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ABSTRACT 

 

Wide Band-Gap Metamaterials as Seismic Shields 

 

Ashraf Mohammed Daradkeh, Ph.D. 

 

The University of Texas at Arlington, 2023 

 

Supervising Professor: Himan Hojat Jalali 

In the past decade, a new paradigm has gained popularity among researchers aiming to protect 

structures from low-frequency seismic vibrations using metamaterials. However, developing a 

workable design for metamaterials is still challenging, given the various factors such as material 

availability, size, and shape of its components. This dissertation proposes a new configuration that 

can widen the attenuation frequency of metamaterials and evaluates the attenuation capability of 

graded metamaterials. The project investigates unit cell parameters such as but not limited to size, 

density, and modulus of elasticity to finalize a unit cell with the broadest possible bandgap by 

using common construction material such as concrete, steel, carbon fiber reinforced polymer 

(CFRP), and rubber. Moreover, the project investigates multi-layered unit cells with two, three, 

and four-layered metamaterials and evaluates its effects on the bandgap limits. 

Furthermore, to broaden the bandgap a double-graded configuration is proposed and evaluated by 

modeling the real-world application of metamaterial, with unit cells periodically embedded in soil 

medium and subjected to low-harmonic amplitude with low-frequency waves. The evaluation 

included both surface and body waves. Moreover, the performance of the proposed configuration 
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is evaluated for a Single Degrees of Freedom Structure (SDOF) by investigating the peak 

amplitude of the responses. Finally, the performance of the proposed double-graded metabarriers 

was assessed in the time domain, in which the configuration is subjected to two artificial wavelets, 

i.e., Ormsby and Ricker, and a time history record of the 1975 Oroville dam earthquake, California 

1940 (PEER, accessed 2023). Moreover, a new double-graded configuration is presented to help 

reduce the SDOF peak frequency amplification. The result shows that a 4.5-15.3 Hz bandgap can 

be achieved using a 2 m two-layered unit cell made of rubber matrix and steel core. 

Moreover, the upper bound of the attenuation zone can be increased up to 29 Hz by using the 

proposed configuration (double-graded configuration), and the lower bound can be decreased to 

3.5 Hz, where the double-graded meta-barriers can block 88% of the most destructive seismic 

frequencies. Furthermore, the double-graded configuration is shown to reduce the amplification of 

SDOF at the peak frequency, which is not located in the attenuation zone of the unit cell. Finally, 

the configuration is evaluated using a triangle-like double-graded design with fewer unit cells and 

more wave absorption. Results of the time domain show great match with the dynamic response 

results and the proposed design can absorb most of the applied waves. Moreover, the triangular-

like design showed that it’s capable of diverting the wave direction towards the ground rather than 

reflecting it to the surroundings of the protected structure. 
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DISSERTATION ORGANIZATION 

 

The topic of this dissertation is covered in five chapters: chapter 1 presents an overview of seismic 

hazards, types of seismic waves, and traditional seismic protection methods in addition to the 

objectives and gaps to be covered in this topic. Chapter 2 presents a summary of the literature 

progress in the field of seismic protection using metamaterials. Chapter 3 introduces the theory 

behind seismic metamaterial and the numerical evaluation of metamaterial unit cells. Moreover, a 

simplified mass-spring model is presented in chapter 3 that simplifies the methodology of finding 

the attenuation zone. Additionally, the method of evaluating a metamaterial unit cell and the 

bandgap verification process is presented in chapter 3 as well, including the frequency response 

(Frequency domain) and time domain analyses. Finally, the parametric study plan is also presented 

in this chapter. Chapter 4 discusses the results of the parametric studies explained in chapter 3 and 

investigates their relation to the bandgap. Moreover, the verification results and the development 

of wide-bandgap seismic shields are presented in chapter 4, as well as an evaluation of the 

performance of double-graded configuration in frequency and time domains and their effects on 

the structure peak responses. Finally, chapter 5 contains a summary and concludes the dissertation. 
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CHAPTER 1 : INTRODUCTION TO SEISMIC 

METAMATERIALS 

 

This chapter presents an overview of seismic hazards, the most destructive waves, types of seismic 

waves, characteristics of waves, and traditional seismic resistance methods. Additionally, it 

introduces seismic metamaterials, presents the problem statement, and goals and objectives of this 

research. 

1.1. Introduction to Earthquakes 

Earthquakes are one of the most disastrous natural hazards due to damages they cause to structures, 

infrastructure, and due to loss of lives. A recent earthquake that hit south Turkey-north Syria 

caused a humanitarian disaster; more than 41,000 lives were lost, other than the economic impact 

on the region (worldvision.org). According to the US geological survey, the world’s deadliest 

earthquake occurred in China in 1976 and caused 830,000 casualties. Earthquake side-damages, 

such as but not limited to fires, can cause more harm than the earthquake itself. Earthquakes occur 

due to sudden slip on a fault. The tectonic plates are connected by friction and are always moving. 

However, when the stress on the connected edge exceeds the friction, slippage occurs, and the 

energy is released as seismic waves. The waves travel through the earth’s crust into the surface, 

causing all the vibrations and damage we feel.  

The most disastrous wave frequencies fall within 0-30 Hz, where 0-20 Hz are seismic wave 

frequencies, and 20-30 Hz are transportation-induced frequencies. Figures 1-1, 1-2, and 1-3 show 
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multiple types of destructive waves from different sources, such as earthquakes, transportation-

induced waves, and explosions (0-100 kHz, Yang et al., 2018), respectively. 

 

Figure 1-1: Earthquake waves (University of Waikato, accessed 2023). 

 

Figure 1-2: Transportation-induced waves. 

 

Figure 1-3: Explosion waves (explosives.org, accessed 2023). 
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1.2. Types and Characteristics of Seismic Waves 

Earthquakes generally release energy in the form of waves, i.e., seismic waves. There are two types 

of movement with each seismic wave: propagation and oscillation directions. While all wave types 

can propagate in any direction, they can oscillate in one direction only, leading to earth particle 

movement, which is used to recognize the kind of waves. There are two main types of seismic 

waves: body and surface waves (Chong and Lee, 2021). By definition, body waves occur in the 

earth's body and are reflected, diverted, and transmitted through various earth layers where density 

and seismic wave velocity change.  

Furthermore, body waves can be divided into P and S waves. Each type can be recognized by the 

earth’s particle movement (oscillation direction). P-waves (Primary or pressure waves) are 

longitudinal waves that compress earth particles during propagation. P-waves are the fastest 

waves, and they appear first on seismograms. S-waves (Secondary or shear waves) are transverse 

waves, as they propagate the earth particles oscillating perpendicular to the propagation direction. 

They are slower than P-waves. 

Surface waves, on the other hand, occur along and near the earth’s surface. They cannot travel in 

the earth's body and are usually generated by shallow earthquakes. Surface waves are slower than 

body waves and have higher amplitude and longer duration than body waves. They can be divided 

into two types: Rayleigh waves, in which the oscillation direction is elliptical, the movement of 

the particles is greatest at the surface and decrease as the depth increases. The speed of Rayleigh 

waves is related to their wavelength. The second surface wave type is Love waves, where the 

oscillation direction parallels the earth's surface. Figures 1-4 and 1-5 show body and surface wave 

types, respectively.  
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Figures 1-4 and 1-5 show that all waves propagate in the same direction. However, each wave is 

recognized by the earth particle movement (displacement) direction.         

 

Figure 1-4: Two types of body waves (Braille, Purdue University, 2010). 

 

 

Figure 1-5: Two types of surface waves (Braille, Purdue University, 2010). 

 

Waves are defined using several characteristics: 

1. Wavelength (𝜆): The distance between points with similar amplitudes. One wavelength is 

the distance between consecutive peaks. 

2. Amplitude (A): The maximum displacement of the earth's particle motion, or the peak 

displacement of a wave. 

3. Period (T): The time for two consecutive waves to pass a reference point. Alternatively, 

the duration to complete one wave cycle. 
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4. Frequency (f): The number of wave repetitions in a given unit of time, or cycle of seismic 

waves. 

5. Velocity (V): The distance a wave covers in a given unit of time. 

The relationships between different wave characteristics are given in equations 1-1 and 1-2, and 

Figure 1-6 shows the wave characteristics on imaginary seismogram plots. 

𝑓 =  
1

𝑇
 (𝐻𝑧 𝑜𝑟 1 𝑠⁄ ) Eq. 1-1 

𝑉 = 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
=  𝑓𝜆  Eq. 1-2 

  

 

Figure 1-6: Seismic wave characteristics placed on imaginary seismogram data. 

 

1.3. Traditional Seismic Protection Methods 

Due to the damage and disasters caused by disastrous waves, researchers developed methods for 

seismic protection. Such methods are being used widely, including but not limited to shear walls, 

moment frames, and braced frames. Figure 1-7 shows different types of traditional seismic 

protection methods. Moment frames are a conventional seismic protection method made of typical 

steel beams and columns connected by welds or bolts; in some cases, frames can be made of 
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standard concrete beams and columns. They can absorb wave energy through the rigid connections 

by bending the beams or columns. Shear walls are structural members typically located at elevators 

and stairs walls constructed by reinforced concrete. They can be rectangular, L-shaped, C-shaped, 

or a closed core wall. Lateral movement enters the building, and shear walls absorb this movement 

by transmitting it to the ground. Braced frames use crosses, V-shaped, diagonal, or eccentric-

shaped steel structural elements such as beams and cables. Lateral resistance is provided by vertical 

or horizontal bracing.   

 

Figure 1-7: Traditional seismic protection methods (https://ccpia.org). 
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Additionally, there are more advanced techniques to protect or increase the seismic resistance of a 

structure. There are mainly three seismic resistance systems: passive, active and semi-active. A 

passive seismic control system utilizes passive techniques that do not require additional energy 

sources to function. Instead, the earthquake’s input motion activates the seismic control system. 

Passive seismic control systems commonly use energy dissipation devices, base isolation systems, 

and dynamic oscillators. Energy dissipation systems are mechanical systems affixed to a building 

structure and designed to absorb a significant portion of earthquake input energy by undergoing 

deformation and yielding, ultimately guarding the building structure. There are several energy 

dissipation devices (dampers), including but not limited to friction dampers and viscous dampers. 

These devices work by absorbing the energy generated by an earthquake and dissipating it through 

mechanical processes, thereby reducing the energy transmitted to the building structure. Friction 

dampers utilize the force of friction to dissipate energy. They typically consist of a sliding interface 

that is placed between two plates, which are clamped together. When an earthquake occurs, the 

plates slide against each other, generating heat and dissipating the earthquake's energy. Viscous 

dampers, on the other hand, utilize the force of viscosity to dissipate energy. They typically consist 

of a cylinder filled with fluid connected to the building structure. 

When an earthquake occurs, the cylinder moves, causing the fluid to move through several valves, 

generating resistance and dissipating the earthquake energy. Figure 1-8 shows examples of viscous 

and friction dampers. 

Base isolation systems are a structural engineering technique used to protect buildings and other 

structures from the effects of earthquakes and different ground vibrations. The method separates 

the structure from its foundation by inserting flexible bearings, such as rubber or lead, between the 

two. These bearings allow the structure to move freely during an earthquake, effectively 
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decoupling it from the ground and reducing the transmission of seismic forces. Base isolation 

systems can be used in various structures, from bridges and dams to skyscrapers and nuclear power 

plants and are essential in mitigating the damage caused by seismic activity. Figure 1-9 shows how 

base isolation systems are implemented. While it offers significant advantages in reducing the 

transmission of seismic forces to structures, there are several limitations to consider. Firstly, the 

cost of implementing base isolation systems can be substantial, making it financially challenging 

for certain projects. Another drawback is the increased complexity of the structural system. Base 

isolation introduces additional components and interfaces, which need to be properly integrated 

with the overall design. This complexity can lead to potential complications during construction 

and may require specialized expertise. Furthermore, while base isolation can significantly reduce 

the impact of ground motion on buildings, it does not eliminate the structural response entirely. 

Large amplitude, long-duration ground motions or near-field earthquakes may still pose challenges 

even with base isolation (Xiong et al., 2012). 

 

 

Figure 1-8: Viscous damper example (mathspig.wordpress.com, accessed 2023). 
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Figure 1-9: Base isolation system implementation (Verma et al., 2017). 

 

Another passive seismic control system is the tuned mass dampers (TMD). It works by adding a 

mass-spring-damper system to the structure, which is tuned to the natural frequency of the 

structure. When the structure vibrates, the TMD moves in the opposite direction, reducing the 

amplitude of the vibrations. TMDs are often used in tall buildings and bridges to minimize the 

effects of wind and seismic activity, which can cause undesirable vibrations that affect the comfort 

of occupants and the structure's safety. They can also be used to control the vibrations of machinery 

and equipment. A TMD's effectiveness depends on the structure's properties and the mass-spring-

damper system. Proper design and installation are crucial to ensure the TMD operates as intended. 

TMDs are a cost-effective solution for controlling vibrations in structures, and they have been used 

in many iconic buildings and bridges worldwide. One of the most famous buildings where the 

TMD system is implemented is Taipei 101 building located in China and uses 660 tons of TMD 

affixed at the top of the building, as shown in Figure 1-10. 
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 Figure 1-10: Taipei 101 building TMD (https://www.slate.com, accessed 2023). 

  

On the other hand, active seismic control systems require external energy source, sensors, 

actuators, and computer algorithms to minimize the effects of seismic activity on buildings and 

other structures. When an earthquake occurs, these systems work by applying forces to counteract 

the movements caused by seismic waves. Active seismic control systems can be complex and 

expensive, requiring a continuous energy source and sophisticated control mechanisms. On the 

other hand, semi-active control is extensively utilized in the field of structural control due to its 

ability to combine the benefits of passive and active control methods, while avoiding their 

respective drawbacks. In essence, semi-active control represents an advanced form of passive 

control system, with the key distinction that the parameters of the semi-active control system can 

be adjusted based on the input excitation. This approach offers numerous advantages, including 

but not limited to a high level of robustness (Pourzeynali et al., 2016) and the utilization of a small 
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power source (Alhan et al., 2006). Among the commonly employed devices in semi-active control, 

the magneto-rheological (MR) damper stands out, as it consists of magnetic fluid containing liquid 

magnetic particles. By subjecting the magnetic fluid to a magnetic field, the viscosity of the fluid 

can be precisely modified in a controlled manner (Jung et al., 2004). 

Moreover, a more recent option that has emerged is the TMD with inerter (TMDI) as illustrated in 

Figure 1-11. The inerter is a lightweight component with negligible mass. It generates a reaction 

force that depends on the relative acceleration between its two terminals, with a proportionality 

coefficient, i.e. inertance (b). This inertance, also referred to as apparent mass, has the same units 

as mass and has the ability to greatly magnify the physical mass. Consequently, the inerter can 

effectively reduce the effects of vibration by simultaneously reducing the peak amplitude and 

expanding the frequency range over which vibration suppression occurs (Kaveh et al. 2020a, b; 

Hojat Jalali and Farzam 2022; Farzam and Hojat Jalali 2022. 

 

Figure 1-111: Basic concept of TMD (Right), TMDI (Mid), and ideal inerter. (Kaveh et al. 

2020a) 
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1.4. Introduction to Seismic Metamaterials 

Metamaterials are artificially engineered material that exhibit extraordinary properties that are not 

found naturally. They are made up of repeating units or patterns called periodicity. This unique 

structure allows metamaterials to manipulate waves in ways that cannot be achieved with 

conventional materials. The first metamaterial models were created in the 1980s, where the models 

focused on electromagnetic fields. After that, it expanded to include mode fields such as but not 

limited to aerospace engineering to reduce the weight of space rockets, lenses, mechanical 

engineering as vibro-acoustics to isolate machinery vibrations, and automobiles to reduce their 

weight.  

One of the most significant advantages of metamaterials is their ability to control the flow of 

electromagnetic radiation. They can be designed to bend, reflect, and absorb light in specific ways, 

making them ideal for use in optical devices such as lenses, sensors, and filters. They can also be 

used to create cloaking devices that make objects invisible to specific wavelengths of light. 

Metamaterials also have a wide range of potential applications in the field of telecommunications. 

They can be used to create ultra-high-speed communication networks by controlling the 

propagation of electromagnetic waves in new ways. Metamaterials can also be used to develop 

materials that are much lighter and stronger than conventional materials, making them ideal for 

use in aerospace and defense applications. Another promising application of metamaterials is in 

the field of energy. 

Metamaterials can create more efficient solar cells by trapping light in the cell for extended 

periods, increasing the amount of energy that can be harvested (Liu et al. 2012). They can also be 

used to create more efficient thermal insulation, reducing energy losses in buildings and other 
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structures. Moreover, metamaterials can be made using extreme (irregular) geometry. They are 

called, in this case, auxetic materials. Due to their complex geometry, extraordinary properties are 

created, such as negative Poisson’s ratio, where the material contracts when compressed and vice 

versa. Figures 1-12 through 1-15 show some metamaterial applications. 

 

Figure 1-12: Auxetic metamaterial application in running shoes. 

 

Figure 1-13: Metamaterial application in aerospace engineering 

(https://matlack.mechanical.illinois.edu/research/655-2/). 

 

 

Figure 1-14: Metamaterial application in optical (https://www.nanowerk.com/what-are-

metamaterials.php). 

 

https://matlack.mechanical.illinois.edu/research/655-2/
https://www.nanowerk.com/what-are-metamaterials.php
https://www.nanowerk.com/what-are-metamaterials.php
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Figure 1-15: Metamaterial application in mechanical engineering 

(https://kineticsnoise.com/esr/vibration-isolation-curb). 

 

Seismic metamaterials are a class of materials that have been developed to withstand the 

destructive forces of earthquakes. These materials are designed with specific properties that allow 

them to absorb and dissipate seismic energy, reducing the damage that can occur during an 

earthquake. Moreover, due to the unique mechanical properties, such as negative Poisson's ratio 

and negative bulk modulus, it can be exploited to manipulate the propagation of seismic waves. 

These materials comprise small building blocks or unit cells that are arranged periodically. Recent 

research has demonstrated that metamaterials can effectively block low-frequency seismic 

vibrations by tailoring the mechanical properties of the metamaterial to the frequency range of the 

incoming seismic wave (Achaoui et al., 2017; Gomez-Leon and Platero, 2013; Shi and Huang, 

2013). In other words, the metamaterial can act as a seismic filter, attenuating the wave's amplitude 

and preventing it from propagating further. This has potential applications in earthquake 

engineering, where the ability to protect buildings and other structures from seismic waves can be 

crucial. One of the key advantages of seismic metamaterials is their ability to manipulate the 

propagation of seismic waves. By carefully controlling how seismic waves travel through a 

material, it is possible to reduce the amplitude of these waves and prevent them from causing 

damage. This is achieved by altering the material's mechanical properties on a small scale, using 

techniques such as micro-structuring or adding small-scale inclusions. The result is a material that 

https://kineticsnoise.com/esr/vibration-isolation-curb
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behaves differently from conventional materials when subjected to seismic forces, with enhanced 

resilience and excellent damage resistance. Metamaterials usage in seismic protection has emerged 

with the first applications in electromagnetics, optics, and acoustics (Achaoui et al., 2017). Seismic 

resistance metamaterials (seismic shields, meta-barriers, or photonic crystals) are metamaterials 

with repeated patterns (periodicity). This periodicity can be in one, two, or three dimensions, as 

shown in Figure 1-16, where each color represents a unique material with unique properties. When 

combined, both materials represent a metamaterial unit cell. 

