrika*, 78(3), 691-692.
- Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160).
- Ana, E., Bauwens, W., Pessemier, M., Thoeye, C., Smolders, S., Boonen, I., & De Gueldre, G. (2009). An investigation of the factors influencing sewer structural deterioration. *Urban Water Journal*, 6(4), 303-312.
- Ayoub, G. M., Azar, N., Fadel, M. E., & Hamad, B. (2004). Assessment of hydrogen sulphide corrosion of cementitious sewer pipes: a case study. *Urban Water Journal*, 1(1), 39-53.
- Jeong, H. S., Baik, H. S., & Abraham, D. M. (2005). An ordered probit model approach for developing markov chain based deterioration model for wastewater infrastructure systems. In *Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today's Economy* (pp. 649-661).
- Rajani, B., & Makar, J. (2000). A methodology to estimate remaining service life of grey cast iron water mains. *Canadian Journal of Civil Engineering*, 27(6), 1259-1272.
- Rajani, B., & Tesfamariam, S. (2007, June). Estimating time to failure of cast-iron water mains. In *Proceedings of the Institution of Civil Engineers-Water Management* (Vol. 160, No. 2, pp. 83-88). Thomas Telford Ltd.
- Al-Barqawi, H., & Zayed, T. (2006). Assessment model of water main conditions. In *Pipelines* 2006: Service to the Owner (pp. 1-8).
- Wang, C. W., Niu, Z. G., Jia, H., & Zhang, H. W. (2010). An assessment model of water pipe condition using Bayesian inference. *Journal of Zhejiang University-SCIENCE A*, 11, 495-504.
- Davis, P., Burn, S., Moglia, M., & Gould, S. (2007). A physical probabilistic model to predict failure rates in buried PVC pipelines. *Reliability Engineering & System Safety*, 92(9), 1258-1266.
- Jobson, J. D., & Jobson, J. D. (1991). Multiple linear regression. *Applied multivariate data analysis: Regression and experimental design*, 219-398.
- Aiken, L. S., West, S. G., & Reno, R. R. (1991). *Multiple regression: Testing and interpreting interactions.* sage.
- Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.

Breiman, L. (2001). Random forests. *Machine learning*, 45, 5-32.

- Alizard, F., & Biau, D. (2019). Restricted nonlinear model for high-and low-drag events in plane channel flow. *Journal of Fluid Mechanics*, 864, 221-243.
- Hung, H. J., O'Neill, R. T., Bauer, P., & Kohne, K. (1997). The behavior of the p-value when the alternative hypothesis is true. *Biometrics*, 11-22.

M. Lichte, PWSA long-term CSO control program, Pittsburgh Water and Sewer Authority, Pittsburgh, 2006.

Nayak, A., & Pradhan, S. K. (2014). Investigations of design issues related to in-pipe inspection robots. *Int. J. Emerg. Tech. Adv. Eng.*, 4(3), 819-824.

Alexander, M. G., & Fourie, C. (2011). Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. *Materials and structures*, *44*, 313-330.

Zamanian, S., & Shafieezadeh, A. (2023, June). Age-dependent failure probabilities of corroding concrete sewer pipes under traffic loads. In *Structures* (Vol. 52, pp. 524-535). Elsevier.

Zamanian, S., & Shafieezadeh, A. (2023). Temporal global sensitivity analysis of concrete sewer pipes under compounding corrosion and heavy traffic loads. *Structure and Infrastructure Engineering*, *19*(8), 1108-1121.

Ahammed, M. (1997). Prediction of remaining strength of corroded pressurised pipelines. *International journal of pressure vessels and piping*, *71*(3), 213-217.

Kienow, K. K., & Kienow, K. E. (2004). Evaluation of sanitary sewer sulfide, odor, and corrosion potential. In *Pipeline Engineering and Construction: What's on the Horizon?* (pp. 1-17).

Wells, T., Melchers, R. E., & Bond, P. (2009). Factors involved in the long term corrosion of concrete sewers. *Australasian corrosion association proceedings of corrosion and prevention*, *Coffs Harbour, Australia, 11*.

Pokharel, A. (2021). *Application of Supervised Machine Learning Algorithms for Developing Service Life Prediction Model of Sewer Pipes* (Doctoral dissertation, The University of Texas at Arlington).

Appendix A

Table 1: Summary of lines inspected during City of Mansfield project.

SN	UNQ ID.	US MH	DS MH	Length (ft.)	Pipe Material
----	---------	-------	-------	--------------	------------------

				Field	GIS	
1	11064	11069	11070	108.24	115	RCP
2	11064	11009	11070	284.96	310	RCP
3	11065	11070	11071	542.49	545	RCP
4	11067	11071	11072	765.96	750	RCP
5	11067	11072	11073	432.44	480	RCP
6	11069	11073	11074	530.89	540	RCP
7	11009	11074	11075	79.52	78	RCP
8	12348	11075	12381	621.05	573	RCP
9	11071	12381	11077	604.67	663	RCP
10	11071	11077	11077	286.04	282	RCP
10	11072	11077	11078	648.93	705	RCP
11	11073	11078	11079	664	665	RCP
12	11074	11079	11080	190.48	163	RCP
13	11075	11080	15419	99.68	103	RCP
14	15505		15420	169.34	167	
15	11189	15419 15420	11082	89.13	107	HOBAS RCP
10	11189	13420	12902	1175.62	1150	RCP
17	12890	12902	12902	85.36	1150	RCP
					308	
19 20	11078 11079	11083 11084	11084 11085	305.03 313.36	308	RCP RCP
20	11079	11084	12373	136.99		RCP
21		12373			165 132	RCP
22	11306 11081	12373	11086 11087	136.24 1027.89	132	RCP
23	11081		11087			RCP
		11087 11088	UnknownMH2	41.46	58	RCP
25 26	UnknownPipe1			41.08	- 424	RCP
20	11083	UnknownMH2	11089	382.89		
27	11084 11085	11089 11090	11090 11091	758.32	795 684	RCP RCP
				674.96		
29	11086	11091	14776	456.75	438	RCP
30	14793	14776	11092	262.86	266	RCP
31	11087	11092	11093	107.03	131	RCP
32	11088	11093	11094	875.53	896	RCP
33	11089	11094	11095	260.41	267	RCP
34	11090	11095	11096	710.01	739	RCP
35	11091	11096	12919	452.74	457	RCP
36	12907	12919	11097	241.95	254	RCP
37	11092	11097	11098	183.72	211	RCP
38	11093	11098	11099	829.66	834	RCP

1. Line 11064

Table 2: Details for Line_11064

Asset Number	11064	Pipe Material	Concrete
U/S Manhole ID	11069	Inspection Date	05/01/2023

D/S Manhole ID	11070	Pipe Diameter	30 inches
Inspection Direction	Downstream	Pipe Length (Field)	108.24 ft.

Dist. Code		Continuous		value		Circun				Defect Rating	
(ft.)	Group/	defect	Dimen	sion		Joint			Remarks		
(11.)	Description	defect	1^{st}	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
8.38	SAV	S01					8	4		2	0
8.38	DAGS	S02			10		8	4		0	2
15.54	DAZ	S03			30		9	3	High effloresc ence	0	5
38.52	SAV	F01									
46.63	SRC						3			5	0
56.8	SAM						8	9		4	0
108.2	DAZ	F03									
108.2	DAGS	F02									
108.2	AMH										

Table 3: PACP	Defect Table	for Line_	_11064
---------------	--------------	-----------	--------

	ST	O&M		ST	O&M
Overall Rating:	21	135	Quick Rating:	5141	5B2C
Rating Index:	2.63	3.46	Overall Quick Rating:	5C4	1

2. Line 11065

Table 4: Details for Line_11065

Asset Number	11065
U/S Manhole ID	11070
D/S Manhole ID	11071
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	05/01/2023
Pipe Diameter	30 inches
Pipe Length (Field)	284.96 ft

Table 5: PACP Defect Table for Line 11065	

	Code	~ .		value			Circum				efect ating
Dist. (ft.)	Group/ Descriptio	Continuous defect	Dimen	sion		Joint	ntia	.1	Remarks		
(11.)	n	defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
7.09	DAGS	S01			30		11	2		0	4
40	DAGS	F01								0	0

40	DAZ	S02		40	9	3	High Efflores cence	0	5
40	SRI	S03						1	0
284.96	SRI	F03						0	0
284.96	DAZ	F02						0	0
284.96	AMH							0	0

	ST	O&M
Overall Rating:	49	273
Rating Index:	1.00	4.88

	ST	O&M	
Quick Rating:	1H00	5H47	
Overall Quick Rating:	5H47		

3. Line 11066

Table 6: Details for Line_11066

Asset Number	11066
U/S Manhole ID	11071
D/S Manhole ID	11072
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	05/01/2023
Pipe Diameter	30 inches
Pipe Length (Field)	542.49 ft

Table 7: PACP Defect Table for Line_11066

Div	Code			value			Circum ntia				efect ating
Dist. (ft.)	Group/ Descriptio	Continuous defect	Dimen	sion		Joint	11110	.1	Remarks		
(10)	n	ucreet	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				30						
0	DAZ	S01			35		9	3	High Efflores cence	0	5
39.76	SRI	S02								1	0
542.49	SRI	F02								0	0
542.49	DAZ	F01								0	0
542.49	AMH									0	0

	ST	O&M			ST	O&M
Overall Rating:	101	540		Quick Rating:	1 S 00	5T00
Rating Index:	1.00	5.00	Ove	erall Quick Rating:	5T15	S

4. Line 11067

Table 8: Details for Line_11067

|--|

U/S Manhole ID	11072] [Inspection Date	5/1/2023
D/S Manhole ID	11073		Pipe Diameter	30 inches
Inspection Direction	Downstream		Pipe Length (Field)	765.96 ft

Table 9: PACP Defect Table for Line_11067

	Code			value			Circum ntia				efect ating
Dist.	Group/	Continuous	Dimen	sion		Joint	пца	.1	Remarks		
(ft.)	Descriptio n	defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
0	SAV									2	0
2.63	DAZ	S01			40		9	4	High Efflores cence	0	5
30.33	SRI	S02								1	0
759.18	SRI	F02								0	0
759.18	DAZ	F01								0	0
759.18	SAV	S03								2	0
765.96	SAV	F03								0	0
765.96	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	150	755	Quick Rating:	221Z	5Z00
Rating Index:	1.01	5.00	Overall Quick Rating:	5Z22	2

5. Line 11068:

Table 10: Details for Line_11068

Asset Number	11068
U/S Manhole ID	11073
D/S Manhole ID	11074
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	30 inches
Pipe Length (Field)	432.44 ft

Table 11: PACP Defect Table for Line_11068

Di	Code		value				Circumfere ntial			Defect Rating	
Dist. (ft.)	Group/ Descriptio n	Continuous defect	Dimen 1 st	sion 2 nd	%	Joint	At/ From	То	Remarks	Str	O&M
0	AMH										

0	MWL		20					
3.39	SRI	S01					1	0
3.39	DAGS	S02	30				0	4
204.82	DAGS	F02					0	0
204.82	DAZ	S03	20	9	3	Efflores cence	0	3
231.95	DAZ	F03					0	0
244.58	DAZ	S04	15	3	1	Efflores cence	0	3
251.55	DAZ	F04					0	0
251.55	DAGS	S05	20	9	3		0	3
432.44	DAGS	F05					0	0
432.44	SRI	F01					0	0
432.44	AMH						0	0

	ST	O&M		ST	O&M
Overall Rating:	86	289	Quick Rating:	1P00	4G3G
Rating Index:	1.00	3.48	Overall Quick Rating: 4G3G		G

6. Line 11069:

Table 12: Details for Line_11069

Asset Number	11069	Pipe Material	Concrete
U/S Manhole ID	11074	Inspection Date	5/1/2023
D/S Manhole ID	11075	Pipe Diameter	36 inches
Inspection Direction	Downstream	Pipe Length (Field)	530.89 ft

Table 13: PA	ACP Defect T	able for Li	ne 11069

	Code	Code		value			Circumferen tial			Defect Rating	
Dist. Group/ Conti	Continuous	Dimen	sion		Joint	lia		Remarks			
	defect	1 st	2 nd	%		At/ From	То		Str	0&M	
0	AMH										
0	MWL				30						
0	DAGS	S01			30		9	2		0	4
10.34	DAGS	F01								0	0
26.65	DAZ	S02			35		9	2	Effloresc ence	0	5
102.02	DAZ	F02								0	0
102.02	DAZ	S03			10		11	2	Effloresc ence	0	2

113.33	DAZ	F03					0	0
113.33	DAZ	S04	35	10	3	Effloresc ence	0	5
131.42	DAR		10	12	1		0	2
404.45	VC						0	0
411.99	VC						0	0
414.06	DAZ	F04					0	0
414.06	LFDE	S05		9	3	Lining have corroded	3	0
414.06	VC						0	0
468.33	LFDE	F05					0	0
469.84	DAZ	S06	30	10	3	Effloresc ence	0	4
530.89	DAZ	F06					0	0
530.89	AMH						0	0

	ST	0&M		ST	O&M
Overall Rating:	33	437	Quick Rating:	3A00	5N4A
Rating Index:	3.00	4.75	Overall Quick Rating: 5N4A		٩

7. Line 11070:

Table 14: Details for Line_11070

Asset Number	11070	Pipe Material	Concrete
U/S Manhole ID	11075	Inspection Date	5/1/2023
D/S Manhole ID	11076	Pipe Diameter	36 inches
Inspection Direction	Downstream	Pipe Length (Field)	79.52 ft

Table 15: PACP Defect Table for Line_11070								
	Table	15:	PACP	Defect	Table	for	Line	11070

Dist. (ft.)	Code			value			Circumf				efect ating
	Group/	Continuous	Dimen	sion		Joint	tial		Remarks		
	Description	defect	1 st	2 nd	%		At/ From To		Str	0&M	
0	AMH										
0	MWL				30						
0	DAGS	S01			20		9	3	With Effloresc ence	0	3
78.95	TFD		15				9	10		0	3
78.95	DAGS	F01								0	0
78.95	AMH									0	0

	ST	0&M
Overall Rating:	0	48
Rating Index:	-	3.00

	ST	0&M
Quick Rating:	0000	3B00
Overall Quick Rating:	3B00)

8. Line 12348:

Table 16: Details for Line_12348

Asset Number	12348
U/S Manhole ID	11076
D/S Manhole ID	12381
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	36 inches
Pipe Length (Field)	621.05 ft

Dist. (ft.)	Code				Circumferen tial			Defect Rating			
	Group/	Continuous	Dimen	sion		Joint	lia		Remarks		tr O&M
	Description	defect	1 st	2 nd	%		At/ From	То		Str	
0	AMH										
0	MWL				30						
0	DAGS	S01			10		9	3		0	2
24.49	DAGS	F01								0	0
24.49	DAZ	S02			30		10	2	Effloresc ence	0	4
109.66	DAZ	F02								0	0
109.66	DAZ	S03			10		10	2	Effloresc ence	0	2
516.86	DAZ	F03								0	0
516.86	DAZ	S04			35		9	3		0	5
620.88	DAZ	F04								0	0
620.88	TBI		15		10		9	10		0	2
620.88	TFC		15				2	3		0	0
621.05	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	0	347	Quick Rating:	0000	5C4B
Rating Index:	-	2.78	Overall Quick Rating:	5C4E	3

9. Line 11071:

Table 18: Details for Line_11071

Asset Number	11071
U/S Manhole ID	12381
D/S Manhole ID	11077
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	36 inches
Pipe Length (Field)	604.67 ft

Table 19: PACP Defect Table for Line_11071	
--	--

			Т	able 19: P	ACP Def	ect Table	for Line_1.	1071						
_	Code Group/			value					ımferen tial				Defect Rating	
Dist.		Contin		Dimen	ision		Joint	lla	1	Rema	irks			
(ft.)	Description	defe	ect	1 st	2 nd	%		At/ From	То			Str	0&M	
0	AMH													
0	MWL					30								
3.02	DAZ	SO 2	1			20		10	2	Efflor enc		0	3	
269.08	DAZ	F0	1									0	0	
269.08	DAZ	SO	2			10		10	2	Efflor enc		0	2	
358.02	DAZ	FO	2									0	0	
358.02	DAZ	S03	3			35		9	3	Efflor enc		0	5	
387.22	DAZ	F03	3									0	0	
387.22	DAZ	S04	4			20		10	2	Efflor enc		0	4	
571.89	DAZ	F04	4									0	0	
571.89	DAZ	SO!	5			10		10	2	Efflor enc		0	2	
604.67	DAZ	FO:	5									0	0	
604.67	AMH											0	0	
		ST	0&N	Λ					ST		0	&M		
	Rating:	0	387			Quick F	-		0000 5		5	64F	1	
Rating	g Index:	-	3.20)	Ov	erall Qu	ick Ratir	ng:	564F					

10. Line 11072:

Table 20: Details for Line_11072

		_	
Asset Number	11072		Pipe N
U/S Manhole ID	11077		Inspect
D/S Manhole ID	11078		Pipe Di
Inspection Direction	Downstream		Pipe Len
		-	

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	36 inches
Pipe Length (Field)	286.04 ft

Table 21: PACP	Defect	Table	for Line_	_11072
----------------	--------	-------	-----------	--------

	Dist. (ft.)	Code Group/	Continuous	value		Joint	Circumferen	Remarks	Defect Rating	
		Description	defect	Dimension	%		tial		Str	0&M

			1 st	2 nd		At/ From	То			
0	AMH									
0	MWL				30					
1.14	SRI	S01							1	0
15.27	DAGS	S02			10	11	2		0	2
117.02	DAGS	F02							0	0
117.02	SRI	F01							0	0
117.02	DAZ	S03			15	9	3	Effloresc ence	0	3
286.04	DAZ	F03							0	0
286.04	TFC		15			9	10		0	0
286.04	AMH								0	0

	ST	O&M		ST	0&M
Overall Rating:	3	142	Quick Rating:	1300	3E2C
Rating Index:	1.00	2.63	Overall Quick Rating: 3E2		C

11. Line 11073:

Table 22: Details for Line_11073

Asset Number	11073
U/S Manhole ID	11078
D/S Manhole ID	11079
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	39 inches
Pipe Length (Field)	648.93 ft

Table 23: PACP Defect Table for Line_11073

	Code							Defect Rating			
Dist.	Group/	Continuous	Dimen	sion		Joint	tiai		Remarks		
(ft.)	Description	defect	1 st 2 nd %	At/ From	То		Str	O&M			
0	AMH										
0	MWL				30						
6.76	DAGS	S01			10		10	3		0	2
44.63	DAGS	F01								0	0
44.63	DAGS	S02			20		10	3	With Effloresc ence	0	3
648.93	DAGS	F02								0	0
648.93	VC									0	0
648.93	AMH									0	0

ST O&M		ST	0&M
--------	--	----	-----

Overall Rating:	0	379	Quick Rating:	0000 3W28		
Rating Index:	-	2.94	Overall Quick Rating:	3W2	8	

12. Line 11074:

Table 24: Details for Line_11074

Asset Number	11074	Pipe Material	Concrete
U/S Manhole ID	11079	Inspection Date	5/1/2023
D/S Manhole ID	11080	Pipe Diameter	39 inches
Inspection Direction	Downstream	Pipe Length (Field)	664 ft

Table 25: PACP Defect Table for Line_11074

Diet Code		value				Circumferen tial			Defect Rating		
Dist.	Group/	Continuous	Dimen	sion	sion		tia		Remarks		
(ft.)	Description	defect	1 st	2 nd	%	Joint	At/ From	То		Str	O&M
0	AMH										
0	MWL				30						
0	DAE	S01			10		9	3	Effloresc ence	0	2
53.71	DAE	F01								0	0
53.71	DAE	S02			30		9	3		0	4
212.93	DAE	F02								0	0
212.93	DAE	S03			20		10	3		0	3
250.05	DAE	F03								0	0
250.05	DAE	S04			35		9	3		0	5
354.06	DAE	F04								0	0
354.06	DAE	S05			20		10	3		0	3
661.77	DAE	F05								0	0
664	AMH									0	0

	ST	0&M		ST	0&M
Overall Rating:	0	462	Quick Rating:	0000	5C4E
Rating Index:	-	3.47	Overall Quick Rating:	5C4E	

13. Line 11075:

Table 26: Details for Line_11075

Asset Number	11075
U/S Manhole ID	11080
D/S Manhole ID	11081
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	39 inches
Pipe Length (Field)	190.48 ft

Table 27: PACP Defect Table for Line_11075

Divi	Code	Continuous		value			Circumferen tial			Defect Rating	
Dist. Group/	Continuous	Dimen	sion		Joint	tiai		Remarks			
(ft.)	Description	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				30						
0	DAE	S01			10		9	3	Effloresc ence	0	2
68	DAE	F01								0	0
68	DAE	S02			30		9	3		0	4
71.96	VC									0	0
108.89	DAE	F02								0	0
108.89	DAE	S03			10		9	3		0	2
190.48	DAE	F03								0	0
190.48	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	0	88	Quick Rating:	0000	472E
Rating Index:	-	2.38	Overall Quick Rating:	4728	

14. Line 11076:

Table 28: Details for Line_11076

Asset Number	11076
U/S Manhole ID	11081
D/S Manhole ID	15419
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/1/2023
Pipe Diameter	39 inches
Pipe Length (Field)	99.68 ft

Table 29: PACP Defect Table for Line_11076

(ft) Group/	Code			value			Circum				efect ating
	Continuous	Dimension			Joint	tial		Remarks			
(ft.)	(ft.) Description	defect	1 st	1 st 2 nd % At/ To		Str	0&M				
			1 I	2			From	10		Str	
0	AMH										
0	MWL				20						

0	DAE	S01		10	10	3	Effloresc ence	0	2
34.11	DAE	F01						0	0
34.11	DAE	S02		20	9	2	Effloresc ence	0	3
99.68	DAE	F02						0	0
99.68	VC							0	0
99.68	AMH							0	0

	ST	0&M		ST	O&M
Overall Rating:	0	53	Quick Rating:	0000	3A27
Rating Index:	-	2.65	Overall Quick Rating:	3A27	7

15. Line 15505:

Table 30: Details for Line_15505

Asset Number	15505
U/S Manhole ID	15419
D/S Manhole ID	15420
Inspection Direction	Downstream

Pipe Material	HOBAS GRP
Inspection Date	5/22/2023
Pipe Diameter	42 inches
Pipe Length (Field)	169.34 ft

Table 31: PACP Defect Table for Line_1	15505
--	-------

	Code		value			Circumferen tial			Defect Rating		
Dist.	Group/	Continuous	Dimen	sion		Joint	tia		Remarks		
(ft.)	Description	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				50						
65.89	SCP						12			3	0
72.86	SCP						9	12		3	0
77.76	LFDC						11	3		3	0
87.56	SCP	S01					11	1		3	0
157.28	SCP	F01								0	0
169.34	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	23	0	Quick Rating:	3B00	0000
Rating Index:	1.35	-	Overall Quick Rating:	3B0	0

16. Line 11189:

Table 32: Details for Line_11189

Asset Number	11189	Pipe Material	Concrete
U/S Manhole ID	15420	Inspection Date	5/22/2023
D/S Manhole ID	11082	Pipe Diameter	39 inches
Inspection Direction	Downstream	Pipe Length (Field)	89.13 ft

Table 33: PAC	P Defect Ta	ble for Line	11189
---------------	-------------	--------------	-------

	Code			value			Circum				efect ating
Dist.	Group/	Continuous	Dimen	sion		Joint	ntia		Remarks		
(ft.)	Descriptio n	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				25						
1.32	SRI	S01					9	3		1	0
1.32	DAE	S02			30		9	3		0	4
13.19	SRI	F01								0	0
89.13	DAE	F02								0	0
89.13	TFA		15				9	10		0	0
89.13	TFA		15				2	3		0	0
89.13	AMH									0	0

	ST	0&M		ST	0&M
Overall Rating:	2	72	Quick Rating:	1200	4B00
Rating Index:	1.00	4.00	Overall Quick Rating:	4B12	2

17. Line 11077:

Table 34: Details for Line_11077

Asset Number	11077
U/S Manhole ID	11082
D/S Manhole ID	12902
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/22/2023
Pipe Diameter	39 inches
Pipe Length (Field)	1175.62 ft

Table 35: PACP Defect Table for Line_11077

	Code			value			Circum				efect ating
Dist.	Group/	Continuous	Dimen	sion		Joint	ntia	l I	Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH					0					
0	MWL				20	0					
0.57	DAE	S01			30		9	3		0	4
115.89	VC									0	0
283.59	DAE	F01								0	0
283.59	DAE	S02			20		9	3		0	3
316	DAE	F02								0	0
316	DAE	S03			30		9	3		0	4
352.56	DAE	F03								0	0
352.56	DAE	S04			10		9	3		0	2
379.88	ISSRB				5		9	10		0	2
418.32	DAE	F04								0	0
418.32	DAE	S05			40		9	3		0	5
425.67	DAE	F05								0	0
425.67	DAE	S06			10		9	3		0	2
441.31	DAE	F06								0	0
441.31	DAE	S07			30		9	3		0	4
718.11	DAE	F07								0	0
718.11	DAE	S08			20		9	3		0	3
754.67	DAE	F08								0	0
754.67	DAE	S09			35		9	3		0	5
801.02	DAE	F09								0	0
801.02	DAE	S10			10		9	3		0	2
882.8	DAE	F10								0	0
882.8	DAE	S11			40		9	3		0	5
898.63	DAE	F11								0	0
898.63	DAE	S12			10		9	3		0	2
913.14	DAE	F12								0	0
913.14	DAE	S13			20		9	3		0	3
942.53	DAE	F13								0	0
942.53	DAE	S14			40		9	3		0	5
958.17	DAE	F14								0	0
958.17	DAE	S15			10		9	3		0	2
1050.13	DAE	F15								0	0
1050.13	DAE	S16			20		10	2		0	3

1059.74	DAE	F16					0	0
1059.74	DAE	S17		40	9	3	0	5
1073.11	DAE	F17					0	0
1073.11	DAE	S18		10	9	З	0	2
1175.62	DAE	F18					0	0
1175.62	TFA				2	3	0	0
1175.62	AMH						0	0

	ST	O&M	
Overall Rating:	0	790	
Rating Index:	-	3.36	C

	ST	0&M	
Quick Rating:	0000	5C4V	
Overall Quick Rating:	5C4V		

18. Line 12890:

Table 36: Details for Line_12890

Asset Number	12890
U/S Manhole ID	12902
D/S Manhole ID	11083
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/22/2023
Pipe Diameter	39 inches
Pipe Length (Field)	85.36 ft

Table 37: PACP Defect	Table for Line_12890
-----------------------	----------------------

	Code		,	value			Circum				Defect Rating	
Dist. (ft.)	Group/ Descriptio	Continuous defect	Dimen	sion		Joint	ntia		Remarks			
(10.)	n	ucicet	1 st	2 nd	%		At/ From	То		Str	0&M	
0	AMH											
0	MWL				30							
2.45	DAE	S01			10		10	3		0	2	
15.45	VC									0	0	
28.45	DAE	F01								0	0	
28.45	DAE	S02			20		9	3		0	3	
62.37	DAE	F02								0	0	
62.37	DAE	S03			40		9	З		0	5	
85.36	DAE	F03								0	0	
85.36	TFA		15				2	3		0	0	
85.36	TFA		15				9	10		0	0	
85.36	AMH									0	0	

	ST	0&M
Overall Rating:	0	56
Rating Index:	-	3.29

	ST	0&M	
Quick Rating:	0000	5537	
Overall Quick Rating:	5537		

19. Line 11078:

Table 38: Details for Line_11078

Asset Number	11078
U/S Manhole ID	11083
D/S Manhole ID	11084
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/11/2023
Pipe Diameter	39 inches
Pipe Length (Field)	305.03 ft

Dist. (ft.) Code Group/ Description		value			Circum			Defect Rating			
	Continuous	Dimension			Joint	tial		Remarks			
	Description	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				40						
0	SRI	S01					10	2		1	0
0	DAE	S02			10		9	3		0	2
26.72	DAE	F02								0	0
26.72	SRI	F01									
26.72	DAE	S03			30		9	3		0	4
91.92	DAE	F03								0	0
113.02	DAE	S04			10		9	3		0	2
201.21	DAE	F04								0	0
201.21	DAE	S05			30		9	3		0	4
236.07	DAE	F05								0	0
236.07	DAE	S06			20		11	3		0	3
305.03	DAE	F06								0	0
305.03	AMH									0	0

	ST	0&M		ST	O&M
Overall Rating:	5	168	Quick Rating:	1500	4C3A
Rating Index:	1.00	2.95	Overall Quick Rating: 4C3		4

20. Line 11079:

Table 40: Details for Line_11079

Asset Number	11079	Pipe Material	Concrete
U/S Manhole ID	11084	Inspection Date	5/11/2023

D/S Manhole ID 11085		Pipe Diameter	39 inches
Inspection Direction	Downstream	Pipe Length (Field)	313.36 ft

	Code		value				Circumferen tial			Defect Rating	
Dist.	Group/	Continuous	Dimen	sion		Joint	liai		Remarks		
(ft.)	Description	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
2.26	DAE	S01			10		10	3	Effloresc ence	0	2
47.11	DAE	F01								0	0
47.11	DAE	S02			20		10	3	Effloresc ence	0	3
313.36	DAE	F02								0	0
313.36	AMH									0	0

Table 41: PACE	Defect Table	for Line_11079
----------------	--------------	----------------

	ST	O&M		ST	O&M
Overall Rating:	0	177	Quick Rating:	0000	3129
Rating Index:	-	2.85	Overall Quick Rating: 3129)

21. Line 11080:

Table 42: Details for Line_11080

Asset Number	11080
U/S Manhole ID	11085
D/S Manhole ID	12373
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/11/2023
Pipe Diameter	39 inches
Pipe Length (Field)	136.99 ft

Table 43:	PACP	Defect	Table	for	Line_	11080
-----------	------	--------	-------	-----	-------	-------

Dist. (ft.) Code Group/ Description	Code		value			Circum				Defect Rating	
	Continuous	Dimen	sion		Joint	tial		Remarks			
	-	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	DAE	S01			20		11	3	Effloresc ence	0	3
55.4	DAE	F01								0	0

55.4	DAE	S02		30	10	2	Effloresc ence	0	4
94.22	DAE	F02						0	0
94.22	DAE	S03		20	10	3	Effloresc ence	0	3
136.99	DAE	F03						0	0
136.99	AMH							0	0

	ST	O&M		ST	0&M
Overall Rating:	0	92	Quick Rating:	0000	483C
Rating Index:	-	3.29	Overall Quick Rating:	4830	2

22. Line 11306:

Table 44: Details for Line_11306

Asset Number	11306		
U/S Manhole ID	12373		
D/S Manhole ID	11086		
Inspection Direction	Downstream		

Pipe Material	Concrete		
Inspection Date	5/11/2023		
Pipe Diameter	39 inches		
Pipe Length (Field)	136.24 ft		

Table 45: PACP Defect Table for Line_11306

Dist. Code	Code	Continuous	value			-	Circumferen tial			Defect Rating	
	Group/		Dimen	Dimension		Joint			Remarks		
	Description	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	DAE	S01			10		11	3	Effloresc ence	0	2
44.28	DAE	F01								0	0
44.28	DAE	S02			20		10	3	Effloresc ence	0	3
87.43	DAE	F02								0	0
87.43	DAE	S03			10		11	3	Effloresc ence	0	2
136.24	DAE	F03								0	0
136.24	TFC		15				10	11		0	0
136.24	AMH									0	0

	ST	0&M		ST	O&M	
Overall Rating:	0	65	Quick Rating:	0000	392B	
Rating Index:	-	2.32	Overall Quick Rating:	392B		

23. Line 11081:

Table 46: Details for Line_11081

Asset Number	11081
U/S Manhole ID	11086
D/S Manhole ID	11087
Inspection Directio	n Downstream

Pipe Material	Concrete		
Inspection Date	5/11/2023		
Pipe Diameter	39 inches		
Pipe Length (Field)	1027.89 ft		

	Code	value Circumfer tial				Defect Rating					
Dist.	Group/	Continuous	Dimen	sion		Joint	ua		Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From			Str	0&M
0	AMH										
0	MWL				20						
0	DAE	S01			30		11	3	Effloresc ence	0	4
32.98	DAE	F01								0	0
32.98	DAE	S02			10		10	3	Effloresc ence	0	2
125.87	DAE	F02								0	0
125.87	DAE	S03			30		10	3	Effloresc ence	0	4
154.51	DAE	F03								0	0
154.51	DAE	S04			10		11	3	Effloresc ence	0	2
318.82	DAE	F04								0	0
318.82	DAE	S05			20		11	3	Effloresc ence	0	3
348.78	DAE	F05								0	0
348.78	DAE	S06			10		9	3	Effloresc ence	0	2
940.42	VC									0	0
1027.89	DAE	F06								0	0
1027.89	TBI		15	2	5		9			0	2
1027.89	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	0	442	Quick Rating:	0000	4A36

Rating Index: - 2.15	Overall Quick Rating:	4A36
----------------------	-----------------------	------

24. Line 11082:

Table 48: Details for Line_11082

Asset Number	11082		Pipe Material	Concrete
U/S Manhole ID	11087	1	Inspection Date	5/11/2023
D/S Manhole ID	11088		Pipe Diameter	39 inches
Inspection Direction	Downstream	Pi	pe Length (Field)	41.46 ft

Table 49: PACP Defect Table for Line_11082

	Code Dist. Group/ Continuous		value			Circumferen tial			Defect Rating		
			Dimen	sion		Joint	tiai	-	Remarks		
(ft.)	Descript ion	defect	1 st 2 nd %	%		At/ From	То		Str	0&M	
0	AMH										
0	MWL				20						
0	SRI	S01					9	3		1	0
0	DAE	S02			10		12	3	Effloresc ence	0	2
41.46	DAE	F02								0	0
41.46	SRI	F01								0	0
41.46	AMH									0	0

	ST	0&M		ST	O&M
Overall Rating:	8	16	Quick Rating:	1800	2800
Rating Index:	1.00	2.00	Overall Quick Rating:	2818	3

25. Line UnknownPipe1:

Table 50: Details for Line UnknownPipe1

Asset Number	UnknownPipe1	Pipe Material	Concrete
U/S Manhole ID	11088	Inspection Date	5/11/2023
D/S Manhole ID	UnknownMH2	Pipe Diameter	No Information

Inspection Direction	Downstream	Pipe Length (Field)	41.08 ft
----------------------	------------	---------------------	----------

Diat	Code Dist. Group/ Continuous (ft.) Descript defect		value			Circumferen tial			Defect Rating		
Dist. (ft.)		Continuous defect	Dimension			Joint			Remarks		
	ion		1 st 2 nd %	%		At/ From	То		Str	O&M	
0	AMH										
0	MWL				20						
0	TFA		15				9	10		0	0
0	DAE	S01			10		9	3	Effloresc ence	0	2
41.08	DAE	F01								0	0
41.08	TFA		15				10			0	0
41.08	VC									0	0
41.08	AMH									0	0

Table 51: PACP Defect Table for Line_UnknownPipe1

	ST	O&M		ST	O&M
Overall Rating:	0	16	Quick Rating:	0000	2800
Rating Index:	-	2.00	Overall Quick Rating:	2800)

26. Line 11083:

Table 52: Details for Line_ 11083

Asset Number	11083	Pipe Material	Concrete
U/S Manhole ID	UnknownMH2	Inspection Date	5/11/2023
D/S Manhole ID	11089	Pipe Diameter	39 inches
Inspection Direction	Downstream	Pipe Length (Field)	382.89 ft

Table 53: PACF	Defect	Table for	Line_	11083
----------------	--------	-----------	-------	-------

	Code Dist. Group/ Continuous (ft.) Descript defect		value				Circumf			Defect Rating	
Dist. (ft.)		Continuous defect	Dimen	sion		Joint	tial		Remarks		-
(10.)	ion	derect	1 st 2 nd	%		At/ From	То		Str	0&M	
0	AMH										
0	MWL				20						
0	TFA		15				10	0		0	0
3.21	SRI	S01					9	3		1	0
5.66	DAE	S02			10		9	12	Effloresc ence	0	2
45.79	DAE	F02								0	0

45.79	SRI	F01					0	0
45.79	DAE	S03	30	9	3	Effloresc ence	0	4
129.64	DAE	F03					0	0
129.64	DAE	S04	35	9	3	Effloresc ence	0	5
297.91	DAE	F04					0	0
297.91	DAE	S05	10	9	3	Effloresc ence	0	2
382.89	DAE	F05					0	0
382.89	AMH						0	0

	ST	O&M		ST	O&M
Overall Rating:	9	288	Quick Rating:	1900	5E4B
Rating Index:	1.00	3.79	Overall Quick Rating:	5E4E	3

27. Line 11084:

Table 54: Details for Line_ 11084

Asset Number	11084			
U/S Manhole ID	11089			
D/S Manhole ID	11090			
Inspection Direction	Downstream			

Pipe Material	Concrete
Inspection Date	5/11/2023
Pipe Diameter	39 inches
Pipe Length (Field)	758.52 ft

	Code		value			Circumferen				efect ating	
	Dist. Group/ (ft.) Descript ion	Continuous defect	Dimension		ion Joint Remarks	tial					
(ft.) De			1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				10						

0	SRI	S01				9	3	1	0
14.85	DAE	S02		10		11	3	0	2
74.89	SRI	F01						0	0
86.01	DAE	F02						0	0
86.01	DAE	S03		20		10	3	0	3
308.17	DAE	F03						0	0
308.17	DAE	S04		10		10	1	0	2
432.72	DAE	F04						0	0
432.72	DAE	S05		20		9	3	0	3
681.26	LD			10				0	1
681.26	OBI			5	J	9		0	5
681.26	SRI	S06				9	3	1	0
730.44	SRI	F06						0	0
758.52	DEA	F05						0	0
758.52	TFA		15			10	11	0	0
758.52	TFA		15			2	3	0	0
758.52	AMH							0	0

	ST	O&M		ST	O&M
Overall Rating:	25	414	Quick Rating:	1D00	513U
Rating Index:	1.00	2.74	Overall Quick Rating: 513		J

28. Line 11085:

Table 56: Details for Line_ 11085

		_		
Asset Number	11085		Pipe Material	Concrete
U/S Manhole ID	11090		Inspection Date	5/11/2023
D/S Manhole ID	11091		Pipe Diameter	39 inches
Inspection Direction	Downstream		Pipe Length (Field)	674.96 ft

	Code		value				Circumferen				Defect Rating	
Dist.	Group/	Continuous	Dimen	sion		Joint	tial		Remarks			
(ft.)	ion	escript defect ion	1 st	2 nd	%		At/ From	То		Str	0&M	
0	AMH											
0	MWL				10							
0	DAE	S01			20		10	2	Effloresc ence	0	3	
663.84	DAE	F01								0	0	
663.84	DAE	S02			10		10	2		0	2	

674.96	DAE	F02					0	0
674.96	TFA		15		1	2	0	0
674.96	AMH						0	0

	ST	0&M
Overall Rating:	0	403
Rating Index:	-	2.99

	ST	0&M	
Quick Rating:	0000	3Y22	
Overall Quick Rating:	3Y22		

29. Line 11086:

Table 58: Details for Line_ 11086

Asset Number	11086			
U/S Manhole ID	11091			
D/S Manhole ID	14776			
Inspection Direction	Downstream			

Pipe Material	Concrete			
Inspection Date	5/11/2023			
Pipe Diameter	39 inches			
Pipe Length (Field)	456.75 ft			

Table 59: PACP Defect Table for Line_ 11086

	Code			value			Circumf			Defect Rating	
Dist.	Group/	Continuous	Dimen	sion		Joint	lidi	tial	Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
2.45	SRI	S01					9	3		1	0
2.45	DAE	S02			10		9	3	Effloresc ence	0	2
69.72	DAE	F02								0	0
69.72	DAE	S03			20		9	3	Effloresc ence	0	3
277.56	SRV						9	11		4	0
332.39	DAE	F03								0	0
339.93	DAE	S04			20		9	3	Effloresc ence	0	3

