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ABSTRACT

ENVIRONMENT, COMMUNICATION AND DECISION FOR MULTIAGENT

SYSTEMS

Lu Zhao, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Yan Wan

Multiagent systems (MAS) are ubiquitous in modern systems and have found

broad applications, such as in intelligent transportation systems (ITS). Environment,

communication and decision are among the essential components of MAS. The re-

alistic environment in which MAS operates is usually stochastic, and its modeling,

identification and estimation are important to consider. The communication in MAS

is also critical for decisions. For example, in ITS, to improve travel efficiency and

reduce traffic accidents, scheduling schemes for Vehicle-to-Everything (V2X) commu-

nication need to be developed. MAS decisions also need to be robust to uncertainties.

For example, in mixed-traffic autonomous driving, the decisions for autonomous ve-

hicles need to take into consideration human drivers’ uncertain behaviors to avoid

crash and ensue safe driving. This dissertation contributes to the MAS research in

the aforementioned three aspects: environment, communication and decision.

In the first thrust of the dissertation, we capture the stochastic spatiotempo-

ral environment in which the MAS operates using a discrete-time stochastic model,

namely the influence model (IM). The identifiability and estimation of IMs with

v



reduced computation for real MAS applications are thoroughly studied in this dis-

sertation, considering, first, a specific network topology (i.e., the uniform completely

connected homogeneous networks), second, general homogeneous and heterogeneous

networks, and finally, partially observed IMs (POIMs). Compared with using the

standard master Markov chain approach for estimation, our proposed approaches are

much more computationally efficient. In addition, per the authors’ knowledge, our

work is the first in the literature that studies the identifiability of heterogeneous IMs

and heterogeneous POIMs.

In the second thrust of the dissertation, we study sub-6 GHz assisted mmWave

scheduling and design a distributed V2X communication scheduling scheme with mul-

tiples head nodes for long highway traffic. The long highway is divided into contiguous

and non-overlapping sections, and a head node within each section collects mmWave

link requests, runs the scheduler and coordinates with each other to achieve conflict-

free schedules. A decomposition-based approximate solution is developed to address

the intra-section computational scalability. Two coordination schemes are designed to

address the inter-section communication scalability, and to achieve an overall conflict-

free transmission schedule with low control overhead.

In the third thrust, we propose a stochastic hierarchical game (SHG) to support

safe and efficient autonomous driving decision under uncertain intentions in mixed-

traffic scenarios. First, a random mobility model (RMM) is developed to capture

the uncertain intentions of MAS, including the random switching behavior. Then,

an efficient sampling-based uncertainty evaluation technique, named the multivariate

probabilistic collocation method integrated with an orthogonal fractional factorial

design (MPCM-OFFD) is leveraged to solve the SHG with reduced computation by

using a limited number of sample scenarios while guaranteeing the safety.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

A multiagent system (MAS) is a system composed of multiple interacting agents.

In contrast to single-agent systems, the MASs are more flexible, robust, and efficient

in solving complex and challenging tasks [1]. Therefore, the MASs have found broad

applications, such as in transportation systems, power grids, social networks and

pandemic spread [2–5]. Environment, communication and decision are among the

essential components of MAS [6–8].

The realistic environment in which MAS operates is usually stochastic, and its

modeling, identification and estimation are important to consider [9–11]. The influ-

ence model (IM) has been used in the literature to capture the stochastic spatiotem-

poral environment of MAS [12, 13]. The IM describes the evolution of networked

Markov chains using local-level update rules modulated by abstracted network-level

influences. IM is tractable in analysis with its reduced-order representation, but its

identifiability and estimation remain challenging due to the tight coupling of network-

and local- level interactions. In the literature, the identifiability analysis is limited

to homogeneous IMs, and the identifiability condition leveraging the standard master

Markov chain approach is not straightforward to check and computationally expen-

sive [14]. Furthermore, there is no study in the literature on the identifiability of

heterogeneous IMs despite the broad applications. Such a gap also exists for the

identifiability of the partially-observed IMs (POIMs) [14]. Unlike identifiability, the

estimation of IMs and POIMs has been investigated in some studies using methods
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such as the maximum likelihood estimation (MLE) and expectation maximization

(EM) [14–17]. However, significant limitations exist, such as the sensitivity to initial

conditions [18], applicability to only two-state local Markov chains [19], and high

computational cost [20, 21]. Therefore, we are motivated to study the identifiability

and estimation of general IMs and POIMs with reduced computation.

Communication plays an important role in the safety and efficiency of MAS

[22–24]. In intelligent transportation systems (ITS), collective perception and vehi-

cle platooning all benefit from Vehicle-to-Everything (V2X) communication [25, 26].

Sub-6 GHz V2X-assisted mmWave communication has been proposed to support ex-

tensive data exchange in ITS applications, where the sub-6 GHz channel works as the

control panel and the mmWave channel as the data panel [27]. MmWave transmission

scheduling arranges mmWave links for transmission to avoid the waste of bandwidth

resources due to collision in channel sharing [28]. We developed a centralized mmWave

scheduling scheme with several scheduling algorithms which consider realistic V2X

data features to achieve an optimized channel utilization [29, 30]. However, it is not

applicable for long highway traffic with respect to the communication and computing

scalability. First, control information exchange beyond the sub-6 GHz communication

range requires multi-hop packet forwarding and incurs large control signalling over-

head [31–33]. The computational complexity of solving the NP-complete scheduling

optimization problem can also be high if there is heavy communication load for the

long highway [30,34–36]. Thus, we are motivated to develop a distributed scheduling

scheme to address both communication and computational scalability issues for long

highway traffic.

Decision-making under uncertainty is also an important subject for MAS. In

autonomous driving, autonomous vehicles need to navigate safely and efficiently in

complex traffic scenarios. One challenge in decision resides in the inherent uncertain
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driver behaviors. There are some studies in the literature that model uncertain in-

tentions of traffic participants [37–39], however the limitations lie in the inaccurate

probabilities of rare traffic scenarios learned with finite data (e.g., abrupt intention

changes) and inaccurate confidence bounds for making safe decisions [40]. Game

theoretic-based approaches provide a systematic mathematical framework to model

interactions among multiple traffic participants and to solve for optimal payoffs in

non-cooperative traffic environments [41–43]. A Bayesian game that considers uncer-

tain driver behavior was developed in [44]. However, it is not scalable with the number

of game players. We are motivated to develop a novel stochastic game framework that

more realistically captures uncertain driver behaviors and efficiently achieves safe de-

cisions.

1.2 Overview of this Dissertation

This dissertation first investigates the stochastic spatiotemporal environment of

MAS and studies the identifiability and estimation of IMs with reduced computation.

Next we study the communication and decision issues of MAS in the context of

ITS. With regard to communication in ITS, we study the sub-6 GHz V2X-assisted

mmWave communication scheduling problem for long highway traffic. With regard

to decision in ITS, we leverage the game theoretic-based approach to facilitate safe

and efficient decisions under complex stochastic traffic environment. The results are

documented in 9 papers [29, 30, 45–51]. The following five chapters include the main

results.

In Chapter 2, we study the reduced-order estimation of IMs. For the uniform

completely connected homogeneous IM (UCC-HIM), a canonical class of IM, we prove

that it is identifiable. Then we construct a reduced-order Markov chain to facilitate

the estimation study. The dimension of this reduced-order Markov chain is far less
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than the master Markov chain and we find the one-to-one mapping between these two

Markov chains. By using the proposed reduced-order Markov chain, an efficient pa-

rameter estimation algorithm is developed. Compared with the master Markov chain

approach, the same accuracy is achieved but with significant reduction of computa-

tional load. Simulation studies verify efficiency of our proposed parameter estimation

algorithm and demonstrate its practical value in real applications. The results are

documented in paper [52] published in IEEE Control Systems Letters and presented

in 2021 American Control Conference.

In Chapter 3, we take a structural approach to study the identifiability and

estimation of both the homogeneous IMs and the heterogeneous IMs with reduced

computation. To facilitate the identifiability analysis, we introduce the joint-margin

matrix which connects the first-order and highest-order representations of IMs. Based

on the joint-margin matrix, we find that the local Markov chain transition matrices

are always identifiable and their ranks determine the identifiability of the network

influence matrix. The if-and-only-if identifiability condition identified in this chapter

for the homogeneous IMs is much simpler to check compared to that in [14]. For

heterogeneous IMs, the if-and-only-if identifiability condition identified is the first in

the literature and shows that the individual local Markov chain transition matrix de-

termines the identifiability of the corresponding row of the network influence matrix.

Based on the identifiability analysis, we develop the joint-margin probability based

estimation (JMPE) methods for both the homogeneous IMs and heterogeneous IMs.

The effectiveness of the proposed methods is validated through simulation studies.

Compared to the maximum likelihood estimation and the linear algebra based estima-

tion approaches, we find that the JMPE method retains accuracy with significantly

reduced computation. The results are documented in paper [46] submitted to IEEE

Transactions on Systems, Man and Cybernetics: Systems.
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In Chapter 4, we provide new results on the estimation and identifiability of

homogeneous and heterogeneous partially observed IMs (POIMs). Through explor-

ing the joint-margin matrix introduced in Chapter 3, we develop a POIM estimation

algorithm, named the expectation maximization-based JMPE (EM-JMPE), which in-

cludes two steps, estimating the joint-margin matrix from observations and obtaining

POIM parameters from the joint-margin matrix. We also provide new identifiabil-

ity conditions for POIMs by introducing the reduced-size joint-margin matrix, whose

relationship with the fully-observed joint-margin matrix is presented. In the homoge-

neous case, we show that the new necessary condition is tighter or at least the same

as that in [14]. The necessary condition for the heterogeneous case is the first in the

literature. Simulation studies demonstrate the use of the results and validate their

effectiveness. The results are documented in paper [47] published in IEEE Control

Systems Letters and presented in 2022 Conference on Decision and Control.

In Chapter 5, we study the sub-6 GHz V2X-assisted mmWave link scheduling

for long highway traffic. A distributed scheduling scheme is proposed. The long

highway is divided into contiguous and non-overlapping sections. For each section, a

head node collects mmWave link requests and determines a conflict-free transmission

schedule through coordinating with other head nodes. We address both the com-

putational challenge for individual head node to solve the scheduling problem in a

section, and the communication challenge for multiple head nodes to resolve cross-

section conflicts. To address the intra-section computational challenge, we develop

a decomposition-based approximate solution, which leverages the spectral analysis

of conflict table to decompose the scheduling problem in a section with minimal de-

pendencies among sub-problems. Remaining dependencies are addressed through a

permutation and enumeration procedure. To address the inter-section communication

challenge, two coordination schemes are designed to avoid heavy control overhead for
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an overall conflict-free transmission schedule. The rule-based scheme uses predefined

rules to eliminate conflicted links. The section-parity-based scheme groups head nodes

based on the parity of their section IDs, and head nodes from two groups conduct

scheduling with modified constraints in order. Both schemes are simple to imple-

ment. Simulation studies using MATLAB validate the effectiveness of the proposed

distributed scheduling scheme. The results are documented in paper [48] to submit

to IEEE Transactions on Intelligent Transportation Systems.

In Chapter 6, we propose a novel stochastic hierarchical game (SHG) for au-

tonomous driving, where the uncertain intentions of drivers are captured. The pro-

posed SHG uses the random mobility model (RMM) to capture uncertain driver inten-

tions of random switching behavior, and uses the multivariate probabilistic collocation

method integrated with an orthogonal fractional factorial design (MPCM-OFFD) to

solve the SHG efficiently. Comparative simulation studies have been conducted to

validate the effectiveness of the proposed SHG. Comparing the performances of the

SHG to those of the hierarchical game that does not consider uncertain intentions,

the safety of the ego is achieved with reduced repeated play frequency, realistic brak-

ing maneuver, and timely response to abrupt intention changes in emergencies. The

results are documented in paper [49] to submit to IEEE Intelligent Transportation

Systems Magazine.
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CHAPTER 2

REDUCED-ORDER ESTIMATION OF THE UNIFORM COMPLETELY

CONNECTED HOMOGENEOUS INFLUENCE MODEL (UCC-HIM)1

2.1 Introduction

The influence model (IM) is a discrete-time stochastic model that captures spa-

tiotemporal network dynamics [53, 54]. It constitutes a reduced-order representation

of networked Markov chains through abstracting network-level interactions and local-

level update rules. IM has been used in diverse stochastic network applications, such

as power networks, social networks, virus spreads, and weather evolution [16,55–57].

In order to use IM in stochastic network applications, one critical step is to es-

timate underlying model parameters from observation data. Identifiability deals with

the uniqueness of IM estimates. In [58], the identifiability conditions for homogeneous

IM were recently provided. Through exploiting the mapping structure between IM

and its equivalent master Markov chain, the identifiability analysis led to a linear

algebra-based estimator. The paper also developed a baseline maximum likelihood

estimator (MLE) for comparison. Several other MLE based estimators have been

developed in the literature [15, 16]. Of our interest, [17] developed an IM estimation

algorithm based on its corresponding first-order representation, i.e., the influence ma-

trix. All of these existing estimation algorithms have limitations of some sorts in their

performance. The computation of the linear algebra-based approach grows exponen-

1© 2020 IEEE. Reprinted, with permission, from [L. Zhao, C. He and Y. Wan, “Reduced-Order

Estimation of the Uniform Completely Connected Homogeneous Influence Model (UCC-HIM),” in

IEEE Control Systems Letters, vol. 5, no. 6, pp. 2186-2191, Dec. 2021].
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tially with the increase of network size. The performance of the MLE is sensitive to

initial guesses, and local optima are difficult to avoid. Furthermore, obtaining the

influence matrix from data is complex and prone to errors due to the coupling effect

of network- and local- level interactions. To overcome these challenges, we here de-

velop an IM estimation algorithm that is both accurate and computationally effective,

including for large networks.

In this chapter, we take a structural approach to study reduced-computation

IM estimation methods for IM. Network topology plays an important role in network

dynamics, and topology-based approaches have been widely used in studies such as

network identification, state estimation, network design and control [59–61]. As a

first step, we here focus on a canonical class of IM, named the uniform completely

connected homogeneous influence model (UCC-HIM). In UCC-HIM, all sites are fully

connected with common mutual influence and local status update rules. Stochastic

networks of such a topology capture agent interactions in close proximity and has been

used in studies in a wide range of applications, including e.g., banking systems, the

emergence of social norms, wireless sensor networks and protein interaction networks

[62–65].

For this UCC-HIM, we develop an efficient estimation algorithm that exploits

its symmetric topological property. Compared to the MLE and linear algebra-based

estimators developed for general IMs, the proposed algorithm significantly reduces

the computational complexity while maintains accuracy.

The rest of the chapter is structured as follows. The fundamentals of the IM

and the UCC-HIM problem formulation are introduced in Section 2.2. In Section

2.3, a reduced-order Markov chain is introduced to facilitate the analysis for UCC-

HIM based on its special network topology. Then an efficient parameter estimation

algorithm is developed through exploiting structures of the reduced-order Markov
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chain. In Section 2.4, two simulation studies are conducted to verify effectiveness of

the proposed estimation algorithm. Section 2.5 concludes the chapter.

2.2 Preliminaries of the Influence Model

2.2.1 The influence Model (IM)

An IM is composed of N interacting sites. Each site i has Mi possible statuses,

where i ∈ {1, 2, · · · , N}. A scalar si[k] ∈ {1, 2, · · · ,Mi} indexes the status of site i at

time k. Si[k], a row vector of length Mi, also denotes site i’s status at time k, where

all entries are filled with ‘0’s except a ‘1’ at the location corresponding to the status

index si[k]. For example, Si[k] = [1 0 · · · 0] when si[k] = 1.

At each time step, site i updates its status based on the network influence

matrix D ∈ RN×N and local Markov chain transition matrix Aji ∈ RMj×Mi , where

j ∈ {1, 2, · · · , N}. D and Aji are row stochastic matrices. The 4-step update rule is

summarized as follows.

1. Choose site j as site i’s determining site with probability di,j, where di,j is

the element of D denoting the probability that i is influenced by j.

2. Calculate pij[k + 1] ∈ R1×Mi , the probability of site i’s next status, based

on the current status of site j as pij[k + 1] = Sj[k]Aji, where each element

am,n of Aji is the conditional probability for site i’s next status to be n given

that site j’s current status is m.

3. Determine Pi[k + 1] ∈ R1×Mi , the probability mass function of site i’s next

status by considering the influence of all sites on site i as

Pi[k + 1] =
N∑
j=1

di,jpij[k + 1] =
N∑
j=1

di,jSj[k]Aji. (2.1)

4. Si[k+1] is then obtained by realizing Pi[k+1], i.e., sampling random numbers

according to the distribution Pi[k + 1].
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Cascading Si[k] and Pi[k + 1] into row vectors SH [k] and PH [k + 1] of length∑N
i=1Mi, we have

SH [k] =

[
S1[k] S2[k] . . . SN [k]

]
, (2.2)

PH [k + 1] =

[
P1[k + 1] P2[k + 1] . . . PN [k + 1]

]
. (2.3)

Then the above 4-step update rule leads to the IM dynamics succinctly captured by

the two following iterative equations,

PH [k + 1] = SH [k]H, (2.4)

SH [k + 1] =MultiRealize(PH [k + 1]), (2.5)

where SH [k+1] is obtained by realizing each Pi[k+1] respectively, andH ∈ R
∑N

i=1 Mi×
∑N

i=1 Mi

is the influence matrix defined as:

H ≜


d1,1A11 . . . dN,1A1N

...
...

...

d1,NAN1 . . . dN,NANN

 . (2.6)

If all sites have the same number of statuses, M , and Aji = A for all i and

j, the IM is referred to as the homogeneous influence model (HIM), with the state

vector SH [k] of length MN . The dimension of state grows linearly with network size.

A state matrix SG[k] ∈ RN×M is further introduced to capture the HIM state in its

matrix form

SG[k] =

[
S1[k]

′ S2[k]
′ . . . SN [k]

′

]′
. (2.7)

The corresponding influence matrix in (2.6) is then simplified to H ≜ D′ ⊗A, where

⊗ is the Kronecker product, and the superscript ′ denotes the transpose operation.

In this chapter, we focus on the HIM with a canonical network topology, referred

to as the uniform completely connected homogeneous influence model (UCC-HIM). In
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UCC-HIM, all sites are fully connected with the same mutual influence, i.e., di,j =
1
N

∀ i, j ∈ {1, 2, · · · , N}. An example of UCC-HIM is shown in Figure 2.1. The UCC-

HIM has practical values, e.g., it captures the voting behaviors in leaderless social

networks and other types of network interactions in close proximity.

Figure 2.1: An example of UCC-HIM of 3 sites and 2 statuses at each site.

2.2.2 The Master Markov Chain Representation of IM

The dynamics of IM can also be captured by its equivalent master Markov chain

[53]. As the name suggests, the master Markov chain representation uses the Markov

properties of IM and constructs a big Markov chain with states as the combination

of all site statuses. There are a total of MN states in the master Markov chain

representation. A scalar sg[k] ∈ {1, 2, · · · ,MN} is adopted to index the states based

on the statuses of all sites, i.e., si[k] ∀ i ∈ {1, 2, · · · , N} as

sg[k] =
N∑
i=1

(si[k]− 1)MN−i + 1. (2.8)
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The event matrix B ∈ RMN×MN captures all states of the master Markov chain [53].

The qth row of B is the state vector SH corresponding to sg = q. For example, for

the UCC-HIM network in Figure 2.1 with 3 sites and 2 statuses for each site, i.e.,

N = 3 and M = 2, there are 8 states in the Markov chain in total. The state sg = 4

corresponds to s1 = 1, s2 = 2 and s3 = 2, and hence S1 = [1 0], S2 = [0 1], S3 = [0 1],

to form SH = [1 0 0 1 0 1] in the 4th row of B,

B =



1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

0 1 1 0 0 1

0 1 0 1 1 0

0 1 0 1 0 1



.

The master Markov chain is characterized by its state transition matrix G ∈

RMN×MN
, which gives the conditional probability of its next state sg[k + 1] given its

current state sg[k]. Let SG
p [k] and S

G
q [k + 1] denote the state matrices corresponding

to sg[k] = p and sg[k + 1] = q, respectively. The elements of G can be obtained in a

succinct form as:

gp,q = P (sg[k + 1] = q|sg[k] = p) =
N∏

n=1

M∏
m=1

zn,m, (2.9)

where zn,m is the nth row and mth column element of matrix Zpq ∈ RN×M .

Zpq =
(
DSG

p [k]A
)◦SG

q [k+1]
. (2.10)

The superscript ◦ denotes the element-wise exponential operator. In particular, for

two matricesX and Y with the same dimension, themth row and nth column element
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of the outcome ofX◦Y , (X◦Y )m,n, is calculated asXm,n
Ym,n . Let PG[k+1] = DSG

P [k]A,

the ith row of PG[k + 1] indicates Pi[k + 1] with i ∈ {1, · · · , N} according to (2.1).

Zpq is constructed to obtain the probabilities of all sites at the local statuses captured

in SG
q [k + 1]. gp,q is obtained by multiplying these probabilities since the statuses of

all sites evolve independently. More details can be found in [58].

The comparison between the influence model dynamics (2.4) and its Master

Markov chain representation (2.9) clearly shows the effectiveness of the influence

model. The HIM ofMN states captures the dynamics of its equivalent master Markov

chain of MN states.

2.2.3 Problem Formulation

Despite the tractability of the influence model due to its reduced-order formu-

lation, model estimation cannot easily be achieved in an effective way. The master

Markov chain G has been used as a step for the estimation of the IM [58]. However,

as expected, the computation involved in the master Markov chain-based estimation

approach increases exponentially with the network size. The large computational cost

of G limits its practical use, especially for large networks.

In this chapter, we take a structural approach to study a class of IM, namely,

the UCC-HIM, and provide an efficient parameter estimation algorithm. The problem

is formulated as follows.

Problem: Consider a UCC-HIM of N sites withM statuses for each site. Given

L independent observation sequencesO = {O1, O2, · · · , OL} withOi =
[
SH [1]i, S

H [2]i,

· · · , SH [K]i
]
, where the initial network state SH [1]i can be arbitrary, estimate the

underlying local transition matrix A with L,K → ∞.
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2.3 Parameter Estimation for the Uniform Completely Connected Homogeneous In-

fluence Model (UCC-HIM)

In this section, we develop an efficient parameter estimation algorithm for the

UCC-HIM. We first study the identifiability. Then we construct a reduced-order

Markov chain through exploiting the symmetric network topology of the UCC-HIM.

The mapping relationship between the reduced-order Markov chain and the master

Markov chain is illustrated next. The analysis of the reduced-order Markov chain

leads to an efficient and accurate estimation algorithm.

2.3.1 The Identifiability of The UCC-HIM

Lemma 1. [58] The influence model is identifiable from the observation sequences O

with L,K → ∞, if and only if the underlying parameters A and D can be uniquely

determined from the master Markov chain G.

Lemma 2. [58] A can be uniquely determined from G as

am,n = N

√
g∑N

i=1(m−1)MN−i+1,
∑N

j=1(n−1)MN−j+1, (2.11)

where am,n is the mth row and nth column entry of A and
∑N

i=1(m− 1)MN−i + 1 is

the master Markov chain’s state with all sites in the same local status m.

Based on the above lemmas, we prove the identifiability of the UCC-HIM in

Theorem 1.

Theorem 1. Any UCC-HIM is identifiable.

Proof. For a UCC-HIM of N sites, D is determined and takes the form of di,j = 1
N

∀ i, j ∈ {1, 2, · · · , N}. Because A can be determined uniquely from G according to

Lemma 2, the theorem is proved naturally according to Lemma 1.
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2.3.2 The Reduced-order Markov Chain R

From (2.11), we see that the transition matrix of the master Markov chain G is

needed to obtain A. The dimension of G is MN , making the estimation computation

grow exponentially with network size. To efficiently estimate A, we introduce a

reduced-order Markov chain R by first showing its states and then the transition

matrix.

The reduced-order Markov chain records the number of sites in each status.

We adopt a length-M vector SR[k] = [r1 · · · rm · · · rM ] to denote the state of the

reduced-order Markov chain R at time k, where rm is the number of sites whose

local statuses are m. Hence 0 ≤ rm ≤ N and
∑M

m=1 rm = N . In other words,

SR[k] =
∑N

i=1 Si[k]. By counting all the possible SR[k], the reduced-order Markov

chain R has r states, where

r =

((
M

N

))
=

(
M +N − 1

N

)
=

(M +N − 1)!

(M − 1)!N !
. (2.12)

The notation ((·)) and (·) denote the multiset and combination operations, respec-

tively. r is the number of ways to assign M statuses to the N sites, with repetitions

allowed and ordering disregarded. See [66], p.71 for the details of this multiset oper-

ation. To index the r states SR[k], we introduce a scalar sr[k] ∈ {1, 2, · · · , r}. Given

SR[k], sr[k] is calculated as

sr[k] =
∑M−1

i=1

∑N−1−
∑i

m=1 rm

j=0

(
M − i+ j − 1

j

)
+ 1. (2.13)

Note that in the summation, if a term’s upper bound is less than the lower bound,

the term is zero [67].

For the example of N = 3 and M = 2 in Figure 2.1, the states of R, SR[k], are

[3 0], [2 1], [1 2] and [0 3]. r = (2+3−1)!
(2−1)!3!