 

 

Figure 1-16: Seismic resistance metamaterial periodicity. 

 

Figure 1-17 shows a typical 3-dimensional 3-axis periodicity unit cell (3D-3C) made of concrete 

matrix, rubber coating, and steel core.  
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Figure 1-17: Typical 3D-3C unit cell. 

 

Seismic metamaterial can be a combination of two or more unique materials with different sizes. 

This combination, along with periodicity, is capable of manipulating wave energy which leads to 

a significant reduction to complete stop of the wave. This is known as the attenuation zone 

(bandgap). Bandgap is a set of frequencies that cannot propagate through the material, and it exists 

due to the exceptional properties of metamaterials and their periodicity. They can be seen when 

solving the wave equation for a single unit cell and plotting the solution against the wave vector 

(wave number). The solution for the wave vector is known as the dispersion relation (Achaoui et 

al., 2017; Gomez-Leon and Platero, 2013; Shi and Huang, 2013). These bandgaps mainly depend 

on the material shape, size, and mechanical properties. Figure 1-18 shows a typical dispersion 

relation. The grey shaded area is the attenuation zone (bandgap) which has two limits: upper 

bandgap limit (UBGL) and lower bandgap limit (LBGL).  
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Figure 1-18: Typical dispersion relation for metamaterial unit cell. 

 

Figure 1-19 shows a 3-dimensional 2-axis periodicity unit cell (3D-2C) along with the dispersion 

relation and the existing bandgaps in this unit cell. The unit cell is made of rubber matrix and steel 

core, and it has a cubic shape with 2 m side length (a, and h) and matrix thickness (b) of 0.1 m. 

The mechanical properties for rubber and steel are as follows: The modulus of elasticity, Poisson’s 

ratio and density of the steel is considered as 210 GPa, 0.275 and 7890 kg/m3, respectively; while 

those of rubber are 0.14 MPa, 0.463 and 1300 kg/m3, respectively. After solving the wave equation 

for this unit cell, it yields four different bandgaps: the first one is between 4.5-12.5 Hz, the second 

bandgap is 12.7-13.0 Hz, the third is 13.1-14.1 Hz, and finally 14.2-15.3 Hz.  

 

Figure 1-19: Dispersion relation and bandgaps for 3D-2C metamaterial unit cell. 

 

Figure 1-20 shows the concept of meta-barriers to protect a structure from train-induced vibrations. 
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As the train passes, it generates waves ranging from 20-30 Hz; highways and heavy machinery 

generate the same wave frequencies. When the waves hit the building, it causes lateral 

displacement, which may lead to cracks, structural failure, and damage. Metabarriers can be 

engineered to block this range of frequencies. They would be arranged periodically and placed 

between the vibration source and the target building where the wave energy will dissipate, 

protecting the building from damage, as shown in Figures 1-20 and 1-21. In conclusion, meta-

barriers can protect structures, infrastructures (bridges and railways), or sensitive buildings from 

seismic waves. It can be used on a large scale to cover a block, district or a new city by surrounding 

the target structure with metamaterials. Moreover, meta-barriers can be used to protect historical 

structures, sites, and remote sensitive buildings (such as but not limited to nuclear power plants). 

 

Figure 1-20: Protecting a structure from train-induced vibrations using meta-barriers. 
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Figure 1-21: Typical meta-barriers protecting a structure. 

 

1.5. Problem Statement 

Traditional seismic protection techniques have certain limitations. For instance, yielding, overturn, 

and slippage may occur when base isolation is used, in addition to architectural complexities 

(Xiong et al., 2012). Moreover, base isolation systems can be expensive to install and maintain. 

Additionally, while base isolation can reduce the damage a building sustains during an earthquake, 

it does not eliminate the risk and may not be effective in extreme seismic events (Xiong et al., 

2012; Shi et al., 2013). Additionally, Friction dampers can be prone to wear and require regular 

maintenance to ensure their effectiveness. Viscous dampers, on the other hand, are more complex 

and expensive to install than friction dampers. 

The recently proposed meta-barrier designs proved that such techniques could protect structures 

from seismic waves without making any change to the structure. However, many proposed 

techniques were composed of extra-large size unit cells (~10 m), making the design extremely 

challenging. Furthermore, having hollow unit cells makes it difficult to maintain the shape. Finally, 

clamping piles to bedrock might not seem feasible due to the depth at which bedrock is located 
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and the possibility of having a perfect bond between the pile and the bedrock. Moreover, many of 

the proposed designs focused on the attenuation zones of the unit cell itself without any attempt to 

manipulate the unit cell array configuration to widen the bandgap. 

Additionally, some metamaterial assumptions are difficult to implement and use uncommon 

construction materials. In addition, most of the research that has been performed focuses on 

analyzing the soil-meta-structure system in the frequency domain. Therefore, more research is 

needed to fill gaps not addressed in the literature.  

1.6. Objectives and Study Parameters 

This research focuses on blocking waves in the range of destructive seismic waves (0-30 Hz) using 

common construction materials and relatively reasonable size. Moreover, the frequency blocking 

range is manipulated without changing the unit cell design. The objectives of this research are 

summarized as follows: 

1. To develop a practical metamaterial unit cell configuration using common construction 

materials. 

2. To evaluate metamaterial geometrical and mechanical properties and their effects on the 

attenuation zone. 

3. To develop and optimize the unit cell configuration. 

4. To validate the unit cell capability for seismic protection in frequency domain analysis 

and obtain a wide bandgap. 

5. To analyze the performance of meta-materials in the time domain  

The parameters that will be covered in the research are as follow: 
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1. Metamaterial unit cell size and geometry (block, sphere, cylinder, honeycomb, and array 

of unit cells). 

2. Metamaterial unit cell outer layer (matrix) and interior layer (core) properties such as 

density and Young’s modulus. 

3. The number of unit cell layers/materials. 

4. Effects of grading the unit cells on wave propagation 

5. Number of unit cells in grading configuration. 

6. Type of wave (bulk vs. surface) 

This study aims to introduce a new configuration using common construction materials such 

as concrete, steel, and rubber and to increase the attenuation zone as much as possible. To this 

end, unit cells with different shapes are investigated, and the effect of the mechanical properties 

of the matrix and core on the bandgap are evaluated. Furthermore, the unit cell is placed in a 

simplified FEA model and is analyzed to evaluate the performance of grading the design under 

bulk waves. Moreover, the double grading configuration is evaluated when embedded in a 

larger soil medium subjected to low-amplitude harmonic bulk and surface waves, and its 

effects on the response of a single degree of freedom structure (SDOF) are evaluated. Finally, 

the performance of the configuration has been tested in the time domain under three different 

wavelets Ormsby wavelet, Ricker wavelet, and the 1975 Oroville dam earthquake.  
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CHAPTER 2 : LITERATURE REVIEW 

 

This chapter summarizes the proposed seismic- meta-barriers and in-depth details of some of the 

most promising configurations.  

 

2.1. Introduction 

Traditionally, structures are designed to withstand earthquakes using different methods such as but 

not limited to shear walls, moment frames, braced frames, base isolation systems, and structural 

control systems. Such systems are designed to absorb and dampen the earthquake energy by 

shifting the structure's natural frequency by adding bearings to the foundation (Xiang et al., 2012) 

or by changing the structural parameters by adding mass or damping devices (Shi et al., 2013). 

Metamaterials were first implemented in the field of electromagnetics in the 1980s. In the past two 

decades, seismic metamaterials gained the attention of researchers from different areas, and several 

configurations were proposed to resist the most disastrous waves (waves with frequencies between 

0-30 Hz). Metamaterials are artificially engineered materials (i.e., unit cells) that exhibit 

extraordinary properties that cannot be found naturally. Due to these properties, they can block a 

specific range of wave frequencies (bandgap) and protect the structure from waves (John, 1987; 

Sukhovich et al., 2009; cheng et al., 2013; Zhang et al., 2019; Daradkeh et al., 2022). The bandgaps 

can be found by assuming that every two opposite sides of the unit cell are repeated infinitely 

(periodic boundary conditions) using the Floquet-Bloch theory (Achaoui et al., 2017; Gomez-Leon 

and Platero, 2013; Shi and Huang, 2013). The bandgaps depend solely on the unit cell size, shape, 

and material properties (Shi and Hunag, 2013; Huang and Shi, 2013; Zhang et al., 2021). The 
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challenge with the most disastrous waves is that they have very long wavelengths that can extend 

to thousands of meters, depending on the nature of the soil. Such wavelengths can be controlled 

using relatively small-scale metabarriers with local resonance (Khelif et al., 2010; Brule et al., 

2017; Colombi et al., 2016). Shi and Huang (2013), Miniaci et al. (2016), Zhang et al. (2021), and 

Daradkeh et al. (2022) proposed 3D large-scale metabarriers designs and tested them for blocking 

ultra-low-frequency waves. 

Ultra-low-frequency blocking has been developed using circular piles clamped to deep bedrock 

layers (Chen et al., 2019). Colombi et al. (2016) and Liu et al. (2019) investigated resonance 

metamaterials such as natural forests in uniform and random configurations and concluded that 

they could attenuate low-frequency waves. Several other designs have emerged recently, such as 

but not limited to iron spheres (Achaoui et al., 2017), cubes, hollow structures, and circular piles 

(Huang and Shi, 2013; Miniaci et al., 2016; Chen et al., 2019; and Zeng et al., 2019). Shi and 

Hunag (2013) were the first to propose a 3D-3C unit cell made of concrete matrix, rubber coating, 

and steel core. The shape is a cube with a matrix size of 1.2 m, a thickness of 0.2 m, and a core 

size of 0.8 m. Figure 2-1 shows the proposed unit cell, and Table 2-1 shows the mechanical 

properties of the used materials. 

 

Figure 2-1: 3D-3C unit cell (Shi and Huang, 2013). 



 

 

24 

  

 

Table 2-1: Material properties of 3D-3C (Shi and Huang, 2013). 

Material Young’s Modulus E (Pa) Poisson’s Ratio (v) Density 𝜌 (kg/m3) 

Concrete 30.0 × 109 0.200 2500 

Rubber 1.37 × 105 0.463 1300 

Steel 210 × 109 0.275 7890 
 

They investigated the existence of bandgap in this unit cell using periodicity, Floquet-Bloch 

Theorem (Madelung, 1978), in which every two opposite sides of the unit cell, along the X, Y, and 

Z-axis are infinitely repeated, that can be done by equating the displacement on one side to the 

displacement on the parallel side on the unit cell.  

Thereafter, the governing equation (wave equation) can be solved using the First Irreducible 

Brillouin Zone (Brillouin, 1930), which is symmetry regions on the body of the unit cell. The 

solution of the wave equation is repeated along each one of these symmetry regions. Therefore, 

solving the wave equation using only the First Irreducible Brillouin Zone (FIBZ) is sufficient. 

Results showed that the proposed unit cell could block frequencies in the 8.09-14.14 Hz range, as 

shown in Figure 2-2. 

 

Figure 2-2: Dispersion relation of 3D-3C (Shi and Huang, 2013). 
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Colombi et al. (2016) investigated the potential of natural forests to act as metamaterial and block 

seismic waves due to local resonance. They used FEA to simulate a natural forest with various tree 

heights and radii distributed at different spaces, as shown in Figure 2-3. 

 

Figure 2-3: FEA of natural forests in seismic protection (Colombi et al., 2016). 

 

They applied low-harmonic displacement and recorded the displacement from different 

frequencies at different locations along the model. They found that natural forests can block 

frequencies in 25-40 Hz and 90-110 Hz. Figure 2-4 Shows the dispersion relation of the 

investigated natural forest. 

 

Figure 2-4: Dispersion relation of the investigated natural forest (Colombi et al., 2016). 
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Liu et al. (2019) studied the bandgap of 2D-2C using 2D FEA simulations and included the effects 

of vertical loads imposed on the foundations by the upper structure. The size of the proposed unit 

cell was 2m with three materials layers concrete, rubber, and steel. They found out that the 

attenuation zones are affected by any additional loads imposed on the metabarriers. 

More recently, Zhang et al. (2021) proposed a unit cell with different configurations of a cube 

matrix with hollow cross core, solid cross core, hollow cube core, and solid cube core. The unit 

cell size is 10 m, and steel was the core material surrounded by soil. Figure 2-5 shows the proposed 

unit cells and each corresponding dispersion relation where the grey shaded areas represent the 

bandgap of each configuration. The widest bandgap was between 6.2-15.8 Hz when the unit cell 

was a 10 m cube with a solid steel core. 

 

Figure 2-5: Types of proposed unit cells and their corresponding dispersion relation (Zhang et 

al., 2021). 
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2.2. Literature Progress 

Multiple studies proposed different unit cell designs and investigated unit cell parameters and 

their effects on the attenuation zones. Table 2-2 shows the literature progress in seismic 

metamaterials, including proposed unit cell description, size, materials used, and the obtained 

bandgap. 

Table 2-2: Summary of literature progress in seismic resistance metamaterials. 

Year Author 
Setup 

Description 

Material 

Used 
Lattice Width Band Gap 

2011 Xiong et al. 

2D Concrete 

lattice with 

Rubber ring 

in the middle 

stacked 

Concrete and 

rubber 
0.4m 14.8-24.3 Hz 

2013 Cheng et al. 

Cube with 

cylinder 

rubber and 

steel core 

Concrete, 

rubber, and 

steel 

2m cell, 0.2 

coating 

thickness, 

and 0.7 core 

radius 

7.22, 10.10Hz 

2012 Xiang et al. 

1D Structure 

along the Z-

direction 

Concrete and 

rubber 
0.2m 

6.6–15.0Hz 

17.8–30.0Hz 

31.6–45.0Hz 

46.1–60Hz 

25.0 to 

57.2Hz 

67.9–114.3Hz 

2013 Shi et al. Three cubes 

Concrete, 

rubber, and 

steel 

1.2m 8.9-14.14 Hz 

2016 Miniaci et al. 

Block cell 

and cross and 

cylinder core 

Soil, rubber, 

and 

concrete/steel 

10m cross 2-3 Hz cross 

10m hollow 

cylinder 

5.5-6.5 Hz 

hollow 

cylinder 

2m coated 

cylinder 

3.5-4Hz 

coated 

cylinder 

2017 
Achaoui et 

al. 
Circular piles Steel 0.15 to 0.6 m 0-30 Hz 
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2017 Du et al. 

1. Hollow 

cylinder core 

Soil, 

concrete, and 

steel 

10m 

1. 10-12Hz 

2. hollow 

rectangular  
2. 9-20Hz 

3. hollow 

square block 

core 

3. 8-24Hz 

4. blocks 4. 8-23Hz 

2018 Geng et al. 

1D Structure 

along the X-

direction 

Concrete and 

rubber 
0.2m 

9-15Hz 

20-30Hz 

31-45Hz 

2018 Du et al. 

Composite 

steel H-

section 

Steel 2.5m 8-14 Hz 

2019 Liu et al. 2D squares 

Concrete, 

rubber, and 

steel 

2m cell, 0.2 

coating 

thickness, 

and one core 

radius 

4.69-7.49 Hz 

2019 Chang et al. 

1. square cell, 

rectangular 

core 

Concrete and 

steel 
0.8m 

multiple band 

gaps with the 

lowest limit is 

250Hz 

2. square cell, 

circular core 

3. square cell 

with star-

shaped core 

2019 Xu et al. 
Honeycomb 

shape 
- - 

0.077 to 

0.174 Hz 

2020 Li et al. 
Square and 

cylinder 

Soil and 

concrete/steel 
0.3m 

26–29Hz 

concrete 

0–4.5Hz steel 

2021 Miniaci et al. Hollow Cross Soil 5m 2.2 to 2.7 Hz 

2021 Zhang et al. Blocks Steel and soil 10m 6-16 Hz 

2021 (C)  Fiore et al. 

Circular Steel 

Connected 

with concrete 

plate via 

rubber 

bearings 

concrete, 

rubber, and 

steel 

- 2.8-5.8 Hz 

2022 Checn et al. 

Square with a 

cut along the 

sides 

Soil, rubber, 

and steel 

Varies 

(lowest 2.5m) 

Varies 

(Highest 7.8-

20.6 Hz) 
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2021 
Muhammad 

et al. 

1. Concrete 

block and 

rubber 

Concrete, 

rubber, and 

steel 

1.5m 

8-18 Hz 

 2. Steel 

cylinder 

3-18 Hz 

(Descending 

configuration) 

  

3-18 Hz 

(Ascending 

configuration) 
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CHAPTER 3 : BANDGAP THEORY, METHODOLOGY, AND 

PARAMETRIC STUDIES 

 

This chapter presents the bandgap theory, periodic boundary condition (PBC), the first irreducible 

Brillouin zone (FIBZ), and the methodology for numerically solving the theoretical problem. 

Furthermore, the proposed plan for the parametric study performed in this research is presented.  

 

3.1. Theories and Computational Methods 

This section will present the bandgap theory, numerical solution, PBC, FIBZ, and structure natural 

frequency.  

To have a clear picture of the attenuation zones, the following are assumed: 

1. All materials are assumed to be linear elastic, and homogenous. 

2. The layers of the unit cells are perfectly bonded. 

3. Each unit cell is assumed to be infinitely repeated (periodicity). 

 

3.1.1. Bandgap Theory 

To evaluate the bandgap of any material, considering an elastic wave along X-axis, the equation 

of motion (Equation 3-1) can be utilized together with the periodicity to produce a proper solution. 

Equation 3-1 is derived from Newton’s second law of motion. 

𝜕2𝑢𝑖

𝜕𝑡2
= 𝐶𝑖

2
𝜕2𝑢𝑖

𝜕𝑥2
 Eq. 3-1 

Where i is the layer number, 𝑢𝑖  is the displacement in each layer, and 𝐶𝑖 is the wave velocity in 

each layer. To simplify the wave equation solution, the unit cell is assumed to consist of two 
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materials A and B. Furthermore, the unit cell is repeated in one direction (Along the X-axis), as 

shown in Figure 3-1. a1 and a2 are the size of each layer of the unit cell, and the unit cell size is 

a1+a2. The wave is assumed to be perpendicular to the Y-Z plane and along the X-axis.  

 

Figure 3-1: Used unit cell for numerical evaluation (Geng et al., 2018). 

 

Equation of motion can be written in the form shown in Equation 3-1. This equation was 

introduced in the early 1800s.The wave velocity for longitudinal waves (P-wave) is given by 

Equation 3-2, and for transverse waves (S-waves) is given by Equation 3-3, where 𝜆, 𝜇, and 𝜌 are 

the two Lamé constants and density, respectively. 