433.39	TBI		8	4	10	1		0	2
456.75	DAE	F04						0	0
456.75	SRI	F01						0	0
456.75	AMH							0	0

	ST	0&M		ST	O&M
Overall Rating:	95	256	Quick Rating:	411Q	3N2A
Rating Index:	1.03	2.84	Overall Quick Rating:	4131	٧

30. Line 14793:

Table 60: Details for Line_ 14793

Asset Number	14793		
U/S Manhole ID	14776		
D/S Manhole ID	11092		
Inspection Direction	Downstream		

Pipe Material	Concrete			
Inspection Date	5/11/2023			
Pipe Diameter	39 inches			
Pipe Length (Field)	262.86 ft			

_	Code		value			Circumferen tial			Defect Rating		
Dist.	Group/	Continuous	Dimen	sion		Joint	lidi	-	Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	SSC						12			1	0
0	DAE				20		9	3		0	3
16.96	DAE	S01			30		9	3		0	4
183.35	DAE	F01								0	0
191.45	DAE	S02			20		9	3		0	3
262.86	DAE	F02								0	0
262.86	TFA		15				8	9		0	0
262.86	TFA		15				1	2		0	0
262.86	AMH									0	0

	ST	O&M		ST	0&M
Overall Rating:	1	177	Quick Rating:	1100	4E3B

Rating Index:	1.00	3.69	Overall Quick Rating:	4E3B
---------------	------	------	-----------------------	------

31. Line 11087:

Table 62: Details for Line_ 11087

Asset Number	11087	Pipe Material	Concrete
U/S Manhole ID	11092	Inspection Date	5/11/2023
D/S Manhole ID	11093	Pipe Diameter	42 inches
Inspection Direction	Downstream	Pipe Length (Field)	107.03 ft

Table 63: PACP Defect Table for Line_ 11087

	Code			value			Circumferen tial			Defect Rating	
Dist.	Group/	Continuous	Dimen	sion		Joint	tiai		Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	SRI	S01					10	3		1	0
0	DAE	S02			10		10	2		0	2
53.32	DAE	F02								0	0
53.32	SRI	F01								0	0
53.32	DAE	S03			30		9	3		0	4
61.24	DAE	F03								0	0
61.24	DAE	S04			10		9	3		0	2
107.03	DAE	F04								0	0
107.03	AMH									0	0

	ST	0&M		ST	O&M
Overall Rating:	11	48	Quick Rating:	1A00	422C
Rating Index:	1.00	2.18	Overall Quick Rating: 422		C

32. Line 11088:

Table 64: Details for Line_ 11088

Asset Number	11088] [Pipe Material	Concrete
U/S Manhole ID	11093		Inspection Date	5/15/2023
D/S Manhole ID	11094] [Pipe Diameter	42 inches
Inspection Direction	Downstream] [Pipe Length (Field)	875.53 ft

Table 65: PACP Defect Table for Line_ 11088

Dist	Code			value			Circumferen tial				efect ating
Dist.	Group/	Continuous	Dimer	nsion		Joint	tia		Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	SRI	S01					9	3		1	0
0	DAE	S02			10		9	3		0	2
99.95	DAE	F02								0	0
99.95	SRI	F01								0	0
99.95	DAE	S03			20		9	3		0	3
214.14	DAE	F03								0	0
214.14	DAE	S04			10		9	2		0	2
271.8	DAE	F04								0	0
271.8	DAE	S05			40		9	3		0	5
279.15	DAE	F05								0	0
279.15	DAE	S06			10		9	3		0	2
563.49	DAE	F06								0	0
563.49	DAE	S07			40		9	3		0	5
572.35	DAE	F07								0	0
572.35	DAE	S08			10		9	3		0	2
857.63	DAE	F08								0	0
857.63	DAE	S09			40		9	3		0	5
865.74	DAE	F09								0	0
865.74	DAE	S10			10		9	3		0	2
874.78	DAE	F10								0	0
874.78	DAGS				10		3			0	2
875.53	AMH									0	0

	ST	O&M		ST	0&M
Overall Rating:	20	390	Quick Rating:	1C00	553C
Rating Index:	1.00	2.22	Overall Quick Rating:	5530	C

33. Line 11089:

Table 66: Details for Line_ 11089

Asset Number	11089	Pipe Material Concrete
U/S Manhole ID	11094	Inspection Date 5/15/2023
D/S Manhole ID	11095	Pipe Diameter 42 inches
Inspection Direction	Downstream	Pipe Length (Field) 260.41 ft

Table 67: PACP Defect Table for Line_ 11089

Diat	Code			value			Circumferen tial				efect ating
Dist. (ft.)	Group/ Descript	defect	Dimen	sion		Joint		1	Remarks		
(11.)	ion	defect	1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	DAE	S01			20		9	3	Effloresc ence	0	3
84.61	SRV						2	3		4	0
142.27	DAE	F01								0	0
142.27	DAE				10		10			0	2
147.92	LFCS	S02					8	4		3	0
183.72	VC									0	0
210.48	LFCS	F02								0	0
210.48	VC									0	0
237.24	DAE	S03			10		9	3		0	2
260.41	DAE	F03								0	0
260.41	TFA		15				2	3		0	0
260.41	AMH									0	0

	ST	0&M		ST	O&M	
Overall Rating:	43	96	Quick Rating:	413A	3D26	
Rating Index:	3.07	2.82	Overall Quick Rating:	413G		

34. Line 11090:

Table 68: Details for Line_ 11090

Asset Number	11090
U/S Manhole ID	11095
D/S Manhole ID	11096
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/15/2023
Pipe Diameter	42 inches
Pipe Length (Field)	710.01 ft

Table 69: PACP Defect Table for Line_ 11090

	Code		value			Circumferen			Defect Rating		
Dist.	Group/	Continuous defect	Dimen	sion		Joint	tial		Remarks		
(ft.) [Descript ion		1 st	2 nd	%		At/ From	То		Str	0&M
0	AMH										
0	MWL				20						
0	SRI	S01					10	3		1	0
25.44	DAE	S02			10		11	2		0	2

230.26	DAE	F02				0	0
230.26	SRI	F01				0	0
230.26	DAE	S03	30	9	3	0	4
585.64	DAE	F03				0	0
585.64	DAE	S04	40	9	3	0	5
710.01	DAE	F04				0	0
710.01	AMH					0	0

	ST	O&M		ST	0&M
Overall Rating:	46	491	Quick Rating:	1H00	5D4M
Rating Index:	1.00	3.58	Overall Quick Rating:	5D4N	Λ

35. Line 11091:

Table 70: Details for Line_ 11091

Asset Number	11091
U/S Manhole ID	11096
D/S Manhole ID	12919
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/11/2023
Pipe Diameter	42 inches
Pipe Length (Field)	452.74 ft

Table 71: PACP Defect Table for Line_ 11091

Diat	Code	Continuous		value			Circumferen tial			Defect Rating	
Dist.	Group/	Continuous	Dimen	sion		Joint			Remarks		
(ft.)	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
0	SRI	S01					10	3		1	0
7.45	DAE	S02			10		11	3		0	2
29.71	DAE	F02								0	0
29.71	DAE	S03			30		9	3		0	4
308.4	DAE	F03								0	0
308.4	SRI	F01								0	0
308.4	DAE	S04			20		9	2		0	3
452.74	DAE	F04								0	0
452.74	TFA		15				12	1		0	0
452.74	AMH									0	0

	ST	0&M		ST	O&M
Overall Rating:	62	319	Quick Rating:	1K00	4J3D
Rating Index:	1.00	3.58	Overall Quick Rating:	4J3D)

36. Line 12907:

Table 72: Details for Line_ 12907

Asset Number	12907	Pipe Material	Concrete
U/S Manhole ID	12919	Inspection Date	5/11/2023
D/S Manhole ID	11097	Pipe Diameter	42 inches
Inspection Direction	Downstream	Pipe Length (Field)	241.95 ft

Table 73: PACP Defect Table for Line_ 12907

	Code Dist Group/ Continuou		value			Circumferen			Defect Rating		
Dist. (ft.)	Group/ Descript	Continuous defect	Dimen	sion		Joint	tial		Remarks		
(10.)	ion	derect	1 st	1 st 2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
0	SRI	S01					9	3		1	0
0	DAE	S02			20		9	3		0	3
43.15	DAE	F02								0	0
43.15	DAE	S03			10		9	12		0	2
241.95	DAE	F03								0	0
241.95	SRI	F01								0	0
241.95	AMH									0	0

	ST	O&M		ST	O&M
Overall Rating:	48	107	Quick Rating:	1H00	392G
Rating Index:	1.00	2.18	Overall Quick Rating:	3920	3

37. Line 11092:

Table 74: Details for Line_ 11092

Asset Number	11092	Pipe Material	Concrete
U/S Manhole ID	11097	Inspection Date	5/11/2023
D/S Manhole ID	11098	Pipe Diameter	42 inches
Inspection Direction	Downstream	Pipe Length (Field)	183.72 ft

Table 75: PACP Dej	fect Table for Line_ 110	92
--------------------	--------------------------	----

Dist.	Dist. Code Continuous (ft.) Group/ defect	value		Joint	Circumferen	Remarks		efect ating	
(11.)	Group/	uerect	Dimension	%		tial		Str	0&M

	Descript ion		1 st	2 nd		At/ From	То		
0	AMH								
0	MWL				20				
1.51	SRI					12		1	0
3.77	DAE	S01			30	9	3	0	4
158.47	SRV					9	10	4	0
183.72	DAE	F01						0	0
183.72	VC							0	0
183.72	AMH							0	0

	ST	0&M		ST	0&M
Overall Rating:	5	144	Quick Rating:	4111	4F00
Rating Index:	2.50	4.00	Overall Quick Rating:	4F11	L

38. Line 11093:

Table 76: Details for Line_ 11093

Asset Number	11093
U/S Manhole ID	11098
D/S Manhole ID	11099
Inspection Direction	Downstream

Pipe Material	Concrete
Inspection Date	5/11/2023
Pipe Diameter	42 inches
Pipe Length (Field)	829.66 ft

	Code				Circum			Defect Rating			
Dist.	Group/	Continuous	Dimen	imension		Joint	tial		Remarks		
(ft.) D	Descript ion	defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
0	SRI	S01					9	3		1	0
0	DAE	S02			35		9	3		0	5
241.38	DAE	F02								0	0
241.38	DAE	S03			20		9	3		0	3
413.04	DAE	F03								0	0
413.04	DAE	S04			35		9	3		0	5
594.12	DAE	F04								0	0
594.12	DAE	S05			10		9	3		0	2
714.15	DAE	F05								0	0
790.46	DAE	S06			10		9	3		0	2
806.1	VC									0	0

829.66	DAE	F06				0	0
829.66	SRI	F01				0	0
829.66	AMH					0	0

	ST	0&M
Overall Rating:	166	586
Rating Index:	1.00	3.91

	ST	0&M		
Quick Rating:	1Z00	503E		
Overall Quick Rating:	503E			

Appendix B

1. Line 9502

Table 78 Details for line 9502

Line record no.: 9502		Pipe Material	RCP
-----------------------	--	---------------	-----

US MH ID:	2780T
DS MH ID:	2760T
Inspection Direction	Downstream

Inspection Date	12/09/2022
Pipe Diameter	54
Inspected Length	1165.25 ft.

Table 79 PACP defect table for line 9502

Dist. Code Cont.		C t	value			Circumfere Joi ntial				Defect Rating	
(ft.)	Group	defect	Dime	nsion		JO1 nt	ntia	l	Remarks		
(11.)		defect	1 st	2^{nd}	%	ш	At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
0	SZ						8	4	Efflorescence		
0	MGO		0.46	0					Max Corrosion 0.46 in. & Debris Ht. 0 in.		
5.09	SRC						1	4	Corroded steel patches	5	
10	MGO		0.59	0					Max Corrosion 0.59 in. & Debris Ht. 0 in.		
20	MGO		0.79	0					Max Corrosion 0.79 in. & Debris Ht. 0 in.		
30	MGO		0.65	0					Max Corrosion 0.65 in. & Debris Ht. 0 in.		
33.17	SRC	S01					10	12	Corroded steel patches	5	
40	MGO		0.54	0					Max Corrosion 0.54 in. & Debris Ht. 0 in.		
41.08	SRC	F01								5	
48.05	SRC						2	4		5	
50	MGO		0.57	0					Max Corrosion 0.57 in. & Debris Ht. 0 in.		
59.17	SRC						10	1		5	

				1					
		0.70	0				Max Corrosion		
		0.59	0				0.59 in. & Debris		
60	MGO						Ht. 0 in.		
							Max Corrosion		
		0.71	0				0.71 in. & Debris		
70	MGO						Ht. 0 in.		
							Max Corrosion		
		0.75	0				0.75 in. & Debris		
80	MGO						Ht. 0 in.		
82.35	SRC				12	1		5	
							Max Corrosion		
		0.46	0				0.46 in. & Debris		
90	MGO						Ht. 0 in.		
							Max Corrosion 0.8		
		0.8	0				in. & Debris Ht. 0		
100	MGO						in.		
							Max Corrosion	L	
		0.73	0				0.73 in. & Debris		
110	MGO						Ht. 0 in.		
112.68	SRC				2	4		5	
						-	Max Corrosion		
		0.58	0				0.58 in. & Debris		
120	MGO	0.50	0				Ht. 0 in.		
122.1	SRC				9	11		5	
122.1	5110						Max Corrosion	5	
		0.72	0				0.72 in. & Debris		
130	MGO	0.72	U				Ht. 0 in.		
139.25	SRC				12			5	
133.23	5110				12		Max Corrosion 0.6	5	
		0.6	0				in. & Debris Ht. 0		
140	MGO	0.0	0						
140	UDIVI						in. Max Corrosion		
		0.93	0				0.93 in. & Debris		
150	MGO	0.93	U				0.93 In. & Debris Ht. 0 in.		
150	NIGO			 					
		0.7	Δ				Max Corrosion 0.7		
100	MCO	0.7	0				in. & Debris Ht. 0		
160	MGO						in.		
		0.71	0				Max Corrosion		
470		0.71	0				0.71 in. & Debris		
170	MGO						Ht. 0 in.		
			0				Max Corrosion		
		0.74	0				0.74 in. & Debris		
180	MGO						Ht. 0 in.		

			0.77	0				Max Corrosion		
			0.77	0				0.77 in. & Debris		
190	MGO							Ht. 0 in.		
191.82	SRC					2	4		5	
								Max Corrosion		
			1.14	0				1.14 in. & Debris		
200	MGO							Ht. 0 in.		
								Max Corrosion		
			0.56	0				0.56 in. & Debris		
210	MGO							Ht. 0 in.		
								Max Corrosion		
			0.69	0				0.69 in. & Debris		
220	MGO			-				Ht. 0 in.		
_								Max Corrosion		
			0.66	0				0.66 in. & Debris		
230	MGO		0.00	0				Ht. 0 in.		
								Max Corrosion		
			0.68	0				0.68 in. & Debris		
240	MGO		0.00	U				Ht. 0 in.		
240	WIGO							Max Corrosion		
			0.86	0				0.86 in. & Debris		
250	MGO		0.80	0				Ht. 0 in.		
230	NIGO							Max Corrosion		
			0.78	0				0.78 in. & Debris		
260	MGO		0.78	0				Ht. 0 in.		
200	NIGO							Max Corrosion		
			0.62	0				0.62 in. & Debris		
270	MCO		0.62	0						
270	MGO					2		Ht. 0 in.	~	
271.34	SRC					2	4		5	
			0.77	~				Max Corrosion		
			0.77	0				0.77 in. & Debris		
280	MGO						-	Ht. 0 in.		
289.43	SRC	S02				12	2		5	
				_				Max Corrosion		
			0.87	0				0.87 in. & Debris		
290	MGO							Ht. 0 in.		
296.97	SRC	F02							5	
								Max Corrosion		
			0.77	0				0.77 in. & Debris		
300	MGO							Ht. 0 in.		
								Max Corrosion		
			0.72	0				0.72 in. & Debris		
310	MGO							Ht. 0 in.		

315.81	SRC				1	4		5	
320	MGO	0.66	0				Max Corrosion 0.66 in. & Debris Ht. 0 in.		
330	MGO	0.52	0				Max Corrosion 0.52 in. & Debris Ht. 0 in.		
340	MGO	0.5	0				Max Corrosion 0.5 in. & Debris Ht. 0 in.		
350	MGO	0.58	0				Max Corrosion 0.58 in. & Debris Ht. 0 in.		
360	MGO	0.55	0				Max Corrosion 0.55 in. & Debris Ht. 0 in.		
370	MGO	0.68	0				Max Corrosion 0.68 in. & Debris Ht. 0 in.		
380	MGO	0.7	0				Max Corrosion 0.7 in. & Debris Ht. 0 in.		
380.63	SRC				9	12		5	
390	MGO	0.43	0				Max Corrosion 0.43 in. & Debris Ht. 0 in.		
400	MGO	0.64	0				Max Corrosion 0.64 in. & Debris Ht. 0 in.		
410	MGO	0.9	0				Max Corrosion 0.9 in. & Debris Ht. 0 in.		
420	MGO	1.04	0				Max Corrosion 1.04 in. & Debris Ht. 0 in.		
425.48	SRC				8	11		5	
430	MGO	0.85	0				Max Corrosion 0.85 in. & Debris Ht. 0 in.		
440	MGO	0.71	0				Max Corrosion 0.71 in. & Debris Ht. 0 in.		

560	MGO			•				Ht. 0 in.		
			0.59	0				Max Corrosion 0.59 in. & Debris		
550.41	SRC				$\left \right $	8	11		5	
550	MGO		0.02	0				Ht. 0 in.		
			0.62	0				Max Corrosion 0.62 in. & Debris		
540	MGO		0.74	U				Ht. 0 in.		
			0.74	0				Max Corrosion 0.74 in. & Debris		
533.64	SRC					12			5	
530	MGO		0.83	0				0.83 in. & Debris Ht. 0 in.		
520	MGO		0.81	0				0.81 in. & Debris Ht. 0 in. Max Corrosion		
515.36	SRP	F04			+			Max Corrosion	5	
510	MGO	FO 4			$\left \right $			Ht. 0 in.	-	
			0.77	0				Max Corrosion 0.77 in. & Debris		
500	MGO		0.64	0				Max Corrosion 0.64 in. & Debris Ht. 0 in.		
497.83	SRP	S04				10	4		5	
492.18	SRC	F03							5	
490	MGO		1	0				Max Corrosion 1 in. & Debris Ht. 0 in.		
487.47	SRC	S03				12	4		5	
481.63	SRC					12			5	
480	MGO		0.71	0				Max Corrosion 0.71 in. & Debris Ht. 0 in.		
470	MGO		0.82	0				Max Corrosion 0.82 in. & Debris Ht. 0 in.		
460	MGO		0.68	0				Max Corrosion 0.68 in. & Debris Ht. 0 in.		
450	MGO		0.63	0				Max Corrosion 0.63 in. & Debris Ht. 0 in.		

				T	r		r –		r	
			_					Max Corrosion		
		0.58	0					0.58 in. & Debris		
570	MGO							Ht. 0 in.		
								Max Corrosion		
		0.72	0					0.72 in. & Debris		
580	MGO							Ht. 0 in.		
								Max Corrosion		
		0.85	0					0.85 in. & Debris		
590	MGO							Ht. 0 in.		
								Max Corrosion		
		0.47	0					0.47 in. & Debris		
600	MGO							Ht. 0 in.		
								Max Corrosion		
		0.78	0					0.78 in. & Debris		
610	MGO							Ht. 0 in.		
610.89	SRC					10	4		5	
							-	Max Corrosion		
		0.79	0					0.79 in. & Debris		
620	MGO	0.77	0					Ht. 0 in.		
								Max Corrosion		
		0.51	0					0.51 in. & Debris		
630	MGO	0.01	Ŭ					Ht. 0 in.		
030	mee							Max Corrosion		
		0.79	0					0.79 in. & Debris		
640	MGO	0.75	0					Ht. 0 in.		
040	WIGO							Max Corrosion		
		1.11	0					1.11 in. & Debris		
650	MGO	1.11	0					Ht. 0 in.		
0.00	NIGO							Max Corrosion		
		0.54	0					0.54 in. & Debris		
660	MGO	0.54	U					Ht. 0 in.		
000	UDIVI							Max Corrosion		
		0.79	0							
670	MCO	0.79	U					0.79 in. & Debris		
670	MGO							Ht. 0 in.		
			0					Max Corrosion		
600	MCO	0.69	0					0.69 in. & Debris		
680	MGO							Ht. 0 in.		
			0					Max Corrosion		
		0.66	0					0.66 in. & Debris		
690	MGO						_	Ht. 0 in.		
691.16	SRC					9	1		5	

								Max Corrosion		
			0.54	0				0.54 in. & Debris		
700	MGO		0.0	0				Ht. 0 in.		
700.77	SRC	S05				12	2		5	
								Max Corrosion 0.6		
			0.6	0				in. & Debris Ht. 0		
710	MGO							in.		
711.14	SRC	F05							5	
								Max Corrosion		
			0.83	0				0.83 in. & Debris		
720	MGO							Ht. 0 in.		
								Max Corrosion		
			0.35	0				0.35 in. & Debris		
730	MGO							Ht. 0 in.		
								Max Corrosion		
			0.57	0				0.57 in. & Debris		
740	MGO							Ht. 0 in.		
								Max Corrosion 0.6		
			0.6	0				in. & Debris Ht. 0		
750	MGO							in.		
755.04	SRC					12	3		5	
			- -	0				Max Corrosion 0.7		
760			0.7	0				in. & Debris Ht. 0		
760	MGO							in.		
			0.74	0				Max Corrosion		
770	MGO		0.74	0				0.74 in. & Debris Ht. 0 in.		
770	NIGO							Max Corrosion 0.7		
			0.7	0				in. & Debris Ht. 0		
780	MGO		0.7	0				in.		
,00	100				+		1	Max Corrosion		
			0.61	0				0.61 in. & Debris		
790	MGO		0.01	5				Ht. 0 in.		
								Max Corrosion		
			0.84	0				0.84 in. & Debris		
800	MGO							Ht. 0 in.		
								Max Corrosion		
			0.77	0				0.77 in. & Debris		
810	MGO							Ht. 0 in.		
								Max Corrosion		
			0.43	0				0.43 in. & Debris		
820	MGO							Ht. 0 in.		

					Max Corrosion
		0.65	0		0.65 in. & Debris
830	MGO	0.05	0		Ht. 0 in.
050	WIGO				Max Corrosion
		0.43	0		0.43 in. & Debris
840	MGO	0.43	0		Ht. 0 in.
040	NIGO				Max Corrosion
		0.51	0		0.51 in. & Debris
850	MGO	0.51	0		Ht. 0 in.
0.0	WIGO				Max Corrosion
		0.41	0		0.41 in. & Debris
860	MGO	0.41	0		Ht. 0 in.
000	WIGO				Max Corrosion
		0.56	0		0.56 in. & Debris
870	MGO	0.50	0		Ht. 0 in.
0,0	10100				Max Corrosion 0.8
		0.8	0		in. & Debris Ht. 0
880	MGO	0.0	0		in.
000	WIGO				Max Corrosion
		0.19	0		0.19 in. & Debris
890	MGO	0.17	U		Ht. 0 in.
000					Max Corrosion
		0.67	0		0.67 in. & Debris
900	MGO	0.07	Ŭ		Ht. 0 in.
					Max Corrosion
		0.51	0		0.51 in. & Debris
910	MGO		Ū.		Ht. 0 in.
					Max Corrosion
		0.53	0		0.53 in. & Debris
920	MGO				Ht. 0 in.
925.95	SRV			12	4
					Max Corrosion
		0.53	0		0.53 in. & Debris
930	MGO				Ht. 0 in.
					Max Corrosion
		0.43	0		0.43 in. & Debris
940	MGO				Ht. 0 in.
					Max Corrosion
		0.39	0		0.39 in. & Debris
950	MGO				Ht. 0 in.
					Max Corrosion
		0.27	0		0.27 in. & Debris
960	MGO				Ht. 0 in.

			0			Max Corrosion
		0.41	0			0.41 in. & Debris
970	MGO					Ht. 0 in.
						Max Corrosion
		0.51	0			0.51 in. & Debris
980	MGO					Ht. 0 in.
						Max Corrosion
		0.37	0			0.37 in. & Debris
990	MGO					Ht. 0 in.
						Max Corrosion
		0.57	0			0.57 in. & Debris
1000	MGO					Ht. 0 in.
						Max Corrosion
		0.22	0			0.22 in. & Debris
1010	MGO					Ht. 0 in.
						Max Corrosion
		0.35	0			0.35 in. & Debris 0
1020	MGO					Ht. 0 in.
						Max Corrosion
		0.28	0			0.28 in. & Debris
1030	MGO		-			Ht. 0 in.
						Max Corrosion
		0.27	0			0.27 in. & Debris
1040	MGO					Ht. 0 in.
						Max Corrosion
		0.56	0			0.56 in. & Debris
1050	MGO					Ht. 0 in.
1052.9	SRC				12	5
						Max Corrosion
		0.34	0			0.34 in. & Debris
1060	MGO	0.01	0			Ht. 0 in.
						Max Corrosion
		0.71	0			0.71 in. & Debris
1070	MGO	0.71	Ū			Ht. 0 in.
2070						Max Corrosion
		0.78	0			0.78 in. & Debris
1080	MGO	0.70	0			Ht. 0 in.
						Max Corrosion
		0.38	0			0.38 in. & Debris
1090	MGO	0.50	0			Ht. 0 in.
1050						Max Corrosion
		0.22	0			0.22 in. & Debris
1100	MGO	0.22	U			Ht. 0 in.
1100	UDINI					

1110	MGO	0.33	0				Max Corrosion 0.33 in. & Debris Ht. 0 in.		
1120	MGO	0.22	0				Max Corrosion 0.22 in. & Debris Ht. 0 in.		
1130	MGO	0.51	7.28				Max Corrosion 0.51 in. & Debris Ht. 7.28 in.		
1140	MGO	0	3.72				Max Corrosion 0 in. & Debris Ht. 3.72 in.		
1150	MGO	0.35	1.11				Max Corrosion 0.35 in. & Debris Ht. 1.11 in.		
1160	MGO	0.09	2.02				Max Corrosion 0.09 in. & Debris Ht. 2.02 in.		
1164.3	SRC				10	2		5	
1165.2	MSA						Reached end of the line		

2. Line 9612

Table 80 Details for line 9612

Line record no.:	9612	Pipe Material	RCP
US MH ID:	40T	Inspection Date	01/20/2023
DS MH ID:	2760T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	1313 ft.

Table 81	PACP	defect	table	for	line	9612
----------	------	--------	-------	-----	------	------

Dist.	Code	Cont	value			Iai	Circumfere ntial			Defect Rating	
Dist. (ft.)	Group	defect	Dime	nsion		Joi	ппа	1	Remarks		
(11.)		uerect	1 st	7 nd	%	nt	At/	То		Str	O&M
			1	2			From	10			

0	AMH	0								
0	MWL	0			20					
0	MWM	S01			90					
0	SRI	S02				8	4		1	
	••••							Max Corrosion	-	
	MGO		1.49	0				1.49 in. & Debris	1	
0				-				Ht. 0 in.	_	
3.23	SRC					12			5	
								Max Corrosion		
	MGO		0.61	0				0.61 in. & Debris	1	
10								Ht. 0 in.		
10.27	MWM	F01							1	
								Max Corrosion		
	MGO		0.37	0				0.37 in. & Debris	1	
20								Ht. 0 in.		
21.11	SSC	S03				12			1	
								Max Corrosion		
	MGO		0.51	0				0.51 in. & Debris	1	
30								Ht. 0 in.		
35.95	SRC					12			5	
								Max Corrosion		
	MGO		0.69	0				0.69 in. & Debris	1	
40						 		Ht. 0 in.		
43.55	SRC					12			5	
48.87	SRC					12			5	
								Max Corrosion		
	MGO		0.63	0				0.63 in. & Debris	1	
50								Ht. 0 in.		
								Max Corrosion		
	MGO		0.48	0				0.48 in. & Debris	1	
60								Ht. 0 in.		
								Max Corrosion 0.6		
	MGO		0.6	0				in. & Debris Ht. 0	1	
70								in.		
								Max Corrosion		
	MGO		0.85	0				0.85 in. & Debris	1	
80						 		Ht. 0 in.		
								Max Corrosion		
	MGO		0.81	0				0.81 in. & Debris	1	
90	e = -					 		Ht. 0 in.	_	
91.26	SRC					12			5	

	(1			-		1		1	1 1
								Max Corrosion		
	MGO		0.61	0				0.61 in. & Debris	1	
100								Ht. 0 in.		
								Max Corrosion		
	MGO		0.77	0				0.77 in. & Debris	1	
110			_					Ht. 0 in.		
113.49	SRC					12			5	
								Max Corrosion	-	
	MGO		0.83	0				0.83 in. & Debris	1	
120	Midd		0.05	U				Ht. 0 in.	1	
	CDC					 10			5	
124.13	SRC					 12			5	
				•				Max Corrosion		
	MGO		0.54	0				0.54 in. & Debris	1	
130								Ht. 0 in.		
								Max Corrosion		
	MGO		0.83	0				0.83 in. & Debris	1	
140								Ht. 0 in.		
								Max Corrosion		
	MGO		0.38	0				0.38 in. & Debris	1	
150								Ht. 0 in.		
								Max Corrosion		
	MGO		0.38	0				0.38 in. & Debris	1	
160	Midd		0.50	0				Ht. 0 in.	1	
100								Max Corrosion		
	MGO		0.54	0				0.54 in. & Debris	1	
170	NIGO		0.54	0					1	
170								Ht. 0 in.		
				•				Max Corrosion 0.7		
	MGO		0.7	0				in. & Debris Ht. 0		
180								in.		
								Max Corrosion		
	MGO		0.61	0				0.61 in. & Debris		
190								Ht. 0 in.		
								Max Corrosion		
	MGO		0.47	0				0.47 in. & Debris		
200								Ht. 0 in.		
								Max Corrosion		
	MGO		0.65	0				0.65 in. & Debris		
210				-				Ht. 0 in.		
								Max Corrosion		
	MGO		0.41	0				0.41 in. & Debris		
220	1000		0.71	0				Ht. 0 in.		
227.52	SRC	S04				8	12		5	
227.52	JNC	304				U	12		5	

			r		r				T	
				-				Max Corrosion		
	MGO		0.63	0				0.63 in. & Debris		
230								Ht. 0 in.		
233.98	SRC	F04							5	
								Max Corrosion		
	MGO		0.95	0				0.95 in. & Debris		
240								Ht. 0 in.		
								Max Corrosion		
	MGO		0.65	0				0.65 in. & Debris		
250								Ht. 0 in.		
								Max Corrosion		
	MGO		0.66	0				0.66 in. & Debris		
260	WIGO		0.00	0				Ht. 0 in.		
266.31	SRC					8	12	111. 0 111.	5	
200.51	JNC					0	12	Max Corrector	3	
	MACO		0.27	~				Max Corrosion		
070	MGO		0.37	0				0.37 in. & Debris		
270								Ht. 0 in.	_	
272.39	SRC					 10	11		5	
								Max Corrosion		
	MGO		0.87	0				0.87 in. & Debris		
280								Ht. 0 in.		
								Max Corrosion		
	MGO		0.83	0				0.83 in. & Debris		
290								Ht. 0 in.		
								Max Corrosion		
	MGO		0.73	0				0.73 in. & Debris		
300								Ht. 0 in.		
300.92	SRC					12			5	
								Max Corrosion	-	
	MGO		0.62	0				0.62 in. & Debris		
310	NIGO		0.02	0				Ht. 0 in.		
510								Max Corrosion		
	MGO		0.54	0						
220	IVIGU		0.54	0				0.54 in. & Debris		
320								Ht. 0 in.		
				-				Max Corrosion		
	MGO		0.59	0				0.59 in. & Debris		
330								Ht. 0 in.		
								Max Corrosion		
	MGO		0.32	0				0.32 in. & Debris		
340								Ht. 0 in.		
341.83	SRC					11	1		5	

			I							
	MCO		0.00	0				Max Corrosion		
250	MGO		0.82	0				0.82 in. & Debris		
350	606					 4.0		Ht. 0 in.	~	
354.75	SRC					 10	1		5	
								Max Corrosion		
	MGO		0.68	0				0.68 in. & Debris		
360								Ht. 0 in.		
								Max Corrosion		
	MGO		0.69	0				0.69 in. & Debris		
370								Ht. 0 in.		
								Max Corrosion		
	MGO	(0.91	0				0.91 in. & Debris		
380								Ht. 0 in.		
								Max Corrosion		
	MGO	(0.39	0				0.39 in. & Debris		
390								Ht. 0 in.		
395.02	SRC					12			5	
								Max Corrosion		
	MGO		0.71	0				0.71 in. & Debris		
400								Ht. 0 in.		
402.62	SRC					12			5	
								Max Corrosion		
	MGO		0.57	0				0.57 in. & Debris		
410								Ht. 0 in.		
_								Max Corrosion		
	MGO		0.75	0				0.75 in. & Debris		
420				•				Ht. 0 in.		
.20								Max Corrosion		
	MGO		0.43	0				0.43 in. & Debris		
430	11100		0.10	U				Ht. 0 in.		
								Max Corrosion		
	MGO		0.72	0				0.72 in. & Debris		
440	1000		0.72	U				Ht. 0 in.		
440	SRC					12			5	
444.22	JIC					12		Max Corrosion	5	
	MGO		0.85	0				0.85 in. & Debris		
450	UDIVI		0.05	U				0.85 m. & Debris Ht. 0 in.		
430										
	MCO		0.70	0				Max Corrosion		
400	MGO		0.79	0				0.79 in. & Debris		
460								Ht. 0 in.		
			0 70	c				Max Corrosion		
470	MGO		0.72	0				0.72 in. & Debris		
470								Ht. 0 in.		

					1		
				_			Max Corrosion
	MGO		0.54	0			0.54 in. & Debris
480							Ht. 0 in.
483.36	SRC					12	5
							Max Corrosion
	MGO		0.45	0			0.45 in. & Debris
490							Ht. 0 in.
							Max Corrosion
	MGO		0.27	0			0.27 in. & Debris
500							Ht. 0 in.
							Max Corrosion
	MGO		0.36	0			0.36 in. & Debris
510							Ht. 0 in.
							Max Corrosion
	MGO		0.76	0			0.76 in. & Debris
520							Ht. 0 in.
							Max Corrosion
	MGO		0.42	0			0.42 in. & Debris
530							Ht. 0 in.
538.1	SRC					12	5
							Max Corrosion
	MGO		0.93	0			0.93 in. & Debris
540							Ht. 0 in.
							Max Corrosion
	MGO		0.99	0			0.99 in. & Debris
550							Ht. 0 in.
554.07	SRC	S05				12	5
558.82	SRC	F05					5
							Max Corrosion 0.8
	MGO		0.8	0			in. & Debris Ht. 0
560							in.
							Max Corrosion
	MGO		0.46	0			0.46 in. & Debris
570							Ht. 0 in.
							Max Corrosion
	MGO		0.91	0			0.91 in. & Debris
580							Ht. 0 in.
							Max Corrosion
	MGO		0.94	0			0.94 in. & Debris
590							Ht. 0 in.
							Max Corrosion
	MGO		0.43	0			0.43 in. & Debris
600							Ht. 0 in.
590							Max Corrosion
600				-			

				1 1	1	1 1		1
						Max Corrosion		
	MGO	0.39	0			0.39 in. & Debris		
610						Ht. 0 in.		
						Max Corrosion 0.3		
	MGO	0.3	0			in. & Debris Ht. 0		
620						in.		
623.49	SRC				12		5	
	00					Max Corrosion	-	
	MGO	0.86	0			0.86 in. & Debris		
630	WIGO	0.00	0			Ht. 0 in.		
	SDC				12		5	
638.7	SRC				12		3	
			-			Max Corrosion		
	MGO	0.82	0			0.82 in. & Debris		
640						Ht. 0 in.		
						Max Corrosion		
	MGO	1.03	0			1.03 in. & Debris		
650						Ht. 0 in.		
						Max Corrosion		
	MGO	0.38	0			0.38 in. & Debris		
660			-			Ht. 0 in.		
665.13	SRC				12		5	
003.13	5110					Max Corrosion 0.8	5	
	MGO	0.8	0			in. & Debris Ht. 0		
670	NIGO	0.8	0					
670						in.		
						Max Corrosion		
	MGO	0.35	0			0.35 in. & Debris		
680						Ht. 0 in.		
						Max Corrosion		
	MGO	0.55	0			0.55 in. & Debris		
690						Ht. 0 in.		
691.37	SRC				12		5	
						Max Corrosion 0.3		
	MGO	0.3	0			in. & Debris Ht. 0		
700	-					in.		
						Max Corrosion		
	MGO	0.37	0			0.37 in. & Debris		
710	1100	0.57	U			Ht. 0 in.		
	SPC				12	111. U III.	5	
713.62	SRC				12		3	
			-			Max Corrosion 0.8		
	MGO	0.8	0			in. & Debris Ht. 0		
720						in.		
726.18	SRC				12		5	

				1		r	1
					Max Corrosion		
	MGO	0.29	0		0.29 in. & Debris		
730					Ht. 0 in.		
732.07	SRC			12		5	
					Max Corrosion		
	MGO	0.24	0		0.24 in. & Debris		
740					Ht. 0 in.		
					Max Corrosion		
	MGO	0.79	0		0.79 in. & Debris		
750					Ht. 0 in.		
					Max Corrosion		
	MGO	0.17	0		0.17 in. & Debris		
760		0.17	Ũ		Ht. 0 in.		
,					Max Corrosion		
	MGO	0.85	0		0.85 in. & Debris		
770	WIGO	0.05	0		Ht. 0 in.		
777.5	SRC			12		5	
777.5	SILC			12	Max Corrosion	5	
	MGO	1.08	0		1.08 in. & Debris		
780	NIGO	1.08	0				
780					Ht. 0 in.		
	1460		0		Max Corrosion 1		
700	MGO	1	0		in. & Debris Ht. 0		
790				- 10	in.		
791.18	SRC			12		5	
					Max Corrosion		
	MGO	0.48	0		0.48 in. & Debris		
800					Ht. 0 in.		
					Max Corrosion		
	MGO	0.38	0				
					Ht. 0 in.		
829.78	SRC			12		5	
					Max Corrosion		
	MGO	0.75	0		0.75 in. & Debris		
830					Ht. 0 in.		
					Max Corrosion		
	MGO	0.69	0		0.69 in. & Debris		
840					Ht. 0 in.		
846.89	SRC			12		5	
					Max Corrosion		
	MGO	1.03	0		1.03 in. & Debris		
850					Ht. 0 in.		
830 840 846.89	MGO MGO SRC	0.69	0		0.75 in. & Debris Ht. 0 in. Max Corrosion 0.69 in. & Debris Ht. 0 in. Max Corrosion 1.03 in. & Debris	5	

		r			1	
						Max Corrosion
	MGO	0.92	0			0.92 in. & Debris
860						Ht. 0 in.
						Max Corrosion
	MGO	1.07	0			1.07 in. & Debris
870						Ht. 0 in.
						Max Corrosion
	MGO	0.35	0			0.35 in. & Debris
880						Ht. 0 in.
						Max Corrosion
	MGO	0.89	0			0.89 in. & Debris
890						Ht. 0 in.
						Max Corrosion
	MGO	0.34	1.12			0.34 in. & Debris
900						Ht. 1.12 in.
						Max Corrosion
	MGO	0.23	0			0.23 in. & Debris
910			_			Ht. 0 in.
						Max Corrosion
	MGO	0.27	2.49			0.27 in. & Debris
920						Ht. 2.49 in.
						Max Corrosion
	MGO	0.85	0			0.85 in. & Debris
930	mee		Ŭ			Ht. 0 in.
						Max Corrosion
	MGO	0.87	0			0.87 in. & Debris
940	mee		Ŭ			Ht. 0 in.
5.0						Max Corrosion
	MGO	0.18	0			0.18 in. & Debris
950	Midd	0.10	Ŭ			Ht. 0 in.
550			+			Max Corrosion
	MGO	0.64	0			0.64 in. & Debris
960	1000	0.04				Ht. 0 in.
500			+			Max Corrosion
	MGO	0.48	0			0.48 in. & Debris
970	UDIVI	0.48				Ht. 0 in.
978.98	SRC		+		12	
570.90	SIL		+		12	Max Corrosion
	MCO	1 1 1				1.17 in. & Debris
000	MGO	1.17	0			
980	SDC		+			Ht. 0 in.
982.02	SRC					5

					1		1			
				_				Max Corrosion		
	MGO		1.12	0				1.12 in. & Debris		
990								Ht. 0 in.		
								Max Corrosion		
	MGO		0.94	0				0.94 in. & Debris		
1000								Ht. 0 in.		
								Max Corrosion		
	MGO		1.03	0				1.03 in. & Debris		
1010	mee		1.00	U				Ht. 0 in.		
1010.1	SRC	S06				12	1		5	
						12	_ _		5	
1019.0	SRC	F06							3	
				•				Max Corrosion		
	MGO		1.01	0				1.01 in. & Debris		
1020								Ht. 0 in.		
								Max Corrosion		
	MGO		1.05	0				1.05 in. & Debris		
1030								Ht. 0 in.		
								Max Corrosion		
	MGO		1.03	0				1.03 in. & Debris		
1040								Ht. 0 in.		
								Max Corrosion		
	MGO		1.02	0				1.02 in. & Debris		
1050	WIGO		1.02	0				Ht. 0 in.		
1050								Max Corrosion		
	MGO		0.02	0				0.93 in. & Debris		
1000	NIGO		0.93	0						
1060								Ht. 0 in.	~	
1067.1	SRP	S07				11	1		5	
								Max Corrosion		
	MGO		0.85	0				0.85 in. & Debris		
1070								Ht. 0 in.		
1075.9	SRP	F07							5	
								Max Corrosion		
	MGO		1.12	0				1.12 in. & Debris		
1080								Ht. 0 in.		
1083.9	SRC					12			5	
1087.8	SRP					12			5	
	2							Max Corrosion		
	MGO		0.69	0				0.69 in. & Debris		
1090	11100		0.05	0				Ht. 0 in.		
1030								Max Corrosion		
	MCO		0 4 2	0						
1100	MGO		0.42	0				0.42 in. & Debris		
1100								Ht. 0 in.		

