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ABSTRACT 

 

Disaster Management and Recovery: Estimating the Disaster Impacts on Construction Wages 

and Evaluating the Policy Effects on Post-disaster Recovery 

Sooin Kim 

The University of Texas at Arlington, 2023 

Committee Chair: Mohsen Shahandashti  

A rapidly increasing number of natural hazards pose an inevitable threat to communities. 

More than a hundred natural hazards strike the United States every year, causing numerous 

fatalities and billions of dollars of property and infrastructure damage. The total cost of U.S. 

weather and climate disasters since 1980 has already exceeded 2 trillion dollars. As the number of 

U.S. county-level disasters has approximately tripled in recent decades due to rapid climate 

change, a greater share of the population is now more likely to expose to natural disasters.  

Adequate and timely reconstruction and recovery in post-disaster situations are essential 

for the safety, survival, and long-term resilience of a community. However, the unexpected 

reconstruction cost increases in the aftermath of a disaster often impede post-disaster recovery due 

to limited budgets and amplify direct and indirect economic losses. A better understanding of the 

spatiotemporal effect of a disaster on reconstruction costs can improve disaster loss evaluations 

and post-disaster recovery planning.  
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Local and federal governments have enacted various disaster policies to accelerate post-

disaster recovery and strengthen the resilience of a community. For example, thirty-seven states 

out of fifty in the U.S. have anti-price gouging legislation that regulates exorbitant pricing, 

denouncing it as an unfair or deceptive trade practice during a time of disaster or emergency. One 

of the intended purposes of this legislation is to stabilize the reconstruction costs increased by post-

disaster demand surge and ration resources for a swift recovery from disasters. Federal Motor 

Carrier Safety Administration (FMCSA) waives certain federal safety regulations during a time of 

disaster declared by the President, Governors of States, or FMCSA. The U.S. Environmental 

Protection Agency (EPA) has temporarily waived fuel regulations to facilitate the fuel supply in 

the aftermath of disasters.  

According to the consensus of climate scientists, it is expected that the occurrence and 

intensity of disasters will increase further in the coming decades. Measuring the post-disaster 

demand surge for reconstruction and examining the effects of various disaster policies are critical 

for a better disaster response system in the trend of increasing risks of disasters.  

This research aims to understand the dynamic process of the post-demand surge in the 

reconstruction market by estimating the spatiotemporal effects of a disaster on construction wages 

in different quarters after a disaster using spatial panel data models. Furthermore, this research 

extends its framework to quantify the effects of various local and federal disaster policies on post-

disaster recovery using difference-in-differences econometric techniques.  

To achieve these research objectives, first, spatial panel data models with a difference-in-

differences (DID) approach were developed to determine the spatiotemporal impacts of disasters 

on reconstruction wages in disaster-affected counties compared to the wages in non-disaster-

affected counties. Then, spatial panel data models with DID approach were implemented to 
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estimate the effects of disaster-related policies on the post-disaster reconstruction process by 

quantifying the difference in dependent variables (e.g., reconstruction costs and speed) between 

pre-policy and post-policy periods.  

The findings of this study identified and estimated the spatiotemporal impacts of disasters 

on reconstruction wages and evaluated the various policy effects on the post-disaster recovery 

process. Reconstruction capacity gaps that cause reconstruction cost inflation were revealed one 

quarter after a disaster occurred. Also, statistically significant impacts of a disaster on 

reconstruction wages in the neighboring counties were found and quantified. Moreover, it is found 

that anti-price gouging laws, federal motor carrier safety regulation waivers, and environmental 

regulation waivers statistically significantly affected the post-disaster reconstruction process.   

This research contributes to the body of knowledge by developing econometric 

measurement methods to estimate disaster impacts and evaluate policy effects in the post-disaster 

reconstruction management and recovery process. This research addressed fundamental 

limitations of existing demand surge models by (1) solving missing data problems with spatial 

multiple imputation methods, (2) creating spatiotemporal econometric models for quantifying 

post-disaster construction cost escalations and understanding a dynamic process of post-disaster 

reconstruction demand surge, and (3) evaluating and quantifying the impacts of disaster-related 

policies on the post-disaster reconstruction process. The findings of this research are expected to 

generate new knowledge at the nexus of three critical disciplines: Post-disaster Construction, 

Economics, and Policy Analysis. The proposed approach and discovery of this research will aid 

disaster mitigation and recovery agencies in better understanding a post-disaster reconstruction 

process, developing a greater construction capacity, setting effective reconstruction goals, 

initiating risk mitigation and resourcing strategies, and enforcing effective regulations and policies.  
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CHAPTER 1 INTRODUCTION 

An increasing number of natural disasters pose an inevitable threat to communities (Smith 

& Matthews, 2015). More than a hundred natural disasters strike the United States every year, 

causing numerous fatalities and billions of dollars of property and infrastructure damages (Boustan 

et al., 2020). The total cost of U.S. weather and climate disasters since 1980 has already exceeded 

2 trillion dollars (Smith, 2020). As the number of U.S. county-level disasters has approximately 

tripled in recent decades due to rapid climate change, a greater share of the population is now more 

likely to expose to natural disasters (Boustan et al., 2020; IPCC, 2012).  

Adequate and timely reconstruction and recovery in post-disaster situations are essential 

for the safety, survival, and long-term resilience of a community (Chowdhooree et al., 2019; Kim 

& Shahandashti, 2022a). However, the unexpected reconstruction cost increases in the aftermath 

of a disaster often impede post-disaster recovery due to limited budgets and amplify direct and 

indirect economic losses (Olsen & Porter, 2011; Pradhan & Arneson, 2021). Large-scale disasters 

often lead to a significant surge in the demand for reconstruction resources, which in turn inflates 

the costs associated with the rebuilding process (Babcicky & Seebauer, 2021). This socioeconomic 

phenomenon, commonly referred to as a demand surge, occurs when the heightened demand for 

reconstruction resources creates a relative scarcity, resulting in substantial cost increases over six 

months following the disaster (Olsen & Porter, 2013). Following Hurricane Katrina, more than 60 

percent of construction material prices, as reported by Engineering News-Record, experienced 

statistically significant increases (Khodahemmati & Shahandashti, 2020). Similarly, the demand 

surge after Hurricane Katrina and Rita led to higher unit price bids for asphalt line items in the 

affected areas (Baek & Ashuri, 2018). In the aftermath of Hurricane Harvey, average weekly 
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wages in the construction sector in the Houston metropolitan area rose by 20 percent (Billings et 

al., 2019). Puerto Rico also experienced a surge in demand for residential roofing services 

following Hurricane Irma (Arneson, 2019). Additionally, after the 2021 Texas winter storm, 61 

percent of pipe material costs, represented by 11 line items, showed statistically significant 

increases (Kim & Shahandashti, 2022b). Measuring the spatiotemporal effect of a disaster on 

reconstruction costs can improve disaster loss evaluations and post-disaster recovery planning 

(Burton et al., 2018).  

Local and federal governments have enacted various disaster policies to accelerate post-

disaster recovery and strengthen the resilience of a community (Dzigbede et al., 2020). For 

example, thirty-seven states out of fifty in the U.S. have anti-price gouging legislation that 

regulates exorbitant pricing, denouncing it as an unfair or deceptive trade practice during a time of 

disaster or emergency. One of the intended purposes of this legislation is to stabilize the 

reconstruction costs increased by post-disaster demand surge and ration resources for a swift 

recovery from disasters (Cabral & Xu, 2021; Parsons, 2022; Tabe, 2019). Federal Motor Carrier 

Safety Administration (FMCSA) waives certain federal safety regulations during a time of disaster 

declared by the President, Governors of States, or FMCSA. Drivers that provided direct assistance 

to Texas and Louisiana in the aftermath of Hurricane Harvey were exempt from safety regulations 

such as twelve-hour limitations of Hours of Service and overweight restrictions on their route to 

the emergency (Azanza, 2017; Kingston, 2022). After Hurricane Katrina, there was a relaxation 

of the federal landfill waste acceptance standard to ensure a greater number of disposal sites were 

available, which helped accelerate the cleanup operations (Brown et al., 2011). To facilitate the 

fuel supply during post-disaster situations, the U.S. Environmental Protection Agency (EPA) has 

granted temporary fuel waivers (EPA, 2023). 
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According to consensus climate change projections, it is expected that the frequency and 

severity of disasters will continue to increase in the coming decades (Wuebbles et al., 2017). 

Measuring the post-disaster demand surge for reconstruction and examining the effects of various 

disaster policies are critical for a better disaster response system in the trend of increasing risks of 

disasters (Wang & van de Lindt, 2021) 

This research aims to understand the dynamic process of the post-demand surge in the 

reconstruction market by estimating the spatiotemporal effects of a disaster on construction labor 

wages in different quarters after a disaster using spatial panel data models. Furthermore, this 

research will examine the effects of various local and federal disaster policies on post-disaster 

recovery using difference-in-differences econometric techniques.  

Chapter 2 provides a comprehensive review of the literature on post-disaster demand surge 

and disaster policies. Chapter 2 also describes the gaps in knowledge and research objectives. 

Chapter 3 discusses the methodology of creating econometric models to measure the 

spatiotemporal effects of a disaster on construction wages. Then, the empirical results of the 

developed econometric models that measure the disaster effects on construction wages in Texas, 

Louisiana, and Florida are presented in Chapter 3. Chapter 4 proposes a methodology to assess the 

effects of various disaster policies on post-disaster recovery. Chapter 5 presents the conclusions. 
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CHAPTER 2 RESEARCH BACKGROUND 

2.1. POST-DISASTER DEMAND SURGE 

Post-disaster demand surge for reconstruction has been discussed in the literature (Pradhan 

& Arneson, 2021). The demand for reconstruction resources increases dramatically after large-

scale disasters, inflating reconstruction costs (Babcicky & Seebauer, 2021). This socioeconomic 

phenomenon is known as a demand surge; a significant excess of demand over supply following a 

disaster triggers a relative scarcity of reconstruction resources and substantially inflates their costs 

over six months after the disaster (Olsen & Porter, 2013). Unexpected cost escalation caused by a 

demand surge is considered one of the most significant factors that amplify socioeconomic losses 

in large-scale disasters (Pradhan & Arneson, 2021). Demand surge primarily affects the process 

and performance of post-disaster reconstruction, increasing the probabilities of cost and schedule 

overruns in projects (Döhrmann et al., 2017;  Kim et al., 2022c). For example, due to a 67 to 100 

percent increase in construction wages by demand surge, the post-disaster reconstruction process 

was delayed during the 2004 hurricane season in Florida (Olsen & Porter, 2011). During the 2010-

2011 earthquakes in New Zealand, the demand surge was a critical constraint for providing post-

disaster reconstruction resources (Chang-Richards et al., 2017). 

Since the post-disaster reconstruction of a community is closely related to the magnitude 

of the demand surge, it is crucial to measure and understand the demand surge in the disaster 

recovery process (Moradi & Nejat, 2020). The magnitude of the demand surge has been estimated 

by the amount of post-disaster increases in reconstruction costs such as labor wages and material 

costs compared to the pre-disaster level (Khodahemmati & Shahandashti, 2020; Olsen & Porter, 

2013). The average weekly wages in construction for the Houston metropolitan area increased by 
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20 percent after Hurricane Harvey (Billings et al., 2019). Hurricane Irma resulted in a 41 percent 

demand surge for residential roofing services in Puerto Rico (Arneson, 2019). More than 60 

percent of construction material prices published by Engineering News-Record have faced a 

statistically significant increase in the aftermath of recent disasters (Khodahemmati & 

Shahandashti, 2020). After Hurricane Katrina and Rita, the demand surge increased the unit price 

bids for asphalt line items in the hurricane-affected area (Baek & Ashuri, 2018). Sixty-one percent 

of pipe material costs (11 out of 18 line-items) have experienced a statistically significant increase 

after the 2021 Texas winter storm (Kim & Shahandashti, 2022b). 

Labor wages are particularly one of the most sensitive factors to demand surge (Chang-

Richards et al., 2017; Olsen & Porter, 2013). This is perhaps because the construction labor market 

is less flexible to market changes than the material market due to several reasons, such as annual 

labor contracts and relocation costs (Kim et al., 2022b). Although several cost factors impact the 

demand surge, including material and equipment costs, most studies agree that construction labor 

wage increases are one of the major driving factors of the demand surge (Ahmadi Esfahani & 

Shahandashti, 2020).  

Demand surge is a dynamic process affected by several factors, including the total amount 

of repair works; general economic conditions; insurance claims handling; and spatial relationships 

between communities (Olsen & Porter, 2013). Xiao and Nilawar (2013) showed that the 

geographical closeness to the disaster-stricken communities influences the demand surge in 

employment and personal income after Hurricane Katrina. Ahmadi and Shahandashti (2020) 

reported a spatiotemporal autocorrelation in post-disaster construction wage changes between the 

disaster-stricken county and its neighboring counties.  
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2.2. DISASTER POLICIES 

The resource availability for post-disaster reconstruction highly depends on multi-

stakeholder collaboration and policies in a community (Chang et al., 2011). Wang and van de Lindt 

(2021) found that policies and mitigation strategies can expedite the overall recovery process of a 

community. Disaster policies that can be relevant to post-disaster recovery are discussed below:  

 

2.2.1. Anti-Price Gouging Law 

Lots of reconstruction resources are subject to significant price inflation resulting from 

demand surge in the aftermath of natural catastrophes (Olsen & Porter, 2013). The construction 

material costs increased up to 30 percent after Hurricane Katrina (Khodahemmati & Shahandashti, 

2020). This sudden price inflation in the wake of an emergency is often denounced as price 

gouging (Lee, 2015). Price gouging occurs when a seller sharply increases the prices of necessary 

goods, services, or commodities beyond the reasonable level that covers increased costs after 

demand shocks, following a natural disaster or other emergencies (Zwolinski, 2008). Seventy-two 

percent of respondents in a Washington Post poll answered that oil companies were gouging 

following Hurricane Katrina (Rapp, 2005).  

State legislators enacted anti-price gouging laws to stabilize post-disaster price spikes and 

protect consumers from significantly increased costs (Bae, 2009). Anti-price gouging laws become 

only in effect during a time of disaster or emergency upon the disaster declaration by state 

governors, authorized local officials, or the president of the U.S. (Brewer, 2006). Thirty-seven 
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states, Guam, Puerto Rico, the U.S. Virgin Islands, and the District of Columbia, have statutes or 

regulations against price gouging during disaster or emergency. However, some states, including 

Alaska, Arizona, Maryland, Minnesota, Montana, Nebraska, Nevada, New Hampshire, New 

Mexico, North Dakota, South Dakota, Washington, and Wyoming, do not have anti-price gouging 

statutes, allowing the free market to handle the post-disaster recovery process. There are 

controversies over the effectiveness and effects of anti-price gouging laws.  

Price gouging during times of emergency easily evokes a reactive and emotional outrage 

from people (Culpepper & Block, 2008). The vast majority have often condemned price gouging, 

arguing that it is unfair, immoral, exploitative, and impermissible (Zwolinski, 2008). Snyder 

(2009) argued that price gouging undermines equitable access to the goods and services essential 

to minimal human functioning and hit the poorest of a community the hardest. In the wake of 

disasters, substantial increases in construction costs can reduce the reconstruction speed in 

economically marginalized communities (Kim & Shahandashti, 2022a). Reconstruction cost 

increases are often identified as a major cause of project delay (Gebrehiwet & Luo, 2017). 

Cumulative price increases of more than 20 percent over the insurance policy limit following 

catastrophes can delay post-disaster repairs since the policyholders need to afford the extra repair 

costs by themselves (Döhrmann et al., 2017). Kim and Choi (2013) discussed that the increased 

costs following floods can delay the scheduled project delivery in the vicious cycle of post-disaster 

rebuild projects. The National Association of Home Builders called on the federal government to 

protect consumers against the price gouging of lumber since the reliable supply of reasonably 

priced construction materials is essential for a swift recovery from Hurricane Harvey (Wallisch, 

2017). 
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Rapp (2005) reviewed the existing APG legislation and argued that the enforcement of the 

APG laws can enhance economic efficiency by correcting the failure of the pricing mechanism. 

The APG laws could counteract the gasoline price bubbles that cannot be attributed to market 

fundamentals after hurricanes (Oladosu, 2022). Warkentin (2021) highlighted the benefits of the 

APG law and insisted that the APG law should protect consumers against artificially high 

predatory pricing in times of crisis and emergency. Chang et al. (2011) discussed that post-disaster 

price control can stabilize the price of building materials and facilitate reconstruction projects in 

earthquake-affected regions.  

However, many economists consider that such price hikes condemned as price gouging 

following unexpected disasters are a natural and appropriate market response to the shortage of 

essential goods and services (Wilson, 2014). Culpepper and Block (2008) insisted that price 

working as the ‘invisible hand’ in the free market can efficiently and effectively distribute scarce 

resources in the aftermath of disasters. Shannon (1989) argued that price controls can hinder post-

disaster recovery, thwarting the work of the free market and discouraging favorable supply 

responses to increased demand. Tarrant (2015) investigated that the APG laws did not statistically 

significantly affect the wages in the construction contracting industry and building material supply 

stores. The APG laws can rather damage the retail markets, especially where the retail prices tend 

toward fixity (Richards, 2022).  

 

2.2.2. Federal Motor Carrier Safety Regulation Waiver 

Emergency declarations by the President, Governors of States, or the Federal Motor Carrier 

Safety Administration (FMCSA) trigger the temporary suspension of certain Federal safety 
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regulations. For example, drivers that provide "direct assistance" to an "emergency" declared by 

FMCSA or a governor are exempt from applicable safety regulations such as federal Hours of 

Service (HOS) on their route to the emergency. Policymakers expect that these temporary safety 

regulation waivers assist to facilitate the supply of essential items such as fuel and food for demand 

surge in the aftermath of disasters.  

 

2.2.3. Environmental Regulation Waiver 

Federal and local governments have waived many environmental regulations in the 

aftermath of major disasters. For example, following Hurricane Katrina in 2005, the 

Environmental Protection Agency (EPA) and the Louisiana Department of Environmental Quality 

granted relief from the many environmental regulations. Recently, Texas Governor Abbott 

suspended several environmental regulations after Hurricane Harvey in 2017. The US 

Environmental Protection Agency (EPA), working with the Department of Energy, responds 

quickly to address fuel supply disruptions caused by, for example, refinery or pipeline 

infrastructure damage as the result of a hurricane or other natural disaster, by issuing emergency 

waivers of certain fuel standards in affected areas. On November 2, EPA waived the requirement 

for the use of Ultra Low Sulfur Diesel in emergency response vehicles and equipment in the five 

boroughs of New York City and Nassau, Suffolk, Rockland, and Westchester counties in New 

York, all the counties in New Jersey, and all the counties in the Commonwealth of Pennsylvania, 

as the result of Hurricane Sandy through November 20, 2012.  
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2.3. GAPS IN KNOWLEDGE 

Although the existing studies provide valuable insights for post-disaster demand surge and 

disaster policies, there are significant gaps in knowledge related to the spatiotemporal analysis of 

the dynamics of demand surge and the quantitative evidence on the effects of various disaster 

policies on the recovery process. The following gaps were identified from the literature.  
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(1) Despite the significance of the effect of a disaster on the construction market, the effects 

of a disaster on the construction market have not been clarified accounting for the 

spatiotemporal interactions between communities. 

(2) The effects of various disaster policies on post-disaster recovery have not been elucidated 

based on the empirical quantitative analysis using the macroeconomic and socioeconomic 

variables. 

 

2.4. RESEARCH OBJECTIVES 

The objectives of this research are to: 

(1) Estimate the spatiotemporal effects of a disaster on construction wages for understanding 

the dynamics of demand surge in the post-disaster reconstruction labor market 

(2) Identify and assess the effects of various disaster management policies on the post-disaster 

reconstruction process using macroeconomic and socioeconomic variables 

CHAPTER 3 ESTIMATING THE SPATIOTEMPORAL EFFECTS OF A DISASTER 

ON CONSTRUCTION WAGES 

Policymakers and reconstruction engineers need to understand the spatiotemporal 

dynamics of post-disaster demand surge for a timely and equitable disaster recovery under budget 

constraints (Smith & Matthews, 2015). Therefore, this study adopted the construction labor wage 

fluctuations to quantitatively estimate the spatiotemporal magnitude of the demand surge. 