= 4 in this case. The state SR[k] = [1 2] is

indexed with sr[k] = 3.
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The transition matrix R ∈ Rr×r of the reduced-order Markov chain indicates

the conditional probability mass functions (PMFs) of its next state given its current

state. Let SR
p [k] and SR

q [k + 1] denote the state vectors corresponding to sr[k] = p

and sr[k+1] = q, respectively. R can be obtained according to the following theorem.

Theorem 2. For a UCC-HIM with the network influence matrix D and local transi-

tion matrix A, each element of the reduced-order Markov chain R is calculated as

Rp,q = P (sr[k + 1] = q|sr[k] = p) = Cq

M∏
m=1

(Xpqem) , (2.14)

where 1 ≤ p, q ≤ r, Cq is the qth entry of length r column vector C, Xpq is a length

M row vector, and em is a length M column vector of zeros, except a single ‘1’ at its

mth entry.

Cq =
N !∏M

m=1

(
SR
q [k + 1]em

)
!
, (2.15)

Xpq =

(
1

N
SR
p [k]A

)◦SR
q [k+1]

. (2.16)

Proof. To obtain the conditional probability of sr[k+1] = q given sr[k] = p, we start

with the conditional probability of individual sites’ next statuses given sr[k] = p.

Let Pi|p[k + 1] denote the conditional PMF of site i’s next status given sr[k] = p

and SR
p [k]em indicates the mth entry of SR

p [k]. According to the influence model’s

4-step update rule in Section 2.2.1, at time k, site i chooses a site in status m as its

determining site with probability 1
N
, where m ∈ {1, · · · ,M}. Then, the probability

of its next status in n based on the status of the determining site can be calculated as

1
N
am,n. With SR

p [k]em sites in status m and m ∈ {1, · · · ,M}, the probability of site
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i’s next status in n, P (si[k+1] = n|sr[k] = p), can be calculated as
∑M

m=1

SR
p [k]em

N
am,n.

Hence we have

Pi|p[k + 1] =



P (si[k + 1] = 1|sr[k] = p)

P (si[k + 1] = 2|sr[k] = p)

...

P (si[k + 1] =M |sr[k] = p)



′

=



∑M
m=1

SR
p [k]em

N
am,1∑M

m=1

SR
p [k]em

N
am,2

...∑M
m=1

SR
p [k]em

N
am,M



′

=
1

N
SR
p [k]A.

(2.17)

Because of the symmetric network topology of the UCC-HIM, i.e., all the elements

in D are identical, each site i shares the same conditional PMF of their next status

given sr[k] = p, which is Pi|p[k + 1].

Because the statuses of all sites evolve independently, Rp,q can be obtained as

follows. First, choose SR
q [k + 1]e1 sites from N sites and assign them local status

1 with probability P (si[k + 1] = 1|sr[k] = p)(S
R
q [k+1]e1). Next, choose SR

q [k + 1]e2

sites from N − SR
q [k + 1]e1 sites and assign them local status 2 with probability

P (si[k + 1] = 2|sr[k] = p)(S
R
q [k+1]e2). This process continues, and eventually, choose

SR
q [k+1]eM sites from the rest sites and assign them local status M with probability

P (si[k + 1] =M |sr[k] = p)(S
R
q [k+1]eM). Hence we have

Rp,q = P (sr[k + 1] = q|sr[k] = p)

=

(
N

SR
q [k + 1]e1

)
(Pi|p[k + 1]e1)

(SR
q [k+1]e1)

(
N − SR

q [k + 1]e1

SR
q [k + 1]e2

)
(Pi|p[k + 1]e2)

(SR
q [k+1]e2) · · ·

(N −
M−1∑
l=1

(
SR
q [k + 1]el

)
SR
q [k + 1]eM

)
(Pi|p[k + 1]eM )(S

R
q [k+1]eM)

(2.18)
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=

M∏
m=1

(N −
m−1∑
l=1

(
SR
q [k + 1]el

)
SR
q [k + 1]em

)
(Pi|p[k + 1]em)(S

R
q [k+1]em)

=
N !∏M

m=1(S
R
q [k + 1]em)!

M∏
m=1

((
1

N
SR
p [k]A

)◦SR
q [k+1]

)
em

= Cq

M∏
m=1

(Xpqem).

The penultimate equality is established based on the fact that
∑M

l=1 S
R
q [k + 1]el = N

and (N −N)! = 0! = 1.

2.3.3 The mapping relationship between R and G

In this section, we show the mapping relationship between R and its correspond-

ing master Markov chain G. We start with constructing the state-transfer vector T

which captures the relationship between the states of R and G, and then show that

R and G have a one-to-one mapping relationship.

Lemma 3. The MN states in the master Markov chain G and the r states in the

reduced-order Markov chain R have a many-to-one mapping, captured by the state-

transfer vector T ∈ RMN×1 whose row index is sg while each entry indicates the

corresponding sr. T can be obtained by calculating the scalar index of each row in Bu

using (2.13) where

Bu = B(1N ⊗ IM). (2.19)

1N is an all-one column vector of length N , and IM is an M-dimensional identity

matrix.

B = [B1, · · · , Bi, · · · , BN ], (2.20)

Bi = 1M i−1 ⊗ IM ⊗ 1MN−i . (2.21)

Proof. Each row of the event matrix B indicates one of the MN states of the master

Markov chain G. Bu is constructed as in (2.19) to store the number of sites at each
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local status for all the rows in B, i.e., each row of Bu indicates one of the r states

SR[k] of the reduced-order Markov chain R with repetition. Then the entries of T ,

sr[k], can be obtained using (2.13) given each row of Bu, S
R[k].

Note that the number of repetitions of SR[k] in Bu is captured by the length r

column vector C in Theorem 2, named as the state-count vector herein.

For example, in the N = 3 and M = 2 network shown in Figure 2.1,

Bu =

 3 2 2 1 2 1 1 0

0 1 1 2 1 2 2 3


′

,

C =

[
1 3 3 1

]′
,

and

T =

[
1 2 2 3 2 3 3 4

]′
.

sg[k] = 2, 3, and 5 all correspond to sr[k] = 2.

Theorem 3. For a UCC-HIM with the network influence matrix D and local transi-

tion matrix A, G and R have a one-to-one mapping as:

R = WGV, (2.22)

G = V RU, (2.23)

where V ∈ RMN×r is constructed based on the state-transfer vector T as

Vk,l =

 1 if l = Tk

0 otherwise
1 ≤ k ≤MN , 1 ≤ l ≤ r. (2.24)

W ∈ Rr×MN
is obtained by transposing V and then leaving only the left first ‘1’ in

each row and setting the rest ‘1’s to ‘0’. U ∈ Rr×MN
is constructed based on V and

the state-count vector C by Ul,k =
Vk,l

Cl
.
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Proof. We show the proof by explaining the construction of the auxiliary matrices V ,

W and U .

Because all elements of the network influence matrix D are identical, we find

that in the state-transfer vector T , the indices of the identical elements indicate the

column indexes and row indexes with identical state transition probabilities in G. To

obtain R based on G, V is constructed to add up G’s columns according to T . W is

constructed to delete the repeated rows of G according to T . Equation (2.22) is thus

proven.

Reversely, the state transition probability in G can also be uniquely determined

by R because of the symmetric network structure. To obtain G from R, V is con-

structed to duplicate R’s rows according to T , and U is constructed to expand the

information in R’s columns according to T and the state-count vector C. To recon-

struct the columns of G, we only need to divide the columns in R with corresponding

states by their numbers of repetitions in G which are recorded in C. Therefore, we

have (2.23).

According to Theorem 3, R is a reduced-order representation of G for the UCC-

HIM, obtained by discarding and merging redundant information in G. Because G is

uniquely determined from the observation sequences, it also implies that R is unique.

The dimension of the reduced Markov chain R is r = (M+N−1)!
(M−1)!N !

, which is far less

than the dimension of master Markov chain G, MN . Figure 2.2 shows a comparison

between the dimensions of the master Markov chain G and the reduced-order Markov

chain R. With the increase of network size N and the number of statuses M , the

dimension of G increases dramatically, while the dimension growth of R is very slow,

indicating the significant dimension and computational cost reduction using R.
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Figure 2.2: The dimensions of G and R with different N and M

2.3.4 The Estimation Algorithm for A based on R

In this subsection, we develop an efficient estimation algorithm for A from

observation sequences of the UCC-HIM.

First, we show that the reduced-order Markov chain R can be uniquely con-

structed from observation sequences by counting the corresponding state transition

frequencies based on the law of large numbers [68]. Because G can be uniquely deter-

mined from the observation sequences, and G and R have a one-to-one mapping, R

can also be uniquely determined. This result is summarized in the following lemma.

Lemma 4. Given the observation sequences of a UCC-HIM, O, with L,K → ∞, the

reduced-order Markov chain R can be uniquely constructed.
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The next theorem shows the estimation for A based on the reduced-order

Markov chain R.

Theorem 4. Given the reduced-order Markov chain R of the UCC-HIM, the elements

of A can be uniquely determined as

am,n = N

√
Rr+1−

∑M−m
k=0 (N+k−1

k ),r+1−
∑M−n

k=0 (N+k−1
k ). (2.25)

Proof. According to (2.13), r+ 1−
∑M−m

k=0

(
N+k−1

k

)
denotes the state of the reduced-

order Markov chainR where all sites are in local statusm, i.e., SR[k] = [0 · · · N · · · 0],

with all positions filled with ‘0’s except an ‘N’ at the mth position. According to

(2.14), (2.16) and (2.15), we have

Rr+1−
∑M−m

k=0 (N+k−1
k ),r+1−

∑M−n
k=0 (N+k−1

k )

= 1 a0m,1 · · · aNm,n · · · a0m,M = aNm,n.

(2.26)

Therefore, (2.25) is derived.

Note that the estimation of A from R has the same accuracy as the estimation

from G according to (2.11) and (2.25).

2.4 Simulation Studies

To demonstrate the results developed in Section 2.3, two simulation studies

are conducted. Example 1 verifies the practicability and efficiency of the estimation

algorithm. Example 2 is a real-world application that models the decision making

process in a social network using the UCC-HIM.

2.4.1 Example 1: Estimation of A in the UCC-HIM

To verify efficiency of the proposed estimation algorithm, we compare the per-

formance of our algorithm with the estimation algorithm using the master Markov
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chain approach. We consider a UCC-HIM with 5 sites and 3 statuses for each sites.

The network influence matrix D has element di,j = 1
5
, ∀i, j ∈ {1, · · · , 5}. The local

transition matrix A is given as

A =


0.36 0.32 0.32

0.33 0.40 0.27

0.35 0.25 0.40

 .
An observation sequence of length 400, 000 is generated. Then G and R are

computed by finding the state transition frequencies respectively. According to The-

orem 4, the estimated local transition matrix Â through R is

Â =


0.3347 0.3395 0.3258

0.3083 0.4106 0.2812

0.3132 0.2538 0.4330

 ,
which is identical to the estimation through G. The mean squared errors (MSE) for

Â is 4.6860 × 10−4, showing the accuracy of the estimation. The execution time of

our reduced-order algorithm based on R is about half of that based on G, indicating

the improved efficiency.

2.4.2 Example 2: Support or Oppose?

In social network models, agents interact with each other and update their

opinions based on rules that capture the influences from other agents [69]. When

no individual takes the role of opinion leaders and all individuals exert the same

influences to the whole team, the opinion propagation can be captured as the UCC-

HIM.

In a leaderless social network, discussion and voting are two common steps in a

decision-making process. In this example, a group of 5 people meet to discuss whether
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to act on a problem. There are two statuses for each person, support or oppose. Their

opinions may change during the discussion due to the influences they receive from

others. The mutual influences in the group are identical. The ones who oppose have

a greater impact than those who support. After thorough discussions, people vote

for the final decision. We can model this process using a UCC-HIM. For example,

di,j =
1
5
∀i, j ∈ {1, . . . , 5} and A =

0.7 0.3

0.2 0.8

 due to the tendency to oppose.

According to Theorem 2, the reduced-order Markov chain R has 6 states and

can be computed as

R =



0.1681 0.3602 0.3087 0.1323 0.0283 0.0024

0.0778 0.2592 0.3456 0.2304 0.0768 0.0102

0.0313 0.1562 0.3125 0.3125 0.1562 0.0313

0.0102 0.0768 0.2304 0.3456 0.2592 0.0078

0.0024 0.0283 0.1323 0.3087 0.3602 0.1681

0.0003 0.0064 0.0512 0.2048 0.4096 0.3277


.

The state sr ranges from 1 to 6, with sr−1 denoting the number of people who

oppose. Using the reduced Markov chain R, we can effectively predict the final voting

result. The steady-state distribution of R is determined by the left eigenvector of R as-

sociated with the eigenvalue ‘1’, which is [0.0217 0.0978 0.2162 0.2976 0.2565 0.1102].

Hence, the probability of 3 people opposing is the largest (0.2976). The probability

that more than 2 people oppose is 0.6643, indicating that more than half of the peo-

ple are more likely to oppose this action eventually. According to the majority rule,

the final decision is more probable to be ‘oppose’. If using the master Markov chain

to obtain the steady-state results, the eigen-analysis of a 32 × 32 Markov chain is

required, which incurs more computation.
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2.5 Conclusion

In this chapter, we study the reduced-order estimation of IM. For UCC-HIM, a

canonical class of IM, we prove that it is identifiable. Then we construct a reduced-

order Markov chain R to facilitate the estimation study. The dimension of R is far

less than the master Markov chain G. We find the one-to-one mapping between R

and G. By using R, an efficient parameter estimation algorithm for A is developed.

Compared with the master Markov chain approach, the same accuracy is achieved but

with significant reduction of computational load. Simulation studies verify efficiency

of our proposed parameter estimation algorithm and demonstrate its practical value

in real applications.
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CHAPTER 3

STRUCTURAL ANALYSIS OF THE STOCHASTIC INFLUENCE MODEL FOR

IDENTIFIABILITY AND REDUCED-ORDER ESTIMATION

Nomenclature

N The number of sites in an influence model.

Mn The number of local statuses for site n.

Sn[k] Local status vector of site n at time k.

sn[k] Local status index of site n at time k.

D Network influence matrix.

Aln Transition matrix of the local Markov chain between site l and site n.

dn,l Probability that site l has influence on site n.

Pn[k] Probability mass function (PMF) of site n’s statuses at time k.

SV [k] State vector of the influence model at time k.

PV [k] State probability vector of the influence model at time k.

H Influence matrix of the influence model.

M The number of local statuses for each site in a homogeneous or hetero-

geneous influence model.

A Transition matrix of the local Markov chain in a homogeneous influence

model.

am,q The mth row and qth column entry of A.

An Transition matrix of the local Markov chain for site n in a heterogeneous

influence model.

anm,q The ith row and jth column entry of An.
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B The event matrix.

Bn The nth block of B.

s[k] State index of the Master Markov chain representation of the influence

model at time k.

G Transition matrix of the Master Markov chain representation of the in-

fluence model.

SM [k] State matrix of the homogeneous or heterogeneous influence model at

time k.

PM [k] State probability matrix of the homogeneous or heterogeneous influence

model at time k.

gi,j The ith row and jth column entry of G.

S[k] State vector of the Master Markov chain representation of the influence

model at time k.

P [k] Probability mass function (PMF) of the master Markov chain represen-

tation of the influence model at time k.

F The number of independent observation sequences.

Y Independent observation sequences.

Y (f) The fth independent observation sequence.

T The length of independent observation sequences.

θ Parameters of the influence model. θ = (D,Aln) for a general influence

model, θ = (D,A) for a homogeneous influence model and θ = (D,An)

with n ∈ {1, · · · , N} for a heterogeneous influence model.

J The joint-margin matrix of the influence model.

Jn The nth block of J .

Jni,m
The ith row and mth column entry of Jn.
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Am The mth local Markov information matrix in a homogeneous influence

model.

Anm The mth local Markov information matrix of site n in a heterogeneous

influence model.

3.1 Introduction

The influence model (IM) is a reduced-order stochastic network model that

captures the spatiotemporal dynamics in a network of interactive Markov chains [53,

54]. In IMs, the evolution of networked Markov chains depends on the local-level

status update rules under abstracted network-level influences. This representation

allows the tractability of IM for both individual and collective behaviors. IMs can

be classified into homogeneous IMs and heterogeneous IMs based on whether the

local-level status update rules are identical or not. With the features such as reduced

order representation and tractable analysis, IMs have been applied in many network

applications, including power networks [3, 13, 55, 70], social networks [4, 16, 71–73],

transportation systems [2,74,75], virus spread and pandemics [56,76,77], and weather

evolution [12,14,78].

The identifiability and estimation of IMs are critical for their use in real appli-

cations. Despite the tractability of IM analysis with its reduced-order representation,

the identifiability and estimation of IM remain challenging due to the tight coupling of

network- and local- level interactions. In the literature, the identifiability analysis is

only limited to the homogeneous IMs, e.g., [14] and [45]. Our prior work [14] is the first

that provides the identifiability conditions for homogeneous IMs, through exploring

the corresponding master Markov chain representation. However, the if-and-only-if

condition provided there is not straightforward to check and involves significant com-

putation. The identifiability condition in [45] applies to IMs of a specific topology.
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Heterogeneous IMs are more flexible to capture various interactions among system

components, but have been rarely studied in the literature. The analysis of hetero-

geneous IMs is much more challenging compared with the homogeneous counterpart,

because a variety of local-level status update rules can be involved, which makes the

coupling effects of network- and local- level interaction more complex. Furthermore,

to the best of our knowledge, there is no study on the identifiability of heterogeneous

IMs despite the broad applications.

Unlike identifiability, the estimation of IMs has been studied in the literature,

however significant limitations exist with regard to performance of the existing pa-

rameter estimation methods. The maximum likelihood estimation (MLE) has been

commonly used in IM parameter estimation studies [14–16]. The expectation maxi-

mization (EM) algorithm has also been used to estimate the parameters of IM in the

existence of latent states [17] or unobservable sites [14]. The MLE and EM methods

are sensitive to initial conditions and may converge to local optima [18]. In addi-

tion, high computational cost is inevitable [20, 21]. Paper [19] developed a convex

quadratic programming for IMs with two local statuses. In our prior study, a lin-

ear algebra based estimator (LAE) was proposed based on the corresponding master

Markov chain of the homogeneous IM [14]. The LAE approach is very effective for

small-size networks but also consumes high computation cost for large-size networks.

To address the computational issue, paper [45] studied a canonical topology of the

IMs called the uniformly completely connected homogeneous IM (UCC-HIM), and

developed a reduced-order estimation by recognizing its special symmetric network

structure. However, the reduced-order method therein only applies to IMs of a specific

topology. In summary, the estimation methods in the literature are either directed

to specific topologies of IMs or have high computational load.
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In this chapter, we are thus motivated to study the identifiability and estima-

tion of general IMs with reduced computation. We do this by taking an structural

analysis approach that establishes a novel connection between the high-order and

low-order representations of the IM. In particular, instead of resorting back to the

master Markov chain representation which incurs significant computation [14], we ex-

plore the connection between the IM’s first-order influence matrix and highest-order

master Markov chain representations. Based upon the structural relationship, we

introduce the joint-margin matrix to facilitate the identifiability analysis and provide

easy-to-check if-and-only-if identifiability conditions for both homogeneous IMs and

a broad class of the heterogeneous IMs, referred to as the heterogeneous IMs without

ambiguity. By exploiting the identifiability properties of IM, we further develop the

joint-margin probability based estimation methods for both homogeneous and het-

erogeneous IMs. This new analytical approach to IM identification and estimation

results in significantly reduced computational cost while maintaining the estimation

accuracy. This is the first reduced-order estimation study for general IMs, and thus

provides the promise for the use of IMs in real applications with limited computation

complexity. The main contributions of this chapter are summarized as follows.

• A new framework for the identifiability and estimation analysis of IM is pro-

posed by exploring the connection between the first-order and highest-order

representations of IMs. Compared to [14] where only the highest-order repre-

sentation of IMs was analyzed, this framework takes the form that combines

the marginal and joint probabilities, which simplifies the formulation while

maintaining sufficient information for identifiability and estimation analysis.

• If-and-only-if identifiability conditions for homogeneous IMs are given. Com-

pared to [14], the succinct forms of identifiability conditions are much simpler

to check with reduced computation.
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• If-and-only-if identifiability conditions for heterogeneous IMs are for the first

time provided in the literature to the best of our knowledge.

• Computationally effective parameter estimation methods for both homoge-

neous and heterogeneous IMs are provided based on the structural identifia-

bility analysis.

The rest of the chapter is structured as follows. In Section 3.2, the preliminar-

ies of IM are given and the identifiability and estimation problems are formulated.

The connection between the first-order and highest-order representations of IMs is

explored in Section 3.3. The identifiability analysis of the homogeneous and heteroge-

neous IM is provided in Section 3.4, followed by the parameter estimation algorithms

in Section 3.5. Simulation studies are illustrated in Section 3.6. Section 3.7 draws

the conclusions for this chapter.

3.2 Preliminaries and Problem Formulation

3.2.1 The influence model (IM)

Consider an IM of N sites, each of which has Mn local statuses for n ∈

{1, 2, · · · , N}. Let the length-Mn row vector, Sn[k] and scalar sn[k] denote the local

status of site n at time k in its vector and scalar forms, respectively. Here Sn[k] has

a single ‘1’ as its sn[k]-th entry and ‘0’s everywhere else. The IM is described by the

network influence matrix D ∈ RN×N and the local Markov chain transition matrix

Aln ∈ RMl×Mn , where D and Aln are row stochastic matrices [53, 54]. Illustration of

the Aln and D matrices and the update rules are described below.

1. Site n’s next status is determined by site l according to the probability dn,l,

i.e., site l has a probability of dn,l to become site n’s determining site, where

dn,l is the nth row and lth column element of D.
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2. The conditional probability mass function (PMF) of site n’s next status

given its determining site l’s current status Pn|l[k + 1] ∈ R1×Mn is Sl[k]Aln,

where the mth row and qth column element of Aln indicates the conditional

probability for site n’s next status to be q given site l’s current status m,

i.e., P (sn[k + 1] = q|sl[k] = m).

3. The PMF of site n’s next status, Pn[k + 1] ∈ R1×Mn is determined by all

sites’ current statuses according to

Pn[k + 1] =
N∑
l=1

dn,lPn|l[k + 1] =
N∑
l=1

dn,lSl[k]Aln. (3.1)

4. Site n’s next status is obtained through sampling according to the corre-

sponding PMF Pn[k + 1], i.e., Sn[k + 1] = Realize(Pn[k + 1]).

Placing the status vectors and the corresponding PMFs in row vectors SV [k] ∈

R1×
∑N

n=1 Mn and PV [k] ∈ R1×
∑N

n=1 Mn ,

SV [k] =

[
S1[k] S2[k] · · · SN [k]

]
, (3.2)

PV [k] =

[
P1[k] P2[k] · · · PN [k]

]
, (3.3)

we obtain the overall dynamics

PV [k + 1] = SV [k]H, (3.4)

SV [k + 1] =MultiRealize (PV [k + 1]) , (3.5)

where H ∈ R
∑N

n=1 Mn×
∑N

n=1 Mn is the influence matrix defined as [53]

H ≜


d1,1A11 . . . dN,1A1N

...
...

...

d1,NAN1 . . . dN,NANN

 , (3.6)

and ‘MultiRealize’ indicates that SV [k+1] is obtained by realizing each PMF Pn[k+1]

in PV [k + 1].
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The influence matrix H is referred as the first-order representation of IM, be-

cause it captures the dynamics of individual sites’ statuses as in (3.4). The dynamics

of the joint statuses of multiple sites cannot be directly obtained from H. In order

to capture joint statuses, higher-order representations of IM are required [53].

In this chapter, we study the widely applicable homogeneous IM and a broad

class of heterogeneous IMs. The number of statuses in each site is the same, i.e.,

Mn =M for ∀n ∈ {1, 2, · · · , N}. The local Markov chain transition matrices are the

same for the homogeneous case and can be different for the heterogeneous case. The

mathematical descriptions of these two classes of IM being considered in this chapter

are given as follows.

1. Homogeneous IM: all sites have the same local Markov chain transition ma-

trix, i.e., Aln = A for ∀ n, l ∈ {1, 2, · · · , N}. am,q with m, q ∈ {1, 2, · · · ,M}

denotes the mth row and qth column entry of A. The corresponding influ-

ence matrix is [53]

H = D′ ⊗ A, (3.7)

where ⊗ denotes the Kronecker product. See Fig. 3.1 for an example.

2. Heterogeneous IM: each site n can have its own local Markov chain tran-

sition matrix An, i.e., Aln = An for ∀ n, l ∈ {1, 2, · · · , N}. anm,q with

m, q ∈ {1, 2, · · · ,M} denotes the mth row and qth column entry of An. The

corresponding influence matrix is

H =

[
D′C1 ⊗ A1 D′C2 ⊗ A2 · · · D′CN ⊗ AN

]
, (3.8)

where Cn denotes the column vector with ‘1’ as its nth entry and ‘0’ every-

where else. An example is given in Fig. 3.2.
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Figure 3.1: An example of homogeneous IM of 3 sites and 3 statuses at each site.