			1				
					Max Corrosion		
	MGO		0.42	0	0.42 in. & Debris		
1110					Ht. 0 in.		
					Max Corrosion		
	MGO		0.32	0	0.32 in. & Debris		
1120					Ht. 0 in.		
					Max Corrosion		
	MGO		1.06	0	1.06 in. & Debris		
1130					Ht. 0 in.		
					Max Corrosion 1		
	MGO		1	0	in. & Debris Ht. 0		
1140					in.		
					Max Corrosion		
	MGO		1.09	0	1.09 in. & Debris		
1150					Ht. 0 in.		
					Max Corrosion		
	MGO		0.87	0	0.87 in. & Debris		
1160					Ht. 0 in.		
					Max Corrosion		
	MGO		0.24	0	0.24 in. & Debris		
1170					Ht. 0 in.		
					Max Corrosion		
	MGO		0.74	0	0.74 in. & Debris		
1180					Ht. 0 in.		
1272.8	SSC	F03				1	
1272.8	SRI	F02				1	
1272.8	AMH						

Table 82 Details for line 9503

Line record no.:	9503	Pipe Material	RCP
US MH ID:	2800T	Inspection Date	12/09/2022
DS MH ID:	2780T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	997.55

Table 83	PACP	defect	table	for	line	9503
10010-00	17101	acject	<i>cubic</i>	,	mic	5505

	. Code a			value			Circum				efect ating
Dist.	Group	Cont.	Dime	nsion		Joi	ntia	ıl	Remarks		ating
(ft.)		defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL				30						
0	MWM	S01					11	1			
									Max Corrosion		
									0.78 in. & Debris		
0	MGO		0.78	0					Ht. 0 in.		
									Max Corrosion		
									0.96 in. & Debris		
10	MGO		0.96	0					Ht. 0 in.		
									Max Corrosion		
									0.97 in. & Debris		
20	MGO		0.97	0					Ht. 0 in.		
									Max Corrosion		
									1.13 in. & Debris		
30	MGO		1.13	0					Ht. 0 in.		
									Max Corrosion		
									0.69 in. & Debris		
40	MGO		0.69	0					Ht. 0 in.		
									Max Corrosion		
									0.84 in. & Debris		
50	MGO		0.84	0					Ht. 0 in.		
									Max Corrosion		
									1.01 in. & Debris		
60	MGO		1.01	0					Ht. 0 in.		
									Max Corrosion		
									1.05 in. & Debris		
70	MGO		1.05	0					Ht. 0 in.		
74.99	SRC						8	11		5	
79.7	SRC	S02					8	12		5	
									Max Corrosion		
									0.75 in. & Debris		
80	MGO		0.75	0					Ht. 0 in.		
88.75	SRC	F02								5	
									Max Corrosion		
									0.93 in. & Debris		
90	MGO		0.93	0					Ht. 0 in.		

					1		1			
								Max Corrosion		
				_				0.93 in. & Debris		
100	MGO		0.93	0				Ht. 0 in.		
								Max Corrosion		
								0.85 in. & Debris		
110	MGO		0.85	0				Ht. 0 in.		
114	SRV					8	9		4	
								Max Corrosion		
								0.95 in. & Debris		
120	MGO		0.95	0				Ht. 0 in.		
126.43	SRC	S03				8	3		5	
						 -		Max Corrosion		
								0.85 in. & Debris		
130	MGO		0.85	0				Ht. 0 in.		
130	10100		0.05	0				Max Corrosion		
								0.94 in. & Debris		
140	MGO		0.94	0						
140	NIGO		0.94	U				Ht. 0 in. Max Corrosion		
450			0.00	•				0.88 in. & Debris		
150	MGO		0.88	0				Ht. 0 in.		
151.68	SRC	F03							5	
								Max Corrosion		
								0.74 in. & Debris		
160	MGO		0.74	0				Ht. 0 in.		
168.08	SRC					8			5	
								Max Corrosion		
								0.79 in. & Debris		
170	MGO		0.79	0				Ht. 0 in.		
176.75	SRC					8	11		5	
								Max Corrosion		
								0.84 in. & Debris		
180	MGO		0.84	0				Ht. 0 in.		
188.99	SRP	S04				12	4		5	
					1			Max Corrosion		
								1.04 in. & Debris		
190	MGO		1.04	0				Ht. 0 in.		
195.4	SRP	F04	2.07	v					5	
133.4	511	104						Max Corrosion 0.9	5	
								in. & Debris Ht. 0		
200	MGO		0.9	0				in.		
200	1000		0.9	0		1		Max Corrosion 0.8		
								in. & Debris Ht. 0		
210	MCO		0.0	0						
210	MGO		0.8	0				in.		

213.3	SRP					9	3		5	
								Max Corrosion		
								0.78 in. & Debris		
220	MGO		0.78	0				Ht. 0 in.		
226.3	SRC	S05				12	4		5	
								Max Corrosion		
								0.76 in. & Debris		
230	MGO		0.76	0				Ht. 0 in.		
233.84	SRC	F05							5	
236.48	SRP	S06				8	12		5	
								Max Corrosion		
								0.58 in. & Debris		
240	MGO		0.58	0				Ht. 0 in.		
248.16	SRP	F06							5	
								Max Corrosion		
								0.84 in. & Debris		
250	MGO		0.84	0				Ht. 0 in.		
253.25	SRC	S07				12	4		5	
258.9	SRC	F07							5	
								Max Corrosion 0.8		
								in. & Debris Ht. 0		
260	MGO		0.8	0				in.		
267	SRC					12	2		5	
								Max Corrosion		
								0.82 in. & Debris		
270	MGO		0.82	0				Ht. 0 in.		
273.41	SRC	S08				8	1		5	
								Max Corrosion		
				-				0.96 in. & Debris		
280	MGO		0.96	0				Ht. 0 in.		
281.89	SRC	F08							5	
283.4	SRC	S09				12	3		5	
								Max Corrosion		
								0.82 in. & Debris		
290	MGO	500	0.82	0				Ht. 0 in.		
291.5	SRC	F09							5	
								Max Corrosion		
200			0.00	~				0.68 in. & Debris		
300	MGO		0.68	0				Ht. 0 in.		
								Max Corrosion		
210	MCO		0.07	0				0.87 in. & Debris		
310	MGO		0.87	0		Λ		Ht. 0 in.	5	
317.5	SRC					4			5	

				1		1		1	1
							Max Corrosion		
							0.68 in. & Debris		
320	MGO	0.68	0				Ht. 0 in.		
							Max Corrosion		
							0.78 in. & Debris		
330	MGO	0.78	0				Ht. 0 in.		
332.39	SRV				1	3		4	
338.23	SRC				11	12		5	
							Max Corrosion		
							0.65 in. & Debris		
340	MGO	0.65	0				Ht. 0 in.		
			-				Max Corrosion		
							0.85 in. & Debris		
350	MGO	0.85	0				Ht. 0 in.		
355.38	SRV		Ū		10	12		4	
555.50	5111				10	12	Max Corrosion	•	
							0.68 in. & Debris		
360	MGO	0.68	0				Ht. 0 in.		
300	WIGO	0.08	0				Max Corrosion		
							0.73 in. & Debris		
270	MGO	0.72	0						
370	NIGU	0.73	0				Ht. 0 in.		
							Max Corrosion		
200		0.00	0				0.69 in. & Debris		
380	MGO	0.69	0		 10		Ht. 0 in.	~	
389.11	SRC				12	4		5	
							Max Corrosion		
			_				0.78 in. & Debris		
390	MGO	0.78	0				Ht. 0 in.		
							Max Corrosion		
							0.84 in. & Debris		
400	MGO	0.84	0				Ht. 0 in.		
							Max Corrosion		
							0.76 in. & Debris		
410	MGO	0.76	0				Ht. 0 in.		
							Max Corrosion 0.9		
							in. & Debris Ht. 0		
420	MGO	0.9	0				in.		
							Max Corrosion		
							0.75 in. & Debris		
430	MGO	0.75	0				Ht. 0 in.		
						1			

								Max Corrosion		
MGO		0.68	Ο							
WIGO		0.00	0							
MGO		0 74	0							
WIGO		0.74	0							
MGO		0.75	0							
		0170	0							
MGO		0.66	0					Ht. 0 in.		
								Max Corrosion		
								0.81 in. & Debris		
MGO		0.81	0					Ht. 0 in.		
								Max Corrosion		
								0.98 in. & Debris		
MGO		0.98	0					Ht. 0 in.		
SRC						12	4		5	
								Max Corrosion		
								0.71 in. & Debris		
MGO		0.71	0					Ht. 0 in.		
SRC	S10					2	4		5	
		0.87	0					Ht. 0 in.		
						-				
SRC	S11					8	11		5	
		0.64	•							
	F44	0.64	0					Ht. U In.	~	
SKC	F11							May Carrier	5	
MCO		0.69	0							
UDIVI		0.08	U							
MGO		0.66	Ο							
	\$12	0.00	0	1		12	Δ		5	
5110	312					*~	<u>т</u>	Max Corrosion	5	
MGO		0.53	0							
SRC	F12		-						5	
	MGO SRC SRC MGO SRC SRC SRC SRC SRC MGO SRC MGO SRC	MGO MGO MGO MGO MGO SRC SRC SI0 SRC SI0 SRC SI0 SRC S10 SRC S10 SRC S10 SRC S11 A MGO SRC S1 A MGO SRC S	MGOO.74MGO0.75MGO0.75MGO0.66MGO0.81MGO0.81MGO0.98SRC0.98SRC0.71SRC0.71SRC0.71SRC0.71MGO0.71SRC510MGO0.64SRC511MGO0.64SRC511MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.681MGO0.611MGO0.681MGO0.631MGO0.631	MGO 0.74 0 MGO 0.75 0 MGO 0.66 0 MGO 0.81 0 MGO 0.98 0 SRC 0.98 0 MGO 0.98 0 SRC 510 10 SRC 510 10 SRC 511 10 MGO 0.64 0 MGO 0.64 0 MGO 0.68 0 MGO 0.68 0 MGO 0.68 0 MGO 0.68 0 MGO 0.668 0 <	MGO0.740MGO0.750MGO0.750MGO0.660MGO0.810MGO0.980SRC0.980SRC0.710SRC0.710SRC0.710SRC0.710MGO0.710SRC1010SRC51010SRC51110SRC51110SRC51110MGO0.640SRCF1110MGO0.680MGO0.680MGO0.680SRCS1110MGO0.680	MGO0.7401MGO0.75011MGO0.75011MGO0.66011MGO0.81011MGO0.81011MGO0.98011MGO0.98011MGO0.98011SRC1111MGO0.71011SRC510111MGO0.877011SRC511111MGO0.64011MGO0.64011MGO0.68011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.66011MGO0.53011MGO0.53011	MGO0.74011MGO0.75011MGO0.75011MGO0.66011MGO0.81011MGO0.81011MGO0.98011SRC0111MGO0.980112MGO0.980112SRC510111SRC510111SRC511111SRC511111MGO0.64011MGO0.66011MGO0.66011MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.660112MGO0.53011	MGO 0.74 0 Image Image <thimage< th=""> Image <thimage< th=""> <thimage< th=""> <thimage< th=""></thimage<></thimage<></thimage<></thimage<>	MGO 0.74 0 Max Corrosion MGO 0.74 0 0 0.74 in. & Debris MGO 0.75 0 0 0.75 in. & Debris MGO 0.75 0 0 0.75 in. & Debris MGO 0.75 0 0 0.75 in. & Debris MGO 0.66 0 0 0.66 in. & Debris MGO 0.66 0 0 0.66 in. & Debris MGO 0.681 0 0 0.81 in. & Debris MGO 0.81 0 0 0.98 in. & Debris MGO 0.81 0 0 0.71 in. & Debris MGO 0.98 0 0 0.71 in. & Debris MGO 0.71 0 0 0.71 in. & Debris MGO 0.71 0 0 0.87 in. & Debris MGO 0.71 0 0 0.71 in. & Debris MGO 0.87 0 0 0.71 in. & Debris MGO <td< td=""><td>MGO 0.68 0 0 0.68 0.67 0.68 0.67 0.68 0.74 0 0 0.74 0.0 0.75 0.0 0.71 0.0</td></td<>	MGO 0.68 0 0 0.68 0.67 0.68 0.67 0.68 0.74 0 0 0.74 0.0 0.75 0.0 0.71 0.0

							1	Max Corrosion		
								0.66 in. & Debris		
560	MGO		0.66	0				Ht. 0 in.		
500	NIGO		0.00	0				Max Corrosion		
								0.86 in. & Debris		
570	MGO		0.86	0				Ht. 0 in.		
570	NIGO		0.80	0				Max Corrosion 0.7		
								in. & Debris Ht. 0		
580	MGO		0.7	0				in.		
								Max Corrosion		
								0.76 in. & Debris		
590	MGO		0.76	0				Ht. 0 in.		
595.06	SRC					9			5	
								Max Corrosion		
								0.84 in. & Debris		
600	MGO		0.84	0				Ht. 0 in.		
607.12	SRC					12	2		5	
								Max Corrosion		
								0.58 in. & Debris		
610	MGO		0.58	0				Ht. 0 in.		
								Max Corrosion		
								0.45 in. & Debris		
620	MGO		0.45	0				Ht. 0 in.		
621.82	SRC					2	4		5	
								Max Corrosion 0.7		
				-				in. & Debris Ht. 0		
630	MGO		0.7	0				in.	~	
635.38	SRC					3	4		5	
								Max Corrosion		
640	MCO		0.06	0				0.96 in. & Debris		
640	MGO		0.96	0				Ht. 0 in. Max Corrosion		
								0.66 in. & Debris		
650	MGO		0.66	0				Ht. 0 in.		
654.6	SRC	S13	0.00	U		12	4		5	
0.54.0	5110	212				12	+	Max Corrosion	5	
								0.48 in. & Debris		
660	MGO		0.48	0				Ht. 0 in.		
661.39	SRC	F13							5	
667.61	SRC	. 10				12	3		5	
	-					-	-	Max Corrosion	-	
								0.84 in. & Debris		
670	MGO		0.84	0				Ht. 0 in.		

								Max Corrosion 0.7		
								in. & Debris Ht. 0		
680	MGO		0.7	0				in.		
								Max Corrosion		
								0.89 in. & Debris		
690	MGO		0.89	0				Ht. 0 in.		
690.22	SRC	S14				12	4		5	
697.57	SRC	F14							5	
								Max Corrosion		
								0.86 in. & Debris		
700	MGO		0.86	0				Ht. 0 in.		
								Max Corrosion		
								0.53 in. & Debris		
710	MGO		0.53	0				Ht. 0 in.		
718.48	SRC					12	4		5	
								Max Corrosion		
								0.64 in. & Debris		
720	MGO		0.64	0				Ht. 0 in.		
727.9	SRC					9	11		5	
								Max Corrosion 0.8		
								in. & Debris Ht. 0		
730	MGO		0.8	0				in.		
								Max Corrosion		
								0.71 in. & Debris		
740	MGO		0.71	0				Ht. 0 in.		
								Max Corrosion 0.6		
								in. & Debris Ht. 0		
750	MGO		0.6	0				in.		
752.21	SRC					12	4		5	
								Max Corrosion		
								0.69 in. & Debris		
760	MGO		0.69	0				Ht. 0 in.		
767.29	SRC					12	4		5	
								Max Corrosion		
								0.63 in. & Debris		
770	MGO		0.63	0				Ht. 0 in.		
								Max Corrosion		
								0.78 in. & Debris		
780	MGO		0.78	0				Ht. 0 in.		
								Max Corrosion		
								0.61 in. & Debris		
790	MGO		0.61	0				Ht. 0 in.		

					<u> </u>		<u> </u>			1
								Max Corrosion		
								0.67 in. & Debris		
800	MGO		0.67	0				Ht. 0 in.		
								Max Corrosion		
								0.77 in. & Debris		
810	MGO		0.77	0				Ht. 0 in.		
								Max Corrosion		
								0.56 in. & Debris		
820	MGO		0.56	0				Ht. 0 in.		
								Max Corrosion		
								0.51 in. & Debris		
830	MGO		0.51	0				Ht. 0 in.		
								Max Corrosion 0.6		
								in. & Debris Ht. 0		
840	MGO		0.6	0				in.		
								Max Corrosion		
								0.59 in. & Debris		
850	MGO		0.59	0				Ht. 0 in.		
853.78	SRC					8	10		5	
								Max Corrosion		
								0.83 in. & Debris		
860	MGO		0.83	0				Ht. 0 in.		
								Max Corrosion		
								0.63 in. & Debris		
870	MGO		0.63	0				Ht. 0 in.		
876.39	SRC					8	10		5	
								Max Corrosion		
								0.56 in. & Debris		
880	MGO		0.56	0				Ht. 0 in.		
								Max Corrosion		
								0.68 in. & Debris		
890	MGO		0.68	0				Ht. 0 in.		
896.17	SRC	S15				 12	4		5	
								Max Corrosion 0.7		
								in. & Debris Ht. 0		
900	MGO		0.7	0				in.		
905.59	SRC	F15		-					5	
								Max Corrosion		
								0.81 in. & Debris		
910	MGO		0.81	0				Ht. 0 in.		
				v				Max Corrosion		
								0.57 in. & Debris		
920	MGO		0.57	0				Ht. 0 in.		
520			0.57	U	1		1			

			r – – – – – – – – – – – – – – – – – – –		1	1	-	1			,
									Max Corrosion		
									0.45 in. & Debris		
930	MGO		0.45	0					Ht. 0 in.		
									Max Corrosion 0.7		
									in. & Debris Ht. 0		
940	MGO		0.7	0					in.		
									Max Corrosion		
									0.58 in. & Debris		
950	MGO		0.58	0					Ht. 0 in.		
957.98	SRC	S16					11	4		5	
									Max Corrosion		
									0.55 in. & Debris		
960	MGO		0.55	0					Ht. 0 in.		
967.59	SRC	F16								5	
									Max Corrosion		
									0.64 in. & Debris		
970	MGO		0.64	0					Ht. 0 in.		
									Max Corrosion		
									0.52 in. & Debris		
980	MGO		0.52	0					Ht. 0 in.		
									Max Corrosion		
									0.75 in. & Debris		
990	MGO		0.75	0					Ht. 0 in.		
995.29	MWM	F01									
996.79	AMH										

Table 84 Details for line 9810

Line record no.:	9810	Pipe Material	RCP
US MH ID:	60T	Inspection Date	01/20/2023
DS MH ID:	40T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	996.42 ft.

Table 85 PACP defect table for line 9810

Dist.	Code Group	Cont.	value		Joi	Circumfere	Remarks		efect ating
(ft.)		defect	Dimension	%	nt	ntial		Str	O&M

			4 st	and		At/	_			
			1 st	2^{nd}		From	То			
0	AMH									
0	MWL				20					
0	MWM	S01			95					
0	DAE	S02			10	11	1			2
								Max Corrosion 1.3		
								in. & Debris Ht. 0		
0	MGO		1.3	0				in.		
7.35	SRC					8	10		5	
								Max Corrosion		
				-				1.32 in. & Debris		
10	MGO		1.32	0				Ht. 0 in.		
10.55	SRC					11	4		5	
18.84	SRC					8	10		5	
								Max Corrosion		
				•				0.96 in. & Debris		
20	MGO		0.96	0				Ht. 0 in.	-	
24.68	SRC					8	11		5	
29.58	SRC					8	9		5	
								Max Corrosion		
20	MCO		1.00	0				1.08 in. & Debris		
30 35.05	MGO SRC		1.08	0				Ht. 0 in.	5	
35.05	SRC					3	4	Max Corrosion	5	
								0.98 in. & Debris		
40	MGO		0.98	0				Ht. 0 in.		
40	NIGO		0.98	0				Max Corrosion 0.9		
								in. & Debris Ht. 0		
50	MGO		0.9	0				in.		
51.63	SRC		0.5	•		12	3		5	
55.02	SRC					8	3		5	
						-	-	Max Corrosion	-	
								0.92 in. & Debris		
60	MGO		0.92	0				Ht. 0 in.		
								Max Corrosion 1.1		
								in. & Debris Ht. 0		
70	MGO		1.1	0				in.		
71.41	SRC					8	10		5	
								Max Corrosion		
								1.07 in. & Debris		
80	MGO		1.07	0				Ht. 0 in.		

								1	
							Max Corrosion		
			-				1.04 in. & Debris		
90	MGO	1.04	0				Ht. 0 in.		
93.65	SRC				10	12		5	
							Max Corrosion		
							1.06 in. & Debris		
100	MGO	1.06	0				Ht. 0 in.		
100.81	SRC				9	12		5	
108.53	SRC				11	4		5	
							Max Corrosion		
							1.09 in. & Debris		
110	MGO	1.09	0				Ht. 0 in.		
116.83	SRC				11	4		5	
							Max Corrosion		
							0.85 in. & Debris		
120	MGO	0.85	0				Ht. 0 in.		
							Max Corrosion		
							0.95 in. & Debris		
130	MGO	0.95	0				Ht. 0 in.		
			_				Max Corrosion		
							1.04 in. & Debris		
140	MGO	1.04	0				Ht. 0 in.		
			_				Max Corrosion		
							0.95 in. & Debris		
150	MGO	0.95	0				Ht. 0 in.		
150.55	SRC	 0.55	•		7	12		5	
							Max Corrosion		
							1.03 in. & Debris		
160	MGO	1.03	0				Ht. 0 in.		
100		1.00	5				Max Corrosion		
							0.82 in. & Debris		
170	MGO	0.82	0				Ht. 0 in.		
174.11	SRC	0.02	0	1	10	2		5	
1/4.11	5110				10	2	Max Corrosion	5	
							1.03 in. & Debris		
180	MGO	1.03	0				Ht. 0 in.		
181.65	SRC	1.05	U		9	2	111. U III.	5	
					9			5	
184.66	SRC				Э	1	May Carrosian	3	
							Max Corrosion		
100	MACO	1 2 4	~				1.24 in. & Debris		
190	MGO	1.24	0				Ht. 0 in.		

					-				
							Max Corrosion		
							0.99 in. & Debris		
200	MGO	0.99	0				Ht. 0 in.		
200.11	SRC				2	4		5	
							Max Corrosion		
							0.92 in. & Debris		
210	MGO	0.92	0				Ht. 0 in.		
212.17	SRC				7	9		5	
							Max Corrosion		
							0.87 in. & Debris		
220	MGO	0.87	0				Ht. 0 in.		
							Max Corrosion 0.9		
							in. & Debris Ht. 0		
230	MGO	0.9	0				in.		
							Max Corrosion		
							1.08 in. & Debris		
240	MGO	1.08	0				Ht. 0 in.		
241.19	SRC	 			10	12		5	
246.28	SRP				8	11		5	
249.67	SRC				11	2		5	
							Max Corrosion		
							1.03 in. & Debris		
250	MGO	1.03	0				Ht. 0 in.		
256.45	SRP				9	2		5	
					-		Max Corrosion		
							0.66 in. & Debris		
260	MGO	0.66	0				Ht. 0 in.		
							Max Corrosion		
							1.09 in. & Debris		
270	MGO	1.09	0				Ht. 0 in.		
278.69	SRC				9	12		5	
270.00	0110	 			0	12	Max Corrosion		
							1.11 in. & Debris		
280	MGO	1.11	0				Ht. 0 in.		
200							Max Corrosion		<u> </u>
							0.75 in. & Debris		
290	MGO	0.75	0				Ht. 0 in.		
230	11100	0.75					Max Corrosion		<u> </u>
							0.89 in. & Debris		
300	MGO	0.89	0				Ht. 0 in.		
309.78	SRC	0.05	5		9	3		5	<u> </u>
505.70	JIC				9	5	L	5	

				1				r	
							Max Corrosion		
							1.03 in. & Debris		
310	MGO	1.03	0				Ht. 0 in.		
							Max Corrosion		
							0.91 in. & Debris		
320	MGO	0.91	0				Ht. 0 in.		
329.19	SRC				12	3		5	
							Max Corrosion		
							0.98 in. & Debris		
330	MGO	0.98	0				Ht. 0 in.		
							Max Corrosion		
							1.05 in. & Debris		
340	MGO	1.05	0				Ht. 0 in.		
344.07	SRC	1.00			3	5		5	
	50				<u> </u>		Max Corrosion	5	
							1.04 in. & Debris		
350	MGO	1.04	0				Ht. 0 in.		
359.9	SRV	1.04	0		 1	5	111. 0 111.	4	
555.5	5117				 –	5	Max Corrosion	-	
							1.09 in. & Debris		
360	MGO	1 00	0				Ht. 0 in.		
500	NIGO	1.09	0				Max Corrosion		
270	MCO		0				0.92 in. & Debris		
370	MGO	0.92	0				Ht. 0 in.		
							Max Corrosion		
			_				0.75 in. & Debris		
380	MGO	 0.75	0				Ht. 0 in.		
							Max Corrosion		
							1.05 in. & Debris		
390	MGO	1.05	0				Ht. 0 in.		
393.06	SRC				11	12		5	
							Max Corrosion		
							0.94 in. & Debris		
400	MGO	0.94	0				Ht. 0 in.		
							Max Corrosion]
							1.06 in. & Debris		
410	MGO	1.06	0				Ht. 0 in.		
		 					Max Corrosion		
							0.92 in. & Debris		
420	MGO	0.92	0				Ht. 0 in.		
424.16	SRC				7	12		5	

			1		T		[May Composing 1.1		
								Max Corrosion 1.1		
								in. & Debris Ht. 0		
430	MGO		1.1	0				in.		
434.9	SRC	S03				11	1		5	
								Max Corrosion		
								0.88 in. & Debris		
440	MGO		0.88	0				Ht. 0 in.		
441.68	SRC	F03							5	
								Max Corrosion		
								0.95 in. & Debris		
450	MGO		0.95	0				Ht. 0 in.		
450.16	SRV					8	10		4	
								Max Corrosion		
								1.25 in. & Debris		
460	MGO		1.25	0				Ht. 0 in.		
466.93	SRC					8	11		5	
								Max Corrosion		
								1.19 in. & Debris		
470	MGO		1.19	0				Ht. 0 in.		
_			_					Max Corrosion		
								1.01 in. & Debris		
480	MGO		1.01	0				Ht. 0 in.		
487.66	SRC		1.01			8	11		5	
								Max Corrosion		
								0.93 in. & Debris		
490	MGO		0.93	0				Ht. 0 in.		
495.95	SRC		0.55			8	10		5	
455.55	5110					0	10	Max Corrosion	5	
								0.98 in. & Debris		
500	MGO		0.00	0				Ht. 0 in.		
500	NIGO		0.98	0				Max Corrosion		
F10				0				0.99 in. & Debris		
510	MGO		0.99	0		12		Ht. 0 in.	~	
517.99	SRC					12			5	
								Max Corrosion 0.8		
_				_				in. & Debris Ht. 0		
520	MGO		0.8	0				in.		
526.1	SRC					8	10		5	
								Max Corrosion		
								1.11 in. & Debris		
530	MGO		1.11	0				Ht. 0 in.		
533.26	SRV					8	9		4	

					1			[May Campaian	1	
									Max Corrosion		
F 40				•					0.98 in. & Debris		
540	MGO	0.	98	0					Ht. 0 in.	_	
541.36	SRC						12			5	
									Max Corrosion		
									0.83 in. & Debris		
550	MGO	0.	83	0					Ht. 0 in.		
									Max Corrosion		
									0.73 in. & Debris		
560	MGO	0.	73	0					Ht. 0 in.		
									Max Corrosion		
									0.71 in. & Debris		
570	MGO	0.	71	0					Ht. 0 in.		
									Max Corrosion		
									0.94 in. & Debris		
580	MGO	0.	94	0					Ht. 0 in.		
									Max Corrosion		
									0.81 in. & Debris		
590	MGO	0.	81	0					Ht. 0 in.		
									Max Corrosion		
									0.92 in. & Debris		
600	MGO	0.	92	0					Ht. 0 in.		
			-						Max Corrosion		
									0.85 in. & Debris		
610	MGO	0.	85	0					Ht. 0 in.		
									Max Corrosion		
									1.02 in. & Debris		
620	MGO	1.	02	0					Ht. 0 in.		
627.09	SRC			•			10	1		5	
								-	Max Corrosion		
									0.83 in. & Debris		
630	MGO	0	83	0					Ht. 0 in.		
632.56	SRC			0			8	12		5	
0.02.00	5110		-+						Max Corrosion	5	
									0.83 in. & Debris		
640	MGO	0	83	0					Ht. 0 in.		
0+0	1000	0.	55	U					Max Corrosion		
									0.69 in. & Debris		
650	MGO	<u>م</u>	69	0					Ht. 0 in.		
656.3	SRV	0.	09	U			8	9		4	
030.5	JKV						0	3	May Carresian	4	
									Max Corrosion		
660	MCO		74	0					0.74 in. & Debris		
660	MGO	0.	74	0					Ht. 0 in.		

770	MGO	0.79	0			0.79 in. & Debris Ht. 0 in.		
						Max Corrosion		
760	MGO	0.79	0			Max Corrosion 0.79 in. & Debris Ht. 0 in.		
750	MGO	0.98	0			Max Corrosion 0.98 in. & Debris Ht. 0 in.		
740	MGO	0.74	0			Max Corrosion 0.74 in. & Debris Ht. 0 in.		
737.7	SRC			12			5	
730	MGO	0.95	0			Max Corrosion 0.95 in. & Debris Ht. 0 in.		
725.83	SRC			9			5	
720	MGO	0.6	0			Max Corrosion 0.6 in. & Debris Ht. 0 in.		
710	MGO	0.72	0			Max Corrosion 0.72 in. & Debris Ht. 0 in.		
700	MGO	0.97	0			Max Corrosion 0.97 in. & Debris Ht. 0 in.		
695.68	SRC	1.02	0	7	12		5	
690	MGO	1.02	0			Max Corrosion 1.02 in. & Debris Ht. 0 in.		
680	MGO	0.98	0			0.98 in. & Debris Ht. 0 in.		
670	MGO	1.09	0			Ht. 0 in. Max Corrosion		
670	MCO	1.00	0			Max Corrosion 1.09 in. & Debris		

				1		r			
							Max Corrosion		
							0.77 in. & Debris		
800	MGO	0.77	0				Ht. 0 in.		
809.87	SRC				12			5	
							Max Corrosion		
							0.89 in. & Debris		
810	MGO	0.89	0				Ht. 0 in.		
							Max Corrosion		
							0.81 in. & Debris		
820	MGO	0.81	0				Ht. 0 in.		
							Max Corrosion		
							0.69 in. & Debris		
830	MGO	0.69	0				Ht. 0 in.		
							Max Corrosion		
							0.69 in. & Debris		
840	MGO	0.69	0				Ht. 0 in.		
							Max Corrosion 0.9		
							in. & Debris Ht. 0		
850	MGO	0.9	0				in.		
050	11100	0.5	0				Max Corrosion		
							1.13 in. & Debris		
860	MGO	1.13	0				Ht. 0 in.		
866.02	SRC	1.15	0		9	11		5	
000.02	5110				3		Max Corrosion	5	
							0.53 in. & Debris		
870	MGO	0.53	0				Ht. 0 in.		
070	WIGO	0.55	0				Max Corrosion		
							0.56 in. & Debris		
880	MGO	0.56	0				Ht. 0 in.		
886.75	SRC	0.50	0		9	12	111. 0 111.	5	
000.75	JAC			-	Э	12	Max Corrosion 0.7	5	
							in. & Debris Ht. 0		
000	MGO	0.7	0						
890		0.7	0		10		in.	<i>ב</i>	
891.27	SRC				12		May Campaian	5	
							Max Corrosion		
000		0.00	~				0.86 in. & Debris		
900	MGO	0.86	0				Ht. 0 in.		
							Max Corrosion 0.5		
		o -	•				in. & Debris Ht. 0		
910	MGO	0.5	0				in.		
919.54	SRC				8	12		5	

			1		1	1				r	
									Max Corrosion		
									0.75 in. & Debris		
920	MGO		0.75	0					Ht. 0 in.		
									Max Corrosion		
									0.83 in. & Debris		
930	MGO		0.83	0					Ht. 0 in.		
									Max Corrosion		
									0.85 in. & Debris		
940	MGO		0.85	0					Ht. 0 in.		
942.15	SRC						9	10		5	
									Max Corrosion		
									0.96 in. & Debris		
950	MGO		0.96	0					Ht. 0 in.		
									Max Corrosion		
									0.78 in. & Debris		
960	MGO		0.78	0					Ht. 0 in.		
									Max Corrosion		
									0.64 in. & Debris		
970	MGO		0.64	0					Ht. 0 in.		
									Max Corrosion		
									0.76 in. & Debris		
980	MGO		0.76	0					Ht. 0 in.		
									Max Corrosion		
									0.54 in. & Debris		
990	MGO		0.54	0					Ht. 0 in.		
996.04	MWM	F01									
996.04	DAE	F02									2
996.04	AMH										

Line record no.:	9506	Pipe Material RCP
US MH ID:	2820T	Inspection Date 12/09/2022
DS MH ID:	2800T	Pipe Diameter 54
Inspection Direction	Downstream	Inspected Length 1008 ft

	Dist Code Cont			value			Circum				efect ating
Dist.	Group	Cont.	Dime	nsion		Joi	ntia	ıl	Remarks		
(ft.)	Crowp	defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL				15						
0	MGO		0.85	0					Max Corrosion 0.85 in. & Debris Ht. 0 in.		
10	MGO		1.02	0					Max Corrosion 1.02 in. & Debris Ht. 0 in.		
12.58	SRC		1.02	0			12	4		5	
12.58	SRV						2	3		4	
20	MGO		1.1	0					Max Corrosion 1.1 in. & Debris Ht. 0 in.		
20	MOO		1.1	0					Max Corrosion		
									1.17 in. & Debris		
30	MGO		1.17	0					Ht. 0 in.		
32.21	SRC		1.1/	0			1	4		5	
52.21	bite						1	-	Max Corrosion	5	
									0.84 in. & Debris		
40	MGO		0.84	0					Ht. 0 in.		
				-					Max Corrosion		
									1.03 in. & Debris		
50	MGO		1.03	0					Ht. 0 in.		
									Max Corrosion 1.65 in. & Debris		
60	MGO		1.65	0					Ht. 0 in.		
00	MOO		1.05	0					Max Corrosion		
									1.17 in. & Debris		
70	MGO		1.17	0					Ht. 0 in.		
10	1100		1.1/	0					Max Corrosion		
									0.92 in. & Debris		
80	MGO		0.92	0					Ht. 0 in.		
84.97	SRC			~			12	3		5	
									Max Corrosion 1		
									in. & Debris Ht. 0		
90	MGO		1	0					in.		

									
							Max Corrosion		
							1.02 in. & Debris		
100	MGO	1.02	0				Ht. 0 in.		
							Max Corrosion		
							0.94 in. & Debris		
110	MGO	0.94	0				Ht. 0 in.		
							Max Corrosion		
							1.01 in. & Debris		
120	MGO	1.01	0				Ht. 0 in.		
							Max Corrosion		
							0.97 in. & Debris		
130	MGO	0.97	0				Ht. 0 in.		
							Max Corrosion		
							0.83 in. & Debris		
140	MGO	0.83	0				Ht. 0 in.		
							Max Corrosion		
							0.91 in. & Debris		
150	MGO	0.91	0				Ht. 0 in.		
							Max Corrosion		
							0.88 in. & Debris		
160	MGO	0.88	0				Ht. 0 in.		
							Max Corrosion		
							1.24 in. & Debris		
170	MGO	1.24	0				Ht. 0 in.		
							Max Corrosion		
							0.97 in. & Debris		
180	MGO	0.97	0				Ht. 0 in.		
181.45	SRC				3	4		5	
							Max Corrosion		
							0.92 in. & Debris		
190	MGO	0.92	0				Ht. 0 in.		
190.87	SRV				2	4		4	
							Max Corrosion 1		
							in. & Debris Ht. 0		
200	MGO	1	0				in.		
204.81	SRV				8	10		4	
207.83	SRC				3	4		5	
							Max Corrosion		
							1.22 in. & Debris		
210	MGO	1.22	0				Ht. 0 in.		
							Max Corrosion		
							1.02 in. & Debris		
220	MGO	1.02	0				Ht. 0 in.		

221.58	SRC					8	10		5	
221.56	SKC					0	10	Max Corrosion	5	
								1.03 in. & Debris		
230	MGO		1.02	0				Ht. 0 in.		
250	MGO		1.03	0				Max Corrosion		
240	MCO		0.75	0				0.75 in. & Debris		
240	MGO		0.75	0				Ht. 0 in.		
								Max Corrosion		
250	MCO		0.00	0				0.89 in. & Debris		
250	MGO		0.89	0				Ht. 0 in.		
								Max Corrosion		
260	1490		1.00	0				1.03 in. & Debris		
260	MGO		1.03	0				Ht. 0 in.		
262.85	SRC					7	12		5	
								Max Corrosion		
								0.99 in. & Debris		
270	MGO	(0.99	0				Ht. 0 in.		
272.84	SRC					1	4		5	
279.24	SRC					8	9		5	
								Max Corrosion		
								1.02 in. & Debris		
280	MGO	· · · · · · · · · · · · · · · · · · ·	1.02	0				Ht. 0 in.		
283.01	SRC					2	4		5	
288.67	SRC					12			5	
								Max Corrosion		
								0.94 in. & Debris		
290	MGO	(0.94	0				Ht. 0 in.		
								Max Corrosion		
								1.02 in. & Debris		
300	MGO		1.02	0				Ht. 0 in.		
								Max Corrosion		
								1.04 in. & Debris		
310	MGO		1.04	0				Ht. 0 in.		
310.15	SRC					2	4		5	
								Max Corrosion		
								1.06 in. & Debris		
320	MGO		1.06	0				Ht. 0 in.		
326.54	SRC					12	3		5	
								Max Corrosion		
								0.98 in. & Debris		
330	MGO		0.98	0				Ht. 0 in.		