Construction market variables were included as control variables to control for the other 
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determinants of construction wage fluctuations (Ahmadi & Shahandashti, 2018; Farooghi et al., 

2021; Kim et al., 2021).  

 

3.1. METHODOLOGY 

3.1.1. Data Collection  

3.1.1.1. Construction Industry Variables 

The magnitude of the demand surge has been estimated by the amount of post-disaster 

increases in reconstruction costs such as labor wages and material costs compared to the pre-

disaster level (Ahmadi & Shahandashti, 2018; Khodahemmati & Shahandashti, 2020; Kim et al., 

2021a; Olsen & Porter, 2013). Labor wages are particularly one of the most sensitive factors to 

demand surge (Chang-Richards et al., 2017; Olsen & Porter, 2013). This is perhaps because the 

construction labor market is less flexible to market changes than the material market due to several 

reasons, such as annual labor contracts and relocation costs (Kim et al., 2022b). Construction wage 

increases are one of the major driving factors of reconstruction cost increases caused by demand 

surge (Ahmadi Esfahani & Shahandashti, 2020). 

Therefore, the average weekly wages in the construction industry were selected as a 

dependent variable for spatiotemporal analysis to estimate the disaster effect on construction 

wages. Table 3-1 shows the data collection of construction industry variables. The employment 

and establishment count data were included in the analysis as control variables to control for their 

confounding effects on construction wages (Barth & Dale-Olsen, 2011; Blanchflower & Oswald, 

1995; Green et al., 2021). 
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Table 3-1. Data Collection of Construction Industry Variables 

Data Definition Period Source 

Dependent variable:    

Construction wages Average weekly wages paid 

during the calendar quarter in the 

construction industry 

Q1 2015 – Q4 2019 Bureau of 

Labor 

Statistics 

Control variables:    

Employment Quarterly number of employees 

in the construction industry 

Q1 2015 – Q4 2019 Bureau of 

Labor 

Statistics 

Establishment Count Quarterly number of 

establishments in the 

construction industry 

Q1 2015 – Q4 2019 Bureau of 

Labor 

Statistics 

  

 

 

3.1.1.2. Disaster-related Data 

The independent dummy variable for representing a disaster occurrence was selected based 

on the major disaster declarations by Federal Emergency Management Agency (FEMA). Figure 

3-1 describes all the major disaster declarations of hurricanes from 2015 to 2019 in three Gulf 

Coast states (Texas, Louisiana, and Florida) that are prone to hurricane strikes. A list of counties 

in three Gulf Coast states (Texas, Louisiana, and Florida) that received a major disaster declaration 

of hurricanes between 2015 and 2019 was obtained from FEMA.  
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Figure 3-1. Major Disaster Declarations of Hurricanes from 2015 to 2019 in the Gulf Coast 

States (TX, LA, and FL) 

 

3.1.1.3. Spatial Weight Matrices 

For creating spatial econometrics models, every single observation in datasets needs to be 

geocoded. The spatial weight matrix defines the neighbors and describes which observations are 

spatially close and how much they influence each other. The spatial weight matrix in the panel 

data model is specified as W with elements 𝑤𝑖𝑗 , specifying whether county i and j are spatially 

correlated. Each element of i and j (𝑤𝑖𝑗) is defined as one if i and j are neighbors and zero 

otherwise.  Following the standard convention, “self-influence” of county i on itself is excluded 

by assuming that 𝑤𝑖𝑖   = 0 for all i = 1,2, 3,…, n. Thus, the matrix of W has zero diagonal elements 

(Smith, 2014).  The spatial contiguity weight matrix used in this research is represented by Eq. 3-

1. 

 

 𝑤𝑖𝑗 = {
1,         𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑖) ∩  𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑗) ≠ ∅ 
0,         𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑖) ∩  𝑏𝑜𝑢𝑛𝑑𝑟𝑦(𝑗) = ∅

              Eq. 3-1 
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3.1.2. Missing Data Handling 

Data imputation methods have been implemented to resolve missing data problems in 

quantitative studies. The current study utilized two different missing data handling methods 

including spatial multiple imputation and missing data deletion which is a non-spatial method. The 

spatial multiple imputation method is used to impute a missing observation to create a complete 

data matrix for analysis while the missing data deletion method is used to simply omit some or all 

the missing observations (Jadhav et al., 2019).  

The spatial multiple imputation method is implemented to replace a missing observation 

with a plausible value based on the maximum likelihood estimation (Spiess & Augustin, 2021). 

The spatial multiple imputation method is carried out in three sequential steps: (1) creating several 

complete sets by imputing plausible estimates to the missing observations, (2) analyzing the 

multiple complete datasets using a joint spatial distribution, and (3) aggregating the results from 

the multiple analyses (Lee et al., 2019).   

The missing data deletion method is removing the missing observations from the dataset 

(Xie et al., 2020). While the spatial characteristics of data are not considered in the missing data 

deletion method, the spatial characteristics of data are considered in the spatial multiple imputation 

methods (Chandra et al., 2015; Yozgatligil et al., 2013). Particularly, spatial multiple imputation 

methods are developed for spatiotemporal analysis of panel datasets (Matthews, 2020).  
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3.1.3. Difference-in-Differences (DID) Technique 

The difference-in-differences (DID) specification is widely used to estimate the effect of a 

treatment on an outcome variable by comparing the differences between the control and treatment 

groups before and after an intervention (Card & Krueger, 1993; Papke, 1994). The DID 

specification typically requires four groups: the control group before and after the intervention and 

the treatment group before and after the intervention. Figure 3-2 illustrates the DID specification 

to estimate the disaster effects on construction wages.  
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Figure 3-2. Difference-in-differences specification 

The DID specification allows us to control for the unobserved time-invariant county-

specific factors. The DID specification can estimate the effects of a disaster on heterogenous 

county-level construction wages using the one-stage modeling without the separate measurement 

stage, avoiding measurement errors. Spatial panel data models were utilized in this study for 

implementing the DID specification to examine the spatial spillover effects or the spatial 

dependencies between counties (Elhorst, 2014).  

 

3.1.4. Panel Data Models 

3.1.4.1. Base Models 
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Ordinary Least Squares (OLS) were used to estimate Eq. 3-2.  

 

𝑙𝑛𝑊𝐴𝐺𝐸𝑖𝑡 =  𝛽0 +  𝛽1𝐷𝐼𝑆𝑖𝑡 + 𝛽2𝐸𝑀𝑃𝑖𝑡 + 𝛽3𝐸𝑆𝑇𝑖𝑡 + 𝛼𝑖 +  𝛼𝑡 + 𝜀𝑖𝑡  Eq. 3-2 

where 𝑊𝐴𝐺𝐸𝑖𝑡 is average weekly wages in the construction industry in county i and time t; 𝐷𝐼𝑆𝑖𝑡 

is a dummy variable that is equal to one if county i at time t experienced Hurricane declared as a 

major disaster by FEMA, and zero otherwise; 𝐸𝑀𝑃𝑖𝑡 is the number of employees in the 

construction industry in county i and time t; 𝐸𝑆𝑇𝑖𝑡 is the number of establishments in the 

construction industry in county i and time t; 𝛼𝑖 is the unobservable time-invariant county fixed-

effects; 𝛼𝑡 is the unobservable county-invariant time fixed-effects; and 𝜀𝑖𝑡 is the time-varying 

idiosyncratic error. 

 

The estimators obtained from the OLS model do not control for the unobserved time-

invariant county effects (𝛼𝑖), so the results are biased and inconsistent (Kim et al., 2020). The 

fixed-effects model helps to mitigate the bias due to time-invariant factors (𝛼𝑖) that are correlated 

with independent variables. A fixed-effect model can control for unobservable specific 

characteristics of each county, which is related to a disaster; for example, geographical features of 

each county that may affect natural disaster occurrence. The Lagrange multiplier test proposed by 

Breusch and Pagan (1980) was used to see whether unobserved time-invariant county fixed-effects 

(𝛼𝑖) exist. The rejection of the null hypothesis shows that the OLS estimators are not appropriate, 

so random-effect or fixed-effect models are more appropriate. 

Since the OLS model does not take spatial dependencies among counties into account, the 

base OLS model is not appropriate to examine the spatial spillover effects of a disaster (Kim et al., 



 

19 

 

 

2022a). A disaster in one county i can not only affect the construction wages in the county i directly 

(direct effects) but also potentially affect the construction wages in other counties indirectly based 

on the spatial dependencies among the counties (indirect spillover effects). This phenomenon is 

called interactive heterogeneity or multi-county interaction (LeSage & Pace, 2014). 

 

3.1.4.2. Dynamic Spatial Durbin Models  

The dynamic Spatial Durbin models (SDM) were used to examine the spatiotemporal 

effects of a disaster on construction wages considering the multi-county spatial interactions. The 

dynamic SDM includes both the temporal and spatial lags of the dependent variable and 

independent covariates to account for the spatiotemporal interactive heterogeneities among 

counties (Belotti et al., 2017; LeSage & Pace, 2014). The SDM is a more extensive model than 

SAR (spatial autoregressive model) and SEM (spatial error model) as it embeds both SAR and 

SEM (Bu et al., 2022; Elhorst, 2014). While the SAR and SEM suffer from estimating the accurate 

spillover effects, the SDM has been popularly adopted in applied research to quantify the direct, 

indirect spillover, and total effects of independent variables on the dependent variable, accounting 

for both endogenous and exogenous interaction effects (Elhorst, 2014; LeSage & Pace, 2014). Eq. 

3-3 represents Texas construction wages estimated by dynamic SDM containing the temporally 

and spatially lagged dependent variables (i.e., construction wages). The dynamic SDM model was 

used to examine the direct, indirect, and total effects of a disaster on construction wages in the 

short-run and long-run.  

 

Dynamic Spatial Durbin Model (SDM)  
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𝑙𝑛𝑊𝐴𝐺𝐸𝑖𝑡 =  𝛽0 + 𝜏𝑊𝐴𝐺𝐸𝑖𝑡−1 + 𝜑𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡−1 + 𝜌𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡 +  𝛽1𝐷𝐼𝑆𝑖𝑡 + 𝛽2𝐸𝑀𝑃𝑖𝑡 +

𝛽3𝐸𝑆𝑇𝑖𝑡 + 𝛿1𝑊𝑖𝑗𝐷𝐼𝑆𝑗𝑡 + 𝛿2𝑊𝑖𝑗𝐸𝑀𝑃𝑗𝑡 + 𝛿3𝑊𝑖𝑗𝐸𝑆𝑇𝑗𝑡+𝛼𝑖 +  𝛼𝑡 + 𝜀𝑖𝑡  Eq. 3-3 

i= 1,…, 254 and   t= 2015, 2016, 2017, 2018, 2019 

where 𝑊𝐴𝐺𝐸𝑖𝑡 is average weekly wages in the construction industry in county i and time t; Wij is 

the 254×254 spatial weight matrix representing the queen contiguity weight matrix of 254 counties 

in Texas; 𝑊𝐴𝐺𝐸𝑖𝑡−1 is temporally lagged construction wages; 𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡−1 is temporally and 

spatially lagged construction wages; 𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡 is spatially lagged construction wages;  𝐷𝐼𝑆𝑖𝑡 is 

a dummy variable that is equal to one if county i at time t experienced Hurricane declared as a 

major disaster by FEMA, and zero otherwise; 𝐸𝑀𝑃𝑖𝑡 is the number of employees in the 

construction industry in county i and time t; 𝐸𝑆𝑇𝑖𝑡 is the number of establishments in the 

construction industry in county i and time t; ρ is a spatial dependence parameter; 𝛼𝑖 is the 

unobservable time-invariant county fixed-effects; 𝛼𝑡 is the unobservable county-invariant time 

fixed-effects; 𝜀𝑖𝑡 is the time-varying idiosyncratic error; 𝜌𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡 is endogenous interaction 

effects; and 𝛿1𝑊𝑖𝑗𝐷𝐼𝑆𝑗𝑡,𝛿2𝑊𝑖𝑗𝐸𝑀𝑃𝑗𝑡 , 𝛿3𝑊𝑖𝑗𝐸𝑆𝑇𝑗𝑡  are exogeneous interaction effects. 

 

Disaster often has a lagged effect on the post-disaster construction industry (Capelle-

Blancard & Laguna, 2010; Hallegatte et al., 2011; Higuchi et al., 2012; Kajitani & Tatano, 2018; 

Naqvi & Rehm, 2014). The lagged effect of a disaster on the county-level construction wages one 

quarter after the disaster was estimated using Eq. 3-4.  
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Dynamic Spatial Durbin Model (SDM) with a temporally lagged independent variable  

𝑙𝑛𝑊𝐴𝐺𝐸𝑖𝑡 =  𝛽0 + 𝜏𝑊𝐴𝐺𝐸𝑖𝑡−1 + 𝜑𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡−1 + 𝜌𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡 +  𝛽1𝐷𝐼𝑆𝑖𝑡−1 +  𝛽2𝐷𝐼𝑆𝑖𝑡 +

𝛽3𝐸𝑀𝑃𝑖𝑡 + 𝛽4𝐸𝑆𝑇𝑖𝑡 + 𝛿1𝑊𝑖𝑗𝑙. 𝐷𝐼𝑆𝑗𝑡 + 𝛿2𝑊𝑖𝑗𝐷𝐼𝑆𝑗𝑡 + 𝛿3𝑊𝑖𝑗𝐸𝑀𝑃𝑗𝑡 + 𝛿4𝑊𝑖𝑗𝐸𝑆𝑇𝑗𝑡+𝛼𝑖 +  𝛼𝑡 + 𝜀𝑖𝑡 

i = 1,…, 254 and   t = 2015, 2016, 2017, 2018, 2019   Eq. 3-4 

where 𝑊𝐴𝐺𝐸𝑖𝑡 is average weekly wages in the construction industry in county i and time t; Wij is 

the 254×254 spatial weight matrix representing the queen contiguity weight matrix of 254 counties 

in Texas; 𝑊𝐴𝐺𝐸𝑖𝑡−1 is temporally lagged construction wages; 𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡−1 is temporally and 

spatially lagged construction wages; 𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡 is spatially lagged construction wages; 𝐷𝐼𝑆𝑖𝑡−1 

is a temporally lagged disaster dummy variable that is equal to one if county i at time t-1 

experienced a Hurricane declared as a major disaster by FEMA, and zero otherwise; 𝐷𝐼𝑆𝑖𝑡 is a 

dummy variable that is equal to one if county i at time t experienced Hurricane declared as a major 

disaster by FEMA, and zero otherwise; 𝐸𝑀𝑃𝑖𝑡 is the number of employees in the construction 

industry in county i and time t; 𝐸𝑆𝑇𝑖𝑡 is the number of establishments in the construction industry 

in county i and time t; ρ is a spatial dependence parameter; 𝛼𝑖 is the unobservable time-invariant 

county fixed-effects; 𝛼𝑡 is the unobservable county-invariant time fixed-effects; 𝜀𝑖𝑡 is the time-

varying idiosyncratic error; ρW𝑖𝑗WAGE𝑗𝑡 is endogenous interaction effects; and 

𝛿1𝑊𝑖𝑗𝑙. 𝐷𝐼𝑆𝑗𝑡, 𝛿2𝑊𝑖𝑗𝐷𝐼𝑆𝑗𝑡, 𝛿3𝑊𝑖𝑗𝐸𝑀𝑃𝑗𝑡 , 𝛿4𝑊𝑖𝑗𝐸𝑆𝑇𝑗𝑡 are exogeneous interaction effects. 

 

The direct, indirect, and total marginal effects of an independent variable (e.g., disaster) on 

the dependent variable (e.g., construction wages) can be estimated by taking the partial derivative 

of the expected value of the dependent variable with respect to the independent variable in the 
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dynamic SDM. Eq. 3-5 shows the partial derivatives of the expected values of construction wages 

in 254 counties in Texas with respect to the disaster variable for measuring the direct, indirect, and 

total marginal effects of a disaster on post-disaster construction wages. 

 

[
 
 
 
 
 
𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸1)

𝜕𝐷𝐼𝑆1

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸1)

𝜕𝐷𝐼𝑆2
⋯

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸𝑖)

𝜕𝐷𝐼𝑆𝑖

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸2)

𝜕𝐷𝐼𝑆1

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸2)

𝜕𝐷𝐼𝑆2
⋯

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸𝑖)

𝜕𝐷𝐼𝑆𝑖

⋮ ⋮ ⋱ ⋮
𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸𝑖)

𝜕𝐷𝐼𝑆1

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸𝑖)

𝜕𝐷𝐼𝑆2
⋯

𝜕𝐸(𝑙𝑛𝑊𝐴𝐺𝐸𝑖)

𝜕𝐷𝐼𝑆𝑖 ]
 
 
 
 
 

=  ((𝐼𝑖 − 𝜌𝑊)−1) [

𝛽1 𝑤12𝛿1 ⋯ 𝑤1𝑖𝛿1

𝑤21𝛿1 𝛽1 ⋯ 𝑤2i𝛿1

⋮ ⋮ ⋱ ⋮
𝑤𝑖1𝛿1 𝑤𝑖2𝛿1 ⋯ 𝛽1

]  

i= 1, …, 254    Eq. 3-5 

 

The direct effect is the effect of a disaster occurrence in county i on the construction wages 

of county i. The indirect effect is the effect of a disaster that occurred in the neighboring county j 

on the construction wages of county i. The total effect is the effect of a disaster occurrence in all 

counties on the construction wages of county i. The direct effects are estimated by diagonal 

elements, while the indirect spillover effects are estimated by off-diagonal elements in Eq. 3-5 

(Belotti et al., 2017; Elhorst, 2014; LeSage & Pace, 2014). Table 3-2 summarizes the estimation 

of the direct and indirect effects of a disaster on construction wages in the short-run and long-run 

using dynamic SDM. 

 

Table 3-2. Direct and indirect effects of a disaster on construction wages in the short-run and 

long-run estimated by dynamic SDM 
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Dynamic SDM Direct effect Indirect effect 

Short-run {((𝐼𝑖 − 𝜌𝑊)−1 × (𝛽1𝐼𝑖 + 𝛿1𝑊)}�̅� 
{((𝐼𝑖 − 𝜌𝑊)−1 × (𝛽1𝐼𝑖 +

𝛿1𝑊)}𝑟𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅  

Long-run 
{((1 − 𝜏)𝐼𝑖 − (𝜌 + 𝜑)𝑊)−1 ×

(𝛽1𝐼𝑖 + 𝛿1𝑊)}�̅� 

{((1 − 𝜏)𝐼𝑖 − (𝜌 + 𝜑)𝑊)−1 ×

(𝛽1𝐼𝑖 + 𝛿1𝑊)}𝑟𝑠𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅  

Note: Ii is the identity matrix for county i; W is the 254×254 spatial weight matrix representing 

the queen contiguity weight matrix of 254 counties in Texas; 𝛽1 is a parameter of the disaster 

variable (DISi); 𝛿1 is the parameter of the exogenous interaction effect of a disaster (𝑊𝑖𝑗𝐷𝐼𝑆𝑗𝑡);  

𝜌 is a spatial dependence parameter of the spatially lagged construction wages (𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡); 

𝜏 is the parameter of the temporally lagged construction wages(𝑊𝐴𝐺𝐸𝑖𝑡−1); 𝜑 is the parameter 

of the spatially and temporally lagged construction wages(𝑊𝑖𝑗𝑊𝐴𝐺𝐸𝑗𝑡−1); superscript �̅� is the 

operator that calculates the mean diagonal element of a matrix; and superscript 𝑟𝑠𝑢𝑚 ̅̅ ̅̅ ̅̅ ̅̅  is the 

operator that calculates the mean row sum of the nondiagonal elements. 

 

3.2. RESULTS  

3.2.1. Results of the Base Models 

Table 3-3 presents the results of OLS regression models. The missing data in the dataset 

were handled using spatial multiple imputation and missing data deletion methods.  