Figure 3.2: An example of heterogeneous IM of 3 sites and 3 statuses at each site.

3.2.2 Illustrative Social Network Examples of the IM

The above homogeneous and heterogeneous IM models can capture influence

dynamics in broad network applications. Because human opinions are easily influ-
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enced by people around them [79–81], here we take opinion propagation in social

networks as an example to illustrate the models [45].

We use the homogeneous IM of N = 3 andM = 3 in Fig. 3.1 as an example for

illustration. The 3 sites represent 3 persons, and the 3 statuses ‘1’, ‘2’ and ‘3’ represent

that each person can have 3 votes on a certain event, i.e., ‘in favour’, ‘against’ and

‘abstention’.

The mutual influences of individuals’ opinions are described by the network

influence matrix D. For instance, d1,1, d2,1 and d3,1 are largest elements within each

row to capture that person ‘1’ has more authority to influence the decisions of the

network. In other words, all three persons are most likely to choose person ‘1’ as the

determining person to decide their next votes according to the first update rule.

The local Markov chain transition matrix A illustrates the conditional proba-

bilities of how individuals change their opinions based on the determining person’s

current opinion. For instance, all 3 persons tend to follow the determining person’s

opinions since the local Markov chain transition matrix A is row diagonally dominant

according to the second update rule.

Given the current opinion of 3 persons as ‘2’, ‘1’ and ‘1’, i.e., S1[k] = [0 1 0],

S2[k] = [1 0 0] and S3[k] = [1 0 0], the PMF for person ‘2’s opinion at next time step

can be obtained by calculating P2[k + 1] =
∑3

l=1 d2,lSl[k]A = [0.205 0.7375 0.0575].

In a more general setting, individuals may use the determining person’s opinions

in different ways due to different personal experiences. This can be captured by intro-

ducing nonidentical local Markov chain transition matrices, and hence to formulate

the heterogeneous IM. In the example in Fig. 3.2, person ‘3’ tends to follow the deter-

mining person’s opinion while person ‘2’ does not. Given the determining person ‘1’s

current status as ‘2’, i.e., S1[k] = [0 1 0], the conditional PMFs of all 3 persons’ next

statuses can be obtained by calculating Pn|1[k+1] = S1[k]An according to the second
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update rule and thus we have P1|1[k + 1] = [0.3 0.45 0.25], P2|1[k + 1] = [0.7 0.2 0.1]

and P3|1[k + 1] = [0.1 0.85 0.05].

3.2.3 The event matrix B and master Markov chain G

To gain more insights into the collective behavior of network sites, we describe

in this subsection the event matrix B, and the master Markov chain G which is the

highest-order representation of IM that captures the dynamics of the joint statuses

of all sites [53].

For both homogeneous and heterogeneous IM, there are MN possible combi-

nations of all sites’ local statuses in the influence process, i.e., MN possible SV [k].

The event matrix B ∈ RMN×MN lists all MN possible SV [k] as its rows and can be

constructed as

B =

[
B1 B2 · · · BN

]
, (3.9)

where Bn ∈ RMN×M is the nth block of B.

Bn = 1Mn−1 ⊗ IM ⊗ 1MN−n , (3.10)
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where 1Mn−1 denotes the all-ones column vector of length Mn−1 and IM is the M -

dimensional identity matrix. For example, a network with 3 sites and 2 statuses for

each site, i.e., N = 3 and M = 2, has an event matrix

B =



1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

0 1 1 0 0 1

0 1 0 1 1 0

0 1 0 1 0 1



.

The master Markov chain representation of IM captures the collective behavior

of all sites in the network. There areMN states in the master Markov chain and each

state is indexed by the row number of B. Let a scalar s[k] denote the state index of

the master Markov chain at time k, and s[k] can be obtained by the local status of

each site sn[k] as [14]

s[k] =
N∑

n=1

(sn[k]− 1)MN−n + 1. (3.11)

The state transition matrix G ∈ RMN×MN
of the master Markov chain captures

the conditional probability of its next state s[k + 1] given its current state s[k]. To

construct G, the state vector SV [k] and the probability vector PV [k] are rewritten

into the corresponding matrix forms SM [k] ∈ RN×M and PM [k] ∈ RN×M , i.e.,

SM [k] =

[
S1[k]

′ S2[k]
′ . . . SN [k]

′

]′
, (3.12)

PM [k] =

[
P1[k]

′ P2[k]
′ . . . PN [k]

′

]′
, (3.13)
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where the superscript ′ denotes the transpose operation. Let SM [k]i and SM [k + 1]j

denote the state matrices corresponding to s[k] = i and s[k + 1] = j, respectively.

The elements of G can be obtained as

gi,j = P (s[k + 1] = j|s[k] = i) =
N∏

n=1

M∏
m=1

pn,m, (3.14)

where pn,m is the nth row and mth column element of matrix Pi→j ∈ RN×M [45].

Pi→j = PM [k + 1]◦SM [k+1]j , (3.15)

where the superscript ◦ denotes the element-wise exponential operator of two matrices

with same dimension [45]. Specifically, for two matrices X and Z, the nth row and

mth column element of X◦Z can be obtained by Xn,m raised to the power of Zn,m.

According to (3.1), for the homogeneous IM,

PM [k + 1] = DSM [k]iA. (3.16)

For the heterogeneous IM,

PM [k + 1] =



R1DSM [k]iA1

...

RnDSM [k]iAn

...

RNDSM [k]iAN


, (3.17)

where Rn denotes the row vector with ‘1’ as its nth entry and ‘0’ everywhere else.

Thus, the dynamics of IM captured by the master Markov chain is given as

P [k + 1] = S[k]G, (3.18)

S[k + 1] = Realize (P [k + 1]) , (3.19)
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where S[k] ∈ R1×MN
has ‘1’ as its s[k]-th entry and ‘0’ everywhere else. S[k] and

P [k] ∈ R1×MN
denote the state vector and PMF of the master Markov chain, respec-

tively.

The following lemma states the relationship between the first-order and highest-

order representations of IM.

Lemma 5. [53] Given an IM, the influence matrix H and the corresponding master

Markov chain transition matrix G have the relationship as

BH = GB. (3.20)

3.2.4 Identifiability of the homogeneous IMs

The identifiability of an IM describes whether the underlying parameters of

the IM can be determined uniquely given sufficient observations. The identifiability

conditions of IM is important because it determines whether the estimated model is

unique and affects subsequent analysis and design that rely on the inherent structure

of the IM.

Given F independent observation sequences as Y = {Y (1), Y (2), · · · , Y (F )} where

Y (f) =
[
S
(f)
V [1], S

(f)
V [2], · · · , S(f)

V [T ]
]
with f ∈ {1, 2, · · · , F} and T is the length of the

observation sequence, the identifiability of the underlying homogeneous IM is defined

as follows.

Definition 1 [14]: The homogeneous IM is identifiable if and only if the optimal

solution to the following likelihood function is unique given Y with F, T → ∞,

θ̂ = argmax
θ

P (Y |θ), (3.21)

where θ = (D,A).

39



The identifiability of the homogeneous IM was first investigated in [14] by exam-

ining the master Markov chain representation of IM. The main results are summarized

in the following lemma.

Lemma 6. [14] Given the master Markov transition matrix G of the homogeneous

IM, the local Markov chain transition matrix A can be uniquely obtained as

am,q = N

√
g (m−1)(MN−1)

M−1
+1,

(q−1)(MN−1)
M−1

+1
, (3.22)

where
(m−1)(MN−1)

M−1
+ 1 is the state index of the master Markov chain with all sites

in local status m, i.e., Sn = [0 · · · 1 · · · 0] with ‘1’ as its mth entry and ‘0’ every-

where else for ∀ n ∈ {1, 2, · · · , N}. The network influence matrix D can be uniquely

determined if and only if Null(O) ⊆ Null(V ) by

Gc = OE, (3.23)

Dc = V E, (3.24)

where Gc and Dc denote the column-vectorized version of G and D, respectively,

O ∈ RM2N×NN
is the local Markov information-centric matrix composed of specific

combinations of elements in A, E ∈ RNN×1 is constructed by specific combinations

of elements in D, and V ∈ RN2×NN
is the network influence permutation matrix

composed of ‘1’s and ‘0’s constructed based merely on D.

Lemma 6 provides a necessary and sufficient identifiability condition for the

homogeneous IM. However, it is not very easy to check as it relies on constructing

the matrices G ∈ RMN×MN
, O ∈ RM2N×NN

and V ∈ RN2×NN
. With the growth of

network size, the dimensions of the matrices G, O and V increase rapidly, and hence

high computational cost is needed to check the condition.
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3.2.5 Problem Formulation

As summarized above, for homogeneous IMs, the existing identifiability check

and parameter estimation methods consume high computation cost. In addition,

there exists no study on the identifiability and estimation of heterogeneous IMs per

our knowledge. We are thus motivated to study in this chapter the identifiability and

estimation of general IMs with reduced computation. This is conducted through a

new structural analysis that establishes the connection between the IMs’ first-order

and highest-order representations. The problems investigated in this chapter are

formulated as follows.

Problem 1 : Given Y with F, T → ∞, determine the identifiability of the under-

lying homogeneous IM, i.e., whether the corresponding parameters θ = (D,A) can

be uniquely determined from sufficient observations.

Problem 2 : Given Y with F, T → ∞, estimate the parameters θ = (D,A) of

the underlying homogeneous IM.

Instead of resorting to the master Markov chain G and examining the matrices

O and V which consume significant computation, we aim to find an easy-to-check

identifiability condition and a computationally efficient parameter estimation algo-

rithm for the homogeneous IM. Next, we study for the first time the identifiability

and estimation problems for heterogeneous IMs.

Definition 2 : The heterogeneous IM is identifiable if and only if the optimal

solution to the following likelihood function is unique given Y with F, T → ∞,

θ̂ = argmax
θ

P (Y |θ), (3.25)

where θ = (D,An) for ∀ n ∈ {1, 2, · · · , N}.
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Problem 3 : Given Y with F, T → ∞, determine the identifiability of the un-

derlying heterogeneous IM, i.e., whether the corresponding parameters θ = (D,An)

for ∀ n ∈ {1, 2, · · · , N} can be uniquely determined from sufficient observations.

Problem 4 : Given Y with F, T → ∞, estimate the parameters θ = (D,An) for

∀ n ∈ {1, 2, · · · , N} of the underlying heterogeneous IM.

Note that given adequate observations, i.e., F, T → ∞, the identifiability

condition and estimation algorithm of IMs are not affected by the stability of IMs.

3.3 The joint-margin matrix for the IM

In this section, to study the identifiability and estimation of IMs with reduced

computation, we first construct the joint-margin matrix J which bridges the first-

order and highest-order representations of a general IM. We then present the specific

forms of J in homogeneous and heterogeneous IMs for subsequent identifiability and

estimation studies.

3.3.1 The joint-margin matrix J in the IM

In this subsection, we first show the construction of the joint-margin matrix

and then illustrate its relationship with the master Markov chain G and the influence

matrix H.

The joint-margin matrix J ∈ RMN×MN indicates the conditional PMFs of indi-

vidual sites’ next statuses given the current master Markov chain state. J consists of

N blocks as

J =

[
J1 J2 · · · JN

]
, (3.26)

where Jn ∈ RMN×M for n ∈ {1, 2, · · · , N} is the nth block of J . The ith row and mth

column element of Jn indicates the conditional probability of site n’s next status as
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m ∈ {1, 2, · · · ,M} given the current master Markov chain state i ∈ {1, 2, · · · ,MN},

i.e.,

Jni,m
= P (sn[k + 1] = m|s[k] = i). (3.27)

Jn is a row stochastic matrix.

In the following lemma, we show the relationships among the joint-margin ma-

trix J , the influence matrix H, the master Markov chain G and the event matrix

B.

Lemma 7.

J = GB = BH (3.28)

Proof. First, we show J = GB. The ith row of the master Markov transition matrix

G indicates the conditional PMF of its next state s[k + 1] given its current state

s[k] = i. To obtain the conditional PMF of site n’s next status sn[k + 1] = m given

s[k] = i as in (3.27), we need to sum up all the probabilities ofMN−1 states of G that

have the corresponding local status of site n at next time step in G.

Let Snm denote the set of G’s state indices which have site n’s status as m. Snm

is of size MN−1. Note that the mth column of the nth block of the event matrix B,

Bn, indicates the G’s states indices which contain site n’s status as m. Now we have

Jni,m
= P (sn[k + 1] = m|s[k] = i)

=
∑

j∈Snm

P (s[k + 1] = j|s[k] = i) = RiGBnCm

. (3.29)
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RiG indicates the ith row of G with s[k] = i, and BnCm locates G’s states s[k+1] = j

corresponding to sn[k + 1] = m. Hence, we have

Jn =



R1

R2

...

RMN


GBn

[
C1 C2 · · · CM

]

= IMNGBnIM = GBn,

(3.30)

J =

[
J1 J2 · · · JN

]
=

[
GB1 GB2 · · · GBN

]
= GB.

(3.31)

(3.28) is obtained according to (3.20).

Lemma 7 shows how to obtain J from G. Next, we show in the other direction

how G can be obtained from J . Note that B is generally not a square matrix and

hence does not necessarily have an inverse matrix. Lemmas 7 and 8 together show

the one-to-one mapping between J and G.

Lemma 8. The (i, j)th entry of the Master markov chain

gi,j = P (s[k + 1] = j|s[k] = i)

=
N∏

n=1

P (sn[k + 1] = mn|s[k] = i) =
N∏

n=1

Jni,mn

(3.32)

where sn[k+1] = mn ∈ {1, 2, · · · ,M} is the status of individual site corresponding to

s[k + 1] = j for ∀ n ∈ {1, 2, · · · , N}.

Proof. Equation (3.32) holds due to the fact that all sites evolve independently.

3.3.2 The joint-margin matrix J in the homogeneous IM

In this subsection, we further show how the joint-margin matrix J is represented

by the parameters θ = (D,A) in the homogeneous IM.
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To represent Jn for n ∈ {1, 2, · · · , N} by its columns, we introduce the notation

Am ∈ RMN×N with m ∈ {1, 2, · · · ,M}, the mth local Markov information matrix.

Am is constructed using the mth column of A as

Am =



a1,m a1,m · · · a1,m
...

...
...

...

aq1,m aq2,m · · · aqN ,m

...
...

...
...

aM,m aM,m · · · aM,m


, (3.33)

where qn indicates the local status of site n. The row indices of all elements within

each row of the matrix Am, (q1, q2, · · · , qN) correspond to one of the MN possible

states of the master Markov chain. For example, given N = 3 and M = 2, A2 is

constructed using the 2th column of A as

A2 =



a1,2 a1,2 a1,2

a1,2 a1,2 a2,2

a1,2 a2,2 a1,2

a1,2 a2,2 a2,2

a2,2 a1,2 a1,2

a2,2 a1,2 a2,2

a2,2 a2,2 a1,2

a2,2 a2,2 a2,2



.

Based on the influence matrix H in (3.7), the event matrix B in (3.9) and (3.10)

and J = BH in (3.28), we represent Jn for n ∈ {1, 2, · · · , N} by its columns as

Jn =

[
A1D

′Cn A2D
′Cn . . . AMD

′Cn

]
. (3.34)

D′Cn indicates the nth column of matrix D′, i.e., the transpose of nth row of matrix

D.
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The mapping from θ = (D,A) to the joint-margin matrix J is denoted by the

function ηJ : θ → J and the corresponding inverse mapping is denoted by the inverse

function η−1
θ : J → θ.

3.3.3 The joint-margin matrix J in the heterogeneous IM

We also show how the joint-margin matrix J is represented by the parameters

θ = (D,An) for ∀ n ∈ {1, 2, · · · , N} in the heterogeneous IM.

Similarly to the homogeneous IM, we first introduce Anm ∈ RMN×N with

m ∈ {1, 2, · · · ,M}, the mth local Markov information matrix of site n for ∀ n ∈

{1, 2, · · · , N} in the heterogeneous IM. Anm is constructed using the mth column of

matrix An as

Anm =



an1,m an1,m · · · an1,m

...
...

...
...

anq1,m
anq2,m

· · · anqN ,m

...
...

...
...

anM,m
anM,m

· · · anM,m


, (3.35)

where qn indicates the local status of site n, and the row index of the elements in

each row of the matrix Anm , (q1, q2, · · · , qN) indicates one of the possible states of
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the master Markov chain. For example, given N = 3 and M = 2, A32 is constructed

using the 2th column of A3 as

A32 =



a31,2 a31,2 a31,2

a31,2 a31,2 a32,2

a31,2 a32,2 a31,2

a31,2 a32,2 a32,2

a32,2 a31,2 a31,2

a32,2 a31,2 a32,2

a32,2 a32,2 a31,2

a32,2 a32,2 a32,2



.

Based on the influence matrix H in (3.8), the event matrix B in (3.9) and (3.10)

and J = BH in (3.28), we represent the columns of Jn for ∀ n ∈ {1, 2, · · · , N} in a

heterogeneous IM as

Jn =

[
An1D

′Cn An2D
′Cn · · · AnM

D′Cn

]
. (3.36)

The mapping from θ = (D,An) for ∀ n ∈ {1, 2, · · · , N} to the joint-margin

matrix J is denoted by the function ξJ : θ → J and the corresponding inverse

mapping is denoted by the inverse function ξ−1
θ : J → θ.

3.4 Identifiability Analysis of the IM

In this section, we present the main results on the sufficient and necessary

conditions for the identifiability of both the homogeneous IM and the heterogeneous

IM through the corresponding joint-margin matrix J .
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3.4.1 Sufficient and Necessary Conditions for the Identifiability of the Homogeneous

IM

We first show in the following lemma that the identifiability of the homogeneous

IM is equivalent to the uniqueness of the solution to the inverse function η−1
θ : J → θ.

Lemma 9. Given the independent observation sequences Y with F, T → ∞, the

underlying homogeneous IM is identifiable if and only if the solution to η−1
θ (J) is

unique where θ = (D,A).

Proof. G can be uniquely determined from the observation sequences Y [14]. In

addition, as the event matrix B is fixed once M and N are given, J can be uniquely

determined from Y based on Lemma 7. Furthermore, as J and G have an one-to-one

mapping according to Lemmas 7 and 8, the state transition information contained in

G and J is equivalent. Therefore, we come to the conclusion that the homogeneous

IM is identifiable if and only if the solution to η−1
θ (J) is unique.

Lemma 9 transforms the identifibility analysis of the homogeneous IM into

the uniqueness of the solution to η−1
θ (J). Note that according to (3.27), J can be

determined directly from the observation sequences Y with F, T → ∞ by counting

the corresponding frequencies based on the law of large numbers [68]. Lemma 9

suggests that the the identifiability analysis using J instead of G saves computation,

as G ∈ RMN×MN
and J ∈ RMN×MN . We next provide the uniqueness analysis of A

and D in the following two theorems, respectively.

Theorem 5. Given the joint-margin matrix J of a homogeneous IM with the network

influence matrix D and local Markov chain transition matrix A, η−1
A : J → A has the

unique solution

am,q = Jn
(m−1)(MN−1)

M−1
+1,q

, (3.37)

where m, q ∈ {1, 2, · · · ,M} for any n ∈ {1, 2, · · · , N}.
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Proof.
(m−1)(MN−1)

M−1
+ 1 is the state index of the master Markov chain with all sites

in local status m. According to (3.33) and (3.34), for any n ∈ {1, 2, · · · , N}, we have

Jn
(m−1)(MN−1)

M−1
+1,q

= P

(
sn[k + 1] = q|s[k] =

(m− 1)
(
MN − 1

)
M − 1

+ 1

)

=
N∑
l=1

dn,lam,q = am,q.

(3.38)

The last equation holds because the network influence matrixD is a stochastic matrix,

i.e.,
∑N

l=1 dn,l = 1.

Theorem 6. Given the joint-margin matrix J of a homogeneous IM with the network

influence matrix D and local Markov chain transition matrix A, η−1
D : J → D has the

unique solution if and only if rank(A) > 1.

Proof. First, we prove that rank(A) > 1 is a sufficient condition for the uniqueness

of the solution to η−1
D : J → D.

If rank(A) > 1, at least one column of A has two or more nonidentical entries,

because A is a stochastic matrix. Let a1 and a2 denote the two nonidentical entries

in the mth column of matrix A with m ∈ {1, 2, · · · ,M}. There always exists a Nth

order minor of matrix Am that is nonzero, because∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 · · · a2

a2 a1 · · · a2
...

...
. . .

...

a2 a2 · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a1 − a2)

N−1 (a1 + (N − 1)a2) ̸= 0 (3.39)

if a1 ̸= a2 and N > 1. This indicates that rank(Am) = N , i.e., Am is full column

rank. According to (3.34), with JnCm indicating the mth column of Jn, the solution

to AmD
′Cn = JnCm is unique, i.e., the nth row of D can be uniquely determined. By
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solving all N equations AmD
′Cn = JnCm for ∀ n ∈ {1, 2, · · · , N}, D can be uniquely

determined. Hence we come to the conclusion that if rank(A) > 1, the solution to

η−1
D (J) is unique.

Next, we prove that rank(A) > 1 is a necessary condition for the uniqueness

of the solution to η−1
D : J → D. Because A is a stochastic matrix, all rows of

A are identical when rank(A) = 1. The elements within each column of A are

identical. In this case, all elements in Am are identical and hence rank(Am) = 1 for

∀ m ∈ {1, 2, · · · ,M}, which implies that we cannot find an Am so that the solutions

to AmD
′Cn = JnCm for ∀ n ∈ {1, 2, · · · , N} are unique. This leads to the conclusion

that if rank(A) = 1, the solution to η−1
D (J) is not unique.

Combining the above analysis, we conclude that the network influence matrix

D can be uniquely determined if and only if rank(A) > 1.

Theorem 6 also also implies the approach to calculate the network influence

matrix D through the joint margin matrix J , as shown in the following corollary.

Corollary 1. When rank(A) > 1, the network influence matrix D can be determined

uniquely by solving the following equation

AmD
′ = JW, (3.40)

where Am is constructed as in (3.33) by the mth column of A which has at least two

nonidentical entries. W ∈ RMN×N is constructed as

Wx,n =

 1 if x = (n− 1)M +m

0 otherwise
(3.41)

where 1 ≤ x ≤MN, 1 ≤ n ≤ N .

Proof. The nth row of D can be obtained by solving AmD
′Cn = JnCm for n ∈

{1, 2, · · · , N} according to Theorem 6. To combine all N equations in a matrix form,
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we use the auxiliary matrix W to place the mth column of Jn for ∀ n ∈ {1, 2, · · · , N}

in a matrix, i.e., the mth, (m+M)th, (m+2M)th, · · · , (m+ (N − 1)M)th columns

of the joint-margin matrix J . Equation (3.40) is thus proven.

Theorems 5 and 6 lead to the sufficient and necessary condition for the identi-

fiability of the homogeneous IM.

Theorem 7. Given the joint-margin matrix J of a homogeneous IM with the net-

work influence matrix D and local Markov chain transition matrix A, a homogeneous

influence model is identifiable if and only if rank(A) > 1.

Proof. A can be uniquely obtained from the joint-margin matrix J according to The-

orem 5, and D can be determined uniquely if and only if rank(A) > 1 according to

Theorem 6. Based on Lemma 9, this theorem is proved.

Remark 1. Theorem 7 finds a computationally efficient and easy-to-check sufficient

and necessary condition for the identifiability of the homogeneous IM. Note that the

condition developed in [14] is in a more complicated form. As shown in Lemma 6,

the condition there requires to obtain G ∈ RMN×MN
from observation data and then

to construct the matrices O ∈ RM2N×NN
and V ∈ RN2×NN

of very large dimensions.

In contrast, here only the matrix J ∈ RMN×MN is needed to construct A and to check

its rank. We also note that the condition rank(A) > 1 was provided in [14] as a

necessary condition. In this chapter, we prove that it is a stronger necessary and

sufficient condition.
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3.4.2 Sufficient and Necessary Conditions for the Identifiability of the Heterogeneous

IM

In this subsection, we further analyze the sufficient and necessary condition for

the identifiability of the heterogeneous IM through the corresponding joint-margin

matrix J . Similar to Lemma 9, we show in the following lemma that the identifiability

of heterogeneous IM is equivalent to the uniqueness of the solution to the inverse

function ξ−1
θ : J → θ.

Lemma 10. Given the independent observation sequences Y with F, T → ∞, the

underlying heterogeneous IM is identifiable if and only if the solution to ξ−1
θ (J) is

unique where θ = (D,An) for ∀ n ∈ {1, 2, · · · , N}.

Proof. The proof is similar to that of Lemma 9 and omitted here.

Base on Lemma 10, we show the uniqueness of An and D of the heterogeneous

IM for ∀ n ∈ {1, 2, · · · , N} in the following two theorems, respectively.

Theorem 8. Given the joint-margin matrix J of a heterogeneous IM with the net-

work influence matrix D and local Markov chain transition matrices An with n ∈

{1, 2, · · · , N}, ξ−1
An

: J → An has the unique solution

anm,q = Jn
(m−1)(MN−1)

M−1
+1,q

(3.42)

where m, q ∈ {1, 2, · · · ,M} for ∀ n ∈ {1, 2, · · · , N}.

