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ABSTRACT 

 

An Integrated Algorithm for Automatic GPR Data Processing for Concrete Rebar 

Location 

 

Lihong Mao 

 

The University of Texas at Arlington, 2023 

 

Supervising Professor: Dr. Nur Yazdani 

Ground Penetrating Radar (GPR) has emerged as a valuable nondestructive testing 

technique for subsurface imaging and characterization in civil engineering applications. In 

particular, GPR plays a crucial role in the evaluation of reinforced concrete (RC) structures, 

enabling the determination of concrete cover thickness and the localization of reinforcement. 

However, the efficacy of GPR data analysis is often hindered by inherent challenges, including 

correction of time-zero position, unknown EM wave velocity, hyperbola picking, strong noise, and 

blurred signals. These challenges contribute to the complexity of achieving  accurate and 

automated GPR data processing for rebar location. 

This Ph.D. research aims to address these challenges and enhance the accuracy and 

efficiency of GPR data processing for RC structures. The research consists of three main chapters, 

each focusing on a specific aspect of GPR data analysis. 

Chapter 2 presents a novel time-zero (TZ) correction method specifically designed for RC 

structures. The proposed approach involves the identification of the first negative peak in the direct 

wave as the temporary TZ, followed by the application of an adjusting value to obtain the true TZ. 
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This innovative approach results in more accurate depth measurements and facilitates reliable 

assessment of concrete infrastructure with GPR. GPR scanning of 32 RC specimens with different 

rebar depths, sizes, and spacings was conducted, leading to the determination of a specific 

adjusting value of 0.14299 ns. To validate the proposed method, lab tests were conducted 

confirming the accuracy and reliability of the proposed TZ correction method, opening new 

avenues for improved GPR data analysis in RC structures. 

Chapter 3 introduces a nondestructive algorithm for accurately estimating GPR's 

electromagnetic wave velocity. The algorithm leverages hyperbolic fitting and travel-time analysis, 

offering a practical solution for velocity estimation without the need for core drilling. Various 

factors, such as subsurface media type, moisture content, temperature, and antenna frequency, 

affect GPR wave propagation velocity. Traditional methods for velocity estimation often rely on 

empirical models or assumptions, limiting their accuracy in complex subsurface conditions. In 

contrast, the proposed algorithm utilizes advanced techniques that account for the variation of 

wave velocity with depth and consider the effects of subsurface heterogeneity, resulting in more 

precise velocity estimation. Laboratory experiments successfully validated the algorithm's 

accuracy and robustness, demonstrating its potential to enhance subsurface imaging capabilities 

and improve data interpretation. 

Chapter 4 presents a comprehensive data processing algorithm for rebar localization in RC 

structures. The automated algorithm addresses challenges such as unknown time-zero, strong noise, 

and blurred signals, which are common in GPR data. By eliminating the need for manual 

interpretation or rebar-picking, the algorithm achieves full automation, enhancing efficiency and 

accuracy in data processing. Additionally, the proposed algorithm corrects time-zero and 

calculates electromagnetic wave velocity without the requirement for core-drilling, further 
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streamlining the data processing workflow. Validation on various datasets, including lab-made 

reinforced concrete blocks, bridge decks, and a culvert, demonstrated promising performance in 

determining the rebar's location. Compared with existing methods, the proposed algorithm proved 

to be cost-effective, practical, and efficient, providing accurate and reliable rebar localization. 

In conclusion, this Ph.D. research makes significant contributions to the GPR-based 

assessment of RC structures through the development of innovative TZ correction, velocity 

estimation, and rebar localization methods. The validated approaches improve the accuracy, 

reliability, and efficiency of GPR data processing, paving the way for more informed decision-

making in civil engineering and geophysical applications. The proposed methods open avenues 

for further research, such as exploring noise reduction techniques, machine learning-based 

approaches, and real-time GPR data processing integration. Overall, this research empowers civil 

engineers and researchers with robust tools for effective GPR data analysis and structural 

assessment in concrete infrastructure evaluation scenarios. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Adequate concrete cover in reinforced concrete (RC) structures provides a barrier against 

corrosion and fire damage for the steel reinforcement. It also enables the rebar to be stressed 

without slipping. Having accurate information on the concrete cover and rebar location is essential 

to evaluate the performance of existing structures. However, quite a few of the old structures are 

missing their as-built plan [1]. Besides, improper concrete and rebar placement occurs during the 

construction of buildings and bridges. Measuring as-built concrete cover thicknesses and 

identifying rebar locations have been challenging problems. A non-destructive method for 

measuring concrete cover thickness, and for identification of rebar location will be very useful in 

closing this knowledge gap.  While core drilling would provide ground-truth information on the 

concrete cover, it is destructive and time-consuming. In addition, this ‘spot test’ method cannot 

provide comprehensive information pertaining to horizontal location, depth, and spacing of 

reinforcement.  