Table 3-3. The results from the OLS models combined with missing data handling methods 

State Texas Louisiana Florida 

Missing Data 

Handling 
Imputed Deleted Imputed Deleted Imputed Deleted 

Variables lnWAGE lnWAGE lnWAGE lnWAGE lnWAGE lnWAGE 

Disaster 
-0.0180 

(0.0174) 

-0.0251 

(0.0184) 

-0.0368* 

(0.0212) 

-0.0465** 

(0.0222) 

0.00436 

(0.00912) 

0.00402 

(0.00905) 

Employment 
0.0216*** 

(0.00277) 

0.145*** 

(0.00941) 

0.0220*** 

(0.00781) 

0.0893*** 

(0.0165) 

0.0921*** 

(0.0137) 

0.156*** 

(0.0201) 

Establishment 

Count 

0.0103 

(0.00908) 

-0.101*** 

(0.0230) 

0.0757** 

(0.0385) 

-0.00730 

(0.0489) 

-0.0169 

(0.0336) 

-0.0577 

(0.0353) 
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Constant 
6.513*** 

(0.0405) 

6.077*** 

(0.0885) 

6.237*** 

(0.170) 

6.088*** 

(0.197) 

5.792*** 

(0.191) 

5.482*** 

(0.202) 

Year_Q Dummies Yes Yes Yes Yes Yes Yes 

Observations 5,080 4,168 1,280 1,163 1,340 1,317 

R-squared 0.329 0.347 0.238 0.243 0.624 0.634 

Number of counties 254 227 64 63 67 67 

Note: Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

The disaster effect on the construction wages in the quarter when the disaster occurred 

(hereafter, the disaster quarter) is not statistically significant in Texas and Florida. The disaster 

decreased the construction wages in the disaster-affected counties by 3.68 percent compared to the 

non-disaster-affected counties based on the imputed Louisiana dataset and by 4.65 percent based 

on the deleted Louisiana dataset.  

The positive relationship between employment and wages in the construction industry was 

found to be statistically significant in all three datasets of Gulf Coast states. This positive 

relationship between employment and construction wages is consistent with the findings in the 

previous studies (Barth & Dale-Olsen, 2011; Blanchflower & Oswald, 1995; Green et al., 2021).  
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3.2.2. Results of the Spatial Durbin Models  

Table 3-4 represents the results of the Spatial Durbin Models (SDM).  

Table 3-4. The results of the Spatial Durbin fixed effects models combined with missing data 

handling methods 

State Texas Louisiana Florida 

Missing Data 

Handling  
Imputed Deleted Imputed Deleted Imputed Deleted 

Variables lnwage lnwage lnwage lnwage lnwage lnwage 

Disaster 
-0.0259** 

(0.0121) 

-0.0203 

(0.0138) 

-

0.0402*** 

(0.0143) 

-0.0152 

(0.0155) 

0.00211 

(0.00667) 

0.00688 

(0.00616) 

Employment 
0.0210*** 

(0.00327) 

0.115*** 

(0.0222) 

0.0245 

(0.0156) 

0.0745 

(0.0460) 

0.100 

(0.0680) 

0.125 

(0.172) 

Establishment 

Count 

0.0130 

(0.00946) 

-0.104** 

(0.0422) 

0.0830 

(0.0882) 

0.0566 

(0.135) 

0.0325 

(0.0762) 

0.0167 

(0.139) 

𝐖𝒊𝒋𝐥𝐧𝐖𝐀𝐆𝐄  

(Spatially 

Lagged Wage) 

0.375*** 

(0.0362) 

0.346*** 

(0.0371) 

0.306*** 

(0.0652) 

0.302*** 

(0.0773) 

0.295*** 

(0.0829) 

0.294*** 

(0.0933) 

𝛒 

(Spatial 

0.368*** 

(0.0197) 

0.305*** 

(0.0253) 

0.272*** 

(0.0320) 

0.262*** 

(0.0431) 

0.490*** 

(0.0408) 

0.483*** 

(0.0432) 
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dependencies) 

𝝈𝜺
𝟐 

(Variance of 

the error) 

0.0104*** 

(0.000860) 

0.0105*** 

(0.000915) 

0.0126*** 

(0.00171) 

0.011*** 

(0.00183) 

0.004*** 

(0.00084

9) 

0.004*** 

(0.00087

0) 

Year_Q 

Dummies 
Yes Yes Yes Yes Yes Yes 

Observations 4,826 3,591 1,216 1,007 1,273 1,197 

R-squared 0.650 0.398 0.213 0.157 0.589 0.620 

Number of 

counties 
254 189 64 53 67 63 

Note: Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

The effect of a disaster on construction wages in the disaster quarter was estimated to be 

negative at the 5% significance level based on the imputed panel datasets of Texas and Louisiana. 

The construction wages in the Texas counties struck by a disaster (i.e., disaster-affected counties) 

were estimated 2.59 percent lower than the wages in the non-disaster-affected counties in Texas. 

Similarly, the construction wages in the disaster-affected counties in Louisiana were measured as 

4.02 percent lower than the wages in the non-disaster-affected counties in Louisiana. However, 

this negative effect of a disaster on construction wages was not reported in Florida counties.  

The endogenous spatial interaction effect of construction wages (i.e., 𝜌W𝑖𝑗lnWAGE) was 

found to be positive in all three Gulf Coast states. It indicates that the construction wages in county 

i are positively associated with the wages in the neighboring county j. The positive coefficient on 

W𝑖𝑗lnWAGE (Spatially Lagged Wage) indicates that the construction wages in county i are 

positively influenced by the construction wages in the neighboring county j. The positive 

coefficient on ρ (Spatial dependencies) shows a higher spatial dependency of construction wages 

between county i and neighboring county j. This positive spatial interaction effect of construction 
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wages aligns with the findings in the previous studies (Buettner, 1999; Fingleton & Szumilo, 

2019).  

The disaster effects on construction wages can be more accurately scrutinized and 

quantified by the partial derivatives of the expected values of the dependent variable (i.e., 

construction wages) with respect to the independent variables (Eq. 3-5). The direct, indirect, and 

total effects of a disaster on the construction wage were investigated using fixed-effects dynamic 

SDMs in Table 3-5.  

Table 3-5. Direct, Indirect, and Total Effects from Spatial Durbin Models (Imputed Datasets) 

VARIABLES DISASTER EMPLOYMENT 
ESTABLISHMENT 

COUNT 

TX 

Main 
-0.0259** 

(0.0121) 

0.0210*** 

(0.00327) 

0.0130 

(0.00946) 

Wx 
0.00196 

(0.0205) 

-0.00341 

(0.00797) 

-0.0133 

(0.0232) 

SR 

Direct 
-0.0268** 

(0.0110) 

0.0217*** 

(0.00320) 

0.0122 

(0.00938) 

Indirect 
-0.00955 

(0.0267) 

0.00650 

(0.0120) 

-0.0144 

(0.0334) 

Total 
-0.0364 

(0.0241) 

0.0282** 

(0.0131) 

-0.00220 

(0.0367) 

LR 

Direct 
-0.0452*** 

(0.0173) 

0.0364*** 

(0.00557) 

0.0191 

(0.0163) 

Indirect 
-0.0449 

(0.0610) 

0.0332 

(0.0295) 

-0.0248 

(0.0825) 

Total 
-0.0901 

(0.0600) 

0.0697** 

(0.0323) 

-0.00568 

(0.0912) 

LA 

Main 
-0.0402*** 

(0.0143) 

0.0245 

(0.0156) 

0.0830 

(0.0882) 

Wx 
0.0725*** 

(0.0233) 

0.0333** 

(0.0163) 

0.251** 

(0.101) 

SR Direct 
-0.0369*** 

(0.0132) 

0.0287* 

(0.0153) 

0.103 

(0.0867) 
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Indirect 
0.0823*** 

(0.0282) 

0.0538** 

(0.0238) 

0.361*** 

(0.133) 

Total 
0.0454* 

(0.0259) 

0.0824** 

(0.0331) 

0.464*** 

(0.168) 

LR 

Direct 
-0.0506*** 

(0.0189) 

0.0439* 

(0.0226) 

0.164 

(0.127) 

Indirect 
0.130*** 

(0.0471) 

0.0993** 

(0.0434) 

0.640*** 

(0.231) 

Total 
0.0792* 

(0.0457) 

0.143** 

(0.0583) 

0.804*** 

(0.292) 

FL 

Main 
0.00211 

(0.00667) 

0.100 

(0.0680) 

0.0325 

(0.0762) 

Wx 
0.0130 

(0.00919) 

-0.0740* 

(0.0390) 

0.0594 

(0.0749) 

SR 

Direct 
0.00405 

(0.00607) 

0.0992 

(0.0695) 

0.0415 

(0.0741) 

Indirect 
0.0261* 

(0.0142) 

-0.0443 

(0.0770) 

0.145 

(0.131) 

Total 
0.0302** 

(0.0143) 

0.0549 

(0.128) 

0.186 

(0.168) 

LR 

Direct 
0.00871 

(0.00885) 

0.144 

(0.109) 

0.0784 

(0.119) 

Indirect 
0.0666* 

(0.0388) 

-0.0251 

(0.230) 

0.406 

(0.397) 

Total 
0.0753* 

(0.0407) 

0.119 

(0.320) 

0.484 

(0.478) 

Notes: Robust standard errors in the parentheses;  

SR denotes ‘Short-run’ effects and LR denotes ‘Long-run’ effects. 

*** p<0.01, ** p<0.05, * p<0.1 

 

The Main equation contains the β vector and the Wx reports the 𝛿 vector in Eq. 3-3 (Belotti 

et al., 2017). The main disaster effect on construction wages in the Texas panel dataset was 

estimated to be -2.59 percent. In other words, the construction wages in disaster-affected counties 

in Texas are 2.59 percent lower than the wages in non-disaster-affected counties in Texas. This 

negative effect of a disaster on construction wages can be attributed to the short-run direct effect 
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of -2.68 percent and the long-run direct effect of -4.52 percent. The disaster that occurred in county 

i in Texas decreased the county’s construction wages by 2.68 percent in the short-run, by 4.52 

percent in the long-run, and by 2.59 percent in total accounting for all the direct and indirect effects 

in the short-run and long-run.  

The construction wages in disaster-affected counties in Louisiana are 4.02 percent lower 

than the wages in non-disaster-affected counties. The main disaster effect of – 4.02 percent in 

Louisiana can be attributed to the short-run direct effect of -3.69 percent, the short-run indirect 

effect of 8.23 percent, the long-run direct effect of -5.06 percent, and the long-run indirect effect 

of 13 percent. The direct effect of a disaster on construction wages in the disaster-affected 

Louisiana counties was estimated to be negative. This negative direct effect of a disaster which 

was consistently reported both in Texas and Louisiana is probably because the local market system 

is damaged immediately after a disaster (Capelle-Blancard & Laguna, 2010; Hallegatte et al., 

2011; Higuchi et al., 2012; Kajitani & Tatano, 2018; Naqvi & Rehm, 2014). However, the indirect 

effect of a disaster on construction wages in Louisiana counties was found to be statistically 

significantly positive. The positive indirect effect of a disaster indicates that the construction wages 

in a county increase when a disaster strikes its neighboring county. This result seems plausible 

because the post-disaster surge in construction labor demand can be met by the supply of 

construction labor from the adjacent counties, inflating the construction wages in the county 

neighboring the disaster-affected county (Sadri et al., 2018). 

The main effect of a disaster on construction wages was not found statistically significant 

in the Florida counties. However, the positive indirect spillover effects and total effects of a 
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disaster on construction wages were reported in the Florida counties both in the short-run and long-

run. 

 

 

 

 

3.2.3. Results of the Spatial Durbin Models with Lagged Disaster Variables 

The Spatial Durbin Models (SDM) with lagged disaster variables were developed to 

examine the lagged spatiotemporal effect of a disaster on construction wages considering the 

spatial interactions and dependence among counties.  

Table 3-6 represents the results of the SDMs with the first-lagged disaster variable. 

 

Table 3-6. Direct, Indirect, and Total Effects from Spatial Durbin Models with First Lagged 

Disaster Variable (Imputed Datasets) 

VARIABLES 

FIRST-

LAGGED 

DISASTER 

DISASTER EMPLOYMENT 
ESTABLISHMENT 

COUNT 

TX 

Main 
0.0441*** 

(0.0106) 

-0.0226* 

(0.0121) 

0.0210*** 

(0.00360) 

0.0152 

(0.00984) 

S

R 

Direct 
0.0450*** 

(0.0106) 

-0.0220** 

(0.0110) 

0.0213*** 

(0.00347) 

0.0150 

(0.0103) 

Indirect 
0.0255*** 

(0.00630) 

-0.0123 

(0.0281) 

0.00683 

(0.0120) 

-0.00644 

(0.0359) 



 

31 

 

 

Total 
0.0706*** 

(0.0167) 

-0.0344 

(0.0265) 

0.0282** 

(0.0128) 

0.00856 

(0.0407) 

L

R 

Direct 
0.0742*** 

(0.0174) 

-0.0363** 

(0.0170) 

0.0348*** 

(0.00572) 

0.0236 

(0.0176) 

Indirect 
0.0928*** 

(0.0246) 

-0.0451 

(0.0623) 

0.0317 

(0.0282) 

-0.00397 

(0.0855) 

Total 
0.167*** 

(0.0409) 

-0.0813 

(0.0629) 

0.0665** 

(0.0306) 

0.0196 

(0.0962) 

LA 

Main 
0.0469** 

(0.0203) 

-0.0338** 

(0.0137) 

0.0288* 

(0.0169) 

0.0707 

(0.0925) 

S

R 

Direct 
0.0396** 

(0.0189) 

-0.0286** 

(0.0128) 

0.0305* 

(0.0168) 

0.0865 

(0.0931) 

Indirect 
-0.160*** 

(0.0448) 

0.0917*** 

(0.0267) 

0.0376* 

(0.0213) 

0.343*** 

(0.131) 

Total 
-0.121*** 

(0.0409) 

0.0631** 

(0.0253) 

0.0682** 

(0.0320) 

0.429** 

(0.177) 

L

R 

Direct 
0.0500** 

(0.0253) 

-0.0366** 

(0.0172) 

0.0422* 

(0.0230) 

0.125 

(0.127) 

Indirect 
-0.231*** 

(0.0652) 

0.132*** 

(0.0392) 

0.0604* 

(0.0330) 

0.520*** 

(0.197) 

Total 
-0.181*** 

(0.0617) 

0.0952** 

(0.0385) 

0.103** 

(0.0483) 

0.645** 

(0.264) 

FL 

Main 
0.0179*** 

(0.00516) 

0.00589 

(0.00690) 

0.114* 

(0.0684) 

0.0272 

(0.0859) 

S

R 

Direct 
0.0190*** 

(0.00528) 

0.00877 

(0.00646) 

0.112 

(0.0724) 

0.0394 

(0.0867) 

Indirect 
0.0155*** 

(0.00470) 

0.0273* 

(0.0152) 

-0.0569 

(0.0658) 

0.190 

(0.133) 

Total 
0.0345*** 

(0.00963) 

0.0361** 

(0.0165) 

0.0548 

(0.120) 

0.230 

(0.179) 

L

R 

Direct 
0.0289*** 

(0.00798) 

0.0150 

(0.00935) 

0.157 

(0.108) 

0.0734 

(0.130) 

Indirect 
0.0470*** 

(0.0172) 

0.0649* 

(0.0362) 

-0.0436 

(0.172) 

0.443 

(0.335) 

Total 
0.0758*** 

(0.0239) 

0.0799** 

(0.0395) 

0.113 

(0.262) 

0.517 

(0.422) 

Notes: Standard errors in parentheses;  

SR denotes ‘Short-run’ effects and LR denotes ‘Long-run’ effects. 
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*** p<0.01, ** p<0.05, * p<0.1 

 

While the disaster variable has a negative or nonsignificant effect on construction wages 

in three Gulf Coast states, the first-lagged disaster variable shows a statistically significant positive 

effect on wages consistently. The disaster decreased the construction wages in the disaster quarter 

by 2.26 percent but increased the wages by 4.41 percent one quarter after the disaster in Texas. 

This lagged effect of a disaster on construction wages can be attributable to 4.5 percent of short-

run direct effects, 2.55 percent of short-run indirect effects, 7.42 percent of long-run direct effects, 

and 9.28 percent of long-run indirect effects in Texas. In other words, the construction wage 

inflation one quarter after a disaster in Texas was influenced by both the direct effect in a disaster-

affected county and the indirect spillover effect in the neighboring counties in the short-run and 

long-run. 

The lagged effect of a disaster on construction wages was reported consistently in the other 

two states, Louisiana, and Florida. A disaster decreased the construction wages in the disaster 

quarter by 3.38 percent but increased the wages by 4.69 percent one quarter after the disaster in 

Louisiana. In Florida, a disaster did not have a significant effect on the wages in the disaster quarter 

but increased the construction wages by 1.79 percent one quarter after the disaster. The direct and 

indirect spillover effects of a disaster were also found to influence the construction wage inflation 

one quarter after the disaster in Louisiana and Florida.   

Table 3-7 represents the results of the SDMs with the second-lagged disaster variable. The 

spatiotemporal analysis using the SDMs with the second-lagged disaster variable provides mixed 

results for estimating the disaster effect on construction wages two quarters after the disaster.  
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Table 3-7. Direct, Indirect, and Total Effects from Spatial Durbin Models with Second Lagged 

Disaster Variable (Imputed Datasets) 

VARIABLES 

SECOND-

LAGGED 

DISASTER 

DISASTER EMPLOYMENT 
ESTABLISHMENT 

COUNT 

TX 

Main 
-0.0275** 

(0.0116) 

-0.0265** 

(0.0123) 

0.0198*** 

(0.00346) 

0.0168* 

(0.00954) 

S

R 

Direct 
-0.0344*** 

(0.0110) 

-0.0264** 

(0.0111) 

0.0206*** 

(0.00348) 

0.0162* 

(0.00986) 

Indirect 
-0.115*** 

(0.0275) 

-0.0170 

(0.0279) 

0.0149 

(0.0129) 

-0.0131 

(0.0403) 

Total 
-0.149*** 

(0.0287) 

-0.0435* 

(0.0259) 

0.0355** 

(0.0143) 

0.00310 

(0.0445) 

L

R 

Direct 
-0.0648*** 

(0.0177) 

-0.0442** 

(0.0172) 

0.0346*** 

(0.00598) 

0.0253 

(0.0173) 

Indirect 
-0.305*** 

(0.0712) 

-0.0632 

(0.0646) 

0.0527* 

(0.0313) 

-0.0182 

(0.100) 

Total 
-0.369*** 

(0.0763) 

-0.107* 

(0.0646) 

0.0873** 

(0.0347) 

0.00708 

(0.111) 

LA 

Main 
-0.0132 

(0.0160) 

-0.0414*** 

(0.0143) 

0.0357* 

(0.0194) 

0.0777 

(0.101) 

S

R 

Direct 
-0.0114 

(0.0147) 

-0.0364*** 

(0.0132) 

0.0386** 

(0.0197) 

0.103 

(0.103) 

Indirect 
0.0519 

(0.0458) 

0.0778*** 

(0.0282) 

0.0494** 

(0.0233) 

0.557*** 

(0.208) 

Total 
0.0406 

(0.0430) 

0.0414 

(0.0264) 

0.0880** 

(0.0369) 

0.557*** 

(0.208) 

L

R 

Direct 
-0.0141 

(0.0201) 

-0.0484*** 

(0.0182) 

0.0557** 

(0.0279) 

0.160 

(0.146) 

Indirect 
0.0812 

(0.0733) 

0.116*** 

(0.0447) 

0.0886** 

(0.0408) 

0.751*** 

(0.258) 
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Total 
0.0671 

(0.0715) 

0.0681 

(0.0440) 

0.144** 

(0.0612) 

0.911*** 

(0.343) 

FL 

Main 
-0.0211*** 

(0.00541) 

0.00256 

(0.00660) 

0.141** 

(0.0682) 

-0.00481 

(0.0868) 

S

R 

Direct 
-0.0230*** 

(0.00560) 

0.00477 

(0.00624) 

0.140* 

(0.0733) 

-0.000681 

(0.0883) 

Indirect 
-0.0209*** 

(0.00539) 

0.0174 

(0.0166) 

-0.0568 

(0.0747) 

0.0967 

(0.148) 

Total 
-0.0440*** 

(0.0105) 

0.0222 

(0.0177) 

0.0828 

(0.138) 

0.0960 

(0.201) 

L

R 

Direct 
-0.0350*** 

(0.00835) 

0.00845 

(0.00909) 

0.196* 

(0.110) 

0.00847 

(0.134) 

Indirect 
-0.0655*** 

(0.0215) 

0.0438 

(0.0409) 

-0.0141 

(0.218) 

0.228 

(0.386) 

Total 
-0.100*** 

(0.0278) 

0.0522 

(0.0444) 

0.182 

(0.318) 

0.237 

(0.484) 

Notes: Standard errors in parentheses;  

SR denotes ‘Short-run’ effects and LR denotes ‘Long-run’ effects. 