𝐶𝑖 = √
𝜆𝑖 + 2𝜇𝑖

𝜌𝑖
 Eq. 3-2 

𝐶𝑖 = √
𝜇𝑖

𝜌𝑖
 Eq.3-3 

To solve the equation of motion (Equation 3-1), the forward and backward propagating waves 

must be added in each layer. Hence, the solution becomes as shown in Equation 3-4. 

𝑢𝑖(𝑥, 𝑡) = 𝐴𝑖𝑒
𝑗(𝑘𝑖𝑥−𝜔𝑡) + 𝐵𝑖𝑒

𝑗(−𝑘𝑖𝑥−𝜔𝑡) Eq. 3-4 
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Where 𝜔 is the angular frequency, 𝑗 is the imaginary unit, 𝑘𝑖 is the wave number = 
𝜔

𝐶𝑖
, and Ai, Bi 

are the displacements at each layer, noting that each layer has two displacements, A1, A2, and B1, 

B2. Thereafter, to find a solution for Equation 3-4, the Floquet-Bloch theory must be implemented 

using periodicity (Equation 3-5). 

𝑢1(0, 𝑡) = 𝑢2(0, 𝑡) Eq. 3-5 

Equation 3-5 reflects that the displacements on each two opposite sides of each layer are equal. 

Thereafter, Equation 3-5 can be written in steady-state wave expression with the wave number to 

Equation 3-6. 

𝑢𝑖(𝑥, 𝑡) = 𝑈𝑖(𝑥)𝑒𝑗(𝑘𝑥−𝜔𝑡) Eq. 3-6 

Where 𝑈𝑖(𝑥) =  𝐴𝑖𝑒
𝑗(𝑘𝑡−𝑘)𝑥 + 𝐵𝑖𝑒

𝑗(−𝑘𝑡−𝑘)𝑥 represent the displacement on one side of the unit 

cell, considering 1D periodicity with a lattice constant = a. Equation 3-7 can be written using 

Floquet-Bloch Theory. With the same approach described above, the equation of motion can be 

written in terms of stress using the Floquet-Bloch theory, as shown in Equation 3-8.  

𝑈1(−𝑎1) = 𝑈2(𝑎2) Eq. 3-7 

∑  
1
(−𝑎1) = ∑  

2
(𝑎2) 

Eq. 3-8 

Thereafter, displacement and stress components will be assembled into matrix form, including the 

forward and backward propagating waves. Equation 3-9 can be written, which is a linear equation 

of a homogenous system. 

[
 
 
 

1 1 2 2
𝜌1 𝐶1 −𝜌1 𝐶1 𝜌2 𝐶2 −𝜌2 𝐶2

𝑒−𝑗(𝑘1−𝑘)𝑎1 𝑒𝑗(𝑘1+𝑘)𝑎1 𝑒𝑗(𝑘2−𝑘)𝑎2 𝑒−𝑗(𝑘2+𝑘)𝑎2

𝜌1 𝐶1𝑒
−𝑗(𝑘1−𝑘)𝑎1 −𝜌1 𝐶1𝑒

𝑗(𝑘1+𝑘)𝑎1 𝜌2 𝐶2𝑒
𝑗(𝑘2−𝑘)𝑎2 −𝜌2 𝐶2𝑒

−𝑗(𝑘2+𝑘)𝑎2]
 
 
 
[

𝐴1

𝐵1

−𝐴2

−𝐵2

]

= 0 

Eq. 3-9 
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To solve Equation 3-9, the determinant of the coefficient matrix must equal zero. Otherwise, the 

solution will include trivial solution sets. Equating the determinant to zero, the dispersion relation 

for the unit cell can be obtained (Equation 3-10). 

cos(𝑘𝑎) = 𝑐𝑜𝑠
𝜔𝑎1

𝐶1
𝑐𝑜𝑠

𝜔𝑎2

𝐶2
− 0.5 𝑠𝑖𝑛

𝜔𝑎1

𝐶1
𝑠𝑖𝑛

𝜔𝑎2

𝐶2
(
𝜌1𝐶1

𝜌2𝐶2
+

𝜌2𝐶2

𝜌1𝐶1
) Eq. 3-10 

Since cos(𝑘𝑎) equals or less than 1, Equation 3-10 can be solved when the right-hand part of the 

equation is in the range of (-1 to 1). The bandgaps of the unit cell are the values of frequency (𝜔) 

and wave vector (k) when cos(𝒌𝑎) falls outside the range of (-1 to 1). The combination of 

frequency and wave vectors when cos(𝒌𝑎) falls in the range of (-1 to 1) is known as the dispersion 

relation. When the values are plotted, gaps will be present (Solutions to Equation 3-10 when 

cos(𝒌𝑎) is outside the range (-1 to 1)); these gaps are a range of frequencies that cannot propagate 

through the unit cell (attenuation zones or bandgaps). When individual material is considered, and 

the bandgap equation is solved,  𝐶1 = 𝐶2 and 𝜌1 = 𝜌2, then by solving Equation 3-10 for any value 

of k, the frequency 𝜔 can be found. Therefore, for homogenous material, there will be no bandgap. 

Generally, the dispersion equation can be solved to find the values of  𝜔 𝑎𝑛𝑑 𝑘. However, the 

wave vector k is unlimited and can be any number. Therefore, it is sufficient to solve the dispersion 

equation along the FIBZ (Kittel, 2005; and Xiang et al., 2012). 

 

3.1.2. First Irreducible Brillouin Zone 

As introduced previously, the FIBZ is sufficient to solve the dispersion relation and find the 

attenuation zone of a unit cell. After the FIBZ, the dispersion relation will keep repeated infinitely. 

To find the FIBZ on any unit cell geometry, it is required to find the symmetry points that define 

the FIBZ (Brillouin, 1930). 
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Figure 3-2 shows the symmetry points for a 3D cube unit cell that defines the FIBZ. Where points 

X, M, R, and Γ are the bounds that define the FIBZ. 

 

Figure 3-2: First irreducible Brillouin zone. 

 

Table 3-1 shows the coordinates of the symmetry points on the FIBZ. 

Table 3-1: Coordinates of the symmetry points along the FIBZ. 

Point Coordinates (u, v, w) Wave vector (kx, ky, kz) 

𝛤 (0, 0, 0) (0, 0, 0) 

X (1, 0, 0) (
𝜋

𝑎
, 0, 0) 

M (1, 1, 0) (
𝜋

𝑎
,
𝜋

𝑎
, 0) 

R (1, 1, 1) (
𝜋

𝑎
,
𝜋

𝑎
,
𝜋

𝑎
 ) 

 

where a is the length of the unit cell in the respective axis (lattice constant). Thereafter, the lengths 

of the vectors that represent the outer surface of the FIBZ can be calculated, 𝑅𝑀⃗⃗⃗⃗ ⃗⃗ = 1,𝑀Γ⃗⃗⃗⃗⃗⃗ =  √2 

ΓX⃗⃗⃗⃗ = 1, 𝑎𝑛𝑑 𝑋𝑅⃗⃗⃗⃗  ⃗ =  √2. 
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Another solution is calculating the reciprocal base vectors as shown in Equations 3-11, 3-12, and 

3-13.  

𝑏1 = 2𝜋
𝑅2 × 𝑅3

𝑅1 . (𝑅2 × 𝑅3) 
 Eq. 3-11 

𝑏2 = 2𝜋
𝑅3 × 𝑅1

𝑅1 . (𝑅2 × 𝑅3) 
 

Eq. 3-12 

𝑏3 = 2𝜋
𝑅1 × 𝑅2

𝑅1 . (𝑅2 × 𝑅3) 
 

Eq. 3-13 

 

Where R1 = (a, 0, 0), R2 = (0, a, 0), and R3 = (0, 0, a) are the unit vector along each axis, and a is 

the lattice constant. Solving equations 3-11 through 3-13 will yield the reciprocal base vectors 

that will be used to find the components of the wave vector.  

𝑏1 =
2𝜋

𝑎 
(1,0,0), 𝑏2 =

2𝜋

𝑎 
(0,1,0), 𝑎𝑛𝑑 𝑏3 =

2𝜋

𝑎 
(0,0,1) 

The wave vector k can be calculated using Equation 3-14. 

𝒌 = 𝑐1𝑘𝑥 + 𝑐2𝑘𝑦 + 𝑐3𝑘𝑧 Eq. 3-14 

Where c1, c2, and c3 are wave number constants equal to half the reciprocal base vectors. Finally, 

to solve the dispersion equation (Equation 3-10), the FIBZ will be limited to the wave vectors 

𝑅𝑀⃗⃗⃗⃗ ⃗⃗ ,𝑀Γ⃗⃗⃗⃗⃗⃗ , ΓX⃗⃗⃗⃗ , 𝑎𝑛𝑑 𝑋𝑅⃗⃗⃗⃗  ⃗. As a result, the wave vector k would range from 0 to 4.414. The wave vector 

components can be linearly interpolated, as shown in Figures 3-3. 
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Figure 3-3: Relationship between wave vector value and symmetry points along FIBZ. 

 

For 3-dimensional periodic metamaterial, the dispersion relation can be written considering that 

the displacement, stress, and wave vector have three components, X, Y, and Z, and the same 

approach in section 3.1.1 as shown in Equation 3-15 (Mei et al., 2003).  

𝐸
2(1+𝑣)

 𝛻
2
 𝒖+  

𝐸
2(1+𝑣)(1−2𝑣)

 𝛻(𝛻.𝒖) =  −𝜌𝜔2𝒖 Eq. 3-15 

Where u: displacement vector, 𝜔: angular frequency, and E, v, and ρ are the material properties, 

the periodic boundary conditions can be written in Equation 3-16 (Gomez-Leon et al., 2013). 
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𝑢𝑖(𝒓 + 𝒂) =  𝑒𝑖𝒌.𝒂 𝑢𝑖(𝒓) Eq. 3-16 

where r: position vector (x, y, z) along the boundary of the unit cell, k: Bloch wave vector (𝑘𝑥, 𝑘𝑦, 

𝑘𝑧) which is limited to the first Brillouin zone, and a: lattice translation vector. Combining 

Equations 3-15 and 3-16, considering that each variable has three components in each axis, the 

dispersion equation can be written as Equation 3-17, which is an eigenfrequency problem. 

(𝑲 − 𝜔2𝑴)𝒖 = 0 Eq. 3-17 

where u: displacement vector at all nodes, K: stiffness matrix, and M: mass matrix of the unit cell. 

Manually solving this equation will take significant time since the unit cell has to be discretized 

(meshed) into smaller pieces, and every two opposite nodes must be related using periodic 

conditions. Therefore, employment of FEA programs such as but not limited to COMSOL 

Multiphysics, and ABAQUS/CAE will help numerically solve such a system of equations.   

 

3.1.3. Natural Frequency of the Structure 

The natural frequency of a structure (resonance frequency) is the frequency at which the structure 

oscillates indefinitely in the absence of any driving forces under the idealized condition of no 

damping (Paz et al. 2004). The natural frequency depends on the mass and the stiffness distributed 

within the structure. When the structure is subjected to external forces, the structure tends to 

amplify the response as the frequency moves towards the natural frequency, and the structure tends 

to de-amplify the displacement as the frequency moves away from the natural frequency. The 

structure vibration response can be significant at any small force or displacement at the natural 

frequency. The natural frequency of a structure can be calculated using Equation 3-18.     
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𝑓 = √
𝐾

𝑀
×

1

2𝜋
 Eq. 3-18 

where f, K and M are the natural frequency (Hz), stiffness of structure (N/m), and mass (kg) of the 

structure. The governing equation of motion must be employed to calculate the 

displacement/acceleration transmission from the foundation to the top of the structure assuming 

zero damping (Equation 3-19). 

𝑇𝑟 = |
1

1 − 𝑟2
| Eq. 3-19 

where r is the amplification factor and is given by equation 3-20. 

𝑟 =  
2𝜋𝑓

𝜔𝑛
 Eq. 3-20 

where f is the excitation frequency, and 𝜔𝑛 is the natural frequency rad/sec. 

3.2. Methodology of Solving Dispersion Equation (Eigenfrequency Problem) 

This section presents the methodology used to solve the dispersion equation (Equation 3-17) to 

find the dispersion relation of the proposed unit cell. As explained in section 3.1, to find the 

dispersion relation of a unit cell, the governing wave equation must be established along with the 

periodic pattern of the unit cell. The resulting equation (Equation 3-10, or Equation 3-17) is then 

solved to find the frequency (𝜔) and wave vector (k), which represent the dispersion relation of a 

unit cell. 

Since each term in the equation (u: displacement vector at all nodes, K: stiffness matrix, and M: 

mass matrix of the unit cell) has three different components, and every two opposite points on the 

unit cell must be related through displacement to achieve the periodicity, it becomes 
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computationally challenging to solve the dispersion equation manually, in addition to the time 

required to assemble the matrices. 

To this end, the finite element analyses (FEA) method will be used to solve the equation. COMOSL 

Multiphysics was selected to perform the numerical solution due to its ability to solve elastic wave 

equations and because the periodicity conditions can be automatically defined without manually 

identifying and matching every two opposite nodes on the surfaces of the unit cell. The first step 

in solving the dispersion equation is to verify the methodology used. To this end, two-unit cells 

proposed in the literature (Shi and Huang, 2013; and Chen et al., 2019) were selected to be 

regenerated, and the dispersion relation was verified against the published work.  

The first unit cell was a 3D-3C unit cell, proposed by Shi and Huang, 2013, where the shape of the 

unit cell is a cube matrix, cube coating, and cube core, as shown in Figure 3-4. 

 

Figure 3-4: First 3D-3C unit cell used for verification. 
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The size of the matrix and coating side is 1.2 m and 0.2 m thickness; the coating side size is 1.0 m 

and 0.2 m thickness, and the core side size is 0.8 m. Periodic boundary conditions (PBC) were 

assigned to every two opposite sides along the unit cell, which translates to that the displacement 

on one surface of the unit cell equals the displacement on the parallel surface or that the unit cell 

is infinitely repeated in all directions as shown in Figure 3-5. It is worth mentioning that the PBC 

is only required to be assigned to the outer surfaces of the matrix. 

 

Figure 3-5: Assigned periodic boundary conditions along the unit cell - 1. 

 

The unit cell materials were concrete, rubber, and steel for the matrix, coating, and core, 

respectively. Material properties are shown in Table 3-2. 
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Table 3-2: Material properties of the verified unit cell. 

Material Young’s Modulus E (Pa) Poisson’s Ratio (v) Density 𝜌 (kg/m3) 

Concrete 30.0 × 109 0.200 2500 

Rubber 1.37 × 105 0.463 1300 

Steel 210 × 109 0.275 7890 

 

 

In FEA, discretizing the unit cell and meshing it is an essential part, as it significantly affects the 

accuracy of the results. Therefore, quadratic Lagrange discretization with 3D tetrahedron elements 

was used to employ more than ten nodes per smallest wavelength (Moser et al., 1999; Yan et al., 

2015; and Colquitt et al., 2017). The maximum mesh size can be calculated using Equation 3-21. 

In this dissertation, a typical mesh size used is 0.20m. The number of elements varies by the model 

size, however, an average of 225,000 elements were used in a typical model. ;.   

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑒𝑠ℎ 𝑆𝑖𝑧𝑒 =  
𝜆𝑠

10
=

𝑣/𝑓𝑚
10

 Eq. 3-21 

Where 𝜆𝑠 is the smallest wavelength = shear wave velocity (v) / maximum frequency (fm). 

The solution to the dispersion equation can be found using the FIBZ, where the wave vector k is 

known (0 - 4.414), as explained in section 3.1.2. Thereafter, the FEA software will assemble the 

matrices and try to find a real solution at each wave vector k value (Sweeping wave vector values 

to find a solution). 

Figure 3-6 shows the result from Shi and Huang, 2013, against the reproduced work (Current 

work). The resultant bandgap was identical in the reproduced work to the published work, with a 

slight variation in the smoothness of the curve due to some scaling along the wave vector that the 

authors implemented. 
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Figure 3-6: Verification of dispersion relation solution against published work - 1. 

Furthermore, the work of Chen et al. (2019) was reproduced with the same approach. The 

difference is that the unit cell was made of a concrete pile core surrounded by a soil matrix. The 

radius of the pile is 1.2 m, the matrix side size is 3m, and an overall height of 6 m. The PBC was 

only assigned on the two vertical surfaces, as shown in Figure 3-7. 

 

Figure 3-7: Assigned periodic boundary conditions along the unit cell - 2. 
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Figure 3-6 shows the results reported by Chen et al. (2019) against the reproduced work for 

methodological verification, where the results were identical. Furthermore, Figure 3-6 shows the 

global vibrational shapes at the symmetry points on the bandgap. The global vibrational modes 

correspond to guided lamb waves. Those modes are examined to prove that the destructive 

interferences are responsible for wave attenuation (Martincek, 1995; Zeng et al., 2019; and Zhang 

et al., 2021). The relative displacement (modal values obtained by vibrational modes) is maximum 

at the vertical edges of the unit cell and minimal elsewhere, while at the LBGL, the relative 

displacement is maximum at the corners and extends along the horizontal edges of the unit cell. 

 

Figure 3-8: Verification of dispersion relation solution against published work - 2. 
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3.3. Methodology for Identifying Bandgaps in the Frequency Domain-

Reduced Model 

After the unit cell is finalized, verifying that the bandgap can block the wave is necessary. In other 

words, the bandgap exists when limited number of unit cells are employed. To this end, a 

simplified FEA has been developed, which has been widely used in the literature (Chen et al., 

2019; Zhang et al., 2021). Figure 3-9 shows a schematic of the developed simplified dynamic 

response model. 

 

Figure 3-9: Simplified dynamic response model. 

The benefit of using such a reduced model is to reduce the analysis cost and run as many models 

as possible with reduced cost. Although such a model is considered an ideal case, as the waves 

might travel underneath the unit cells, it will be sufficient to compare several unit cell 

configurations in a short period, and the most successful model will be evaluated using the full 

frequency domain mode (Section 3.4.). The model consists of two homogenous soils divided into 

two parts, homogenous soil and perfectly matched layers (PML). Both parts will use the same 

material (soft sand) with the same length, width, and depth; the only difference is the mesh type. 

Unit cells are arranged at the center of the soil medium with different configurations so that the 

number of cells in the X-direction represents the periodic condition in that direction. 
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Furthermore, PBC was assigned at the vertical edges of the model (in the out-of-plane direction). 

Quadratic Lagrange discretization with 3D tetrahedron elements was used to employ more than 

ten nodes per smallest wavelength (Moser et al., 1999; Yan et al., 2015; and Colquitt et al., 2017). 

The maximum mesh size can be calculated using Equation 3-22. Figure 3-10 shows the model 

mesh with an average of 0.3m maximum size, resulting in a total number of 190,000 elements.  

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑒𝑠ℎ 𝑆𝑖𝑧𝑒 =  
𝜆𝑠

10
=

𝑣/𝑓𝑚
10

 Eq. 3-22 

Where 𝜆𝑠 is the smallest wavelength = shear wave velocity (v) / maximum frequency (fm). 

 

Figure 3-10: Dynamic response model mesh. 