Among the variety of Non-destructive Evaluation (NDE) techniques, Ground Penetrating 

Radar (GPR) and Cover Meter are the equipment that can be used for the investigation of concrete 

cover thickness and identification of rebar location in the field test [2]. However,  the efficiency 

and accuracy of the Cover Meter are affected greatly by various factors, such as the second layer 

of reinforcement, rebars that are parallel to the detected bar, and probe choice (deep or shallow) 

[3]. In addition, it is not efficient to use Cover Meter to measure the large area and complicated 
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reinforcement layout. In contrast, GPR offers a more pragmatic solution and is widely adopted in 

NDE practice.  

GPR operates on Electromagnetic (EM)-based principles, utilizing high-frequency radio 

waves (usually in the range of 10 MHz to 2.6 GHz) to reveal subsurface characteristics. It consists 

of a power supply, two antennae (transmitting and receiving antenna), and a radargram (central 

unit). The transmitting antenna emits an EM pulse into the subsurface (Figure1- 1). When the EM 

pulse encounters any buried objects or any changes in subsurface material, it reflects back to the 

surface. The receiving antenna receives these return signals and records the corresponding 

variations. The detected subsurface image is interpreted and displayed on the radargram. The time 

taken by the reflected signals to travel back is measured, which is an indication of the depth and 

location of the interruption (buried object).  

 

Figure1- 1. GPR working principle [4] 

GPR was initially used in geophysics to investigate subsurface characteristics [4]. It was 

later adopted in civil engineering for cavity detection in airfields [5]. Subsequently, GPR was used 

to detect voids in concrete [6] and masonry structures [7], and delamination in concrete bridge 

decks [8]. It was also used to locate pipes [9], calculate the thicknesses of slabs or roads [10], 

determine the moisture content in concrete [11], and identify the reinforcement in concrete 

structures [12].  
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1.2 Problem Statement  

GPR is increasingly used in the evaluation of the bridge deck condition and has been 

proven more effective than other equipment in measuring concrete cover thickness and identifying 

the location of rebar [13-15]. However, due to the existence of environmental noise, signal 

interference, and deficiencies of the GPR device, several challenges still need to be addressed in 

order to generate an accurate result in GPR data processing. These challenges are discussed as 

follows:  

➢ Time-zero estimation  

As shown in Figure1- 2, there is a small existing gap between the GPR antennae and the 

reinforced concrete surface. Time-zero exists because the recording of signals does not start until 

the direct wave (breakthrough signal) traveling along the air gap between the specimen surface 

and the GPR device reaches the receiving antenna (R).  

 

 

Figure1- 2. GPR device scanning the undersurface rebar 

Therefore, the actual two-way travel time of the EM wave in the concrete can be described 

as in Eq. (1- 1): 
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 𝑡𝑎 = 𝑡𝑔 − 𝑡0 (1-1) 

Where: 

𝑡𝑎 = Actual two-way travel time of the EM wave in the concrete 

𝑡𝑔 = Total time recorded by GPR 

Considering the geometrical relation illustrated in Figure1- 2, the range of 𝑡0 is presented in Eq. 

(1-2): 

 
2√𝑑𝑥

4
+ 𝑑0

2

𝑣𝑎
< 𝑡0 <

𝑑0 + √𝑑𝑥
2 + 𝑑0

2

𝑣𝑎
 

(1-2) 

Where: 

𝑑0 = Distance between the antenna and surface  

𝑣𝑎 = EM wave velocity in the air 

Conventionally, the time-zero position is placed at either the negative or the positive 

maximum peaks of the first wavelet. However, those peaks do not represent the true time-zero 

position. The true time-zero position still needs to be corrected in subsequent GPR data processing. 

As shown in Figure1- 3, the accurate setting of the time-zero position highly affects the actual EM 

wave two-way travel time. Consequently, it limits the accuracy of calculating the concrete cover 

thickness and identifying the rebar location. 
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 (a)  

 

 (b)  

Figure1- 3. An example of a GPR image: (a) Before time-zero correction; (b) After time-zero correction [7] 

➢ The unknown EM wave velocity in the concrete  

To calculate the concrete cover thickness of rebars, the EM wave velocity in the concrete 

must be estimated. The relationship between concrete cover thickness, EM wave velocity in the 

concrete, and the EM wave two-way travel time is shown in Eq. (1-3). 

 𝐶 =
𝑣 ∗ 𝑡𝑎

2
 (1-3) 

Where: 

𝐶 = Concrete cover thickness 

The EM wave velocity in the concrete is affected by the dielectric constant of concrete. 

The relationship between EM wave velocity in the concrete and concrete dielectric constant is 

shown in Eq. (1-4). 