*** p<0.01, ** p<0.05, * p<0.1 

 

The disaster variable has a negative or nonsignificant effect on the construction wages in 

the disaster quarter in the Gulf Coast states. The second-lagged disaster variable shows a negative 

or nonsignificant effect on wages. In Texas, a disaster decreased the construction wages in the 

disaster quarter by 2.65 percent and decreased the wages by 2.75 percent two quarters after the 

disaster. In Louisiana, a disaster decreased the construction wages in the disaster quarter by 4.14 

percent but did not have a statistically significant effect on the wages two quarters after the disaster. 

In Florida, a disaster did not have a statistically significant effect on the construction wages in the 

disaster quarter but decreased the wages by 2.11 percent two quarters after the disaster.  

Table 3-8 represents the results of the SDMs with the third-lagged disaster variable. The 

SDMs with the third-lagged disaster variable were implemented for the spatiotemporal analysis to 

examine the disaster effect on construction wages three quarters after the disaster. The disaster 
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variable has a negative or nonsignificant effect on the construction wages in the disaster quarter in 

the three Gulf Coast states. The third-lagged disaster variable shows a nonsignificant effect on 

wages in all three states. It can be implied that a disaster occurrence does not have a statistically 

significant impact on the construction wages three quarters after the disaster in Texas, Louisiana, 

and Florida.  

 

Table 3-8. Direct, Indirect, and Total Effects from Spatial Durbin Models with Third Lagged 

Disaster Variable (Imputed Datasets) 

VARIABLES 

THIRD-

LAGGED 

DISASTER 

DISASTER EMPLOYMENT 
ESTABLISHMENT 

COUNT 

TX 

Main 
0.00622 

(0.00884) 

-0.0212* 

(0.0118) 

0.0196*** 

(0.00383) 

0.0146 

(0.00958) 

S

R 

Direct 
0.00457 

(0.00823) 

-0.0200* 

(0.0107) 

0.0205*** 

(0.00383) 

0.0127 

(0.00985) 

Indirect 
-0.0253 

(0.0210) 

0.00301 

(0.0254) 

0.0177 

(0.0125) 

-0.0376 

(0.0385) 

Total 
-0.0207 

(0.0206) 

-0.0170 

(0.0229) 

0.0382*** 

(0.0142) 

-0.0249 

(0.0427) 

L

R 

Direct 
0.00564 

(0.0124) 

-0.0306* 

(0.0158) 

0.0325*** 

(0.00611) 

0.0175 

(0.0160) 

Indirect 
-0.0483 

(0.0413) 

-0.00433 

(0.0488) 

0.0459* 

(0.0253) 

-0.0690 

(0.0796) 

Total 
-0.0426 

(0.0426) 

-0.0349 

(0.0471) 

0.0784*** 

(0.0287) 

-0.0515 

(0.0886) 

LA 

Main 
0.00514 

(0.0186) 

-0.0406*** 

(0.0144) 

0.0350* 

(0.0185) 

0.0926 

(0.104) 

S

R 

Direct 
0.00501 

(0.0172) 

-0.0370*** 

(0.0135) 

0.0364** 

(0.0184) 

0.111 

(0.105) 

Indirect 
0.0151 

(0.0359) 

0.0684*** 

(0.0258) 

0.0337* 

(0.0191) 

0.458*** 

(0.139) 

Total 0.0201 0.0314 0.0701** 0.569*** 
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(0.0304) (0.0229) (0.0306) (0.177) 

L

R 

Direct 
0.00692 

(0.0226) 

-0.0481*** 

(0.0178) 

0.0490** 

(0.0246) 

0.156 

(0.140) 

Indirect 
0.0219 

(0.0501) 

0.0933*** 

(0.0360) 

0.0516* 

(0.0281) 

0.660*** 

(0.199) 

Total 
0.0288 

(0.0438) 

0.0452 

(0.0330) 

0.101** 

(0.0442) 

0.816*** 

(0.256) 

FL 

Main 
-0.00646 

(0.00729) 

0.00541 

(0.00688) 

0.159** 

(0.0732) 

-0.0319 

(0.0897) 

S

R 

Direct 
-0.00851 

(0.00652) 

0.00879 

(0.00640) 

0.161** 

(0.0767) 

-0.0361 

(0.0867) 

Indirect 
-0.0226** 

(0.0105) 

0.0342*** 

(0.0132) 

-0.0124 

(0.0720) 

-0.0290 

(0.124) 

Total 
-0.0311*** 

(0.00844) 

0.0430*** 

(0.0137) 

0.149 

(0.141) 

-0.0651 

(0.180) 

L

R 

Direct 
-0.0122 

(0.00826) 

0.0131 

(0.00831) 

0.210** 

(0.103) 

-0.0484 

(0.116) 

Indirect 
-0.0402** 

(0.0161) 

0.0601** 

(0.0239) 

0.0385 

(0.143) 

-0.0588 

(0.222) 

Total 
-0.0524*** 

(0.0144) 

0.0732*** 

(0.0256) 

0.249 

(0.238) 

-0.107 

(0.306) 

Notes: Standard errors in parentheses;  

SR denotes ‘Short-run’ effects and LR denotes ‘Long-run’ effects. 

*** p<0.01, ** p<0.05, * p<0.1 
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3.3. DISCUSSIONS OF RESULTS 

The current research investigated the spatiotemporal effects of a disaster on construction 

wages in three Gulf Coast states to understand the quantitative dynamics of demand surge in the 

post-disaster construction labor market. The spatiotemporal effect of a disaster on construction 

wages changed over time after the disaster. The disaster had a negative or nonsignificant effect on 

the construction wages in the disaster quarter when the disaster struck communities. However, the 

disaster increased construction wages one quarter after the disaster in all three Gulf Coast states. 

The disaster effect on the wages two quarters after the disaster was found to be negative or 

nonsignificant, varying across states. The disaster did not have a statistically significant effect on 

wages three quarters after the disaster. This lagged effect of a disaster on construction wages aligns 

with the findings in the previous studies. Kajitani and Tatano (2018) reported that price increases 

occurred four months after the disaster, the 2011 Great East Japan Earthquake. Hallegatte et al. 

(2011) found that the production capacity of the overall economic system was damaged 

immediately after a disaster and the number of construction jobs started to increase three months 

after the disaster.  

Table 3-9 summarizes the disaster effects on construction wages over time after the disaster 

in Texas, Louisiana, and Florida. The construction wages one quarter after a disaster in the disaster-

affected counties are higher than the wages in the non-disaster-affected counties by 4.41 percent, 

4.69 percent, and 1.79 percent in Texas, Louisiana, and Florida, respectively. 
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Table 3-9. The disaster effects on construction wages over time  

Disaster 

effect 

Wages in the 

disaster quarter 
Wages 1Q after Wages 2Q after Wages 3Q after 

Texas -2.59%** 4.41%*** -2.75%** 0.62% 

Louisiana -4.02%*** 4.69%** -1.32% 0.51% 

Florida 0.21% 1.79%*** -2.11%*** -0.65% 

*** p<0.01, ** p<0.05, * p<0.1  

 

Figure 3-3 illustrates a consistent pattern of spatiotemporal dynamic effects of a disaster 

on construction wages in Texas, Louisiana, and Florida. The disaster increases construction wages 

one quarter after the disaster in all three states. The disaster effect on wages became nonsignificant 

three quarters after the disaster, implying that the post-disaster construction wages were not 

statistically significantly affected anymore by the disaster (Lima & Barbosa, 2019).  
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Figure 3-3. The spatiotemporal dynamic effects of a disaster on construction wages 

The spatiotemporal analysis using dynamic SDMs exploits the spatial dependencies among 

counties and further estimates the short-run direct, short-run indirect, long-run direct, and long-

run indirect effects of a disaster on construction wages (Table 3-5). The positive effect of a disaster 

on construction wages in Texas (i.e., 4.41 percent increase in wages) can be attributable to the 

direct and indirect spillover effects in the short-run and long-run. The construction wage inflation 

one quarter after the disaster in the disaster-affected counties in Florida was also influenced by the 

positive direct and indirect spillover effects in the short-run and long-run. The disaster increased 

the construction wages not only in the disaster-affected counties but also in the neighboring 

counties of the disaster-affected counties one quarter after the disaster. The positive direct and 

indirect spillover effects of a disaster on wages align with the previous findings in disaster studies 

(Fu & Gregory, 2019; Tran & Wilson, 2022; Zeenat Fouzia et al., 2020). The demand surge for 

reconstruction resources inflates the prices of reconstruction resources not only in the disaster-
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affected counties but also in the neighboring counties of the disaster-affected counties (Ahmadi & 

Shahandashti, 2020). 

The disaster in Louisiana yielded 4.69 percent higher construction wages in the disaster-

affected counties than in the non-disaster-affected counties one quarter after the disaster. While 

the direct effect of a disaster in Louisiana increased the construction wages one quarter after the 

disaster, the indirect spillover effect of a disaster decreased the wages both in the short-run and 

long-run. It indicates that the disaster in county i in Louisiana directly increased the construction 

wages in county i but the disaster in county j which is adjacent to county i decreased the 

construction wages in county i one quarter after the disaster. This negative indirect spillover effect 

of a disaster has been discussed in previous studies (Belasen & Polachek, 2009; Hornbeck & 

Keniston, 2017; Kellenberg & Mobarak, 2011; Tran & Wilson, 2022; Zeenat Fouzia et al., 2020). 

Neighboring counties of the disaster-affected counties suffered from the influx of workers and 

experienced a decrease in earnings of 4.51 percent compared with directly affected counties 

(Belasen & Polachek, 2009). Tran and Wilson (2022) found that the longer-run local impact of a 

disaster on income per capita in the area directly hit by a disaster is positive, while the longer-run 

impact for the broader region appears to be negative. Also, the spatial and temporal transmission 

of the disaster effects varies across counties and types of disasters (Zeenat Fouzia et al., 2020).  
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CHAPTER 4 EVALUATING THE IMPACTS OF ANTI-PRICE GOUGING LAW ON 

POST-DISASTER RECOVERY  

Disaster policies are closely related to the post-disaster recovery process. Disaster policies 

can have a positive or negative impact on the recovery process. Despite the significance of 

understanding the impacts of disaster policies in the recovery process, the impacts of disaster 

policies have not been fully understood with empirical evidence. This chapter proposes to evaluate 

the impacts of anti-price gouging law on post-disaster recovery using panel data models with DID 

approach.   
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4.1. THE IMPACT OF ANTI-PRICE GOUGING LAW ON HOUSING RECOVERY 

SPEED 

In the wake of a disaster, the price of essential goods and services including reconstruction 

materials and labor sharply increases. This price inflation generally evokes emotional and reactive 

outrage from people. Stores and companies that increase their prices during a time of emergency 

are often blamed as “price gougers” who enrich themselves at the expense of needy people with 

opportunistic pricing. Price gouging refers to when sellers and supply companies take advantage 

of spikes in demand by charging exorbitant prices for necessities. Thirty-seven states out of fifty 

in the U.S. have legislation that regulates price gouging regarded as an unfair or deceptive trade 

practice during a time of disaster or emergency.  

Consumers, academics, and practitioners have mixed opinions about the effectiveness and 

fairness of this anti-price gouging law. Existing studies have discussed the effect of anti-price 

gouging laws on post-disaster recovery. However, most focus on the effect of general price control 

qualitatively and theoretically. The study of this section aims to empirically examine the effect of 

the anti-price gouging law on the speed of reconstruction in Virginia and Maryland in the aftermath 

of Hurricane Sandy. Difference-in-differences (DID) approach was implemented to estimate the 

effect of the anti-price gouging law on post-disaster reconstruction speed. The DID estimators 

were employed to compare the changes in the number of building permits in Virginia counties 

under the state-level anti-price gouging law relative to the number in Maryland counties not under 

the anti-price gouging law, controlling for time-invariant county-specific heterogeneities. 
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4.1.1. Methodology 

4.1.1.1. Difference-in-differences (DID) Approach 

The difference-in-differences (DID) approach investigates whether an intervention 

influences an outcome over time by comparing observed differences in a case sample that receives 

the intervention with observed differences in a control sample that does not (Fredriksson & 

Oliveira, 2019). In other words, the DID approach analyzes whether a hypothesized treatment 

causes a difference in an outcome over a difference in time (Heckert & Mennis, 2012). This DID 

approach enables a one-step analysis by isolating and controlling for any difference that is not 

attributable to the treatment based on the assumption that the control and treatment groups differ 

similarly systematically over the two periods (Athey & Imbens, 2006; Card & Krueger, 1993; Kiel 

& McClain, 1995). The DID approach can directly measure the effect of a policy intervention by 

estimating the effects both before and after the intervention at the same site in one stage instead of 

quantifying and modeling the differences between sites in two stages (Davis et al., 2023; Kim & 

Shahandashti, 2022a). Therefore, the DID approach allows us to reduce errors or bias in examining 

the effect of an intervention by decreasing the complexity of the model specification (Mohan et 

al., 2020; Vella & Verbeek, 1999).   

 

Figure 4-1 represents the difference-in-differences (DID) framework to estimate the effect 

of the anti-price gouging (APG) law on the number of building permits. 
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Figure 4-1. Difference-in-differences framework for estimating the effect of the anti-price 

gouging law on building permits 

The DID approach quantifies the effect of the intervention by comparing the changes in 

the outcomes from one time moment (before the disaster) to another time moment (after the 

disaster) between the treatment and control groups. The treatment effect represented in Figure 1 is 

estimated by the difference between the observed number of building permits and the unobserved 

counterfactual trend in the treatment group. The unobserved counterfactual trend indicates the 

number of building permits in the treatment group in the absence of the APG law triggered.   
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4.1.1.2. Data Collection 

Building permit data are frequently utilized to estimate the speed of post-disaster 

reconstruction as local statistics on new privately-owned residential construction (Arneson et al., 

2020; Stevenson et al., 2010). Building permits are issued monthly to authorize the new 

construction of privately-owned housing, counting over 98 percent of all privately-owned 

residential building constructions (US Census Bureau, 2012). The current study collected the 

number of total housing units newly constructed and authorized by building permits one year 

before and after Hurricane Sandy struck Virginia and Maryland counties on October 26, 2012. 

Table 4-1 summarizes the data collection used in this study. The determinants of building permits 

were included in the analysis to control for confounding effects. Population, housing units, median 

household income, and the percentages of White, Black, and Hispanic populations were considered 

to monitor the changes in building permits (Lévêque, 2020; Stevenson et al., 2010). The poverty 

rates were also discussed as a predictor of building permit issuances (Kim & Shahandashti, 2022a; 

Kitchens & Wallace, 2022; Lusugga Kironde, 2006; Peacock et al., 2022). 

Table 4-1. Data Collection 

Data Frequency Level Period Source 

Dependent variable     

Building Permits Monthly County-level 
Nov 2011 

– Oct 2013 
Census Bureau 

Independent variable     

Anti-Price Gouging 

Law 
- County-level 

Nov 2011 – Oct 

2013 
State Legislature 

Disaster Occurrence Daily County-level 
Nov 1, 2011 

– Oct 31, 2013 
FEMA 

Control variables     

Population Yearly County-level 2011 - 2013 Census Bureau 

Poverty Rates Yearly County-level 2011 - 2013 Census Bureau 
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Housing Units Yearly County-level 2011 - 2013 Census Bureau 

Median Income Yearly County-level 2011 - 2013 Census Bureau 

%White Population Yearly County-level 2011 - 2013 Census Bureau 

%Black Population Yearly County-level 2011 - 2013 Census Bureau 

%Hispanic 

Population 
Yearly County-level 2011 - 2013 Census Bureau 

 

 

Table 4-2 shows the sample design of this research and descriptive statistics of the building 

permit variable. Seventy-six counties in Virginia and fourteen counties in Maryland were selected 

as disaster-affected counties since those counties received federal assistance from FEMA in the 

Hurricane Sandy aftermath. The building permit data in those counties were collected from 

November 2011 (one year before Hurricane Sandy) to October 2013 (one year after Hurricane 

Sandy). The number of total building permit issuances was acquired from U.S. Census Bureau to 

enumerate newly constructed housing units.  

 

Table 4-2. Sample Design and Descriptive Statistics 

Descriptive statistics All VA MD 

Number of counties in the sample data 90 76 14 

Number of the pre-disaster sample data 1,080 912 168 

Number of the post-disaster sample data  1,080 912 168 

Mean (Units):    

Pre-disaster building permit counts  32.9 25.38 73.70 

Post-disaster building permit counts 41.04 30.69 97.26 

 

4.1.1.3. Non-Parametric DID Approach 

DID methods can be implemented using two different approaches: non-parametric and 
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parametric approaches (Callaway & Sant’Anna, 2021; Wooldridge, 2007). The non-parametric 

approach estimates the treatment effect as the difference in the changes in the outcome (i.e., 

monthly building permits) from the pre-disaster level to the post-disaster level between the control 

and treatment groups. The non-parametric approach is expressed in Eq. 4-1. 

 

𝜏 = (BPAT − BPAC)− (BPBT − BPBC)     Eq. 4-1 

where 𝜏 is the treatment effect; BPAT is the observed monthly building permits in the treatment 

group (i.e., disaster-affected counties in Virginia) after the disaster; BPAC is the observed monthly 

building permits in the control group (i.e., disaster-affected counties in Maryland) after the 

disaster; BPBT is the observed monthly building permits in the treatment group before the disaster; 

and BPBC is the observed monthly building permits in the control group before the disaster. 

 

4.1.1.4. Parametric DID Approach 

The parametric DID approach assumes a linear regression model with a response variable 

(i.e., building permits) and explanatory variables including dummy variables that indicate the 

treatment status (Kaneko et al., 2019). Pooled OLS regression, fixed-effects model, and random-

effects model were employed as a parametric DID approach to examine the effect of an APG law 

on post-disaster reconstruction speed in this study.  

The pooled OLS regression with a DID specification is represented by Eq. 4-2.  
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BPit = 𝛽0 + 𝛽1APGi + 𝛽2DISit + 𝛽3APGiDISit + 𝛽4log(POP)it + 𝛽5POVit+ 𝛽6BLKit + 𝛽7HISPit + 

𝜀it                  Eq. 4-2 

where BPit is the number of building permits in a county i at time t; APGi is a dummy variable set 

to 1 if a county i is located in Virginia with anti-price gouging law and 0 if a county i is located in 

Maryland without anti-price gouging law; DISit is a dummy variable set to 1 if time t is post-

disaster for a county i and 0 if time t is pre-disaster for a county i; APGiDISit  (i.e., the interaction 

term defined as APGi times DISit) is a dummy variable set to 1 if a county i is in Virginia state and 

time t is post-disaster and 0 otherwise; log(POP)it is a logarithmic form of the population in county 

i at time t; POVit is poverty rates in county i at time t; BLKit is the percentage of the Black 

population in county i at time t; HISPit is the percentage of the Hispanic population in county i at 

time t;  𝜀it is an error term; and 𝛽 terms are the coefficients to be estimated by the model.  