 

Low-amplitude harmonic displacement is applied at the interface between the homogeneous soil 

and the PML. Two receiver points are defined in the mode to determine the transmission of the 

unit cell configurations. Receiver 1 (input node) records the input energy, displacement, velocity, 
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or acceleration of the seismic waves, and receiver 2 (output node) records the transmitted 

displacement, energy, velocity, or acceleration through the unit cell. Thereafter, the transmission 

can be calculated using Equation 3-23. 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑑𝐵) = 20 𝑥 𝑙𝑜𝑔(
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
) Eq. 3-23 

where input and output can be energy, displacement, velocity, or acceleration at the two receiver 

points. Equation 3-15 is the governing equation along with the Floquet-Bloch periodic conditions 

(Equation 3-16). In COMSOL Multiphysics, there are two options for wave equations boundary 

conditions: low-reflecting boundaries (LRB) and perfectly matched layers (PML). Both conditions 

can absorb the incoming waves and prevent unnecessary wave reflection from the boundaries. 

PML is an imaginary boundary with a thickness that extends depending on the wavelength 

(COMSOL documentation). For instance, if the frequency is 1 Hz, the physical depth of the PML 

would remain constant; however, the scaling factor equals the wavelength that extends the depth 

of the PML to that wavelength. PML allows the wave to propagate within its layers; as the waves 

propagate, they decay and disappear due to the density of the PML mesh in the first layers 

preventing it from reaching the edge and reflecting back to the domain. 

LRB serves the same purpose as the PML. However, LRB takes the material properties as defined 

and creates a perfect impedance match for pressure and shear waves. LRB effectiveness depends 

on the direction of the incoming waves, and they work best when the waves are perpendicular to 

the LRB. LRB uses damping to prevent any unnecessary wave reflection from the FEA boundaries. 

To verify the dynamic response methodology used in this research, it is necessary to validate the 

results with existing published work. To this end, the work of Zhang et al. (2021), has been 

reproduced using the methodology explained above. 
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Figure 3-11 shows the selected unit cell by the authors where the unit cell is 2D-2D with soil 

matrix and steel core and a size of 10 m. The modulus of elasticity, density and Poisson’s ratio for 

the soil was considered as 30 MPa, 1800 kg/m3 and 0.3, respectively; while those of steel are  , 

210 × GPa, , 7850 kg/m3, and 0.3, respectively. 

 

Figure 3-11: The unit cell from the literature (Zhang et al., 2021) used for verification of the 

reduced model methodology. 

 

Thereafter, the dynamic response (Transmission curve) is obtained using the methodology 

explained above. Figure 3-12 shows the dynamic response (Displacement response) at 9 Hz taken 

from the literature and the reproduced work, which shows a great match between the literature and 

the reproduced work. Furthermore, Figure 3-13 shows the published and reproduced work 

transmission, which shows a great match with the published work, and therefore the methodology 

proposed in the section is valid and can be used for further development of the unit cell 

configurations. 
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Figure 3-12: Verification of dynamic response of the soil medium at 9 Hz frequency. 

 

 

Figure 3-13: Verification of transmission of the proposed methodology. 

 

It is worth mentioning that the transmission is obtained by recording the incoming and outgoing 

wave energy, displacement, velocity, or acceleration at receiver points 1 and 2. Using Equation 3-

22, the transmission can be found at each frequency. 
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3.4. Methodology for Identifying Bandgaps in the Frequency Domain-Full 

Model 

In a similar manner to section 3.3., The dynamic response of a structure can be evaluated in FEA 

using a large soil medium where the unit cells are embedded in this medium. It is also necessary 

to evaluate the performance of unit cell configuration in such a large model since the unit cells will 

eventually be buried and embedded within the soil. 

Figure 3-14 shows the full model for the analyses in the frequency domain, where the model 

consists of a large soil medium surrounded by PML on two vertical sides and at the bottom. 

Additionally, LRBs were assigned to the external interfaces of the PML to ensure that no waves 

were reflected to the medium from the boundaries. The unit cells are arranged and embedded in 

the soil, and two receiver points are assigned to capture the incoming and outgoing energy, 

displacement, velocity, or acceleration.  

 

Figure 3-14: Dynamic response full model. 
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PBC was assigned to the vertical surfaces of the soil medium and the unit cells along the Y-axis. 

The dimensions and size of the unit cell were related to the lattice constant (a) of the unit cell, 

where the length of the model, the thickness out of plane and height of is 48a, and 16a, respectively. 

The maximum wavelength for the selected soil is 679 m at frequency of 0.1 Hz. However, the 

wavelength significantly decreases to 67.9 m at 1 Hz. Since the ultra-low frequencies (0.1-1 Hz) 

are not the main focal point of this dissertation, 48a soil size is sufficient for the waves to propagate 

through the soil. The unit cells are arranged and placed at the center of the medium at a distance 

of 16a away from the vibration source. Figure 3-15 shows the dimensions and configuration of the 

full model used in the frequency domain analyses. 

 

 

Figure 3-15: Dimensions and configurations of the full-scale dynamic response model. 

 

The PML thickness is set as a. However, the PML defined thickness does not play a role in the 

frequency domain analyses due to the stretching factor assigned, so that the formulation will 

include a thickness equal to the wavelength of the studied frequency. The wave is applied as a low-
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amplitude harmonic displacement on the edge between the homogenous soil and the PML at the 

left side of the model to generate surface waves and applied at the interface between the 

homogenous soil and the PML to the left side of the model to generate compressional waves. 

Like the reduced model, quadratic Lagrange discretization with 3D tetrahedron elements was used 

to employ more than ten nodes per smallest wavelength (Moser et al., 1999; Yan et al., 2015; and 

Colquitt et al., 2017). The maximum mesh size can be calculated using Equation 3-24. Figure 3-

15 shows the model mesh. The shortest wavelength is 2.26 m at 30 Hz and the average used mesh 

size is 0.25 m, which allows each frequency to propagate through at least 9 elements.    

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑒𝑠ℎ 𝑆𝑖𝑧𝑒 =  
𝜆𝑠

10
=

𝑣/𝑓𝑚
10

 Eq. 3-24 

where 𝜆𝑠 is the smallest wavelength = shear wave velocity (v) / maximum frequency (fm). 

 

Figure 3-16: Mesh of the full-scale dynamic response analyses. 
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Finally, the transmission between receivers 1 and 2 will be used to evaluate the performance of 

the final selected unit cell configurations (Equation 3-23). 

 

3.5. Methodology of Evaluating the Performance of the Unit Cells in the Time 

Domain 

Finally, time domain analysis is the final evaluation step to ensure that the metabarriers can 

attenuate seismic waves. To this end, a larger soil medium was developed, as shown in Figure 3-

17. The model included a single degree of freedom structure (SDOF) to evaluate the peak 

resonance frequency. The length of the soil medium is 75a, where a is the lattice constant, depth 

of a, and height of 35a. the SDOF is placed at a distance of 35a. The maximum wavelength for the 

selected soil is 679 m at frequency of 0.1 Hz. However, the wavelength significantly decreases to 

67.9 m at 1 Hz. Since the ultra-low frequencies (0.1-1 Hz) are not the main focal point of this 

dissertation, 48a soil size is sufficient for the waves to propagate through the soil. The wave source 

was applied as vertical low-amplitude displacement at a distance of 𝜆𝑠 : the smallest wavelength 

of the applied frequencies. 
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Figure 3-17: Time domain full-scale model. 

 

Free tetrahedral elements were used to mesh the model with maximum mesh size as shown in 

Equations 3-25, 3-26, and 3-27 

Max mesh size = 
𝜆𝑠

4
=  

𝐶𝑠

4𝑓𝑚
 Eq. 3-25 

Shear wave speed, 𝐶𝑠 =  √
𝐺

𝜌
 

Eq. 3-26 

Time step size =   
1

60𝑓𝑚
 Eq. 3-27 

Where 𝜆𝑠 is the minimum wavelength, 𝐶𝑠 is the lowest shear wave speed, and 𝑓𝑚 is the highest 

frequency. Such mesh and time step sizes are used to ensure a minimum of 4 elements per 

wavelength and that no frequency is skipped at any given time step. The literature employs and 

recommends such limitations (Palermo et al., 2018; Muhammad et al., 2021; and Maheshwari and 

Rajagopal, 2022). LRB is applied at the soil medium boundaries to prevent wave reflection since 

PML stretching factor is not implemented in the formulation of FEA in the time domain and for 
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the PML to be effective, its physical length must be the same as the longest wavelength which 

makes the analysis inefficient, if implemented. 

To evaluate the unit cell configurations capabilities, three different time histories were used as 

wave sources as follows: 

1. Ormsby wavelet is given by Equation 3-28, and it can be used to generate multiple 

frequencies in a short time. It is defined by four frequencies: Low cut-off frequency, low 

passing frequency, high passing frequency, and high cut-off frequency. Figure 3-18 shows 

the Ormsby wavelet amplitude, and the Fourier transform functions.   

Ormsby Wavelet = 
𝜋𝑓4

2

𝑓4−𝑓3
𝑠𝑖𝑛𝑐2(𝜋𝑓4𝑡) −

𝜋𝑓3
2

𝑓4−𝑓3
𝑠𝑖𝑛𝑐2(𝜋𝑓3𝑡) −

𝜋𝑓2
2

𝑓2−𝑓1
𝑠𝑖𝑛𝑐2(𝜋𝑓2𝑡) +

𝜋𝑓1
2

𝑓2−𝑓1
𝑠𝑖𝑛𝑐2(𝜋𝑓1𝑡) 

Eq. 3-28 

Where 𝑓4, 𝑓3, 𝑓2, and 𝑓1 are 30 Hz, 27.5 Hz, 2.5 Hz, and 0.1 Hz, t is the time. 
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Figure 3-18: Applied Ormsby wavelet and its Fourier transform function. 

 

2. Ricker wavelet is given by Equation 3-29, and it is used because it is focused on a peak 

frequency that can generate a seismic wave with a peak frequency equal to the structure’s 

peak resonance frequency. It is defined by max frequency (fm). Figure 3-19 shows the 

Ricker wavelet amplitude and Fourier transform functions.   

Ricker Wavelet = (1 − 2𝜋2𝑓𝑚
2𝑡2)𝑒−𝜋2𝑓𝑚

2 𝑡2
 Eq. 3-29 

Where fm is the peak frequency, and t is the time. 
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Figure 3-19: Ricker wavelet and its Fourier transform function. 

 

3. Actual seismic event data, at the 1975 Oroville dam earthquake recorded at Johnson Ranch 

station. Figure 3-20 shows the amplitude of the seismic event wave and Fourier transform 

function. The data have been extracted from the peer ground motion database and were 

used in this analysis to evaluate the performance of the unit cell configurations against a 

real-life recorded seismic event.   
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Figure 3-20: 1975 Oroville dam earthquake, California recorded seismic wave acceleration time 

histories and its Fourier transform function. 

 

The methodology and settings of the time history analysis has been verified with the existing 

literature, specifically Muhammad et al. (2021). However, due to difficulties obtaining the exact 

data used in the publication, the reproduced work is slightly different in magnitude, but the overall 

observations are the same. 

Figure 3-21 shows the published work FEA, where a unit cell embedded in the soil is subjected to 

1975 Oroville dam earthquake. The model size is approximated to the lattice constant of the unit 

cell in addition to the minimum wavelength. 1975 Oroville dam earthquake (Shown in Figure 3-
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20) is applied in the vertical direction (Z-axis) with the input and output probes to record the wave 

accelerations. Although the published work evaluated the analysis to 40 seconds, the reproduced 

work is up to 6 seconds to reduce the analysis cost. Mesh size and time steps are used as shown in 

Equations 3-25, 3-26, and 3-27.    

 

Figure 3-21: Time transient analysis FEA (Muhammad et al., 2021). 

 

Figure 3-22 compares the published work (Right) and the reproduced work (Left). Overall, there 

is a significant reduction in the wave amplitude between input and output probes, and only the 

peak amplitudes were different due to data availability. 

 

 

Figure 3-22: Time transient analysis results comparison, published work (Left), and current 

work (Left). 
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3.6. Parametric Studies 

This section presents the investigated properties and development of unit cells and configurations 

to manipulate the bandgap without change in the unit cell properties.  

 

3.6.1. Development of Single Unit cell 

The first step in developing meta-barriers is to develop a unit cell with the broadest possible 

bandgap. The dispersion equation will be used to find the dispersion relation of each studied unit 

cell. To this end, the geometry of the unit cell will be studied. The geometry includes the shape of 

the unit cell and its components. The study includes 2D and 3D unit cells with various geometric 

combinations such as but not limited to blocks, spheres, honeycombs, cylinders, and irregular 

shapes (rectangular). This study will yield the best possible unit cell geometry with the widest 

bandgap. The only variable parameter in this parametric study is the geometric arrangement of the 

unit cell. At the same time, the size remains constant in all the studied models. Moreover, common 

construction materials such as concrete, rubber, and steel will be used and will remain constant 

across all studied models. This approach should enable a head-to-head comparison between 

various studied unit cells. 

The number of layers a unit cell can be assembled from will be studied thereafter. This parametric 

study will attempt to widen the bandgap of the selected final geometry without changing any of 

the material properties and the size of the unit cell. To this end, four types of unit cells will be 

investigated, as shown in Figure 3-23. 



 

 

60 

  

 

 

Figure 3-23: Unit cell types used for the number of layers parametric study. 

 

Type I is a single-material unit cell; it represents individual materials that were selected to 

comprise the unit cell. This type will ensure that no material can block specific frequencies by 

itself. Type II is a 2D-2C unit cell with two material layers (matrix and core), and PBC is applied 

at the four vertical sides of the unit cell. Type III is a 2D-3C unit cell, where the unit cell has a 

matrix, coating, and core with three different material layers. The PBC was applied at the vertical 

sides of the unit cell while the top and bottom sides remained traction free. Finally, type IV unit 

cell is a 2D-4C unit cell with four material layers, and the PBC is applied at the four vertical sides 

while the top and bottom sides are traction free. The lattice constant is 2 m in all cases, and the 

thickness of each layer remained constant at 0.9a, 0.8a, and 0.7a for layers 2 through 3, 

respectively. Table 3-3 shows the material properties used in the number of layers parametric 

studies. All the materials are common construction materials apart from Tungsten which was used 

due to its extremely high density. 
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Table 3-3: Material properties for the number of layers parametric study. 

Material Young’s Modulus E (Pa) Poisson’s Ratio (v) Density 𝜌 (kg/m3) 

Concrete 30.0 × 109 0.200 2500 

Rubber 1.37 × 105 0.463 1300 

Soil 20.0 × 106 0.300 1800 

Steel 210 × 109 0.275 7890 

CFRP 39.2 × 109 0.200 1900 

Tungsten 410 × 109 0.250 17500 

  

Thereafter, the unit cell mechanical properties are investigated, including core modulus of 

elasticity, E (Pa), density, 𝜌 (kg/m3), and their effects on the attenuation zone. To this end, type II 

unit cell is used, and several models are studied where all mechanical properties of the matrix and 

the core are constants, and with multiple E and 𝜌, and the results are compared for each case. 

Tables 3-4 and 3-5 summarize the core properties of parametric studies.  

 

Table 3-4: Modulus of elasticity of the core parametric study for type II unit cell. 

Layer Modulus of Elasticity, E (Pa) Poisson’s Ratio Density, ρ 

 (kg/m3) 

Size (m) 

Matrix 1.37 × 105 0.463 1300 2.0 

Core Variable 0.275 7890 0.9a 

 

Table 3-5: Density of the core parametric study for type II unit cell. 

Layer Modulus of Elasticity, E (Pa) Poisson’s Ratio Density, ρ 

 (kg/m3) 

Size (m) 

Matrix 1.37 × 105 0.463 1300 2.0 

Core 210 × 109 0.275 Variable 0.9a 

 

Thereafter, the modulus of elasticity, E (Pa), and the density, ρ (kg/m3) of the unit cell matrix, have 

been investigated using four different materials with properties as shown in Table 3-6. 
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Table 3-6: Materials used for the unit cell-matrix mechanical properties. 

Matrix Material Young’s Modulus E (Pa) Poisson’s Ratio (v) Density 𝜌 (kg/m3) 

Concrete 30.0 × 109 0.200 2500 

Steel 210 × 109 0.275 7890 

CFRP 39.2 × 109 0.200 1900 

Tungsten 410 × 109 0.250 17500 

 

 Finally, the size of type II and type III unit cells core have been investigated, and the size of the 

cores has been related to the overall size of the unit cell. In this parametric study, the effects of the 

core size on the bandgap are investigated using several sizes starting as low as 0.4a and up to 0.9a. 

The final unit cell with the lowest-widest possible bandgap will be selected afterward. Moreover, 

a simplified spring-mass-spring model will be developed to simplify the bandgap bounds 

calculation process. 

 

3.6.2. Bandgap Manipulation Using Unit Cells Configuration Parametric Study  

This section will verify the bandgap existence using the transmission in the reduced-frequency 

domain (Section 3.3). Furthermore, multiple unit cell arrangements will be studied. Such 

configurations are inspired by linear chirped configuration (LCFBG) used in microwave photonics 

(Shahoei et al., 2012). The linear chirped, shown in Figure 3-24, can manipulate the amplitude of 

microwaves due to their linear arrangement. The same principle will be adopted and scaled to 

manipulate seismic waves. 
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Figure 3-24: Linear chirped configuration used in microwaves (Shahoei et al., 2012). 

 

To this end, several unit cell configurations will be modeled, and their effects on the bandgap will 

be verified. Figure 3-25 shows the proposed configurations that will be investigated. 

 

Figure 3-25: Proposed unit cell configurations for bandgap manipulation. 

 

Model-A represents a typical unit cell configuration where the unit cells are arranged back-to-

back. This model simulates a periodic unit cell in two directions. Models-B and C have uniformly 

spaced configurations where the unit cells are arranged uniformly. Models-D and E are a single-

graded configuration with the starting unit cells arranged back-to-back, and the remaining are 

uniformly spaced. 



 

 

64 

  

 

Finally, Model-F represents a double-graded configuration where the starting cells are back-to-

back, then uniform spacing, then increased uniform spacing, then decreased spacing, and finally, 

a back-to-back arranged cell. 

Once all the proposed models are analyzed, the one with the broadest bandgap will be selected for 

verification in the full-scale dynamic response study. Thereafter, the selected configuration will 

be used to study its effects in the full frequency and time domain studies. 

Finally, supplemental studies on the ability of the PML to absorb incoming waves and the size of 

the soil medium that affect wave propagation are presented to validate and evaluate additional 

FEA parameters, as shown in Appendix B.  
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CHAPTER 4 : RESULTS AND DISCUSSION 

 

This chapter will present the results of the parametric studies discussed in Chapter 3 and provide 

insight on bandgap manipulation without changing the unit cell combination. 