							1			
								Max Corrosion 1.1		
				_				in. & Debris Ht. 0		
340	MGO		1.1	0				in.		
								Max Corrosion		
								1.08 in. & Debris		
350	MGO		1.08	0				Ht. 0 in.		
355.75	SRV					3	4		4	
								Max Corrosion		
								1.13 in. & Debris		
360	MGO		1.13	0				Ht. 0 in.		
								Max Corrosion		
								1.14 in. & Debris		
370	MGO		1.14	0				Ht. 0 in.		
378.17	SRC	S01				2	4		5	
	~	~ ~ 1				_		Max Corrosion	-	
								1.02 in. & Debris		
380	MGO		1.02	0				Ht. 0 in.		
388.35	SRC	F01	1.02	0				110.0 111.	5	
500.55	SILC	101						Max Corrosion	5	
								1.06 in. & Debris		
390	MGO		1.06	0				Ht. 0 in.		
390	MGO		1.00	0				Max Corrosion		
400			1 10	0				1.12 in. & Debris		
400	MGO		1.12	0		-		Ht. 0 in.	~	
405.87	SRC					2	4		5	
								Max Corrosion		
				_				0.86 in. & Debris		
410	MGO		0.86	0				Ht. 0 in.		
								Max Corrosion		
								0.98 in. & Debris		
420	MGO		0.98	0				Ht. 0 in.		
428.29	SRC					12			5	
								Max Corrosion		
								1.11 in. & Debris		
430	MGO		1.11	0				Ht. 0 in.		
								Max Corrosion		
								1.19 in. & Debris		
440	MGO		1.19	0				Ht. 0 in.		
								Max Corrosion		
								1.22 in. & Debris		
450	MGO		1.22	0				Ht. 0 in.		
459.38	SRC					8	11		5	

					1						<u> </u>
									Max Corrosion		
									0.91 in. & Debris		
460	MGO		0.91	0					Ht. 0 in.		
468.62	SRC						1	4		5	
									Max Corrosion		
									0.93 in. & Debris		
470	MGO		0.93	0					Ht. 0 in.		
									Max Corrosion		
									1.15 in. & Debris		
480	MGO		1.15	0					Ht. 0 in.		
488.4	SRC	S02					2	4		5	
									Max Corrosion		
									0.96 in. & Debris		
490	MGO		0.96	0					Ht. 0 in.		
496.32	SRC	F02								5	
									Max Corrosion 0.9		
									in. & Debris Ht. 0		
500	MGO		0.9	0					in.		
									Max Corrosion		
									0.93 in. & Debris		
510	MGO		0.93	0					Ht. 0 in.		
517.42	SRC		0.70	0			8	9		5	
_	Site							-	Max Corrosion	-	
									1.06 in. & Debris		
520	MGO		1.06	0					Ht. 0 in.		
525.52	SRP	S03	1.00	0			1	4		5	
	bitti	505					1		Max Corrosion	-	
									0.73 in. & Debris		
530	MGO		0.73	0					Ht. 0 in.		
532.12	SRP	F03	0.75	0						5	
536.64	SRC	105					1	4		5	
550.04	SILC						1	+	Max Corrosion	5	
									0.98 in. & Debris		
540	MGO		0.98	0					Ht. 0 in.		
541.16	SRC		0.90	U			12	4		5	
541.10	SIL						12	4	Max Corrosion	5	<u> </u>
									0.79 in. & Debris		
550	MGO		0.79	0					Ht. 0 in.		
550	UDIWI		0.79	U					Max Corrosion		
									0.82 in. & Debris		
E E O	MCO		0.02	0							
560	MGO		0.82	0					Ht. 0 in.		

MGO 0.97 0 Max Corrosion 0.97 in. & Debris Ht. 0 in. 570 MGO 0.97 0 Max Corrosion 0.7 in. & Debris Ht. 0 580 MGO 0.7 0 in. 590 MGO 0.86 0 Ht. 0 in. 590 MGO 0.86 0 Ht. 0 in. 600 MGO 0.91 0 Max Corrosion 0.91 in. & Debris Ht. 0 in. 605.04 SRC 3 4 5 610 MGO 0.9 0 in. 610 MGO 0.9 0 in.	580 MGO 590 MGO 600 MGO 605.04 SRC	580 M0
570 MGO 0.97 0 Ht. 0 in. 570 MGO 0.97 0 Max Corrosion 0.7 580 MGO 0.7 0 in. & Debris Ht. 0 580 MGO 0.7 0 in. 580 MGO 0.7 0 in. 580 MGO 0.7 0 in. 590 MGO 0.86 0 Ht. 0 in. 590 MGO 0.86 0 Ht. 0 in. 600 MGO 0.91 0 Max Corrosion 605.04 SRC 3 4 5 610 MGO 0.9 0 in. & Debris Ht. 0 610 MGO 0.9 0 in. & Max Corrosion	580 MGO 590 MGO 600 MGO 605.04 SRC	580 M0
580 MGO 0.7 0 Max Corrosion 0.7 in. & Debris Ht. 0 in. 580 MGO 0.7 0 in. Max Corrosion 0.86 in. & Debris Ht. 0 in. 590 MGO 0.86 0 Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 600 MGO 0.91 0 Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 605.04 SRC 3 4 5 610 MGO 0.9 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in.	580 MGO 590 MGO 600 MGO 605.04 SRC	580 M0
580 MGO 0.7 0 in. & Debris Ht. 0 in. 580 MGO 0.7 0 Max Corrosion in. Max Corrosion 0.86 in. & Debris Max Corrosion 0.91 in. Max Corrosion 0.91 in. Max Corrosion 0.91 in. & Debris Max Corrosion 0.91 in. & Debris Max Corrosion 0.91 in. Max Corrosion 0.91 in. Max Corrosion 0.91 in. Max Corrosion 0.9 in. & Debris Max Corrosion 0.9 in. & Debris Ht. 0 in. Max Corrosion 0.9 in. & Debris Ht. 0 in. Max Corrosion 0.9 in. & Debris Ht. 0 in. Max Corrosion 0.9 in. & Debris Ht. 0 in. in. Max Corrosion in. Max Corrosion in. in. <td>590 MGO 600 MGO 605.04 SRC</td> <td>590 M(</td>	590 MGO 600 MGO 605.04 SRC	590 M(
580 MGO 0.7 0 in.	590 MGO 600 MGO 605.04 SRC	590 M(
590 MGO 0.86 0 Max Corrosion 0.86 in. & Debris Ht. 0 in. 590 MGO 0.86 0 Max Corrosion 0.91 in. & Debris Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 600 MGO 0.91 0 Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 605.04 SRC 3 4 5 610 MGO 0.9 0 in. Max Corrosion 0.9 in. & Debris Ht. 0 in.	590 MGO 600 MGO 605.04 SRC	590 M(
590 MGO 0.86 0 0.86 in. & Debris Ht. 0 in. 590 MGO 0.86 0 Max Corrosion 0.91 in. & Debris Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 600 MGO 0.91 0 Max Corrosion 0.91 in. & Debris Ht. 0 in. Max Corrosion 0.9 in. & Debris Ht. 0 in. 6010 MGO 0.9 0 Max Corrosion 0.9 in. & Debris Ht. 0 in. Max Corrosion 0.9 in.	600 MGO 605.04 SRC	
590 MGO 0.86 0 Ht. 0 in. Max Corrosion 600 MGO 0.91 0 Max Corrosion 0.91 in. & Debris 600 MGO 0.91 0 Ht. 0 in. 100 605.04 SRC 3 4 5 610 MGO 0.9 0 In. & Debris Ht. 0 610 MGO 0.9 0 In. Max Corrosion	600 MGO 605.04 SRC	
600MGO0.910Max Corrosion 0.91 in. & Debris Ht. 0 in.605.04SRC345605.04SRC345610MGO0.90in. & Debris Ht. 0 in. & Debris Ht. 0 in.in.	600 MGO 605.04 SRC	
600 MGO 0.91 0 0.91 in. & Debris Ht. 0 in. 605.04 SRC 3 4 5 605.04 SRC 3 4 5 610 MGO 0.9 0 in. & Debris Ht. 0 in. 610 MGO 0.9 0 in. Max Corrosion 0.9 in.	605.04 SRC	600 M(
600 MGO 0.91 0 Ht. 0 in. Ht. 0 in. 605.04 SRC 3 4 5 600 MGO 0.91 0 3 4 5 610 MGO 0.9 0 In. & Debris Ht. 0 in. 610 MGO 0.9 0 Max Corrosion 1	605.04 SRC	600 ма
605.04 SRC 3 4 5 605.04 SRC 3 4 5 610 MGO 0.9 0 10 Max Corrosion 0.9 in. & Debris Ht. 0 in. 10 610 MGO 0.9 0 10 Max Corrosion 10	605.04 SRC	600 I M(
610MGO0.90Max Corrosion 0.9610MGO0.90in.Max CorrosionMax Corrosionin.		
610 MGO 0.9 0 in. & Debris Ht. 0 in. MGO 0.9 0 Max Corrosion		505.04 SF
610 MGO 0.9 0 in. Max Corrosion		
Max Corrosion	640 1600	640
	610 MGO	610 MC
		C20
620 MGO 1.03 0 Ht. 0 in.	620 MGO	620 MC
Max Corrosion		
1.17 in. & Debris		C20 M
630 MGO 1.17 0 Ht. 0 in.	030 MGO	030 MI
Max Corrosion 1.15 in. & Debris		
640 MGO 1.15 0 Ht. 0 in.	640 MCO	640 M
640 MGO 1.13 0 nt. 0 m. 641.78 SRC 2 4 5		
041.78 SRC 2 4 5 Image: Max Corrosion Im	041.76 SKC	<u>541.76</u> Sr
0.91 in. & Debris		
650 MGO 0.91 0 Ht. 0 in.	650 MGO	650 M(
0.50 MGO 0.91 0 Max Corrosion		
1.09 in. & Debris		
660 MGO 1.09 0 Ht. 0 in.	660 MGO	660 M
669.67 SRC S04 8 11 5		
Observe Site		51
in. & Debris Ht. 0		
670 MGO 0.8 0 in.	670 MGO	670 M(
677.96 SRC F04 5		
Max Corrosion		51
0.91 in. & Debris		
680 MGO 0.91 0 Ht. 0 in.	680 MGO	680 M(
684.37 SRC 2 4 5		

								May Campaian		
								Max Corrosion		
600	MCO		1.1.4	0				1.14 in. & Debris		
690	MGO		1.14	0		10		Ht. 0 in.		
694.54	SRC					12	2		5	
								Max Corrosion		
				_				0.86 in. & Debris		
700	MGO		0.86	0				Ht. 0 in.		
703.59	SRC	S05				8	11		5	
								Max Corrosion 1		
								in. & Debris Ht. 0		
710	MGO		1	0				in.		
711.5	SRC	F05							5	
								Max Corrosion		
								0.97 in. & Debris		
720	MGO		0.97	0				Ht. 0 in.		
								Max Corrosion		
								0.82 in. & Debris		
730	MGO		0.82	0				Ht. 0 in.		
733.74	SRC					8	11		5	
								Max Corrosion		
								0.88 in. & Debris		
740	MGO		0.88	0				Ht. 0 in.		
								Max Corrosion		
								0.97 in. & Debris		
750	MGO		0.97	0				Ht. 0 in.		
752.58	SRC	S06				2	4		5	
								Max Corrosion		
								0.86 in. & Debris		
760	MGO		0.86	0				Ht. 0 in.		
763.13	SRC	F06							5	
								Max Corrosion		
								0.89 in. & Debris		
770	MGO		0.89	0				Ht. 0 in.		
								Max Corrosion		
								0.78 in. & Debris		
780	MGO		0.78	0				Ht. 0 in.		
								Max Corrosion		
								1.15 in. & Debris		
790	MGO		1.15	0				Ht. 0 in.		
								Max Corrosion		
								0.73 in. & Debris		
800	MGO		0.73	0				Ht. 0 in.		
801.57	SRC					1			5	

								Max Corrosion		
								0.89 in. & Debris		
810	MGO		0.89	0				Ht. 0 in.		
811.37	SRC		0.07	0		3	4		5	
813.07	SRC	S07				10	12		5	
								Max Corrosion		
								0.74 in. & Debris		
820	MGO		0.74	0				Ht. 0 in.		
821.17	SRC	F07							5	
								Max Corrosion		
								0.91 in. & Debris		
830	MGO		0.91	0				Ht. 0 in.		
837.37	SRC					12	1		5	
								Max Corrosion 1.2		
								in. & Debris Ht. 0		
840	MGO		1.2	0				in.		
								Max Corrosion		
				_				1.08 in. & Debris		
850	MGO		1.08	0				Ht. 0 in.		
								Max Corrosion		
0.00			1.00	0				1.03 in. & Debris		
860	MGO		1.03	0		10	2	Ht. 0 in.	~	
864.89	SRC					12	3	May Carracian	5	
								Max Corrosion 0.71 in. & Debris		
870	MGO		0.71	0				Ht. 0 in.		
870	MGO		0.71	0				Max Corrosion		
								0.97 in. & Debris		
880	MGO		0.97	0				Ht. 0 in.		
885.61	SRC	S08	0.77	0		8	11		5	
000.01	bitte	500				0		Max Corrosion	5	
								1.06 in. & Debris		
890	MGO		1.06	0				Ht. 0 in.		
892.4	SRC	F08						_	5	
895.03	SRC				1	2	4		5	
								Max Corrosion		
								1.06 in. & Debris		
900	MGO		1.06	0				Ht. 0 in.		
								Max Corrosion		
								1.01 in. & Debris		
910	MGO		1.01	0				Ht. 0 in.		

			I		1	1		1			1
									Max Corrosion		
									1.23 in. & Debris		
920	MGO		1.23	0					Ht. 0 in.		
									Max Corrosion		
									0.91 in. & Debris		
930	MGO		0.91	0					Ht. 0 in.		
931.02	SRP	S09					8	4		5	
									Max Corrosion		
									0.83 in. & Debris		
940	MGO		0.83	0					Ht. 0 in.		
									Max Corrosion		
									0.86 in. & Debris		
950	MGO		0.86	0					Ht. 0 in.		
954.2	SRP	F09		-						5	
									Max Corrosion		
									0.98 in. & Debris		
960	MGO		0.98	0					Ht. 0 in.		
									Max Corrosion		
									0.85 in. & Debris		
970	MGO		0.85	0					Ht. 0 in.		
978.7	SRC						8	4		5	
									Max Corrosion		
									0.81 in. & Debris		
980	MGO		0.81	0					Ht. 0 in.		
									Max Corrosion		
									0.84 in. & Debris		
990	MGO		0.84	0					Ht. 0 in.		
									Max Corrosion		
									1.05 in. & Debris		
1000	MGO		1.05	0					Ht. 0 in.		
1009.4											
1	AMH										

Table 88 Details for line 9846

Line record no.:	9846	Pipe Material	RCP
US MH ID:	80T	Inspection Date	01/20/2023

DS MH ID:	60T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	1001 ft

Dist.	Code		T.:	Circum			Defect Rating				
(ft.)	Group	Cont. defect	Dime	nsion		J01 nt	ntia		Remarks	S	
		ucrect	1 st	2 nd	%	m	At/ From	То		tr	O&M
0	AMH										
0	MWL				20						
0	MWM	S01					12				
0	MGO		0.89	0					Max Corrosion 0.89 in. & Debris Ht. 0 in.		
7.62	SRI	S02					10	2		1	
10	MGO		0.89	0					Max Corrosion 0.89 in. & Debris Ht. 0 in.		
20	MGO		0.99	0					Max Corrosion 0.99 in. & Debris Ht. 0 in.		
21.66	SRV						9	10		4	
25.41	SRC						8	10		5	
29.15	SRC						12			5	
30	MGO		1.07	0					Max Corrosion 1.07 in. & Debris Ht. 0 in.		
40	MGO		1.62	0					Max Corrosion 1.62 in. & Debris Ht. 0 in.		
42.26	SRC						8	11		5	
46	SRC						8	3		5	
50	MGO		1.06	0					Max Corrosion 1.06 in. & Debris Ht. 0 in.		
59.19	SRC						1	4		5	
60	MGO		1.02	0					Max Corrosion 1.02 in. & Debris Ht. 0 in.		
60.89	SZ	S03					11	1		1	

Table 89 PACP defect table for line 9846

69.56	SRC				8	10		5	
70	MGO	1.07	0				Max Corrosion 1.07 in. & Debris Ht. 0 in.		
79.73	SRC				8	10	111.	5	
80	MGO	1.13	0		-		Max Corrosion 1.13 in. & Debris Ht. 0 in.		
86.33	SRC				8	4		5	
90	MGO	1.13	0				Max Corrosion 1.13 in. & Debris Ht. 0 in.		
100	MGO	1.09	0				Max Corrosion 1.09 in. & Debris Ht. 0 in.		
110	MGO	1.1	0				Max Corrosion 1.1 in. & Debris Ht. 0 in.		
120	MGO	0.86	0				Max Corrosion 0.86 in. & Debris Ht. 0 in.		
126.08	SRP				8	12		5	
130	MGO	0.95	0				Max Corrosion 0.95 in. & Debris Ht. 0 in.		
133.06	SRC				11	5		5	
140	MGO	1.04	0				Max Corrosion 1.04 in. & Debris Ht. 0 in.		
142.29	SRC				7	10		5	
150	MGO	1.35	0				Max Corrosion 1.35 in. & Debris Ht. 0 in.		
151.52	SRC				7	9		5	
155.86	SRC			 	12	ļ		5	
160	MGO	2.52	0				Max Corrosion 2.52 in. & Debris Ht. 0 in.		
162.07	SRC				8	10		5	
167.92	SRC			<u> </u>	8	11		5	
170	MGO	0.92	0				Max Corrosion 0.92 in. & Debris Ht. 0 in.		
174.89	SRC				8	10		5	

180	MGO		0.9	0				Max Corrosion 0.9 in. & Debris Ht. 0 in.		
190	MGO		1.6	0				Max Corrosion 1.6 in. & Debris Ht. 0 in.		
193.73	SRP					8	1		5	
196.93	SRC					2	4		5	
200	MGO		0.75	0				Max Corrosion 0.75 in. & Debris Ht. 0 in.		
208.05	SRC					8	10		5	
210	MGO		1.02	0				Max Corrosion 1.02 in. & Debris Ht. 0 in.		
216.91	SRC					8	1		5	
220	MGO		0.91	0				Max Corrosion 0.91 in. & Debris Ht. 0 in.		
230	MGO		1.18	0				Max Corrosion 1.18 in. & Debris Ht. 0 in.		
240	MGO		1.11	0				Max Corrosion 1.11 in. & Debris Ht. 0 in.		
250	MGO		0.86	0				Max Corrosion 0.86 in. & Debris Ht. 0 in.		
260	MGO		0.95	0				Max Corrosion 0.95 in. & Debris Ht. 0 in.		
262.7	SRC					11	1		5	
270	MGO		0.88	0				Max Corrosion 0.88 in. & Debris Ht. 0 in.		
271.93	DAGS	S04				10	2			3
277.21	SRC					2	4		5	
280	MGO		0.95	0				Max Corrosion 0.95 in. & Debris Ht. 0 in.		
280.22	SRC					8	10		5	
283.99	SRC					12			5	
290	MGO		0.86	0				Max Corrosion 0.86 in. & Debris Ht. 0 in.		

300 MGO 1.18 0 Max Corrosion 1.18 in & Debris Ht. 0 Max Corrosion 1.18 in & Debris Ht. 0 310 MGO 1.03 0 8 9 5 310 MGO 1.03 0 8 9 5 310 MGO 1.03 0 8 10 in & Debris Ht. 0 320 MGO 1.13 0 8 10 5 329.97 SRC 9 2 5 5 330 MGO 1.04 0 8 10 5 337.88 SRC 9 2 5 5 340 MGO 0.78 0 8 4 5 344.85 SRC 8 4 5 5 350 MGO 1.16 0 10 10 10 355.16 SRC 8 9 5 5 380 MGO 1.12 0 8 11								1	M G : 1.10	r	
303.02 SRC Image: SRC	200	MCO		1 10	0						
303.02 SRC 5 310 MGO 1.03 0 Max Corrosion 1.03 in. & Debris Ht. 0 in. in. & Debris Ht. 0 in. 320 MGO 1.13 0 Max Corrosion 1.13 in. & Debris Ht. 0 in. 320 MGO 1.13 0 Max Corrosion 1.13 in. & Debris Ht. 0 in. 329.97 SRC 8 10 5 330 MGO 1.04 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 337.88 SRC 9 2 5 344.85 SRC 9 2 5 344.85 SRC 8 4 5 360 MGO 1.16 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 370 MGO 1.12 0 8 9 5 380 MGO 1.25 0 Max Corrosion 1.25 in. & Debris Ht. 0 in. 390 MGO 1.25 0	300	MGO		1.18	0						
310 MGO 1.03 0 Max Corrosion 1.03 in. & Debris Ht. 0 in. Max Corrosion 1.03 in. & Debris Ht. 0 in. 320 MGO 1.13 0 Max Corrosion 1.13 in. & Debris Ht. 0 in. Max Corrosion 1.14 in. & Debris Ht. 0 in. 5 330 MGO 1.04 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 5 330 MGO 1.04 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 5 340 MGO 0.78 0 Max Corrosion 0.78 in. & Debris Ht. 0 in. 5 344.85 SRC - 9 2 5 340 MGO 0.78 0 Max Corrosion 0.78 in. & Debris Ht. 0 in. 5 350 MGO 1.16 0 Max Corrosion 1.16 in. & Debris Ht. 0 in. 5 360 MGO 1.12 0 Max Corrosion 1.12 in. & Debris Ht. 0 in. 5 370 MGO 1.12 0 Max Corrosion 1.12 in. & Debris Ht. 0 in. 5 380 MGO 1.25 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 5 <	202.02	CDC					0	0	1n.	_	
310 MGO 1.03 0 in. & Debris Ht. 0 320 MGO 1.13 0 8 10 Max Corrosion 1.13 329.97 SRC 8 10 5 330 MGO 1.04 0 8 10 5 330 MGO 1.04 0 9 2 5 340 MGO 0.78 0 8 4 5 340 MGO 0.78 0 8 4 5 340 MGO 1.16 0 8 4 5 350 MGO 1.16 0 8 9 5 360 MGO 1.08 0 Max Corrosion 1.12 370 MGO 1.12<	303.02	SRC					8	9		5	
Image: second		1100		1.00	0						
320 MGO 1.13 0 Max Corrosion 1.13 in. & Debris Ht. 0 in. 5 329.97 SRC 8 10 5 330 MGO 1.04 0 10 10 5 330 MGO 1.04 0 10 10 10 10 3370 MGO 1.04 0 9 2 5 10 3370 MGO 0.78 0 10	310	MGO		1.03	0						
320 MGO 1.13 0 in. in. & Debris Ht. 0 in. 329.97 SRC Image: SRC <td></td>											
Image: state of the s											
329.97 SRC Image: stress of the stress of t	320	MGO		1.13	0				in. & Debris Ht. 0		
330 MGO 1.04 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 1 337.88 SRC 9 2 5 340 MGO 0.78 0 10.4									in.		
330 MGO 1.04 0 1<	329.97	SRC					8	10		5	
337.88 SRC Image: stress of the stress of t									Max Corrosion 1.04		
337.88 SRC 9 2 5 340 MGO 0.78 0 Max Corrosion 0.78 in. & Debris Ht. 0 in. 1 344.85 SRC 8 4 5 350 MGO 1.16 0 Max Corrosion 1.16 in. & Debris Ht. 0 in. 1 350. MGO 1.16 0 Max Corrosion 1.16 in. & Debris Ht. 0 in. 1 360 MGO 1.08 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 1 370 MGO 1.12 0 Max Corrosion 1.22 in. & Debris Ht. 0 in. 1 370 MGO 1.25 0 Max Corrosion 1.25 in. & Debris Ht. 0 in. 1 390 MGO 1.08 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 1 391 MGO 1.08 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 1 390 MGO 1.04 0 Max Corrosion 1.04 in. & Debris Ht. 0 in. 1 400 MGO 1.04 0 Max Corrosion 0.91 in. & Debris Ht. 0 in. 1	330	MGO		1.04	0				in. & Debris Ht. 0		
340 MGO 0.78 0 Max Corrosion 0.78 Max Corrosion 1.16 Max Corrosion 1.08 Max Corrosion 1.08 Max Corrosion 1.08 Max Corrosion 1.12 Max Corrosion 1.08 Max Corrosion 1.12 Max Corrosion 1.03 Max Corrosion 1.04 Max Corrosion 0.91 Max Corrosion 0.91 Max Corrosion 0.91									in.		
340 MGO 0.78 0 in. & Debris Ht. 0 344.85 SRC Image: Constraint of the constrate of the constraint of the constraint of the constraint of the c	337.88	SRC					9	2		5	
344.85 SRC Image: SRC									Max Corrosion 0.78		
344.85 SRC Image: second seco	340	MGO		0.78	0				in. & Debris Ht. 0		
350 MGO 1.16 0 Max Corrosion 1.16 in. & Debris Ht. 0 in. Max Corrosion 1.16 in. & Debris Ht. 0 in. 356.16 SRC - 8 9 5 360 MGO 1.08 0 - 8 9 5 360 MGO 1.08 0 - 8 9 5 360 MGO 1.08 0 - 8 9 5 370 MGO 1.12 0 - Max Corrosion 1.12 in. & Debris Ht. 0 in. - 370 MGO 1.12 0 - 8 11 5 380 MGO 1.25 0 - 8 11 5 380 MGO 1.08 0 - Max Corrosion 1.08 in. & Debris Ht. 0 in. - 390 MGO 1.04 0 - 8 4 - 400 MGO 1.04 0 - Max Corrosion 0.91 in. & Debris Ht. 0 in. -									in.		
350 MGO 1.16 0 Max Corrosion 1.16 in. & Debris Ht. 0 in. Max Corrosion 1.16 in. & Debris Ht. 0 in. 356.16 SRC - 8 9 5 360 MGO 1.08 0 - 8 9 5 360 MGO 1.08 0 - 8 9 5 360 MGO 1.08 0 - 8 9 5 370 MGO 1.12 0 - Max Corrosion 1.12 in. & Debris Ht. 0 in. - 370 MGO 1.12 0 - 8 11 5 380 MGO 1.25 0 - 8 11 - 5 380 MGO 1.08 0 - Max Corrosion 1.08 in. & Debris Ht. 0 in. - - 390 MGO 1.04 0 - 8 4 - 5 400 MGO 1.04 0 - Max Corrosion 0.91 in. & Debris Ht.	344.85	SRC					8	4		5	
350 MGO 1.16 0 Image: Signature of the signatex of the signatex of t									Max Corrosion 1.16		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	350	MGO		1.16	0						
356.16 SRC Image: stress of the stress	550	1100			0						
360 MGO 1.08 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. Max Corrosion 1.12 in. Max Corrosion 1.12 in. Max Corrosion 1.12 in. Max Corrosion 1.12 in. Max Corrosion 1.25 in. Max Corrosion 1.25 in. Max Corrosion 1.25 in. Max Corrosion 1.08 in. Max Corrosion 1.04 in. Max Corrosion 0.91 in. Max Corrosion 0.91 in. <td>356.16</td> <td>SRC</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>9</td> <td></td> <td>5</td> <td></td>	356.16	SRC					8	9		5	
360 MGO 1.08 0 in. & Debris Ht. 0 in	550.10	bite					0		Max Corrosion 1.08	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	360	MGO		1.08	0						
370 MGO 1.12 0 8 11 Max Corrosion 1.12 1.12 5 375.38 SRC 8 11 5 5 380 MGO 1.25 0 8 11 5 380 MGO 1.25 0 8 11 5 380 MGO 1.25 0 8 11 5 390 MGO 1.08 0 8 11 6 10 390.12 SRP 8 4 6 10	500	MOO		1.00	0						
370 MGO 1.12 0 in. in. & Debris Ht. 0 in. 375.38 SRC Image: Constraint of the second secon											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	270	MCO		1 1 2	0						
375.38 SRC Image: stress of the stress	570	MGO		1.12	0						
380 MGO 1.25 0 Max Corrosion 1.25 Max Corrosion 1.25 390 MGO 1.08 0 Max Corrosion 1.08 in. 390 MGO 1.08 0 Max Corrosion 1.08 in. 399.12 SRP 8 4 5 400 MGO 1.04 0 Max Corrosion 1.04 in. 410 MGO 0.91 0 Max Corrosion 0.91 in. 412.12 SRC 9 3 5 416.08 DAGS F04 0 9 3 5	275.20	CDC					0	11	111.	-	
380 MGO 1.25 0 in. in. & Debris Ht. 0 in. 390 MGO 1.08 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 390 MGO 1.08 0 Max Corrosion 1.08 in. & Debris Ht. 0 in. 399.12 SRP Image: Corrosion 1.04 Image: Corrosion 0.91 Ima	3/5.38	SKC					8	11	M G : 105	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200			1.05	0						
390 MGO 1.08 0 Image: Microsoft in the second secon	380	MGO		1.25	0						
390 MGO 1.08 0 in. in. & Debris Ht. 0 in. 399.12 SRP - 8 4 5 400 MGO 1.04 0 Image: Second s											
399.12 SRP Image: Constraint of the symptotic of the symptot of the symptot of the symptot of the symptot of the sy	• • • •	1100		1.00	0						
399.12 SRP Image: SRP <t< td=""><td>390</td><td>MGO</td><td></td><td>1.08</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	390	MGO		1.08	0						
400 MGO 1.04 0 Max Corrosion 1.04 Max Corrosion 0.91 Ma		a = -					-		in.		
400 MGO 1.04 0 in. in. & Debris Ht. 0 in. 410 MGO 0.91 0 MGO Max Corrosion 0.91 in. & Debris Ht. 0 410 MGO 0.91 0 MGO Max Corrosion 0.91 in. & Debris Ht. 0 412.12 SRC SRC 9 3 5 416.08 DAGS F04 Image: Corrosion 0.91 3	399.12	SRP					8	4		5	
410 MGO 0.91 0 Image: Constraint of the second seco											
410 MGO 0.91 0 Mode Max Corrosion 0.91 in. & Debris Ht. 0 in. Max Corrosion 0.91 in. & Debris Ht. 0 in. 412.12 SRC 9 3 5 416.08 DAGS F04 1 1 3	400	MGO		1.04	0						
410 MGO 0.91 0 in. & Debris Ht. 0 in. 412.12 SRC 9 3 5 416.08 DAGS F04 9 3 3											
412.12 SRC 9 3 5 416.08 DAGS F04 9 3 3											
412.12 SRC 9 3 5 416.08 DAGS F04 3 3	410	MGO		0.91	0				in. & Debris Ht. 0		
416.08 DAGS F04 3									in.		
	412.12	SRC					9	3		5	
416.08 SZ F03 1	416.08	DAGS	F04								3
	416.08	SZ	F03							1	

420	MGO		0.91	0				Max Corrosion 0.91 in. & Debris Ht. 0 in.		
421.36	SRC					12	4		5	
430	MGO		0.77	0		12	1	Max Corrosion 0.77 in. & Debris Ht. 0 in.	5	
432.47	SZ	S05				11	1		1	
440	MGO		1.17	0				Max Corrosion 1.17 in. & Debris Ht. 0 in.		
450	MGO		1.07	0				Max Corrosion 1.07 in. & Debris Ht. 0 in.		
459.04	SRP					8	10		5	
460	MGO		1	0				Max Corrosion 1 in. & Debris Ht. 0 in.		
470	MGO		1.03	0				Max Corrosion 1.03 in. & Debris Ht. 0 in.		
474.12	SRC					9	4		5	
480	MGO		1.07	0				Max Corrosion 1.07 in. & Debris Ht. 0 in.		
490	MGO		0.98	0				Max Corrosion 0.98 in. & Debris Ht. 0 in.		
496.73	SRP					9	4		5	
500	MGO		0.84	0				Max Corrosion 0.84 in. & Debris Ht. 0 in.		
504.26	SRC					8	12		5	
510	MGO		1.02	0				Max Corrosion 1.02 in. & Debris Ht. 0 in.		
519.9	SRC					8	11		5	
520	MGO		1.02	0				Max Corrosion 1.02 in. & Debris Ht. 0 in.		
526.69	SRC					8	12		5	
530	MGO		0.9	0				Max Corrosion 0.9 in. & Debris Ht. 0 in.		
540	MGO		1.09	0				Max Corrosion 1.09 in. & Debris Ht. 0 in.		

541.95	SRC				9			5	
550	MGO	0.83	0				Max Corrosion 0.83 in. & Debris Ht. 0 in.		
560	MGO	0.93	0				Max Corrosion 0.93 in. & Debris Ht. 0 in.		
570	MGO	1.1	0				Max Corrosion 1.1 in. & Debris Ht. 0 in.		
571.35	SRC			J	8	12		5	
579.82	SRC				9	12		5	
580	MGO	1.12	0				Max Corrosion 1.12 in. & Debris Ht. 0 in.		
590	MGO	1.11	0				Max Corrosion 1.11 in. & Debris Ht. 0 in.		
595.46	SRC				8	10		5	
600	MGO	1.38	0				Max Corrosion 1.38 in. & Debris Ht. 0 in.		
610	MGO	1.26	0				Max Corrosion 1.26 in. & Debris Ht. 0 in.		
620	MGO	1.02	0				Max Corrosion 1.02 in. & Debris Ht. 0 in.		
625.43	SRC				8	11		5	
630	MGO	1.12	0				Max Corrosion 1.12 in. & Debris Ht. 0 in.		
638.24	SRC				11	3		5	
640	MGO	1.06	0				Max Corrosion 1.06 in. & Debris Ht. 0 in.		
647.85	SRC				12	4		5	
650	MGO	0.99	0				Max Corrosion 0.99 in. & Debris Ht. 0 in.		
660	MGO	0.93	0				Max Corrosion 0.93 in. & Debris Ht. 0 in.		
670	MGO	1.21	0				Max Corrosion 1.21 in. & Debris Ht. 0 in.		

680	MGO		1	0				Max Corrosion 1 in.		
685.72	SRC					8	3	& Debris Ht. 0 in.	5	
689.49	SRC	S06				<u> </u>	9		5	
690	MGO	300	1.37	0		0	9	Max Corrosion 1.37 in. & Debris Ht. 0 in.	5	
700	MGO		1.13	0				Max Corrosion 1.13 in. & Debris Ht. 0 in.		
710	MGO		1.17	0				Max Corrosion 1.17 in. & Debris Ht. 0 in.		
719.83	SRC	F06							5	
720	MGO		1.11	0				Max Corrosion 1.11 in. & Debris Ht. 0 in.		
730	MGO		1.17	0				Max Corrosion 1.17 in. & Debris Ht. 0 in.		
735.28	SRC					8	9		5	
739.61	SRP					11	4		5	
740	MGO		0.76	0				Max Corrosion 0.76 in. & Debris Ht. 0 in.		
750	MGO		0.92	0				Max Corrosion 0.92 in. & Debris Ht. 0 in.		
754.31	SRC					8	4		5	
760	MGO		0.81	0				Max Corrosion 0.81 in. & Debris Ht. 0 in.		
762.98	SRC					8	11		5	
770	MGO		0.94	0				Max Corrosion 0.94 in. & Debris Ht. 0 in.		
779	SRC					8	11		5	
780	MGO		0.78	0				Max Corrosion 0.78 in. & Debris Ht. 0 in.		
790	MGO		0.83	0				Max Corrosion 0.83 in. & Debris Ht. 0 in.		
800	MGO		0.98	0				Max Corrosion 0.98 in. & Debris Ht. 0 in.		

810	MGO	0.91	0				Max Corrosion 0.91 in. & Debris Ht. 0		
							in.		
820	MGO	0.91	0				Max Corrosion 0.91 in. & Debris Ht. 0 in.		
823.28	SRC				10	1		5	
830	MGO	0.97	0				Max Corrosion 0.97 in. & Debris Ht. 0 in.		
840	MGO	0.82	0				Max Corrosion 0.82 in. & Debris Ht. 0 in.		
846.08	SRC				12	1		5	
850	MGO	0.82	0				Max Corrosion 0.82 in. & Debris Ht. 0 in.		
857.95	SRC				10	11		5	
860	MGO	0.85	0				Max Corrosion 0.85 in. & Debris Ht. 0 in.		
869.63	SRC				8	12		5	
870	MGO	0.91	0				Max Corrosion 0.91 in. & Debris Ht. 0 in.		
880	MGO	0.8	0				Max Corrosion 0.8 in. & Debris Ht. 0 in.		
890	MGO	0.6	0				Max Corrosion 0.6 in. & Debris Ht. 0 in.		
900	MGO	0.52	0				Max Corrosion 0.52 in. & Debris Ht. 0 in.		
907.32	SRC				11	12		5	
910	MGO	0.73	0				Max Corrosion 0.73 in. & Debris Ht. 0 in.		
920	MGO	0.66	0				Max Corrosion 0.66 in. & Debris Ht. 0 in.		
930	MGO	0.64	0				Max Corrosion 0.64 in. & Debris Ht. 0 in.		