Proof. Similar to the proof of Theorem 5, in the heterogeneous IM, according to

(3.35) and (3.36), we have for ∀ n ∈ {1, 2, · · · , N},

Jn
(m−1)(MN−1)

M−1
+1,q

= P

(
sn[k + 1] = q|s[k] =

(m− 1)
(
MN − 1

)
M − 1

+ 1

)

=
N∑
l=1

dn,lanm,q = anm,q .

(3.43)
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The last equation holds due to the fact that D is a stochastic matrix, i.e.,
∑N

l=1 dn,l =

1.

Theorem 9. Given the joint-margin matrix J of a heterogeneous IM with the net-

work influence matrix D and local Markov chain transition matrices An with n ∈

{1, 2, · · · , N}, ξ−1
D : J → D has the unique solution if and only if rank(An) > 1 for

∀ n ∈ {1, 2, · · · , N}.

Proof. First we show that rank(An) > 1 for ∀ n ∈ {1, 2, · · · , N} is a sufficient

condition for the uniqueness of the solution to ξ−1
D : J → D.

The proof is similar to that of Theorem 6. For any site n, if rank(An) > 1 ,

we can always find a column in An indexed by m ∈ {1, 2, · · · ,M} with at least two

nonidentical entries to construct Anm so that the solution to AnmD
′Cn = JnCm is

unique. In other words, if rank(An) > 1, the nth row of matrix D can be determined

uniquely. Considering all rows of D, we come to the conclusion that if rank(An) > 1

for ∀ n ∈ {1, 2, · · · , N}, the solution to ξ−1
D (J) is unique.

Then we prove that rank(An) > 1 for ∀ n ∈ {1, 2, . . . , N} is also a necessary

condition for the uniqueness of the solution to ξ−1
D : J → D.

Similar to the proof of Theorem 6, for any site n, if rank(An) = 1, we cannot find

a column in An indexed by m ∈ {1, 2, · · · ,M} with at least two nonidentical entries

to construct Anm so that the solution to AnmD
′Cn = JnCm is unique. In other

words, if rank(An) = 1, the nth row of matrix D cannot be determined uniquely.

To account for all rows of D, we come to the conclusion that if rank(An) = 1 for

∃ n ∈ {1, 2, · · · , N}, the solution to ξ−1
D (J) is not unique.

Combining the conclusions above, we conclude that the network influence ma-

trixD can be determined uniquely if and only if rank(An) > 1 for ∀ n ∈ {1, 2, · · · , N}.
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Theorem 9 also indicates the approach to calculate the network influence matrix

D in the heterogeneous IM, as shown in the following corollary.

Corollary 2. If rank(An) > 1 for ∀ n ∈ {1, 2, · · · , N}, the network influence matrix

D can be determined uniquely by solving the following N equations

AnmD
′Cn = JnCm, (3.44)

where n ∈ {1, 2, · · · , N}. Anm is constructed as in (3.35) by the mth column of An

which has at least two nonidentical entries.

Proof. See proof of Theorem 9.

Theorems 8 and 9 lead to the sufficient and necessary condition for the iden-

tifiability of the heterogeneous IM. This is the first time the identifiability of the

heterogeneous IM is investigated in the literature.

Theorem 10. Given the joint-margin matrix J of a heterogeneous IM with the

network influence matrix D and local Markov chain transition matrices An with

n ∈ {1, 2, · · · , N}, a heterogeneous IM is identifiable if and only if rank(An) > 1

for ∀ n ∈ {1, 2, · · · , N}.

Proof. According to Theorems 8 and 9, An for ∀ n ∈ {1, 2, · · · , N} can be obtained

uniquely from J , and D can be determined uniquely if and only if rank(An) > 1 for

∀ n ∈ {1, 2, · · · , N}. Based on Lemma 10, the theorem is proven.

3.5 Estimation Algorithms of the IM

The joint-margin matrix J introduced in Section 3.3 plays an important role

in the identifiability analysis of both homogeneous and heterogeneous IM in Section

3.4. Building upon the joint-margin matrix J , we develop in this section the joint-
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margin probability based estimation (JMPE) approaches for the parameters of both

the homogeneous and heterogeneous IM.

First, we describe the joint-margin probability based estimation (JMPE) tech-

nique to determine θ = (D,A) in the homogeneous IM. As shown in Algorithm 1,

the joint-margin matrix J is obtained from the observation sequences by calculating

the corresponding frequencies. Next, the local Markov chain transition matrix A is

determined by specific elements of J according to Theorem 5. Then, based on The-

orem 6, whether the network influence matrix D can be uniquely obtained from J is

checked. If D is identifiable, D is found according to Corollary 1. Note that A can

determined by Jn for any n ∈ {1, 2, · · · , N} and J1 is used in the Algorithm 1.
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Algorithm 1 Joint-Margin Probability Based Estimation for Homogeneous IM

Input:

1: Observation sequences Y .

Output:

2: Matrices A and D.

3: Calculate state transition frequencies according to (3.27) from the observation

sequences Y , and then construct Jn for n ∈ {1, 2, · · · , N}. J is obtained according

to (3.26).

4: Compute the local Markov chain transition matrix A from J1 according to (3.37).

5: if rank(A) > 1 then

6: Find the mth column of A that has at least two nonidentical entries and then

construct Am as (3.33).

7: Construct W according to (3.41).

8: Apply the least squares regression to (3.40) to obtain the network influence

matrix D.

9: else

10: The influence model is not identifiable.

11: end if

Remark 2. The computation for parameter estimation involves estimating the local

Markov transition matrix A and the influence matrix D. A is estimated by (3.22) in

LAE [14], which requires calculating an N th root. However, JMPE uses (3.37), which

only requires finding specific elements of J . The estimation of D in LAE [14] needs

to solve M2N equations for NN unknowns according to (3.23). In contrast, JMPE

requires to solve MNN equations for N2 unknowns according to (3.40). Thus, JMPE
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is more efficient than LAE in [14], and this computational reduction becomes more

significant with the increase of network size N .

A JMPE technique is also developed to determine θ = (D,An) for ∀ n ∈

{1, 2, · · · , N} in the heterogeneous IM as shown in Algorithm 2. The procedure is

similar to the homogeneous case except that the joint-margin matrix J instead of

its one block is needed to determine the local Markov chain transition matrices An.

Note that the column indices m in each An for n ∈ {1, 2, · · · , N} used to construct

the local Markov information matrices Anm may be different. In this case, the N

equations used to obtain the matrix D are not organized in the matrix form and are

solved individually instead.

Note that JMPE is a stable estimator (i.e., robust against variations in the

observations [82]) given adequate observations, i.e., Y with F, T → ∞. This is

because that obtaining J from Y is stable based on the law of large numbers [68] and

obtaining estimated parameters from J is also stable as it only involves simple linear

algebra.
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Algorithm 2 Joint-Margin Probability Based Estimation for Heterogeneous IM

Input:

1: Observation sequences Y .

Output:

2: Matrices An and D for ∀ n ∈ {1, 2, . . . , N}.

3: Calculate state transition frequencies according to (3.27) from the observation

sequences Y , and then construct Jn for ∀ n ∈ {1, 2, · · · , N}.

4: Compute the local Markov chain transition matrix An from Jn for ∀ n ∈

{1, 2, · · · , N} according to (3.42).

5: for n = 1 : N do

6: if rank(An) > 1 then

7: Find the mth column of An which has at least two nonidentical entries and

then construct Anm according to (3.35).

8: Apply the least squares regression to (3.44) to obtain the nth row of the

network influence matrix D.

9: else

10: The influence model is not identifiable.

11: end if

12: end for

3.6 Simulation studies

In this section, we present some numerical results to validate the theorems

and corollaries in Section 3.4 and illustrate the effectiveness and efficiency of the

estimation algorithms developed in Section 3.5. An example of opinion propagation
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in a social network is also provided to show the applicability of heterogeneous IMs.

We use MATLAB on a Dell XPS 13 laptop for simulations.

3.6.1 Case 1: An Identifiable Homogeneous IM

Consider a homogeneous IM of 3 sites with 3 local statuses for each site. The

underlying parameter θ = (D,A) is given as follows, based on which an observation

sequence of length 40, 000 is generated.

A =


0.50 0.30 0.20

0.30 0.45 0.25

0.20 0.20 0.60

 , D =


0.70 0.20 0.10

0.10 0.85 0.05

0.20 0.15 0.65

 .
According to Theorem 7, the homogeneous IM is identifiable because rank(A) >

1. The JMPE approach in Algorithm 1 is applied to estimate θ = (D,A) from the

generated observation sequence. The results are given as follows,

ÂJMPE =


0.5159 0.2868 0.1973

0.2881 0.4481 0.2637

0.2012 0.2116 0.5873

 ,

D̂JMPE =


0.6839 0.2032 0.1145

0.1025 0.8495 0.0497

0.2057 0.1766 0.6147

 ,
where the subscript denotes the estimation algorithm used.
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In addition, the commonly-used maximum likelihood estimation (MLE) and

the linear algebra based estimation (LAE) [14] are applied to the same observation

sequence for comparative performance analysis. The results are shown as follows,

ÂMLE =


0.5008 0.3009 0.1983

0.3014 0.4507 0.2479

0.1977 0.2024 0.6000

 ,

D̂MLE =


0.6844 0.2130 0.1026

0.1020 0.8292 0.0688

0.2078 0.1479 0.6443

 ,

ÂLAE =


0.5035 0.3090 0.1875

0.3003 0.4664 0.2333

0.2112 0.2180 0.5708

 ,

D̂LAE =


0.6742 0.2108 0.1150

0.1024 0.8103 0.0873

0.2038 0.1437 0.6525

 .
The mean squared error (MSE) and execution time (ET) are used as two metrics

for algorithm performance comparison, as shown in Table 3.1. The ET of MLE is

the largest among three methods despite its smallest MSE. Compared to MLE, the

computational cost of JMPE is significantly reduced with the MSE increased slightly.

Compared to LAE, JMPE has similar accuracy but with lower computational cost.
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Table 3.1: The performance comparison of three estimation algorithms for the homo-
geneous IM

Method MSE ET (second)
JMPE 1.9660× 10−4 0.3800
MLE 7.3839× 10−5 209.0850
LAE 3.4135× 10−4 0.5100

3.6.2 Case 2: A Non-identifiable Homogeneous IM

Consider a homogeneous IM of 3 sites with 3 local statuses for each site. The

underlying parameter θ = (D,A) is given as follows, based on which 100 observation

sequences of length 40, 000 are generated.

A =


0.60 0.25 0.15

0.60 0.25 0.15

0.60 0.25 0.15

 , D =


0.70 0.20 0.10

0.10 0.85 0.05

0.20 0.15 0.65

 .
According to Theorem 7, the homogeneous IM is not identifiable because rank(A) =

1. Applying the MLE method to each generated observation sequence, we can

uniquely determine A, but the estimations of D vary each time, indicating that D is

non-identifiable. The average MSE is 0.0996 in the range of (0.0082, 0.2026).

3.6.3 Case 3: An Identifiable Heterogeneous IM

Consider a heterogeneous IM of 3 sites with 3 local statuses for each site. The

underlying parameters θ = (D,An) with n ∈ {1, 2, 3} are given as follows, based on

which an observation sequence of length 40, 000 is generated.

A1 =


0.70 0.20 0.10

0.10 0.85 0.05

0.20 0.15 0.65

 , A2 =


0.10 0.10 0.80

0.50 0.20 0.30

0.10 0.55 0.35

 ,
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A3 =


0.50 0.30 0.20

0.30 0.45 0.25

0.20 0.20 0.60

 , D =


0.10 0.10 0.80

0.50 0.20 0.30

0.05 0.60 0.35

 .
Because rank(An) > 1 for ∀ n ∈ {1, 2, 3}, the heterogeneous IM is identifiable

according to Theorem 10. Applying the JMPE method in Algorithm 2, we obtain

the following results with MSE of 8.3420× 10−5.

Â1 JMPE =


0.6861 0.2141 0.0998

0.0966 0.8481 0.0554

0.2018 0.1630 0.3652

 ,

Â2 JMPE =


0.0964 0.0953 0.8083

0.5150 0.2088 0.2762

0.0922 0.5532 0.3546

 ,

Â3 JMPE =


0.5011 0.2937 0.2052

0.2912 0.4394 0.2695

0.2036 0.2000 0.5964

 ,

D̂JMPE =


0.1045 0.0954 0.8008

0.4987 0.1942 0.3084

0.0395 0.6000 0.3637

 .
MLE is also applied to the same observation sequence for comparison. The

results are shown as follows with MSE of 2.8079× 10−5, a little smaller than that by

JMPE. However, the ET of MLE is 201.7741 seconds, significantly larger than JMPE

(0.3314 seconds).

Â1 MLE =


0.6982 0.2042 0.0976

0.0978 0.8505 0.0517

0.2063 0.1506 0.6431

 ,
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Â2 MLE =


0.1001 0.0916 0.8083

0.5065 0.2005 0.2930

0.0905 0.5570 0.3525

 ,

Â3 MLE =


0.5010 0.3004 0.1986

0.3018 0.4512 0.2471

0.1969 0.2008 0.6023

 ,

D̂MLE =


0.0948 0.1000 0.8052

0.4919 0.2013 0.3068

0.0494 0.5877 0.3628

 .

3.6.4 Case 4: A Non-identifiable Heterogeneous IM

Consider a heterogeneous IM with 2 sites with 2 local status for each site. The

underlying parameter θ = (D,An) with n ∈ {1, 2} is given as follows. 100 observation

sequences with length 4, 000 are generated.

A1 =

0.70 0.30

0.35 0.65

 , A2 =

0.55 0.45

0.55 0.45

 , D =

0.40 0.60

0.50 0.50

 .
According to Theorem 10, the heterogeneous IM is not identifiable because

rank(A2) = 1. Applying the MLE method to each generated observation sequence,

we find that An for n ∈ {1, 2} can be determined uniquely, however the estimations

of D vary in each run. More preciously, the 2nd row of D cannot be determined

uniquely, indicating that D is not identifiable.

3.6.5 Case 5: Support or Oppose?

In Case 5, we show the implementation of heterogeneous IMs in capturing the

opinion propagation of a social network.
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Consider a group of 7 individuals, each of whom can have one of the two opposite

opinions towards a certain event, e.g., ‘support’ and ‘oppose’, which are captured as

local statuses ‘1’ and ‘2’. Each individual can be influenced differently by those around

them (captured by matrix D) and can determine his/her own opinion differently given

neighbors’ opinions (captured by matrices An). 7 individuals have diverse behaviors,

reflected by the parameters of the heterogeneous IM as follows. Person ‘1’ is very

persistent in his own idea and good at persuading others, indicated by d1,1 = 0.95

and di,1 = 0.4 for i ∈ {2, · · · , 7}. Persons ‘2’ and ‘3’ follow the same way to determine

their own opinions, indicated by A2 = A3, while persons ‘4’, ‘5’ and ‘6’ have their

similar ways, indicated by A4 = A5 = A6. Person ‘7’ plays devil’s advocate, reflected

by A7 with all ‘1’s as its anti-diagonal elements. The initial opinion of all but person

‘1’ is ‘oppose’. The underlying parameters of the heterogeneous IM with N = 7 and

M = 2 are summarized as follows.

D =



0.95 0 0.05 0 0 0 0

0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.1 0.1 0.1 0.1 0.1 0.1



,

A1 =

1 0

0 1

 , A7 =

0 1

1 0

 .

A2 = A3 =

 1 0

0.2 0.8

 , A4 = A5 = A6 =

 1 0

0.5 0.5

 .
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According to Theorem 10, the underlying heterogeneous IM is identifiable. Ap-

plying the JMPE and MLE to observation sequences, the MSE of the estimated

parameters are 5.2642 × 10−6 and 0.0902 for JMPE and MLE respectively, showing

that a higher accuracy is achieved with our developed approach. Meanwhile, the

efficiency has also been improved with ET as 187.8477 seconds and 311.4101 seconds

for JMPE and MLE, respectively.

The estimated parameters of the underlying heterogeneous IM can be used to

predict the final voting result after thorough discussions. The influence matrix H can

be reconstructed from θ̂ = (D̂, Ân) based on (3.8). The steady-state status probability

for each individual can be determined by the left eigenvector of H associated with its

eigenvalue ‘1’, which is 

0.8295 0.1705

0.8283 0.1717

0.8288 0.1712

0.8941 0.1059

0.8960 0.1040

0.8920 0.1080

0.2126 0.7874



,

where the ith row indicates the steady-state status probability of person i for i ∈

{1, 2, · · · , 7}. The final voting result is more probable to be ‘support’ based on the

majority rule because 6 out of 7 individuals are more likely to support the event.

We also observe that individuals with a similar way to determine their own opinions

have similar steady-state status probability distributions, e.g., persons ‘4’, ‘5’ and ‘6’.

Finally, note that if using a master Markov chain, the number of states to track the

dynamics will be 27 = 128 and the analysis using a transition matrix G ∈ R128×128
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will incur significant computational cost, compared to H ∈ R14×14 using the influence

model.

3.7 Conclusion

In this chapter, we took a structural approach to study the identifiability and

estimation of both the homogeneous IMs and the heterogeneous IMs with reduced

computation. To facilitate the identifiability analysis, we introduced the joint-margin

matrix J which connects the first-order and highest-order representations of IMs.

Based on J , we find that the local Markov chain transition matrices are always iden-

tifiable and their ranks determine the identifiability of the network influence matrix

D. The if-and-only-if identifiability condition identified in this chapter for the homo-

geneous IMs is much simpler to check compared to that in [14]. For heterogeneous

IMs, the if-and-only-if identifiability condition identified is the first in the literature

and shows that the individual local Markov chain transition matrix determines the

identifiability of the corresponding row of D. Based on the identifiability analysis, we

developed the joint-margin probability based estimation (JMPE) methods for both

the homogeneous IMs and heterogeneous IMs. The effectiveness of the proposed

methods is validated through simulation studies. Compared to the maximum likeli-

hood estimation and the linear algebra based estimation approaches, we find that the

JMPE method retains accuracy with significantly reduced computation.

66



CHAPTER 4

IDENTIFIABILITY AND ESTIMATION OF PARTIALLY-OBSERVED

INFLUENCE MODELS1

4.1 Introduction

The influence model (IM) is a discrete-time stochastic model that captures

the spatiotemporal dynamics of networked Markov chains [53]. IMs utilize a con-

vex combination of local-level update rules modulated by network-level influences

for the evolution of local Markov chains. This reduced-order representation allows

the tractability of IMs and has found usages in diverse stochastic network applica-

tions, such as power networks, transportation systems, social networks, pandemics

and weather evolution [2, 12, 70, 71, 77]. Partially-observed IM (POIM) is an IM in

which the statuses for some sites are unobserved. POIMs are often seen in practical

applications for reasons such as limited sensing coverage capabilities and deliberate

concealment [83,84].

There exist some studies in the literature on the estimation of POIM model

parameters from observation data. Through connecting POIMs with hidden Markov

models (HMMs), expectation maximization (EM)-based estimation approaches have

been developed [14, 17, 85]. Computational costs for these methods are large, and

surge with the increase of network size. In addition, existing estimation studies

are all developed for POIMs with identical local update rules, namely the homoge-

1© 2022 IEEE. Reprinted, with permission, from [L. Zhao and Y. Wan, “Identifiability and

Estimation of Partially Observed Influence Models,” in IEEE Control Systems Letters, vol. 6, pp.

3385-3390, 2022].
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neous POIMs. POIMs with nonidentical local update rules, namely the heterogeneous

POIMs, are more flexible to capture network dynamics. The estimation of hetero-

geneous POIMs becomes more challenging, because that the variety of local update

rules leads to more complex coupling of interactions among sites. There exists no

study in the literature on the estimation of heterogeneous POIMs per our knowledge.

In this chapter, we study the estimation of both homogeneous and heterogeneous

POIMs with reduced computation. We explore the joint-margin matrix, the con-

cept of which was first introduced in [46]. The matrix connects the highest-order and

first-order representations of IMs, and was shown to play a significant role in the iden-

tifiability and estimation of fully-observed IMs. We here develop a new estimation

algorithm by integrating EM and joint-margin probability based estimation (JMPE),

called EM-JMPE.

POIM identifiability refers to the property that the estimation of POIM model

parameters is unique. Unlike estimation, the identifiability of POIMs has been rarely

studied in the literature despite its importance in practical applications. Refer-

ence [14] is the first in the literature that studied the identifiability of homogeneous

POIMs, which provided a necessary condition for a subset of parameters to be iden-

tifiable. There exists no study in the literature on the identifiability of heterogeneous

POIMs per our knowledge. In this chapter, we study the identifiability of both homo-

geneous and heterogeneous POIMs by introducing a reduced-size joint-margin matrix.

The matrix is constructed to account for incomplete state information from POIM

observation data. The approach provides a tighter or at least the same necessary

condition as that in [14] for a subset of parameters of homogeneous POIMs, and also

provides the first necessary condition in the literature for heterogeneous POIMs.
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4.2 Preliminaries and Problem Formulation

4.2.1 IM and POIM

IM is a network of Markov chains (see Fig. 4.1 for an example). It is char-

acterized by a 4-tuple (N,Mn, D,Al,n) where N is the number of sites, Mn is the

number of local statuses for site n, D ∈ RN×N is the network influence matrix and

Al,n ∈ RMl×Mn is the local Markov transition matrix between sites l and n, where

n, l ∈ {1, 2, · · · , N}.

An IM evolves as follows. Each site n randomly chooses a neighboring site l as

its influencing site with probability dn,l, and updates its status according to l’s status

and the transition matrix Al,n. dn,l is the nth row and lth column element of D. Al,n

has the mth row and qth column element al,nm,q
= P (sn[k + 1] = q|sl[k] = m), the

conditional probability to capture the influence of site l’s status m on site n’s status

q. Let Sn[k] ∈ R1×Mn with single ‘1’ as its sn[k]th entry and ‘0’ everywhere else to

denote the local status of site n at time instant k, and Pn[k] ∈ R1×Mn to denote the

probability mass function (PMF). The dynamics of site n can be captured as

Pn[k + 1] =
N∑
l=1

dn,lSl[k]Al,n, Sn[k + 1] = Realize(Pn[k + 1]), (4.1)

where Realize() denotes the random sampling operation for the corresponding PMF.

To facilitate the analysis, the overall network state at k, S[k] ∈ R1×
∑N

n=1 Mn

and the corresponding probability, P [k] ∈ R1×
∑N

n=1 Mn can be represented by stack-

ing all individual status vectors and PMFs as row vectors, respectively, i.e., S[k] =

[S1[k] S2[k] · · · SN [k]] and P [k] = [P1[k] P2[k] · · · PN [k]]. We also use a scalar

s[k] ∈ {1, 2, · · · ,
∏N

n=1Mn} to index S[k]. The overall network dynamics can be

simplified as

P [k + 1] = S[k]H, S[k + 1] =MultiRealize(P [k + 1]), (4.2)
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Figure 4.1: An N -site IM example. Each circle represents a site. A square represents
the status, and a blue one denotes the current status at a particular time. Take site
2 (marked with green) as an example. If choosing site 1 as its influencing site (with
probability d2,1), it updates its status from 1 to 2 based on the status of site 1, S1[k],

and A1,2 =

[
0 0 0
1 1 1

]′
with ′ denoting the transpose.

where the influence matrix H ∈ R
∑N

n=1 Mn×
∑N

n=1 Mn is defined as

H ≜


d1,1A1,1 . . . dN,1A1,N

...
...

...

d1,NAN,1 . . . dN,NAN,N

 . (4.3)

MultiRealize() denotes the random sampling operations for each PMF in P [k + 1].

In this chapter, homogeneous IMs refer to the IMs where all sites have the same

number of local statuses and identical local Markov transition matrices, i.e.,Mn =M

and Al,n = A ∀n, l ∈ {1, 2, · · · , N}. Heterogeneous IMs refer to the IMs where the

local Markov transition matrices can be different, Al,n = An ∀n, l ∈ {1, 2, · · · , N},

but all sites have the same number of local statuses, Mn =M .

POIM is an IM where the statuses of some sites are unobserved. Let N and N̄

denote the set of observed and unobserved sites, respectively. The observed and
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unobserved sites are labelled as N = {1, 2, · · · , |N |} and N̄ = {|N | + 1, |N | +

2, · · · , N}, where |.| denotes the size. Similarly to the construction of S[k], we use

SP [k] ∈ R1×M |N | to denote the network state for observed sites at k, and SU [k] ∈

R1×M ¯|N | for unobserved sites. The scalar sP [k] is to index SP [k], and sU [k] is to index

SU [k].

4.2.2 The joint-margin matrix

The joint-margin matrix J ∈ RMN×MN connects the joint probability of net-

work states and marginal probability of local statuses in IMs [46]. J is composed

of N blocks as J = [J1 J2 · · · JN ], where the nth block of J , Jn ∈ RMN×M , is a

row stochastic matrix, in which the ith row and mth column element Jni,m
is the

conditional probability of site n’s next status as m given the current network state i,

i.e., P (sn[k + 1] = m|s[k] = i).

In homogeneous IMs, Jn can be expressed using the parameters γ = (D,A) as

Jn =

[
A1D

′Cn A2D
′Cn · · · AMD

′Cn

]
, (4.4)

where Cn is the column vector with appropriate length of all zeros except ‘1’ in its

nth entry. Am ∈ RMN×N is the mth local Markov information matrix for m ∈

{1, 2, · · · ,M} and constructed by the mth column of A as

Am =



a1,m a1,m · · · a1,m
...