 

A significant coefficient of APGiDISit (𝛽3) as known as a DID estimator indicates that the 

effect of a disaster on the number of building permits is moderated by whether a county i is located 

in Virginia with the anti-price gouging law or in Maryland without the anti-price gouging law.  

Although new housing construction authorized by building permits depends on several 

factors including geographical locations, policies, land use, regulations, and urban characteristics 

(Caldera & Johansson, 2013; Saiz, 2010), the abovementioned pooled OLS regression is too 

simple to control for the effects of other omitted variables that can systematically affect the number 

of building permits. Therefore, the panel data models were used to control for the unobserved 

individual county-specific effects on the number of building permits. Eq. 4-3 expresses the panel 

data model to examine the effect of APG legislation on the number of building permits accounting 
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for the county-specific fixed effects (𝛼i).  The panel data model to examine the effect of APG 

legislation on the number of building permits accounting for the county-specific fixed effects (𝛼i) 

is represented by Eq. 4-3. Time-varying heterogenous county-level control variables were selected 

based on the literature review and the results of multicollinearity test.  

 

BPit = 𝛿0 + 𝛽1APGi + 𝛽2DISit + 𝛽3APGiDISit + 𝛽4log(POP)it + 𝛽5POVit + 𝛽6BLKit + 𝛽7HISPit + 

𝛼i + 𝜀it           Eq. 4-3 

where BPit is the number of building permits in a county i at time t; APGi is a dummy variable set 

to 1 if a county i is located in Virginia with the anti-price gouging law and 0 if a county i is located 

in Maryland without the anti-price gouging law; DISit is a dummy variable set to 1 if time t is post-

disaster for a county i and 0 if time t is pre-disaster for a county i; APGiDISit is a dummy variable 

set to 1 if a county i is in Virginia state and time t is post-disaster and 0 otherwise; log(POP)it is a 

logarithmic form of the population in county i at time t; POVit is poverty rates in county i at time 

t; BLKit is the percentage of the Black population in county i at time t; HISPit is the percentage of 

the Hispanic population in county i at time t;  𝜀it is an error term; 𝛼i is individual effects to account 

for time-invariant county-specific heterogeneities; and 𝛽 terms are the coefficients to be estimated 

by the model.  

 

Two panel data models including fixed-effects (FE) and random-effects (RE) models were 

utilized in this current study. The data were preprocessed to make a balanced sample panel data 
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before establishing FE and RE models. FE and RE models have different assumptions on the 

omitted individual effects (𝛼i) which are expressed in Eq. 4-4. 

 

𝛼i = 𝑤𝑖𝛿 + 𝑧𝑖𝜆     Eq. 4-4 

where 𝑤𝑖 represents all the unobserved county-level effects correlated with explanatory variables, 

𝑧𝑖 represents all the unobserved county-level effects uncorrelated with explanatory variables, and 

𝛿 and 𝜆 are unknown parameters.  

 

 

 

The RE model assumes the exogeneity of the unobserved county-level effects indicating 

that the unobserved individual effects are not correlated with explanatory variables. The 

assumption of the RE model is that the covariance of the unobserved individual effects and the 

explanatory variable is zero (i.e., cov(𝛼i, Xit) = 0). On the other hand, the FE model assumes the 

endogeneity of the county-level effects indicating that the unobserved county-level effects (𝛼i) are 

correlated with explanatory variables (i.e., cov(𝛼i, Xit) ≠ 0). 

 

4.1.1.5. Model Selection using Breusch-Pagan and Hausman tests 

Figure 4-2 illustrates the framework of the DID parametric model selection process.  
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Figure 4-2. Framework for DID parametric model selection 

 

Two specification tests (Breusch-Pagan and Hausman tests) were used to identify the 

appropriate method for the data. These tests help us to assess whether the unobserved time-

invariant county-specific effects (𝛼i) exist and are correlated with the independent variables. To 

determine whether the unobserved time-invariant county-specific effects (𝛼i) exist, the Lagrange 

multiplier test proposed by Breusch and Pagan (1980) was used.  The null hypothesis in this test 

is that there are no unobserved time-invariant county-specific effects (i.e., var(𝛼i) is zero). A failure 

to reject the null hypothesis would support using the OLS regression. Otherwise, the Hausman 

(1978) test needs to be conducted to choose between fixed effects and random effects models. The 

null hypothesis in this Hausman test is that the independent variables and the unobserved time-

invariant county-specific effects (𝛼i) are not correlated. The fixed effects model is chosen instead 

of the random effects model if the null hypothesis is rejected. When the unobserved time-invariant 
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county-specific effects (𝛼i) are correlated with the independent variables, the fixed effects model 

is preferred as it will yield unbiased and consistent estimates. On the other hand, the random effects 

model is preferred if the null hypothesis is not rejected. In this case, the random effects will 

produce both consistent and efficient estimates. Regardless, the random effects estimator allows 

us to control for the within-county correlation in the error term, and thus yields more 

efficient estimates (Bell et al., 2019). It also yields consistent estimates if the independent variables 

are not correlated with the unobserved heterogeneity. However, the results from the random effects 

estimator suffer from omitted variable bias if the independent variables are correlated with the 

time-invariant unobservable factors.   

 

 

4.1.2. Results 

Both non-parametric and parametric approaches of DID were employed to examine the 

effect of the anti-price gouging law that regulates the reconstruction market price on monthly 

building permits in Virginia and Maryland after Hurricane Sandy.  

 

4.1.2.1. Results of Non-parametric DID Analysis 

Table 4-3 shows the non-parametric DID analysis results on the anti-price gouging law's 

effect on post-disaster monthly building permit issuances that can represent the reconstruction 

speed. Virginia counties issued 25.38 building permits monthly on average, while Maryland 

counties issued 73.69 permits before Hurricane Sandy. After Hurricane Sandy struck both Virginia 
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and Maryland, the average number of building permits in Virginia counties increased by 5.3 units 

monthly, while the number in Maryland counties increased by 23.56 units monthly in the 

aftermath. The treatment effect (𝜏) of the anti-price gouging law triggered during Hurricane Sandy 

was calculated as -18.26 units using Eq. 4-1 and -17.88 units when controlling for the confounding 

effects. The results of non-parametric DID analysis show that the anti-price gouging law decreased 

the building permit issuances by 17.88 units monthly during the post-disaster situation. The anti-

price gouging law that governs the reconstruction market can negatively affect the speed of post-

disaster recovery in Virginia relative to Maryland. This finding is consistent with many economists’ 

expectations that price control under the anti-price gouging law can impede the speed of post-

disaster reconstruction (Culpepper & Block, 2008; Giberson, 2011; Shannon, 1989; Wilson, 2014; 

Zwolinski, 2008). 

 

Table 4-3. Results of the Non-Parametric DID Analysis 

Monthly 

Building Permits 
All Before Sandy After Sandy DID 

DID 

with controls 

VA (Treatment) 28.04 25.38 30.68 
5.3 

(3.01) 

5.25*** 

(1.89) 

MD (Control) 85.48 73.69 97.26 
23.56** 

(11.01) 

21.9** 

(8.65) 

Change in 

monthly BP (𝜏) 
-57.44 -48.31 -66.58 

-18.26** 

(8.47) 

-17.88** 

(8.94) 

Note: Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

4.1.2.2. Results of Parametric DID Analysis 

Table 4-4 summarizes the results of parametric DID analyses using fixed effects and 
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random effects models. The treatment effect was measured to be negative by the parameter of 

APGiDISit. The effect of the anti-price gouging law was estimated as 18 units decrease monthly in 

the number of building permits in post-disaster situations according to the results of both the fixed 

effects and random effects models. This indicates that the monthly building permits decreased by 

18 units in Virginia counties where the anti-price gouging law was triggered in the wake of 

Hurricane Sandy compared to Maryland counties without the anti-price gouging law in the post-

disaster recovery process.  

The disaster shows a statistically significant positive effect on the number of monthly 

building permits regardless of the existence of the anti-price gouging law. The disaster occurrence 

increases the number of monthly building permits by approximately 15 units. This result seems 

plausible because housing reconstruction and repair projects are largely and quickly undertaken in 

the aftermath of a disaster (Dikmen & Elias-Ozkan, 2016). The number of monthly building 

permits increases as the population increase. This positive relationship between monthly building 

permits and the population is consistent with the findings in the previous studies (Carlucci et al., 

2018; McDonald & McMillen, 2000; McGibany, 1991).  

 

Table 4-4. Results of the Parametric DID analyses 

Data Monthly Building Permits (Units) 

Variables FE (Fixed effects) RE (Random effects) 

APGi - 2.505 

(13.45) 

DISit 15.36b 

(6.416) 

15.65b 

(6.384) 

APGiDISit -18.04a 

(5.76) 

-18.05a 

(5.73) 



 

55 

 

 

log(POP)it  442.8b 

(172.7) 

28.60a 

(3.945) 

POVit 0.777 

(1.334) 

-0.924 

(0.739) 

BLKit  622.0 

(770.8) 

3.619 

(29.36) 

HISPit -327.7 

(973.0) 

123.2c 

(73.69) 

Intercept - -283.5a 

(48.9) 

Time dummy Yes Yes 

Observations 2,160 2,160 

Note: Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

4.1.2.3. Results of the Breusch-Pagan Tests 

The null hypothesis of no individual effects was rejected according to the results of the 

Breusch-Pagan tests. In other words, statistically significant individual heterogeneity exists among 

the county-level monthly building permit data. Table 4-5 summarizes the results of the Breusch-

Pagan test to choose between the pooled OLS regression and the fixed effects model. The null 

hypothesis of no individual fixed effects was rejected at the 1% significance level. Therefore, the 
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fixed effects model is more appropriate to control for the county-specific effects than the pooled 

OLS regression.  

 

Table 4-5. Results of the Breusch-Pagan Test (Pooled OLS vs. Fixed Effects) 

Monthly 

Building Permits 
F-statistic 

degree of 

freedom 1 

degree of 

freedom 2 
p-value 

F-test for individual effects 15.248 88 2042 0.00 

 

Table 4-6 shows the results of the Breusch-Pagan test to choose between the pooled OLS 

regression and the random effects model. The null hypothesis of no individual random effects was 

rejected at the 1% significance level. Therefore, the random effects model is more appropriate to 

control for the county-specific effects than the pooled OLS regression. Both results of the Breusch-

Pagan tests in Tables 4-5 and 4-6 indicate that county-level heterogeneity exists, and thus the 

results from pooled OLS will be biased and inconsistent.  

 

Table 4-6. Results of the Breusch-Pagan Test (Pooled OLS vs. Random Effects) 

Monthly 

Building Permits 
chi-square statistic 

degree of 

freedom 
p-value 

Lagrange Multiplier test for balanced panels 3346.1 1 0.00 

 

4.1.2.4. Results of the Hausman Test 

The Hausman test failed to reject the null hypothesis that the independent variables and 

fixed effects (𝛼i) are not correlated. Given the test results reported in Table 4-7, the null hypothesis 
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of the Hausman test was not rejected at the 5% significance level, indicating that the random effects 

model is likely more appropriate than the fixed effects model for the data.  

 

Table 4-7. Results of the Hausman Test 

Hausman Test chi-square statistic p-value 

fixed effects vs. random effects 9.969 0.126 

 

 

 

 

 

 

 

4.1.3. Discussions of Results 

The anti-price gouging law triggered by the declaration of a state of emergency or disaster 

enforces civil or criminal penalties for price gouging violations that happened during a disaster. 

The effect of the anti-price gouging law on post-disaster reconstruction speed was estimated using 

panel data models (fixed effects and random effects) with a DID specification. The reconstruction 

speed was quantified by the number of monthly building permits that authorize the new 

construction of housing units. The number of monthly building permits was compared between 

Virginia counties with the anti-price gouging law enforcement and Maryland counties without the 
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anti-price gouging law enforcement to examine the effect of the anti-price gouging law in the 

aftermath of Hurricane Sandy using the DID approach. The DID estimators present evidence that 

the number of building permits that authorize new housing construction decreases by 18 units 

monthly in Virginia counties where the anti-price gouging law was triggered relative to Maryland 

counties without anti-price gouging law in the aftermath of Hurricane Sandy. The change in the 

number of monthly building permits in both Virginia and Maryland counties after Hurricane Sandy 

is a 15 increase in new housing units. Hurricane Sandy increased the monthly number of new 

housing units authorized by monthly building permits by 15 units in both Virginia and Maryland. 

This result is consistent with the findings of existing disaster studies that reconstruction activities 

largely increase following a disaster (Celentano et al., 2019; Dikmen & Elias-Ozkan, 2016).    

The results of the Breusch-Pagan tests show unobserved time-invariant county-specific 

effects (𝛼i) exist in the monthly building permit data. Therefore, panel data models, including fixed 

effects and random effects models, are recommended to include and control for those county-

specific effects (𝛼i). Then, the Hausman test was conducted to choose between fixed effects and 

random effects models. Since the null hypothesis of the Hausman test was not rejected at the 5% 

significance level, the random effects model was preferred as it produces both consistent and 

efficient estimates. The random effects estimator enables us to control for the within-county 

correlation in the error term and thus yields more efficient estimates. The random effects estimator 

also yields consistent estimates if the independent variables are not correlated with the 

unobserved heterogeneity.  

The random effects estimator can be helpful when the entities are randomly assigned to the 

treatment and control groups. In this case, the correlation between the independent variables and 
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the unobserved time-invariant variables is likely insignificant, validating the use of random 

effects. This is likely relevant to disaster treatment in the current study. Tofighi et al. (2016) 

reported that the occurrence of a disaster followed an inherently random process. Note also that 

the fixed effects model eliminates the cross-section variation in the explanatory variables, and only 

uses the within-county variation over time, thus relying on enough within-county variation in the 

variables. The results from both fixed effects and random effects estimators are consistent. There 

is a significantly negative effect of the anti-price gouging law on monthly building permits 

regardless of the methods used. 

Some caveats are made for policymakers, decision-makers, and disaster recovery 

practitioners. First, empirical evidence was found suggesting that the free market be allowed to 

accelerate reconstruction speed via the invisible hand without price control. It can be implied that 

people’s emotional denunciation and legal accusations against the post-disaster price escalation, 

often referred to as “price gouging,” did not help to expedite the reconstruction process in the 

aftermath of a disaster but rather decelerated the speed of reconstruction. Second, because of the 

nonnegligible individual county-specific heterogeneity in the housing reconstruction process, it is 

recommended to implement panel data models to include and control for these county-specific 

effects on the post-disaster reconstruction process. Last but not least, the unobservable county-

specific heterogeneity is neither related to the enforcement of anti-price gouging law nor the 

occurrence of Hurricane Sandy according to the results of the Hausman test. This seems plausible 

because the anti-price gouging law is a state-level price control that does not rely on county-

specific factors but affects all the counties in the state equally. The occurrence of a disaster is 

considered to follow an inherently random process (Tofighi et al., 2016) and is unrelated to county-

specific heterogeneity.  
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4.2. THE IMPACTS OF ANTI-PRICE GOUGING LAW ON RECONSTRUCTION 

COSTS 

The anti-price gouging law is enforced to control reconstruction labor and material costs 

in the aftermath of disasters. There is a controversy over the effectiveness of anti-price gouging 

laws. However, few studies have carefully examined the effect of anti-price gouging laws on post-

disaster reconstruction costs. Particularly, no empirical evidence is found about the impact of anti-

price gouging law on post-disaster reconstruction wages. The objective of this study is to 

empirically examine the effect of the anti-price gouging law on post-disaster reconstruction wages 

at the U.S. national level following major disasters declared by the Federal Emergency 

Management Agency (FEMA). Difference-in-differences (DID) approach was implemented to 

estimate the effect of the anti-price gouging law on post-disaster reconstruction wages. The DID 

estimators were employed to compare the changes in reconstruction wages in the U.S. counties 

under the state-level anti-price gouging law relative to the wages in the U.S. counties not under 

the anti-price gouging law, controlling for time-invariant county-specific heterogeneities. 

 

4.2.1. Methodology 

4.2.1.1. Data Collection 

Labor costs can account for around 50 percent of the total reconstruction costs in the 

aftermath of disasters because construction is a highly labor-intensive industry (Barbosa et al., 

2017). Post-disaster labor costs are subject to a post-disaster demand surge, inflating by 

approximately 10 percent (Ahmadi Esfahani & Shahandashti, 2020; Farooghi et al., 2021; Kim et 
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al., 2022d). Therefore, construction wages are often used to estimate post-disaster reconstruction 

cost fluctuations (Ahmadi & Shahandashti, 2020, 2018; Farooghi et al., 2021; Kim et al., 2022d). 

Construction wages are published quarterly at the U.S. county-level by the U.S. Bureau of Labor 

Statistics. This study collected quarterly construction wages of 3,579 counties in 50 U.S. states and 

the District of Columbia for 10 years from 2013 to 2022. Table 4-8 summarizes the data collection 

used in this study. Major disasters declared by FEMA were collected for 10 years from 2013 to 

2022. The number of employment and establishment counts in the U.S. construction industry were 

included to monitor the changes in construction wages and control for confounding effects (Barth 

& Dale-Olsen, 2011; Blanchflower & Oswald, 1995; Green et al., 2021). 

 

 

Table 4-8. Data Collection 

Data Frequency Level Period Source 

Dependent variable     

Construction Wages Quarterly County-

level 

Q1 2013 – Q4 2022 Bureau of Labor 

Statistics 

Independent variable     

Anti-Price Gouging 

Law 

- County-

level 

2013 – Oct 2022 State Legislature 

Disaster Occurrence Daily County-

level 

Jan 1, 2013 

– Dec 31, 2022 

FEMA 

Control variables 
    

Employment Quarterly County-

level 

Q1 2013 – Q4 2022 Bureau of Labor 

Statistics 

Establishment Count Quarterly County-

level 

Q1 2013 – Q4 2022 Bureau of Labor 

Statistics 
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Table 4-9 shows the sample design of this research and descriptive statistics of the average 

weekly wages in the U.S. construction industry. Over three thousand counties in fifty-one U.S. 

states were covered in this study. Average weekly wages representing construction wages 

decreased in the quarter when a disaster occurred. This statistic aligns with the finding in previous 

studies that reconstruction wages would not increase until a quarter after a disaster occurred when 

reconstruction demand increased.  

 

Table 4-9. Sample Design and Descriptive Statistics 

Descriptive statistics All 
Counties 

with APGL 

Counties 

without 

APGL 

Number of states (including the District of Columbia) in 

the sample data 

51 35 16 
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Number of counties in the sample data 3,579 2,943 636 

Number of the pre-disaster sample data 128,144 106,296 21,848 

Number of the post-disaster sample data  10,691 8,879 1,812 

Mean (Dollars):    

Average weekly construction wages in the quarter that 

a disaster did not occur 

847.59 857.91 797.35 

Average weekly construction wages in the quarter that 

a disaster occurred 

810.43 822.76 750.02 

  

 

 

 

 

 

4.2.1.2. Panel Data Model with Difference-in-Differences Technique 

A panel data model was employed as a parametric DID approach to evaluate the impact of 

an APG law on post-disaster county-level reconstruction wages in the U.S. as represented by Eq. 

4-5.  