								Max Corrosion 0.82		
940	MGO		0.82	0				in. & Debris Ht. 0		
								in.		
								Max Corrosion 0.6		
950	MGO		0.6	0				in. & Debris Ht. 0		
					 			in.		
959.51	SRC				 	8	2		5	
								Max Corrosion 0.71		
960	MGO		0.71	0				in. & Debris Ht. 0		
								in.		
								Max Corrosion 0.61		
970	MGO		0.61	0				in. & Debris Ht. 0		
								in.		
								Max Corrosion 0.66		
980	MGO		0.66	0				in. & Debris Ht. 0		
								in.		
983.82	SRC					9	12		5	
								Max Corrosion 0.62		
990	MGO		0.62	0				in. & Debris Ht. 0		
								in.		
990.04	SRC					8	12		5	
997.76	SRC					11	1		5	
								Max Corrosion 0.88		
1000	MGO		0.88	0				in. & Debris Ht. 0		
								in.		
1001.5	SZ	F05							1	
1001.5	SRI	F02							1	
1001.5	MWM	F01								
1001.5	AMH									

7. Line 9507

Table 90 Details for line 9507

Line record no.:	9507	Pipe Material	RCP
US MH ID:	2840T	Inspection Date	12/02/2022
DS MH ID:	2820T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	1980 ft

Table 91 PACP defect table for line 9507

Dist.	Code	Cont.	valua	Joi	Circumfere	Domarka	Defect
(ft.)	Group	defect	value	nt	ntial	Remarks	Rating

			Dime	nsion						
			1 st	2 nd	%	At/ From	То		Str	O&M
0	AMH									
0	MWL				20					
								Max Corrosion 1.6		
								in. & Debris Ht. 0		
0	MGO		1.6	0				in.		
0	SRP	S01				7	5		5	
								Max Corrosion		
								1.57 in. & Debris		
10	MGO		1.57	0				Ht. 0 in.		
								Max Corrosion		
								1.78 in. & Debris		
20	MGO		1.78	0				Ht. 0 in.		
								Max Corrosion		
								1.38 in. & Debris		
30	MGO		1.38	0				Ht. 0 in.		
								Max Corrosion		
								1.24 in. & Debris		
40	MGO		1.24	0				Ht. 0 in.		
								Max Corrosion		
								1.26 in. & Debris		
50	MGO		1.26	0				Ht. 0 in.		
								Max Corrosion 1.5		
								in. & Debris Ht. 0		
60	MGO		1.5	0				in.		
								Max Corrosion		
								1.46 in. & Debris		
70	MGO		1.46	0				Ht. 0 in.		
								Max Corrosion		
								1.79 in. & Debris		
80	MGO		1.79	0				Ht. 0 in.		
87.56	SRP	F01							5	
89.44	SRP					7	11		5	
								Max Corrosion		
								1.67 in. & Debris		
90	MGO		1.67	0				Ht. 0 in.		
								Max Corrosion		
								1.66 in. & Debris		
100	MGO		1.66	0				Ht. 0 in.		
100.19	SRP	S02				7	5		5	