...
...

...

aq1,m aq2,m · · · aqN ,m

...
...

...
...

aM,m aM,m · · · aM,m


, (4.5)

71



where qn indicates site n’s status. Note that the tuple (q1, q2, · · · , qN) corresponds

to one of MN possible network states. We denote the mappings between γ = (D,A)

and J as functions ΓJ : γ → J and Γ−1
γ : J → γ.

In heterogeneous IMs, Jn can be expressed using the parameters λ = (D,A)

where A = {A1, A2, · · · , AN} as

Jn =

[
An1D

′Cn An2D
′Cn · · · AnM

D′Cn

]
, (4.6)

where Anm ∈ RMN×N is the mth local Markov information matrix of site n for

m ∈ {1, 2, · · · ,M} and constructed by the mth column of An as

Anm =



an1,m an1,m · · · an1,m

...
...

...
...

anq1,m
anq2,m

· · · anqN ,m

...
...

...
...

anM,m
anM,m

· · · anM,m


. (4.7)

We denote the mappings between λ = (D,A) and J as functions ΛJ : λ → J and

Λ−1
λ : J → λ.

4.2.3 Problem Formulation

Given OP independent observation sequences of POIMs as YP = {Y (1)
P , Y

(2)
P ,

· · · , Y (OP )
P } where Y

(o)
P =

[
S
(o)
P [1], S

(o)
P [2], · · · , S(o)

P [T ]
]
with o ∈ {1, 2, · · · , OP} and T

is the length of observation sequences, the identifiability of the underlying POIM is

defined as follows.

Definition 1 : A POIM is identifiable if and only if the optimal solution to the

following likelihood function is unique given YP with OP , T → ∞,

ϕ̂P = argmax
ϕP

P (YP |ϕP ), (4.8)
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where ϕP indicates γP = (D,A) for homogeneous POIMs and λP = (D,A) for het-

erogeneous POIMs.

Let ϕPN denote a subset of parameters ϕP , i.e., ϕPN ⊂ ϕP . The identifiability

of the underlying POIM with respect to ϕPN is defined as follows.

Definition 2 : A POIM is identifiable for a subset of parameters ϕPN if and only

if the optimal solution ϕ̂PN to (4.8) is unique given YP with OP , T → ∞, where ϕPN

indicates γPN for homogeneous POIMs and λPN for heterogeneous POIMs.

A POIM is not identifiable if the corresponding fully-observed IM is not iden-

tifiable. Thus, we here only study the identifiability of homogeneous and heteroge-

neous POIMs whose corresponding fully-observed IMs are identifiable. In the homo-

geneous case, this is guaranteed by rank(A) > 1, and in the heterogeneous case by

rank(An) > 1 ∀n ∈ {1, 2, · · · , N} [46]. This assumption generally holds in practical

applications. The problems investigated in this chapter are summarized as follows.

Problem 1 : Given YP with OP , T → ∞, estimate parameters γP = (D,A) of

the underlying homogeneous POIM.

Problem 2 : Given YP with OP , T → ∞, estimate parameters λP = (D,A) of

the underlying heterogeneous POIM.

Problem 3 : Given YP with OP , T → ∞, determine the identifiability of the un-

derlying homogeneous POIM for parameters γP = (D,A) and a subset of parameters

γPN if γP is not identifiable.

Problem 4 : Given YP with OP , T → ∞, determine the identifiability of the un-

derlying heterogeneous POIM for parameters λP = (D,A) and a subset of parameters

λPN if λP is not identifiable.

73



4.3 Estimation of POIMs

In this section, we study the estimation of POIMs through the joint-margin

matrix J . We develop a new estimation algorithm for POIMs, named EM-JMPE,

where EM is first applied to estimate J and then the model parameters are retrieved

from J using the JMPE.

We first present the EM algorithm to estimate J , which is consistent but biased.

For the ease of presentation, we assume OP = 1 and eliminate the superscript in Y
(o)
P .

Let X = [SU [1], SU [2], · · · , SU [T ]] denote the state sequence of unobserved sites.

E-step: Calculate the expectation of the log likelihood function ψ(ϕP |ϕt
P ) where

ϕt
P denotes the parameters estimated from the tth iteration.

ψ(ϕP |ϕt
P ) = E(X|YP ,ϕt

P ) (log P (YP , X|ϕP ))

=
∑
X

P (X|YP , ϕt
P )log P (YP , X|ϕP )

=
M |N̄ |∑
iU=1

P (s[1] = i|YP , ϕt
P )logπ(sU [1] = iU)

+
T−1∑
k=1

MN∑
i=1

M∑
m=1

N∑
n=1

(
P (s[k] = i, sn[k + 1] = m|YP , ϕt

P )logJni,m

)
,

(4.9)

where π(sU [1]) is the initial probability distribution of unobserved states. iU is the

unobserved states corresponding to network state i.

M-Step: Determine the parameters that maximize the expectation of the log

likelihood function ψ(ϕP |ϕt
P ) with the constraints that Jn is a row stochastic matrix

and π(sU [1]) is a probability distribution, i.e.,

ϕt+1
P = argmax

ϕP

ψ(ϕP |ϕt
P )

s.t.
M∑

m=1

Jni,m
= 1 ∀i ∈ {1, 2, · · · ,MN}, ∀n ∈ {1, 2, · · · , N}

M |N̄ |∑
iU=1

π(sU [1] = iU) = 1 and π(sU [1] = iU) ≥ 0.

(4.10)
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The estimation of π(sU [1]) and J at the (t+1)th iteration can be obtained by solving

(4.10) as follows.

π̂t+1(sU [1] = iU) = χi[1], Ĵ t+1
ni,m

=

∑T−1
k=1 ξni,m

[k]∑T−1
k=1 χi[k]

, (4.11)

where χi[k] = P (s[k] = i|YP , ϕt
P ) and ξni,m

[k] = P (s[k] = i, sn[k + 1] = m|YP , ϕt
P ),

which can be determined using the forward-backward algorithm as follows.

Forward-backward algorithm: For unobserved sites n ∈ N̄ , let αiU [k] denote the

global forward variables. αnm [k] and βnm [k] denote the local forward and backward

variables, respectively. Their definitions are given as follows.

αiU [k] = P (sU [k] = iU , SP [1] : SP [k]|ϕP ),

αnm [k] = P (sn[k] = m,SP [1] : SP [k]|ϕP ), (4.12)

βnm [k] = P (SP [k + 1] : SP [T ]|sn[k] = m,SP [k], ϕP ),

where SP [1] : SP [k] denotes the observation sequence from initial time instant to k.

Note that, when |N̄ | = 1, αiU [k] and αnm [k] are the same.

The recursive calculation of αiU [k] is given as

αiU [1] = π(sU [1] = iU),

αiU [k + 1] =
M |N̄ |∑
jU=1

(
αjU [k]

∏
l∈N

Jlj,mP

∏
n∈N̄

Jnj,mi

)
,

for k ∈ {1, 2, · · · , T − 1} and iU ∈ {1, 2, · · · ,M |N̄ |},

(4.13)

wheremP is the observed sites’ status andmi is unobserved sites’ status corresponding

to network state i at k + 1.
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The recursive calculation of αnm [k] is given as

αnm [1] =
∑
iUm

π(sU [1] = iUm),

αnm [k + 1] =
M∑
q=1

 αnq [k]

M (|N̄ |−1)(|N |+1)

∑
jq

Jnjq,m

∏
l∈N

∑
jq

Jljq,mP

 ,

for k ∈ {1, 2, · · · , T − 1}, m ∈ {1, 2, · · · ,M} and n ∈ N̄ ,

(4.14)

where iUm denotes the unobserved state with site n’s status as m. jq is the network

state with site n’s status as q at k and the corresponding observed states. The detailed

derivation follows a similar development as in [14] and hence is skipped here due to

limited space. We refer interested readers to the appendix [86] for the details.

The recursive calculation of βnm [k] is given as

βnm [T ] = 1,

βnm [k] =
M∑
q=1

(
βnq [k + 1]

M (|N̄ |−1)(|N |+1)

(∑
jm

Jnjm,q

)∏
l∈N

(∑
jm

Jljm,mP

))
,

for k ∈ {1, 2, · · · , T − 1}, m ∈ {1, 2, · · · ,M} and n ∈ N̄ .

(4.15)

χi[k] can be expressed as

χi[k] =
∏
n∈N̄

(
αnmi

[k]βnmi
[k]∑M

q=1 αNq [k]βNq [k]

)
, (4.16)

and ξni,m
[k] can be expressed as

ξni,m
[k] =


0, if sn[k + 1] ̸= m, for n ∈ N

χi[k], if sn[k + 1] = m, for n ∈ N
αiU

[k]Jni,m

∏
l∈N Jli,mP

βnm [k+1]∑M
q=1 αNq [k]βNq [k]

, for n ∈ N̄

. (4.17)

Once J is estimated from observation data, the model parameters of both ho-

mogeneous and heterogeneous POIMs exist and can be uniquely recovered from J ,
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using the JMPE approach guaranteed by theorems in [46]. For homogeneous POIMs,

γP = (D,A) can be obtained as follows.

am,q = Jn
(m−1)(MN−1)

M−1
+1,q

, (4.18)

for any n ∈ {1, 2, · · · , N} where m, q ∈ {1, 2, · · · ,M}.

AmD
′ = JW, (4.19)

where Am is constructed as (4.5) by the mth column of A which has at least two

nonidentical entries. W ∈ RMN×N is constructed as

Wx,n =

 1 if x = (n− 1)M +m

0 otherwise
(4.20)

where x ∈ {1, 2, · · · ,MN} and n ∈ {1, 2, · · · , N}. For heterogeneous POIMs, λP =

(D,A) can be determined from

anm,q = Jn
(m−1)(MN−1)

M−1
+1,q

(4.21)

AnmD
′Cn = JnCm, (4.22)

where Anm is constructed as (4.7) by the mth column of An which has at least two

nonidentical entries.

The EM-JMPE is summarized in the following algorithm.

Remark 3. The EM was used in the literature together with the corresponding mas-

ter Markov matrix G for the estimation of a POIM [14, 85]. Note that the JMPE

approach that uses J in the estimation is more computationally efficient than the lin-

ear algebra-based estimation (LAE) using G because JMPE solves linear equations of

smaller dimensions than LAE [46]. The challenge of integrating EM and JMPE for

the estimation of POIMs is that J concerns local status given network state and hence
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Algorithm 3 EM-JMPE Algorithm for POIMs

Input:

1: Observation sequences YP .

Output:

2: Parameters of the underlying POIM ϕP .

3: for |ϕt
P − ϕt−1

P | ≥ δP (a small preset threshold) do

4: Apply EM algorithm in (4.9)-(4.17) to YP to obtain the estimated joint-margin

matrix Ĵ .

5: if The POIM is homogeneous then

6: Estimate A and D from Ĵ according to (4.18)-(4.20).

7: end if

8: if The POIM is heterogeneous then

9: Estimate A and D from Ĵ according to (4.21)-(4.22).

10: end if

11: end for

the conditional probabilities in J are not balanced with respect to the preceding and

succeeding events. We introduce in the EM algorithm both global and local forward

variables αiU [k] and αnm [k] to address this issue.

4.4 Identifiability of POIMs

In this section, we study the identifiability of both homogeneous and hetero-

geneous POIMs through a reduced-size joint-margin matrix R. We first construct R

and then provide identifiability conditions for a subset of parameters to be identifiable

from R.
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4.4.1 Reduced-size joint-margin matrix R

The reduced-size joint-margin matrix R ∈ RM |N|×M |N | is constructed for only

the statuses of observed sites in a POIM. The relationship of R and the joint-margin

matrix J is given in the following theorem.

Theorem 11. The reduced-size joint-margin matrix R of POIMs and the joint-margin

matrix J of the corresponding fully-observed IMs have the following relationship,

R =
1

M |N̄ |FJP , (4.23)

where F = IM |N| ⊗ 1M |N̄ |. IM |N| denotes the identity matrix of dimension M |N |, and

1M |N̄ | denotes the all-ones row vector of length M |N̄ |. ⊗ is the Kronecker product. JP

is constructed from J by removing all blocks Jn for n ∈ N̄ .

Proof. The blocks Jn in J for unobserved sites n ∈ N̄ are first removed because their

statuses are unknown. We then partition the remaining part JP into M |N | ×M |N |

blocks with dimension M |N̄ | × 1 for each block. Each element of R is a scaled sum of

M |N̄ | elements in the corresponding blocks of JP so that the blocks in R corresponding

to individual observed sites n ∈ N are row stochastic. Thus, (4.23) holds.

Note that the observed state SP [k] does not necessarily evolve in a Markov way

based on R due to the influence from unobserved sites.

4.4.2 Identifiability of homogeneous POIMs

To study the identifiability of homogeneous POIMs through R, we first show

the uniqueness of the solution to Γ−1
γP

: R → γP is a sufficient condition for the

identifiability of homogeneous POIMs.

Lemma 11. Given YP with OP , T → ∞, the homogeneous POIM is identifiable if

the solution to Γ−1
γP
(R) is unique.
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Proof. Given a sufficient number of observations, each element of R can be uniquely

obtained by counting the corresponding state transition frequency based on the law

of large numbers [68]. Thus, the homogeneous POIM is identifiable if the solution to

Γ−1
γP
(R) is unique according to Definition 1.

Now, we study the identifiability of homogeneous POIMs by analyzing the

uniqueness of the solution to Γ−1
γP
(R). According to (4.4) and (4.23), for unobserved

sites n ∈ N̄ , the nth rows of D cannot be recovered from R since the corresponding

blocks Jn are removed when constructing R. Thus, Γ−1
γP

: R → D does not have a

unique solution. That is, the homogeneous POIMs cannot be completely identified

from the corresponding R. Therefore, we consider the identifiability of the param-

eters with respect to observed sites γPN from R for homogeneous POIMs, where

γPN = (DN , A) ⊂ γP and DN ∈ R|N |×N is a submatrix of D corresponding to ob-

served sites.

Theorem 12. Given the reduced-size joint-margin matrix R of a homogeneous POIM,

M(M − 1) + |N |(N − 1) ≤ M |N |(M − 1)|N | is a necessary condition for γPN to be

identifiable from R.

Proof. The number of independent unknowns in γPN isM(M −1)+ |N |(N −1). The

number of independent equations from R is M |N |(M − 1)|N |, which should be larger

than or equal to the number of independent unknowns so that γPN can be uniquely

solved from R. The theorem is proved naturally.

Remark 4. Paper [14] provided a necessary condition for the identifiability of homo-

geneous POIMs, M(M − 1) + |N |(N − 1) ≤ M |N |(M |N | − 1), through exploring its

master Markov representation. Theorem 12 provides a tighter or at least the same

necessary condition through the construction of R. More specifically, the number of
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required independent equations here is less than or at least equal to that in [14] (see

Fig. 4.2) because (M − 1)|N | ≤M |N | − 1 and M |N | > 0 ∀M, |N | ∈ Z+.

Figure 4.2: The number of required independent equations in the necessary condition
for γPN to be identified with multiple sets of |N | and M .

Note that, if γPN is identifiable from R, γPN can be obtained by solving the

nonlinear equations (4.23) and (4.4) using, e.g., the least squares method.

4.4.3 Identifiability of heterogeneous POIMs

Similar results on the identifiability of heterogeneous POIMs can be obtained

based on the reduced-size joint-margin matrix R. We first show that the uniqueness

of the solution to Λ−1
λP

: R → λP is a sufficient condition for the identifiability of

heterogeneous POIMs. The proof is similar to that of Lemma 11 and omitted here.
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Lemma 12. Given YP with OP , T → ∞, the heterogeneous POIM is identifiable if

the solution to Λ−1
λP
(R) is unique.

Based on Lemma 12, we study the identifiability of heterogeneous POIMs by

analyzing the uniqueness of the solution to Λ−1
λP
(R). Similarly to the argument for

the homogeneous case, the heterogeneous POIMs cannot be completely identified

through the corresponding R. Note that neither Λ−1
λP

: R → D nor Λ−1
λP

: R → A has

a unique solution. We thus study the identifiability of the parameters with respect to

observed sites λPN from R for heterogeneous POIMs, where λPN = (DN ,AN ) ⊂ λP

and AN = {A1, A2, ..., A|N |} ⊂ A for observed sites.

Theorem 13. Given the reduced-size joint-margin matrix R of a heterogeneous POIM,

M(M−1)+(N−1) ≤M |N |(M−1) is a necessary condition for λPN to be identifiable

from R.

Proof. The number of independent unknowns in λPN is |N |M(M − 1) + |N |(N − 1).

The number of independent equations from R is M |N |(M − 1)|N |, which should be

larger than or equal to the number of independent unknowns so that λPN can be

uniquely solved from R. That is, |N |M(M − 1) + |N |(N − 1) ≤ M |N |(M − 1)|N |.

Multiplying both sides with 1
|N | > 0, the theorem is proved naturally.

Note that, if λPN is identifiable from R, λPN can be obtained by solving the

nonlinear equations (4.23) and (4.6) using, e.g., the least squares method.

4.5 Simulation Studies

In this section, simulation studies are conducted to validate the estimation and

identifiability results. We use MATLAB R2021a on Dell Precision Tower 3620 with

CPU clock speed up to 3.50 GHz.
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4.5.1 Estimation of POIMs

First consider a homogeneous POIM with 2 sites and 2 statuses for each site.

The second site is unobserved and the underlying parameters γP = (D,A) are

A =

0.8 0.2

0.1 0.9

 , D =

0.0 1.0

0.6 0.4

 .
An observation sequence of length 320 is generated. We apply EM-JMPE in Algo-

rithm 3 and also EM-LAE in [14] for comparison. The results are given as follows

with subscripts denoting different methods. The mean squared errors (MSE) are

2.64× 10−4 by EM-JMPE and 1.5× 10−3 by EM-LAE. The execution time for EM-

JMPE is 2.7560 seconds, which is less than the 5.2715 seconds for EM-LAE, showing

reduced computation while maintaining the estimation accuracy.

ÂJMPE =

0.7916 0.2084

0.1170 0.8830

 , D̂JMPE =

0.0000 0.1000

0.5736 0.4264

 ,

ÂLAE =

0.7634 0.2366

0.0885 0.9115

 , D̂LAE =

0.0000 0.1000

0.6672 0.3328

 .
We also conduct 100 simulations with randomly generated 2-dimensional A and D.

The average execution time for EM-JMPE is 2.2372 seconds, and for EM-LAE is

5.0358 seconds with a reduction of 2.7986 seconds. The average MSEs are 3.2× 10−3

by EM-JMPE and 1.20× 10−2 by EM-LAE, which are similar. The statistical results

also verify the effectiveness of the EM-JMPE approach.

Consider a heterogeneous POIM with 2 sites and 2 statuses for each site. The

second site is unobserved and the underlying parameters λP = (D,A) are

A1 =

0.8 0.2

0.1 0.9

 , A2 =

1.0 0.0

0.2 0.8

 , D =

 0.0 1.0

0.55 0.45

 .
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An observation sequence of length 320 is generated. We apply EM-JMPE in Algo-

rithm 3 to estimate the parameters and the results are given as follows with the MSE

of 8.4919× 10−4.

Â1 =

0.7974 0.2026

0.0341 0.9659

 , Â2 =

0.9867 0.0133

0.2144 0.7856

 , D̂ =

0.0042 0.9958

0.5314 0.4686

 .
4.5.2 Identifiability of POIMs

First consider a homogeneous POIM with 3 sites and 2 statuses for each site.

The last site is unobserved and the underlying parameters γP = (D,A) are

A =

0.6 0.4

0.3 0.7

 , D =


0.55 0.20 0.25

0.25 0.45 0.30

0.30 0.20 0.50

 .
According to the necessary conditions for γPN to be identifiable, the number of re-

quired independent equations in Theorem 12 is 8, smaller than 12 in [14]. The nec-

essary condition is satisfied because there are 6 independent unknowns in γPN . Here

we estimate γPN by first obtaining R from an observation sequence of length 400, 000

and then solving nonlinear equations (4.23) and (4.4). Results are given as follows

with the MSE of 7.1182× 10−5.

Â =

0.6015 0.3985

0.2891 0.7109

 , D̂ =


0.5423 0.1933 0.2643

0.2543 0.4396 0.3061

∗ ∗ ∗

 .
Consider a heterogeneous POIM with 3 sites and 2 statuses for each site. The

last site is unobserved and the underlying parameters λP = (D,A) are

A1 =

0.6 0.4

0.3 0.7

 , A2 =

0.55 0.45

0.4 0.6

 ,
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A3 =

0.25 0.75

0.35 0.65

 , D =


0.48 0.27 0.25

0.25 0.45 0.30

0.30 0.20 0.50

 .
The necessary condition in Theorem 13 is satisfied for this heterogeneous POIM. Here

we estimate λPN by first obtaining R from an observation sequence of length 400, 000

and then solving nonlinear equations (4.23) and (4.6). Results are given as follows

with the MSE of 1.4070× 10−4.

Â1 =

0.5898 0.4102

0.2821 0.7179

 , Â2 =

0.5440 0.4560

0.3917 0.6083

 ,

D̂ =


0.4657 0.2612 0.2730

0.2457 0.4582 0.2961

∗ ∗ ∗

 .

4.6 Conclusion

In this chapter, we provided new results on the estimation and identifiability of

homogeneous and heterogeneous POIMs. Through exploring the joint-margin matrix

J , we developed a POIM estimation algorithm, EM-JMPE, which includes two steps,

estimating J from observations and obtaining POIM parameters from J . We also

provided new identifiability conditions for POIMs by introducing the reduced-size

joint-margin matrix R. In the homogeneous case, we show that the new necessary

condition is tighter or at least the same as that in [14]. The necessary condition for

the heterogeneous case is the first in the literature.
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CHAPTER 5

DISTRIBUTED SCHEDULING SCHEME FOR SUB-6 GHZ V2X-ASSISTED

MMWAVE COMMUNICATION UNDER LONG HIGHWAY TRAFFIC

5.1 Introduction

Vehicle-to-Everything (V2X) communication in vehicular networks plays an im-

portant role in the safety and efficiency of the intelligent transportation systems

(ITS) [22–24]. A wide range of ITS applications, e.g., collective perception of envi-

ronment, vehicle platooning and automated driving assistance benefit from V2X tech-

nologies [25, 26]. In V2X communication, extensive exchange of information requires

large bandwidth that can be provided by millimeter wave (mmWave) communication

in the wireless frequencies range between 30 and 300 GHz [87]. However, mmWave

communication is vulnerable to blockage and suffers from severe path loss [27]. The

link budget for beamforming of highly directional antennas can be expensive, which

is even more challenging considering the highly dynamic environment in the vehicular

ad-hoc networks (VANETs) [88]. Sub-6 GHz V2X-assisted mmWave communication

has been proposed to address such challenge, where the sub-6 GHz broadcasts omni-

directional V2X communication for the control panel and the directional mmWave

communication for the data panel [27,29,30].

In sub-6 GHz V2X-assisted mmWave transmission, vehicles in VANETs share

mmWave channel, and inappropriate channel use can lead to collisions and thus,

a waste of bandwidth resources [89]. MmWave transmission scheduling arranges

mmWave links for transmission to achieve an optimized mmWave channel utilization

[28]. We have conducted significant efforts to design mmWave scheduling algorithms
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that consider realistic VANET data features, e.g., data importance, data freshness and

data size heterogeneity from various ITS applications [29,30]. Our previous study [30]

considered these data features by formulating the scheduling problem into a mixed-

integer nonlinear programming (MINLP) problem. The mmWave scheduling scheme

in [30] requires a head node, i.e., a roadside unit (RSU) or vehicle, to collect mmWave

link requests within the sub-6 GHz communication range and conduct scheduling.

However, for long highway traffic, such scheduling scheme is not applicable considering

the communication and computing scalability. First, control information exchange

beyond the sub-6 GHz communication range requires multi-hop packet forwarding and

large control signalling overhead [31–33]. The computational complexity of solving

the MINLP problem can also be high if there is heavy communication load for the

long highway [30,34–36]. As such, we consider in this chapter a distributed scheduling

scheme. In [31, 33], distributed scheduling schemes at each node were developed for

large-scale networks to avoid multi-hop packet forwarding for information exchange.

Compared to scheduling schemes with one head node, distributed schemes have lower

implementation complexity and better flexibility and adaptability to varying vehicular

network conditions, at the cost of possible performance degradation [90,91].

Distributed scheduling is NP-hard [92]. We consider in this chapter the dis-

tributed scheduling with multiple head nodes and coordinations in between. Coordi-

nation aims to resolve the conflicts among individual schedulers to achieve an overall

conflict-free transmission schedule. For example, coordination can be conducted at

the medium access control (MAC) protocol level [93–97]. Head nodes can arrange

link transmissions within their pre-assigned time slots using the time division multi-

ple access (TDMA) [94, 95]. Distinct pre-assigned radio frequencies and orthogonal

coding are leveraged for various head nodes in the frequency division multiple access

(FDMA) and code division multiple access (CDMA), respectively [93]. Another type
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of methods, namely the interference localization, considers limited interference range

of communication links to isolate conflicts among head nodes [90, 98–100]. However,

such interference localization approach is not applicable for highway traffic due to

the specific chain-like coupling of link interference range along the highway. Game-

theoretic approaches in the literature provide a strategical mathematical model for

decision-making in both cooperative and non-cooperative systems [101], and have

been used in distributed scheduling [91, 102–104]. However, the constraints for in-

dividual game players are decoupled and this is not the case for our distributed

scheduling in which coupling conflict constraints exist among multiple head nodes.