 

4.1. Development of Unit Cell 

This section aims to finalize a unit cell configuration with the broadest possible bandgap. To this 

end, several parametric studies were conducted, including geometry, mechanical properties, and 

unit cell size. In all parametric studies, some assumptions were kept constant such as: 

1. Materials are assumed to be linear elastic materials. 

2. Bonds between materials are assumed to be perfect so that the unit cell would act as a single 

unit. 

3. Periodic boundary conditions were assumed on every two opposite sides of the unit cell. 

 

To find the best possible configuration, the shape of the unit cell was analyzed using several 

shapes and combinations, multiple unit cell materials, and layers combinations. Moreover, the 

mechanical properties of the unit cell matrix and core were investigated, and the size of the unit 

cell core was studied. Finally, the final proposed unit cell materials and size combination were 

presented along with the resultant bandgap, which will be developed to manipulate the bandgap 

without interfering with the unit cell combinations. 

The main objective of this section is to find the best possible unit cell combinations with the 

broadest possible bandgap. 
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4.1.1. Unit Cell Geometry Parametric Study 

The first step in finding the best possible unit cell configuration is to find the best possible 

geometry combination. With the same approach, as explained in section 3.2. several geometries 

were investigated, including cubes, cylinders, spheres, honeycombs, and nonuniform shapes (as 

shown in Appendix A). A 3D-3C unit cell was selected with a constant overall size. The lattice 

constant (a) =1 m, 0.8a is the size of the coating, and 0.4a is the size of the core. Common 

construction materials were used and were kept constant across this study. Table 4-1 shows the 

selected materials and their properties. PBC was assigned on every two opposite sides of the unit 

cell. Figure 4-1 shows the PBC for one of the investigated unit cells, and the same approach was 

used for the remaining investigated geometries. Table 4-2 shows the standard settings used across 

different investigated geometries. The dispersion equation has been solved by sweeping the wave 

vector along the FIBZ, as explained in section 3.1.2. The periodic equation, expressed by the wave 

vector k, is swept between the X, Y, and Z directions to cover the edges of the first irreducible 

Brillouin zone. Therefore, a parametric sweep was defined in COMOSL to sweep the wave vector 

k from 0 to 4.414 with 
𝜋

𝑎
 step reflecting the wave number, where a is the lattice constant, and the 

variables kx, ky, and kz were related to K, as shown in Table 4-3. 

Table 4-1: Selected materials for the unit cell geometry parametric study. 

Layer Material Young’s Modulus E 

(Pa) 

Poisson’s Ratio 

(v) 
Density 𝜌 (kg/m3) 

Matrix Concrete 30.0 × 109 0.200 2500 

Coating Rubber 1.37 × 105 0.463 1300 

Core Steel 210 × 109 0.275 7890 
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Figure 4-1: Assigned PBC for a 3D-3C unit cell. 

 

Table 4-2: Common settings for the unit cell geometry parametric study. 

Layer Material Size 

Matrix Concrete 1.0 m 

Coating Rubber 0.8 m 

Core Steel 0.4 m 

 

Table 4-3: Wave vector (k) definition using its components. 

Wave Number (K) kx ky kz 

0<k<1 𝜋

𝑎
 

𝜋

𝑎
 (1 − 𝑘) ×

𝜋

𝑎
 

1<k<2 (2 − 𝑘) ×
𝜋

𝑎
 (2 − 𝑘) ×

𝜋

𝑎
 0 

2<k<3 (𝑘 − 2) ×
𝜋

𝑎
 0 0 

3<k 𝜋

𝑎
 (𝑘 − 3) ×

𝜋

𝑎
 (𝑘 − 3) ×

𝜋

𝑎
 

 

In this section, only the most suitable unit cell geometries are presented. However, several other 

geometries were investigated, and their results are shown in Appendix A. Such geometries had 0 

to very small bandgap. For instance, a unit cell with two different side lengths (Rectangular shape) 

was investigated, and the results showed that symmetry along its faces is one of the most important 

factors in bandgap presence. 
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Figures 4-2 and 4-3 show the investigated geometries that could be selected as a final unit cell. 

The unit cells included three cubes (Model-1), two cubes and a cylinder core (Model-2), Two 

cubes and a sphere core (Model-3), a cube matrix and two spheres (Model-4), and a cube matrix 

with two cylinders (Model-5). It is worth mentioning that the size of the coating and the matrix 

have been adjusted with each model so that the weight of the coating and the core is constant across 

all models. The overall size of the unit cell was constant in all the models. 

The observed bandgap for each of the investigated unit cells is shown in Table 4-4. The observed 

LBGLs were 7.9 Hz, 8.5 Hz, 7.0 Hz, 9.5 Hz, and 9.5 Hz for models 1 through 5, respectively. The 

observed UBGLs were 11.6 Hz, 11.5 Hz, 9.0 Hz, 11.9 Hz, and 12.5 Hz for models 1 to 5, 

respectively. Furthermore, the bandgap width (BGW) observed for models 1 to 5 are 3.7 Hz, 3.0 

Hz, 2.0 Hz, 2.4 Hz, and 3.0 Hz. 

The widest observed bandgap was for a unit cell with cube matrix, cube coating, and cube core 

(Model-1) with a 3.7 Hz width, Models 2 and 3 bandgap widths were 3.0 Hz. Since the investigated 

unit cells had identical size and material properties, the unit cell with three cubes (Model-1) is the 

best possible geometry in terms of bandgap width. Although Model-3 LBGL was lower than 

Model-1 (7.0 Hz compared to 7.9 Hz), model-1 was selected as a final configuration in terms of 

geometry because it had the broadest possible bandgap. Figure 4-4 shows the BGW, LBGL, and 

UBGL for the main investigated models.  
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Figure 4-2: Unit cells selected for geometric properties parametric study. 

 

 

Figure 4-3: Unit cells selected for geometric properties parametric study. 
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 Table 4-4: Unit cell geometry parametric study results for the main investigated models. 

Model 

No. 

Matrix 

Shape 

Coating 

Shape 

Core 

Shape 

LBGL 

(Hz) 

UBGL 

(Hz) 

BGW 

(Hz) 

1 Cube Cube Cube 7.9 11.6 3.7 

2 Cube Cube Cylinder 8.5 11.5 3.0 

3 Cube Cube Sphere 7.0 9.0 2.0 

4 Cube Sphere Sphere 9.5 11.9 2.4 

5 Cube Cylinder Cylinder 9.5 12.5 3.0 

 

 

Figure 4-4: Bandgap width versus model number for geometry parametric study. 

 

Figures 4-5 and 4-6 show the dispersion relation for each of the main investigated models in the 

parametric geometry study. 
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Figure 4-5: Bandgap for models 1 and 2 for parametric geometry study. 

 

 

Figure 4-6: Bandgap for models 3, 4, and 5 for geometry parametric study. 
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4.1.2. Unit Cell Number of Layers and Properties Parametric Study 

After finalizing the geometry of the unit cell, the second parametric study is the number of layers 

that comprise the unit cell. This study aims to find the lowest possible bandgap limit and the 

broadest possible bandgap. The vertical axis periodicity has been removed from the unit cell since 

the surface waves are the focus of this research. Therefore, the vertical periodic conditions are 

necessary and will save the analysis cost. Initially, individual materials were investigated by 

studying each proposed material block (Type-I unit cell). Thereafter, unit cells with two layers 

(Type II) including matrix and core, three layers (Type II) including matrix, coating, and core, and 

four layers (Type IV) including matrix, two coatings, and core are studied. Common construction 

materials used in the study include concrete, carbon fiber reinforced polymer (CFRP), steel, 

rubber, and soil. 

Additionally, tungsten was among the used materials. Although tungsten is not a typical 

construction material, it is rare, costly, and very dense. It was used due to its high density for the 

sake of material comparisons. Table 4-5 shows the properties of the materials used in this study. 

Material properties are assumed to be homogenous, linearly elastic, and isotropic. The contact 

regions between different layers are assumed to be perfectly bonded.  

 

Table 4-5: Material properties for the used materials in the unit cell number of layers parametric 

study. 

Material Young’s Modulus E 

(Pa) 

Poisson’s Ratio 

(v) 
Density 𝜌 (kg/m3) 

Concrete 30.0 × 109 0.200 2500 

Rubber 1.37 × 105 0.463 1300 

Soil 20.0 × 106 0.300 1800 

Steel 210 × 109 0.275 7890 

CFRP 39.2 × 109 0.200 1900 

Tungsten 410 × 109 0.250 17500 
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Additionally, damping was neglected in all the studied models, a common assumption in different 

studies since low damping has a negligible effect on the dispersion curves (Hussein and Frazier, 

2010) and attenuation zones (Zhao et al., 2007). Figure 4-7 shows the studied unit cells where h is 

the height of the unit cell, a is the lattice constant, b is the thickness of the matrix, c is the thickness 

of the first coating layer, and d is the thickness of the second coating layer. 

 

Figure 4-7: Unit cell types used for the number of layers parametric study. 

 

Floquet-Bloch conditions (PBC) were applied to the four vertical sides of the unit cell, while the 

two horizontal sides remained traction-free in all cases. The lengths and thickness of the matrix 

were constant in all types of unit cells. Table 4-6 shows the size and thickness of each layer of the 

studied unit cells. 

Table 4-6: Size and thickness of each layer for the studied unit cells. 

Unit cell type h (m) a (m) b (m) c (m) d (m) 

Type I 2.0 h - - - 

Type II 2.0 h 0.9a - - 

Type III 2.0 h 0.9a 0.8a - 

Type IV 2.0 h 0.9a 0.8a 0.7a 

 

The FIBZ, which was used to solve the dispersion equation, is shown in Figure 4-8, where the 

symmetry points are swept as (Γ − 𝑋 − 𝑀 − Γ ).  
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Figure 4-8: The sweeping direction along the FIBZ with symmetry points coordinates Γ: π⁄a 

(0,0), X:π⁄a (1,0), and M:π⁄a (1,1). 

 

The results of the individual material (Unit cell type I) showed that none of the proposed materials 

had bandgap presence. This is because when solving the dispersion equation (Equation 3-10 or 

Equation 3-17), there will always be a real solution so that cos (ka) is in the range of (-1, 1). The 

dispersion relations for all the studied individual materials were somewhat similar, and the main 

difference was the frequency range. Figure 4-9 shows the dispersion relation for soil and steel 

where all frequencies have propagated, and no gaps were present. 

 

 

Figure 4-9: Dispersion relation for soil and steel individually. 
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Thereafter, a type II unit cell was investigated. The proposed unit cell included a rubber coating 

and varying core materials; concrete, steel tungsten, and CFRP. The limits of the bandgap were 

recorded for each configuration and compared for different core materials. Figure 4-10 shows the 

variation of the LBGL, UBGL, and BGW with each of the investigated core materials. 

 

Figure 4-10: Bandgap results for type II unit cell with different core materials. 

 

The bandgaps are 9.6-15.6 Hz, 8.5-15.5 Hz, 4.5-15.3 Hz, and 3.3-15.2 Hz for CFRP, concrete, 

steel, and tungsten core material, respectively. The UBGL does not show variation with core 

materials variation. The unit cell matrix and core size were constant in all modules. However, the 

modulus of elasticity and the core density differed from model to model. Therefore, studying the 

effects of the modulus of elasticity and core density on the bandgap is necessary. Hence, it is 

necessary to study the relationship between the core modulus of elasticity (MPa) and the bandgap 

and the relationship between the density of the core and the bandgap. To this end, a type II unit 

cell was created with a constant lattice constant (a) = 2 m to study the effects of the core modulus 

of elasticity on the bandgap. Table 4-7 shows the selected unit cell properties for elastic modulus 

investigation. 
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Table 4-7: Type II unit cell properties for the core modulus of elasticity study. 

Layer Modulus of Elasticity, E (Pa) Poisson’s Ratio Density, ρ 

 (kg/m3) 

Size (m) 

Matrix 1.37 × 105 0.463 1300 2.0 

Core Variable 0.275 7890 0.9a 

   

Figure 4-11 shows the bandgap width versus the core modulus of elasticity. It is observed that the 

modulus of elasticity of the core has no effect on the bandgap as both UBGL and LBGL were 

constant regardless of the core modulus of elasticity value. 

 

Figure 4-11: Relationship between unit cell (Type II) core modulus of elasticity and the 

bandgap. 

 

Furthermore, a type II unit cell was created with a constant lattice constant (a) = 2 m to study the 

effects of the core density on the bandgap, Table 4-8 shows the selected unit cell properties for 

core density study. 

Table 4-8: Type II unit cell properties for the core density study. 

Layer Modulus of Elasticity, E (Pa) Poisson’s Ration Density, ρ 

 (kg/m3) 

Size (m) 

Matrix 1.37 × 105 0.463 1300 2.0 

Core 210 × 109 0.275 Variable 0.9a 
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Figure 4-12 shows the bandgap width against the core density. Four main materials can be 

identified that have wide density variation such as but not limited to rubber (E=14 × 10−5  GPa 

and 𝜌 = 1300 𝑘𝑔/𝑚3) carbon fiber reinforced polymer (E=392 GPa and 𝜌 = 1900 𝑘𝑔/𝑚3), 

concrete (E=30 GPa and 𝜌 = 2500 𝑘𝑔/𝑚3), steel (E=210 GPa and 𝜌 = 7890 𝑘𝑔/𝑚3), and 

tungsten (E=410 GPa and 𝜌 = 17500 𝑘𝑔/𝑚3). It is observed that the bandgap width is 

proportional to the core density. The higher the core density, the wider the bandgap. 

 

Figure 4-12: Relationship between unit cell (Type II) core density and the bandgap. 

 

Results of type II unit cell show that rubber matrix and steel core seem to be the best candidate for 

development since both rubber and steel are common materials used in construction. Furthermore, 

the resultant bandgap of 4.5-13.5 Hz, when rubber and steel are used, the widest observed bandgap 

among the investigated materials excluding tungsten core because it is not a common construction 

material. Moreover, unit cells with tungsten core had a wider bandgap (3.3-15.2 Hz). However, 

tungsten is used in this study for comparison as it is not a common construction material and is 

expensive. Therefore, a type II unit cell with a rubber matrix and a steel core was selected as a 
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final candidate for two layers unit cells. The dispersion relation of the final type II candidate is 

shown in Figure 4-13. There are five bandgap boundaries where each has a starting frequency and 

cut-off frequency, and some of the bandgaps share the same boundary. There are five bandgap 

bounds points A, B, C, D, and E. 

 

Figure 4-13: Dispersion relation for type II unit cell (3D-2C) made of rubber matrix and steel 

core. 

 

Figure 4-14 shows the global vibrational modes of type II unit cell at five bandgaps bounds points. 

The direction and length of the arrows in the figures represent the direction and the magnitude of 

the relative displacement.  
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Figure 4-14: Global vibrational modes of type II unit cell. 



 

 

80 

  

 

The unit cell had four bandgaps; the first one is 4.5-12.5 Hz, 2nd bandgap is 12.7-13.0 Hz, 3rd 

bandgap is 13.1-14.1 Hz, and 4th bandgap is 14.2-15.3 Hz. It is worth mentioning that there are 

individual frequencies that propagate through the unit cell, which leads to four different bandgaps. 

Examining the vibrational modes in Figure 4-14, it is observed that for the UBGL, the 

displacement is maximum at the edges of the unit cell and minimal elsewhere, while at the LBGL, 

the displacement is maximum at the corners and extends along the length of the unit cell. Those 

modes are examined to prove that the destructive interferences (outer layer, rubber) are responsible 

for wave attenuation. It should be noted that the contours represent relative displacement (modal 

values), not stress. 

Type III unit cells with matrix, coating, and core were investigated afterwards. The size of the unit 

cell was constant a = 2 m as in type II unit cell, and the coating and the core were constant and 

were made of rubber and steel, respectively. With the same approach as followed in type II unit 

cell, type III unit cell were investigated. The study included various matrix materials; Table 4-9 

shows the investigated unit cells, and Table 4-5 shows the used material properties. FIBZ and PBC 

were also constant, as previously used in type II unit cell. 

 

Table 4-9: Three-layer unit cell studied configurations (Type III). 

Model 

No. 

Matrix Coating Core 

1 Concrete Rubber Steel 

2 Tungsten Rubber Steel 

3 Rubber Tungsten Steel 

4 Steel Rubber Steel 

5 CFRP Rubber Steel 
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Type III unit cell with different configurations showed that the LBGL was constant (5.5 Hz) in 

all the studied models apart from model-3, which showed 4.4 Hz. Moreover, the UBGL showed 

significant variation in model-1 UBGL is 17.1 Hz, model.8.6 Hz, model.3 15.2 Hz, model-4 is 

11.2 Hz, and model-5 is 19 Hz, and bandgap widths of 11.6 Hz, 3.0 Hz, 10.8 Hz, 5.7 Hz, and 

13.5 Hz for models 1 to 5 respectively. Table 4-10 shows the results of the studied type III unit 

cells. 

 

Table 4-10: Three-layer unit cell configurations (Type III) bandgaps. 

Model No. LBGL (Hz) UBGL (Hz) BGW (Hz) 

1 5.5 17.1 11.6 

2 5.6 8.60 3.0. 

3 4.4 15.2 10.8 

4 5.5 11.2 5.70 

5 5.5 19.0 13.5 

      

As a result of having a three-layer unit cell, the attenuation zones have improved in some cases. 

For instance, for a unit cell with CFRP matrix, rubber coating, and steel core, the bandgap width 

is 13.5 Hz, which shows 3.1 Hz additional to UBGL compared to type II unit cell, rubber, and 

steel, unit cell; on the other hand, the LBGL increased from 4.5 Hz to 5.5 Hz. However, the 

bandgap has been reduced in other cases of the three-layer unit cell.  

It is noticeable that for a type III unit cell, the coating and the matrix materials were constant and 

made of rubber and steel, respectively, apart from model-3, which had tungsten coating. Therefore, 

model-3 will be excluded from the comparison. Since the LBGL remained constant and only the 

UBGL limit changed along with the matrix material, a relationship exists between the matrix 

material and the UBGL. Hence, two comparisons were analyzed for type III unit cell: matrix 

modulus of elasticity versus UBGL, and the density versus the UBGL. Where the materials used 
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are carbon fiber reinforced polymer (E=392 GPa and 𝜌 = 1900 𝑘𝑔/𝑚3), concrete (E=30 GPa and 

𝜌 = 2500 𝑘𝑔/𝑚3), steel (E=210 GPa and 𝜌 = 7890 𝑘𝑔/𝑚3), and tungsten (E=410 GPa and 𝜌 =

17500 𝑘𝑔/𝑚3). Figure 4-15 shows the relationship between the unit cell UBGL and the unit cell 

matrix modulus of elasticity. 

 

Figure 4-15: Relationship between matrix modulus of elasticity and the upper bandgap limit for 

type III unit cell. 

 

Figure 4-15 indicates no correlation between the matrix modulus of elasticity and the upper 

bandgap limit. Figure 4-16 shows the relationship between the matrix density and the UBGL. 