 

𝑙𝑛𝑊𝐴𝐺𝐸𝑖𝑡 =  𝛽0 +  𝛽1𝐴𝑃𝐺𝑖𝑡𝐷𝐼𝑆𝑖𝑡 + 𝛽2𝐴𝑃𝐺𝑖𝑡 + 𝛽3𝐷𝐼𝑆𝑖𝑡 + 𝛽4𝑙𝑜𝑔𝐸𝑀𝑃𝑖𝑡 + 𝛽4𝑙𝑜𝑔𝐸𝑆𝑇𝑖𝑡 +

𝛼𝑖 +  𝛼𝑡 + 𝜀𝑖𝑡            

 Eq. 4-5 

where 𝑊𝐴𝐺𝐸𝑖𝑡 is average weekly wages in the construction industry in county i and time t; 𝐴𝑃𝐺𝑖𝑡 

is a dummy variable that is equal to one if county i at time t had an anti-price gouging state-level 

statute, and zero otherwise; 𝐷𝐼𝑆𝑖𝑡 is a dummy variable that is equal to one if county i at time t 
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experienced a major disaster declared by FEMA, and zero otherwise; 𝐸𝑀𝑃𝑖𝑡 is the number of 

employees in the construction industry in county i and time t; 𝐸𝑆𝑇𝑖𝑡 is the number of establishments 

in the construction industry in county i and time t; 𝛼𝑖 is the unobservable time-invariant county 

fixed-effects; 𝛼𝑡 is the unobservable county-invariant time fixed-effects; 𝜀𝑖𝑡 is the time-varying 

idiosyncratic error; 𝛽1 is the coefficient of interest to estimate the effect of a disaster on the county-

level construction wages 

  

 

 

 

4.2.2. Results 

Table 4-10 shows the results of panel data models including pooled OLS, fixed effects, and 

random effects models described by Eq. 4-5. The treatment effect was measured to be negative by 

the parameter of APGitDISit according to the results of all the panel data models (i.e., pooled OLS, 

fixed effects, and random effects models). The anti-price gouging law triggered by FEMA's major 

disaster declaration has decreased county-level average weekly construction wages by 2.5 percent 

according to the result of the fixed effects model. This indicates that the average weekly wages 

decreased by 2.5 percent in the U.S. counties where the anti-price gouging law was triggered in 

the wake of major disasters compared to the U.S. counties without the anti-price gouging law in 

the post-disaster recovery process.  

The disaster shows a statistically significant positive effect on the average weekly 

construction wags regardless of the existence of the anti-price gouging law. The disaster 
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occurrence increases average weekly wages in the construction industry by 2.5 percent. This result 

seems plausible because of the increasing reconstruction demand in the aftermath of a disaster 

(Dikmen & Elias-Ozkan, 2016). The positive relationship between employment and wages in the 

construction industry was found to be statistically significant. This positive relationship between 

employment and construction wages is consistent with the findings in the previous studies (Barth 

and Dale-Olsen 2011; Blanchflower and Oswald 1995; Green et al. 2021). Establishment counts 

in the U.S. construction industry show a statistically significant negative relationship with average 

weekly construction wages. The findings in the previous studies explain that the increase in the 

number of establishments representing the market supply can reduce wages (Barth & Dale-Olsen, 

2011; Benmelech et al., 2022).   

Table 4-10. Results of the Panel Data Model Estimation 

Data  ln(Average Weekly Construction Wages)  

Variables  Pooled OLS  FE (Fixed 

effects)  

RE (Random effects)  

APGit*DISit -0.0734*** 

(0.019) 

-0.025** 

(0.011) 

-0.023** 

(0.011) 

APGit -0.136*** 

(0.005) 

-0.001 

(0.018) 

-0.07*** 

(0.015) 

DISit 0.0487*** 

(0.018) 

0.024** 

(0.010) 

0.022** 

(0.010) 

EMPit 0.982*** 

(0.001) 

0.989*** 

(0.001) 

0.987*** 

(0.001) 

ESTit -0.842*** 

(0.001) 

-0.243*** 

(0.010) 

-0.644*** 

(0.005) 

Constant 3.294*** 

(0.013) 

- 2.291*** 

(0.028) 

Year_Quarter Dummies Yes Yes Yes 

Observations 138,835 138,835 138,835 

R-squared 0.88 0.89 0.88 

Number of Counties 3,579 3,579 3,579 
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Notes: Robust standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

  

 

 

 

 

 

 

 

4.2.3. Discussions of Results 

The impact of the anti-price gouging law (APGL) in the post-disaster reconstruction market 

is illustrated in Figure 4-3. The anti-price gouging law places a price ceiling on reconstruction 

costs to regulate sudden cost inflation in the aftermath of disasters. Construction market 

equilibrium before a disaster occurs is represented by Point 3. Disaster increases construction 

demand, moving the downward construction demand curve to the right. Therefore, post-disaster 

construction market equilibrium is determined at Point 1 when there is no anti-price gouging law 

enforcement. In the aftermath of disasters, the U.S. counties without anti-price gouging law at 

Point 3 are expected to experience an increase in reconstruction costs and housing reconstruction 

units compared to the pre-disaster construction market equilibrium (Point 1).  

However, the anti-price gouging law controls reconstruction costs by setting the maximum 

reconstruction cost as described by the red line in Figure 4-3. Therefore, the U.S. counties under 

anti-price gouging law enforcement have a post-disaster market equilibrium at Point 2. The U.S. 
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counties where the anti-price gouging law was triggered following a disaster experience less 

reconstruction cost and fewer reconstruction units than the U.S. counties without the anti-price 

gouging law enforcement. Shortly, anti-price gouging law enforcement can mitigate reconstruction 

cost inflation but also decrease reconstruction speed by regulating the free market prices in the 

post-disaster reconstruction market. 

 

1. Post-disaster construction market equilibrium for the control group (i.e., 

counties without anti-price gouging law) 

2. Post-disaster construction market equilibrium for the treatment group 

(i.e., counties under anti-price gouging law) 

3. Pre-disaster construction market equilibrium 

Figure 4-3. Economic Theoretical Explanation for the Empirical Evidence of the Anti-Price 

Gouging Law (APGL) Effects on the Reconstruction Process 
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CHAPTER 5 ASSESSING THE IMPACT OF FMCSA SAFETY REGULATION 

WAIVERS ON POST-DISASTER FUEL PRICE 

Emergency declarations by the President, Governors of States, or the Federal Motor Carrier 

Safety Administration (FMCSA) trigger the temporary suspension of certain Federal safety 

regulations. Drivers that provide "direct assistance" to an "emergency" declared by FMCSA or a 

governor are exempt from applicable safety regulations such as federal Hours of Service (HOS) 

on their route to the emergency. Despite the significant volume of qualitative discussions on these 

safety regulation waivers, the effect of the waivers on the post-disaster recovery process has not 

been investigated quantitatively using empirical data. The objective of this research is to examine 

whether these waivers have any impact on the price of fuel which is an essential item for post-

disaster recovery.  

 

5.1. METHODOLOGY 

5.1.1. Data Collection 

The FMCSA safety regulations waivers are expected to have a positive effect on price 

stabilization for essential items such as fuel in the wake of disasters or emergencies (Azanza, 2017; 

Kingston, 2022; B. Lee, 2019; Walters et al., 2020). Table 5-1 summarizes the data collection to 

estimate the effect of the FMCSA safety regulation waiver on fuel prices in Southern Texas and 
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Louisiana in the aftermath of Hurricane Harvey. The determinants of fuel prices were included in 

the analysis to control for confounding effects.  

 

Table 5-1. Data Collection 

Group Variable Definition Frequency 
Source & 

Unit of measure 

Policy WAV FMCSA safety regulation waiver - FMCSA 

Disaster DIS Hurricane Harvey disaster dummy 

variable 

- FEMA 

Natural fuel 

price 

FUEL Regional natural gas spot price 

indices in south Texas and 

Louisiana 

Daily EIA 

(Dollar/MMbtu) 

Other 

energy 

prices 

WTI Global crude oil price Daily EIA ($/Barrel) 

COAL NYMEX coal futures Daily EIA ($/short 

ton) 

Supply and 

demand 

USPROD U.S. Field Production of Crude Oil Monthly EIA  

(Thousand 

Barrels/Day) 

TXPROD The volume of crude oil 

production in TX 

Monthly EIA (Thousand 

Barrels) 

LAPROD The volume of crude oil 

production in LA 

Monthly EIA (Thousand 

Barrels) 

CON The volume of natural gas 

consumption in the US 

Weekly EIA  

(Thousand 

Barrels/Day) 

STR The volume of commercial gas 

storage on the Gulf Coast 

(PADD3) 

Weekly EIA (Thousand 

Barrels) 

Weather HDD Heating degree days Daily NOAA 

CDD Cooling degree days Daily NOAA 

Financial 

factors 

VIX CBOE (Chicago Board Options 

Exchange) volatility index 

Daily Federal Reserve 

Bank of St.Louis 

TWX Trade-weighted U.S. dollar index Weekly Federal Reserve 

Bank of St.Louis 
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The data were collected one month before and after Hurricane Harvey struck Texas (TX) 

and Louisiana (LA). Table 5-2 shows the time windows for ‘Before Hurricane Harvey’ period and 

‘Hurricane Harvey Incident’ period that includes ‘Regulation Waived’ and ‘Regulation Affected’ 

periods. One month of time windows before and after disasters have been used to identify and 

measure disaster-related economic losses and construction cost changes (Hallegatte & Vogt-

Schilb, 2019; Khodahemmati & Shahandashti, 2020; Olsen & Porter, 2011). A longer window will 

likely lead to spurious relationships due to various unobservable factors.    

 

Table 5-2. Time Windows 

Region Before Hurricane 

Harvey 

Hurricane Harvey 

Incident Period 

 

Regulation 

Waived 

Regulation 

Affected 

TX July 23-Aug 22 Aug 23 - Sep 15 Aug 25 - Sep 15 Aug 23 - Aug 24, 

Sep 16 - Oct 24 

LA July 23-Aug 27 Aug 27 - Sep 10 Aug 25 - Sep 10 Sep 11 - Oct 24 

 

The ‘Hurricane Harvey Incident Period’ in Table 4-5 was acquired from Federal 

Emergency Management Agency (FEMA) database. The ‘Before Hurricane Harvey’ period started 

one month before the ‘Hurricane incident period’ and lasted up to one day before the ‘Hurricane 

incident period.’ The ‘After Hurricane Harvey’ period started on the first day of the ‘Hurricane 

incident period’ and lasted up to one month after the ‘Hurricane Incident period’ ended, including 



 

71 

 

 

the ‘Regulation waived’ and ‘Regulation affected’ periods. The ‘Regulation waived’ period was 

acquired from the FMCSA database. 

Figure 5-1 illustrates regional fuel price changes in south Texas and Louisiana before and 

after Hurricane Harvey. The red-dotted box indicates the FMCSA safety regulation waiver period 

after Hurricane Harvey struck Texas and Louisiana. 

 

 

Figure 5-1. Regional Fuel Price Changes in South Texas and Louisiana  

 

 

 

Table 5-3 shows the summary statistics of the variables for South Texas and Louisiana 

datasets. The daily data includes WAV, DIS, FUEL, WTI, COAL, HDD, CDD, and VIX. Natural 

gas production data, which includes variables USPROD, TXPROD, and LAPROD, is published 
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monthly, while the gas consumption (CON), storage (STR), and trade-weighted U.S. dollar (TWX) 

index data are published weekly.  

 

Table 5-3. Sample Design and Descriptive Statistics 

Variables TX (85 days of Time Window) LA (80 days of Time Window) 

Avg Min Max Sum Avg Min Max Sum 

WAV (days) 0.26 0 1 22 0.21 0 1 17 

DIS (days) 0.64 0 1 54 0.56 0 1 45 

FUEL 

($/MMbtu) 
2.86 2.69 3.04 243.24 2.88 2.7 3.14 230.66 

WTI 

($/Barrel) 
49.08 45.96 52.14 4,171.99 48.95 45.96 52.14 3,916.23 

COAL 

($/ton) 
34.59 33.3 35.82 2,940.85 34.53 33.3 35.8 2,762.51 

USPROD  

(Thousand 

Barrels/Day) 

9,416.5 9,245 9,659 37,666 9,416.5 9,245 9,659 37,666 

TXPROD  

(Thousand 

Barrels) 

108,573.5 104,229 116,369 434,294 108,573.5 104,229 116,369 434,294 

LAPROD  

(Thousand 

Barrels) 

4,219.25 4,054 4,386 16,877 4,219.25 4,054 4,386 16,877 

CON 

(Thousand 

Barrels/Day) 

20,464 19,123 21,946 1,739,483 20,548 19,123 21,946 1,643,868 

STR  

(Thousand 

Barrels) 

237,489 223,185 249,429 3,097,505 238,383 223,185 249,429 3,097,505 

HDD (days) 0 0 0 0 0 0 0 0 

CDD (days) 16.43 4 24 1,397 15.01 6 20 1,201 

VIX 10.79 9.19 16.04 917.73 10.85 9.19 16.04 868.47 

TWX 118.79 117.12 120.11 10,097.5 118.74 117.12 120.11 9,499.5 
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5.1.2. Panel Data Model with Difference-in-Differences Technique 

Eq. 5-1 describes the panel data model to estimate the effect of the FMCSA safety 

regulation waiver on the fuel price in the aftermath of Hurricane Harvey in Texas and Louisiana.  

 

lnFUELt=𝛽1WAVt+𝛽2DISt+𝛽3lnWTIt+𝛽4𝑙𝑜𝑔(CDDt+1)+𝛽5lnCONt+𝛽6lnSTRt+𝛽7lnVIXt 

+𝛽8lnTWXt+Time+𝜀𝑡        Eq. 5-1 

where lnFUELt is the natural logarithm of the average regional fuel price at Texas or Louisiana at 

time t (t = 85 days); WAVt is a temporary FMCSA regulation waiver variable that is equal to one 

when Texas or Louisiana at time t are exempt from the FMCSA safety regulations; DISt is a 

dummy variable that is equal to one if Texas or Louisiana at time t experienced Hurricane Harvey; 

lnWTIt is the natural logarithm of global crude oil price; logCDDt is the logarithm of cooling degree 

days; lnCONt is the natural logarithm of the volume of natural gas consumption in the US; lnSTRt 

is the natural logarithm of the volume of commercial gas storage on the Gulf Coast; lnVIXt is the 

natural logarithm of the CBOE (Chicago Board Options Exchange) Volatility Index; lnTWXt is the 

natural logarithm of the trade-weighted U.S. dollar index; Time denotes a vector of monthly 

dummies, and 𝜀𝑡 is the disturbance term.  

 

The main coefficient of interest is 𝛽1, which shows whether the average fuel price is 

different during the FMCSA safety regulation waiver period than during the pre-regulation period, 

ceteris paribus.  
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5.2. RESULTS  

Multicollinearity between predictor variables was checked because multicollinearity can 

threaten the results obtained by estimating Eq. 5-1. The variance inflation factors (VIFs) As shown 

in Table 5-4, the VIFs are less than 10 for all independent variables, indicating that there is no 

multicollinearity problem.  

 

Table 5-4. Variance inflation factors (VIFs) for Texas and Louisiana datasets 

Variables Texas Louisiana 

FMCSA safety regulation waiver 4.28 2.69 

Disaster 8.36 7.47 

Global crude oil price 3.45 2.92 

The volume of natural gas consumption in the US 4.16 4.40 

The volume of commercial gas storage on the Gulf Coast 5.81 4.43 

Cooling degree days 2.86 2.48 

CBOE volatility index 2.51 2.77 

Trade-weighted U.S. $ index 8.93 9.16 
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Table 5-5 shows the results of estimating equation (1) using the OLS method. The first 

column shows the results for Texas and the second one for Louisiana. These results show that the 

temporary FMCSA safety regulation waiver decreased the regional fuel prices in south Texas and 

Louisiana by 2.65% and 3.47%, respectively. In other words, south Texas’s daily fuel price during 

the period when the FMCSA safety regulations were waived (hereafter, ‘Regulation waived’ 

period) was approximately 2.65% lower than the price during the period when the FMCSA safety 

regulations were affected (hereafter, ‘Regulation affected’ period) in Texas, ceteris paribus. 

Similarly, south Louisiana’s daily fuel price was 3.47% lower during the ‘Regulation waived’ 

period than the price during the ‘Regulation affected’ period in Louisiana. This is consistent with 

theoretical predictions that less regulation can benefit market price stabilization (Kellogg, 2018; 

Litman, 2021). The finding indicates that the policymakers partially achieved the FMCSA safety 

regulation waiver’s goal of rapidly responding to emergencies and addressing post-disaster price 

spikes. The results also show that the disaster increased regional fuel prices by 3.74% in south 

Louisiana, but it is statistically significant at a 0.10 significance level. These findings are 

consistent with previous studies about substantial fuel price spikes following disasters (Beatty et 

al., 2021; Wen et al., 2021).  
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Table 5-5. Results of the OLS Method Estimation 

Variables Texas Louisiana 

FMCSA safety regulation waiver -0.0265** 

(0.0104) 

-0.0347*** 

(0.0131) 

Disaster 0.0177 

(0.0141) 

0.0374* 

(0.0198) 

Global crude oil price -0.157 

(0.167) 

-0.226 

(0.197) 

The volume of natural gas consumption in the US 0.0626 

(0.141) 

0.213 

(0.177) 

The volume of commercial gas storage on the Gulf 

Coast 

-0.602*** 

(0.213) 

-0.632*** 

(0.227) 

Cooling degree days 0.0237** 

(0.0113) 

0.0334* 

(0.0183) 

CBOE volatility index 0.0416 

(0.0257) 

0.0497* 

(0.0297) 

Trade-weighted U.S. $ index -3.007*** 

(0.922) 

-2.410** 

(1.116) 

Intercept 21.56*** 

(5.576) 

17.76*** 

(6.580) 

Month dummies Yes Yes 

Observations 85 80 

R-squared 0.589 0.614 

Notes: Robust standard errors are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

The global crude oil price index shows a negative but statistically insignificant relationship 

with the regional fuel price. This result seems inconsistent with the previous findings about the 

positive correlations between global crude oil prices and regional gasoline prices (Ferreira et al., 

2022; Ji et al., 2014). However, those positive correlations are based on the long-run cointegrating 

relationships between global crude oil prices and regional gasoline prices (Apergis & Vouzavalis, 

2018). The spot prices for generic gasoline often showed asymmetric responses to crude oil price 

changes, reflecting inventory adjustment effects (Borenstein et al., 1997; Bumpass et al., 2015; T. 
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Wang et al., 2019; Zhang & Ji, 2018). This explanation is consistent with the negative impact of 

the gas storage volume on regional fuel prices shown in Table 5-5.  

One percent increase in volume (in a thousand barrels) of commercial gas storage in the 

Gulf Coast decreased the daily regional fuel prices in south Texas and Louisiana by 0.602% and 

0.632%, respectively. On the other hand, the volume of natural gas consumption was positively 

related to regional fuel prices. One percent increase in natural gas consumption volume increased 

the daily regional fuel prices in south Texas and Louisiana by 0.0626% and 0.213%, respectively. 

This result is consistent with the economic theory that an increase in demand causes an increase 

in fuel prices (Jadidzadeh & Serletis, 2017).  

However, this positive relationship between consumption and fuel prices is statistically 

insignificant. This is perhaps because no evidence was found in the short-run dynamic 

relationships but the evidence was found in the long-run cointegrating relationship between natural 

gas demand and prices in the U.S. natural gas market (Burns & Houghton, 2019). Short-run gas 

price responses to demand are likely to be smaller than long-run gas price responses because of 

less flexibility of gas prices in the short run (Burns, 2021; Burns & Houghton, 2019).  

Also, the national-level natural gas consumption in the U.S. may have small effects on 

regional retail fuel prices (Bergeaud & Raimbault, 2020; Xiang & Lawley, 2019). Regional fuel 

prices are often explained by different socioeconomic regional features such as regional household 

gas consumption, territorial inequalities, geographical characteristics, and consumer preferences 

(Bergeaud & Raimbault, 2020). Xiang and Lawley (2019) reported that the regional gas demand 

changes did not result in large regional gas price changes in Canada but they found that the regional 
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residential gas prices were integrated with the wholesale market prices from producing areas, gas 

pipeline transportation costs, and local distribution and storage charges.  

As one of the weather-related explanatory variables, cooling degree days significantly 

positively impacted the regional fuel prices in south Texas and Louisiana by 0.0237% and 

0.0334%, respectively. Cooling degree days can increase energy use and put upward pressure on 

the gas price (Hulshof et al., 2016). The trade-weighted U.S. dollar index decreased the regional 

fuel prices by 3.007% and 2.41% in south Texas and Louisiana, respectively. The trade-weighted 

dollar index measures the value of the U.S. dollar relative to a basket of other foreign currencies 

(Board of Governors of the Federal Reserve System (US), 2022). Since the trade-weighted U.S. 

dollar index increase indicates the increasing purchasing power of the U.S. dollar, the regional fuel 

price decreased with the trade-weighted U.S. dollar index increase. This negative correlation 

between the fuel price and the U.S. dollar index found in this study is consistent with the findings 

in previous studies (Liao et al., 2018; F. Wen et al., 2018).  