In [105], the game-theoretic distributed scheduling requires heavy control overhead to

achieve conflict-free schedules, which is also not applicable for wireless communication

in sub-6 GHz channel.

In this chapter, we propose a distributed scheduling scheme with multiple head

nodes for sub-6 GHz V2X-assisted mmWave transmission for long highway traffic. We

address the two challenges, including the communication scalability for multiple head

nodes to coordinate across sections, and the computational scalability for individual

head node to solve the scheduling problem within a section. The contributions of this

chapter are summarized as follows.

• In the proposed distributed scheduling scheme, the long highway is divided

into contiguous and non-overlapping sections, inside of which a head node

solves the scheduling problem and coordinates with other head nodes to

achieve an overall conflict-free mmWave schedule. Extensive simulation stud-

ies are conducted to validate the effectiveness of the proposed distributed

scheduling scheme. The performance degradation of channel utilization is

small with respect to that by one head node.
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• To address the computational scalability challenge for individual head node

within a section, we develop a decomposition-based approximate solution.

The scheduling problem for each head node is decomposed into sub-problems

with minimal dependencies by leveraging the spectral analysis of the mmWave

link conflicts. Remaining dependencies are addressed through a permutation

and enumeration procedure.

• To address the communication scalability challenge for coordination among

multiple head nodes, we first propose highway division scheme to confine

the cross-section conflicts to adjacent head nodes. Based on this, we design

two coordination schemes, namely the rule-based coordination and section-

parity-based coordination, both of which are simple to implement. An overall

conflict-free schedule is achieved with low control overhead for sub-6 GHz

channel.

The rest of this chapter is structured as follows. In Section 5.2, the dis-

tributed scheduling problem is motivated and formulated. Section 5.3 describes the

decomposition-based approximate solution for individual head node within a section,

and the coordination schemes among multiple head nodes. Section 5.4 presents the

simulation studies and Section 5.5 concludes this chapter.

5.2 System Model and Problem Formulation

5.2.1 Scheduling for Sub-6 GHz V2X-assisted MmWave Communication

Consider a network of Nv vehicles on an M -lane highway of length L, as il-

lustrated in Fig. 5.1. Sub-6 GHz V2X radio devices and mmWave transceivers are

mounted on vehicles. The sub-6 GHz V2X radio works as the control panel for data

exchange over mmWave radio. Through sub-6 GHz channel, vehicles broadcast N
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mmWave link requests during the time span [0, Tc], along with basic safety message

(BSM) such as their positions and velocities. The ith requested link is attached

with a tag {TXi, RXi, wi, di, oi} denoting the transmitter vehicle ID, receiver vehicle

ID, data weight, transmission duration and data generation time, respectively, where

wi, di, oi ∈ R+ and i ∈ {1, 2, · · · , N}. Without loss of generality (WLOG), we assume

that di ≤ Tc is satisfied for all links.

Figure 5.1: An example of the vehicular network on highway, where the dashed lines
denote mmWave transmission link requests, with arrows pointing from the transmit-
ters to receivers.

Note that the requested mmWave links may not be transmitted concurrently.

The mmWave communication properties, i.e., the point-to-point communication, half-

duplex and the specific in-lane interference for highway scenario [29] can lead to

transmission conflicts among the requested mmWave links, as illustrated in Fig. 5.2.

The point-to-point and half-duplex conflicts result in the constraint that any two con-

currently transmitted mmWave links cannot share a common transmitter or receiver.

The in-lane interference conflict says that two receivers in the same lane cannot be

within the mmWave communication range for successful reception. This conflict can-

not be neglected for the highway traffic due to the specific highway structure and the

directionality of mmWave transmission. These conflicts can be integratedly captured

by a symmetric binary matrix C ∈ RN×N with the ith row and jth column entry
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Ci,j = 1 denoting existing conflicts between links i and j, and 0 otherwise. Vehicles

or the roadside units (RSUs) selected as head nodes collect mmWave link requests

as well as BSM during [0, Tc], arrange data transmission with conflict constraints for

[Tc, 2Tc], and disseminate schedules through sub-6 GHz radio. Vehicles in the network

build mmWave links according to the received schedules and conduct data exchange.

Figure 5.2: An illustration of the conflicts in highway traffic. Requested mmWave
links 1○ and 2○ have conflict considering the point-to-point communication property.
Links 1○ and 3○, or links 2○ and 3○ cannot be transmitted concurrently due to
the half-duplex constraint. The conflict for links 4○ and 5○ arises due to the non-
negligible in-lane interference where the transmission of link 4○ can lead to reception
failure for the receiver of link 5○ because that the two receivers are in the same lane
within the mmWave communication range.

Head nodes consider the following three important V2X data features in a

conflict-free mmWave transmission schedule to facilitate vehicles’ real-time decision-

making and support diverse applications. The first feature is data importance. The

more important the data is (captured by a larger wi), the higher transmission priority

it should be given. The second feature is data freshness, because longer delays will

diminish the value of data. As such, achieving a small transmission finish time fi

for link i in the schedule is desired. Thus, the ratio wi

fi−oi
, namely the link utility is

utilized to capture these V2X data features. Correspondingly, the mmWave channel
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utilization can be characterized by the sum of the link utilities of all scheduled links,

namely network utility. We aim to maximize the network utility when scheduling the

mmWave link transmission, subject to the above three conflicts. We also note that

to handle data transmission demands from various vehicular applications, flexible

data size is involved, i.e., di can be different for all links and Tc + di ≤ fi ≤ 2Tc.

Mathematically, the scheduling by head nodes is to find the optimal solution to the

following MINLP problem [30],

max
xi,fi

N∑
i=1

wixi
fi − oi

,

s.t. :



xi ∈ {0, 1};

fi ∈ R+;

Tc + di ≤ fi ≤ 2Tc;

if xi = xj = Cij = 1,

fi ≤ fj − dj or fj ≤ fi − di;

i, j ∈ {1, 2, · · · , N} and i < j.

(5.1)

The MINLP problem (5.1) is NP-complete. Existing approaches to solve such

MINLP problem, e.g., the branch and bound method in [106, 107] incur high com-

putational cost with low convergence rate. Our previous work [30] transformed (5.1)

into an equivalent parametric mixed-integer linear programming (MILP) problem

max
xi,fi

N∑
i=1

µ∗
i (wixi − β∗

i (fi − oi)), (5.2)

where µ∗
i =

x∗
i

f∗
i −oi

and β∗
i =

wix
∗
i

f∗
i −oi

with x∗i and f ∗
i denoting the optimal solution

to (5.1). To achieve the global optimal solution, a scheduling algorithm named the

Parameterization-based Iterative Algorithm (PIA) was developed in [30], where the
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MILP problem (5.3) with random parameters µi and βi is solved iteratively with

updated parameters under multiple sets of initial parameters µ0
i and β0

i .

max
xi,fi

N∑
i=1

µi(wixi − βi(fi − oi)). (5.3)

The linear convergence rate of the PIA for any random set of initial parameters µ0
i

and β0
i was proved in [30]. Despite the efficiency, We note that PIA does not scale

with the number of mmWave link requests N . This is because for each set of initial

parameters, multiple MILP problems with updated parameters are solved, resulting

in expensive computational cost when N is large. The efficiency of PIA decreases with

the increase of the number of links N , motivating this work to address the scalability

problem of the mmWave scheduling for vehicular scenarios with large N .

5.2.2 Distributed Scheduling for Long Highway Traffic

In this chapter, we consider mmWave link scheduling in a long highway traffic

scenario. We note that the use of one head node, as illustrated in Section 5.2.1 for the

small-scale vehicular network [30], does not apply for long highway traffic because the

multi-hop packet forwarding over sub-6 GHz channel can induce significant transmis-

sion delay of mmWave channel over the large communication range. To address this

challenge, we propose a distributed scheduling scheme with multiple head nodes for

the long highway traffic as shown in Fig. 5.3. The long highway is divided into con-

tiguous and non-overlapping Ns sections, each within the sub-6 GHz communication

range. The mmWave link requests to be scheduled within a section are determined

by the section ID of their receivers. For each section j, where j ∈ {1, 2, · · · , Ns}, a

head node Hj collects all mmWave link requests within section j, runs the mmWave

link scheduler (e.g., by adopting the PIA that solves the MINLP problem (5.1)), and

disseminates the optimized transmission schedules.
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Figure 5.3: An example of the long highway division. The blue dashed lines denote
section boundaries and vehicles with red frames indicate the head nodes for each
section.

This chapter addresses two challenges of the distributed scheduling scheme:

1. For individual head node within a large section, the computation of scheduler

that solves the MINLP problem (5.1), e.g., using the PIA, needs to be

reduced. In particular, these optimal scheduling algorithms do not scale

with the number of mmWave link requests.

2. A mechanism is needed to coordinate the distributed schedulers at the mul-

tiple head nodes to resolve the potential conflicts across sections.

To address the intra-section computational challenge 1) for an individual head

node, decomposition is a promising technique where a large-scale problem is divided

into several small-scale sub-problems [108–110]. Designing decomposition schemes

for scheduling algorithms needs to consider the tight coupling in the constraints of

transmission conflicts and the dependencies among sub-problems. We address this in

Section 5.3.1.

An example of inter-section challenge 2) with regard to the cross-section con-

flict is shown in Fig. 5.3, where links 1○ and 2○ cannot be transmitted concurrently

because they share two common nodes. Similarly, links 3○ and 4○ have in-lane in-

terference conflict because the distance between the two receivers is smaller than
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the mmWave communication range RM . More specifically, such pairs of conflicted

links, if scheduled by their individual sections to transmit concurrently, will result in

cross-section conflict considering the receivers’ positions. We will develop a coordina-

tion scheme among multiple head nodes to achieve an overall conflict-free mmWave

transmission schedule in Section 5.3.2.

5.3 Our Proposed Distributed Scheduling Scheme

In this section, we develop solutions to address the intra- and inter- section chal-

lenges of the proposed distributed scheduling scheme to solve the scheduling problem

(5.1) respectively in the two subsections.

5.3.1 Decomposition-based Efficient Scheduling by Individual Head Node within a

Section

An efficient decomposition-based approximate solution is developed in this sub-

section to solve the MINLP scheduling problem (5.1) for an individual head node

within a section. Based on available computing resources, the proposed solution

reduces the computation using three steps, i.e., clustering, permutation and enu-

meration, and selection, elaborated as follows. In clustering, the problem (5.1) is

decomposed into sub-problems with minimal dependencies. The permutation and

enumeration step handles remaining dependencies among the sub-problems. In the

selection step, the solution with the highest overall network utility is chosen as the

final schedule.

Step 1: Clustering. The clustering step utilizes the conflict table C to de-

compose the scheduling problem (5.1) into sub-problems with minimal dependencies.

In particular, given that each sub-problem corresponds to a link cluster (a set of links

i with i ∈ {1, 2, · · · , N}), the number of link conflicts within individual link clusters
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should be maximized while that between any two link clusters should be minimized.

Considering that more ‘1’s in a row (or column) in C indicate more conflicts the

corresponding link has with other links and vice versa, we are inspired to leverage a

graph-theoretic approach for the decomposition using the conflict table C.

C can be represented by an undirected graph G = (V , E), namely the conflict

graph. V is the set of vertices, representing the requested links, and E is the set

of edges, representing the existing conflicts between links and E ⊆ {{Vi, Vj}|Vi, Vj ∈

V , and Cij = 1}. In the following, we define direct conflict, disconnected cluster and

connected cluster to facilitate presenting our decomposition approach (see Fig. 5.4

for examples).

Definition 1: Direct conflict. Links i and j are said to have direct conflict if

there exists an edge between vertices Vi and Vj in G. Link clusters m and n are said

to have direct conflict if there exist link i in cluster m and link j in cluster n that

have direct conflict.

Definition 2: Disconnected cluster. A link cluster is said to be a disconnected

cluster if it has no direct conflict with all other clusters.

Definition 3: Connected cluster. A link cluster is said to be a connected cluster

if there exists a link cluster with which it has direct conflict.

With the above definitions for conflict graph G, the clustering step groups the

vertices in G into clusters to maximize the number of disconnected clusters, and

minimize direct conflicts among connected clusters.

We propose an eigen-structure approach for clustering. The positive-semidefinite

Laplacian matrix L ∈ RN×N of the graph G is calculated as

L = D − C, (5.4)
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where D ∈ RN×N is the degree matrix,

D = diag

(
N∑
j=1

Cij

)
, (5.5)

and diag(·) denotes diagonalization [111]. Lemma 13 shows the use of L’s eigenvalues

to determine the number of link clusters K in an adaptive way [112].

Lemma 13. The eigenvalues of L are non-negative.

1. The algebraic multiplicity of L’s ‘0’ eigenvalue indicates the number of dis-

connected clusters in graph G. If L has more than one ‘0’ eigenvalues, the

scheduling problem (5.1) can be decomposed into completely decoupled sub-

problems.

2. The smaller the corresponding non-zero eigenvalues are, the less direct con-

flicts exist between connected clusters. If L has small non-zero eigenvalues,

our problem (5.1) can be decomposed into sub-problems with low dependen-

cies.

Consider the example in Fig. 5.4 to illustrate the Lemma 13. Here N = 15 and

the conflict table is given as follows.

C =



C1 O O O O

O C2 C5 O O

O CT
5 C1 O O

O O O C3 C6

O O O CT
6 C4


,

where O ∈ R3×3 is the all-zero matrix, T denotes the transpose operation and

C1 =


0 1 0

1 0 1

0 1 0

 , C2 =


0 1 1

1 0 1

1 1 0

 , C3 =


0 1 1

1 0 0

1 0 0

 ,
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C4 =


0 0 1

0 0 1

1 1 0

 , C5 =


0 0 1

0 0 0

0 0 0

 , C6 =


0 0 0

0 1 0

0 0 0

 .
The corresponding Laplacian matrix L’s first 7 eigenvalues in the ascending order are

{0, 0, 0, 0.2679, 0.3249, 1, 1}. Based on these eigenvalues, we can group all links into 3

disconnected clusters as in Fig. 5.4(a), or 5 clusters of smaller cluster sizes including

1 disconnected cluster and 4 connected clusters as in Fig. 5.4(b).

(a) (b)

Figure 5.4: Clustering of the illustrative example. (a) 3 disconnected clusters. (b) 5
clusters with 1 disconnected cluster and 4 connected clusters.

The spectral clustering algorithm summarized in Algorithm 4 uses the eigen-

structure approach to group N links into K link clusters.

Step 2: Permutation and enumeration. The remaining dependencies

among sub-problems are handled in the permutation and enumeration step. In partic-
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Algorithm 4 Spectral Clustering Algorithm [111]

Input: The conflict table C of N requested mmWave links, and the number of link

clusters K.

Output: The membership of N links in K clusters.

1: Compute the graph Laplacian matrix L according to (5.4) and (5.5).

2: Obtain L’s top K eigenvectors f1, f2, · · · , fK , where fi ∈ RN with i ∈

{1, 2, · · · , K}. Here, by ‘top’, we refer to the eigenvectors associated with the

smallest K eigenvalues.

3: Construct matrix F ∈ RN×K by stacking all fi in a row.

4: Treat each row of F as a vertex in RK and partition these vertices into K clusters

via the K-means algorithm.

ular, the direct conflicts among connected clusters, e.g., clusters 2 and 3 in Fig. 5.4(b)

are resolved by scheduling each of these connected clusters with modified constraints

in order. Specifically, to achieve a conflict-free schedule, the completed schedules of

the connected clusters modify the finish time constraints of the next connected clus-

ters to be scheduled, and the scheduling of a connected cluster becomes to find the

optimal solution subject to the sub-intervals in [Tc, 2Tc] that have not been scheduled

by the previous connected clusters. Note that, the modified constraint for fi of link

i in the connected cluster may include several sub-intervals in [Tc + di, 2Tc]. If there

exists no sub-interval with length larger than or equal to di, the link i is assigned

xi = 0 and filtered out in the corresponding sub-problem to reduce computation.

The scheduling order of the connected clusters with direct conflict can have

impact on network utility. All possible permutations of these connected clusters are

enumerated to search for the highest achievable network utility. This procedure can

be implemented through parallel computing. For example, in Fig. 5.5, all links are
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grouped into 7 clusters given available computing resources. Let LCi denote the ith

link cluster with i ∈ {1, 2, · · · , 7}. These clusters include 2 disconnected clusters LC1

and LC2, and 5 connected clusters. Due to the direct conflicts among LC3, LC4 and

LC5, their 6 permutations of scheduling order are considered, while for LC6 and LC7

there are 2 permutations.

Figure 5.5: An example to show the permutation and enumeration step for link
clusters. The purple dashed-line boxes denote the connected clusters with direct
conflicts. The blue dashed-line boxes include the permutations of scheduling order.

Step 3: Selection. In the selection step, the individual head node within a

section selects the schedule with the highest network utility from the permutation

and enumeration step as the final solution to our scheduling problem (5.1).

Remark 5. The number of link clusters K is a trade-off between the cluster size

and the computational complexity in the permutation and enumeration step. At the

extremes, K = 1 implies no decomposition for the scheduling problem and K = N

100



denotes a brute-force approach. As shown in Fig. 5.6, the global optimal solution

is guaranteed to be achieved when K = 1 and K = N , but with high computational

cost [30]. When 1 < K < N , the global optimal solution can be achieved with lower

computational cost.

Figure 5.6: The trade-off between the cluster size and the computational complexity
in the permutation and enumeration step.

The proposed decomposition-based approximate solution with three steps is

summarized in Fig. 5.7.

Remark 6. Note that our developed solution in Fig. 7 is not limited to using the

PIA to solve the MINLP problem. Other scheduling algorithms, e.g., the branch and

bound method, can also be used.

5.3.2 Coordination among Multiple Head Nodes

In this subsection, we first show that an appropriate division of the long highway

can confine cross-section conflicts to reside only within adjacent sections (i.e., one-hop
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Figure 5.7: The proposed decomposition-based approximate solution with three steps
for scheduling problem (5.1).

neighbor of head nodes). This helps to avoid complex coordination schemes among

multi-hop head nodes and achieve low control overhead for sub-6 GHz channel.

Theorem 14. Consider the communication conflicts resulted from mmWave com-

munication properties, i.e., the point-to-point communication, half-duplex and in-

lane interference for highway traffic, as illustrated in Section 5.2.1. If the range
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of each highway section RS is at least twice of the mmWave communication range,

i.e., RS ≥ 2RM , link conflicts exist only in an individual section or in two adjacent

sections.

Proof. We prove this theorem by considering the conflicts caused by three mmWave

communication properties separately and show that in each case, the conflicted links

are to be scheduled by an individual head node in one section or two head nodes in

two adjacent sections. For point-to-point communication, the links cannot share a

common transmitter or receiver. The maximum distance between two receivers of

the conflicted links along highway is 2RM with maximum link length RM , as in Fig.

5.8(a). As a result, if RS ≥ 2RM , the two conflicted links with a common transmitter

are guaranteed to be scheduled by an individual head node or two adjacent head

nodes regardless of the position of their common transmitter (see Figs. 5.8(b)-5.8(d)).

Conflicted links with common receivers are to be scheduled by an individual head

node. For half-duplex, a node cannot be the transmitter and receiver at the same

time. The maximum distance between two receivers of the conflicted links along

highway is RM for this conflict, as in Fig. 5.9(a). If RS ≥ 2RM , the two conflicted

links are also guaranteed to be scheduled by an individual head node or two adjacent

head nodes (see Figs. 5.9(b)-5.9(d)). For in-lane interference, the maximum distance

between two receivers of the conflicted links along highway is RM , as in Fig. 5.10(a).

A similar argument as for half-duplex guarantees that the two conflicted links are

to be scheduled by an individual head node or two adjacent head nodes under the

condition RS ≥ 2RM (see Figs. 5.10(b)-5.10(d)).

Now consider to resolve the cross-section conflicts confined within adjacent sec-

tions guaranteed by Theorem 14. Two coordination schemes are described below.
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(a)

(b)

(c)

(d)

Figure 5.8: For point-to-point communication, (a) shows the maximum distance be-
tween two receivers of a pair of conflicted links. Two conflicted links are to be
scheduled by (b) two adjacent head nodes, (c) one individual head node and (d) two
adjacent head nodes, respectively, considering various position of the common trans-
mitter.

Coordination scheme 1: Rule-based Coordination. In the proposed rule-

based coordination scheme, multiple head nodes resolve cross-section conflicts using

two steps (see Fig. 5.11). In step 1, each head node within a section conducts schedul-

ing as in Section 5.3.1 and then shares the computed schedules with its adjacent head

node(s). In step 2, each head node compares the schedules received and self-computed,

and eliminate the conflicted links in schedules according to the following predefined

rules:

a) For two conflicted links with different link utilities, the one with a smaller

link utility is labeled with elimination.
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(a)

(b)

(c)

(d)

Figure 5.9: For half-duplex, (a) shows the maximum distance between two receivers
of a pair of conflicted links. Two conflicted links are to be scheduled by (b) one
individual head node, (c) one individual head node and (d) two adjacent head nodes,
respectively, considering various position of the common node.

b) For two conflicted links with identical link utility, the one belonging to the

odd (or even) section is labeled with elimination.

c) The links with at least one elimination label will be eliminated in the final

schedules to be disseminated.

The rules are designed to retain the scheduled links with higher link utilities and

abandon the conflicted ones with lower link utilities to achieve a high overall network

utility, i.e., the sum of all network utilities by multiple head nodes. Following the

predefined rules, all head nodes are able to eliminate the same conflicted links in their
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(a)

(b)

(c)

(d)

Figure 5.10: For in-lane interference, (a) shows the maximum distance between two
receivers of a pair of conflicted links. Two conflicted links are to be scheduled by (b)
two adjacent head nodes, (c) one individual head node and (d) two adjacent head
nodes, respectively, considering various positions of the two receivers.

Figure 5.11: The rule-based coordination scheme for multiple head nodes.
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schedules without additional control message exchange. In addition, these rules are

simple to implement in practice.

Remark 7. We notice that the rule-based coordination may result in unnecessary

elimination of conflicted links in schedules, i.e., a pair of conflicted links are both

eliminated. However, the overall conflict-free schedule can be achieved without heavy

control overhead.

Coordination Scheme 2: Section-parity-based Coordination. In this

coordination scheme, we leverage Theorem 14 that cross-section conflicts are confined

within adjacent sections. We consider head nodes divided into two groups based on

the parity of their section IDs. Clearly, head nodes in the same group do not have

conflicts. The cross-section conflicts are resolved by the two groups of head nodes

following the two steps in Fig. 5.12. In step 1, all head nodes in the group of odd (or

even) section IDs conduct scheduling as in Section 5.3.1 and then share the computed

schedules with their adjacent head node(s). In step 2, all head nodes in the other

group of even (or odd) section IDs modify the link finish time constraints in their

MINLP problems based on the received schedules, as illustrated in the permutation

and enumeration step in Section 5.3.1, and then conduct scheduling accordingly.

The developed section-parity-based coordination scheme allows half of the head

nodes to schedule first and the rest to modify the constraints of their scheduling prob-

lems and resolve the cross-section conflicts. Compared with the rule-based coordina-

tion scheme, sharing computed schedules is only required for half of the head nodes,

reducing the control overhead in sub-6 GHz channel. However, there is a delay in-

troduced because the second group has to wait for its scheduling until the first group

finishes.
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Figure 5.12: The section-parity-based coordination scheme for multiple head nodes.

5.4 Simulation Studies

In this section, simulation studies are conducted to show the performance of

the proposed distributed scheduling scheme for long highway traffic. We first show

performance of the decomposed PIA, which integrates the decomposition-based ap-

proximate solution with the PIA for individual head node within a section, and then

the coordination schemes among multiple head nodes.

5.4.1 Decomposed PIA by Individual Head Node within a Section

Consider N link requests where link information and conflict tables are ran-

domly generated with wi, di, oi ∈ (0, 100] for i ∈ {1, 2, · · · , N} and Tc = 100 millisec-

onds (ms). Two studies are presented in the following.

Study 1: In this study, we show that if the conflict table is fully decomposable,

the computational cost can be significantly reduced by clustering requested links,

i.e., all link clusters are disconnected clusters. In this case, the global optimum is

achieved. The execution time (ET) of algorithms is used as the performance metric.

Consider N requested links where N ∈ {30, 40, · · · , 100}, and the corresponding
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number of clusters is K ∈ {3, 4, · · · , 10}. As such, 10 links per disconnected cluster

is maintained for the scalability study. We apply the PIA, the decomposed PIA and

the decomposed PIA with parallel computing to solve the MINLP problem (5.1).