 

Figure 4-16: Relationship between matrix density and the upper bandgap limit for type III unit 

cell. 
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Figure 4-16 shows that the upper bandgap limit (UBGL) is inversely proportional to the matrix 

density. Therefore, using a low-density material as a matrix is highly recommended to achieve the 

highest possible upper bandgap limit. Figure 4-17 shows the dispersion relation of a three-layer 

unit cell made of CFRP matrix, rubber coating, and steel core (Type II), which shows the widest 

bandgap, the grey-shaded area in Figure 3-22. Additionally, Figure 4-17 shows the vibrational 

modes of Type II at the upper (A1) and lower limits (B1) of the bandgap, where the maximum 

displacement at the UBGL occurs at the corners of the coating materials and minimal elsewhere. 

In contrast, the maximum displacement occurs at the corners and extends along the edges at the 

LBGL. 

 

Figure 4-17: Unit cell of three layers dispersion relation and the global vibrational modes for 

type III unit cell. 

 

When comparing type II and type III unit cells, type III unit cells showed higher UBGL (17.1 Hz 

and 19.0 Hz) than type II (15.3 Hz). However, comparing the LBGL type II unit cell showed less 

LBGL (4.5 Hz) than type III unit cell (5.5 Hz). It is very well known that the lower the frequency 

of a wave, the longer the wavelength will be. Therefore, blocking frequencies in the ultra-low 
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range is more difficult than in the high range, and such frequencies are the most disastrous and 

more difficult to protect from. Hence, a type II unit cell with a bandgap from 4.5-15.3 Hz is the 

potential candidate for additional development.  

Similarly, type IV unit cells were investigated with different material combinations. Table 4-11 

shows the studied four-layer unit cells. Size, PBC, and FIBZ were all constants across all studied 

type IV models. 

Table 4-11: Four-layer unit cell configuration (Type IV). 

Model No. Matrix Coating-1 Coating-2 Core 

1 Concrete Tungsten Rubber Steel 

2 Concrete CFRP Rubber Steel 

3 CFRP Tungsten Rubber Steel 

4 Concrete Steel Rubber Steel 

 

 The attenuation zones for the investigated four-layer unit cell (type IV) are narrower than those 

of three- or two-layer metamaterial due to the significantly reduced core material size. The widest 

bandgap achieved using a four-layer unit cell is 7.8 Hz, grey shaded area in Figure 4-18, for the 

case of concrete matrix, CFRP as the first coating layer, rubber as a second coating layer, and steel 

as a core. Table 4-12 shows the bandgaps of the investigated four-layers unit cell (Type IV). 

 

Table 4-12: Four-layer unit cells dispersion relation results (Type IV). 

Model No. LBGL (Hz) UBGL (Hz) Bandgap width (Hz) 

1 5.8 8.4 2.6 

2 5.8 13.6 7.8 

3 5.8 8.5 2.7 

4 5.8 10.2 4.4 
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Figure 4-18: Dispersion relation for a unit cell of four layers (Type IV). 

 

Type IV unit cells showed that the LBGL remained constant, similar to the UBGL of type III unit 

cell, and only the UBGL varies, which is, as observed previously, due to the density of the unit 

cell matrix. Finally, when comparing unit cells type II and type IV, type II is the best possible 

choice for development because it resulted in the broadest and lowest possible bandgap. 

 While investigating metamaterial Types II, III, and IV, it was observed that the core density is the 

most crucial factor in the bandgap width, more specifically, the LBGL. To this end, a parametric 

study using a type II unit cell made of 2.0 m rubber and a variable steel core size from 0.1 m-1.9 

m was performed to study the effects of the unit cell core size. Similarly, type III unit cell with a 

concrete matrix of 2.0 m, rubber coating of 1.8 m, and a variable steel core size from 0.1 m-1.7 m 

were analyzed. Type IV was excluded from the parametric study due to exhibiting low bandgap 

width. Figure 4-19 shows the variation of the LBGL and UBGL of the bandgap with the core size 

for the type II unit cell. The grey area represents the bandgap width, and the two solid lines show 

the lower and upper bandgaps. The bandgap width is proportional to the core size. Furthermore, 
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having a relatively low core size (less than 40% of the matrix size) results in no to extremely 

narrow bandgap. Moreover, the LBGL increases due to the reduction in the matrix size, which 

confirms the previous observation that the lower the matrix density, the higher the bandgap will 

be.  

 

Figure 4-19: Bandgap variation with the core size for two-layer unit cell (Type II). 

 

Similarly, Figure 4-20 shows the variation of the bandgap width with core size for type III unit 

cell made of concrete matrix, rubber coating, and steel core. At a smaller core material size, two 

narrow bandgaps can be observed, shown in light grey and orange colors, and as the core size 

increases, the second bandgap (orange colored) starts diminishing to approximately zero. On the 

other hand, the first bandgap is proportional to the core material size, like a type II unit cell, and 

the LBGL decreases with the reduction of the coating material size. 

 



 

 

87 

  

 

 

Figure 4-20: Bandgap variation with the core size for a three-layer unit cell (Type III). 

 

After the careful study discussed above, the two-layer rubber coating and steel core unit cell (Type 

II) were chosen for further investigation because they represent the best combination due to the 

availability of material, ease of assembly, wide attenuation zone, and the lowest LBGL frequency. 

Figure 4-21 shows the selected unit cell and its related dispersion relation with four different 

bandgaps first is 4.5-12.5 Hz, second is 12.7-13.0 Hz, third is 13.1-14.1 Hz, and fourth is 14.2-15.3 

Hz. 

The unit cell size is 2 m with a matrix thickness of 0.1 m. Rubber was selected as matrix material 

with 0.14 MPa modulus of elasticity, 0.463 Poisson’s ratio, and 1300 kg/m3 density. Moreover, 

steel was selected as the core material with 210 GPa modulus of elasticity, 0.275 Poisson’s ratio, 

and 7890 kg/m3 density. PBC was applied at the four vertical sides of the unit cell, and the two top 

and bottom surfaces were traction-free. 
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Figure 4-21: Final selected unit cell (Type II) and its dispersion relation. 

 

4.2. Unit Cell Simplified Spring-Mass Model 

In the previous section, the characteristics of the unit cell were investigated based on FEA. In this 

section, the global vibrational modes of the bandgap limit frequencies are simplified into 

equivalent spring-mass model to theoretically determine the bandgap width of the unit cell. 

Examining the vibrational mode A in Figure 4-14, the global displacement of the steel is along the 

positive X-direction, while the rubber displaces slightly at the edges along the Y-direction. 

Examining the vibrational mode E in Figure 4-14, the rubber displaces larger than the steel core in 

all directions. Moreover, in all the vibrational modes, the rubber displaces followed by steel 

because the rubber has a small width compared to the steel core. Therefore, the rubber matrix can 

be considered a spring, and the steel core is the mass. Such displacement modes can be written in 
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simplified equivalent spring-mass mode, as shown in Figure 4-22, where m is the equivalent mass 

and k is the equivalent spring stiffness. A similar approach has been studied for other types of unit 

cells in the literature (Chen et al., 2022). 

 

Figure 4-22: Type II unit cell equivalent spring-mass model. 

 

Since the unit cell is symmetrical about the X-axis, it would be sufficient to consider only half of 

the unit cell. The mass of the rubber can be divided into two masses, m1, and m2, where m1 is 

represented as a spring connecting the other half of the rubber to the steel since the steel 

displacement is relative to the rubber, and most of the rubber displacement occurs in this part by 

tension/compression deformation. On the other hand, m2 displacement is negligible, and the 

stiffness provided by the rubber part is negligible compared to m1. Figure 4-23 shows the unit cell 

discretization.  

 

Figure 4-23: Unit cell discretization for defining the spring-mass model. 
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Thereafter, m1 is divided into two parts, m11, and m12, by the mass ratio α. Where α =  
𝑚𝑅

𝑚𝑆
. The 

mass ratio is represented by a fixed distance between the steel core and the end of the rubber 

matrix. This distance is shown in Figure 4-24. 

 

 

Figure 4-24: Spring-mass-spring equivalent model. 

 

As explained above, the final masses would be (Equations 4-1 and 4-2). 

𝑚𝑠 = 𝑚𝑠𝑡𝑒𝑒𝑙 + 𝑚1  ×
α

α + 1
 Eq. 4-1 

𝑚𝑅 = 𝑚2 + 𝑚1  ×
1

α + 1
 

Eq. 4-2 

Solving Equations 4-1 and 4-2, the ratio α can be found (Equation 4-3).  

α =  
𝑚2 + 𝑚1

𝑚𝑠𝑡𝑒𝑒𝑙 + 𝑚1
 Eq. 4-3 

Using Figure 4-23, the rubber masses (m1 and m2) can be calculated as follows (Equation 4-4): 

m1 =  𝜌𝑅𝑢𝑏𝑏𝑒𝑟  × 2 × (0.1 × 0.9 × 2) =  468𝑘𝑔 

m2 =   𝜌𝑅𝑢𝑏𝑏𝑒𝑟  × (0.1 × 2 × 4) =  1040𝑘𝑔  
Eq. 4-4 
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 The mass of the steel msteel can be calculated (Equation 4-5): 

m𝑆𝑡𝑒𝑒𝑙 =   𝜌𝑠𝑡𝑒𝑒𝑙  × (0.9 × 1.8 × 2) =  25563.6𝑘𝑔 Eq. 4-5 

Finally, solving Equations 4-1, 4-2, and 4-3 yields α = 0.038, mR = 1489.29 kg, and mS = 

25580.7 kg. 

Thereafter, the rubber stiffness can be calculated using Equation 4-6: 

 𝑘 =   
(𝜆+2𝜇) ×𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑒𝑝𝑡ℎ
= 

(
1.37×105×0.463

1.463×0.074
+

1.37×105

1.463
)×2×0.9

0.1
= 1.22 × 107 N/m Eq. 4-6 

Finally, the lowest passing frequency can be calculated using Equation 4-7: 

       𝑓𝑙 = 
1

2𝜋
 × √

𝑘

𝑚𝑆
 Eq. 4-7 

Solving Equation 4-7 gives the lowest passing frequency (𝑓𝑙) of 3.5 Hz, while the FEA analysis 

showed that the lowest bandgap limit is approximately 4.5 Hz, showing a good match between the 

results. On the other hand, the highest passing frequency (𝑓ℎ) can be calculated using Equation 4-

8, which shows that the highest passing frequency is 14.5 Hz.   

       𝑓ℎ = 
1

2𝜋
 × √

𝑘

𝑚𝑅
 Eq. 4-8 

   The FEA showed that the highest passing frequency is 15.3 Hz, which closely matches the FEA 

result.  

Therefore, the mass-spring simplified model can be used to predict the bandgap bounds of a unit 

cell. Moreover, Equations 4-7 and 4-8 agree well with the previously concluded hypothesis that 

the lower bandgap limit depends on the core mass, and the upper bandgap limit is inversely 

proportional to the matrix mass.    

 



 

 

92 

  

 

4.3. Verification of Bandgap Existence 

Once the dynamic response methodology is verified, the first step would be verifying the existence 

of the bandgap and verifying the selected unit cell bandgap. To this end, a similar model to Figure 

4-25 has been used with 16-unit cells arranged without spacing between them. Low-amplitude 

harmonic displacement was applied at the interface between the soil and the PML to the left side 

of the model to simulate elastic bulk wave propagation. Figure 4-25 shows the unit cell for the 

reduced frequency domain analysis. 

 

Figure 4-25: Type II unit cell and the typical reduced model for the frequency domain analysis. 

 

The waves start at the interface and propagate through the homogeneous soil until it reaches the 

unit cells, and the PML absorbs all the incoming waves, preventing unnecessary wave reflection 

back to the model. The size of the PML and homogenous soil was selected as twice the size of the 

unit cells altogether, with an array of 16-unit cells arranged between the two homogenous soils. 

Material properties are shown in Table 4-13. 

Table 4-13: Material properties of the dynamic response model. 

Material Young’s Modulus E (Pa) Poisson’s Ratio (v) Density 𝜌 (kg/m3) 

Soil 20.0 × 106 0.300 1800 

Rubber 1.37 × 105 0.463 1300 

Steel 210 × 109 0.275 7890 
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Figure 4-26 shows the bandgap of the unit cell as observed in the dispersion relation equation and 

the transmission as observed in the dynamic frequency domain analysis. It can be observed that 

there is an excellent match between both results. 

When calculating the transmission between before and after the unit cell, the result will be positive 

or negative. When the transmission is positive, the input displacement is lower than or equals  the 

output displacement, which means that the unit cell could not block the wave at that incident 

frequency, and in some cases, amplified it. On the other hand, when the transmission is 

negative,the input displacement is higher than the output displacement, which means that the unit 

cells managed to absorb the incoming wave incident preventing it from propagating to the other 

end where the structure is located and therefore protected the structure from the incoming wave. 

Figure 4-26 shows that the transmission when the frequencies range from 4.5 to 15.3 Hz is negative 

(Grey shaded area in Figure 4-26), concluding that the unit cells arrangement blocked all the 

incoming waves that fell in that range. 

 

Figure 4-26: Dispersion relation and Transmission of type II unit cell. 
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4.4. Variation of Configuration of the Array of Unit Cells to Manipulate the 

Bandgap 

In this parametric study, the reduced frequency domain model will be used (Section 3.3.). The 

reduced method allows a significant reduction in computational time. Figure 4-27 shows the 

proposed configurations where Model-A represents typical unit cells configurations where the unit 

cells are arranged back-to-back. This model simulates a periodic unit cell in two directions. 

Models-B and C have uniformly spaced configurations where the unit cells are arranged uniformly. 

Models-D and E are a single-graded configuration with the starting unit cells arranged back-to-

back, and the remaining are uniformly spaced. Finally, Model-F represents a double-graded 

configuration where the starting cells are back-to-back, then uniform spacing, then increased 

uniform spacing, then decreased spacing, and finally, a back-to-back arranged cell. Such 

configuration is adopted from the linear chirped configuration (Shahoei et al., 2012) used in 

microwaves photonics (Figure 3-22). 

 

Figure 4-27: Unit cells proposed configurations. 

 

 



 

 

95 

  

 

Type II unit cell is used in this study since it was the best unit cell with the broadest possible 

bandgap (Section 4.1.). The material properties used in the reduced frequency response mode are 

shown in Table. 4-14.  

 

Table 4-14: Material properties for the frequency response reduced model. 

Material Modulus of Elasticity, (E) (MPa) Density, (ρ) (kg/m3) 

Rubber 0.14 1300 

Steel 210 000 7890 

Soil 30 1800 

 

The spacings used in Models A to F are S1 = 0.25a, S2 = 0.5a, and S3 = 2a, where a is the lattice 

constant. 16-unit cells are used in all models. The spacings between the unit cells are filled with 

homogenous soil. Two receiver points will be used to capture the input and output displacements 

which will be used to calculate the transmission among the unit cells. The transmission can be 

calculated using wave energy, displacements, velocity, acceleration, or velocity. However, since 

the incoming waves are generated by applying a low-amplitude harmonic displacement at the 

interface between the homogenous soil and the PML to the left side of the models, displacement 

will be used to calculate the transmission to maintain consistency in all calculations. Model-A will 

be used as a base model to compare the results of the remaining configurations. PBC is applied at 

the vertical sides of the model, and the top and bottom sides remain traction-free surfaces. Notably, 

the free surfaces are used to imitate Lamb waves in plates (Miniaci et al. 2016; Zeng et al. 2019; 

Zhang et al. 2021). However, quasi-Lamb waves may be generated as well. Moreover, the free 

surfaces are breached when the unit cells are stacked and embedded in soil. However, their effects 

on the bandgap are proven to be negligible (Zeng et al. 2019).  
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Figure 4-28 shows the dispersion relation of Models A and B. It can be observed that using uniform 

spacing increased the upper bandgap limit (Marked by a green circle), and the unit cell observed 

bandgap is shown in the grey-shaded area. However, the uniform spacing allowed some 

frequencies (Marked by a red circle) within the bandgap to propagate. Therefore, the uniformly 

spaced configuration cannot be a good candidate since it decreases the lower bandgap limit. 

 

Figure 4-28: Comparison of Transmission between model-A and model-B. 

 

Similarly, model-C (Uniformly spaced configuration with higher spacings than model-B) yielded 

the same results as model-B except the upper bandgap limit increased (Marked in green circle) 

more than that of model-B and allowed waves that were within the bandgap to propagate (Marked 

in red circle) through the unit cells, as shown in Figure 4-29 (the grey shaded area represents the 

unit cell observed bandgap).  
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Figure 4-29: Comparison of Transmission between model-A and model-C. 

Furthermore, model-D, a single-graded configuration, was analyzed, and the result showed an 

increase in the upper bandgap limit without adverse effects on the lower limit. The upper bandgap 

limit increased from 15.3 to 17 Hz, and an additional bandgap occurred between 21-26 Hz, as 

shown in the marked green circle in Figure 4-30, where the bandgap is shown in the grey-shaded 

area. 

 

Figure 4-30: Comparison of Transmission between model-A and model-D. 
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Moreover, model-E is a single-graded configuration with three-unit cell arrangements, starting 

with back-to-back cells, then spaced at 0.25a, and ending with cells spaced at 0.5a. The results 

showed a consistent upper bandgap limit. However, instead of increasing the upper bandgap limit, 

it created a different bandgap, between 18-26 Hz, as marked in the green circle in Figure 4-31.  

Finally, the double-graded configuration results, shown in Figure 4-32, showed that double-graded 

configurations could increase the upper bandgap significantly as the bandgap increased from 15.3 

Hz to nearly 30 Hz. The increase was consistent along frequencies higher than the UBGL, and all 

frequencies in the range of the unit cell bandgap were blocked. Therefore, the double-graded mode 

with type II unit cell has been selected as a final configuration model that will be evaluated using 

the full frequency domain model. Additionally, the double-graded configuration is used to evaluate 

its performance in the frequency and in the time domains.   

 

Figure 4-31: Comparison of Transmission between model-A and model-E. 
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Figure 4-32: Comparison of Transmission between model-A and model-F. 

 

4.5. Evaluation of the Performance of the Selected Configuration in the 

Frequency Domain Using Full Model  

After selecting the final unit cells configuration, the next step is to embed the unit cells in a large 

soil medium since the unit cells will eventually be buried in the soil. To this end, the methodology 

presented in section 3.4. will be implemented here. 

Figure 4-33 shows the full-frequency domain model with the two receiver nodes. Two types of 

waves are applied in this evaluation: Surface waves, which are generated by applying a low-

amplitude harmonic displacement at the upper edge between the homogenous soil and the PML to 

the left side of the model in the vertical direction, and bulk waves, which is generated by applying 

a low-amplitude harmonic displacement along the interface between the homogenous soil and the 

PML to the left side of the model in the vertical direction.   
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Figure 4-33: Frequency domain analysis using the full model. 