			1					1	· · ·		
									Max Corrosion		
									1.76 in. & Debris		
110	MGO		1.76	0					Ht. 0 in.		
									Max Corrosion		
									1.56 in. & Debris		
120	MGO		1.56	0					Ht. 0 in.		
									Max Corrosion		
									1.42 in. & Debris		
130	MGO		1.42	0					Ht. 0 in.		
135.05	SRP	F02								5	
136.36	SRP						12	4		5	
									Max Corrosion		
									1.66 in. & Debris		
140	MGO		1.66	0					Ht. 0 in.		
147.1	SRP						12	4		5	
									Max Corrosion		
									1.66 in. & Debris		
150	MGO		1.66	0					Ht. 0 in.		
156.53	SRV	S03					2	4		4	
	~~~~								Max Corrosion 1.8		
									in. & Debris Ht. 0		
160	MGO		1.8	0					in.		
									Max Corrosion		
									1.64 in. & Debris		
170	MGO		1.64	0					Ht. 0 in.		
170.09	SRP	S04					12	4		5	
									Max Corrosion		
									1.75 in. & Debris		
180	MGO		1.75	0					Ht. 0 in.		
182.34	SRP	F04	_							5	
183.85	SRP	S05					8	12		5	
	~						-		Max Corrosion		
									1.68 in. & Debris		
190	MGO		1.68	0					Ht. 0 in.		
193.08	SRP	F05								5	
193.84	SRV						8	4		4	
199.11	SRV	F03					5			4	
									Max Corrosion	•	
									1.46 in. & Debris		
200	MGO		1.46	0					Ht. 0 in.		
206.84	SRV	S06	1.70				1	4		4	
200.04	SILV	500			I		1			+	

			1		1		1			
								Max Corrosion		
								1.72 in. & Debris		
210	MGO		1.72	0				Ht. 0 in.		
218.33	SRV	F06							4	
								Max Corrosion		
								1.94 in. & Debris		
220	MGO		1.94	0				Ht. 0 in.		
220.78	SRP					8	12		5	
								Max Corrosion		
								1.46 in. & Debris		
230	MGO		1.46	0				Ht. 0 in.		
230.96	SRV	S07	_	-		8	4		4	
	SIL ,						-	Max Corrosion	-	
								1.46 in. & Debris		
240	MGO		1.46	0				Ht. 0 in.		
210	1000		1.10	0				Max Corrosion		
								1.82 in. & Debris		
250	MGO		1.82	0				Ht. 0 in.		
250	WIGO		1.02	0				Max Corrosion		
								1.45 in. & Debris		
260	MGO		1.45	0				Ht. 0 in.		
200	WIGO		1.45	0				Max Corrosion		
								1.94 in. & Debris		
270	MGO		1.94	0				Ht. 0 in.		
		F07	1.94	0				111. 0 111.	4	
278.25	SRV	FU7						Max Corrosion 1.6	4	
								in. & Debris Ht. 0		
200	MCO		1.6	0						
280	MGO		1.6	0				in.		
								Max Corrosion		
200	MCO		1.02	0				1.62 in. & Debris		
290	MGO		1.62	0				Ht. 0 in.		
								Max Corrosion 1.5		
200				~				in. & Debris Ht. 0		
300	MGO		1.5	0			<u> </u>	in.		
300.49	SRV	S08				8	4		4	
								Max Corrosion		
				r.				1.52 in. & Debris		
310	MGO		1.52	0			<u> </u>	Ht. 0 in.		
								Max Corrosion		
								1.76 in. & Debris		
320	MGO		1.76	0				Ht. 0 in.		

								Max Corrosion		
								1.57 in. & Debris		
330	MGO		1.57	0				Ht. 0 in.		
339.87	SRV	F08	1.57	0				Πι. Ο ΙΙΙ.	4	
559.67	SKV	FUO						Max Corrosion	4	
								1.59 in. & Debris		
340	MGO		1.59	0				Ht. 0 in.		
540	MGO		1.59	0				Max Corrosion		
								1.59 in. & Debris		
350	MGO		1.59	0				Ht. 0 in.		
		500	1.59	0		1	4	Πι. Ο ΙΙΙ.	5	
354.38	SRC	S09				1	4	May Carracian	3	
								Max Corrosion		
200	MGO		1 47	0				1.47 in. & Debris		
360		500	1.47	0				Ht. 0 in.	-	
364.18	SRC	F09							5	
								Max Corrosion		
270			1.24	0				1.34 in. & Debris		
370	MGO		1.34	0				Ht. 0 in.	~	
379.44	SRC					1	4		5	
								Max Corrosion		
200			1.10	•				1.46 in. & Debris		
380	MGO		1.46	0		2		Ht. 0 in.	~	
389.99	SRC					2	4		5	
								Max Corrosion		
200			4.50	0				1.52 in. & Debris		
390	MGO		1.52	0				Ht. 0 in.		
								Max Corrosion		
400	MCO		1 1 1	0				1.11 in. & Debris		
400	MGO		1.11	0		0	10	Ht. 0 in.	-	
400.17	SRC					9	12		5	
								Max Corrosion		
410	MCO		1 4 2	0				1.43 in. & Debris		
410	MGO		1.43	0		0	11	Ht. 0 in.	E	
411.85	SRC					8	11	May Carrosian	5	
								Max Corrosion		
420	MCO		1 4 1	0				1.41 in. & Debris		
420	MGO		1.41	U				Ht. 0 in.		
								Max Corrosion		
120	MCO		1 60	0				1.68 in. & Debris		
430	MGO		1.68	U		11	2	Ht. 0 in.	Λ	
433.52	SRV	C10			 	11			4	
438.61	SRV	S10				1	4		4	

			1		Ι	<u>г</u>		1	Max Corrosion		
									1.48 in. & Debris		
440	MCO		1 40	0							
440	MGO	F10	1.48	0					Ht. 0 in.	4	
449.91	SRV	F10							May Campaian	4	
									Max Corrosion		
450	MCO		1.40	0					1.46 in. & Debris		
450	MGO		1.46	0					Ht. 0 in.		
									Max Corrosion		
				•					1.71 in. & Debris		
460	MGO		1.71	0					Ht. 0 in.		
									Max Corrosion		
				-					1.65 in. & Debris		
470	MGO		1.65	0					Ht. 0 in.		
									Max Corrosion		
				-					1.35 in. & Debris		
480	MGO		1.35	0					Ht. 0 in.		
482.7	SRV						9	12		4	
									Max Corrosion 1.5		
				-					in. & Debris Ht. 0		
490	MGO		1.5	0					in.		
492.31	SRP	S11					12	4		5	
									Max Corrosion		
									1.41 in. & Debris		
500	MGO		1.41	0					Ht. 0 in.		
504.75	SRP	F11								5	
508.33	SRP						7	11		5	
									Max Corrosion		
									1.38 in. & Debris		
510	MGO		1.38	0					Ht. 0 in.		
511.15	SRV	S12					7	4		4	
518.88	SRP						7	4		5	
									Max Corrosion		
									1.36 in. & Debris		
520	MGO		1.36	0					Ht. 0 in.		
									Max Corrosion		
									1.73 in. & Debris		
530	MGO		1.73	0					Ht. 0 in.		
									Max Corrosion		
									1.19 in. & Debris		
540	MGO		1.19	0					Ht. 0 in.		
									Max Corrosion		
									1.74 in. & Debris		
550	MGO		1.74	0					Ht. 0 in.		

					1			1			
									Max Corrosion		
									1.87 in. & Debris		
560	MGO		1.87	0					Ht. 0 in.		
									Max Corrosion		
									1.53 in. & Debris		
570	MGO		1.53	0					Ht. 0 in.		
									Max Corrosion 1.6		
									in. & Debris Ht. 0		
580	MGO		1.6	0					in.		
									Max Corrosion		
									1.42 in. & Debris		
590	MGO		1.42	0					Ht. 0 in.		
									Max Corrosion		
									1.61 in. & Debris		
600	MGO		1.61	0					Ht. 0 in.		
									Max Corrosion		
									1.51 in. & Debris		
610	MGO		1.51	0					Ht. 0 in.		
									Max Corrosion		
									1.49 in. & Debris		
620	MGO		1.49	0					Ht. 0 in.		
									Max Corrosion		
									1.42 in. & Debris		
630	MGO		1.42	0					Ht. 0 in.		
631.37	SRV	F12								4	
									Max Corrosion		
									1.38 in. & Debris		
640	MGO		1.38	0					Ht. 0 in.		
644.56	SRC	S13					2	4		5	
		_							Max Corrosion		
									1.76 in. & Debris		
650	MGO		1.76	0					Ht. 0 in.		
		<u> </u>		-					Max Corrosion		
									1.85 in. & Debris		
660	MGO		1.85	0					Ht. 0 in.		
	1,100			-					Max Corrosion		
									1.28 in. & Debris		
670	MGO		1.28	0					Ht. 0 in.		
0,0	1100		1.20	0					Max Corrosion 1.6		
									in. & Debris Ht. 0		
680	MGO		1.6	0					in.		
000	MOU		1.0	0				<u> </u>			

								May Carrosian		
								Max Corrosion 1.36 in. & Debris		
<b>COO</b>	MCO			0						
690	MGO		1.36	0				Ht. 0 in.		
								Max Corrosion		
700			4.20	•				1.38 in. & Debris		
700	MGO		1.38	0		 		Ht. 0 in.	_	
709.38	SRP					12	4		5	
								Max Corrosion		
				-				1.39 in. & Debris		
710	MGO		1.39	0				Ht. 0 in.		
								Max Corrosion		
								1.24 in. & Debris		
720	MGO		1.24	0				Ht. 0 in.		
								Max Corrosion		
								1.12 in. & Debris		
730	MGO		1.12	0				Ht. 0 in.		
								Max Corrosion		
								1.67 in. & Debris		
740	MGO		1.67	0				Ht. 0 in.		
746.69	SRC	F13							5	
								Max Corrosion		
								1.18 in. & Debris		
750	MGO		1.18	0				Ht. 0 in.		
								Max Corrosion		
								1.09 in. & Debris		
760	MGO		1.09	0				Ht. 0 in.		
								Max Corrosion		
								1.61 in. & Debris		
770	MGO		1.61	0				Ht. 0 in.		
								Max Corrosion		
								1.53 in. & Debris		
780	MGO		1.53	0				Ht. 0 in.		
								Max Corrosion		
								1.09 in. & Debris		
790	MGO		1.09	0				Ht. 0 in.		
796.62	SRV					11	4		4	
								Max Corrosion		
								1.04 in. & Debris		
800	MGO		1.04	0				Ht. 0 in.		
								Max Corrosion		
								1.46 in. & Debris		
810	MGO		1.46	0				Ht. 0 in.		
010	WIOU		1.40	U	l		1			

								May Carrosian		1 1
								Max Corrosion		
	1400		4.95	•				1.35 in. & Debris		
820	MGO		1.35	0		-		Ht. 0 in.		
826.58	SRV	S14				8	4		4	
								Max Corrosion		
								1.52 in. & Debris		
830	MGO		1.52	0				Ht. 0 in.		
837.14	SRV	F14							4	
								Max Corrosion		
								1.19 in. & Debris		
840	MGO		1.19	0				Ht. 0 in.		
848.82	SRV	S15				1	4		4	
								Max Corrosion 1.6		
								in. & Debris Ht. 0		
850	MGO		1.6	0				in.		
								Max Corrosion		
								1.15 in. & Debris		
860	MGO		1.15	0				Ht. 0 in.		
862.39	SRV	F15							4	
								Max Corrosion		
								1.54 in. & Debris		
870	MGO		1.54	0				Ht. 0 in.		
								Max Corrosion		
								1.46 in. & Debris		
880	MGO		1.46	0				Ht. 0 in.		
	1100		_	-				Max Corrosion 1.8		
								in. & Debris Ht. 0		
890	MGO		1.8	0				in.		
897.43	SRV					10	2		4	
	<u>SIL (</u>							Max Corrosion	•	
								1.25 in. & Debris		
900	MGO		1.25	0				Ht. 0 in.		
901.58	SRC	S16	1.25	0		1	4		5	
501.50	JNC	510					-7	Max Corrosion	5	
								1.21 in. & Debris		
910	MGO		1.21	0				Ht. 0 in.		
910	UUUU		1.21	0				Max Corrosion		
								1.46 in. & Debris		
920	MGO		1.46	0				Ht. 0 in.		
920	UDIW		1.40	U						
								Max Corrosion		
020	MCO		1 4 2	0				1.43 in. & Debris		
930	MGO		1.43	0				Ht. 0 in.		

								Max Corrosion		
								1.55 in. & Debris		
940	MGO		1.55	0				Ht. 0 in.		
946.05	SRC	F16	1.55	•					5	
5 10105	bite	. 10						Max Corrosion		
								1.16 in. & Debris		
950	MGO		1.16	0				Ht. 0 in.		
958.49	SRC					2	4		5	
								Max Corrosion		
								1.26 in. & Debris		
960	MGO		1.26	0				Ht. 0 in.		
								Max Corrosion		
								1.63 in. & Debris		
970	MGO		1.63	0				Ht. 0 in.		
972.43	SRV	S17				2	4		4	
								Max Corrosion		
								1.39 in. & Debris		
980	MGO		1.39	0				Ht. 0 in.		
984.68	SRV	F17							4	
								Max Corrosion 1.2		
								in. & Debris Ht. 0		
990	MGO		1.2	0				in.		
								Max Corrosion		
				_				1.31 in. & Debris		
1000	MGO		1.31	0				Ht. 0 in.		
1009.7	CDU					2			4	
4	SRV					2	4			
								Max Corrosion		
1010	MCO		1 27	0				1.37 in. & Debris		
1010	MGO		1.37	0				Ht. 0 in.		
								Max Corrosion 1.22 in. & Debris		
1020	MGO		1.22	0				Ht. 0 in.		
1020	UUU		1.22	0				Max Corrosion		
								1.13 in. & Debris		
1030	MGO		1.13	0				Ht. 0 in.		
1038.5	SRV	S18	1.10	•		2	4		4	
								Max Corrosion		
								1.45 in. & Debris		
1040	MGO		1.45	0				Ht. 0 in.		
								Max Corrosion		
								1.24 in. & Debris		
1050	MGO		1.24	0				Ht. 0 in.		

			r – – – –		1	r - 1		1		r	
									Max Corrosion		
									1.35 in. & Debris		
1060	MGO		1.35	0					Ht. 0 in.		
1060.9	SRV	F18								4	
									Max Corrosion		
									1.26 in. & Debris		
1070	MGO		1.26	0					Ht. 0 in.		
									Max Corrosion		
									1.32 in. & Debris		
1080	MGO		1.32	0					Ht. 0 in.		
									Max Corrosion		
									1.34 in. & Debris		
1090	MGO		1.34	0					Ht. 0 in.		
1093.2	SRP			-			11	4		5	
									Max Corrosion		
									1.21 in. & Debris		
1100	MGO		1.21	0					Ht. 0 in.		
1100.9	SRP						9	12		5	
1108.4	SRC	S19					1	4		5	
	bite	010							Max Corrosion		
									1.03 in. & Debris		
1110	MGO		1.03	0					Ht. 0 in.		
1117.3	SRC	F19	1.00	0						5	
1117.5	BRC	115							Max Corrosion	5	
									1.13 in. & Debris		
1120	MGO		1.13	0					Ht. 0 in.		
1120	WIGO		1.15	0					Max Corrosion		
									1.14 in. & Debris		
1130	MGO		1.14	0					Ht. 0 in.		
1130	UUUU		1.14	U					Max Corrosion		
									1.06 in. & Debris		
1140	MCO		1.06	0					Ht. 0 in.		
1140	MGO		1.00	U					Max Corrosion	<u> </u>	
									1.08 in. & Debris		
1150	MCO		1 00	0							
1150	MGO		1.08	0					Ht. 0 in. Max Corrosion		
1160	MCO		1.02	0					1.03 in. & Debris		
1160	MGO		1.03	0					Ht. 0 in.		
									Max Corrosion		
1170	MCO			0					1.11 in. & Debris		
1170	MGO		1.11	0					Ht. 0 in.		

							Max Corrosion		
			-				1.25 in. & Debris		
1180	MGO	1.25	0				Ht. 0 in.		
1182.3	SRC				1	4		5	
							Max Corrosion 1.1		
							in. & Debris Ht. 0		
1190	MGO	1.1	0				in.		
1191.0	SRC				8	12		5	
							Max Corrosion		
							0.89 in. & Debris		
1200	MGO	0.89	0				Ht. 0 in.		
							Max Corrosion		
							1.15 in. & Debris		
1210	MGO	1.15	0				Ht. 0 in.		
							Max Corrosion		
							1.22 in. & Debris		
1220	MGO	1.22	0				Ht. 0 in.		
1228.6	SRP				12	4		5	
							Max Corrosion		
							1.37 in. & Debris		
1230	MGO	1.37	0				Ht. 0 in.		
		_					Max Corrosion		
							1.11 in. & Debris		
1240	MGO	1.11	0				Ht. 0 in.		
1240.7	SRC				2	4		5	
12.1017	bitte						Max Corrosion	-	
							1.35 in. & Debris		
1250	MGO	1.35	0				Ht. 0 in.		
1200	1100	1.00	0				Max Corrosion		
							1.31 in. & Debris		
1260	MGO	1.31	0				Ht. 0 in.		
1200	MOO	1.51	0				Max Corrosion		
							1.18 in. & Debris		
1270	MGO	1.18	0				Ht. 0 in.		
1270	00100	1.10	0				Max Corrosion		
							1.24 in. & Debris		
1280	MGO	1.24	0				Ht. 0 in.		
1280	SRV	1.24	0		1	4		4	
1204.0	SI V				Ŧ	-+	Max Corrosion	4	
							1.14 in. & Debris		
1200	MCO	1 1 1	0						
1290	MGO	1.14	0				Ht. 0 in.		

					[			May Campaian		
								Max Corrosion		
4000	1400		4.05					1.35 in. & Debris		
1300	MGO		1.35	0				Ht. 0 in.		
								Max Corrosion		
								0.94 in. & Debris		
1310	MGO		0.94	0				Ht. 0 in.		
1311.2	SRV					9	11		4	
								Max Corrosion		
								1.12 in. & Debris		
1320	MGO		1.12	0				Ht. 0 in.		
								Max Corrosion		
								1.26 in. & Debris		
1330	MGO		1.26	0				Ht. 0 in.		
1340								Max Corrosion		
								1.09 in. & Debris		
	MGO		1.09	0				Ht. 0 in.		
1350								Max Corrosion		
								1.19 in. & Debris		
	MGO		1.19	0				Ht. 0 in.		
1360								Max Corrosion		
								1.02 in. & Debris		
	MGO		1.02	0				Ht. 0 in.		
1370								Max Corrosion		
								1.25 in. & Debris		
	MGO		1.25	0				Ht. 0 in.		
1380								Max Corrosion		
								1.24 in. & Debris		
	MGO		1.24	0				Ht. 0 in.		
1380.7	SRV	S20				2	4		4	
1387.5	SRV	F20							4	
1390	~~~~							Max Corrosion		
								1.35 in. & Debris		
	MGO		1.35	0				Ht. 0 in.		
1400	11200							Max Corrosion		
								1.23 in. & Debris		
	MGO		1.23	0				Ht. 0 in.		
1410	1,100		1.20					Max Corrosion		
1110								1.11 in. & Debris		
	MGO		1.11	0				Ht. 0 in.		
1420	1100			5				Max Corrosion		
1720								1.06 in. & Debris		
	MGO		1.06	0				Ht. 0 in.		
	WIGO		1.00	U				110. 0 111.		

1430								Max Corrosion		
1450								0.81 in. & Debris		
	MCO		0.81	0				Ht. 0 in.		
1435.7	MGO SRC		0.81	0		12	4	Πι. Ο ΙΙΙ.	5	
1433.7	SKC					12	4	Max Corrosion	5	
1440								0.94 in. & Debris		
	MGO		0.94	0				Ht. 0 in.		
1450	MOO		0.94	0				Max Corrosion		
1450								0.99 in. & Debris		
	MGO		0.99	0				Ht. 0 in.		
1450.6	SRV		0.55	0		2	4		4	
1450.0						2		Max Corrosion	-	
1400								1.11 in. & Debris		
	MGO		1.11	0				Ht. 0 in.		
1470								Max Corrosion		
1.70								1.19 in. & Debris		
	MGO		1.19	0				Ht. 0 in.		
1471.9	SRC	S21				1	4		5	
1480								Max Corrosion		
								1.05 in. & Debris		
	MGO		1.05	0				Ht. 0 in.		
1481.3	SRC	F21							5	
1490								Max Corrosion		
								1.05 in. & Debris		
	MGO		1.05	0				Ht. 0 in.		
1500								Max Corrosion		
								1.01 in. & Debris		
	MGO		1.01	0				Ht. 0 in.		
1507.5	SRC					2	4		5	
1510								Max Corrosion		
								1.19 in. & Debris		
	MGO		1.19	0				Ht. 0 in.		
1520								Max Corrosion		
								1.22 in. & Debris		
	MGO		1.22	0				Ht. 0 in.		
1530								Max Corrosion 1.1		
				c				in. & Debris Ht. 0		
	MGO		1.1	0				in.		
1540								Max Corrosion		
			0.00	<b>^</b>				0.98 in. & Debris		
	MGO		0.98	0				Ht. 0 in.		

1550								Max Corrosion		
1330								1.09 in. & Debris		
	MGO		1.09	0				Ht. 0 in.		
1555.0	SRV					11	12		4	
1560								Max Corrosion		
								1.14 in. & Debris		
	MGO		1.14	0				Ht. 0 in.		
1570								Max Corrosion		
								1.16 in. & Debris		
	MGO		1.16	0				Ht. 0 in.		
1580								Max Corrosion		
								1.04 in. & Debris		
	MGO		1.04	0				Ht. 0 in.		
1590								Max Corrosion		
								1.03 in. & Debris		
	MGO		1.03	0				Ht. 0 in.		
1600								Max Corrosion		
								0.97 in. & Debris		
	MGO		0.97	0				Ht. 0 in.		
1610								Max Corrosion		
								1.21 in. & Debris		
	MGO		1.21	0				Ht. 0 in.		
1620								Max Corrosion		
								1.12 in. & Debris		
	MGO		1.12	0				Ht. 0 in.		
1630								Max Corrosion		
								1.17 in. & Debris		
	MGO		1.17	0				Ht. 0 in.		
1630.9	SRV					1	4		4	
1640								Max Corrosion		
				_				1.06 in. & Debris		
	MGO		1.06	0				Ht. 0 in.		
1650								Max Corrosion		
				-				0.91 in. & Debris		
	MGO		0.91	0				Ht. 0 in.		
1658.8	SRV					2	4		4	
1660								Max Corrosion		
	MCO		1.00	0				1.08 in. & Debris		
1070	MGO		1.08	0				Ht. 0 in.		
1670								Max Corrosion		
	MCO		1 20	0				1.29 in. & Debris		
16747	MGO	622	1.29	0	 	<b>`</b>	л	Ht. 0 in.	4	
1674.7	SRV	S22				2	4		4	

1680								Max Corrosion		
1000								0.99 in. & Debris		
	MCO		0.99	0				0.99 III. & Debits Ht. 0 in.		
1681.1	MGO SRV	F22	0.99	0				Πι. Ο ΙΙΙ.	4	
1690	SKV	122						Max Corrosion	4	
1090								1.17 in. & Debris		
	MGO		1.17	0				Ht. 0 in.		
1700	MOO		1.17	0				Max Corrosion		
1700								1.02 in. & Debris		
	MGO		1.02	0				Ht. 0 in.		
1707.6	SRV		1.02	0		2	4		4	
1707.0	SKV					2	4	Max Corrosion	-	
1/10								1.35 in. & Debris		
	MGO		1.35	0				Ht. 0 in.		
1719.7	SRC		1.55	0		2	4		5	
1719.7	SIL					۷.	+	Max Corrosion	5	
1720								1.43 in. & Debris		
	MGO		1.43	0				Ht. 0 in.		
1730	WIGO		1.45	0				Max Corrosion		
1750								0.99 in. & Debris		
	MGO		0.99	0				Ht. 0 in.		
1740	1100		0.55	0				Max Corrosion		
17.10								1.02 in. & Debris		
	MGO		1.02	0				Ht. 0 in.		
1746.5	SRC			•		1			5	
1750	Site							Max Corrosion 1	_	
								in. & Debris Ht. 0		
	MGO		1	0				in.		
1755.5	SRV					2	4		4	
1760								Max Corrosion		
								0.85 in. & Debris		
	MGO		0.85	0				Ht. 0 in.		
1770								Max Corrosion		
								1.08 in. & Debris		
	MGO		1.08	0				Ht. 0 in.		
1780								Max Corrosion		
								1.05 in. & Debris		
	MGO		1.05	0				Ht. 0 in.		
1790								Max Corrosion		
								1.03 in. & Debris		
	MGO		1.03	0				Ht. 0 in.		

1800									Max Corrosion		
									0.93 in. & Debris		
	MGO		0.93	0					Ht. 0 in.		
1803.2	SRC						1	4		5	
1810									Max Corrosion 1.1		
									in. & Debris Ht. 0		
	MGO		1.1	0					in.		
1820									Max Corrosion 1		
	MGO		1	0					in. & Debris Ht. 0		
1926 4	MGO	622	1	0			2	4	in.	5	
1826.4 1830	SRC	S23					2	4	Max Corrosion 0.9	3	
1050									in. & Debris Ht. 0		
	MGO		0.9	0					in.		
1840	11100		5.5	~					Max Corrosion		
									0.87 in. & Debris		
	MGO		0.87	0					Ht. 0 in.		
1840.5	SRC	F23								5	
1850									Max Corrosion		
									1.02 in. & Debris		
	MGO		1.02	0					Ht. 0 in.		
1860									Max Corrosion		
				•					0.98 in. & Debris		
1062.0	MGO		0.98	0			4	4	Ht. 0 in.	5	
1862.0 1870	SRC						1	4	Max Corrosion	3	
1870									0.91 in. & Debris		
	MGO		0.91	0					Ht. 0 in.		
1876.3	SRV		0.51				8	11		4	
1878.5	DICV									4	
9	SRV						2	4			
									Max Corrosion		
1880									1.06 in. & Debris		
	MGO		1.06	0					Ht. 0 in.		
									Max Corrosion		
1890									1.05 in. & Debris		
	MGO		1.05	0					Ht. 0 in.		<u> </u>
1000									Max Corrosion		
1900	MCO		1 1 6	0					1.16 in. & Debris		
	MGO		1.16	0					Ht. 0 in. Max Corrosion		
1910									1.14 in. & Debris		
1310	MGO		1.14	0					Ht. 0 in.		
	VUIUU		<del>-</del>	0	I	1		1	110.0111.		1

					May Correction	
					Max Corrosion	
1920					1.35 in. & Debris	
	MGO	1.35	0		Ht. 0 in.	
					Max Corrosion	
1930					1.32 in. & Debris	
	MGO	1.32	0		Ht. 0 in.	
					Max Corrosion	
1940					0.92 in. & Debris	
	MGO	0.92	0		Ht. 0 in.	
					Max Corrosion	
1950					1.04 in. & Debris	
	MGO	1.04	0		Ht. 0 in.	
					Max Corrosion	
1960					0.98 in. & Debris	
	MGO	0.98	0		Ht. 0 in.	
					Max Corrosion	
1970					0.93 in. & Debris	
	MGO	0.93	0		Ht. 0 in.	
					Max Corrosion	
1980					1.14 in. & Debris	
	MGO	1.14	0		Ht. 0 in.	
1980.1	AMH					

# 8. Line 9231

### Table 92 Details for line 9231

Line record no.:	9231	Pipe Material	RCP
US MH ID:	100T	Inspection Date	12/09/2022
DS MH ID:	80T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	1971

#### Table 93 PACP defect table for line 9231

Dist.	Code	Cont.		lue			Circumferential				efect ating
(ft.)	Group	defect	Dimen		%	Joint	At/	T	Remarks	Str	O&M
			$1^{st}$	$2^{nd}$			From	То			
0	AMH										
0	MWL				15						

0	SRI	S01			7	5		1	
	1460		4 4 7	0			Max Corrosion 1.17 in. &		
0	MGO		1.17	0			Debris Ht. 0 in.		
	MGO		1.08	0			Max Corrosion 1.08 in. &		
10	NIGO		1.08	0			Debris Ht. 0 in.		
	MGO		1	0			Max Corrosion 1 in. &		
20	WIGO		-	0			Debris Ht. 0 in.		
	MGO		1.52	0			Max Corrosion 1.52 in. &		
30			1.02	•			Debris Ht. 0 in.		
	MGO		1.14	0			Max Corrosion 1.14 in. &		
40				_			Debris Ht. 0 in.		
49.75	SRV				7	12		4	
50	MGO		1.23	0			Max Corrosion 1.23 in. &		
50							Debris Ht. 0 in.		
60	MGO		1.2	0			Max Corrosion 1.2 in. & Debris Ht. 0 in.		
60							Max Corrosion 1.2 in. &		
70	MGO		1.2	0			Debris Ht. 0 in.		
70							Max Corrosion 1.4 in. &		
80	MGO		1.4	0			Debris Ht. 0 in.		
83.3	SRC				8	10		5	
00.0							Max Corrosion 1.5 in. &	5	
90	MGO		1.5	0			Debris Ht. 0 in.		
95.54	SRC	S02			8	4		5	
	1460		1.02	0			Max Corrosion 1.92 in. &		
100	MGO		1.92	0			Debris Ht. 0 in.		
	MCO		1.5	0			Max Corrosion 1.5 in. &		
110	MGO		1.5	0			Debris Ht. 0 in.		
	MGO		2.03	0			Max Corrosion 2.03 in. &		
120	WIGO		2.05	0			Debris Ht. 0 in.		
	MGO		1.55	0			Max Corrosion 1.55 in. &		
130				-			Debris Ht. 0 in.		
132.66	SRC	F02						5	
	MGO		1.4	0			Max Corrosion 1.4 in. &		
140							Debris Ht. 0 in.		
150	MGO		1.25	0			Max Corrosion 1.25 in. &		
150	CD\/				0	0	Debris Ht. 0 in.	1	
156.22	SRV				8	9	Max Correction 1.1 in 9	4	
160	MGO		1.1	0			Max Corrosion 1.1 in. & Debris Ht. 0 in.		
166.96	SRV	S03			8	10		4	
100.90	31.1	202			0	10		4	

							May Composing 1 4 in 9		
470	MGO		1.4	0			Max Corrosion 1.4 in. &		
170							Debris Ht. 0 in.		
176	SRV	F03						4	
179.39	SRV				3	4		4	
	MGO		1.28	0			Max Corrosion 1.28 in. &		
180			1.20	Ŭ			Debris Ht. 0 in.		
	MGO		1.41	0			Max Corrosion 1.41 in. &		
190	Wide		1.71	0			Debris Ht. 0 in.		
193.34	SRC	S04			8	4		5	
	MGO		1.36	0			Max Corrosion 1.36 in. &		
200	WIGO		1.50	0			Debris Ht. 0 in.		
205.21	SRC	F04						5	
209.17	SRC				8	11		5	
			1 40	0			Max Corrosion 1.48 in. &		
210	MGO		1.48	0			Debris Ht. 0 in.		
			4.95	•			Max Corrosion 1.25 in. &		
220	MGO		1.25	0			Debris Ht. 0 in.		
224.62	SRP				8	12		5	
227.82	SRC	S05			8	4		5	
							Max Corrosion 1.89 in. &	-	
230	MGO		1.89	0			Debris Ht. 0 in.		
							Max Corrosion 1.49 in. &		
240	MGO		1.49	0			Debris Ht. 0 in.		
247.04	SRC	F05						5	
217101	0110	. 00					Max Corrosion 1.23 in. &	U	
250	MGO		1.23	0			Debris Ht. 0 in.		
252.32	SRC				8	11		5	
257.22	SRC				2	4		5	
257.22	Sile				2	-	Max Corrosion 1.26 in. &	5	
260	MGO		1.26	0			Debris Ht. 0 in.		
261.74	SRV				8	4	Debris Ht. 0 III.	4	
						-		4 5	
267.01	SRC				8	11		3	
270	MGO		1.22	0			Max Corrosion 1.22 in. &		
270							Debris Ht. 0 in.		
200	MGO		1.16	0			Max Corrosion 1.16 in. &		
280							Debris Ht. 0 in.		
	MGO		1.23	0			Max Corrosion 1.23 in. &		
290							Debris Ht. 0 in.		
292.45	SRP				8	1		5	
297.16	SRV				1	3		4	
299.99	SRC				8	12		5	

								Max Corrosion 1.3 in. &		
300	MGO		1.3	0				Debris Ht. 0 in.		
	CDC					8	11	Debris HL. U III.	5	
304.32	SRC								5	
308.47	SRC					1	4		5	
24.0	MGO		1.5	0				Max Corrosion 1.5 in. &		
310								Debris Ht. 0 in.		
314.69	DAGS				10	1				2
314.69	SRV					12	2		4	
	MGO		1.12	0				Max Corrosion 1.12 in. &		
320				-				Debris Ht. 0 in.		
322.98	SRC					8	4		5	
328.44	SRV					2	4		4	
	MGO		1	0				Max Corrosion 1 in. &		
330	WIGO		Т	0				Debris Ht. 0 in.		
338.43	SRC					8	4		5	
	MCO		1 22	0				Max Corrosion 1.33 in. &		
340	MGO		1.33	0				Debris Ht. 0 in.		
	1460		4.22	0				Max Corrosion 1.22 in. &		
350	MGO		1.22	0				Debris Ht. 0 in.		
356.33	SRC					12	4		5	
				_				Max Corrosion 1.24 in. &		
360	MGO		1.24	0				Debris Ht. 0 in.		
366.32	SRC	S06				8	10		5	
								Max Corrosion 1.22 in. &		
370	MGO		1.22	0				Debris Ht. 0 in.		
								Max Corrosion 1.25 in. &		
380	MGO		1.25	0				Debris Ht. 0 in.		
383.28	SRC	F06							5	
389.31	SRC					8	11		5	
505.51	Sile					0		Max Corrosion 1.28 in. &	5	
390	MGO		1.28	0				Debris Ht. 0 in.		
350				-				Max Corrosion 1.24 in. &		
400	MGO		1.24	0				Debris Ht. 0 in.		
-						8	12	DEDITS III. U III.	4	
404	SRV					 0	12	May Correction 1 22 in 9	4	
110	MGO		1.22	0				Max Corrosion 1.22 in. & Debris Ht. 0 in.		
410	600					 0	<u>л</u>		F	
411.35	SRC				$\vdash$	 8	4		5	
420	MGO		1.14	0				Max Corrosion 1.14 in. &		
420								Debris Ht. 0 in.		
400	MGO		0.94	0				Max Corrosion 0.94 in. &		
430								Debris Ht. 0 in.		

Max Corrosion 1.12 in. & Debris Ht. 0 in.104Max Corrosion 0.91 in. & Debris Ht. 0 in.45125
10       4         Max Corrosion 0.91 in. & Debris Ht. 0 in.       4         4       5         12       5
Debris Ht. 0 in.           4         5           12         5
4         5           12         5
12 5
Max Corrosion 1.1 in. &
Debris Ht. 0 in.
Max Corrosion 0.94 in. &
Debris Ht. 0 in.
Max Corrosion 0.98 in. &
Debris Ht. 0 in.
4
Max Corrosion 0.92 in. &
Debris Ht. 0 in.
Max Corrosion 1.19 in. &
Debris Ht. 0 in.
3 5
Max Corrosion 1.06 in. &
Debris Ht. 0 in.
Max Corrosion 1.17 in. &
Debris Ht. 0 in.
4 5
Max Corrosion 1.55 in. &
Debris Ht. 0 in.
Max Corrosion 1.1 in. &
Debris Ht. 0 in.
Max Corrosion 1.2 in. &
Debris Ht. 0 in.
Max Corrosion 1.62 in. &
Debris Ht. 0 in. Max Corrosion 1.81 in. &
Debris Ht. 0 in.
Max Corrosion 1.3 in. &
Debris Ht. 0 in.
5
Max Corrosion 1.54 in. &
Debris Ht. 0 in.
4 5
Max Corrosion 1.56 in. &
Debris Ht. 0 in.

							Max Corrosion 1.36 in. &		
610	MGO		1.36	0			Debris Ht. 0 in.		
			1 0 0	_			Max Corrosion 1.33 in. &		
620	MGO		1.33	0			Debris Ht. 0 in.		
	MCO		1 25	0			Max Corrosion 1.35 in. &		
630	MGO		1.35	0			Debris Ht. 0 in.		
	MGO		1.45	0			Max Corrosion 1.45 in. &		
640	WIGO		1.45	0			Debris Ht. 0 in.		
	MGO		1.3	0			Max Corrosion 1.3 in. &		
650	WIGO		1.5	0			Debris Ht. 0 in.		
	MGO		1.65	0			Max Corrosion 1.65 in. &		
660			1.05	0			Debris Ht. 0 in.		
	MGO		1.49	0			Max Corrosion 1.49 in. &		
670							Debris Ht. 0 in.	_	
672.71	SRC	F08						5	
600	MGO		1.33	0			Max Corrosion 1.33 in. &		
680							Debris Ht. 0 in.	-	
685.71	SRC	S09			8	4		5	
600	MGO		1.42	0			Max Corrosion 1.42 in. &		
690							Debris Ht. 0 in.		
700	MGO		1.47	0			Max Corrosion 1.47 in. &		
700							Debris Ht. 0 in. Max Corrosion 1.19 in. &		
710	MGO		1.19	0			Debris Ht. 0 in.		
715.86	SRC	F09						5	
/15.80		105					Max Corrosion 1.16 in. &	-	
720	MGO		1.16	0			Debris Ht. 0 in.		
727.92	SRP	S10			8	12		5	
/ 2/10 2		010					Max Corrosion 1.15 in. &	-	
730	MGO		1.15	0			Debris Ht. 0 in.		
				-			Max Corrosion 1.44 in. &		
740	MGO		1.44	0			Debris Ht. 0 in.		
	1100		4 5 4	0			Max Corrosion 1.54 in. &		
750	MGO		1.54	0			Debris Ht. 0 in.		
	MGO		1.39	0			Max Corrosion 1.39 in. &		
760	UDIVI		1.39	U			Debris Ht. 0 in.		
	MGO		1.26	0			Max Corrosion 1.26 in. &		
770	UDINI		1.20	0			Debris Ht. 0 in.		
	MGO		1.12	0			Max Corrosion 1.12 in. &		
780							Debris Ht. 0 in.		
781.43	SRP	F10						5	

	MGO		1.22	0			Max Corrosion 1.22 in. &		
790				-			Debris Ht. 0 in.		
	MGO		1.11	0			Max Corrosion 1.11 in. &		
800				Ŭ			Debris Ht. 0 in.		
803.29	SRV				1	4		4	
	MGO		1.69	0			Max Corrosion 1.69 in. &		
810	NGO		1.09	0			Debris Ht. 0 in.		
816.1	SRC	S11			8	11		5	
	MCO		1.20	_			Max Corrosion 1.26 in. &		
820	MGO		1.26	0			Debris Ht. 0 in.		
			4 40	_			Max Corrosion 1.49 in. &		
830	MGO		1.49	0			Debris Ht. 0 in.		
				-			Max Corrosion 1.21 in. &		
840	MGO		1.21	0			Debris Ht. 0 in.		
				_			Max Corrosion 1.47 in. &		
850	MGO		1.47	0			Debris Ht. 0 in.		
							Max Corrosion 1.22 in. &		
860	MGO		1.22	0			Debris Ht. 0 in.		
867.73	SRC	F11						5	
007.75	5110						Max Corrosion 1.23 in. &		
870	MGO		1.23	0			Debris Ht. 0 in.		
877.53	SRC				11	1		5	
077.33	Sile						Max Corrosion 1.36 in. &	-	
880	MGO		1.36	0			Debris Ht. 0 in.		
881.67	SRC				8	4		5	
884.12	SRC				8	1		5	
004.12	SILC				0	-	Max Corrosion 1.09 in. &	5	
890	MGO		1.09	0			Debris Ht. 0 in.		
890							Max Corrosion 0.98 in. &		
900	MGO		0.98	0			Debris Ht. 0 in.		
900.89					8	4		4	
	SRV	610							
907.87	SRV	S12			8	4	May Comparing 4 22 1 2	4	
010	MGO		1.22	0			Max Corrosion 1.22 in. &		
910							Debris Ht. 0 in.		
000	MGO		1.04	0			Max Corrosion 1.04 in. &		
920		540					Debris Ht. 0 in.	4	
928.41	SRV	F12						4	
	MGO		0.93	0			Max Corrosion 0.93 in. &		
930							Debris Ht. 0 in.		
	MGO		1.21	0			Max Corrosion 1.21 in. &		
940				-			Debris Ht. 0 in.		

							May Corrector 1 00 in 8		
050	MGO		1.09	0			Max Corrosion 1.09 in. &		
950	6 F) (						Debris Ht. 0 in.		
951.02	SRV				8	11		4	
	MGO		1.06	0			Max Corrosion 1.06 in. &		
960							Debris Ht. 0 in.		
960.63	SRV				8	11		4	
	MGO		1.14	0			Max Corrosion 1.14 in. &		
970				-			Debris Ht. 0 in.		
977.59	SRV	S13			8	10		4	
	MGO		1.48	0			Max Corrosion 1.48 in. &		
980			10				Debris Ht. 0 in.		
	MGO		1.17	0			Max Corrosion 1.17 in. &		
990	Midd		1.17	0			Debris Ht. 0 in.		
	MGO		1.4	0			Max Corrosion 1.4 in. &		
1000	MOO		1.7	0			Debris Ht. 0 in.		
	MGO		1.17	0			Max Corrosion 1.17 in. &		
1010	Mido		1.17	0			Debris Ht. 0 in.		
	MGO		1.09	0			Max Corrosion 1.09 in. &		
1020	MOO		1.09	0			Debris Ht. 0 in.		
1022.43	SRV	F13						4	
1027.14	SRC				2	4		5	
	MGO		1.01	0			Max Corrosion 1.01 in. &		
1030	MGO		1.01	0			Debris Ht. 0 in.		
	MGO		1.05	0			Max Corrosion 1.05 in. &		
1040	MGO		1.05	0			Debris Ht. 0 in.		
1042.59	SRC				2	4		5	
			0.00	0			Max Corrosion 0.98 in. &		
1050	MGO		0.98	0			Debris Ht. 0 in.		
1057.67	SRV				8	10		4	
	MCO		1 2 4	0			Max Corrosion 1.34 in. &		
1060	MGO		1.34	0			Debris Ht. 0 in.		
	1400		1 1 2	0			Max Corrosion 1.12 in. &		
1070	MGO		1.12	0			Debris Ht. 0 in.		
1070.11	SRP				8	4		5	
1079.34	SRC				8	4		5	
			4 35	0			Max Corrosion 1.25 in. &		
1080	MGO		1.25	0			Debris Ht. 0 in.		
1083.3	SRV				8	10		4	
				-			Max Corrosion 1.08 in. &		
1090	MGO		1.08	0			Debris Ht. 0 in.		
1097.05	SRC				1	4		5	
	00			1	-	<u> </u>		5	

	MGO		1.17	0			Max Corrosion 1.17 in. &		
1100				-			Debris Ht. 0 in.		
	MGO		1	0			Max Corrosion 1 in. &		
1110			_	-			Debris Ht. 0 in.		
	MGO		0.94	0			Max Corrosion 0.94 in. &		
1120	mee		0.51	Ŭ			Debris Ht. 0 in.		
1125.32	SRC				11	12		5	
	MGO		0.88	0			Max Corrosion 0.88 in. &		
1130	10100		0.88	0			Debris Ht. 0 in.		
1132.66	SRC				12	4		5	
1137.37	SRC				11	1		5	
	MCO		1.22	0			Max Corrosion 1.33 in. &		
1140	MGO		1.33	0			Debris Ht. 0 in.		
	1460			0			Max Corrosion 1.16 in. &		
1150	MGO		1.16	0			Debris Ht. 0 in.		
1155.46	SRP				8	4		5	
							Max Corrosion 1.36 in. &		
1160	MGO		1.36	0			Debris Ht. 0 in.		
1164.32	SRC				8	10		5	
							Max Corrosion 1.59 in. &	-	
1170	MGO		1.59	0			Debris Ht. 0 in.		
1179.77	SRC	S14			8	4		5	
							Max Corrosion 1.19 in. &	-	
1180	MGO		1.19	0			Debris Ht. 0 in.		
							Max Corrosion 1.16 in. &		
1190	MGO		1.16	0			Debris Ht. 0 in.		
1193.15	SRC	F14						5	
							Max Corrosion 1.31 in. &	U	
1200	MGO		1.31	0			Debris Ht. 0 in.		
1209.54	SRC	S15			8	11		5	
		010			,		Max Corrosion 1.14 in. &	5	
1210	MGO		1.14	0			Debris Ht. 0 in.		
1210	SRC	F15				1		5	
121/.2/	5110	113					Max Corrosion 1.37 in. &	5	
1220	MGO		1.37	0			Debris Ht. 0 in.		
1220	SRC				8	10	DEDITS III. O III.	5	
1221.30	JUC				0	10	Max Corrosion 1.19 in. &	5	
1230	MGO		1.19	0			Debris Ht. 0 in.		
1230									
1240	MGO		1.18	0			Max Corrosion 1.18 in. & Debris Ht. 0 in.		
	CDC				10	1		E	
1244.4	SRC				12	4		5	

							Max Corrosion 1.17 in. &		
1250	MGO		1.17	0					
	60.6					10	Debris Ht. 0 in.	~	
1255.9	SRC				8	10		5	
	MGO		1.15	0			Max Corrosion 1.15 in. &		
1260	-						Debris Ht. 0 in.		
1268.52	SRP	S16			8	12		5	
	MGO		1.09	0			Max Corrosion 1.09 in. &		
1270			1.05	•			Debris Ht. 0 in.		
1274.36	SRP	F16						5	
1278.89	SRC	S17			8	10		5	
	MGO		1.29	0			Max Corrosion 1.29 in. &		
1280	NGO		1.29	0			Debris Ht. 0 in.		
1288.5	SRC	F17						5	
			1 00	•			Max Corrosion 1.08 in. &		
1290	MGO		1.08	0			Debris Ht. 0 in.		
1291.51	SRP	S18			8	4		5	
1298.48	SRP	F18						5	
							Max Corrosion 1.1 in. &	-	
1300	MGO		1.1	0			Debris Ht. 0 in.		
1302.44	SRC				8	10		5	
1302.44	Sile				0	10	Max Corrosion 1.37 in. &	5	
1310	MGO		1.37	0			Debris Ht. 0 in.		
1313.37	SRP				8	2		5	
1315.82		S19			8	11		5	
1315.82	SRC	219			õ	11	Mau Campaign 1 OC in 8	3	
1220	MGO		1.06	0			Max Corrosion 1.06 in. &		
1320							Debris Ht. 0 in.		
4000	MGO		1.23	0					
1330									
	MGO		1.15	0					
1340									
	MGO		1.3	0					
				-			Debris Ht. 0 in.		
1352	SRC	F19							
	MGO		1 27	0			Max Corrosion 1.27 in. &		
1360	1000		1.2/	0			Debris Ht. 0 in.		
1363.49	SRC				8	4		5	
1368.2	SRC				2	4		5	
	MCO		1 22	0			Max Corrosion 1.33 in. &		
1370	NGO		1.33	U			Debris Ht. 0 in.		
1371.78	SRC	F20			8	10		5	
	SRC	S20						5	
1360 1363.49 1368.2 1370	MGO MGO SRC MGO SRC SRC MGO SRC	F20	1.23 1.15 1.3 1.27 1.33	-	2	4	Debris Ht. 0 in. Max Corrosion 1.33 in. &	5 5 5 5	

							Max Corrosion 1.24 in. &		
1380	MGO		1.24	0			Debris Ht. 0 in.		
1386.67	SRC	S21			8	10		5	
			1 10	0			Max Corrosion 1.19 in. &		
1390	MGO		1.19	0			Debris Ht. 0 in.		
1397.97	SRC	F21						5	
			1	0			Max Corrosion 1 in. &		
1400	MGO		T	0			Debris Ht. 0 in.		
1404.57	SRP				8	4		5	
1407.77	SRC	S22			8	10		5	
	MGO		0.89	0			Max Corrosion 0.89 in. &		
1410	NGO		0.89	0			Debris Ht. 0 in.		
1412.48	SRC	F22						5	
	MGO		1.32	0			Max Corrosion 1.32 in. &		
1420	NGO		1.52	0			Debris Ht. 0 in.		
1420.21	SRC				9	12		5	
	MGO		1.33	0			Max Corrosion 1.33 in. &		
1430	NGO		1.55	0			Debris Ht. 0 in.		
1434.91	SRP				8	12		5	
1439.81	SRV				1	3		4	
	MGO		1.22	0			Max Corrosion 1.22 in. &		
1440	NIGO		1.22	0			Debris Ht. 0 in.		
1442.82	SRC				8	11		5	
	MGO		1.09	0			Max Corrosion 1.09 in. &		
1450	NIGO		1.05	0			Debris Ht. 0 in.		
1450.73	SRC	S23			8	10		5	
	MGO		1.16	0			Max Corrosion 1.16 in. &		
1460			1.10	U			Debris Ht. 0 in.		
1463.74	SRC	F23						5	
	MGO		1.03	0			Max Corrosion 1.03 in. &		
1470			1.00	Ŭ			Debris Ht. 0 in.		
	MGO		0.95	0			Max Corrosion 0.95 in. &		
1480			0.55	0			Debris Ht. 0 in.		
	MGO		1.02	0			Max Corrosion 1.02 in. &		
1490				-			Debris Ht. 0 in.		
1492	SRC	S24			 8	12		5	
1497.47	SRC	F24			 			5	
	MGO		1.1	0			Max Corrosion 1.1 in. &		
1500					 		Debris Ht. 0 in.		
1508.21	SRC				 8	11		5	
	MGO		1.15	0			Max Corrosion 1.15 in. &		
1510				-			Debris Ht. 0 in.		

1512.16	SRC				2	4		5	
			1.24	•			Max Corrosion 1.34 in. &	-	
1520	MGO		1.34	0			Debris Ht. 0 in.		
1524.6	SRC	S25			8	4		5	
1529.12	SRC	F25						5	
			1 20	0			Max Corrosion 1.29 in. &		
1530	MGO		1.29	0			Debris Ht. 0 in.		
1534.59	SRC	S26			8	4		5	
	MGO		0.97	0			Max Corrosion 0.97 in. &		
1540	NGO		0.97	0			Debris Ht. 0 in.		
	MGO		1	0			Max Corrosion 1 in. &		
1550	WIGO		-	0			Debris Ht. 0 in.		
1559.65	SRC	F26						5	
	MGO		1.13	0			Max Corrosion 1.13 in. &		
1560			1.15	0	 		Debris Ht. 0 in.		
1565.68	SRC	S27			8	11		5	
	MGO		1.27	0			Max Corrosion 1.27 in. &		
1570							Debris Ht. 0 in.		
1572.65	SRC	F27						5	
	MGO		0.94	0			Max Corrosion 0.94 in. &		
1580				_			Debris Ht. 0 in.		
1580.56					 11	3		5	
1588.85	SRC	S28			8	11		5	
4500	MGO		1.23	0			Max Corrosion 1.23 in. &		
1590	600	520					Debris Ht. 0 in.	_	
1595.45	SRC	F28						5	
1000	MGO		1.1	0			Max Corrosion 1.1 in. &		
1600	CDC				 0	12	Debris Ht. 0 in.	5	
1604.12	SRC				 8	12	May Carracian 1 2 in 8	5	
1610	MGO		1.2	0			Max Corrosion 1.2 in. & Debris Ht. 0 in.		
1612.97	SRC				8	10	DEDITS HL. U III.	5	
					8	4		5	
1619.19	SIL				0	4	Max Corrosion 1.18 in. &	5	
1620	MGO		1.18	0			Debris Ht. 0 in.		
1020							Max Corrosion 1.01 in. &		
1630	MGO		1.01	0			Debris Ht. 0 in.		
1050							Max Corrosion 1.01 in. &		
1640	MGO		1.01	0			Debris Ht. 0 in.		
1643.69	SRC				8	10		5	
							Max Corrosion 1.13 in. &	~	
1650	MGO		1.13	0			Debris Ht. 0 in.		
1000						1			<u>i                                    </u>

1650.09	SRC	S29				8	4		5	
1657.82		F29				-			5	
								Max Corrosion 0.9 in. &	-	
1660	MGO		0.9	0				Debris Ht. 0 in.		
				_				Max Corrosion 0.86 in. &		
1670	MGO		0.86	0				Debris Ht. 0 in.		
1677.42	SRC					8	4		5	
				-				Max Corrosion 0.9 in. &		
1680	MGO		0.9	0				Debris Ht. 0 in.		
1689.48	SRC					8	10		5	
				-				Max Corrosion 0.86 in. &		
1690	MGO		0.86	0				Debris Ht. 0 in.		
1696.07	SRC					8	10		5	
				-				Max Corrosion 1.17 in. &		
1700	MGO		1.17	0				Debris Ht. 0 in.		
	1460		0.00	•				Max Corrosion 0.99 in. &		
1710	MGO		0.99	0				Debris Ht. 0 in.		
1711.71	SRC					2	4		5	
1719.06	SRC					9	2		5	
1719.62	SCP					9	3		5	
			1 01	0				Max Corrosion 1.01 in. &		
1720	MGO		1.01	0				Debris Ht. 0 in.		
			1 00	0				Max Corrosion 1.08 in. &		
1730	MGO		1.08	0				Debris Ht. 0 in.		
1738.28	SRC					8	10		5	
	MGO		1.02	0				Max Corrosion 1.02 in. &		
1740	NGO		1.02	0				Debris Ht. 0 in.		
	MGO		1.11	0				Max Corrosion 1.11 in. &		
1750			1.11	0				Debris Ht. 0 in.		
1750.53	SRC	S30				8	4		5	
1757.12	SRC	F30							5	
	MGO		1.14	0				Max Corrosion 1.14 in. &		
1760	WIGO		1.14	U				Debris Ht. 0 in.		
1765.22	SRP					8	12		5	
	MGO		1.08	0				Max Corrosion 1.08 in. &		
1770			1.00	5				Debris Ht. 0 in.		
	MGO		1.2	0				Max Corrosion 1.2 in. &		
1780			1.2	5				Debris Ht. 0 in.		
	MGO		1.1	0				Max Corrosion 1.1 in. &		
1790				Ĵ			-	Debris Ht. 0 in.		
1792.3	DAGS				10	12			2	2

				-				Max Corrosion 1.19 in. &		
1800	MGO		1.19	0				Debris Ht. 0 in.		
1803.85	SRC					8	12		5	
1809.51	SRC					2	4		5	
	MCO		1 1 7	0				Max Corrosion 1.17 in. &		
1810	MGO		1.17	0				Debris Ht. 0 in.		
	MGO		1.19	0				Max Corrosion 1.19 in. &		
1820	NGO		1.19	0				Debris Ht. 0 in.		
1820.06	SRC					8	9		5	
	MGO		1.16	0				Max Corrosion 1.16 in. &		
1830	WIGO		1.10	U				Debris Ht. 0 in.		
1830.61	AMH					2	4		1	
1830.99	MWL				10	12			1	2
1834.76	SRI	S31				8	12		1	
	MGO		1.28	0				Max Corrosion 1.28 in. &		
1840	WIGO		1.20	0				Debris Ht. 0 in.		
	MGO		1.14	0				Max Corrosion 1.14 in. &		
1850	WIGO		1.14	Ŭ				Debris Ht. 0 in.		
1857.18	MGO	F31								
	MGO		1.12	0				Max Corrosion 1.12 in. &		
1860	moo		1.12	Ŭ				Debris Ht. 0 in.		
1865.09	MGO					 8	11			
1868.86	SRV	S32			20	 11	1		4	3
	MGO		1.48	0				Max Corrosion 1.48 in. &		3
1870			1.10					Debris Ht. 0 in.		
1872.63						 8	10			3
1878.09	MGO	F32			20					3
	MGO		0.99	0				Max Corrosion 0.99 in. &		