 

5.3. DISCUSSIONS OF RESULTS  

Disasters often disrupt supply chains, logistics, and freight transportation systems (Elluru 

et al., 2019; Reddy et al., 2016). Disaster agencies must preemptively respond to disasters and 

mitigate disaster-related supply chain disruptions for communities’ post-disaster safety, recovery, 

and resilience (Dixit et al., 2020; Kim & Shahandashti, 2022b). A reliable and affordable fuel 

supply is essential for people’s immediate survival and basic functioning and rapid building 

infrastructure recovery in post-disaster situations (Kim & Shahandashti, 2022c; National 

Academies of Sciences, 2020; Palin et al., 2018; Yang et al., 2022). The FMCSA issued safety 
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regulation waivers for motor carriers and drivers that provided fuel supplies to Texas and 

Louisiana following Hurricane Harvey. Therefore, the drivers became exempt from applicable 

safety regulations, such as the eleven-hour limitations of service hours on their route to Texas and 

Louisiana. Furthermore, state governors of Texas and Louisiana lifted oversize or overweight 

freight truckload restrictions for providing disaster relief efforts in response to Hurricane Harvey 

(Proclamation, 2017). 

The current study found that the post-disaster FMCSA safety regulation waivers can help 

stabilize fuel prices, which is essential for post-disaster recovery. After Hurricane Harvey, the 

temporary FMCSA safety regulation waivers significantly impacted regional fuel price 

stabilization, decreasing fuel prices by 2.65% and 3.47% in south Texas and Louisiana, 

respectively. This impact is perhaps because drivers who became exempt from safety regulations, 

including hours of service limitations and oversize/overweight restrictions, could expedite their 

fuel transport to the disaster-affected south Texas and Louisiana areas and subsequently facilitate 

the fuel flow across the regional supply chain. This finding aligns with the results of previous 

studies that less regulation can increase the efficiency of supply chain systems with the efficient 

allocation of resources, faster responses to market forces, and supply chain reliability (Knudsen, 

2016; Muckstadt et al., 2001; Zhu et al., 2017).  

The impact of FMCSA safety regulation waivers on fuel supply facilitation can be 

explained in Figure 5-2. Pre-disaster retail fuel market equilibrium is represented by Point 3. 

Disaster increases fuel demand, moving the downward fuel demand curve toward the right. 

Therefore, post-disaster retail fuel market equilibrium was determined at Point 1 before FMCSA 

waives safety regulations. The counties at Point 1 experience higher retail fuel prices than pre-
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disaster prices. However, when FMCSA waives safety regulations, the waivers facilitate and 

increase fuel supply by temporarily lifting the hours of service and oversize/overweight 

restrictions. These FMCSA waivers move the upward fuel supply curve toward the left side, 

decreasing the retail fuel prices at Point 2.  

 

 

1. Post-disaster retail fuel market equilibrium for counties 

before FMCSA waives safety regulations 

2. Post-disaster retail fuel market equilibrium for counties 

after FMCSA waives safety regulations 

3. Pre-disaster retail fuel market equilibrium  

 

Figure 5-2. Economic Theoretical Explanation for the Empirical Evidence of FMCSA 

Regulation Waivers on Fuel Price Stabilization 
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The results for the relationships between fuel price and its key determinants in the current 

study are consistent with the findings in previous studies. The volume of commercial gas storage 

on the Gulf Coast has a negative relationship with the daily fuel prices in south Texas and 

Louisiana. According to the storage theory in the energy commodity markets, spot energy prices 

are inversely related to energy inventory levels (Ederington et al., 2019). Cooling degree days are 

positively related to regional fuel prices, reflecting the increasing demand for energy use. The 

increase in the trade-weighted U.S. dollar index decreased the regional fuel prices in south Texas 

and Louisiana, showing the rising purchasing power of the U.S. dollar relative to foreign 

currencies. The findings are expected to assist policymakers and decision-makers in understanding 

the FMCSA safety regulation waiver’s impact on post-disaster fuel prices and the short-run 

relationships between regional daily fuel prices and its key determinants for enhancing their 

disaster recovery plans, strategies, and policies. 
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CHAPTER 6 ASSESSING THE IMPACT OF EPA FUEL WAIVERS ON POST-

DISASTER AIR QUALITY  

The U.S. Environmental Protection Agency (EPA) implements environmental policies and 

regulations for protecting human health and the environment (Anastas & Zimmerman, 2021). The 

EPA has a wide range of responsibilities, including monitoring air and water quality, regulating 

hazardous waste disposal, and setting emission standards for industries (Shareefdeen & Elkamel, 

2022). Some of the most significant EPA environmental policies and regulations include the Clean 

Water Act, the Clean Air Act, and the Resource Conservation and Recovery Act (Hofmann, 2021). 

These policies and regulations have had a significant impact on reducing pollution and protecting 

public health and the environment (Thomson et al., 2020).  

The EPA has the authority to issue emergency waivers to ensure that necessary actions 

such as first responses and fuel supply can be taken in disaster situations (Gerrard, 2006). One 

such waiver is waving the fuel standard of Ultra Low Sulfur Diesel (ULSD) in emergency response 

vehicles and equipment in disaster-affected areas (Rodgers & Rodgers, 2020). The waiver allows 

the use of regular diesel fuel if ULSD is not available, to ensure that emergency responders can 

quickly and efficiently respond to the disaster (EPA, 2023).  

After Hurricane Sandy hit the East Coast in 2012, the EPA waived certain Clean Air Act 

requirements to address fuel supply disruptions for power generators, emergency vehicles, and 

other equipment critical to responding to the disaster. The waivers allowed the use of USLD in 

emergency response vehicles and equipment in the State of New Jersey, the five boroughs of New 

York City, Nassau, Suffolk, Rockland, and Westchester counties in New York, and the 
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Commonwealth of Pennsylvania. These waivers helped to ensure that essential services and 

recovery efforts could continue to operate in disaster-affected areas (EPA, 2023).  

The effects of disaster policies have been of interest in the literature. The safety regulation 

waiver issued by the Federal Motor Safety Carrier Administration helped to stabilize the retail 

gasoline prices after Hurricane Harvey in Texas and Louisiana (Kim et al., 2023). The EPA 

environmental regulation waivers after Hurricane Katrina posed significant threats to human health 

and welfare by generating widespread spills and leaks of oil and toxic gases and chemicals in the 

disaster recovery process (Stevens, 2022). Furthermore, there was no evidence found that EPA 

waivers expedited disaster relief and reconstruction efforts (Stevens, 2022). The emergency 

waivers of the air and water pollution environmental rules after Hurricane Harvey caused over 100 

toxic pollution releases on land, in water, and in air in Houston and the Texas Gulf Coast area, 

harming public health (Flatt, 2020). Although environmental regulation waivers can be necessary 

for quickly starting the disaster recovery process, those waivers are often issued in an overly broad 

range with little to no procedural requirements, causing significant risks to public health and 

ecosystem resilience (Drake, 2020).  

Despite the qualitative discussions on disaster-related policies for recovery, the effect of 

EPA fuel waivers has not been fully investigated quantitatively using empirical evidence. The 

current research aims to examine the effect of the EPA waiver for the sale, distribution, and use of 

USLD on the sulfur dioxide concentration in the regional air after Hurricane Sandy struck 

northeastern states. The findings of this research can assist disaster mitigation agencies and 

policymakers in understanding the effect of EPA fuel waivers and enhancing their environmental 

policies and strategies in disaster situations. 
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6.1. METHODOLOGY 

6.1.1. Data Explanation 

Table 6-1 describes the data to estimate the impact of environmental fuel regulation 

waivers from the EPA on the air quality after Hurricane Sandy. Since EPA waived the fuel 

regulation under the Clean Air Act that restricts the sulfur content of motor vehicle diesel fuel, the 

impact of this waiver on sulfur dioxide emission is investigated. The other determinants of sulfur 

dioxide emission are included in the analysis to control for confounding effects. Table 1 

summarizes data used to investigate the effect of the EPA fuel waiver on the post-disaster regional 

air quality in northeastern states.  

 

Table 6-1. Data Collection 

Group Variable Definition Frequency 
Source & 

Unit of measure 

Policy WAV EPA Fuel Waiver Dummy Variable - EPA 

Disaster DIS Hurricane Sandy Disaster Dummy 

Variable 

- FEMA 

Pollutants SO2 Sulfur Dioxide Concentration in 

Air 

Daily EPA (ppb) 

CO Carbon Oxide Concentration in Air Daily EPA (ppm) 

NO2 Nitrogen Dioxide Concentration in 

Air 

Daily EPA (ppb) 

O3 Ozone Concentration in Air Daily EPA (ppm) 

PM2 Fine Particulate Matter 

Concentration in Air 

Daily EPA (µg/m3) 
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The difference-in-differences technique for this study was designed as described in Table 

6-2. Both the treatment and control group states received a disaster declaration and federal 

assistance from FEMA after Hurricane Sandy. The treatment group consists of New York City and 

Nassau, Suffolk, Rockland, and Westchester counties in New York, all the New Jersey counties, 

and all the Pennsylvania counties which received the EPA waiver of fuel regulation that restricts 

sulfur emission. The other hurricane-affected states where the EPA fuel regulation was not waived 

in the aftermath of Hurricane Sandy are included in the control group. 

 

Table 6-2. Difference-in-differences Technique 

DID Before Fuel Waiver After Fuel Waiver 

Treatment Group NY (New York City, Nassau, 

Suffolk, Rockland, and 

Westchester), NJ, PA 

NY (New York City, Nassau, 

Suffolk, Rockland, and 

Westchester), NJ, PA 

Control Group NH, WV, VA. MA, MD, RI, DE, 

CT, OH, DC 

NH, WV, VA, MA, MD, RI, DE, 

CT, OH, DC 

 

 

The data in Table 6-1 were collected from October to December 2012 with a one-month 

time window (Table 6-3) before and after Hurricane Sandy. Researchers have utilized the one-

month time window before and after disasters to examine the economic losses and construction 

cost variations (Hallegatte & Vogt-Schilb, 2019; Khodahemmati & Shahandashti, 2020; Olsen & 

Porter, 2011). A longer time window can result in spurious relationships between variables due to 

various unobservable factors.    
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Table 6-3. Time Windows 

Region Before Hurricane Sandy 

 

After Hurricane Sandy Regulation waived 

CT Oct 1 – Oct 26, 2012 Oct 27 - Nov 8, 2012 N/A 

DC Oct 1 – Oct 25, 2012 Oct 26 - Oct 31, 2012 N/A 

DE Oct 1 – Oct 26, 2012 Oct 27 - Nov 8, 2012 N/A 

MA Oct 1 – Oct 26, 2012 Oct 27 - Nov 8, 2012 N/A 

MD Oct 1 – Oct 25, 2012 Oct 26 - Nov 4, 2012 N/A 

NH Oct 1 – Oct 25, 2012 Oct 26 - Nov 8, 2012 N/A 

NJ Oct 1 – Oct 25, 2012 Oct 26 - Nov 8, 2012 Oct 31 – Dec 7 

NY Oct 1 – Oct 26, 2012 Oct 27 - Nov 8, 2012 Oct 31 – Dec 7 

PA Oct 1 – Oct 25, 2012 Oct 26 - Nov 8, 2012 Nov 2 – Nov 20 

RI Oct 1 – Oct 25, 2012 Oct 26 - Oct 31, 2012 N/A 

VA Oct 1 – Oct 25, 2012 Oct 26 - Nov 8, 2012 N/A 

WV Oct 1 – Oct 28, 2012 Oct 29 - Nov 8, 2012 N/A 
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Table 6-4 presents the summary statistics of the variables. The negative values of air 

pollutants are allowed due to the value adjustments between monitoring instruments (EPA, 2016).    

  

Table 6-4. Summary Statistics  

Variables Mean Standard Deviation Min Max 

WAV (days) 0.41 0.49 0 1 

DIS (days) 0.14 0.34 0 1 

SO2 (ppb) 5.19 9.43 -1.7 350 

CO (ppm) 0.56 0.64 0 9.2 

NO2 (ppb) 23.61 12.73 0 96 

O3 (ppm) 0.027 0.011 0 0.11 

PM2 (µg/m3) 9.9 6.54 -1 75 
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6.1.2. Panel Data Model with Difference-in-Differences Technique 

Eq. 6-1 was estimated using fixed-effects (FE) and random-effects (RE) estimators to 

examine the effect of the EPA fuel waiver on air quality.  

 

SO2it=𝛽1WAVit+𝛽2DISit+𝛽3COit+𝛽4NO2it +𝛽5O3it +𝛽6PM2it +ai +at +𝑢𝑖𝑡     Eq. 6-1 

where SO2it is the sulfur dioxide concentration (ppb) in monitor site i at time t; WAVt is an EPA 

fuel waiver dummy variable that is equal to one when emergency vehicles in the site i at time t are 

waived for the use of ULSD; DISt is a disaster dummy variable that is equal to one if Hurricane 

Sandy was declared in site i at time t; COit is the carbon oxide concentration (ppm) in monitor site 

i at time t; NO2it is the nitrogen dioxide concentration (ppb) in monitor site i at time t; O3it is the 

ozone concentration (ppm) in monitor site i at time t; PM2it is the fine particulate matter 

concentration (µg/m3) in monitor site i at time t; ai is an individual-specific effect; at is a daily 

time-specific effect; and 𝑢𝑖𝑡 is an idiosyncratic error term.  𝛽1 is the main coefficient of interest, 

which proxies the effect of EPA fuel waiver on sulfur dioxide concentration. 𝛽1 is the main 

coefficient of interest for both Eq 6-1 investigating the effect of EPA fuel waiver on sulfur dioxide 

concentration in the regional air.  

 

The Hausman test was used to identify the appropriate panel data model for investigating 

the effect of EPA fuel waivers on SO2 concentration. The Hausman test was conducted to select 

between FE and RE models. The null hypothesis of the Hausman test is that the independent 

variables and the individual-specific effects (ai) are not correlated. If the null hypothesis is rejected, 

the FE model is preferred to the RE model. If the null hypothesis is not rejected, the RE model is 
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recommended rather than the FE model. The RE estimator can control for within-county 

correlation in the error term and thus yields more efficient estimates.  

 

6.2. RESULTS 

Before estimating the model, I tested whether multicollinearity is a threat to the results. 

The Variance Inflation Factor (VIF) is less than 10 for all independent variables, as shown in Table 

6-5, suggesting the absence of multicollinearity. 

 

Table 6-5. Variance Inflation Factors (VIFs) for Independent Variables 

Variables VIFs 

WAVit 1.07 

DISit 1.11 

COit 1.41 

NO2it 1.59 

O3it 1.05 

PM2it 1.72 
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The results of panel data models for investigating the effect of EPA fuel waiver on sulfur 

dioxide concentration are presented in Table 6-6. According to the results of the FE panel data 

models, the EPA fuel waiver increased the sulfur dioxide concentration by 1.34 ppb without 

controlling for the confounding effects of other air pollutants and 0.57 ppb with controlling for 

those confounding effects. The RE panel data model also shows the increasing effect of the EPA 

fuel waiver on the sulfur dioxide concentration by 0.55 ppb in the regional air. The result shows 

that the EPA waiver allowing the use of high-sulfur diesel fuel increased the sulfur dioxide 

concentration, contributing to air pollution in hurricane-affected regions. Sulfur dioxide (SO2) is 

a major industrial pollutant (Wang & Crutzen, 1995) and can decrease during a disaster incident 

period when human and industrial activities decrease (Filonchyk et al., 2020; Li et al., 2021a). 

The National Oceanic and Atmospheric Administration (NOAA) reported a negative relationship 

between air quality in the U.S. and Atlantic hurricanes (Murakami, 2022). The impact of 

hurricanes on air quality was found to vary across regions in previous studies (Hu et al., 2019; 

Lieberman-Cribbin et al., 2021; Pozo et al., 2020; Subramanian et al., 2018). Other air pollutants, 

including nitrogen dioxide (NO2), show a statistically significant positive relationship with the 

sulfur dioxide (SO2) concentration in the air. This positive relationship is consistent with the 

association between air pollutants concentration, which was found in previous studies (Iqbal et 

al., 2021). 
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Table 6-6. Results of the Panel Data Models for Air Quality 

Data SO2 Concentration in Air 

Variables FE FE RE 

WAVit 1.34*** 
(0.15) 

0.57** 
(0.24) 

0.55** 
(0.24) 

DISit - 2.76*** 
(0.22) 

- 0.21 
(0.35) 

- 0.19 
(0.35) 

COit 
- 

0.24 
(0.22) 

0.38* 
(0.22) 

NO2it 
- 

0.13*** 
(0.01) 

0.12*** 
(0.01) 

O3it 
- 

10.24 
(11.86) 

14.86 
(11.77) 

PM2it 
- 

0.14*** 
(0.02) 

0.14*** 
(0.02) 

Intercept 4.29*** 

(0.93) 

- 2.82* 

(1.55) 

- 3.11* 
(1.64) 

Time dummy Yes Yes Yes 

Notes: The number in parentheses indicates robust standard errors. 

*** p<0.01; ** p<0.05; * p<0.1 

 

 

The Hausman test rejected the null hypothesis that the independent variables and fixed 

effects (ai) are not correlated at the 5% significance level, as reported in Table 6-7. The Hausman 

test results indicate that the FE model is more appropriate to control for the individual-specific 

fixed effects (ai) than the RE model for estimating the effect of EPA ULSD waivers on SO2 

concentration. 

 

Table 6-7. Results of the Hausman Test 

Hausman Test Chi-Square Statistic p-value 

FE vs. RE 14.69 (7) 0.04 

Notes: The number in parentheses represents a degree of freedom. 
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6.3. DISCUSSIONS OF RESULTS 

When disasters strike, concerns have been raised about whether environmental regulations 

may slow down or obstruct response efforts (McCarthy & Copeland, 2005). To address these 

concerns, state, local, and federal government officials can request for a waiver to the EPA to 

waive or modify any requirement under its jurisdiction in response to damages related to disasters. 

In the case of Hurricane Sandy, the EPA, in consultation with the Department of Energy (DOE), 

issued a series of fuel waivers in late October and early November of 2012 to assist adequate and 

responsive disaster recovery efforts in the affected areas. 

The empirical results show that the EPA waiver for the use of USLD increased SO2 

concentration in the regional air by 0.57 ppb daily in the northeastern states affected by Hurricane 

Sandy. This is perhaps due to the increasing use and distribution of high-sulfur (such as greater 

than 500 ppm) diesel fuel allowed by the EPA fuel waiver.  

The increasing impact of the EPA fuel waiver on sulfur-dioxide concentrations is described 

in Figure 6-1. The post-disaster sulfur dioxide concentration is determined at Point 1. However, 

the EPA fuel waiver whose objective is to facilitate disaster recovery efforts allows high sulfur 

diesel use, increasing sulfur dioxide demand to the right. Therefore, the post-disaster sulfur dioxide 

concentration equilibrium is established at Point 2, increasing sulfur dioxide concentration in the 

post-disaster regional air.  
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1. Post-disaster sulfur dioxide concentration equilibrium for 

counties before EPA waives ULSD fuel use regulation 

2. Post-disaster sulfur dioxide concentration equilibrium for 

counties after EPA waives ULSD fuel use regulation 

Figure 6-1. Economic Theoretical Explanation for the Empirical Evidence of EPA 

Environmental Regulation Waivers on SO2 Concentration 

 

Daily SO2 concentration in northeastern states positively correlates with the concentration 

of major air pollutants, including CO, NO2, O3, and PM2. This finding aligns with the previous 

studies that investigated high positive correlations between air pollutants concentration (Li et al., 

2021b; Wang et al., 2019). 
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According to the results of the Hausman test, unobserved time-invariant individual-specific 

effects (ai) were found to be correlated with the independent variables. Therefore, the FE panel 

data model was used to include and control for the individual-specific effects (ai). The FE estimator 

enables us to control for various unobservable factors that are correlated with the observed 

covariates in the model and thus leads to unbiased and consistent estimates. Although the EPA 

fuel waivers showed an adverse impact on the regional air quality, increasing SO2 concentration, 

this result does not necessarily imply that the EPA fuel waivers should not be provided. It is 

important to understand and further investigate the impact of the EPA fuel waivers on disaster 

response efforts and the consequences of no EPA fuel waiver issuance during the disaster.  
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CHAPTER 7 POLICY IMPLICATIONS FOR EFFECTIVE DISASTER 

MANAGEMENT AND RECOVERY 

This doctoral study discovered the spatiotemporal impacts of disasters on the construction 

market and the effects of policies on the disaster management and recovery process. The practical 

and technical policy implications of this study are highlighted in this chapter.  