 

The transmission from receiver 1 to receiver 2 when surface waves are applied is shown in Figure 

4-34. It compares the transmission between receiver points 1 and 2 when double-graded unit cells 

are used (Blue line) and when the double-graded unit cells are not used (Orange line). It is observed 

that the frequencies that fall within the bandgap are blocked (Grey shaded area), and additional 

frequencies less than the lower bandgap limit were blocked, specifically in the range of 3.5 – 4.5 

Hz (Marked in green circle). Moreover, the double-graded configuration blocked all frequencies 

higher than the theoretical upper bandgap limit (Marked in orange circle). Therefore, when a 

structure is subjected to surface waves in the range of 0 to 30 Hz (Most disastrous frequencies), 

the double-graded metamaterial configuration can block all the waves between 3.5 – 29.8 Hz, 

nearly 88% of the most disastrous seismic waves. The same observations and conclusion can be 
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seen when comparing the displacement at receiver point 2 between using a double-graded 

configuration and without it, as shown in Figure 4-35.  

 

Figure 4-34: Transmission for double-graded configuration compared to a soil medium without 

protection subjected to surface waves. 

 

 

Figure 4-35: Recorded displacement at the receiver point 2 for double-graded configuration 

compared to a soil medium without protection subjected to surface waves. 

 

Similarly, when comparing the transmission between receivers 1 & 2 when the medium is 

subjected to bulk waves, the complete bandgap (Grey shaded area in Figure 4-36) is blocked. 
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Additionally, more frequencies above the upper bandgap limits are blocked, as shown in Figure 4-

36. 

 

Figure 4-36: Transmission between receivers 1 and 2 for double-graded configuration compared 

to a soil medium subjected to bulk waves without protection. 

 

Furthermore, Figures 4-37 to 4-39 show the displacement variation along a line that extends from 

the wave source to the first third of the unit cells with 60 m length for waves with 5.3 Hz, 10.8 Hz, 

and 14.7 Hz frequencies, respectively. Once the wave launches from the source, it loses some of 

its amplitude due to the linear properties of the soil medium as it absorbs some of the wave energy. 

Thereafter, the waves propagate through the soil medium until it reaches the meta-barriers. The 

meta-barriers reflect some of the wave energy, divert the direction of another part, and absorb the 

remaining part, leading to structure protection.  
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Figure 4-37: Displacement caused by surface waves with a frequency of 5.3 Hz along the top 

surface of the medium. 
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Figure 4-38: Displacement caused by surface waves with a frequency of 10.8 Hz along the top 

surface of the medium. 
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Figure 4-39: Displacement caused by surface waves with a frequency of 14.7 Hz along the top 

surface of the medium. 

 

4.6. Effects of Using Double-Graded Meta-barriers on Response of a SDOF 

Structure  

The resonance frequency of a structure is the frequency where a structure resonates the most when 

subjected to a small load/displacement in the range of that frequency. It can be obtained as 

discussed in section 3.1.3. the purpose of this study is to investigate the effects of protecting a 

structure with metamaterial and to see its effects on the structural response of a structure at the 
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peak frequency. To this end, a single degree of freedom (SDOF) structure has been modeled, and 

its resonance frequency is analyzed. For the SDOF structure a lumped mass model is adopted, 

where a concentrated translational mass is supported by a column (beam element) and is supported 

on a fixed support. This can also be idealized as a mass-spring model. Figure 4-40 shows the two 

different methods for modeling the SDOF. 

 

 

Figure 4-40: Methods of modeling the SDOF structure. 

 

To verify the methods of modeling SDOF structure, the proposed models in Figure 4-40 were 

simulated using COMSOL Multiphysics. 40 Tons mass on top was considered, and a column with 

equivalent stiffness of 9.8 x 107 N/m was considered. Moreover, a 6x1 m concrete foundation was 

considered as a support to the SDOF. Three peak resonance frequencies were obtained using the 
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spring-mass model, beam-mass model, and using the formulation, as discussed in section 3.1.3. 

The results are shown in Table 4-15. The results showed that all models would have the same peak 

resonance frequency of 7.4 Hz. However, the obtained amplitude from the formulation and spring-

mass model differed from the beam-mass model by less than 4%. This is because the formulation 

and the spring-mass model are idealized cases and do not consider the exact interaction between 

column-mass and column-foundation. Therefore, the beam-mass model will be used to evaluate 

the double-grading meta-barriers on the peak response of the SDOF at different excitation 

frequencies. 

   

Table 4-15: Results of simulating SDOF structure using three different methods. 

Model Fn (Hz) Amplitude (m) 

Formulation 7.400 15.42 

Spring-Mass 7.405 15.42 

Beam-Mass 7.394 14.87 

 

The natural frequency curve of the selected SDOF is shown in Figure 4-41, where the natural 

period is at 7.4 Hz. 
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Figure 4-41: Selected SFOF natural frequency curve. 

 

Furthermore, a model was developed in the frequency domain, which will be used to study the 

effects of using double-graded configurations on an SDOF structure peak response. Figure 4-42 

shows the dimensions of the FEA model for this purpose.  

 

Figure 4-42: FEA model for the frequency domain analysis including the SDOF structure. 

 

Furthermore, four reference points were selected for the sake of comparison between different 

configuration; P0 is immediately before the meta-barriers, P1 is immediately after the meta-
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barriers, P2 is at the intersection point between the foundation and the column, and P3 is at the top 

of the SDOF structure as shown in Figure 4-43. 

 

Figure 4-43: Reference points used to evaluate the effectiveness of the meta-barriers for SDOF 

structure. 

Figure 4-44 shows the concept of using meta-barriers to protect a structure by surrounding the 

structure with meta-barriers from all sides. This concept can protect sensitive structures such as 

but not limited to remote nuclear power plants or any other remote structure. It can also be used to 

protect a small city by surrounding the city with such meta-barriers. 

 

Figure 4-44: Using meta-barriers to protect structures from seismic waves. 
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Initially, two models were evaluated, double-graded array (DGA) and stacked unit cells (A). 

Figure 4-45 shows the initial two models. 

 

 

 

Figure 4-45: Primary evaluated models, (a) stacked unit cells, and (b) double graded design. 

 

Figure 4-46 shows the horizontal displacement amplitude at points P0 and P1 for the initial two 

models compared to a model without unit cells (F). It is observed that the DGA model reflects 

fewer waves than the stacked unit cells. This can be seen in the displacement amplitude at P0, 

where the displacement at frequencies within the bandgap range is higher in the case of stacked 

unit cells. This is because the DGA configuration absorbs the incoming waves and diverts the 

direction of part of the incoming waves to the ground. When comparing the displacements between 

using unit cells and without protection, the model without protection showed less displacement 

since all the waves are propagating without any reflection from the unit cells. 
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Figure 4-46: Horizontal displacement amplitude at P0 comparison between protected structure 

and without protection. 

 

Furthermore, when comparing the displacement immediately after the unit cells (P1), both 

configurations block all frequencies within the bandgap. However, the DGA significantly reduces 

the wave amplitude higher than the upper bandgap limit, as shown in Figure 4-47. 

 

Figure 4-47: Horizontal displacement amplitude at P1 comparison between protected structure 

and without protection. 

 

Moreover, Figure 4-48 shows the horizontal displacement amplitude at the top of the structure 

(P3). It is observed that the double-graded array (DGA) caused additional amplification at the 
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SDOF structure peak resonance frequency and reduced the amplification elsewhere. This is 

considered a drawback of using a double-graded configuration. Therefore, it is necessary to modify 

the DGA to prevent additional amplification at the peak resonance frequency. 

 

Figure 4-48: Horizontal displacement amplitude at P3 comparison between protected structure 

and without protection. 

 

To this end, instead of changing the scheme of the configuration, changing the combination of the 

unit cell, or adding additional unit cells, the additional amplification is eliminated by removing 

some of the DGA unit cells so that the configuration looks like a double-graded pyramid (DGP). 

Figures 4-49, 4-50, and 4-51 show the performance of DGA against DGP at reference points P0, 

P1, and P3, respectively. 
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Figure 4-49: Horizontal displacement amplitude at P0 comparison between double-graded array 

and double-graded pyramid. 

 

 

Figure 4-50: Horizontal displacement amplitude at P1 comparison between double-graded array 

and double-graded pyramid. 
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Figure 4-51: Horizontal displacement amplitude at P3 comparison between double-graded array 

and double-graded pyramid. 

 

It is observed that the double-graded pyramid performs nearly the same as the double-graded array 

in terms of absorbing the incoming waves (Figure 4-49). Moreover, Figure 4-50 shows that the 

DGP provides better protection in the bandgap range and up to 30 Hz, whereas the displacements 

in Figure 4-50 show less amplitude except for 4.5 Hz frequency. Finally, the DGP allows less 

amplification at the SDOF peak resonance frequency, as seen in Figure 4-51. Therefore, to 

eliminate the additional amplification at the peak resonance frequency, the DGA unit cells should 

be reduced instead of increased so that the new configuration would divert more waves to the 

ground and provides better protection than the proposed configuration. The DGP configuration is 

shown in Figure 4-52, where the number of unit cells in the vertical direction has been reduced 

periodically to form a pyramid-like configuration, while the number of unit cells along the 

horizontal direction remained the same as in the DGA with 16-unit cells. 
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Figure 4-52: Final proposed configuration, pyramid-like double-graded configuration. 

 

Finally, displacement contours at different frequencies for the three evaluated models are shown 

in Figures 4-53, 4-54, and 4-55 for frequencies of 2.3 Hz, 8.8 Hz, and 19 Hz, respectively. The 

protection is visible in all figures as the displacement after the unit cells are absorbed to nearly 0 

m. Furthermore, the double-graded pyramid diverts the wave's direction to the ground rather than 

reflecting it to the source, as seen in the arrows on the figures. Additionally, the displacement 

before the unit cells is more concentrated in the stacked unit cells and the double-graded array than 

in the double-graded pyramid. This is due to the capability of the double-graded pyramid to divert 

the wave's direction rather than reflecting it.  
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Figure 4-53: Displacement contours comparison for the evaluated configurations subjected to 

2.3 Hz harmonic wave. 
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Figure 4-54: Displacement contours comparison for the evaluated configurations subjected to 

8.8 Hz harmonic wave. 



 

 

118 

  

 

 

Figure 4-55: Displacement contours comparison for the evaluated configurations subjected to 19 

Hz harmonic wave. 

 

4.7. Performance Evaluation of Meta-barriers in the Time Domain 

The final evaluation step is simulating the double-graded array and pyramid in the time domain 

where three types of wavelets are applied: Ormsby wavelet, Ricker wavelet, and a real-life seismic 

event, as discussed in section 3.5. 

Ormsby wavelet was selected because it can be used to apply multiple frequencies in a very short 

time with four frequencies applied: 𝑓4, 𝑓3, 𝑓2, and 𝑓1 are 30 Hz, 27.5 Hz, 2.5 Hz, and 0.1 Hz, 
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resulting in a wave with frequencies ranging from 0.1 to 30 Hz in less than a second (See Fig. 

3.18). As shown in Figure 4-56, when Ormsby wavelet is applied and generated, all four main 

types of seismic waves are observed. 

 

Figure 4-56: Types of waves generated in a soil medium subject to low-amplitude displacement 

in type domain using Ormsby wavelet. 

 

Figure 4-56 shows that both body waves (P and S waves) are the fastest and first to propagate and 

reach the structure. Additionally, the amplitude of such waves is observed to be higher as they 

propagate deep to the ground, while their amplitude along the surface is minimal and decreases as 

they propagate through the medium. Moreover, surface waves (Rayleigh and Love waves) can be 

observed as they propagate slower than the body waves and only along the surface. Additionally, 

their amplitude is greater than body waves, and they only propagate at the surface, which is why 

they are considered the most disastrous waves. 
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The result of the Ormsby wavelet application is shown in Figure 4-57, which is a comparison 

between the observed displacement at the top of an SDOF structure placed in a soil medium 

without protection (Soil, shown in the blue line in Figure 4-57) and with protection using two types 

of configurations: double graded array (Grey line) and double graded pyramid (Orange line). The 

result showed that both protection configurations protected the structure from all incoming waves 

for the specified time, with the observation that the double-graded pyramid is more efficient than 

the array because the double-graded pyramid can divert the waves rather than reflect them. The 

result showed that the graded array protected the structure from 80% of the incoming waves, and 

the double-graded pyramid protected the structure from 90% of the wave energy. Furthermore, 

Figures 4-58, 4-59, and 4-60 show the contours of the wave at 0.70, 1.1, and 1.7 seconds 

respectively. All types of waves (P, S, and surface waves) can be observed in the figures. 

Additionally, the waves can be seen propagating towards the SDOF until they hit the meta-barriers, 

where wave reflection can be observed from the double-graded configurations (middle and bottom 

in Figure 4-58). Moreover, the double-graded array reflected more waves than the pyramid, as 

seen in the red-marked circle.  
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Figure 4-57: Displacement comparison at the top of an SDOF structure with and without 

protection with a double-graded array and a double-graded pyramid. 

 

 

Figure 4-58: Wave contours generated by Ormsby wavelet at 0.7 seconds with different 

configurations (Top) soil medium without protection, (Mid) protection using a double-graded 

array, and (Bottom) protection using a double-graded pyramid. 
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Furthermore, at 1.1 seconds (Figure 4-59), the P-wave already arrived and passed the structure 

without protection (Top in Figure 4-59). However, when the structure is protected, the meta-

barriers absorb part of the P-wave, reflect it partly, and change the direction of the third part. The 

peak acceleration has been reduced by 68% and 75% when graded array and graded pyramid are 

used, respectively. Furthermore, the acceleration square root of mean squares (RMS) has been 

reduced by 50% and 67% when graded array and graded pyramid are used, respectively. 

 

Figure 4-59: Wave contours generated by Ormsby wavelet at 1.1 seconds with different 

configurations (Top) soil medium without protection, (Mid) protection using a double-graded 

array, and (Bottom) protection using a double-graded pyramid. 

 

Finally, at 1.7 seconds (Figure 4-60), the waves arrived at the structure and can be seen reflected 

towards the source, propagated through the structure and to the top, causing displacement in the 
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structure. Furthermore, the structure appears to be protected from the incoming waves when meta-

barriers are used as they absorb and reflect the incoming waves.   

 

Figure 4-60: Wave contours generated by Ormsby wavelet at 1.7 seconds with different 

configurations (Top) soil medium without protection, (Mid) protection using a double-graded 

array, and (Bottom) protection using a double-graded pyramid. 

 

To verify that the double-graded pyramid can divert waves direction more than absorb it, a point 

halfway through the distance between the wave source and the unit cells was selected.  Figure 4-

61 shows the displacement at the aforementioned point. The results include the displacement in 

both directions, i.e., both propagated and reflected waves. Since the curves include the forward 

and backward propagating waves at that point, higher displacement means more reflection. Since 

the displacement while using the graded pyramid is lower at that point (Blue circled area) than the 

double-graded array, the double-graded pyramid diverts more waves than reflecting it. The 
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acceleration RMS is 7% higher at the input node when the double graded array is used compared 

to the double graded pyramid.  

 

Figure 4-61: Horizontal displacement at a point between the metabarriers and the wave source 

(Ormsby Wavelet). 

 

Furthermore, for the same proposed configurations, the Ricker wavelet is applied, as shown in 

Figure 3-19, with a peak frequency of 1.7 Hz, which is equal to the SDOF peak resonance 

frequency when placed in the soil medium. Surprisingly, both the double-graded array and pyramid 

blocked the whole wave and prevented it from arriving at the structure, as shown in Figure 4-62. 

Moreover, the displacement at a point between the meta-barriers and the wave source was 

captured, and the results are shown in Figure 4-63. Since the displacement at that point includes 

all forward and backward displacements, higher displacement means more wave reflection. 

Therefore, the double-graded pyramid shows less displacement at the point than the double-graded 
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array, which means the double-graded array reflects more waves than the double-graded pyramid, 

and the double-graded pyramid diverts the waves rather than reflecting them. 

 

Figure 4-62: Horizontal displacement at the top of the SDOF subjected to Ricker wavelet. 

 

 

Figure 4-63: Horizontal displacement at a point between the meta-barriers and the wave source 

(Ricker Wavelet). 
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Finally, real-life seismic event data has been used to evaluate the effects of using double-graded 

meta-barriers on SDOF structure acceleration, as discussed in section 3.5. The evaluation results 

of the real-life seismic event show that the double-graded pyramid can efficiently attenuate seismic 

waves and can divert the wave's direction more than reflecting it compared to the double-graded 

configuration. Figure 4-64 shows the input normalized acceleration at the input receiver (P0in 

Figure 4-43). It is observed that the DGP model input acceleration is lower than the DGA model. 

Since the input receiver captures both forward and backward going waves, it includes initially 

propagating and reflected waves. Since the DGP model showed less acceleration at that receiver, 

and the same forward propagating amplitude for all three models. It is evident that the DGP design 

diverts the waves to the ground rather than reflecting them back towards the source and the model 

without protection showed the lowest input acceleration since no reflection is present and all waves 

are propagating to the other end of the model. Moreover, the input acceleration seems lower at the 

input node of DGP when compared to the input node of DGA. This is because a pyramid-like 

configuration can divert the wave direction rather than reflect it since the input node includes all 

forward and backward propagating accelerations. 
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Figure 4-64: Input acceleration at nodes P0 comparison between unprotected model and 

protection by DGA and DGP. 

 

Moreover, Figure 4-65 shows the Fourier amplitude of Oroville time histories at the input receiver. 

The result shows that the DGP model diverts the waves with frequencies that fall in the bandgap 

range. 

 

Figure 4-65: Fourier amplitude of the input acceleration comparison between proposed designs. 
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Finally, Figure 4-66 show the normalized acceleration at the output receiver for the proposed 

designs compared to a model without protection. The results show that DGA can attenuate most 

seismic waves as a significant reduction in wave amplitude is observed. Moreover, the number of 

peaks in the plot is reduced at the output point due to the complete block of all frequencies that 

fall within the unit cell bandgap. The same observation for the acceleration was observed when 

using a double-graded pyramid-like configuration (DGP), as shown in Figure 4-66. The peak 

acceleration has been reduced by 70%, and 66% when DGA and DGP are used, respectively. 

Additionally, the acceleration RMS has been reduced by 67%, and 64% when DGA and DGP are 

used, respectively. 

 

Figure 4-66: Normalized output acceleration at the P1 for the proposed designs compared with 

model without protection. 

 

Additionally, when comparing the output acceleration (at node P1) and the acceleration at the top 

of the SDOF (node P3), the amplification from bottom to top is different in each case. When soil 

alone without protection (S), the acceleration at (Figure 4-67 top-left) seems to be transmitted from 

the bottom to the top of the SDOF. Moreover, the Fourier amplitude (Figure 4-67 top-right) shows 
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that the SDOF significantly amplified the wave at the peak resonance frequency of 1.7 Hz. 

Furthermore, Figure 4-67 (Mid-left) shows the acceleration comparison of P1 versus the 

acceleration at the top of the structure for a structure protected by double-graded configuration 

(DGA), where generally, there was amplification in almost all the periods. However, the number 

of peaks is reduced because the unit cells attenuated all frequencies within the bandgap.  

Moreover, due to the periodic grading arrangement, the DGA model protected the structure from 

all frequencies above 3.0 Hz, which is not in the bandgap limit. This can be confirmed by looking 

at the Fourier amplitude of the DGA (Mid-right) at the SDOF peak resonance frequency (1.7 Hz). 