The result is shown in Fig. 5.13. When N is smaller than or equal to 50, the

computational cost of the decomposed PIA is larger than that of the PIA. This is

because the final schedule of the decomposed PIA approach is obtained only after

schedules of all disconnected clusters are ready. The difference gets smaller with the

increase of N . When N is larger than 50, the superiority of the decomposed PIA

over the PIA in computing reduction becomes more significant. Furthermore, with

parallel computing enacted, the ET of the decomposed PIA is the least for all N .

Figure 5.13: Algorithm execution time for an individual head node with fully decom-
posable conflict tables as illustrated in Study 1.
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Study 2: In this study, we show that for general conflict tables, the decomposed

PIA performs well in obtaining the global optimal solution, while the performance can

be different for different numbers of clusters K. We define performance in percentage

(PP) with respect to the global optimal solution obtained by the PIA as follows.

PP (%) =
NUdecPIA

NUPIA

× 100, (5.6)

where NUdecPIA and NUPIA denote the network utilities by the decomposed PIA

and the PIA, respectively. Consider N = 15 and K ∈ {2, 3}. 50 simulations are

conducted with randomly generated link requests and conflicted tables.

The results are presented in Fig. 5.14 with K = 2 and K = 3. It can be seen

that the global optimal network utility, i.e., PP = 100%, can be achieved using the

decomposed PIA in the majority of simulations. When K = 2, 70% (35 out of 50)

can achieve the global optimal solution, and all can achieve the PP over 86% except

one simulation run with PP = 71.29%. When K = 3, 44% (22 out of 50) can achieve

the global optimal solution, and all can achieve the PP over 84%. The distribution

of PP for K = 2 is further to the right compared to that for K = 3. The decomposed

PIA with K = 2 has a better performance in this example.

5.4.2 Coordination among Multiple Head Nodes

In this subsection, the range of a highway section for each head node is set as

2RM , according to Theorem 14, to mitigate computational burden. RM = 200m.

Study 3: This study considers the performance degradation using the proposed

coordination schemes. We define performance loss (PL) as follows.

PL(%) =
NUg −NUdis

NUg

× 100, (5.7)
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Figure 5.14: Histogram of PPs by the decomposed PIA for N = 15 in Study 2.

where NUg is the global optimal network utility obtained by applying the PIA to

process all the requested links for the whole highway, and NUdis is the overall network

utility using the proposed coordination scheme.

Consider a vehicular network on a 4-lane highway of length 2, 000m. The high-

way is segmented into 5 sections. 100 vehicles have random locations on the high-

way, and 80 of them are randomly selected to be equipped with the sub-6 GHz and

mmWave devices. The number of link requests per vehicle Nint ranges between 10 and

20 with a step size of 2 over the time interval [0, Tc]. The link information, wi, di and

oi, is generated randomly as in Section 5.4.1. The conflict tables are constructed for
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the specific vehicular networks under highway traffic considering the three mmWave

communication conflicts illustrated in Section 5.2.1.

We compare the rule-based and section-parity-based coordination schemes, and

for the latter, we also investigate the impact of scheduling orders of the two head node

groups on the overall network utility. 100 simulations are conducted with randomly

generated link information and vehicular networks.

The result is shown in Fig. 5.15. For both coordination schemes, the average

PL can be small (< 6%), and increases with the increase of Nint. In addition, there

is no significant performance difference between the two coordination schemes. For

the section-parity-based coordination scheme, the scheduling order of two head node

groups also shows negligible impact on the average PL.

Study 4: In this study, we show the performance of the proposed distributed

scheduling scheme with varying highway length. Note that, as illustrated in Section

5.2.2, it is not feasible for one head node to perform scheduling, when the highway

length is beyond the sub-6 GHz communication range. As such, a distributed schedul-

ing scheme must be applied. The configuration for vehicular networks and mmWave

links is the same as in Study 3 except that the length of highway ranges between

1200m and 2800m with a step size of 400m. As such, the number of highway sections

Ns ranges between 3 and 7 with a step size of 1. The corresponding number of ve-

hicles ranges between 60 and 140 with a step size 20 to maintain the vehicle density

per section. 100 random simulations are conducted.

The average NUdis with varying Nint using the rule-based coordination scheme

is shown in Fig. 5.16. The average NUdis increases with the increase of Nint. For a

givenNint, the averageNUdis increases with the length of highway L. The same results

are observed using the section-parity-based coordination scheme. The difference of

the average NUdis between two coordination schemes is not significant for all pair
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Figure 5.15: Average PL by the coordination schemes with varying Nint in Study 3.

of Nint and L (see the three lines on top of Fig. 5.17 for L = 2800m), consistent

with the observation in Study 3. The scheduling order of two head node groups in

the section-parity-based coordination scheme shows no significant influence on the

average NUdis achieved as in Study 3.

Study 5: In this study, we compare the effectiveness of the proposed distributed

scheduling scheme with that of a decentralized solution without coordination. The

decentralized solution has a head node within each highway section of range RM . The

head node schedules links only within the section and there is no coordination among

them. The length of highway and the number of vehicles are the same as in Study 4.

As such, the number of highway sections Ns ranges between 6 and 14 with a step size
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Figure 5.16: Average overall network utility NUdis using the rule-based coordination
scheme with varying Nint in Study 4.

of 2. The link utilities of conflicted links in schedules of multiple head nodes are not

counted in NUdis due to transmission failure. 100 random simulation are conducted.

As shown in Fig. 5.17 for L = 2800m, distributed scheduling with the two co-

ordination schemes all achieves higher average NUdis compared to the decentralized

solution. The same comparative result is observed for all L. The results are not sur-

prising because our design for highway division confines link conflicts within adjacent

head nodes, which are then resolved by the coordination schemes to improve channel

utilization. In addition, the superiority of the proposed distributed scheduling scheme

becomes more significant with the increase of Nint.
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Figure 5.17: Average overall network utility NUdis for L = 2800m with varying Nint

in Study 5.

5.5 Conclusion

In this chapter, we studied the sub-6 GHz V2X-assisted mmWave link schedul-

ing for long highway traffic. A distributed scheduling scheme was proposed. The long

highway is divided into contiguous and non-overlapping sections. For each section,

a head node collects mmWave link requests and determines a conflict-free transmis-

sion schedule through coordinating with other head nodes. We addressed both the

computational challenge for individual head node to solve the scheduling problem in

a section, and the communication challenge for multiple head nodes to resolve cross-

section conflicts. To address the intra-section computational challenge, we developed

a decomposition-based approximate solution, which leverages the spectral analysis
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of conflict table to decompose the scheduling problem in a section with minimal de-

pendencies among sub-problems. Remaining dependencies are addressed through a

permutation and enumeration procedure. To address the inter-section communication

challenge, two coordination schemes were designed to avoid heavy control overhead

for an overall conflict-free transmission schedule. The rule-based scheme uses pre-

defined rules to eliminate conflicted links. The section-parity-based scheme groups

head nodes based on the parity of their section IDs, and head nodes from two groups

conduct scheduling with modified constraints in order. Both schemes are simple to

implement. Simulation studies using MATLAB validated the effectiveness of the

proposed distributed scheduling scheme.
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CHAPTER 6

STOCHASTIC HIERARCHICAL GAME (SHG) FOR MULTIAGENT

AUTONOMOUS DRIVING

6.1 Introduction

Autonomous vehicles (AVs) can transform the way people live and work, for

example, by reducing traffic deaths, improving fuel economy, and maximizing travel

efficiency [113]. Decision-making, which navigates the AVs through complex traffic

scenarios safely and efficiently, plays a critical role to achieve these goals [114,115]. It

is challenging for the AVs to make decisions in diverse traffic environments because

of the presence of, e.g., multiple interactive agents and the inherent uncertainty [116,

117]. Various uncertainties are involved in the decision-making process of AVs, e.g.,

observation uncertainty due to inaccuracy perception [118] and intention uncertainty

of human drivers and pedestrians [119]. In this chapter, we consider the uncertain

intentions of traffic participants in multiagent decision-making for AVs.

The partially observable Markov decision process (POMDP) has been stud-

ied to consider the inherent uncertainty of dynamic environments in AVs’ decision-

making [120, 121]. However, finding optimal solutions of general POMDPs under

multiagent traffic environments can be intractable [122, 123]. Approximate solu-

tions are developed at the cost of sacrificing optimality [124, 125]. An alternative

approach to considering uncertain intentions of complex traffic participants is to

formulate the problem as a planning problem that includes prediction and decision-

making [126,127]. To predict trajectories resulting from uncertain intentions to enable

probabilistic safety guarantees in complex dynamic environments, most recent studies
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in the literature implement uncertainty models to approximate uncertain trajectory as

random processes [40]. Uncertainty models of specific distributions include the Gaus-

sian process and its several variants [37, 128] and a noise rational model [38, 129].

Distribution-free uncertainty models include quantile regression [39], scenario opti-

mization [130,131], generative models (e.g., generative adversarial models) [132,133],

and hidden Markov models [134, 135]. The limitations of these uncertainty models

lie in the inaccurate probabilities of rare trajectory scenarios learned with finite data

(e.g., abrupt intention changes) and inaccurate confidence bounds for making safe

decisions [40].

The random mobility model (RMM) is a promising model because it has been

proved to be effective in capturing the stochastic movement characteristics of mobile

agents in realistic scenarios, e.g., ground and airborne vehicles [136, 137]. Classic

RMMs include random waypoint/walk/direction models, Manhattan mobility model

and smooth-turn RMMs [138,139]. In [140], the RMM models random movement of

agents as a random switching system with two types of random variables, where one

type of random variable characterizes the specific maneuver executions and the other

type accounts for maneuver-changing behaviors. Compared with the uncertainty

models, the RMM can capture both uncertain low-level movements resulting from

intentions as well as uncertain changes of intentions. RMMs can leverage discrete

or continuous probabilistic information. Because a discrete hypothesis set can be

inadequate to cover all behavior variations emerging in real-world tasks [141], in

this chapter, we consider continuous RMM to capture the uncertain intentions of

interactive agents to facilitate the decision-making of AVs.

Regarding the multiagent decision-making of AVs, game theoretic-based ap-

proaches provide a good framework to model interactions among multiple traffic par-

ticipants and to solve for optimal payoffs in non-cooperative traffic environments
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[142, 143]. Various types of games (e.g., the normal-form games and the Stackelberg

games) are applied for decision-making under specific traffic scenarios, such as lane-

changing and intersection-crossing [41, 42]. A three-level decision-making framework

has been proposed in [43] to generalize the universality of game theoretic-based meth-

ods for diverse traffic scenarios. In [144,145], the pairwise game is applied to address

the computational scalability issue in multiagent decision-making where each pair

of game players makes the decision independently. However, such decisions can be

inefficient and lead to deadlock because the interactions among multiple agents are

not considered. [146] proposed a hierarchical game (HG) for safe and efficient multi-

agent decision-making by leveraging an interaction graph. The game theoretic-based

approaches usually assume that the intentions of traffic participants are known to

AVs, but this assumption does not hold in realistic traffic scenarios, especially when

human drivers are involved. A Bayesian game is generally used to consider the incom-

plete information of agents, such as their uncertain intentions [44]. However, fixed

players with uncertain intentions are required in the Bayesian games, which is not

scalable with the number of game players and high computational cost is inevitable.

Simulation for all possible scenarios with uncertain intentions is also time-consuming.

Therefore, in this chapter, we leverage an efficient uncertainty evaluation technique,

named the multivariate probabilistic collocation method with the orthogonal frac-

tional factorial design (MPCM-OFFD) [147, 148], to integrate uncertain intentions

with the HG in [146] to achieve safe decisions efficiently.

We propose a stochastic hierarchical game (SHG) to consider uncertain inten-

tions in multiagent decision-making. We address two challenges, including capturing

uncertain intentions as well as their random changing behavior and integrating un-

certain intentions in decision-making using HG efficiently. The main contributions of

this chapter are summarized as follows.
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• In the proposed SHG, an RMM with two types of continuous random vari-

ables is used to capture uncertain intentions of interactive agents and their

random changing behavior under realistic traffic scenarios.

• A smart sampling-based uncertainty evaluation approach (the MPCM-OFFD)

is used to solve the proposed SHG efficiently given the probability informa-

tion in the RMM. Both conservative and progressive decision-making for the

ego can be characterized.

• Extensive simulation studies are conducted to validate the effectiveness of

the proposed SHG by comparing the performance with the HG that does not

consider uncertain intentions. The ego can make safe and efficient decisions

with reduced frequency of repeated game play, realistic braking maneuver,

and timely response to emergencies.

The rest of this chapter is organized as follows. In Section 6.2, the problem for

multiagent decision-making considering uncertain intentions of interactive agents is

motivated and formulated. The SHG is elaborated upon in Section 6.3. Comparative

simulation studies are presented in Section 6.4. Section 6.5 concludes this chapter.

6.2 Preliminaries and Problem Formulation

6.2.1 HG for Multiagent Decision-Making

The HG was proposed in [146] for efficient multiagent decision-making. In HG,

the ego vehicle considers its game players based on an interaction graph (see Fig. 6.1),

which captures its interaction level with the surrounding agents, e.g., AVs, human-

driven vehicles and pedestrians. We illustrate the HG in the intersection-crossing

traffic scenarios.
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Figure 6.1: A general interaction graph in the HG. Circles with numbers denote
agents. Ego is labeled as agent 1. Edges between nodes indicate the existence of
trajectory conflicts.

Considering that agents with intersecting trajectories have trajectory conflicts,

we define the ego’s kth level neighbors as the agents that have trajectory conflicts with

its (k−1)th level neighbors. The 1st level neighbors, also called the direct neighbors,

are the agents that have trajectory conflicts with the ego. An agent cluster Cn is the

set of agents with parallel trajectories. Among agent i’s direct neighbors, an agent j

is said to be the representative of Cn if j = argminj∈Cn|T c
ij −T c

ji|, where T c
ij is the time

that agent i takes to reach the relative position of agent j, namely, time-to-collision

(TTC) of agent i against agent j (see Fig. 6.2). Note that the TTC for agents without

trajectory conflicts is infinite. Based on the above definitions, an interaction graph is

constructed using cluster representatives as nodes and trajectory conflicts as edges,

as in Fig. 6.1. The ego can play a multiagent game with its first K levels of neighbors

in the HG. To further reduce the computational complexity, we consider a branch in
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the interaction graph, which is defined as an interaction tree with one direct neighbor

of the ego as the root node and all agents that have a path to the root are involved.

Then the multiagent game can be decomposed into separate subgames with respect

to the branches without common nodes. The ego then plays several subgames and

selects the most conservative Nash equilibrium decision as the solution of the HG.

Figure 6.2: Time-to-collision (TTC) between agents 1 and 2, T c
ij where i, j ∈ {1, 2},

dij denotes the longitudinal distance with respect to road geometry from agent i’
forepart to the relative position of agent j’s forepart, and vi denotes the velocity of
agent i.

An example of seven interactive agents is given in Fig. 6.3 to illustrate the

HG. Agents 3 and 4 and agents 5 and 7 are grouped into two clusters, respectively,

with agents 3 and 5 as the corresponding representatives. The interaction graph

with the ego’s first two levels of neighbors is shown in Fig. 6.3. The ego plays two
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subgames, a two-player game with agent 2, and a three-player game with agents 3 and

5. Compared with a seven-player game, the computational cost can be significantly

reduced by using the HG.

Figure 6.3: An example of an intersection-crossing traffic scenario and the interaction
graph with the first two levels of neighbors.

6.2.2 Multiagent Decision-Making Considering Uncertain Intentions

In general traffic scenarios, the intentions of interactive agents are often uncer-

tain to the ego; therefore, uncertain trajectories in the interaction graph to determine

the game players. For example, as in Fig. 6.4, each of agents 2 and 3 with uncer-
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tain intentions can have two possible future trajectories for the ego to consider in

its decision-making. Thus, the HG in Section 6.2.1 cannot be directly applied for

multiple interactive agents with uncertain intentions. Furthermore, a sudden inten-

tion change of interactive agents can lead to serious safety concerns to the ego; for

example, vehicles on highway may perform sudden lane-changing to avoid missing a

desired exit. Therefore, in this chapter, we are motivated to capture the uncertain

intentions of interactive agents and incorporate them into the ego’s decision-making

using HG to improve its safety and efficiency.

Figure 6.4: A traffic scenario in which the intentions of agents 2 and 3 are uncertain
to the ego. Two possible trajectories for each agent should be considered in the ego’s
decision-making.

Capturing uncertain intentions can be challenging because realistic intentions

are often affected by multiple factors, exhibiting temporal, spatial and geographic

dependencies. These dependencies of realistic intentions modulate the probabilities
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of possible future trajectories, namely, intention-oriented trajectories. Let Tri with

i = 1, 2 denote the intention-oriented trajectories. Fig. 6.5(a) shows an example of

temporal dependency, where the probability of Tr1 is higher than that of Tr2 if the

blue vehicle finished lane-changing just a moment ago. Fig. 6.5(b) shows an example

of spatial dependency, where the probability of Tr1 can be lower than that of Tr2 for

the blue vehicle if the green vehicle on the top lane has a lower speed. One example

for geographic dependency is shown in Fig. 6.5(c), where the probability of Tr1 for

the blue vehicle can become larger when it gets close to the intersection. However, it

is also essential to consider random switching from uncertain intentions.

(a) (b)

(c)

Figure 6.5: For realistic intentions, examples of (a) temporal dependency, (b) spatial
dependency, and (c) geographic dependency.
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Incorporating uncertain intentions in the HG can also be challenging with re-

spect to safety and efficiency. First, determining the solution of HG with uncertain

intentions to guarantee the ego’s safety is challenging. Bayesian Nash equilibrium

(BNE) is the solution of a Bayesian game, which is able to consider the uncertain

intentions of interactive agents [44]. As an analogous concept to Nash equilibrium

in the non-Bayesian games, BNE is the strategy profile that maximizes the expected

payoff for each player given the probabilities of their intentions, with the other play-

ers’ strategies fixed [149]. However, fixed players are required in a Bayesian game,

which is not the case in HG with uncertain intentions. As shown in Fig. 6.6, uncer-

tain intentions of interactive agents generate different interaction graphs for the HG,

leading to different game players. Therefore, BNE is not applicable as the solution

of HG considering uncertain intentions. In addition, it is computationally expensive

and time-consuming to simulate all possible scenarios with uncertain intentions in

the HG.

In this chapter, we propose an SHG to consider the uncertain intentions of

interactive agents in multiagent decision-making with HG. In the SHG, we address

the following two challenges.

1) Find an appropriate mobility model to succinctly and effectively characterize

traffic agents’ uncertain intentions.

2) Incorporate the efficient uncertainty quantification model into the ego’s decision-

making such that the ego’s expected decisions in the presence of others’

uncertain intentions can be derived both accurately and computationally ef-

ficiently.
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(a) (b)

(c)

Figure 6.6: Various trajectory scenarios with corresponding interaction graphs. The
ego (agent 1) has the trajectory of going straight. Agents 2 and 4 have possible
trajectories of going straight and turning right. Agent 3 can go straight or turn left.
In each sample trajectory scenario, the ego plays (a) a 3-player game with agents 2
and 3; (b) two 2-player games with agents 3 and 4 respectively; and (c) a 3-player
game with agents 2 (cluster representative) and 3 if the first two levels of neighbors
are considered.
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6.3 SHG for Multiagent Decision-making

This section addresses the two challenges in the SHG, including capturing uncer-

tain intentions with its random changing behavior using a succinct random mobility

model and solving the SHG using an efficient uncertainty evaluation technique for

the ego’s decision-making.

6.3.1 RMM to Capture Uncertain Intentions

Specific maneuvers like acceleration and deceleration in the movements of traf-

fic agents can reflect their high-level motion intentions, e.g., turn right, turn left,

and go straight. Thus, the uncertain intentions can be captured by describing the

random maneuvers of the moving agents and then mapping the specific maneuvers to

intentions. In the following, we first show how to use an appropriate mobility model

to characterize the traffic agents’ random maneuvers.

We propose to use RMM in the SHG to capture the movement patterns of mobile

agents as random switching systems. Two types of random variables are involved in

the RMM [140]. Type 1 random variables describe the movement characteristics for

specific maneuvers, e.g., the velocities of vehicles. Type 2 random variables describe

the frequency of the switching behaviors for the type 1 random variables, e.g., how

often a driver will change the velocity. In this way, the random change of maneuvers

can be characterized. We leverage the RMM with continuous probability distributions

to cover the maneuver variations as much as possible. Consider the velocity as the

type 1 random variable, denoted by vi(t) for agent i at time t. Note that other

maneuvers in the vehicular dynamics (e.g., steering angle) can be type 1 random
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variables. Let T k
i denote the kth time instant at which the agent i changes its velocity,

and 0 = T 0
i < T 1

i < T 2
i < · · · . For vi(t), we have

vi(t) =

 vi(t
−), if t ̸= T k

i , ∀k ∈ {0, 1, 2, · · · }

vi(T
k
i ), if t = T k

i , ∃k ∈ {0, 1, 2, · · · }
, (6.1)

when it is not time to change the velocity, i.e., t ̸= T k
i , agent i remains its velocity

as before vi(t
−). When it is time to change the velocity, agent i obtains its new

velocity vi(T
k
i ) by sampling a specific probability distribution characterized by several

parameters. To capture the switching behavior, we represent the type 2 random

variable using the interval between two consecutive switching instants, i.e.,

τi
[
T k
i

]
= T k+1

i − T k
i , (6.2)

where τi
[
T k
i

]
follows a specific probability distribution characterized by several pa-

rameters. In this way, the RMM captures the temporal dependency of uncertain

intentions succinctly and efficiently.

Remark 8. The Markov chain can also capture the temporal dependency of inten-

tions. However, the RMM is much more succinct and efficient than the Markov chain.

Consider the state of an agent after Tp time steps S[k + Tp] given the current state

S[k]. In the RMM, for δ ∈ {1, 2, · · · , Tp},

S[k + δ] =

 S[k + δ − 1], if ∀l ∈ {0, 1, 2, · · · }, δ ̸= Tl

S[Tl], if ∃l ∈ {0, 1, 2, · · · }, δ = Tl

,

where Tl is the randomly selected lth state switching instant. The joint state space

depends on the number of switches during Tp in the RMM. However, the Markov

chain requires an ordered Tp-tuples of the states (S[k], S[k + 1], · · · , S[k + Tp − 1]).

The joint state space is the multiplication of Tp marginal state spaces and increases

exponentially with Tp.
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Note that the parameters in the probability distributions of the two types of

random variables in the RMM can be modulated by factors such as road geometry,

traffic rules, specific maneuvers, relative locations within intersection region, etc.

Thus, spatial and geographic dependencies can be considered. In addition, we claim

that these parameters can be estimated by, for example, training a neural network

offline from data.

Given the random maneuver described by the RMM, we can indicate the un-

certain intentions correspondingly. Specifically, we notice that different turning in-

tentions often correspond to different velocity changes when a vehicle approaches an

intersection. For example, compared to going straight, a vehicle that intends to turn

is more likely to slow down. Moreover, the turning velocities of left- and right- turns

are often different as well, due to the different turning radius. Therefore, the change of

velocity can indicate a vehicle’s turning intention, and such a maneuver-to-intention

mapping can be learned by supervised learning from a realistic traffic dataset.

6.3.2 MPCM-OFFD to Solve SHG

We leverage the MPCM integrated with the OFFD in the proposed SHG to

help the ego obtain the expected decisions efficiently and accurately in the presence

of other agents’ uncertain intentions.

The MPCM is a systematic design procedure to select a very limited number of

simulation samples to create a low-order polynomial model that has the same mean

statistics as the original model [150]. The OFFD selects a subset of experimental

combinations that best estimate the main effects and low-order interaction effects

[147], which can further reduce the number of the samples while maintaining the

computing accuracy for the system statistics. The integration of MPCM with the

statistical experimental design OFFD (i.e., MPCM-OFFD) can break the curse of
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dimensionality for the uncertainty evaluation in the multiagent setting. Compared

with the Monte Carlo simulation, the MPCM-OFFD is more effective and scalable for

uncertainty evaluation [147]. Compared with other existing approaches in estimating

the mean statistics of the system output (e.g., MPCM and stochastic response surface

method), the MPCM-OFFD can achieve the best performance with the fewest number

of simulation samples [148]. In addition, the MPCM-OFFD is the most robust to

numerical errors for designs of the same size among the approaches [148].

Figure 6.7: Solve the SHG by using MPCM-OFFD.
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The procedure to use the MPCM-OFFD for solving the SHG efficiently is sum-

marized in Fig. 6.7 and illustrated as follows.

1. MPCM is first used to sample a certain number of trajectory scenarios con-

sisting of the intention-oriented trajectories of interactive agents based on

the uncertain intentions captured by the RMM as described in Section 6.3.1.

2. OFFD is then applied to select a subset of the above MPCM samples to

further reduce the number of sample trajectory scenarios to NSH .

3. For each selected sample trajectory scenario n ∈ {1, 2, · · · , NSH}, the ego

plays a HG as described in Section 6.2.1. A binary is assigned to the corre-

sponding decision Dn, in particular, ‘1’ for ‘go’ and ‘0’ for ‘yield’.

4. The expected decision D is determined according to the associated proba-

bilities using the MPCM. The ego makes the final decision as ‘go’ if D ≥ ρ

and ‘yield’ if D < ρ where ρ ∈ [0, 1] is a predefined threshold.