1880				-		 		Debris Ht. 0 in.		
1880.54		S33				 8	10		5	
1889.4	MGO	F33								
	SRC		1.06	0				Max Corrosion 1.06 in. &	5	
1890				_				Debris Ht. 0 in.	_	
	MGO		1.03	0				Max Corrosion 1.03 in. &		
1900						 	-	Debris Ht. 0 in.		
1902.97	MGO					 8	2			
1010	MGO		1.16	0				Max Corrosion 1.16 in. &		
1910					$\left  \right $	 		Debris Ht. 0 in.		
1915.59	MGO				$\left  \right $	 8	10			
1020	SRC		0.94	0				Max Corrosion 0.94 in. &	5	
1920		<b>C</b> 2 4			20	 		Debris Ht. 0 in.		
1925.96	MGO	S34			20	11	1			3

1930	MGO		1.39	0				Max Corrosion 1.39 in. & Debris Ht. 0 in.		3
1940	SRV		1.5	0				Max Corrosion 1.5 in. & Debris Ht. 0 in.	4	3
1945.36	MGO					8	10			3
1950	SRV		1.52	0				Max Corrosion 1.52 in. & Debris Ht. 0 in.	4	3
1960	MGO		1.48	0				Max Corrosion 1.48 in. & Debris Ht. 0 in.		3
1963.08	SRV	F34			20				4	3
1969.48	SRV					8	11		4	
1970	MGO		0	0				Max Corrosion 0 in. & Debris Ht. 0 in.		
1970.99	MGO	F01								
1970.99	AMH									

## 9. Line 9509-9508

### Table 94 Details for line 9509-9508

Line record no.:	9509-9508	Pipe Material	RCP
US MH ID:	2860T	Inspection Date	11/30/2022
DS MH ID:	2840T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	1575.65 ft

### Table 95 PACP defect table for line 9509-9508

Dist.	Code	Cont.		value		Joi	Circum				efect ating
(ft.)	Group	defect	Dime	nsion		nt		.1	Remarks	~	
			$1^{st}$	$2^{nd}$	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				30						
									Max Corrosion		
			1.42						1.42 in. & Debris		
0	MGO			0					Ht. 0 in.		
1.13	SRI	S01					8	4		1	
7.34	SRP	S02					1	4		5	
									Max Corrosion		
			1.83						1.83 in. & Debris		
10	MGO			0					Ht. 0 in.		

17.33	SRP	F02							5	
19.97	SRP	S03				8	4		5	
								Max Corrosion		
			1.53					1.53 in. & Debris		
20	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.81					1.81 in. & Debris		
30	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.63					1.63 in. & Debris		
40	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.82					1.82 in. & Debris		
50	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.81					1.81 in. & Debris		
60	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.59	-				1.59 in. & Debris		
70	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.63	•				1.63 in. & Debris		
80	MGO			0				Ht. 0 in.		
			4.00					Max Corrosion		
00	MCO		1.62					1.62 in. & Debris		
90	MGO	502		0		 		Ht. 0 in.	5	
95.34 97.79	SRP SRP	F03 S04				 1	4		5	
97.79	JUL	304					4	Max Corrosion	5	
			1.65					1.65 in. & Debris		
100	MGO		1.05	0				Ht. 0 in.		
105.89	SRP	F04		0				111. 0 111.	5	
103.89	SRC	S05				1	4		5	
100.34	5110	505					+	Max Corrosion	5	
			1.58					1.58 in. & Debris		
110	MGO		1.00	0				Ht. 0 in.		
					<u> </u>			Max Corrosion		
			1.46					1.46 in. & Debris		
120	MGO			0				Ht. 0 in.		
				5				Max Corrosion 0		
			0					in. & Debris Ht. 0		
130	MGO			0				in.		

								Max Corrosion 0		
			0					in. & Debris Ht. 0		
140	MGO		0	0				in.		
140	SRC	F05		0					5	
144.71	5110	105						Max Corrosion	5	
			1.61					1.61 in. & Debris		
150	MGO		1.01	0				Ht. 0 in.		
157.15	SRC	S06		0		1	4		5	
157.15	5110	500				-		Max Corrosion 1.6	5	
			1.6					in. & Debris Ht. 0		
160	MGO			0				in.		
100								Max Corrosion		
			1.69					1.69 in. & Debris		
170	MGO			0				Ht. 0 in.		
				-			1	Max Corrosion		
			2.08					2.08 in. & Debris		
180	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.82					1.82 in. & Debris		
190	MGO			0				Ht. 0 in.		
192.57	SRC	F06							5	
								Max Corrosion		
			1.56					1.56 in. & Debris		
200	MGO			0				Ht. 0 in.		
204.07	SRP	S07				8	4		5	
								Max Corrosion 0		
			0					in. & Debris Ht. 0		
210	MGO			0				in.		
								Max Corrosion		
			1.62					1.62 in. & Debris		
220	MGO			0				Ht. 0 in.		
								Max Corrosion 2		
			2	_				in. & Debris Ht. 0		
230	MGO			0				in.		
								Max Corrosion		
			2.34					2.34 in. & Debris		
240	MGO			0				Ht. 0 in.		
			1 70					Max Corrosion		
250	MCO		1.72	0				1.72 in. & Debris		
250	MGO			0				Ht. 0 in.		
			1 0 1					Max Corrosion		
260	MGO		1.81	<u>^</u>				1.81 in. & Debris		
260	MGO			0				Ht. 0 in.		

					[		[			
			4.05					Max Corrosion		
270			1.65	•				1.65 in. & Debris		
270	MGO	507		0				Ht. 0 in.	5	
276.05	SRP	F07							5	
								Max Corrosion		
			1.59					1.59 in. & Debris		
280	MGO			0				Ht. 0 in.		
								Max Corrosion		
200			1.63	•				1.63 in. & Debris		
290	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.52					1.52 in. & Debris		
300	MGO			0				Ht. 0 in.		
303.18	SRC					2	4		5	
								Max Corrosion		
			1.32	_				1.32 in. & Debris		
310	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.49					1.49 in. & Debris		
320	MGO			0				Ht. 0 in.		
326.36	SRC					1	4		5	
								Max Corrosion		
			1.47					1.47 in. & Debris		
330	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.13					1.13 in. & Debris		
340	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.15					1.15 in. & Debris		
350	MGO			0				Ht. 0 in.		
355.38	SRP					1	4		5	
								Max Corrosion		
			1.29					1.29 in. & Debris		
360	MGO			0				Ht. 0 in.		
								Max Corrosion 1.3		
			1.3					in. & Debris Ht. 0		
370	MGO			0				in.		
377.8	SRC					8	9		5	
								Max Corrosion		
			1.35					1.35 in. & Debris		
380	MGO			0				Ht. 0 in.		
388.35	SRC	S08				12	2		5	

								May Carracian		
			4 5 4					Max Corrosion		
200	MCO		1.54	0				1.54 in. & Debris		
390	MGO	500		0				Ht. 0 in.	~	
396.64	SRC	F08							5	
								Max Corrosion 1.3		
400			1.3	0				in. & Debris Ht. 0		
	MGO					_		in.		
407.76	SRP	S09			 	8	4		5	
								Max Corrosion		
			1.58					1.58 in. & Debris		
410	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.09					1.09 in. & Debris		
420	MGO			0				Ht. 0 in.		
								Max Corrosion 1.9		
			1.9					in. & Debris Ht. 0		
430	MGO			0				in.		
433.57	SRP	F09							5	
435.46	SRC	S10				2	4		5	
								Max Corrosion		
			1.52					1.52 in. & Debris		
440	MGO			0				Ht. 0 in.		
448.84	SRC	F10							5	
								Max Corrosion		
			1.78					1.78 in. & Debris		
450	MGO			0				Ht. 0 in.		
459.77	SRP	S11				8	4		5	
								Max Corrosion		
			1.84					1.84 in. & Debris		
460	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.63				1	1.63 in. & Debris		
470	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.38				1	1.38 in. & Debris		
480	MGO			0			1	Ht. 0 in.		
								Max Corrosion		
			1.29					1.29 in. & Debris		
490	MGO			0			1	Ht. 0 in.		
								Max Corrosion		
			1.39					1.39 in. & Debris		
500	MGO			0				Ht. 0 in.		
504.99	SRP	F11					1		5	

508.57	SRC					12	3		5	
								Max Corrosion		
			1.64					1.64 in. & Debris		
510	MGO			0				Ht. 0 in.		
								Max Corrosion 1.6		
			1.6					in. & Debris Ht. 0		
520	MGO			0				in.		
521.19	SRC	S12				1	4		5	
								Max Corrosion		
			1.49					1.49 in. & Debris		
530	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.37					1.37 in. & Debris		
540	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.55					1.55 in. & Debris		
550	MGO			0				Ht. 0 in.		
557	SRC	F12							5	
								Max Corrosion		
			1.52					1.52 in. & Debris		
560	MGO			0				Ht. 0 in.		
569.06	SRC	S13				3	4		5	
								Max Corrosion		
			1.37					1.37 in. & Debris		
570	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.48					1.48 in. & Debris		
580	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.59					1.59 in. & Debris		
590	MGO			0				Ht. 0 in.		
590.54	SRC	F13							5	
593.93	SRP	S14				1	4		5	
								Max Corrosion		
			1.44	_				1.44 in. & Debris		
600	MGO			0				Ht. 0 in.		
								Max Corrosion 0		
			0					in. & Debris Ht. 0		
610	MGO			0				in.		
615.22	SRP	F14							5	
								Max Corrosion		
			1.54	_				1.54 in. & Debris		
620	MGO			0				Ht. 0 in.		

624.83	SRP						8	12		5	
	-						-		Max Corrosion 1.4		
			1.4						in. & Debris Ht. 0		
630	MGO			0					in.		
630.11	SRP	S15					8	4		5	
									Max Corrosion		
			1.46						1.46 in. & Debris		
640	MGO			0					Ht. 0 in.		
									Max Corrosion 1.8		
			1.8						in. & Debris Ht. 0		
650	MGO			0					in.		
									Max Corrosion		
			1.12						1.12 in. & Debris		
660	MGO			0					Ht. 0 in.		
									Max Corrosion		
			1.35						1.35 in. & Debris		
670	MGO			0					Ht. 0 in.		
674.2	SRP	F15								5	
									Max Corrosion		
			1.32						1.32 in. & Debris		
680	MGO			0					Ht. 0 in.		
689.46	SRP	S16					1	4		5	
									Max Corrosion		
			1.36						1.36 in. & Debris		
690	MGO			0					Ht. 0 in.		
									Max Corrosion		
			1.54						1.54 in. & Debris		
700	MGO			0					Ht. 0 in.		
700.39	SRP	F16								5	
									Max Corrosion		
			1.33						1.33 in. & Debris		
710	MGO			0					Ht. 0 in.		
714.15	SRC	S17					3	4		5	
									Max Corrosion		
			1.44	_					1.44 in. & Debris		
720	MGO			0					Ht. 0 in.		
									Max Corrosion		
			1.23						1.23 in. & Debris		
730	MGO			0					Ht. 0 in.		
									Max Corrosion		
740			1.46	~					1.46 in. & Debris		
740	MGO			0					Ht. 0 in.	-	
748.63	SRC	F17								5	

	r r			1		-			<u> </u>
							Max Corrosion		
		1.35					1.35 in. & Debris		
750	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.31					1.31 in. & Debris		
760	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.22					1.22 in. & Debris		
770	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.33					1.33 in. & Debris		
780	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.15					1.15 in. & Debris		
790	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.12					1.12 in. & Debris		
800	MGO		0				Ht. 0 in.		
800.07	SRV				1	3		4	
							Max Corrosion		
		1.23					1.23 in. & Debris		
810	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.19					1.19 in. & Debris		
820	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.09					1.09 in. & Debris		
830	MGO		0				Ht. 0 in.		
							Max Corrosion		
		1.22					1.22 in. & Debris		
840	MGO		0				Ht. 0 in.		
							Max Corrosion 1.2		
		1.2					in. & Debris Ht. 0		
850	MGO		0				in.		
							Max Corrosion		
		1.26					1.26 in. & Debris		
860	MGO		0				Ht. 0 in.		
866.21	SRV				8	4		4	
							Max Corrosion 1.4		
		1.4					in. & Debris Ht. 0		
870	MGO		0				in.		

		r			r		r			
								Max Corrosion		
			1.35					1.35 in. & Debris		
880	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.39					1.39 in. & Debris		
890	MGO			0				Ht. 0 in.		
898.81	SRC					8	10		5	
								Max Corrosion		
			1.32					1.32 in. & Debris		
900	MGO			0				Ht. 0 in.		
907.1	SRV					3	4		4	
								Max Corrosion		
			1.33					1.33 in. & Debris		
910	MGO			0				Ht. 0 in.		
								Max Corrosion 1.2		
			1.2					in. & Debris Ht. 0		
920	MGO			0				in.		
								Max Corrosion		
			1.34					1.34 in. & Debris		
930	MGO			0				Ht. 0 in.		
938.94	SRV			-		2	4		4	
								Max Corrosion		
			1.44					1.44 in. & Debris		
940	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.41					1.41 in. & Debris		
950	MGO			0				Ht. 0 in.		
550				<u> </u>				Max Corrosion		
			1.39					1.39 in. & Debris		
960	MGO		1.05	0				Ht. 0 in.		
968.72	SRC	S18		0		2	4		5	
500.72	5110	510				2		Max Corrosion	5	
			1.17					1.17 in. & Debris		
970	MGO		1.1/	0				Ht. 0 in.		
977.57	SRC	F18		0					5	
511.51	5110	110						Max Corrosion	5	
			1.34					1.34 in. & Debris		
980	MGO		1.34	0				Ht. 0 in.		
500	UDIVI			U						
			1 45					Max Corrosion		
000	MCO		1.45	0				1.45 in. & Debris		
990	MGO			0				Ht. 0 in.		

								Max Corrosion		
			1 47					1.47 in. & Debris		
1000	MCO		1.47	0						
1000	MGO			0		0	10	Ht. 0 in.	~	
1007.3	SRC					8	10		5	
								Max Corrosion		
			1.17	-				1.17 in. & Debris		
1010	MGO			0				Ht. 0 in.		
1017.1	SRP					2	4		5	
								Max Corrosion		
			1.13					1.13 in. & Debris		
1020	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.36					1.36 in. & Debris		
1030	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.12					1.12 in. & Debris		
1040	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.08					1.08 in. & Debris		
1050	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.12					1.12 in. & Debris		
1060	MGO			0				Ht. 0 in.		
								Max Corrosion 0		
			0					in. & Debris Ht. 0		
1070	MGO			0				in.		
				_				Max Corrosion		
			1.57					1.57 in. & Debris		
1080	MGO			0				Ht. 0 in.		
1089.3	SRC	S19				1	4		5	
								Max Corrosion		
			1.53					1.53 in. & Debris		
1090	MGO		2.00	0				Ht. 0 in.		
								Max Corrosion		
			1.67					1.67 in. & Debris		
1100	MGO		,	0				Ht. 0 in.		
1100				0				Max Corrosion		
			1.55					1.55 in. & Debris		
1110	MGO		1.55	0				Ht. 0 in.		
1110	1000			0	<u> </u>			Max Corrosion		
			1.47					1.47 in. & Debris		
1120	MGO		1.4/	0				Ht. 0 in.		
1120	SRC	F19		U					5	
1122.1	JNC	LT3							5	

1124.7	SRC	S20				8	4		5	
	0.10						-	Max Corrosion	-	
			1.42					1.42 in. & Debris		
1130	MGO			0				Ht. 0 in.		
1133.2	SRC	F20		•					5	
1100.2	5110	120						Max Corrosion		
			1.41					1.41 in. & Debris		
1140	MGO		1.71	0				Ht. 0 in.		
1147.3	SRP	S21		0		8	4		5	
11.7.10	0111						· ·	Max Corrosion		
			1.26					1.26 in. & Debris		
1150	MGO		1.20	0				Ht. 0 in.		
1158.0	SRP	F21		0				111. 0 111.	5	
1130.0	5111	121						Max Corrosion		
			1.14					1.14 in. & Debris		
1160	MGO		1.14	0				Ht. 0 in.		
1161.2	WIGO			0					5	
9	SRP	S22				12	4		5	
5	JILE	522				12	4	Max Corrosion		
			1.21					1.21 in. & Debris		
1170	MGO		1.21	0				Ht. 0 in.		
1170	NGO			0				Max Corrosion		
			1.34					1.34 in. & Debris		
1180	MGO		1.54	0				Ht. 0 in.		
1180	SRP	F22		0				Πι. Ο ΙΙΙ.	5	
1105.9	SKP	ΓΖΖ						Max Corrosion	5	
			1 21					1.31 in. & Debris		
1100	MCO		1.31	0						
1190	MGO			0				Ht. 0 in.		
			1 00					Max Corrosion		
1200	MCO		1.09	0				1.09 in. & Debris		
1200	MGO			0				Ht. 0 in.		
			1 1 7					Max Corrosion		
1210	MCO		1.17	0				1.17 in. & Debris		
1210	MGO			0				Ht. 0 in.		
			0.07					Max Corrosion		
1000			0.97	~				0.97 in. & Debris		
1220	MGO			0				Ht. 0 in.		
			0.00					Max Corrosion		
			0.98	-				0.98 in. & Debris		
1230	MGO			0				Ht. 0 in.		<b> </b>
								Max Corrosion 1		
			1	-				in. & Debris Ht. 0		
1240	MGO			0				in.		

				1						
								Max Corrosion		
			1.24	_				1.24 in. & Debris		
1250	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.22					1.22 in. & Debris		
1260	MGO			0				Ht. 0 in.		
								Max Corrosion		
			0.98					0.98 in. & Debris		
1270	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.16					1.16 in. & Debris		
1280	MGO			0				Ht. 0 in.		
1281.5	SRP					2	4		5	
								Max Corrosion		
			1.15					1.15 in. & Debris		
1290	MGO		1.10	0				Ht. 0 in.		
								Max Corrosion		
			1.15					1.15 in. & Debris		
1300	MGO		1.15	0				Ht. 0 in.		
1500	WIGO			0				Max Corrosion		
			1.23					1.23 in. & Debris		
1310	MGO		1.25	0				Ht. 0 in.		
1310	NIGO			0				Max Corrosion 1.2		
			1.2					in. & Debris Ht. 0		
1320	MGO		1.2	0				in. a Debris nt. o		
1320	NIGO			0				Max Corrosion		
			1.38					1.38 in. & Debris		
1220	MCO		1.50	0						
1330	MGO			0				Ht. 0 in.		
								Max Corrosion		
1240	MCO		1.14	0				1.14 in. & Debris		
1340	MGO	622		0		1	4	Ht. 0 in.	~	
1347.2	SRC	S23				1	4		5	
								Max Corrosion		
4055			1.14	~				1.14 in. & Debris		
1350	MGO			0				Ht. 0 in.		
								Max Corrosion		
			0.96					0.96 in. & Debris		
1360	MGO			0				Ht. 0 in.		
1365.1	SRC	F23							5	
								Max Corrosion		
			1.12					1.12 in. & Debris		
1370	MGO			0				Ht. 0 in.		
1378.3	SRV	S24				3	4		4	

					1					
								Max Corrosion		
			1.26					1.26 in. & Debris		
1380	MGO			0				Ht. 0 in.	<u> </u>	
1386.4	SRV	F24							4	
1389.4	SRP	S25				8	4		5	
								Max Corrosion		
			1.35	_				1.35 in. & Debris		
1390	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.21					1.21 in. & Debris		
1400	MGO			0				Ht. 0 in.		
1400.2	SRP	F25							5	
1402.1	SRP	S26				12	4		5	
								Max Corrosion		
			1.09					1.09 in. & Debris		
1410	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.14					1.14 in. & Debris		
1420	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.23					1.23 in. & Debris		
1430	MGO			0				Ht. 0 in.		
1435.8	SRP	F26							5	
								Max Corrosion		
			1.29					1.29 in. & Debris		
1440	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.31					1.31 in. & Debris		
1450	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.12					1.12 in. & Debris		
1460	MGO			0				Ht. 0 in.		
1462.2	SRC	S27				1	4		5	
								Max Corrosion		
			1.33					1.33 in. & Debris		
1470	MGO			0				Ht. 0 in.		
								Max Corrosion		
			1.55					1.55 in. & Debris		
1480	MGO			0				Ht. 0 in.		
1485.2	SRC	F27							5	
1487.6	SRP	S28				8	4		5	

						Max Corrosion		
			2.06	_		2.06 in. & Debris		
1490	MGO			0		Ht. 0 in.		
						Max Corrosion		
			2.15			2.15 in. & Debris		
1500	MGO			0		Ht. 0 in.		
						Max Corrosion		
			1.62			1.62 in. & Debris		
1510	MGO			0		Ht. 0 in.		
						Max Corrosion		
			1.53			1.53 in. & Debris		
1520	MGO			0		Ht. 0 in.		
						Max Corrosion		
			1.32			1.32 in. & Debris		
1530	MGO			0		Ht. 0 in.		
						Max Corrosion		
			1.67			1.67 in. & Debris		
1540	MGO			0		Ht. 0 in.		
						Max Corrosion		
			0.92			0.92 in. & Debris		
1550	MGO			0		Ht. 0 in.		
						Max Corrosion		
			1.14			1.14 in. & Debris		
1560	MGO			0		Ht. 0 in.		
1569.4	SRP	F28					5	
						Max Corrosion 0		
			0			in. & Debris Ht. 0		
1570	MGO			0		in.		
1571.8	SRI	F01						
1575.4	AMH							

### 10. Line 9260

Table 96 Details for line 9260

Line record no.:	9260	Pipe Material	RCP
US MH ID:	120T	Inspection Date	02/24/2023
DS MH ID:	100T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	1576.79

	Code			value			Circum				efect ating
Dist. (ft.)	Group	Cont. defect	Dime 1 st	ension 2 nd	%	Joi nt	ntia At/	l To	Remarks	Str	O&M
0	AMH						From				
0	MWL				30						
0	SRP	S01			50		8	4		5	
0	SRI	S01					0	-		5	
	5111	302							Max Corrosion	5	
0	MGO		2.47	4.69					2.47 in. & Debris Ht. 4.69 in.		
10	MGO		2.16	8.27					Max Corrosion 2.16 in. & Debris Ht. 8.27 in.		
20	MGO		2.19	9.49					Max Corrosion 2.19 in. & Debris Ht. 9.49 in.		
30	MGO		2.78	6.41					Max Corrosion 2.78 in. & Debris Ht. 6.41 in.		
40	MGO		3.15	5.14					Max Corrosion 3.15 in. & Debris Ht. 5.14 in.		
50	MGO		2.67	6.19					Max Corrosion 2.67 in. & Debris Ht. 6.19 in.		
60	MGO		2.55	7.53					Max Corrosion 2.55 in. & Debris Ht. 7.53 in.		
70	MGO		2.29	6.96					Max Corrosion 2.29 in. & Debris Ht. 6.96 in.		
77.26	DAGS	S03			20		11	1	White Deposits		3
80	MGO		2.8	4.89					Max Corrosion 2.8 in. & Debris Ht. 4.89 in.		
90	MGO		2.17	0					Max Corrosion 2.17 in. & Debris Ht. 0 in.		

### Table 97 PACP defect table for line 9260

93.65	SRP	F01							5	
								Max Corrosion		
	MGO		1.59	0.59				1.59 in. & Debris		
100								Ht. 0.59 in.		
								Max Corrosion		
	MGO		1.86	0				1.86 in. & Debris		
110								Ht. 0 in.		
114.38	SRC					8	11		5	
119.47	SRC					1	4		5	
								Max Corrosion		
	MGO		2.52	0				2.52 in. & Debris		
120								Ht. 0 in.		
								Max Corrosion 2.6		
	MGO		2.6	0				in. & Debris Ht. 0		
130								in.		
131.71	SRC					1	4		5	
137.74	SRC					8	11		5	
								Max Corrosion		
	MGO		2.41	0				2.41 in. & Debris		
140								Ht. 0 in.		
146.04	SRC					1	4		5	
								Max Corrosion		
	MGO		2.64	0				2.64 in. & Debris		
150								Ht. 0 in.		
153.01	SRC					1	4		5	
								Max Corrosion		
	MGO		2.71	0				2.71 in. & Debris		
160								Ht. 0 in.		
169.97	SRC	S04				8	11		5	
								Max Corrosion		
_	MGO		2.36	0				2.36 in. & Debris		
170								Ht. 0 in.		
173.55	SRC	F04							5	
								Max Corrosion		
	MGO		2.93	0				2.93 in. & Debris		
180		<b>.</b>						Ht. 0 in.		
184.85	SRV	S05				8	10	·	4	
				_				Max Corrosion		
	MGO		2.79	0				2.79 in. & Debris		
190								Ht. 0 in.		
								Max Corrosion		
200	MGO		2.38	0				2.38 in. & Debris		
200								Ht. 0 in.		

								May Carracian		
			2.61	0				Max Corrosion		
24.0	MGO		2.61	0				2.61 in. & Debris		
210								Ht. 0 in.	_	
217.07	SRP	S06			 	8	12		5	
								Max Corrosion		
	MGO		2.55	0				2.55 in. & Debris		
220								Ht. 0 in.		
								Max Corrosion		
	MGO		2.19	0				2.19 in. & Debris		
230								Ht. 0 in.		
238.37	SRP	F06							5	
								Max Corrosion		
	MGO		2.83	0				2.83 in. & Debris		
240								Ht. 0 in.		
								Max Corrosion		
	MGO		2.74	0				2.74 in. & Debris		
250	mee			U				Ht. 0 in.		
230								Max Corrosion		
	MGO		2.72	0				2.72 in. & Debris		
260	MGO		2.72	0				Ht. 0 in.		
200										
			2.54	•				Max Corrosion		
0.70	MGO		2.54	0				2.54 in. & Debris		
270					 			Ht. 0 in.		
271.91	SRC	S07				8	4		5	
								Max Corrosion		
	MGO		2.57	0				2.57 in. & Debris		
280								Ht. 0 in.		
								Max Corrosion		
	MGO		2.01	0				2.01 in. & Debris		
290								Ht. 0 in.		
								Max Corrosion		
	MGO		2.79	0				2.79 in. & Debris		
300								Ht. 0 in.		
								Max Corrosion		
	MGO		2.78	0				2.78 in. & Debris		
310				-				Ht. 0 in.		
								Max Corrosion		
	MGO		2.19	0				2.19 in. & Debris		
320	1100		2.13	U				Ht. 0 in.		
520								Max Corrosion		
	MCO		2.02	0						
220	MGO		2.92	0				2.92 in. & Debris		
330	666	F07						Ht. 0 in.	-	
335.78	SRC	F07							5	

								Max Corrosion		
	MGO		1.45	0				1.45 in. & Debris		
340								Ht. 0 in.		
346.34	SRV	F05							4	
								Max Corrosion		
	MGO		1.79	0				1.79 in. & Debris		
350								Ht. 0 in.		
350.29	SRC					8	4		5	
357.64	SRC	S08				1	4		5	
								Max Corrosion		
	MGO		2.56	0				2.56 in. & Debris		
360								Ht. 0 in.		
368.95	SRC	F08							5	
								Max Corrosion		
	MGO		1.95	0				1.95 in. & Debris		
370								Ht. 0 in.		
376.49	SRC					8	11		5	
								Max Corrosion		
	MGO		2.42	0				2.42 in. & Debris		
380				· ·				Ht. 0 in.		
								Max Corrosion		
	MGO		2.32	0				2.32 in. & Debris		
390	WIGO		2.52	0				Ht. 0 in.		
330								Max Corrosion		
	MGO		2.01	0				2.01 in. & Debris		
400	NIGO		2.01	0				Ht. 0 in.		
403.81	SRP					8	12	111. 0 111.	5	
408.71	SRC	S09				8	10		5	
400.71	SIL	309				0	10	Max Corrosion	5	
	MGO		2.15	0						
410	NIGO		2.15	0				2.15 in. & Debris		
410								Ht. 0 in.		
	MCO		2 2 7	0				Max Corrosion		
420	MGO		2.37	0				2.37 in. & Debris		
420	666	<b>F00</b>						Ht. 0 in.	-	
424.54	SRC	F09							5	
				_				Max Corrosion		
	MGO		2.15	0				2.15 in. & Debris		
430								Ht. 0 in.		
436.97	SRC					8	11		5	
								Max Corrosion		
	MGO		1.83	0				1.83 in. & Debris		
440								Ht. 0 in.		

					Ι			Mary Compositor		1
	1460		1.40	0				Max Corrosion		
450	MGO		1.46	0				1.46 in. & Debris		
450								Ht. 0 in.		
				_				Max Corrosion		
	MGO		1.47	0				1.47 in. & Debris		
460								Ht. 0 in.		
								Max Corrosion		
	MGO		1.62	0				1.62 in. & Debris		
470								Ht. 0 in.		
470.32	SRC					1	4		5	
								Max Corrosion		
	MGO		2.37	0				2.37 in. & Debris		
480								Ht. 0 in.		
								Max Corrosion		
	MGO		2.39	0				2.39 in. & Debris		
490								Ht. 0 in.		
497.27	SRC					1	4		5	
								Max Corrosion 2.5		
	MGO		2.5	0				in. & Debris Ht. 0		
500			_	-				in.		
503.11	SRC	S10				8	4		5	
						-		Max Corrosion	-	
	MGO		2.05	0				2.05 in. & Debris		
510	mee		2.00	U				Ht. 0 in.		
								Max Corrosion		
	MGO		2.41	0				2.41 in. & Debris		
520	mee		2.11	0				Ht. 0 in.		
520								Max Corrosion		
	MGO		2.48	0				2.48 in. & Debris		
530	WIGO		2.40	0				Ht. 0 in.		
550								Max Corrosion		
	MGO		2.65	0				2.65 in. & Debris		
540	MGO		2.05	0				Ht. 0 in.		
540								Max Corrosion		
	MGO		2.85	0				2.85 in. & Debris		
FEO	UDIVI		2.05	U						
550								Ht. 0 in.		
	MCO		2.00	0				Max Corrosion		
500	MGO		2.96	0				2.96 in. & Debris		
560								Ht. 0 in.		
				•				Max Corrosion		
	MGO		2.91	0				2.91 in. & Debris		
570								Ht. 0 in.		

MGO		2.86	0							
MGO		3.6	0					in. & Debris Ht. 0		
								in.		
								Max Corrosion		
MGO		2.69	0					2.69 in. & Debris		
								Ht. 0 in.		
								Max Corrosion		
MGO		1.79	0					1.79 in. & Debris		
								Ht. 0 in.		
SRC	F10								5	
_	-							Max Corrosion 0		
MGO		0	0							
		Ŭ	Ū							
MGO		2/13	0							
WIGO		2.45	U							
SBC						Q	10		5	
SILC						12	4	Max Correction	5	
		2.42	0							
NGO		2.43	0							
						10	10	Πι. υ ΙΠ.	4	
	502			20		10	12		4	2
DAGS	F03			20						3
MGO		1.53	0							
								Ht. 0 in.		
SRC						8	4		5	0
								Max Corrosion		
MGO		1.88	0					1.88 in. & Debris		
								Ht. 0 in.		
								Max Corrosion		
MGO		1.39	0					1.39 in. & Debris		
								Ht. 0 in.		
								Max Corrosion		
MGO		1.35	0					1.35 in. & Debris		
								Ht. 0 in.		
SRV						8	10		4	0
								Max Corrosion		
				1						
MGO		3.53	0					3.53 in. & Debris		
	MGO SRC MGO SRC SRC MGO SRV DAGS MGO SRC MGO MGO	MGO MGO MGO SRC F10 MGO SRC F10 MGO SRC 7 MGO SRC 7 MGO SRC 7 MGO SRC 7 MGO MGO	MGO       3.6         MGO       2.69         MGO       1.79         MGO       1.79         SRC       F10         MGO       2.43         MGO       2.43         MGO       2.43         MGO       2.43         MGO       2.43         SRC       2         MGO       2.43         SRC       2         MGO       2.43         SRC       1         MGO       1.53         SRV       1         MGO       1.53         MGO       1.38         MGO       1.39         MGO       1.35	MGO       I       I         MGO       3.6       0         MGO       2.69       0         MGO       1.79       0         SRC       F10       I         MGO       0       0         SRC       F10       I         MGO       2.43       0         MGO       2.43       0         SRC       I       I         MGO       2.43       0         SRC       I       I         MGO       I.33       0         SRC       I       I         MGO       I.53       0         SRC       I       I         MGO       I.53       0         SRC       I       I         MGO       I.38       0         MGO       I.39       0         MGO       I.39       0         MGO       I.35       0	MGOIIIMGO3.60MGO2.690MGO1.790SRCF10IMGO2.430MGO2.430SRCIISRCIIMGO2.430SRCIIMGO1.1310SRCIIMGOIISRVIIMGOIISRVIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIMGOIIIIIMGOIIIIIMGOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MGOIIIMGO3.60IMGO2.690IMGO1.790ISRCF10IIMGO00IMGO1.790IMGO1.790IMGO1.790IMGO1.100ISRCIIISRCIIIMGO1.530ISRCIIIMGOI.1380IMGOI.380IMGOI.330I	MGOIIIIMGO3.60IIMGO2.690IIMGO1.790IISRCF10IIIMGO100IIMGO100IIMGO100IIMGO12.430I8SRCIIII8SRCIIII10MGO12.430I12MGO12.430I10SRVIIII10DAGSF03III10MGO1.530II8MGOI1.880I8MGOI1.390IIMGOI1.350IIMGOI1.350IIMGOIIIIIMGOIIIIIMGOIIIIIMGOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII </td <td>MGO         I         I         I         I         I         I         I           MGO         3.6         0         I         I         I         I           MGO         I         2.69         0         I         I         I           MGO         I         1.79         0         I         I         I           SRC         F10         I         I         I         I         I           MGO         I         0         0         I         I         I         I           MGO         I         0         0         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I<td>MGOImage: sector of the sector of</td><td>MGO         2.86         0         1         1         2.86 in. &amp; Debris Ht. 0 in.           MGO         3.6         0         1         Max Corrosion 3.6 in. &amp; Debris Ht. 0         1           MGO         2.69         0         1         Max Corrosion 2.6 in. &amp; Debris Ht. 0 in.         1           MGO         2.69         0         1         Max Corrosion 2.69 in. &amp; Debris Ht. 0 in.         1           MGO         1.79         0         1         Max Corrosion 1.79 in. &amp; Debris Ht. 0 in.         5           MGO         1.79         0         1         Max Corrosion 0         5           MGO         0         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 1.73 in. &amp; Debris Ht. 0 in.         1           SRC         1         2         12         4         5           MGO         2.43         0         12         4         5           MGO         2.43         0         12         4         5           MGO         1.53         0         10         12         4</td></td>	MGO         I         I         I         I         I         I         I           MGO         3.6         0         I         I         I         I           MGO         I         2.69         0         I         I         I           MGO         I         1.79         0         I         I         I           SRC         F10         I         I         I         I         I           MGO         I         0         0         I         I         I         I           MGO         I         0         0         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>MGOImage: sector of the sector of</td> <td>MGO         2.86         0         1         1         2.86 in. &amp; Debris Ht. 0 in.           MGO         3.6         0         1         Max Corrosion 3.6 in. &amp; Debris Ht. 0         1           MGO         2.69         0         1         Max Corrosion 2.6 in. &amp; Debris Ht. 0 in.         1           MGO         2.69         0         1         Max Corrosion 2.69 in. &amp; Debris Ht. 0 in.         1           MGO         1.79         0         1         Max Corrosion 1.79 in. &amp; Debris Ht. 0 in.         5           MGO         1.79         0         1         Max Corrosion 0         5           MGO         0         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 1.73 in. &amp; Debris Ht. 0 in.         1           SRC         1         2         12         4         5           MGO         2.43         0         12         4         5           MGO         2.43         0         12         4         5           MGO         1.53         0         10         12         4</td>	MGOImage: sector of the sector of	MGO         2.86         0         1         1         2.86 in. & Debris Ht. 0 in.           MGO         3.6         0         1         Max Corrosion 3.6 in. & Debris Ht. 0         1           MGO         2.69         0         1         Max Corrosion 2.6 in. & Debris Ht. 0 in.         1           MGO         2.69         0         1         Max Corrosion 2.69 in. & Debris Ht. 0 in.         1           MGO         1.79         0         1         Max Corrosion 1.79 in. & Debris Ht. 0 in.         5           MGO         1.79         0         1         Max Corrosion 0         5           MGO         0         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 0         1           MGO         2.43         0         1         Max Corrosion 1.73 in. & Debris Ht. 0 in.         1           SRC         1         2         12         4         5           MGO         2.43         0         12         4         5           MGO         2.43         0         12         4         5           MGO         1.53         0         10         12         4

								Max Corrosion 2.7		
	MGO		2.7	0				in. & Debris Ht. 0		
700				_				in.		
								Max Corrosion		
	MGO		1.53	0				1.53 in. & Debris		
710				_				Ht. 0 in.		
								Max Corrosion		
	MGO		1.58	0				1.58 in. & Debris		
720				-				Ht. 0 in.		
720.75	SRV					8	10		4	
	_					_		Max Corrosion		
	MGO		1.63	0				1.63 in. & Debris		
730				•				Ht. 0 in.		
734.88	SRC					11	1		5	
	22						-	Max Corrosion		
	MGO		2.58	0				2.58 in. & Debris		
740	mee		2.50	U				Ht. 0 in.		
743.74	SRV	S11				8	10		4	
7.017.1	0							Max Corrosion		
	MGO		2.11	0				2.11 in. & Debris		
750	mee		2.11	U				Ht. 0 in.		
/ 30								Max Corrosion		
	MGO		1.83	0				1.83 in. & Debris		
760	mee		1.00	Ū				Ht. 0 in.		
								Max Corrosion		
	MGO		1.44	0				1.44 in. & Debris		
770	mee			Ū				Ht. 0 in.		
								Max Corrosion		
	MGO		1.89	0				1.89 in. & Debris		
780				-				Ht. 0 in.		
								Max Corrosion		
	MGO		1.66	0				1.66 in. & Debris		
790	mee		1.00	Ū				Ht. 0 in.		
							1	Max Corrosion		
	MGO		1.85	0				1.85 in. & Debris		
800				-				Ht. 0 in.		
								Max Corrosion		
	MGO		1.56	0				1.56 in. & Debris		
810				-				Ht. 0 in.		
				ļ			ł	Max Corrosion		
	MGO		1.93	0				1.93 in. & Debris		
820				-				Ht. 0 in.		
822.5	SRV	F11				-			4	

				_				Max Corrosion		
	MGO		1.36	0				1.36 in. & Debris		
830								Ht. 0 in.		
								Max Corrosion 1.3		
	MGO		1.3	0				in. & Debris Ht. 0		
840								in.		
								Max Corrosion 1.5		
	MGO		1.5	0				in. & Debris Ht. 0		
850								in.		
850.95	SRV					8	10		4	
								Max Corrosion		
	MGO		1.48	0				1.48 in. & Debris		
860			_					Ht. 0 in.		
								Max Corrosion		
	MGO		1.52	0				1.52 in. & Debris		
870				· ·				Ht. 0 in.		
								Max Corrosion 1.9		
	MGO		1.9	0				in. & Debris Ht. 0		
880	Wide		1.5	0				in.		
889.2	SRC					8	12		5	
005.2	5110					0	12	Max Corrosion	5	
	MGO		1.83	0				1.83 in. & Debris		
890	WIGO		1.05	0				Ht. 0 in.		
890								Max Corrosion		
	MGO		1.68	0				1.68 in. & Debris		
000	NGO		1.00	0						
900	CDC					11	12	Ht. 0 in.	5	
902.77	SRC					11	12	Mary Compositor	5	
	MCO		2.64	0				Max Corrosion		
010	MGO		2.61	0				2.61 in. & Debris		
910								Ht. 0 in.		
				-				Max Corrosion		
	MGO		1.94	0				1.94 in. & Debris		
920								Ht. 0 in.		
926.89	SRC	S12				8	12		5	
								Max Corrosion		
	MGO		1.83	0				1.83 in. & Debris		
930							ļ	Ht. 0 in.		
939.33	SRC	F12							5	
								Max Corrosion 1.8		
	MGO		1.8	0				in. & Debris Ht. 0		
940								in.		

	MGO	1.43	0				Max Corrosion 1.43 in. & Debris		
950							Ht. 0 in.		
955.34	SRC				8	10		5	
							Max Corrosion		
	MGO	1.67	0				1.67 in. & Debris		
960				 			Ht. 0 in.		
	MGO	1 25	0				Max Corrosion 1.35 in. & Debris		
970	NGO	1.35	0				Ht. 0 in.		
970.42	SRC				10	12	111. 0 111.	5	
570.42	5110				10	12	Max Corrosion	5	
	MGO	1.43	0				1.43 in. & Debris		
980			_				Ht. 0 in.		
							Max Corrosion 2		
	MGO	2	0				in. & Debris Ht. 0		
990							in.		
							Max Corrosion		
	MGO	1.48	0				1.48 in. & Debris		
1000							Ht. 0 in.		
	MCO	4 5 7					Max Corrosion		
1010	MGO	1.57	0				1.57 in. & Debris Ht. 0 in.		
1010							Max Corrosion		
	MGO	1.47	0				1.47 in. & Debris		
1020							Ht. 0 in.		
1025.8	6.0.6				2			~	
2	SRC				2	4		5	
							Max Corrosion		
	MGO	1.56	0				1.56 in. & Debris		
1030							Ht. 0 in.		
			-				Max Corrosion		
10.10	MGO	1.55	0				1.55 in. & Debris		
1040							Ht. 0 in.		
	MGO	1.52	0				Max Corrosion 1.52 in. & Debris		
1050	UDIVI	1.52	0				Ht. 0 in.		
1050							Max Corrosion		
	MGO	2.04	0				2.04 in. & Debris		
1060			-				Ht. 0 in.		
							Max Corrosion		
	MGO	2.06	0				2.06 in. & Debris		
1070							Ht. 0 in.		

1071.6	SRC					8	10		5	
1078.7 7	SRC					8	10		5	
1080	MGO		1.91	0				Max Corrosion 1.91 in. & Debris Ht. 0 in.		
1085.7 4	SRC					11	2		5	
1090	MGO		1.63	0				Max Corrosion 1.63 in. & Debris Ht. 0 in.		
1100	MGO		1.76	0				Max Corrosion 1.76 in. & Debris Ht. 0 in.		
1105.1 5	SRC					8	12		5	
1110	MGO		2.05	0				Max Corrosion 2.05 in. & Debris Ht. 0 in.		
1113.0 6	SRC	S13				8	4		5	
1120	MGO		1.95	0				Max Corrosion 1.95 in. & Debris Ht. 0 in.		
1129.6 4	SRC	F13							5	
1130	MGO		1.83	0				Max Corrosion 1.83 in. & Debris Ht. 0 in.		
1140	MGO		1.62	0				Max Corrosion 1.62 in. & Debris Ht. 0 in.		
1150	MGO		1.83	0				Max Corrosion 1.83 in. & Debris Ht. 0 in.		
1156.2 1	SRC					8	12		5	
1160	MGO		1.97	0				Max Corrosion 1.97 in. & Debris Ht. 0 in.		
1170	MGO		1.84	0				Max Corrosion 1.84 in. & Debris Ht. 0 in.		

1170.7 2	SRC	S14				8	10		5	
1180	MGO		1.6	0				Max Corrosion 1.6 in. & Debris Ht. 0 in.		
1190	MGO		2.37	0				Max Corrosion 2.37 in. & Debris Ht. 0 in.		
1199.7 4	SRC	F14							5	
1200	MGO		1.63	0				Max Corrosion 1.63 in. & Debris Ht. 0 in.		
1210	MGO		1.87	0				Max Corrosion 1.87 in. & Debris Ht. 0 in.		
1220	MGO		2.44	0				Max Corrosion 2.44 in. & Debris Ht. 0 in.		
1222.9 1	SRC	S15				8	4		5	
1230	MGO		1.82	0				Max Corrosion 1.82 in. & Debris Ht. 0 in.		
1240	MGO		2.11	0				Max Corrosion 2.11 in. & Debris Ht. 0 in.		
1242.1 3	SRC	F15							5	
1249.6 7	SRC	S16				8	10		5	
1250	MGO		1.98	0				Max Corrosion 1.98 in. & Debris Ht. 0 in.		
1260	MGO		1.53	0				Max Corrosion 1.53 in. & Debris Ht. 0 in.		
1261.1 7	SRC	F16							5	
1270	MGO		1.61	0				Max Corrosion 1.61 in. & Debris Ht. 0 in.		

					1			1		1	
				•					Max Corrosion		
	MGO		1.81	0					1.81 in. & Debris		
1280									Ht. 0 in.		
									Max Corrosion		
	MGO		1.89	0					1.89 in. & Debris		
1290									Ht. 0 in.		
									Max Corrosion		
	MGO		1.83	0					1.83 in. & Debris		
1300									Ht. 0 in.		
1301.1		<b>647</b>								_	
1	SRC	S17					8	10		5	
									Max Corrosion		
	MGO		1.68	0					1.68 in. & Debris		
1310	mee		1.00	Ũ					Ht. 0 in.		
1310									Max Corrosion		
	MGO		1.87	0					1.87 in. & Debris		
1320	MGO		1.07	0					Ht. 0 in.		
									Πι. Ο ΙΠ.		
1320.1	SRC	F17								5	
4											
1326.1	SRC						8	10		5	
7											
									Max Corrosion		
	MGO		1.94	0					1.94 in. & Debris		
1330									Ht. 0 in.		
1335.6	SRC						8	12		5	
									Max Corrosion		
	MGO		1.92	0					1.92 in. & Debris		
1340									Ht. 0 in.		
									Max Corrosion		
	MGO		2.44	0					2.44 in. & Debris		
1350				-					Ht. 0 in.		
1351.8	SRC	S18					8	4		5	
1331.0	5110	510							Max Corrosion		
	MGO		1.96	0					1.96 in. & Debris		
1360	NGU		1.90	U					Ht. 0 in.		
									Πι. Ο ΙΙΙ.		
1365.9	SRC	F18								5	
3											
				-					Max Corrosion		
	MGO		2.07	0					2.07 in. & Debris		
1370									Ht. 0 in.		
1373.6	SRC	S19					8	4		5	
6	5.00	515						Т		5	

								1			
	1460		2.52	0					Max Corrosion		
1000	MGO		2.52	0					2.52 in. & Debris		
1380									Ht. 0 in.		
									Max Corrosion 2.3		
	MGO		2.3	0					in. & Debris Ht. 0		
1390									in.		
									Max Corrosion		
	MGO		2.52	0					2.52 in. & Debris		
1400									Ht. 0 in.		
									Max Corrosion		
	MGO		1.82	0					1.82 in. & Debris		
1410									Ht. 0 in.		
1413.7		_								_	
9	SRC	F19								5	
1419.2											
6	SRV						8	10		4	
					1				Max Corrosion		
	MGO		2.54	0					2.54 in. & Debris		
1420	Midd		2.01	0					Ht. 0 in.		
1420									Max Corrosion		
	MGO		1.56	0					1.56 in. & Debris		
1420	NGO		1.50	U							
1430									Ht. 0 in.		
1439.9	SRP						10	4		5	
9											