The structure significantly amplified the wave to a value higher than that of a structure without 

protection, which is considered a drawback of using the double-graded configuration. The double-

graded pyramid-like configuration (DGP) was developed to overcome this drawback. As shown 

in Figure 4-67 (Bottom-left), the number of peaks is reduced, and all frequencies that fall in the 

bandgap are attenuated by the unit cells. Figure 4-67 (Bottom-right) shows the Fourier amplitude 

for a structure protected by a double-graded pyramid-like configuration. The DGP model reduced 

the amplification at the top of the structure to nearly as the model without protection. 

Moreover, the DGP model reduced the amplification of the structure at frequencies lower than the 

bandgap (Starting at 2.0 Hz). Therefore, the double-graded pyramid-like model lowered the lower 

bandgap limit from 4.9 Hz to 2.0 Hz and increased the upper bandgap limit from 15.5 Hz to 29.8 

Hz. Finally, the results obtained using the real-life seismic event data agree well with the frequency 

domain analysis, as discussed in section 4.6.    
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Figure 4-67: Acceleration amplitude and Fourier amplitude at nodes P1 and P3 for a soil 

medium (N), double-graded array (DGA), and double-graded pyramid (DGP). 
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CHAPTER 5 : SUMMARY AND CONCLUSIONS 

 

5.1. Summary 

Protection from seismic waves is vital due to the catastrophic and devastating effects that 

earthquakes can inflict on human lives, economies, and infrastructure. Earthquakes can cause 

widespread destruction, resulting in loss of life, injuries, and damages of communities. Damage to 

buildings, roads, bridges, and utilities can disrupt essential services such as water, electricity, and 

communication, leading to prolonged disruptions and economic losses. Rebuilding after 

earthquakes can be costly and time-consuming, impacting local economies and livelihoods. 

Traditional seismic protection methods are techniques used to safeguard buildings and 

infrastructure from the damaging effects of earthquakes. These methods include seismic-resistant 

design and construction practices, such as reinforcing buildings with steel braces or using base 

isolation systems to decouple the structure from the ground motion. Other methods may include 

adding dampers, bracing systems, or shear walls to increase the building's stability during seismic 

events. Traditional seismic protection methods rely on engineering principles and materials to 

mitigate the forces exerted by earthquakes and minimize damage to structures. While effective, 

these methods may have limitations and need periodic maintenance and upgrades to remain 

effective in the face of evolving seismic hazards. Traditional seismic protection methods may have 

cost, design complexity, and effectiveness limitations against strong earthquakes, and they may 

also require ongoing maintenance and upgrades to remain effective in the long term. Additionally, 

traditional methods may not be suitable for all types of buildings or infrastructure, and their 

effectiveness can vary depending on local geological and soil conditions. 
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Therefore, a new seismic protection method has emerged in recent years based on artificially 

engineered materials, known as metamaterials, with exceptional properties due to their periodic 

effects and extraordinary properties that cannot be found naturally. This type of metamaterial has 

been proven to have the ability to block a specific range of frequencies from propagating and 

protecting a structure, new cities, bridges, railways, historical sites, and remote isolated sensitive 

structures from seismic waves that fall into that range. This range of frequencies is known as the 

attenuation zone or bandgap. In the literature, there has not been a comprehensive attempt to widen 

the unit cell bandgap without changing its components or size. This research aims to enlarge a unit 

cell attenuation zone without modifying its original features (shape, size, and materials properties).  

In this research, metamaterial unit cell properties that influence the bandgap were investigated, 

including unit cell shape, the number of materials that comprise the unit cell, mechanical properties 

of each layer, and the size of the unit cell components. Based on the investigation, a unit cell with 

the broadest possible bandgap was proposed. 

The performance of the proposed unit cell was also evaluated in the frequency domain under a 

harmonic excitation with different frequencies in the range of destructive seismic wave (0-30 Hz). 

Moreover, the unit cell attenuation zone has been widened by using a double-graded configuration, 

that can increase both the upper and lower bounds of the bandgap.  

Finally, the performance of the double-graded configuration is evaluated on the response of a 

SDOF structure in the frequency and time domains under two wavelets and the 1975 Oroville dam 

record. Results showed that the proposed configuration effectively reduces the response of the 

SDOF under the investigated excitations. 
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5.2. Key Findings and Recommendations 

This study focused on achieving the broadest possible blocking range (bandgap) of meta-barriers, 

specifically in the range of (0-30 Hz). Moreover, the geometrical and mechanical properties that 

control the bandgap limits of a unit cell have been investigated. Furthermore, the study proposed 

a new layout for the meta-barriers to increase the frequency-blocking range of unit cells. Finally, 

the configuration's ability has been verified in the frequency and time domains under three 

excitations: Ormsby wavelet, Ricker wavelet, and a real-life seismic event. The key findings of 

this study can be summarized as follows: 

1. Metamaterials can block specific frequencies due to their unnatural properties. This range 

is known as bandgap. 

2. It was concluded that a unit cell made of two layers of rubber and steel could block a wide 

range of frequencies and is comparable to a larger unit cell in the literature (to the order of 

10m). The proposed unit cell (rubber coating and steel core) can block frequencies in the 

range of (4.5-15.1 Hz) using analytical methods. 

3. The upper bandgap limit of a unit cell is controlled by the matrix (outer layer) density. 

4. The lower bandgap limit is controlled by the unit cell core (interior layer) density, which 

is considered the most crucial factor in controlling the width of the bandgap. 

5. Young’s modulus and Poisson’s ratio do not play an important role in bandgap of the unit 

cells. 

6. It was proven that double-graded meta-barriers (irregularly spaced unit cells) could 

increase the bandgap by 14.2 Hz, about twice as much as regular stacked unit cells. 
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7. The double-graded barriers can filter seismic frequencies in the range of (3.9-29.3 Hz) 

which is nearly 85% of the most destructive frequencies (0-30 Hz). 

8. The double-graded configuration can reduce the amplification of a structure. However, at 

peak frequency, it was observed that the amplification increased by about 15%. To 

overcome this drawback, reducing the number of unit cells in the vertical direction is 

recommended, so the overall shape of the unit cells protecting the structure is a triangular-

like shape (double graded pyramid). 

9. Both configurations (double graded unit cells and pyramid) can reduce the amplification 

of a structure generally. However, the double-graded pyramid can cause additional 

reduction to the peak amplification of the structure. 

10. Double-graded pyramid-like configuration can lower the lower bandgap limit from 4.5 Hz 

to 2.0 Hz and increase the upper bandgap limit from 15.5 Hz to 29.8 Hz. 

11. A double-graded pyramid-like configuration can protect a structure from 91% of the most 

destructive wave.  

12. The double-graded pyramid can divert the wave direction rather than reflect it to the source 

or the surrounding structure. 

13. In wave FEA simulation, the soil medium size is not a significant factor in wave 

propagation, and its affects on wave propagation are negligible. 

14. Perfectly matched layers are an excellent choice for preventing wave reflection from the 

boundaries of the FEA. 

15. A meta-barriers height of 4a, where a is the lattice constant, is ideal for observing a 

complete bandgap in dynamic response models. 
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Based on the conclusion above, using 2-layered unit cells with periodicity in two horizontal 

directions is recommended for maximum protection from surface waves. Moreover, the density of 

the outer layer of a unit cell (Matrix) is recommended to have low density, such as rubber, carbon 

fiber reinforced polymer, or concrete, which are considered common construction materials, and 

a high inner layer (core) material such as steel. Additionally, the unit cells are recommended to be 

embedded in soil with the periodic arrangement in the horizontal directions such that the unit cells 

are spaced as follows 0-x-y-x-0 m, where x is 0.125a, y is 0.25a, and a is the size of the unit cell 

(lattice constant). Moreover, the embedded unit cells are recommended to form an equiangular 

triangle shape in the vertical direction to reduce the seismic wave reflection and to increase the 

wave direction diversion.              

 

5.3. Suggested Future Development 

Seismic metamaterials are the new category of seismic protection methods. This research 

established the possibility of widening the metamaterial attenuation zone and maximizing the 

protection range. Future development of this research is suggested below: 

1. Experimental testing of the double-graded configuration to evaluate its capabilities 

obtained in the numerical analysis. 

2. Interactions between different metamaterial layers and with the soil because such regions 

are assumed to be perfectly bonded, which is not ideal in real-life scenarios. 

3.  The effect of material nonlinearity is ignored in current study, which needs further 

investigation.  

4. Investigate the effect of soil types on the performance of the proposed meta-barriers 
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5. Investigate the effect of different earthquake records (near-fault, far-fault) with different 

frequency content.  

6. To investigate the performance of the meta-barrier for different wave sources (from bottom 

for examples) and at different angles using shake table tests and numerical analyses.  

7. In-depth evaluation of the science behind wave blocking of meta-barriers due to periodicity 

and local resonance at the unit cell level.   
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APPENDIX A. DISPERSION RELATIONS OF THE 

INVESTIGATED UNIT CELLS FOR GEOMETRY 

PARAMETRIC STUDY 
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This appendix presents all the results of the investigated unit cell geometry that were not included 

in section 4.1.1. 

 

Figure A- 1: Square concrete matrix (1 m) and hexagon rubber core. 

 

 

Figure A- 2: Square concrete matrix (1 cm) and hexagon rubber core. 
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Figure A- 3: Square concrete matrix (1 cm) and circular rubber core. 

 

 

Figure A- 4: Square concrete matrix (1 cm) and rectangular rubber core (0.8x0.4 cm). 
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Figure A- 5: Square concrete matrix (1 cm) and rectangular rubber core (0.4x0.8 cm). 

 

 

Figure A- 6: Square concrete matrix (1 m) and square rubber core (0.5 m). 
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Figure A- 7: Square concrete matrix (1 m) and square rubber core (0.8 m). 

 

 

Figure A- 8: Square concrete matrix (1 cm) and square rubber core (0.5 cm). 
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Figure A- 9: Rectangular concrete matrix (1x10 cm) and square rubber core (0.1 cm). 

 

 

Figure A- 10: Square concrete matrix (0.2 m) and square rubber core (0.01 m). 
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Figure A- 11: Square concrete matrix (1 m), square rubber coating (0.8 m), and square steel 

core (0.4 m). 

 

 

Figure A- 12: Cubical concrete matrix (1 m) and cubical rubber core (0.8 m). 
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Figure A- 13: Cubical concrete matrix (1 m) and cubical steel core (0.8 m). 

 

 

Figure A- 14: Cubical concrete cube matrix (1 m) and cubical rubber core (0.4 m). 



 

 

151 

  

 

 

Figure A- 15: Cubical concrete matrix (1 m) and cubical steel core (0.4 m). 

 

 

Figure A- 16: Cubical concrete matrix (1 m) and hexagonal rubber core. 
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Figure A- 17: Cubical concrete matrix (1 m) and spherical rubber core. 

 

 

Figure A- 18: Cubical concrete matrix (1 m), cubical rubber coating (0.8 m), and cubical steel 

core (0.4 m). 
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Figure A- 19: Cubical Concrete matrix (1 m) and cubical rubber array (0.01 m each). 

 

 

Figure A- 20: Cubical concrete matrix (1 m), cubical rubber coating (0.8 m), and cylindrical 

steel core. 
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Figure A- 21: Cubical Concrete matrix (1 m), cubical rubber coating (0.8 m), and spherical 

steel core. 

 

 

Figure A- 22: Hexagonal concrete core, cylindrical rubber coating, and cylindrical steel core. 



 

 

155 

  

 

 

Figure A- 23: Cubical concrete matrix (1 m) and spherical steel core. 

 

 

Figure A- 24: Cubical concrete matrix (1 m), cylindrical rubber coating, and cylindrical steel 

core. 
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Figure A- 25: Cubical concrete core (1 m), spherical rubber coating, and spherical steel core. 

 

 

Figure A- 26: Cuboid Concrete matrix, cuboid rubber coating, and cuboid steel core. 
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Figure A- 27: Hexagonal Concrete matrix, cylindrical rubber coating, and cylindrical steel 

core. 
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APPENDIX B. SUPPLEMENTAL PARAMETRIC STUDIES 
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This section presents additional parametric studies to cover the efficiencies of FEA different 

parameters, such as the required number of unit cells to achieve bandgap, the size of the soil 

medium, and the performance of the perfectly matched layers in preventing unnecessary wave 

reflection. 

 

B.1. Minimum Number of Unit Cells in the Vertical Direction to Achieve Protection 

As discussed in section 3.2. the unit cell is assumed to be periodically arranged (infinitely repeated) 

in one or more directions. However, such an assumption is unrealistic as the number of unit cells 

will be bound to the structure's surrounding area. Section 3.4. unit cell configuration will be 

embedded in the soil, and the selected unit cell has two-periodicity directions (X and Y). Those 

periodicity directions are achieved by arranging the unit cells back-to-back and applying periodic 

boundary conditions along the Y-axis of the model. 

Moreover, the unit cells are stacked vertically to prevent the waves from traveling underneath the 

meta-barriers and to achieve the intended bandgap. This parametric study investigates the 

minimum number of unit cells required to prevent waves from traveling underneath the 

metabarriers. To this end, the FEA model, as shown in Figure 3-14, was used with different unit 

cell numbers (one to 16 rows) in the vertical direction (Rows).  

Figure B-1 shows the transmission curve for 1, 4, and 8 rows of unit cells. The result shows that 

the configuration blocked the waves within the bandgap even with one row of stacked unit cells. 

However, the transmission increased with the number of unit cells decreased, and this was due to 

the waves traveling below the unit cells. Moreover, there was a slight difference between 4 and 8 

stacked rows in terms of transmission.  
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Figure B- 1: Transmission curve for unit cells with 1, 4, and 8 stacked rows of unit cells. 

 

Figure B-2 shows the displacement after the unit cells, where a similar conclusion can be obtained. 

However, the observed displacement was higher when using four rows compared to 8 rows. 

 

Figure B- 2: Displacement curve after the unit cells for unit cells with 1, 4, and 8 stacked rows 

of unit cells. 

Figure B-3 shows the transmission comparison between 8, 12, and 16 stacked unit cells. The results 

show that transmission was the lowest with 16 rows (Unit cells are in contact with the bottom 
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boundary of the soil medium). However, the transmission variance between using 8 and 16 rows 

was insignificant and nearly the same for 8, 12, and 16 rows of unit cells. 

 

Figure B- 3: Transmission curve for unit cells with 8, 12, and 16 stacked rows of unit cells. 

 

Finally, Figure B-4 shows the displacement after the unit cells, with a similar conclusion to Figure 

B-3. The displacement is nearly identical for eight or more rows of unit cells. Therefore, it is 

recommended to use eight rows of stacked unit cells to achieve the intended bandgap and reduce 

the FEA cost since adding additional rows (Beyond 8) did not add significant value to the 

transmission or the displacement. On the contrary, adding more rows of unit cells led to doubling 

the number of elements and therefore increase computational costs of the analysis.  
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Figure B- 4: Displacement curve after the unit cells for unit cells with 8, 12, and 16 stacked 

rows of unit cells. 

 

B.2.  Effects of Soil Medium Length on Wave Propagation 

This section is intended to optimize the wave propagation FEA by studying the effects of the 

homogenous soil on wave amplitude in the propagation direction. To this end, Figure B-5 shows 

the developed model for this study, where an SDOF structure was placed in a soil medium, and 

LRB was applied to the boundary of the soil medium. Moreover, the distance between the wave 

source and the SDOF (35a in Figure B-5) is investigated while maintaining the same model height. 

The selected sizes are 25a, 50a, 75a, 100a, 200a, 400a, and 700a, where a is unit cell lattice 

constant. The displacement at the top of the SDOF is recorded, and only one of the comparisons 

is shown in this section, while the remaining are shown in Figures B-11 to B-25 of this dissertation. 

Figure B-6 shows the displacement at the top of the SDOF when the distance between the wave 

source and the structure is 50a against 400a. The result shows that all soil sizes will yield the same 

displacement pattern and peak amplitudes at the same peak resonance frequency with negligible 

variations in amplitudes. This variation is due to the wavelength of the frequency. For instance, at 
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a frequency of 1 Hz, the wavelength (𝜆) is 64.5 m. Therefore, to obtain the peak amplitude at 1 

Hz, the SDOF must be placed precisely at 64.5 m away from the source or exactly at 𝜆/2. Hence, 

the wave amplitude varies by the location of the SDOF from the wave source. Therefore, the 

investigated sizes of the soil do not play a significant role in frequency domain wave propagation 

analysis in this study. 

 

Figure B- 5: Size of homogenous soil to optimize wave propagation FEA. 

 

 

Figure B- 6: Displacement magnitude at the top of SDOF structure comparison between soil size 

of 50a versus 400a. 
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B.3. Evaluation of Perfectly Matched Layers in Absorbing All Incoming Waves 

This study aims to confirm that the perfectly matched layers (PML) can absorb all incoming waves 

without unnecessary reflections from the medium boundaries. To this end, the results of the 

double-graded array, as shown in Figure B-7, were used to plot the displacement along the top line 

of the soil medium. 

 

Figure B- 7: The FEM model to obtain PML capabilities. 

 

 

The displacement along a line from 0 m (edge of the model) and up to 32 m (immediately before 

the unit cells) was recorded and the results for different frequencies are shown in Figures B-8, B-

9, and B-10 for frequencies of 0.1 Hz, 8.7 Hz, and 22.8 Hz respectively. The Figures show that 

once the wave leaves the source point and enters the PML (marked in grey shaded area), it 

immediately starts decaying until it reaches 0 amplitude. Moreover, the PML can be seen 
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absorbing all the incoming frequencies (Ultra-low 0.1 Hz or high frequency 22.8 Hz) without 

reflecting anything to the soil medium. It is worth mentioning that the PML stretching factor used 

in this research was constant in all the simulations and equal to the longest wavelength (at 0.1 Hz, 

wavelength = 700 m), and the physical width is 1 m. 

 

Figure B- 8: Displacement amplitude at a line along the surface of the soil medium for 0.1 Hz. 
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Figure B- 9: Displacement amplitude at a line along the surface of the soil medium for 8.7 Hz. 

 

Figure B- 10: Displacement amplitude at a line along the surface of the soil medium for 22.8 

Hz. 
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Figure B- 11: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 25a versus 50a. 

 

Figure B- 12: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 25a versus 75a. 
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Figure B- 13: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 25a versus 100a. 

 

Figure B- 14: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 50a versus 75a. 
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Figure B- 15: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 50a versus 100a. 

 

Figure B- 16: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 50a versus 200a. 
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Figure B- 17: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 75a versus 100a. 

 

Figure B- 18: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 75a versus 200a. 
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Figure B- 19: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 75a versus 400a. 

 

Figure B- 20: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 100a versus 200a. 
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Figure B- 21: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 100a versus 400a. 

 

Figure B- 22: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 100a versus 700a. 
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Figure B- 23: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 200a versus 400a. 

 

Figure B- 24: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 200a versus 700a. 
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Figure B- 25: Displacement magnitude at the top of SDOF structure comparison between soil 

size of 400a versus 700a. 
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