Note that, the parameter ρ can be used to capture ego’s decision character-

ization. For example, ego makes conservative decisions by choosing large ρ, but

aggressive decisions using small ρ. ρ = 1 indicates that the ego make the final de-

cision by selecting the most conservative solution among all individual HGs. In this

case, we see that the proposed SHG provides a general solution.

6.4 Simulation Studies using Four-Vehicle Scenarios

In this section, we compare the performance of the proposed SHG which con-

siders uncertain intentions to those of the HG in Section 6.2.1 without uncertain

intentions.

Consider the traffic scenario in Fig. 6.8, where agents 2, 3, and 4 have uncertain

intentions captured by the RMM. The parameters of the random variables’ probability
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distributions in the RMM are assumed to be known and are summarized in Table 6.1.

The vi follows a skew normal distribution with various parameters for i ∈ {2, 3, 4}

to imply a velocity preference of different vehicles at distinct switching instants, as

shown in Fig. 6.9(a). The τi follows an Erlang distribution with identical parameters

for i ∈ {2, 3, 4} as shown in Fig 6.9(b), considering that the Erlang distribution

counts the amount of time until the occurrence of a fixed number of events [151],

i.e., switching the velocity here. The parameters are set as constants for simplicity.

Regarding the mapping from maneuvers to intentions (i.e., velocity change to turning

behavior), we assume that agents 2 and 4 will go straight if they decelerate (switch to

a lower velocity) and turn right if they accelerate when approaching the intersection

region and that agent 3 will go straight if it accelerates and turn left if it decelerates.

In addition, the number of agents with uncertain intentions decreases over simulation

time to mimic the realistic scenario where uncertainty fades away if the agents show

their intention explicitly, e.g., turning on the signal light. The true intentions are

going straight and going straight and turning right for agents 2, 3, and 4, respectively.

For simulations using HG without uncertain intentions, vehicles’ future trajectories

are determined by the velocity direction at the instant when playing the game. We

also let agent 2 suddenly speed up at the location marked by a purple triangle in

Fig. 6.8 to test whether the developed solution can provide the ego a safe response

to emergencies.

Using the MPCM, we selected two switching time instants; and at each switch-

ing instant, we selected two values for vehicle velocity, as shown in Fig. 6.9. Thus,

the four most representative trajectories were obtained for each vehicle and 64-sample

trajectory scenarios. Then, by applying the OFFD, we eventually selected eight sam-

ple trajectory scenarios, a significant reduction compared with 64 by using MPCM

only. We see the efficiency of leveraging the MPCM-OFFD in the proposed SHG.
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Figure 6.8: An uncontrolled intersection-crossing scenario with four agents. The
arrows with solid bold line and dash lines indicate the deterministic trajectory of the
ego and possible intention-oriented trajectories of the interactive agents, respectively.
The purple triangle marks the position where agent 2 speeds up abruptly.

In the following subsections, we show that the developed SHG can help to reduce

the frequency of repeated game play, consider a more realistic vehicle velocity profile

(e.g., a slow stop maneuver for ‘yield’) and provide safe response to emergencies.

6.4.1 Study 1: Frequency of repeated play

Repeated game play by the ego with changing payoffs has been introduced

in the decision-making process for reliable and efficient solutions [144]. It enables

the ego to respond in a timely manner to traffic environment changes. Because
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Table 6.1: PDFs in the RMM for Simulation Studies.

Type 1 Type 2

PDF

f(vi; ξ, ω, η
k
i ) =

2
ω
ϕ
(
vi−ξ
ω

)
Φ
(
ηki
(
vi−ξ
ω

))
,

where ϕ(·) and Φ(·) denote
the standard normal PDF
and CDF, respectively. k
denotes the switching time
instant.

f(τi;κ, λ) =
λκτκ−1

i e−λτi

(κ−1)!

Parameters

ξ = 5, ω = 1 ∀ i ∈ {2, 3, 4},

η1i =

{
−1 i = 2
1 i = {3, 4} ,

η2i =

{
−4 i = 2
4 i = {3, 4}

κ = 2, λ =
12 ∀ i ∈
{2, 3, 4}

the proposed SHG leverages the RMM to capture the random changing behavior of

uncertain intentions, we show that the frequency of repeated play can be reduced

for SHG while the safety of the ego is guaranteed. Let ∆t denote the time interval

between two consecutive repeated plays in second(s) and we consider ∆t = 0.01s,

0.1s and 1s. The ego is assumed to conduct a sharp stop for the decision ‘yield’. The

results are summarized in Table 6.2, and more details are discussed as follows.

Table 6.2: Results of study 1.

∆t HG SHG
Sharp stop for ‘yield’ 0.01s Safe Safe

0.1s Safe Safe
1s Not Safe Safe

(1) ∆t = 0.01s. It can be seen in Figs. 6.10 and 6.11 that with frequent

repeated play, the ego can safely cross the intersection by both HG and SHG, and

the ego yields to agent 2 earlier in SHG than in HG. In addition, comparing the ego’s

positions at the same time instant as in Figs. 6.10(b) and 6.11(b), the ego travels
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a longer distance in SHG than in HG, indicating that the decision by SHG is more

efficient than that by HG.

(2) ∆t = 0.1s. Increase ∆t to 0.1s to see whether the ego can still make safe

decisions with SHG and HG. As shown in Figs. 6.12 and 6.13, it is safe for the ego to

cross the intersection by both SHG and HG, and the decision by SHG is more efficient

than that by HG, the same observation as for ∆t = 0.01s. We notice that when the

ego yields to agent 2 by HG as in Fig. 6.12(a), their distance is still not very large,

which can be unsafe for the ego with a slow stop for decision ‘yield’, discussed in the

next study.

(3) ∆t = 1s. Increase ∆t to 1s. As shown in Fig. 6.14, the ego cannot safely

cross the intersection by HG considering its close distance to agent 2. In contrast, it

shows in Fig. 6.15 that, by the SHG, the ego’s safety is guaranteed with the reduced

repeated play frequency.

6.4.2 Study 2: Impact of slow stop for decision ‘yield’

Braking distance is critical considering limited deceleration of vehicles under

realistic traffic environments. In this subsection, we show the performance of SHG

and HG if the ego conducts a slow stop for its decision ‘yield’. More specifically,

the velocity of the ego times a coefficient of 0.5 each time for its decision as ‘yield’.

∆t = 0.1s. The results are summarized in Table 6.3. As shown in Fig. 6.16, using

HG, the ego cannot stop completely to avoid collision with agent 2. However, with

SHG, the safety of ego can still be achieved with a realistic braking maneuver. The

superiority of the SHG over HG lies in that its prediction capability allows the ego to

make possible responses in advance and reserves certain ‘space’ to avoid accidents.
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Table 6.3: Results of study 2.

∆t HG SHG
Slow stop for ‘yield’ 0.1s Not Safe Safe

6.4.3 Study 3: Impact of safety buffer in the payoffs

The SHG allows the ego to reserve certain space in advance for possible intention

changes of interactive agents based on its prior knowledge. A safety buffer can also

provide similar functionality. In this subsection, we show that the SHG cannot be

replaced by a safety buffer in dealing with emergencies. A collision region (see the

red shaded square in Fig. 6.17), is introduced as a safety buffer when calculating

the TTC. Compared with Fig. 6.2, T c
ij is calculated with a smaller relative collision

distance. Note that we consider TTC with a safety buffer because it is critical in both

the construction of the interaction graph and the design of payoff functions [146].

Consider a collision region with a side length of 5 meters. Let dc denote the distance

from agent 2’s speed-up point to its trajectory intersecting point with the ego (see

Fig. 6.8). Large dc and small dc (see Fig. 6.8) are applied to evaluate the performance

of SHG and HG with a safety buffer in TTC in handling emergencies.

The results are summarized in Table 6.4, and additional details follow.

Table 6.4: Results of study 3.

Safety buffer in payoffs, dc HG SHG
slow stop for ‘yield’, Large Safe Safe

∆t = 0.1s Small Not Safe Safe

(1) Large dc. As shown in Figs. 6.18 and 6.19, it is safe for the ego to cross

the intersection by both HG and SHG with a safety buffer in TTC. Comparing Fig.

6.18(a) and 6.19(a), the ego yields earlier in the SHG than in HG . In addition, the
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superiority of the SHG in making more efficient decisions is not observed in this case

considering similar travel distance after 6s as in Fig. 6.18(b) and 6.19(b). With

regard to a large dc, a safety buffer can improve the ego’s safety.

(2) Small dc. As shown in Fig. 6.20, the ego cannot safely cross the intersection

by the HG. The ‘space’ reserved by introducing a safety buffer in TTC is not enough

in an HG for a small dc. However, in the SHG, the ego yields earlier during its travel

based on its prediction of the possible intention changes of agent 2 (see Fig. 6.21(a)).

Thus, the ego can respond in a timely manner to the emergency (see Fig. 6.21(b)).

The safety buffer has a limit in improving the safety of the ego, and the SHG cannot

be replaced by a safety buffer in handling emergencies.

6.5 Conclusions

In this chapter, we proposed a novel SHG for autonomous driving, where the

uncertain intentions of drivers are captured. The proposed SHG uses the RMM

to capture uncertain driver intentions of random switching behavior, and uses the

MPCM-OFFD to solve the SHG efficiently. Comparative simulation studies have

been conducted to validate the effectiveness of the proposed SHG. Comparing the

performances of the SHG to the HG that does not consider uncertain intentions, the

safety of the ego is achieved with reduced repeated play frequency, realistic braking

maneuver, and timely response to abrupt intention changes in emergencies.
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(a)

(b)

Figure 6.9: PDFs of the random variables in the RMM. (a) PDF of vi with selected
points by MPCM-OFFD. (b) PDF of τi with selected points by MPCM-OFFD.
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(a) (b)

Figure 6.10: The ego’s decision in HG with ∆t = 0.01ss. (a) At 4s, the ego yields to
agent 2. (b) At 6s, the ego crosses the intersection safely.

(a) (b)

Figure 6.11: The ego’s decision in SHG with ∆t = 0.01s. (a) At 2s, the ego yields to
agent 2. (b) At 6s, the ego crosses the intersection safely.

140



(a) (b)

Figure 6.12: The ego’s decision in HG with ∆t = 0.1s. (a) At 4.6s, the ego yields to
agent 2. (b) At 6s, the ego crosses the intersection safely.

(a) (b)

Figure 6.13: The ego’s decision in SHG with ∆t = 0.1s. (a) At 2s, the ego yields to
agent 2. (b) At 6s, the ego crosses the intersection safely.
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Figure 6.14: The ego’s decision at 4.5s in HG with ∆t = 1s. The ego does not yield
to agent 2 in time to avoid a collision.

(a) (b)

Figure 6.15: The ego’s decision in SHG with ∆t = 1s. (a) At 2s, the ego yields to
agent 2. (b) At 4.5s, the ego is crossing the intersection safely.
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(a) (b)

Figure 6.16: The ego’s decision with ∆t = 0.1s and slow stop for ‘yield’. (a) By the
HG, the ego yields to agent 2 with a non-zero velocity at 4.5s and a collision occurs.
(b) By the SHG, the ego yields to agent 2 with zero velocity at 2s.

Figure 6.17: TTC with a safety buffer.
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(a) (b)

Figure 6.18: The ego’s decision in HG with a safety buffer in TTC for large dc. (a)
At 3.2s, the ego yields to agent 2. (b) At 6s, the ego crosses the intersection safely.

(a) (b)

Figure 6.19: The ego’s decision in SHG with a safety buffer in TTC for large dc. (a)
At 3.2s, the ego yields to agent 2. (b) At 6s, the ego crosses the intersection safely.

144



Figure 6.20: The ego’s decision in HG with a safety buffer in TTC for small dc. At
5s, the ego yields to agent 2 by stopping completely very close to the collision point
and a collision occurs.

(a) (b)

Figure 6.21: The ego’s decision in SHG with a safety buffer in TTC for small dc. (a)
At 3s, the ego yields to agent 2. (b) At 5s, the ego crosses the intersection safely.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation addressed the challenges in the study of environment, com-

munication and decision for MAS. First, this dissertation studied the IMs which

capture the stochastic spatiotemporal environment of MAS, and provided succinct

identifiability conditions and efficient estimation algorithms. Then, for sub-6 GHz

V2X-assisted mmWave communication, the dissertation proposed a distributed multi-

section scheduling scheme under long highway traffic to address the intra-section

computational scalability issue and inter-section communication scalability issues.

Finally, this dissertation developed a SHG to support safe and efficient decisions of

AVs considering uncertain intentions of interactive traffic participants.

7.1 Conclusions

In Chapter 2, we studied the reduced-order estimation of IMs. For UCC-HIM,

a canonical class of IM, we proved that it is identifiable. Then we constructed a

reduced-order Markov chain to facilitate the estimation study. The dimension of this

reduced-order Markov chain is far less than the master Markov chain and we find

the one-to-one mapping between these two Markov chains. By using the proposed

reduced-order Markov chain, an efficient parameter estimation algorithm is developed.

Compared with the master Markov chain approach, the same accuracy is achieved but

with significant reduction of computational load. Simulation studies verify efficiency

of our proposed parameter estimation algorithm and demonstrate its practical value

in real applications.
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In Chapter 3, we took a structural approach to study the identifiability and

estimation of both the homogeneous IMs and the heterogeneous IMs with reduced

computation. To facilitate the identifiability analysis, we introduced the joint-margin

matrix J which connects the first-order and highest-order representations of IMs.

Based on J , we find that the local Markov chain transition matrices are always iden-

tifiable and their ranks determine the identifiability of the network influence matrix

D. The if-and-only-if identifiability condition identified in this chapter for the homo-

geneous IMs is much simpler to check compared to that in [14]. For heterogeneous

IMs, the if-and-only-if identifiability condition identified is the first in the literature

and shows that the individual local Markov chain transition matrix determines the

identifiability of the corresponding row of D. Based on the identifiability analysis, we

developed the joint-margin probability based estimation (JMPE) methods for both

the homogeneous IMs and heterogeneous IMs. The effectiveness of the proposed

methods is validated through simulation studies. Compared to the maximum likeli-

hood estimation and the linear algebra based estimation approaches, we find that the

JMPE method retains accuracy with significantly reduced computation.

In Chapter 4, we provided new results on the estimation and identifiability of

homogeneous and heterogeneous POIMs. Through exploring the joint-margin matrix

J introduced in Chapter 3, we developed a POIM estimation algorithm, EM-JMPE,

which includes two steps, estimating J from observations and obtaining POIM pa-

rameters from J . We also provided new identifiability conditions for POIMs by intro-

ducing the reduced-size joint-margin matrix R. In the homogeneous case, we show

that the new necessary condition is tighter or at least the same as that in [14]. The

necessary condition for the heterogeneous case is the first in the literature. Simulation

studies demonstrate the use of the results and validate their effectiveness.
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In Chapter 5, we studied the sub-6 GHz V2X-assisted mmWave link scheduling

for long highway traffic. A distributed scheduling scheme was proposed. The long

highway is divided into contiguous and non-overlapping sections. For each section, a

head node collects mmWave link requests and determines a conflict-free transmission

schedule through coordinating with other head nodes. We address both the com-

putational challenge for individual head node to solve the scheduling problem in a

section, and the communication challenge for multiple head nodes to resolve cross-

section conflicts. To address the intra-section computational challenge, we developed

a decomposition-based approximate solution, which leverages the spectral analysis

of conflict table to decompose the scheduling problem in a section with minimal de-

pendencies among sub-problems. Remaining dependencies are addressed through a

permutation and enumeration procedure. To address the inter-section communication

challenge, two coordination schemes were designed to avoid heavy control overhead

for an overall conflict-free transmission schedule. The rule-based scheme uses pre-

defined rules to eliminate conflicted links. The section-parity-based scheme groups

head nodes based on the parity of their section IDs, and head nodes from two groups

conduct scheduling with modified constraints in order. Both schemes are simple to

implement. Simulation studies using MATLAB validated the effectiveness of the

proposed distributed scheduling scheme.

In Chapter 6, we proposed a novel SHG for autonomous driving, where the

uncertain intentions of drivers are captured. The proposed SHG uses the RMM

to capture uncertain driver intentions of random switching behavior, and uses the

MPCM-OFFD to solve the SHG efficiently. Comparative simulation studies have

been conducted to validate the effectiveness of the proposed SHG. Comparing the

performances of the SHG to those of the HG that does not consider uncertain inten-
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tions, the safety of the ego is achieved with reduced repeated play frequency, realistic

braking maneuver, and timely response to abrupt intention changes in emergencies.

7.2 Future Work

We plan to explore multiple directions in the future. First, we will study the

if-and-only-if conditions for POIMs by leveraging specific classes of network topology.

Second, we will investigate scheduling schemes under other practical traffic scenarios

and evaluate performance using, e.g., the ns-3 simulator. Finally, we will extend the

proposed SHG to other challenging traffic scenarios, e.g., multiple-lane changing.
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APPENDIX A

DERIVATION OF THE FORWARD-BACKWARD ALGORITHM FOR POIM

ESTIMATION
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Here we provide the detailed derivation of the forward-backward algorithm in

(4.12)-(4.17) in Chapter 4.

Given the definitions of αiU [k], αnm [k] and βnm [k] in (4.12) as

αiU [k] = P (sU [k] = iU , SP [1] : SP [k]|ϕP ),

αnm [k] = P (sn[k] = m,SP [1] : SP [k]|ϕP ),

βnm [k] = P (SP [k + 1] : SP [T ]|sn[k] = m,SP [k], ϕP ),

the corresponding recursive calculations are derived as follows.

To derive (4.13) for αiU [k], we have

αiU [k + 1] = P (sU [k + 1] = iU , SP [1] : SP [k + 1]|ϕP )

= P (sU [k + 1] = iU , SP [1] : SP [k], SP [k + 1]|ϕP )

=
M |N̄ |∑
jU=1

P (sU [k] = jU , SP [1] : SP [k], sU [k + 1] = iU , SP [k + 1]|ϕP )

=
M |N̄ |∑
jU=1

P (sU [k] = jU , SP [1] : SP [k]|ϕP )

P (sU [k + 1] = iU , SP [k + 1]|sU [k] = jU , SP [1] : SP [k], ϕP )

=
M |N̄ |∑
jU=1

P (sU [k] = jU , SP [1] : SP [k]|ϕP )

P (sU [k + 1] = iU , SP [k + 1]|sU [k] = jU , SP [k], ϕP )

=
M |N̄ |∑
jU=1

(
αjU [k]

∏
l∈N

Jlj,mP

∏
n∈N̄

Jnj,mi

)
,

where mP is the observed sites’ status at k + 1 and mi is the unobserved sites’

status corresponding to network state i. The penultimate equality holds because of

the Markov property, and the last one holds because the statuses of all sites evolve

independently.
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To derive (4.14) for αnm [k], we have

αnm [k + 1] = P (sn[k + 1] = m,SP [1] : SP [k + 1]|ϕP )

= P (sn[k + 1] = m,SP [1] : SP [k], SP [k + 1]|ϕP )

=
M∑
q=1

P (sn[k] = q, sn[k + 1] = m,SP [1] : SP [k], SP [k + 1]|ϕP )

=
M∑
q=1

P (sn[k] = q, SP [1] : SP [k]|ϕP )

P (sn[k + 1] = m,SP [k + 1]|sn[k] = q, SP [1] : SP [k], ϕP )

=
M∑
q=1

P (sn[k] = q, SP [1] : SP [k]|ϕP )P (sn[k + 1] = m,SP [k + 1]|sn[k] = q, SP [k], ϕP )

=
M∑
q=1

P (sn[k] = q, SP [1] : SP [k]|ϕP )

P (sn[k + 1] = m|sn[k] = q, SP [k], ϕP )P (SP [k + 1]|sn[k] = q, SP [k], ϕP )

=
M∑
q=1

(
αnq [k]

(∑
jq
Jnjq,m

M |N̄ |−1

)∏
l∈N

(∑
jq
Jljq,mP

M |N̄ |−1

))

=
M∑
q=1

 αnq [k]

M (|N̄ |−1)(|N |+1)

∑
jq

Jnjq,m

∏
l∈N

∑
jq

Jljq,mP

 ,

where jq is the network state with site n’s status as q at k and the corresponding

observed states as mP . The fifth and sixth equalities hold due to the Markov prop-

erty and independent evolution of all sites’ statuses respectively. In the penultimate

equality, the conditional probabilities are scaled by 1
M |N̄ |−1 because only site n’s status

and the observed states are concerned in the condition.
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Similarly, to derive (4.15) for βnm [k], we have

βnm [k] = P (SP [k + 1] : SP [T ]|sn[k] = m,SP [k], ϕP )

= P (SP [k + 1], SP [k + 2] : SP [T ]|sn[k] = m,SP [k], ϕP )

=
M∑
q=1

P (sn[k + 1] = q, SP [k + 1], SP [k + 2] : SP [T ]|sn[k] = m,SP [k], ϕP )

=
M∑
q=1

P (sn[k + 1] = q, SP [k + 1]|sn[k] = m,SP [k], ϕP )

P (SP [k + 2] : SP [T ]|sn[k + 1] = q, SP [k + 1], sn[k] = m,SP [k], ϕP )

=
M∑
q=1

P (sn[k + 1] = q, SP [k + 1]|sn[k] = m,SP [k], ϕP )

P (SP [k + 2] : SP [T ]|sn[k + 1] = q, SP [k + 1], ϕP )

=
M∑
q=1

P (sn[k + 1] = q|sn[k] = m,SP [k], ϕP )P (SP [k + 1]|sn[k] = m,SP [k], ϕP )

P (SP [k + 2] : SP [T ]|sn[k + 1] = q, SP [k + 1], ϕP )

=
M∑
q=1

((∑
jm
Jnjm,q

M |N̄ |−1

)∏
l∈N

(∑
jm
Jljm,mP

M |N̄ |−1

)
βnq [k + 1]

)

=
M∑
q=1

(
βnq [k + 1]

M (|N̄ |−1)(|N |+1)

(∑
jm

Jnjm,q

)∏
l∈N

(∑
jm

Jljm,mP

))
.

Given αnm [k] and βnm [k], the following probabilities can be obtained as

αnm [k]βnm [k] = P (sn[k] = m,SP [1] : SP [k]|ϕP )P (SP [k + 1] : SP [T ]|sn[k] = m,SP [k], ϕP )

= P (sn[k] = m,SP [1] : SP [k]|ϕP )P (SP [k + 1] : SP [T ]|sn[k] = m,SP [1] : SP [k], ϕP )

= P (sn[k] = m,SP [1] : SP [k], SP [k + 1] : SP [T ]|ϕP )

= P (sn[k] = m,YP |ϕP ),

P (YP |ϕP ) =
M∑

m=1

P (sn[k] = m,YP |ϕP ) =
M∑

m=1

αnm [k]βnm [k].
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Note that any unobserved site n in the network can be used to calculate P (YP |ϕP ).

Thus, χi[k] in (4.16) is derived as

χi[k] = P (s[k] = i|YP , ϕP ) = P (sU [k] = iU |YP , ϕP ) =
∏
n∈N̄

P (sn[k] = mi|YP , ϕP )

=
∏
n∈N̄

(
P (sn[k] = mi, YP |ϕP )

P (YP |ϕP )

)
=
∏
n∈N̄

(
αnmi

[k]βnmi
[k]∑M

q=1 αlq [k]βlq [k]

)
,

where lq in the denominator indicates that site l has local status as q and l here can

be any unobserved sites in the network.

Because ξni,m
[k] is defined for all sites in the network, in the following, we show

the derivation of ξni,m
[k] for observed and unobserved sites respectively. For observed

site n ∈ N , ξni,m
[k] can be expressed as

ξni,m
[k] = P (s[k] = i, sn[k+1] = m|YP , ϕP ) =

 0, if sn[k + 1] ̸= m

P (s[k] = i|YP , ϕP ) = χi[k], if sn[k + 1] = m
.

For unobserved site n ∈ N̄ , ξni,m
[k] can be expressed as

ξni,m
[k] = P (s[k] = i, sn[k + 1] = m|YP , ϕP ) = P (sU [k] = iU , sn[k + 1] = m|YP , ϕP )

=
P (sU [k] = iU , sn[k + 1] = m,YP |ϕP )

P (YP |ϕP )

=
P (sU [k] = iU , sn[k + 1] = m,SP [1] : SP [k], SP [k + 1], SP [k + 2] : SP [T ]|ϕP )

P (YP |ϕP )

=
1

P (YP |ϕP )
(P (sU [k] = iU , SP [1] : SP [k]|ϕP )

P (sn[k + 1] = m,SP [k + 1]|sU [k] = iU , SP [1] : SP [k], ϕP )

P (SP [k + 2] : SP [T ]|sn[k + 1] = m,SP [k + 1], sU [k] = iU , SP [1] : SP [k], ϕP ))

=
1

P (YP |ϕP )
(P (sU [k] = iU , SP [1] : SP [k]|ϕP )

P (sn[k + 1] = m,SP [k + 1]|sU [k] = iU , SP [k], ϕP )

P (SP [k + 2] : SP [T ]|sn[k + 1] = m,SP [k + 1], ϕP ))

=
αiU [k]Jni,m

∏
l∈N Jli,mP

βnm [k + 1]∑M
q=1 αlq [k]βlq [k]

.
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Combining above two cases for ξni,m
[k], we get (4.17).
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