 

7.1. DEMAND SURGE 

The demand surge as a socioeconomic phenomenon has been found in the construction 

industry after disasters. This study first investigated the spatiotemporal dynamics of demand surge 

in the construction market. The impact of a disaster on construction labor costs was not found in 

the quarter when a disaster occurred but was found to be statistically significant one quarter after 

a disaster occurred. This finding implies that the faster supply of reconstruction resources 

including material and labor to disaster-affected counties, for example, in less than a quarter after 

a disaster occurred can reduce the amount of demand surge which can exacerbate socioeconomic 

losses one quarter after a disaster occurred. This finding also highlights the significance of supply 

chain security and management not only for disaster recovery but also for disaster loss mitigation.  

The indirect impact of a disaster on a neighboring county’s construction market was 

examined to be statistically significant in all three Gulf Coast States (i.e., TX, LA, FL) but in 

different directions. The spillover effect of a disaster on neighboring county’s construction wages 

was found positive in Texas and Florida while it was found negative in Louisiana. This finding is 

probably due to heterogenous construction market structures. One possible explanation for this 
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finding can be different migration responses to disasters among states (Raker, 2020). People in 

Louisiana showed a tendency to quickly displace and migrate to other neighboring counties or 

other states in a year after hurricanes (Marandi & Main, 2021). The influx of people and laborers 

from disaster-affected counties to non-disaster-affected neighboring counties can decrease 

construction wages in the non-disaster-affected neighboring counties in Louisiana (Peri et al., 

2020). On the other hand, people in Texas and Florida were more likely to return and rebuild their 

houses in the aftermath of disasters (Cantwell Fraase, 2020; Palinkas, 2020). This tendency to 

rebuild and reconstruct houses will increase construction demand not only in disaster-affected 

counties but also in non-disaster-affected counties as a spatial spillover effect (Lee, 2020). The 

findings of this study are limited to the spillover effects of a disaster on wages in construction 

industry. It is noteworthy to mention that the spillover effects of a disaster on wages can vary 

across industries, regions, and types of disasters (Davis et al., 2023).  

Disaster responses to recover, secure, and facilitate the supply chain for reconstruction 

resources in less than a quarter after a disaster occurred are crucial for minimizing the 

socioeconomic losses that can be exacerbated by a demand surge. Policymakers and disaster 

mitigation agencies can subsidize and incentivize the suppliers to expedite the supply of critical 

resources for reconstruction and recovery. For example, subsidizing or investing in workforce 

training and development programs can help increase the pool of skilled construction laborers, 

enabling a more robust response to post-disaster reconstruction demands. These programs can 

focus on skills specific to disaster recovery, such as debris removal, structural repairs, and resilient 

construction practices.  

Also, incentives such as tax credits or grants can be provided to private entities that 

contribute to post-disaster recovery efforts, including affordable housing initiatives and 
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infrastructure projects. These incentives can help offset increased construction labor costs and 

encourage private sector engagement in the recovery process.  

In this line of suggestion, fostering public-private partnerships can enhance the efficiency 

and effectiveness of post-disaster reconstruction. Collaboration between government entities, non-

profit organizations, and private sector industry stakeholders can leverage reconstruction 

resources, expertise, and funding to address labor cost inflation and optimize the resource 

allocation for disaster recovery efforts.  

This study also found that a spatial spillover effect of a disaster in the construction labor 

market depends on the regional market structure and human responses. Further investigation of 

the regional market structure can assist policymakers and practitioners in better understanding, 

quantifying, and predicting the spatial spillover effects of a disaster.  

 

 

 

 

 

 

 



 

98 

 

 

7.2. ANTI-PRICE GOUGING LAW 

The current study first investigated the effect of anti-price gouging law triggered by 

emergencies or disaster declarations on reconstruction prices and speed in the disaster recovery 

process. To protect consumers from exploitative pricing practices in the wake of disasters, thirty-

seven states have implemented anti-price gouging laws. These laws aim to regulate and limit the 

prices that businesses can charge for goods and services in the aftermath of natural disasters. While 

the intent behind anti-price gouging laws is laudable, their effectiveness and effects on the 

reconstruction market warrant careful consideration. The findings of this study provide the policy 

implications associated with these laws. 

Anti-price gouging laws are intended to shield consumers from exorbitant pricing during 

times of emergency. By capping prices or setting limits on permissible price increases, these laws 

aim to ensure that essential goods and services remain affordable and accessible to affected 

communities. According to the results of this study, anti-price gouging law successfully decreased 

construction wages following disasters in the United States, presenting its effectiveness to control 

market prices in the construction industry.  

Although the anti-price gouging laws can address concerns about exploitative practices, 

these laws do not necessarily ensure a smooth recovery process. One potential consequence of 

anti-price gouging laws is the risk of supply shortages. When businesses are unable to charge 

higher prices to reflect increased costs, they may be discouraged from entering the reconstruction 

market or may choose to allocate their limited supplies to other regions with more favorable pricing 

conditions. This can exacerbate the scarcity of essential goods and services in disaster-affected 

areas, hindering the recovery process. 
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Also, anti-price gouging laws can diminish the financial incentives for suppliers to 

participate in the reconstruction market. If suppliers cannot recoup their costs or make a reasonable 

profit due to price controls, they may be less motivated to invest resources or provide their services 

in disaster-stricken regions. This can lead to a decrease in the overall availability of reconstruction 

goods and services. 

Price controls imposed by anti-price gouging laws can create distortions in the market. By 

interfering with the natural price signals of supply and demand, these laws can disrupt the efficient 

allocation of resources. This study found a decreasing impact of Virginia’s anti-price gouging law 

on housing reconstruction speed, using a case study of Virginia’s and Maryland's counties hit by 

Hurricane Sandy. Anti-price gouging laws may result in misallocation, inefficiencies, and 

unintended consequences such as black markets or the emergence of unregulated alternative 

markets with higher prices. 

The current study on anti-price gouging law does not conclude that anti-price gouging law 

should be abolished. It is recommended to balance consumer protection and market dynamics in 

the disaster recovery process. Policymakers need to recognize the effectiveness and effects of anti-

price gouging law in the post-disaster reconstruction process and strike a delicate balance between 

protecting consumers and ensuring the smooth functioning of the reconstruction market. 

Recognizing the unique circumstances following a natural disaster, policymakers may consider 

incorporating flexibility and exceptions within anti-price gouging laws. For example, allowing 

temporary price increases to accommodate increased costs or providing exemptions for certain 

goods and services that are not essential for immediate survival can help maintain market 

equilibrium without unintended consequences that hinder the recovery process while still 

protecting vulnerable consumers. 
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7.3. FEDERAL MOTOR CARRIER SAFETY REGULATION WAIVER 

Natural hazards can disrupt transportation systems and hinder the delivery of essential 

goods and services to affected areas. To facilitate a swift recovery, governments may implement 

waivers or exemptions to certain Federal Motor Carrier Safety Administration (FMCSA)’s 

regulations to address logistical challenges and expedite the transportation of critical supplies. 

While these waivers aim to enhance the efficiency and effectiveness of the recovery process, their 

effectiveness and effects on safety and regulatory compliance require careful consideration.  

The current study presented empirical evidence that waiving certain motor carrier-related 

safety regulations can enable a more rapid response to the logistical challenges posed by Hurricane 

Harvey in Louisiana and Texas. The temporary waivers of hours of service and freight size/weight 

regulations facilitated the transportation of fuel to affected areas, stabilizing the retail fuel prices 

in south Louisiana and Texas. This study explores the policy implications associated with 

FMCSA’s safety regulation waivers in the disaster recovery process. 

The FMCSA’s safety regulation waivers can provide flexibility in resource allocation 

during the disaster recovery process to help overcome supply chain disruptions and ensure the 

efficient delivery of critical supplies, such as fuel, food, water, medical equipment, and building 

materials. It is suggested for FMCSA and government agencies that can issue the regulation 

waivers to collaborate and coordinate with other disaster mitigation and management agencies, 

industry stakeholders, and transportation providers. By streamlining regulatory processes and 

creating a more cooperative environment, these waivers facilitate effective communication and 

cooperation, resulting in a more coordinated and efficient response to the transportation and 

logistics challenges following a disaster.  
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While the FMCSA’s safety regulation waivers play a significant role in facilitating the 

disaster recovery process by addressing logistical challenges and expediting the transportation of 

critical supplies, policymakers must carefully consider the effectiveness, safety implications, and 

regulatory compliance aspects of these waivers. The relaxation of certain regulations through 

waivers raises legitimate safety concerns. Regulations such as hours of service restrictions are 

designed to prevent driver fatigue and maintain road safety. Waiving these regulations could 

potentially increase the risk of accidents if drivers are not adequately rested. Ensuring that safety 

remains a priority while implementing the FMCSA’s regulation waivers is crucial during times of 

emergency.  

Also, the FMCSA’s safety regulation waivers may lead to a temporary relaxation of 

regulatory compliance standards. While this flexibility is necessary in the immediate aftermath of 

a natural disaster, there is a risk of non-compliance becoming a precedent or being extended 

beyond the recovery period. Monitoring and oversight mechanisms should be in place to ensure 

that regulatory compliance is reinstated once the emergency situation subsides.  

Last but not least, the FMCSA’s safety regulation waivers should be implemented in a 

manner that ensures fairness and equity among transportation providers. Small operators and 

independent drivers might face challenges in keeping up with the changes and requirements 

associated with waivers. Policymakers should strive to provide clear guidance and support to all 

stakeholders, ensuring that the benefits of waivers are accessible to all who participate in the 

recovery process.  

Policymakers must strike a balance between safety considerations and the need for an 

efficient recovery process for maximizing the benefits of the waivers while safeguarding public 
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safety and regulatory compliance. Temporary waivers should be carefully evaluated to ensure that 

safety risks are mitigated, such as by implementing alternative safety measures. Regular 

assessment and monitoring should be conducted to adjust the waivers based on evolving 

circumstances. Guidelines for the safety regulation waivers should be clear and transparent, 

outlining the scope, duration, and conditions of the exemptions. Accountability mechanisms 

should be established to ensure that waivers are implemented responsibly, with appropriate 

oversight and reporting requirements to maintain transparency and minimize the potential for 

abuse. Collaboration among government agencies, industry stakeholders, and transportation 

providers is crucial for the effective implementation and monitoring of the regulation waivers. 

Engaging these stakeholders in the decision-making process and considering their input can help 

identify potential challenges, foster innovation, and ensure that waivers align with the specific 

needs of the recovery process.  
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7.4. ENVIRONMENTAL REGULATION WAIVER 

In the aftermath of natural disasters, the U.S. Environmental Protection Agency (EPA) may 

issue regulatory waivers or exemptions to certain environmental regulations to expedite the 

recovery and reconstruction process. These environmental regulation waivers aim to address the 

challenges posed by the immediate need for cleanup, debris removal, and restoration of critical 

infrastructure. For example, EPA often issues waivers to temporarily allow the use of Ultra-Low 

Sulfur Diesel (ULSD) fuel that does not meet the standard specifications during times of 

emergency. These waivers are designed to address fuel supply disruptions, facilitate emergency 

response, and streamline recovery efforts. However, the implications of such waivers on air 

quality, public health, and long-term environmental sustainability must be carefully considered.  

The current study showed that the EPA waivers for the ULSD fuel use increased the daily 

SO2 concentration, harming the regional air quality in northeastern states struck by Hurricane 

Sandy. However, this result does not necessarily imply that the EPA ULSD diesel fuel waivers 

should not be provided because the waivers can play a role in ensuring fuel supply stability and 

expediting emergency response efforts in the aftermath of natural disasters.  

Post-disaster fuel waivers by EPA can help ensure a stable fuel supply for critical 

emergency response and recovery operations. By temporarily allowing the use of non-compliant 

fuel, these waivers address supply disruptions that may occur due to damage to refineries, 

transportation infrastructure, or distribution systems. This enables the uninterrupted provision of 

fuel for essential vehicles and equipment involved in the recovery process. For example, the fuel 

waivers help mobilize and deploy emergency vehicles, generators, and equipment, facilitating 

timely assistance and recovery efforts to affected communities. This can potentially save lives, 
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protect property, and mitigate the immediate impacts of the disaster. The fuel waivers provide 

flexibility in fuel options during an emergency, helping ensure the continuation of essential 

services and support the resumption of critical infrastructure operations.  

However, as this research found the adverse impact of the waivers on the air quality, the 

EPA fuel waivers can result in increased emissions of pollutants such as sulfur dioxides (SO2). 

These emissions can contribute to poor air quality, especially near recovery operations in disaster-

affected communities. Such air pollution can have adverse health effects, particularly for 

vulnerable populations, including those with respiratory conditions and children. It is essential to 

assess and manage these environmental impacts during the waiver period.  

While the fuel waivers address immediate fuel supply challenges, they may have long-term 

consequences for environmental sustainability. The ULSD fuel requirements were implemented 

to reduce air pollution, improve public health, and minimize environmental harm. Waiving these 

requirements should be a temporary measure, and efforts should be made to restore compliance 

with the standards as soon as feasible to ensure long-term environmental benefits.  

Therefore, a time-bound and targeted approach, implementation of mitigation strategies, 

and effective public awareness are suggested as key policy considerations to balance the immediate 

needs of disaster recovery with long-term environmental protection.  

The ULSD diesel fuel waivers should be time-bound and targeted specifically to address 

fuel supply disruptions in the immediate aftermath of a natural disaster. Clear timelines and criteria 

for reestablishing compliance with ULSD fuel standards should be established to minimize the 

duration of the waivers and expedite the return to normal compliance levels.  
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Also, environmental policies should be in place to mitigate the environmental impacts of 

ULSD diesel fuel waivers. This may include additional measures such as emission controls on 

non-compliant vehicles or equipment, enhanced monitoring of air quality, and public health 

advisories to minimize exposure to increased pollutants. These strategies should be implemented 

concurrently with the waivers to ensure that environmental harm is minimized.  

Furthermore, it is essential to engage and inform the public about the temporary nature of 

ULSD diesel fuel waivers and the associated environmental implications and consequences. Public 

awareness campaigns can help educate communities about the need for these waivers, the 

importance of compliance with other environmental regulations, and the commitment to restoring 

environmental sustainability once the emergency situation subsides.  
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CHAPTER 8 CONCLUSIONS 

The disaster recovery process is highly associated with not only the construction industry 

but also disaster policies. This study investigated the spatiotemporal dynamic effects of a disaster 

on county-level construction wages in the short-run and long-run in three Gulf Coast states (Texas, 

Louisiana, and Florida) using dynamic SDMs with the DID specification. The results showed that 

a disaster had a negative or nonsignificant effect on construction wages in the quarter when the 

disaster occurred. However, one quarter after the disaster, the disaster increased the construction 

wages in the disaster-affected counties compared with the non-disaster-affected counties. This 

lagged positive effect of a disaster on construction wages was attributable to the direct and indirect 

spillover effects. The direct effect of a disaster on construction wages one quarter after the disaster 

was consistently estimated to be positive in all three Gulf Coast states. However, the indirect 

spillover effect of a disaster that occurred in the neighboring county on the construction wages 

varied across the states. The findings of this research are expected to clarify the endogenous and 

exogenous interaction effects between communities and enhance the understanding of the dynamic 

process of demand surge in the construction labor market. 

The research on various disaster policies was proposed to assess the impact of disaster 

policies on the disaster recovery process using the panel data models with the DID specification. 

Disaster policies considered in this study are the anti-price gouging law, the FMCSA safety 

regulation waiver, and the EPA fuel waiver.  

The impacts of the anti-price gouging law on reconstruction speed and reconstruction costs 

were investigated using the empirical datasets. Thirty-seven U.S. states and the District of 

Columbia have anti-price gouging laws or regulations to control the increased price in the 
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aftermath of a disaster. The anti-price gouging laws enforce civil or criminal penalties for price 

gouging violations. First, I found empirical evidence that the anti-price gouging law triggered in 

the wake of a disaster decreased the number of new housing constructions authorized by monthly 

building permits using panel data models with a DID technique. All the DID estimators yield a 

consistent result that the presence of the anti-price gouging law decreased the number of new 

housing constructions by 18 units in Virginia counties relative to Maryland counties that were not 

subject to the anti-price gouging law during Hurricane Sandy. Furthermore, the anti-price gouging 

law showed a decreasing impact on reconstruction wages in the aftermath of disasters by regulating 

reconstruction market prices.  It is implied that the anti-price gouging law can mitigate 

reconstruction cost inflation but also slow down reconstruction speed by controlling the market 

prices in the aftermath of disasters.  

The FMCSA safety regulation waiver was examined if the waiver has a significant effect 

on fuel price stabilization after Hurricane Harvey struck Texas and Louisiana. The results show 

that the post-disaster FMCSA safety regulation waiver had a statistically significant adverse 

impact on the daily fuel prices, assisting in stabilizing the daily fuel prices in South Texas and 

Louisiana in the aftermath of Hurricane Harvey. The FMCSA safety regulation waivers can 

facilitate and increase post-disaster fuel supply, mitigating the daily fuel price inflation by 2.65% 

and 3.47% in South Texas and Louisiana, respectively.  

Lastly, this research investigated the impacts of the EPA waivers for ULSD fuel use on the 

regional air quality in northeastern states after Hurricane Sandy. The results show that the post-

disaster EPA waiver for the ULSD fuel use had an increasing impact on the daily SO2 

concentration in the hurricane-affected areas. The FE panel data model controlling for the 
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unobserved individual-specific effects (ai) shows that the EPA fuel waiver increased the daily SO2 

concentration by 9.85 ppm.  

This research can contribute to the state of knowledge by connecting three critical 

disciplines: Post-disaster Construction, Economics, and Policy Analysis. The primary contribution 

of this research to the body of knowledge is the development of econometric measurement 

methods to estimate disaster impacts and evaluate policy effects in the post-disaster reconstruction 

management and recovery process. This study is the first attempt to investigate the spatiotemporal 

impacts of disaster on construction wages and examine the short-run and long-run dynamic process 

of post-disaster construction demand surge. The dynamic fixed-effect Spatial Durbin models with 

temporally lagged disaster variables and difference-in-difference technique were used to 

incorporate the spatial and temporal dependencies between county-level construction wages and 

enable us to understand the lagged effects of disasters on construction wage inflation. Furthermore, 

this research addressed the fundamental limitations of existing demand surge models by solving 

missing data problems with spatial multiple imputation methods. 

This research evaluated and quantified the impacts of disaster-related policies on the post-

disaster reconstruction process, for the first time, presenting empirical evidence. The panel data 

models with DID techniques were implemented to compare the changes in the post-disaster 

reconstruction variables between the treatment group affected by the policy and the control group 

not affected by the policy. The research quantitatively investigated the impacts of various policies 

including anti-price gouging law, FMCSA safety regulation waivers, and EPA fuel waivers which 

have been qualitatively discussed over controversy in previous studies and practice. The proposed 

approach and discovery of this research will aid disaster mitigation and recovery agencies in better 
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understanding a post-disaster reconstruction process, developing a greater construction capacity, 

setting effective reconstruction goals, initiating risk mitigation and resourcing strategies, and 

enforcing effective regulations and policies.  
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