				•					Max Corrosion		
	MGO		1.37	0					1.37 in. & Debris		
1440									Ht. 0 in.		
1448.6	SRC	S20					12	4		5	
5		020								-	
									Max Corrosion		
	MGO		1.29	0					1.29 in. & Debris		
1450									Ht. 0 in.		
1455.8	SRC	F20								5	
1	JAC	FZU								3	
									Max Corrosion		
	MGO		1.43	0					1.43 in. & Debris		
1460									Ht. 0 in.		
1465.4					1					_	
2	SRC						10	12		5	
									Max Corrosion		
	MGO		1.42	0					1.42 in. & Debris		
1470				0					Ht. 0 in.		
14/0		l			1			I	111. 0 111.		

4474.0		1			1		1		1	
1471.2 7	SRC	S21				8	10		5	
1477.8 6	SRC	F21							5	
1480	MGO		1.59	0				Max Corrosion 1.59 in. & Debris Ht. 0 in.		
1490	MGO		2	0				Max Corrosion 2 in. & Debris Ht. 0 in.		
1492.3 7	SRC	S22				8	4		5	
1497.8 3	SRC	F22							5	
1500	MGO		1.92	0				Max Corrosion 1.92 in. & Debris Ht. 0 in.		
1510	MGO		1.72	0				Max Corrosion 1.72 in. & Debris Ht. 0 in.		
1514.0 4	SRC	S23				8	4		5	
1520	MGO		2.38	0				Max Corrosion 2.38 in. & Debris Ht. 0 in.		
1530	MGO		1.62	0				Max Corrosion 1.62 in. & Debris Ht. 0 in.		
1540	MGO		2.55	0				Max Corrosion 2.55 in. & Debris Ht. 0 in.		
1548.5 2	SRC	F23							5	
1550	MGO		1.92	0				Max Corrosion 1.92 in. & Debris Ht. 0 in.		
1560	MGO		1.42	0				Max Corrosion 1.42 in. & Debris Ht. 0 in.		
1570	MGO		0	0				Max Corrosion 0 in. & Debris Ht. 0 in.		

1574.3 4	SRI	F02				1	
1574.3 4	АМН						

# 11. Line 9510

### Table 98 Details for line 9510

Line record no.:	9510	Pipe Material	RCP
US MH ID:	2880T	Inspection Date	11/30/2022
DS MH ID:	2860T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	370.46 ft

### Table 99 PACP defect table for line 9510

Dist.	Code	Cont		value		Joi	Circum				efect ating
(ft.)	Group	Cont. defect	Dime	nsion		nt	ntia	.1	Remarks		
(11.)		defect	1 st	$2^{nd}$	%	ш	At/ From	То		Str	O&M
0	AMH										
0	MWL				40						
									Max Corrosion		
									1.38 in. & Debris		
0	MGO		1.38	0					Ht. 0 in.		
5.66	SRV	S01					1	4		4	
									Max Corrosion		
									1.07 in. & Debris		
10	MGO		1.07	0					Ht. 0 in.		
13.19	SRV	F01								4	
									Max Corrosion		
									1.37 in. & Debris		
20	MGO		1.37	0					Ht. 0 in.		
27.52	SRV						12	2		4	
									Max Corrosion		
									1.05 in. & Debris		
30	MGO		1.05	0					Ht. 0 in.		
32.98	SRV						2	3		4	

								Max Corrosion		
40				-				1.06 in. & Debris		
40	MGO		1.06	0				Ht. 0 in.	4	
42.21	SRV					1	4		4	
								Max Corrosion		
								1.18 in. & Debris		
50	MGO		1.18	0				Ht. 0 in.		
56.91	SRC	S02				8	11		5	
								Max Corrosion 1.5		
								in. & Debris Ht. 0		
60	MGO		1.5	0				in.		
61.06	SRC	F02							5	
65.39	SRP					1	4		5	
								Max Corrosion		
								1.31 in. & Debris		
70	MGO		1.31	0				Ht. 0 in.		
71.42	SRC	S03				2	4		5	
								Max Corrosion		
								1.34 in. & Debris		
80	MGO		1.34	0				Ht. 0 in.		
85.18	SRC	F03							5	
85.18	VC									1
87.06	SRV					8	11		4	
								Max Corrosion		
								1.39 in. & Debris		
90	MGO		1.39	0				Ht. 0 in.		
95.92	SRC					12	4		5	
								Max Corrosion		
								1.15 in. & Debris		
100	MGO		1.15	0				Ht. 0 in.		
106.28	SRV			-		8	10		4	
						-		Max Corrosion		
								1.04 in. & Debris		
110	MGO		1.04	0				Ht. 0 in.		
111.18	SRV	S04	_			3	4		4	
119.09	SRV	F04							4	
119.09	SRC	S05				12	4		5	
								Max Corrosion		
								1.02 in. & Debris		
120	MGO		1.02	0				Ht. 0 in.		
125.5	SRC	F05	1.02	<b>,</b>					5	
127.38	SRV	S06				2	4		4	

								Max Corrosion 1		
								in. & Debris Ht. 0		
130	MGO		1	0				in.		
								Max Corrosion 1.1		
								in. & Debris Ht. 0		
140	MGO		1.1	0				in.		
142.27	SRV	F06							4	
								Max Corrosion		
								1.09 in. & Debris		
150	MGO		1.09	0				Ht. 0 in.		
151.5	SRV	S07				3	4		4	
								Max Corrosion		
								1.22 in. & Debris		
160	MGO		1.22	0				Ht. 0 in.		
167.33	SRV	F07			ļ				4	
167.33	SRC	S08				12	4		5	
								Max Corrosion 1.4		
								in. & Debris Ht. 0		
170	MGO		1.4	0				in.		
178.07	SRC	F08							5	
178.07	SRC					9	4		5	
								Max Corrosion		
100								1.32 in. & Debris		
180	MGO		1.32	0		_		Ht. 0 in.	~	
185.99	SRC					8	11		5	
								Max Corrosion		
100	MGO		1.00	•				1.36 in. & Debris		
190 192.2	SRP		1.36	0			4	Ht. 0 in.	5	
192.2	JRP					11	4	Max Correction	3	
								Max Corrosion 1.52 in. & Debris		
200	MGO		1 5 0	0				Ht. 0 in.		
200	SRP		1.52	0		8	1	111. 0 111.	5	
204.20	JINF				<u> </u>	0	-	Max Corrosion	5	
								1.38 in. & Debris		
210	MGO		1.38	0				Ht. 0 in.		
215.76	SRV	S09	1.00	5		3	4		4	
					1			Max Corrosion 1.5		
								in. & Debris Ht. 0		
220	MGO		1.5	0				in.		
222.35	SRV	F09		-					4	
224.43	SRV					8	11		4	

					T					
								Max Corrosion		
220								1.53 in. & Debris		
230	MGO	610	1.53	0				Ht. 0 in.	~	
231.21	SRC	S10				 1	4		5	
								Max Corrosion		
2.40								1.43 in. & Debris		
240	MGO	54.0	1.43	0				Ht. 0 in.	_	
247.23	SRC	F10							5	
								Max Corrosion		
								1.29 in. & Debris		
250	MGO		1.29	0				Ht. 0 in.		
258.53	SRV					8	10		4	
								Max Corrosion		
								1.34 in. & Debris		
260	MGO		1.34	0				Ht. 0 in.		
								Max Corrosion		
								1.19 in. & Debris		
270	MGO		1.19	0				Ht. 0 in.		
279.64	SRV					2	4		4	
								Max Corrosion		
								1.28 in. & Debris		
280	MGO		1.28	0				Ht. 0 in.		
								Max Corrosion		
								1.16 in. & Debris		
290	MGO		1.16	0				Ht. 0 in.		
291.32	SRP					11	4		5	
								Max Corrosion		
								1.24 in. & Debris		
300	MGO		1.24	0				Ht. 0 in.		
306.2	SRP					8	12		5	
								Max Corrosion		
								0.62 in. & Debris		
310	MGO		0.62	0				Ht. 0 in.		
319.39	SRV					2	4		4	
320	MGO									
328.44	SRC					8	11		5	
330	MGO									
336.54	SRV	S11				8	4		4	
340	MGO									
350	MGO									
359.15	SRV	F11							4	
360	MGO									
361.6	SRP					12	4		5	

368.76	SRV			8	4	4	
370	MGO						
370.46	AMH						

12. Line 9295

#### Table 100 Details for line 9295

Line record no.:	9295	Pipe Material	RCP/DI
US MH ID:	140T	Inspection Date	02/24/2023
DS MH ID:	120T	Pipe Diameter	39/42
Inspection Direction	Downstream	Inspected Length	356 ft

### Table 101 PACP defect table for line 9295

1)ict	Code	Cont.		value	I	Joi	Circum				efect ating
(ft.)	( iroun		Dime	nsion		nt		-	Remarks	~	
(111)		defect	1 st	2 nd	%		At/ From	То		Str	O&M
0	AMH										
0	MWL				15						
0	SAP						8	4			
									Max Corrosion 1.3		
									in. & Debris Ht.		
0	MGO		1.3	3.77					3.77 in.		
									Material Changed		
2.45	MMC								to Iron Pipe		
									High Grease		5
3.02	DAGS	S01			80		8	4	attached		5
3.02	SCP	S02					8	4	Pipe Layer Falling	3	
									Max Corrosion		
									0.44 in. & Debris		
10	MGO		0.44	0					Ht. 0 in.		
									Max Corrosion		
									1.06 in. & Debris		
20	MGO		1.06	1.41					Ht. 1.41 in.		
									Max Corrosion		
									0.95 in. & Debris		
30	MGO		0.95	3.54					Ht. 3.54 in.		

<b></b>	<u> </u>				
				Max Corrosion	
10		0.00	2 50	0.89 in. & Debris	
40	MGO	0.89	2.59	Ht. 2.59 in.	
				Max Corrosion	
				1.26 in. & Debris	
50	MGO	1.26	4.72	Ht. 4.72 in.	
				Max Corrosion	
				0.61 in. & Debris	
60	MGO	0.61	3.46	Ht. 3.46 in.	
				Max Corrosion	
				1.47 in. & Debris	
70	MGO	1.47	7	Ht. 7 in.	
				Max Corrosion	
				0.94 in. & Debris	
80	MGO	0.94	9.43	Ht. 9.43 in.	
				Max Corrosion	
			12.9	1.35 in. & Debris	
90	MGO	1.35	3	Ht. 12.93 in.	
				Max Corrosion	
				0.64 in. & Debris	
100	MGO	0.64	8.73	Ht. 8.73 in.	
				Max Corrosion	
				0.68 in. & Debris	
110	MGO	0.68	7.78	Ht. 7.78 in.	
				Max Corrosion	
				1.05 in. & Debris	
120	MGO	1.05	9.67	Ht. 9.67 in.	
				Max Corrosion	
				0.69 in. & Debris	
130	MGO	0.69	6.84	Ht. 6.84 in.	
				Max Corrosion 0.7	
				in. & Debris Ht.	
140	MGO	0.7	6.84	6.84 in.	
				Max Corrosion	
				1.29 in. & Debris	
150	MGO	1.29	7.87	Ht. 7.87 in.	
				Max Corrosion	
			11.0	1.25 in. & Debris	
160	MGO	1.25	1	Ht. 11.01 in.	
				Max Corrosion	
				0.93 in. & Debris	
170	MGO	0.93	7.95	Ht. 7.95 in.	
1/0		0.93	1.55	111. 7.35 111.	

<b></b>	T 1			Mau Campaian	
				Max Corrosion	
100		0.00	6.4.0	0.99 in. & Debris	
180	MGO	0.99	6.18	Ht. 6.18 in.	
				Max Corrosion	
				0.91 in. & Debris	
190	MGO	0.91	9.01	Ht. 9.01 in.	
				Max Corrosion	
				0.91 in. & Debris	
200	MGO	0.91	7.9	Ht. 7.9 in.	
				Max Corrosion	
			10.1	1.23 in. & Debris	
210	MGO	1.23	9	Ht. 10.19 in.	
				Max Corrosion	
				1.36 in. & Debris	
220	MGO	1.36	8.25	Ht. 8.25 in.	
				Max Corrosion	
				0.77 in. & Debris	
230	MGO	0.77	7.07	Ht. 7.07 in.	
				Max Corrosion	
				1.06 in. & Debris	
240	MGO	1.06	10.6	Ht. 10.6 in.	
				Max Corrosion	
			11.3	1.06 in. & Debris	
250	MGO	1.06	7	Ht. 11.37 in.	
				Max Corrosion	
				1.17 in. & Debris	
260	MGO	1.17	8.13	Ht. 8.13 in.	
				Max Corrosion	
				1.41 in. & Debris	
270	MGO	1.41	9.72	Ht. 9.72 in.	
				Max Corrosion	
				1.46 in. & Debris	
280	MGO	1.46	4.95	Ht. 4.95 in.	
200		2.10		Max Corrosion	
			10.4	1.53 in. & Debris	
290	MGO	1.53	10.4 8	Ht. 10.48 in.	
250		1.55	0	Max Corrosion	
				2.31 in. & Debris	
300	MGO	2.31	2.13	Ht. 2.13 in.	
300		2.51	2.13		
				Max Corrosion	
210	MCO	1 66	0	1.55 in. & Debris	
310	MGO	1.55	0	Ht. 0 in.	

								Max Corrosion		
				_				1.45 in. & Debris		
320	MGO		1.45	0				Ht. 0 in.		
								Max Corrosion		
								1.41 in. & Debris		
330	MGO		1.41	0				Ht. 0 in.		
								Max Corrosion		
								1.88 in. & Debris		
340	MGO		1.88	1.95				Ht. 1.95 in.		
								Max Corrosion 1.7		
								in. & Debris Ht. 0		
350	MGO		1.7	0				in.		
350.11	DAGS	F01			80					5
350.11	SCP	F02							3	
								Material Changed		
350.11	MMC							to RCP		
350.11	SRP	S03				8	4		5	
355.01	SRP	F03							5	
355.01	AMH									

### Table 102 Details for line 9511

Line record no.:	9511	Pipe Material	RCP
US MH ID:	2900T	Inspection Date	11/30/2022
DS MH ID:	2880T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	600.57 ft

#### Table 103 PACP defect table for line 9511

Dist	Code	Cont		value		To:	Circumfere ntial				efect ating
Dist.	Group	Cont. defect	Dime	nsion		Joi	ппа	.1	Remarks		
(ft.)		defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL				20						
8.95	SRP	S01					8	4		5	

			1 1		1	<u> </u>	r	1			
									Max Corrosion		
									1.14 in. & Debris		
10	MGO		1.14	0					Ht. 0 in.		
									Max Corrosion 1.5		
									in. & Debris Ht. 0		
20	MGO		1.5	0					in.		
25.04	SRP	F01								5	
									Max Corrosion		
									1.74 in. & Debris		
30	MGO		1.74	0					Ht. 0 in.		
37.08	SRP	S02	, .	•			12	4		5	
57.00	510	502					12	-	Max Corrosion	5	
									1.89 in. & Debris		
40	MGO		1.89	0					Ht. 0 in.		
40	UDIVI		1.09	U							
									Max Corrosion		
50			4.00	•					1.89 in. & Debris		
50	MGO		1.89	0					Ht. 0 in.		
									Max Corrosion		
									1.87 in. & Debris		
60	MGO		1.87	0					Ht. 0 in.		
									Max Corrosion		
									1.53 in. & Debris		
70	MGO		1.53	0					Ht. 0 in.		
72	SRP	F02								5	
74.26	SRC						3	4		5	
									Max Corrosion		
									1.73 in. & Debris		
80	MGO		1.73	0					Ht. 0 in.		
84.63	SRP	S03					12	4		5	
								-	Max Corrosion	-	
									1.87 in. & Debris		
90	MGO		1.87	0					Ht. 0 in.		
96.5	SRP	F03	,	5						5	
98.38	SRC	105					8	10		5	
50.50	5110		+						Max Corrosion	5	
									1.49 in. & Debris		
100	MCO		1 40	0							
100	MGO	664	1.49	0					Ht. 0 in.	~	
108.94	SRP	S04					2	4		5	
									Max Corrosion		
									1.53 in. & Debris		
110	MGO		1.53	0					Ht. 0 in.		

					1	1		1			<u> </u>
									Max Corrosion		
									1.95 in. & Debris		
120	MGO		1.95	0					Ht. 0 in.		
									Max Corrosion		
									1.82 in. & Debris		
130	MGO		1.82	0					Ht. 0 in.		
132.87	SRP	F04								5	
									Max Corrosion		
									1.66 in. & Debris		
140	MGO		1.66	0					Ht. 0 in.		
									Max Corrosion		
									1.17 in. & Debris		
150	MGO		1.17	0					Ht. 0 in.		
158.87	SRV	S05		-			1	4		4	
								- <del>-</del>	Max Corrosion		
									1.84 in. & Debris		
160	MGO		1.84	0					Ht. 0 in.		
100	NIGO		1.04	0					Max Corrosion		
									1.61 in. & Debris		
170	MGO		1.61	0					Ht. 0 in.		
170	NIGO		1.01	0							
									Max Corrosion		
100			1.01	•					1.01 in. & Debris		
180	MGO		1.01	0					Ht. 0 in.	_	
186.57	SRV	F05								4	
									Max Corrosion 1.5		
									in. & Debris Ht. 0		
190	MGO		1.5	0					in.		
192.41	SRP	S06					1	4		5	
									Max Corrosion		
									2.12 in. & Debris		
200	MGO		2.12	0					Ht. 0 in.		
									Max Corrosion		
									1.78 in. & Debris		
210	MGO		1.78	0					Ht. 0 in.		
214.27	SRP	F06								5	
217.66	SRP	S07					2	4		5	
									Max Corrosion		
									1.57 in. & Debris		
220	MGO		1.57	0					Ht. 0 in.		
				-					Max Corrosion		
									1.62 in. & Debris		
230	MGO		1.62	0					Ht. 0 in.		
230	10100	l	1.02	0	1	l	l		110.0111.	l	

5	
5	
5	
5	
	5

361.24	SRP	F09								5	
363.32	SRV						1	4		4	
								-	Max Corrosion	-	
									1.45 in. & Debris		
370	MGO		1.45	0					Ht. 0 in.		
374.25	SRC			•			3	4		5	
									Max Corrosion		
									1.75 in. & Debris		
380	MGO		1.75	0					Ht. 0 in.		
386.3	SRP	S10					1	4		5	
									Max Corrosion		
									1.51 in. & Debris		
390	MGO		1.51	0					Ht. 0 in.		
									Max Corrosion		
									2.01 in. & Debris		
400	MGO		2.01	0					Ht. 0 in.		
									Max Corrosion		
									1.49 in. & Debris		
410	MGO		1.49	0					Ht. 0 in.		
									Max Corrosion		
									1.83 in. & Debris		
420	MGO		1.83	0					Ht. 0 in.		
									Max Corrosion		
									1.76 in. & Debris		
430	MGO		1.76	0					Ht. 0 in.		
431.91	SRP	F10								5	
									Max Corrosion		
									1.53 in. & Debris		
440	MGO		1.53	0					Ht. 0 in.		
447.36	SRV						2	4		4	
									Max Corrosion		
									1.64 in. & Debris		
450	MGO		1.64	0					Ht. 0 in.		
									Max Corrosion		
									1.46 in. & Debris		
460	MGO	_	1.46	0					Ht. 0 in.		
462.62	SRP	S11					2	4		5	
									Max Corrosion		
				r.					1.61 in. & Debris		
470	MGO		1.61	0					Ht. 0 in.		
									Max Corrosion		
				•					1.43 in. & Debris		
480	MGO		1.43	0					Ht. 0 in.		

481.65	SRP	F11							5	
								Max Corrosion		
								1.62 in. & Debris		
490	MGO		1.62	0				Ht. 0 in.		
								Max Corrosion		
								1.63 in. & Debris		
500	MGO		1.63	0				Ht. 0 in.		
								Max Corrosion 1.5		
								in. & Debris Ht. 0		
510	MGO		1.5	0				in.		
514.44	SRC					8	9		5	
								Max Corrosion		
								0.97 in. & Debris		
520	MGO		0.97	0				Ht. 0 in.		
520.47	SRP	S12				1	4		5	
								Max Corrosion		
								1.34 in. & Debris		
530	MGO		1.34	0				Ht. 0 in.		
530.45	SRP	F12							5	
								Max Corrosion		
								1.58 in. & Debris		
540	MGO		1.58	0				Ht. 0 in.		
								Max Corrosion		
								1.44 in. & Debris		
550	MGO		1.44	0				Ht. 0 in.		
								Max Corrosion		
								1.39 in. & Debris		
560	MGO		1.39	0				Ht. 0 in.		
569.65	SRV					3	4		4	
								Max Corrosion 1.3		
								in. & Debris Ht. 0		
570	MGO		1.3	0				in.		
								Max Corrosion		
								1.46 in. & Debris		
580	MGO		1.46	0				Ht. 0 in.		
585.85	SRV	S13				2	4		4	
								Max Corrosion		
								1.39 in. & Debris		
590	MGO		1.39	0				Ht. 0 in.		
								Max Corrosion		
								1.48 in. & Debris		
600	MGO		1.48	0				Ht. 0 in.		
602.25	SRV	F13							4	

|--|

Table 104 Details for line 9334

Line record no.:	9334	Pipe Material	RCP
US MH ID:	160T	Inspection Date	02/24/2023
DS MH ID:	140T	Pipe Diameter	39
Inspection Direction	Downstream	Inspected Length	585.73 ft

Table 105 PACP defect table for line 9334

Dist.	Code	Cont.		value		Joi	Circum ntia				efect ating
(ft.)	Group	defect	Dime	nsion		nt	nua		Remarks		
(11.)		delect	1 st	2 nd	%	III	At/ From	То		Str	O&M
0	AMH										
0	MWL				30						
0	SRP	S01					8	4	HIGH H2S CONCENTRATION	5	
0	MGO		5.29	0					Max Corrosion 5.29 in. & Debris Ht. 0 in.		
10	MGO		3.47	0					Max Corrosion 3.47 in. & Debris Ht. 0 in.		
20	MGO		3.44	0					Max Corrosion 3.44 in. & Debris Ht. 0 in.		
30	MGO		3.01	0					Max Corrosion 3.01 in. & Debris Ht. 0 in.		
40	MGO		2.82	0					Max Corrosion 2.82 in. & Debris Ht. 0 in.		
50	MGO		2.7	0					Max Corrosion 2.7 in. & Debris Ht. 0 in.		
60	MGO		2.32	1.42					Max Corrosion 2.32 in. & Debris Ht. 1.42 in.		

		r	T	1	1		T		r –	1
								Max Corrosion		
	MGO		2.67	0.12				2.67 in. & Debris		
70								Ht. 0.12 in.		
								Max Corrosion		
	MGO		2.12	0				2.12 in. & Debris		
80								Ht. 0 in.		
								Max Corrosion		
	MGO		2.33	0				2.33 in. & Debris		
90								Ht. 0 in.		
								Max Corrosion		
	MGO		1.75	5.57				1.75 in. & Debris		
100								Ht. 5.57 in.		
								Max Corrosion		
	MGO		2.93	0				2.93 in. & Debris		
110								Ht. 0 in.		
								Max Corrosion		
	MGO		2.35	0				2.35 in. & Debris		
120								Ht. 0 in.		
								Max Corrosion		
	MGO		2.11	0				2.11 in. & Debris		
130				_				Ht. 0 in.		
								Max Corrosion		
	MGO		1.76	0				1.76 in. & Debris		
140								Ht. 0 in.		
								Max Corrosion		
	MGO		1.99	0				1.99 in. & Debris		
150								Ht. 0 in.		
158.37	SRP	F01							5	
159.12	SRI	S02				8	4		1	
133.12		552				5		Max Corrosion	-	
	MGO		1.96	0				1.96 in. & Debris		
160	Midd		1.50	Ŭ				Ht. 0 in.		
100								Max Corrosion		
	MGO		2.23	0				2.23 in. & Debris		
170	101GU		2.23					Ht. 0 in.		
170								Max Corrosion		
	MGO		1.85	4.62				1.85 in. & Debris		
180	UDINI		1.05	4.02				Ht. 4.62 in.		
100								Max Corrosion		
	MCO		1 00	0						
100	MGO		1.98	0				1.98 in. & Debris		
190								Ht. 0 in.		

								Max Corrosion		
	MGO		2.06	0				2.06 in. & Debris		
200								Ht. 0 in.		
								Max Corrosion		
	MGO		2.08	0				2.08 in. & Debris		
210								Ht. 0 in.		
216.22	DAZ	S03			10	10	2	WHITE DEPOSITS		2
								Max Corrosion		
	MGO		1.77	0				1.77 in. & Debris		
220								Ht. 0 in.		
				_				Max Corrosion		
	MGO		1.62	0				1.62 in. & Debris		
230								Ht. 0 in.		
236.57	SRV					9	11		4	
			4.45	4 5 4				Max Corrosion		
240	MGO		1.45	4.51				1.45 in. & Debris		
240								Ht. 4.51 in.		
	MCO		1.05	F 24				Max Corrosion		
250	MGO		1.85	5.24				1.85 in. & Debris		
250								Ht. 5.24 in.		
258.43	SRP	S04				8	4	PARTS OF REBARS MISSING	5	
								Max Corrosion		
	MGO		2.14	5.54				2.14 in. & Debris		
260	NIGO		2.14	5.54				Ht. 5.54 in.		
200								Max Corrosion		
	MGO		2.17	7.07				2.17 in. & Debris		
270	Midd		2	7.07				Ht. 7.07 in.		
								Max Corrosion		
	MGO		2.18	11.8				2.18 in. & Debris		
280				8				Ht. 11.88 in.		
				40 -				Max Corrosion		
	MGO		2.43	10.7				2.43 in. & Debris		
290				8				Ht. 10.78 in.		
								Max Corrosion 3		
	MGO		3	10.23				in. & Debris Ht.		
300								10.23 in.		
								Max Corrosion		
	MGO		2.81	9.87				2.81 in. & Debris		
310								Ht. 9.87 in.		
								Max Corrosion		
	MGO		2.59	9.38				2.59 in. & Debris		
320								Ht. 9.38 in.		

								Max Corrosion		
	MGO		2.14	9.2				2.14 in. & Debris		
220	NIGO		2.14	9.2						
330								Ht. 9.2 in.		
	1460		2.07	F 0F				Max Corrosion		
	MGO		2.07	5.85				2.07 in. & Debris		
340								Ht. 5.85 in.		
								Max Corrosion		
	MGO		1.59	4.02				1.59 in. & Debris		
350								Ht. 4.02 in.		
								Max Corrosion		
	MGO		1.35	0				1.35 in. & Debris		
360								Ht. 0 in.		
								Max Corrosion		
	MGO		2.16	0				2.16 in. & Debris		
370								Ht. 0 in.		
373.18	DAGS	S05			10	2	4			2
								Max Corrosion		
	MGO		1.88	0				1.88 in. & Debris		
380								Ht. 0 in.		
								Max Corrosion		
	MGO		1.64	2.92				1.64 in. & Debris		
390								Ht. 2.92 in.		
390.71	SRP	F04							5	
								Max Corrosion		
	MGO		1.61	5.06				1.61 in. & Debris		
400								Ht. 5.06 in.		
409.55	SRC	S06				8	4		5	
								Max Corrosion		
	MGO		1.29	3.11				1.29 in. & Debris		
410								Ht. 3.11 in.		
								Max Corrosion		
	MGO		1.67	6.58				1.67 in. & Debris		
420								Ht. 6.58 in.		
								Max Corrosion		
	MGO		1.44	3.65				1.44 in. & Debris		
430								Ht. 3.65 in.		
434.61	DAGS	F05			10					2
10 1.01	27.00				10			Max Corrosion		-
	MGO		1.37	10.5				1.37 in. & Debris		
440	11100		1.57	4				Ht. 10.54 in.		
-++0								Max Corrosion		
	MGO		1.52	6.88				1.52 in. & Debris		
450	UDIVI		1.52	0.00				Ht. 6.88 in.		
430								Πι. υ.δδ ΙΙΙ.		

452.89	DAZ	F03			10					2
452.89	SRC	F06							5	
								Max Corrosion		
	MGO		1.52	3.35				1.52 in. & Debris		
460								Ht. 3.35 in.		
460.24	SRP	S07				8	4		5	
								Max Corrosion		
	MGO		1.67	0				1.67 in. & Debris		
470								Ht. 0 in.		
470.98	SRP	F07							5	
								Max Corrosion		
	MGO		1.58	0.98				1.58 in. & Debris		
480								Ht. 0.98 in.		
								Max Corrosion		
	MGO		1.53	9.14				1.53 in. & Debris		
490								Ht. 9.14 in.		
490.57	SRC					8	1		5	
								Max Corrosion		
	MGO		1.46	2.01				1.46 in. & Debris		
500			_	_				Ht. 2.01 in.		
505.27	SRC					11	2		5	
								Max Corrosion		
	MGO		1.46	0.73				1.46 in. & Debris		
510								Ht. 0.73 in.		
517.33	SRC					8	11		5	
								Max Corrosion		
	MGO		1.36	0				1.36 in. & Debris		
520								Ht. 0 in.		
								Max Corrosion		
	MGO		1.34	0				1.34 in. & Debris		
530								Ht. 0 in.		
531.84	SRC	S08				1	2		5	
								Max Corrosion		
	MGO		1.41	0				1.41 in. & Debris		
540								Ht. 0 in.		
								Max Corrosion		
	MGO		1.48	0				1.48 in. & Debris		
550								Ht. 0 in.		
								Max Corrosion		
	MGO		1.45	0				1.45 in. & Debris		
560								Ht. 0 in.		

570	MGO		1.29	0	Max Corrosi 1.29 in. & De Ht. 0 in.		
580	MGO		1.62	0	Max Corrosi 1.62 in. & Del Ht. 0 in.		
582.53	SRC	F08				5	
584.22	SRI	F02				1	
585.54	AMH						

Table 106 Details for line 9512

Line record no.:	9512	Pipe Material	RCP
US MH ID:	2920T	Inspection Date	10/26/2022
DS MH ID:	2900T	Pipe Diameter	54
Inspection Direction	Downstream	Inspected Length	394.38 ft

### Table 107 PACP defect table for line 9512

	Code			value		т ·	Circum				efect ating
Dist.	Group	Cont. defect	Dime	nsion		Joi	ntia	11	Remarks		
(ft.)		defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL				10				Water Level		
									Max Corrosion		
									1.29 in. & Debris		
0	MGO		1.29	0					Ht. 0 in.		
4.41	SRI	S01					8	4		1	
									longitudinal		
									reinforcement	4	
6.4	SRV	S02					10		visible		
									Max Corrosion 1.2		
									in. & Debris Ht. 0		
10	MGO		1.2	0					in.		
16.39	SRV						10	12		4	

16.39	SRV	F02							4	
19.22	SRV	S03				3			4	
19.22	3110	303				5		Max Corrosion	4	
								1.11 in. & Debris		
20	MGO		1.11	0				Ht. 0 in.		
25.43	SRV	F03	1.11	0				TH. U III.	4	
25.45	JUN	F05						Max Corrosion	4	
								1.39 in. & Debris		
30	MGO		1.39	0				Ht. 0 in.		
30.9		S04	1.59	0		2	4	Πι. Ο ΙΙΙ.	4	
30.9	SRV	504				Z	4	Max Corrosion	4	
								1.08 in. & Debris		
10	MCO		1.00	0						
40	MGO	504	1.08	0				Ht. 0 in.	4	
40.13	SRV	F04						Cara i	4	
43.9	SRC	S05				7	1	Corrosion	5	
48.42	SRC	F05							5	
								Max Corrosion		
								1.19 in. & Debris		
50	MGO		1.19	0				Ht. 0 in.		
								Max Corrosion		
								1.17 in. & Debris		
60	MGO		1.17	0				Ht. 0 in.		
60.11	SRC					8	1			
69.53	SRV	S06				9	12		4	
								Max Corrosion		
								1.06 in. & Debris		
70	MGO		1.06	0				Ht. 0 in.		
73.11	SRV	F06							4	
								Max Corrosion		
								1.15 in. & Debris		
80	MGO		1.15	0				Ht. 0 in.		
								Max Corrosion		
								1.06 in. & Debris		
90	MGO		1.06	0				Ht. 0 in.		
								Max Corrosion		
								1.03 in. & Debris		
100	MGO		1.03	0				Ht. 0 in.		
101.18	SRC					7	11		5	
106.84	SRV	S07				9	12		4	
								Max Corrosion		
								1.18 in. & Debris		
110	MGO		1.18	0				Ht. 0 in.		
113.05	SRV	F07							4	

119.27	SRV					2	5		4	
	5114					-		Max Corrosion		
								1.33 in. & Debris		
120	MGO		1.33	0				Ht. 0 in.		
123.42	SRV	S08		•		7	11		4	
								Max Corrosion		
								1.49 in. & Debris		
130	MGO		1.49	0				Ht. 0 in.		
132.84	SRV	F08	_	-					4	
132.84	SRC	S09				7	5		5	
137.17	SRC	F09							5	
_								Max Corrosion	-	
								1.35 in. & Debris		
140	MGO		1.35	0				Ht. 0 in.		
143.96	SRV	S10			ł	7	5		4	
								Max Corrosion		
								1.34 in. & Debris		
150	MGO		1.34	0				Ht. 0 in.		
								Max Corrosion		
								1.33 in. & Debris		
160	MGO		1.33	0				Ht. 0 in.		
								Max Corrosion 1.5		
								in. & Debris Ht. 0		
170	MGO		1.5	0				in.		
								Max Corrosion		
								1.52 in. & Debris		
180	MGO		1.52	0				Ht. 0 in.		
								Max Corrosion		
								1.44 in. & Debris		
190	MGO		1.44	0				Ht. 0 in.		
192.2	SRV	F10							4	
192.2	SRP	S11				12	5		5	
								Max Corrosion		
								1.59 in. & Debris		
200	MGO		1.59	0	ļ		ļ	Ht. 0 in.		
202.75	SRP	F11			ļ		ļ		5	
202.75	SRC	S12				7	5		5	
								Max Corrosion 0		
								in. & Debris Ht. 0		
210	MGO		0	0				in.		
								Max Corrosion		
				c.				1.85 in. & Debris		
220	MGO		1.85	0				Ht. 0 in.		

									Max Corrosion		
									1.42 in. & Debris		
230	MGO		1.42	0					Ht. 0 in.	-	
							_	_	Most of Steel is	5	
230.45	SRP	S13					7	5	corroded		
									Max Corrosion		
									3.35 in. & Debris		
240	MGO		3.35	0					Ht. 0 in.		
									Max Corrosion		
									2.81 in. & Debris		
250	MGO		2.81	0					Ht. 0 in.		
257.77	SRP	F13								5	
									Max Corrosion		
									1.99 in. & Debris		
260	MGO		1.99	0					Ht. 0 in.		
									Max Corrosion		
									1.62 in. & Debris		
270	MGO		1.62	1.24					Ht. 1.24 in.		
									Max Corrosion		
									1.55 in. & Debris		
280	MGO		1.55	0					Ht. 0 in.		
									Max Corrosion		
									1.44 in. & Debris		
290	MGO		1.44	0					Ht. 0 in.		
									Max Corrosion		
									1.46 in. & Debris		
300	MGO		1.46	0					Ht. 0 in.		
302.05	SRC	F12								5	
								1	Max Corrosion		
									1.22 in. & Debris		
310	MGO		1.22	0					Ht. 0 in.		
									Max Corrosion		
									1.12 in. & Debris		
320	MGO		1.12	0					Ht. 0 in.		
326.55	SRV			-			12	2		4	
									Max Corrosion	-	
									1.07 in. & Debris		
330	MGO		1.07	0					Ht. 0 in.		
								1	Max Corrosion		
									1.28 in. & Debris		
340	MGO		1.28	0					Ht. 0 in.		
5 10			1.20		1			1		1	

350	MGO		1.38	0				Max Corrosion 1.38 in. & Debris Ht. 0 in.		
		C14	1.50	0		10	-	Πι. Ο ΙΙΙ.	4	
351.42	SRV	S14				12	5		4	
								Max Corrosion		
								1.13 in. & Debris		
360	MGO		1.13	0				Ht. 0 in.		
								Max Corrosion 1.3		
								in. & Debris Ht. 0		
370	MGO		1.3	0				in.		
380	MGO									
388.54	SRV	F14							4	
390	MGO									
394	SRI	F01							1	
394.38	AMH									

Table 108 Details for line 9786

Line record no.:	9786	Pipe Material RCP
US MH ID:	6032T	Inspection Date 10/26/2022
DS MH ID:	2920T	Pipe Diameter 54
Inspection Direction	Downstream	Inspected Length 199.66 ft

### Table 109 PACP defect table for line 9786

Dist.	Code	Cont.		value		Joi	Circum				efect ating
	Group	defect	Dime	nsion			nua	.1	Remarks		
(ft.)		defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL				15						
0	SRP	S01					7	5	High Corrosion	5	
									Max Corrosion		
									4.32 in. & Debris		
0	MGO		4.32	0					Ht. 0 in.		

	[ [						May Corrector 2.0	
							Max Corrosion 3.9	
10	MCO	2.0	0				in. & Debris Ht. 0	
10	MGO	3.9	0				in.	
							Max Corrosion	
20	MCO	2.12					3.12 in. & Debris	
20	MGO	3.12	2 0				Ht. 0 in.	
							Max Corrosion 3.5	
20	MCO	25	0				in. & Debris Ht. 0	
30	MGO	3.5	0				in.	
							Max Corrosion	
10	MCO	2.54	0				2.51 in. & Debris	
40	MGO	2.51	. 0				Ht. 0 in.	
							Max Corrosion	
50							2.48 in. & Debris	
50	MGO	2.48	8 0				Ht. 0 in.	
							Max Corrosion	
60							2.52 in. & Debris	
60	MGO	2.52	2 0				Ht. 0 in.	
							Max Corrosion	
		1.00					1.68 in. & Debris	
70	MGO	1.68	8 0				Ht. 0 in.	
							Max Corrosion	
							1.82 in. & Debris	
80	MGO	1.82	2 0				Ht. 0 in.	
							Max Corrosion	
							1.87 in. & Debris	
90	MGO	1.87	0		10	4	Ht. 0 in.	 
92.63	DAZ				10	1	Efflorescence	 3
							Max Corrosion	
							1.47 in. & Debris	
100	MGO	1.47	' 0				Ht. 0 in.	
							Max Corrosion	
							1.56 in. & Debris	
110	MGO	1.56	5 0				Ht. 0 in.	 
							Max Corrosion	
							1.79 in. & Debris	
120	MGO	1.79	0				Ht. 0 in.	
							Max Corrosion	
							1.54 in. & Debris	
130	MGO	1.54	0				Ht. 0 in.	
							Max Corrosion	
							1.62 in. & Debris	
140	MGO	1.62	0				Ht. 0 in.	

		1				1		1		1
146.34	SRP	F01							5	
147.65	SRP	S02				12	4		5	
								Max Corrosion 1.7		
								in. & Debris Ht. 0		
150	MGO		1.7	0				in.		
								Max Corrosion		
								1.47 in. & Debris		
160	MGO		1.47	0				Ht. 0 in.		
165.18	SRP	F02							5	
								Max Corrosion		
								1.65 in. & Debris		
170	MGO		1.65	0				Ht. 0 in.		
171.59	SRP	S03				1	4		5	
								Max Corrosion		
								1.58 in. & Debris		
180	MGO		1.58	0				Ht. 0 in.		
182.33	SRP	F03							5	
								Max Corrosion		
								1.22 in. & Debris		
190	MGO		1.22	0				Ht. 0 in.		
195.7	SRV					2	3		4	
199.47	AMH									

#### Table 110 Details for line 9799

Line record no.:	9799	Pipe Material	FRP
US MH ID:	6070T	Inspection Date	10/26/2022
DS MH ID:	6056T	Pipe Diameter	78
Inspection Direction	Downstream	Inspected Length	609.66 ft

### Table 111 PACP defect table for line 9799

Dist	Code	Cont		value	value		Jo . Circumfere ntial			Defect Rating	
Dist.	Group	Cont. defect	Dime	nsion		in	nua	u	Remarks		
(ft.)		defect	1 st	2 nd	nd %	t	At/ From	То		Str	O&M
0	AMH										
0	MWL				15						
0	ADP										
0	LFDC	S01					8	4	Discoloration	3	

			T	Г Г	0.2						
0			0		0.3				Ovality 0.33 %" &		
0	MGO		0		3				Debris Ht. 0 in.		
10	MCO				1.1				Ovality 1.19 %" & Debris Ht. 0 in.		
10	MGO		0		9						
20	1460		0		0.9				Ovality 0.98 %" &		
20	MGO		0		8				Debris Ht. 0 in.		
	66.6				0.8		4.2		Ovality 0.82 %" &	3	
22.23	SSC		0		2		12		Debris Ht. 0 in.		
					0.8				Ovality 0.82 %" &		
30	MGO		0		2				Debris Ht. 0 in.		
					1.4				Ovality 1.49 %" &		
40	MGO		0		9				Debris Ht. 0 in.		
					1.0				Ovality 1.06 %" &		
50	MGO		0		6				Debris Ht. 0 in.		
					0.9				Ovality 0.99 %" &		
60	MGO		0		9				Debris Ht. 0 in.		
					0.9				Ovality 0.94 %" &		
70	MGO		0		4				Debris Ht. 0 in.		
					0.9				Ovality 0.98 %" &		
80	MGO		0		8				Debris Ht. 0 in.		
					0.8				Ovality 0.84 %" &		
90	MGO		0		4				Debris Ht. 0 in.		
					0.9				Ovality 0.95 %" &		
100	MGO		0		5				Debris Ht. 0 in.		
					0.3				Ovality 0.32 %" &		
110	MGO		1.62		2				Debris Ht. 1.62 in.		
112.3	SSC	S02					8	4		3	
					1.1				Ovality 1.17 %" &		
120	MGO		4.84		7				Debris Ht. 4.84 in.		
128.32	SSC	F02								3	
									Ovality 0.6 %" &		
130	MGO		6.75		0.6				, Debris Ht. 6.75 in.		
					0.6				Ovality 0.67 %" &		
140	MGO		6.86		7				Debris Ht. 6.86 in.		
					0.5				Ovality 0.58 %" &		
150	MGO		6.15		8				Debris Ht. 6.15 in.		
					0.4				Ovality 0.46 %" &		
160	MGO		6.19		6				Debris Ht. 6.19 in.		
			0.10		0.4	$\vdash$			Ovality 0.41 %" &		
170	MGO		5.59		1				Debris Ht. 5.59 in.		
1/0	11100		5.55		0.5	$\vdash$			Ovality 0.51 %" &		
180	MGO		4.27		1				Debris Ht. 4.27 in.		
190	UDINI		4.27		Т						

			0.5	Ovality 0.51 %" &
190	MGO	4.75	1	Debris Ht. 4.75 in.
			0.8	Ovality 0.89 %" &
200	MGO	3.76	9	Debris Ht. 3.76 in.
			1.3	Ovality 1.31 %" &
210	MGO	3.25	1	Debris Ht. 3.25 in.
			1.1	Ovality 1.17 %" &
220	MGO	0	7	Debris Ht. 0 in.
			1.3	Ovality 1.33 %" &
230	MGO	0	3	Debris Ht. 0 in.
			1.1	Ovality 1.15 %" &
240	MGO	0	5	Debris Ht. 0 in.
			1.7	Ovality 1.78 %" &
250	MGO	0	8	Debris Ht. 0 in.
			0.8	Ovality 0.82 %" &
260	MGO	0	2	Debris Ht. 0 in.
			1.3	Ovality 1.36 %" &
270	MGO	1.15	6	Debris Ht. 1.15 in.
			1.0	Ovality 1.06 %" &
280	MGO	5.38	6	Debris Ht. 5.38 in.
			2.2	Ovality 2.22 %" &
290	MGO	8.73	2	Debris Ht. 8.73 in.
			2.1	Ovality 2.17 %" &
300	MGO	5.94	7	Debris Ht. 5.94 in.
			2.7	Ovality 2.79 %" &
310	MGO	6.38	9	Debris Ht. 6.38 in.
			2.0	Ovality 2.09 %" &
320	MGO	6.62	9	Debris Ht. 6.62 in.
			1.2	Ovality 1.27 %" &
330	MGO	6.89	7	Debris Ht. 6.89 in.
			1.3	Ovality 1.32 %" &
340	MGO	7.64	2	Debris Ht. 7.64 in.
			2.4	Ovality 2.41 %" &
350	MGO	7.12	1	Debris Ht. 7.12 in.
			2.1	Ovality 2.15 %" &
360	MGO	7	5	Debris Ht. 7 in.
270			2.1	Ovality 2.17 %" &
370	MGO	8.09	7	Debris Ht. 8.09 in.
200			1.0	Ovality 1.02 %" &
380	MGO	6.97	2	Debris Ht. 6.97 in.
200			0.9	Ovality 0.95 %" &
390	MGO	6.59	5	Debris Ht. 6.59 in.

			0.7	Ovality 0.71 %" &
400	MGO	6.83	1	Debris Ht. 6.83 in.
400	NGO	0.05	0.7	Ovality 0.71 %" &
410	MGO	8.96	1	Debris Ht. 8.96 in.
410	NIGO	8.90	1.2	Ovality 1.25 %" &
420	MGO	7.75	5	Debris Ht. 7.75 in.
420	NGO	7.75	0.8	Ovality 0.86 %" &
430	MGO	6.46	6	Debris Ht. 6.46 in.
430	IVIGO	0.40	1.4	Ovality 1.42 %" &
440	MGO	6.58	2	Debris Ht. 6.58 in.
440	NIGO	0.38	1.0	Ovality 1.04 %" &
450	MGO	6.09	4	Debris Ht. 6.09 in.
450	IVIGO	0.03	1.5	Ovality 1.52 %" &
460	MGO	4.35	2	Debris Ht. 4.35 in.
400	NIGO	4.55	0.7	Ovality 0.79 %" &
470	MGO	5.25	9	Debris Ht. 5.25 in.
470	IVIGO	5.25	1.1	Ovality 1.16 %" &
480	MGO	4.87	6	Debris Ht. 4.87 in.
400	IVIGO	4.87	1.3	Ovality 1.32 %" &
490	MGO	5.04	2	Debris Ht. 5.04 in.
450	10100	5.04	1.1	Ovality 1.15 %" &
500	MGO	4.62	5	Debris Ht. 4.62 in.
500	Midd	4.02	1.2	Ovality 1.25 %" &
510	MGO	5.86	5	Debris Ht. 5.86 in.
510	mee	3.00	0.7	Ovality 0.71 %" &
520	MGO	6.23	1	Debris Ht. 6.23 in.
520	mee	0.23	0.4	Ovality 0.47 %" &
530	MGO	5.04	7	Debris Ht. 5.04 in.
			1.1	Ovality 1.14 %" &
540	MGO	4.75	4	Debris Ht. 4.75 in.
			1.1	Ovality 1.17 %" &
550	MGO	6.02	7	Debris Ht. 6.02 in.
			1.3	Ovality 1.31 %" &
560	MGO	5.13	1	Debris Ht. 5.13 in.
			0.5	Ovality 0.51 %" &
570	MGO	5.24	1	Debris Ht. 5.24 in.
			0.4	Ovality 0.42 %" &
580	MGO	5.39	2	Debris Ht. 5.39 in.
			0.3	Ovality 0.35 %" &
590	MGO	5.27	5	Debris Ht. 5.27 in.
			0.7	Ovality 0.71 %" &
600	MGO	4.17	1	Debris Ht. 4.17 in.
609.57	LFDC	F01		3

613.34 AMH
------------

### Table 112 Details for line 9800

Line record no.:	9800	Pipe Material	FRP
US MH ID:	6080T	Inspection Date	10/26/2022
DS MH ID:	6070T	Pipe Diameter	78
Inspection Direction	Downstream	Inspected Length	707.77 ft

### Table 113 PACP defect table for line 9800

Di	Code			value		<b>.</b> .	Circum				efect ating
Dist.	Group	Cont. defect	Dime	ension		Joi	ntia	l	Remarks		
(ft.)		defect	1 st	2 nd	%	nt	At/ From	То		Str	O&M
0	AMH										
0	MWL			15							
0	LFDC	S01					8	4	Discoloration	3	
0	MGO		0	0.61					Ovality 0.61 %" & Debris Ht. 0 in.		
									Ovality 1.92 %" &		
10	MGO		0	1.92					Debris Ht. 0 in.		
									Ovality 2.77 %" &		
20	MGO		0	2.77					Debris Ht. 0 in.		
									Ovality 3.14 %" &		
30	MGO		0	3.14					Debris Ht. 0 in.		
33.19	LD			5					Line Down		1
									Ovality 2.16 %" &		
40	MGO		0	2.16					Debris Ht. 0 in.		
									Ovality 1.26 %" &		
50	MGO		0	1.26					Debris Ht. 0 in.		
									Water level		
55.23	MWL			20					Change		
									Ovality 0.8 %" &		
60	MGO		0	0.8					Debris Ht. 0 in.		
									Ovality 0.38 %" &		
70	MGO		0	0.38					Debris Ht. 0 in.		

				Ovality 0.44 %" &
80	MGO	0	0.44	Debris Ht. 0 in.
00	WIGO	0	0.44	Ovality 0.21 %" &
90	MGO	0	0.21	Debris Ht. 0 in.
			0.21	Ovality 0.65 %" &
100	MGO	0	0.65	Debris Ht. 0 in.
100	10100		0.05	Ovality 0.39 %" &
110	MGO	0	0.39	Debris Ht. 0 in.
110		<b>U</b>	0.00	Ovality 0.92 %" &
120	MGO	0	0.92	Debris Ht. 0 in.
120	10100		0.52	Ovality 1.33 %" &
130	MGO	0	1.33	Debris Ht. 0 in.
150	10100	<b>U</b>	1.55	Ovality 0.4 %" &
140	MGO	0	0.4	Debris Ht. 0 in.
140	10100	<b>U</b>	0.4	Ovality 0.46 %" &
150	MGO	0	0.46	Debris Ht. 0 in.
150	10100	<b>U</b>	0.40	Ovality 1.34 %" &
160	MGO	0	1.34	Debris Ht. 0 in.
100	10100	<b>U</b>	1.54	Ovality 1.43 %" &
170	MGO	0	1.43	Debris Ht. 0 in.
1/0	10100	<b>U</b>	1.45	Ovality 1.68 %" &
180	MGO	0	1.68	Debris Ht. 0 in.
100			1.00	Ovality 1.03 %" &
190	MGO	0	1.03	Debris Ht. 0 in.
130		<b>U</b>	1.00	Ovality 0.88 %" &
200	MGO	0	0.88	Debris Ht. 0 in.
			0.00	Ovality 0.71 %" &
210	MGO	0	0.71	Debris Ht. 0 in.
				Ovality 1.01 %" &
220	MGO	0	1.01	Debris Ht. 0 in.
				Ovality 0.88 %" &
230	MGO	0	0.88	Debris Ht. 0 in.
				Ovality 0.29 %" &
240	MGO	0	0.29	Debris Ht. 0 in.
				Ovality 0.74 %" &
250	MGO	0	0.74	Debris Ht. 0 in.
				Ovality 0.41 %" &
260	MGO	0	0.41	Debris Ht. 0 in.
				Ovality 0.49 %" &
270	MGO	0	0.49	Debris Ht. 0 in.
_	_		_	Ovality 0.52 %" &
280	MGO	0	0.52	Debris Ht. 0 in.

				Ovality 0.77 %" &
290	MGO	0	0.77	Debris Ht. 0 in.
250			0.77	Ovality 0.77 %" &
300	MGO	0	0.77	Debris Ht. 0 in.
			••••	Ovality 0.93 %" &
310	MGO	0	0.93	Debris Ht. 0 in.
				Ovality 1.15 %" &
320	MGO	0	1.15	Debris Ht. 0 in.
				Ovality 0.89 %" &
330	MGO	0	0.89	Debris Ht. 0 in.
				Ovality 0.77 %" &
340	MGO	0	0.77	Debris Ht. 0 in.
				Ovality 0.81 %" &
350	MGO	0	0.81	Debris Ht. 0 in.
				Ovality 0.76 %" &
360	MGO	0	0.76	Debris Ht. 0 in.
				Ovality 0.98 %" &
370	MGO	0	0.98	Debris Ht. 0 in.
				Ovality 0.9 %" &
380	MGO	0	0.9	Debris Ht. 0 in.
				Ovality 0.52 %" &
390	MGO	0	0.52	Debris Ht. 0 in.
				Ovality 0.58 %" &
400	MGO	0	0.58	Debris Ht. 0 in.
				Ovality 0.67 %" &
410	MGO	0	0.67	Debris Ht. 0 in.
				Ovality 0.4 %" &
420	MGO	0	0.4	Debris Ht. 0 in.
				Ovality 0.12 %" &
430	MGO	0	0.12	Debris Ht. 0 in.
				Ovality 0.47 %" &
440	MGO	0	0.47	Debris Ht. 0 in.
				Ovality 0.56 %" &
450	MGO	0	0.56	Debris Ht. 0 in.
				Ovality 0.59 %" &
460	MGO	0	0.59	Debris Ht. 0 in.
470			1 00	Ovality 1.08 %" &
470	MGO	0	1.08	Debris Ht. 0 in.
400			0.00	Ovality 0.99 %" &
480	MGO	0	0.99	Debris Ht. 0 in.
400			0.4	Ovality 0.4 %" &
490	MGO	0	0.4	Debris Ht. 0 in.

500	MGO		0	0.3	Ovality 0.3 %" & Debris Ht. 0 in.
500	WIGO		0	0.5	Ovality 0.96 %" &
510	MGO		0	0.96	Debris Ht. 0 in.
				0.50	Ovality 1 %" &
520	MGO		0	1	Debris Ht. 0 in.
			•		Ovality 1.22 %" &
530	MGO		0	1.22	Debris Ht. 0 in.
					Ovality 1.19 %" &
540	MGO		0	1.19	Debris Ht. 0 in.
					Ovality 0.58 %" &
550	MGO		0	0.58	Debris Ht. 0 in.
					Ovality 0.62 %" &
560	MGO		0	0.62	Debris Ht. 0 in.
					Ovality 0.8 %" &
570	MGO		0	0.8	Debris Ht. 0 in.
					Ovality 0.6 %" &
580	MGO		0	0.6	Debris Ht. 0 in.
					Ovality 0.66 %" &
590	MGO		0	0.66	Debris Ht. 0 in.
					Ovality 0.67 %" &
600	MGO		0	0.67	Debris Ht. 0 in.
					Ovality 1.09 %" &
610	MGO		0	1.09	Debris Ht. 0 in.
					Ovality 0.64 %" &
620	MGO		0	0.64	Debris Ht. 0 in.
			-		Ovality 1.17 %" &
630	MGO		0	1.17	Debris Ht. 0 in.
					Ovality 1.11 %" &
640	MGO		0	1.11	Debris Ht. 0 in.
650				4 70	Ovality 1.79 %" &
650	MGO		0	1.79	Debris Ht. 0 in.
	1400		~		Ovality 1.19 %" &
660	MGO		0	1.19	Debris Ht. 0 in.
670			~		Ovality 0.97 %" &
670	MGO		0	0.97	Debris Ht. 0 in.
600	MCO		0	0.67	Ovality 0.67 %" & Debris Ht. 0 in.
680	MG0		0	0.67	
690	MG0			+	
700 707.2	MGO LFDC	F01		+	3
707.2	AMH	FUI		+	