 𝑣 =
𝑐

√𝜖
 (1-4) 

Where: 

𝑐 = Speed of light in air 

𝜖 = Dielectric constant of concrete 
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Traditionally, core drilling is necessary for GPR application to estimate the concrete cover 

thickness. Multiple cores are drilled to measure the clear cover thickness. The true concrete cover 

thickness values are then used to back-calculate the actual concrete dielectric constant, which is 

used in the subsequent GPR data processing. However, this method is destructive, time-consuming, 

and not accurate because the dielectric constant at each core drilling point may differ.  

➢ The efficiency of GPR data processing  

Automatic object detection using GPR is a relatively new research area. Object locating 

through GPR data processing has been either done manually or by using commercial software. 

Depending on the size of the detection area and the complexity of the reinforcement layout, 

manually locating objects in a scan can be extremely time-consuming. When combined with the 

cost of GPR device and commercial software, these methods can easily limit the usage of the GPR 

technology. To move forward to a fully automatic solution for measuring concrete cover thickness 

and locating rebar, the primary concerns with modern methods are the accuracy of detection and 

the ability to perform automatic detection (automatic GPR data processing). The challenges that 

affect automatic data processing accuracy include the existence of background noise and blurry 

hyperbolic signals.   

1.3 Objectives  

This research involves laboratory testing, field testing, and MATLAB [16] coding to 

develop an integrated GPR data processing algorithm. It is a new and comprehensive method. It 

will improve the accuracy and efficiency of GPR data processing. The objectives of this research 

are: 

➢ Correct the time-zero position. 

➢ Find the EM wave velocity at every rebar location without drilling cores.  
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➢ Convert the time-zero and EM wave method into MATLAB [16] algorithm for better GPR 

data processing.  

➢ Develop an integrated GPR image processing algorithm to automatically assess the rebar 

location, rebar spacing, and concrete cover thickness. 

➢ Investigate the performance of the developed data processing algorithm.  

The developed GPR data processing algorithm will be an integrated method, that addresses 

the challenges of time-zero position, EM wave estimation, and automatic data processing. 

Eventually, the GPR raw data will be processed more accurately and effectively by the proposed 

method.  

1.4 Literature review  

1.4.1 Time-zero 

One of the most important steps in GPR application is the time-zero value correction. The 

setting of the time-zero location is highly related to the accuracy of determining the value of the 

two-way travel time. Consequently, it will greatly affect the accuracy of calculating the concrete 

cover thickness in the GPR data processing. Yelf et al. [17] examined the setting of the true time-

zero position that both the GPR user and the equipment manufacturers use in reality. It is suggested 

that using a carefully calibrated time-zero value in advance of the first positive peak of the direct 

wavelet gives the most consistently accurate results for shallow depth estimates. In addition, it was 

also found that for a 1.5 GHz bow-tie antenna, the time-zero is located at 0.61 ns before the first 

positive peak in the direct wavelet. This is highly beneficial for predicting where the true time-

zero occurs in the GPR application.  

Assuming the buried object is located in the middle of the transmitting and receiving 

antenna.  Clem et al. [14] proposed a new method to calculate the time-zero value. The proposed 
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approach considered electromagnetic wave (EM) propagation only parallel to the ground surface, 

and not any other paths. The time-zero is suggested as a fixed value and calculated by Eq. (1-5). 

 

 𝑡0 =
𝑑𝑥

𝐶𝑎𝑖𝑟
 (1-5) 

Where: 

𝑡0 = Time-zero value 

𝐶𝑎𝑖𝑟 = EM wave velocity in the air 

𝑑𝑥 = Distance between the receiving and the transmitting antenna (Figure1- 4)  

 

Figure1- 4. Elevation view of the antenna [18] 

Agreed et al. [18] proposed to take advantage of using two receiving antennae in estimating 

the time-zero value. As illustrated in Figure1- 5, two receiving antennae were used, once the GPR 

profile had been achieved, immediately and without interruption of the recording, a measurement 

of the EM wave traveling in the air was made. This measurement was then used to estimate the 

time-zero value. However, this study considered the time that the EM wave traveled directly from 

the transmitting antenna to the receiving antenna as the time-zero value. The wave will likely hit 

the surface first and then reflect back to the receiver in reality. As shown in Figure1- 6, the EM 

wave travel paths 2 and 3 were also existing.   
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Figure1- 5. Box containing two antennae [18] 

 

 

Figure1- 6. GPR EM wave travel path [20] 

1.4.2 EM Wave Velocity 

Besides the time-zero correction, the estimation of the EM wave velocity is another 

important process in GPR data processing. Traditionally, core drilling is required to measure the 

concrete cover thickness. Consequently, the EM wave velocity will be calculated by using the 

ground-truth concrete cover thickness. In Eq. (1-6), the relationship between the EM wave velocity 

and the thickness of the concrete cover is shown. 

 𝑣 =
𝑑

𝑡
 (1-6) 

Where: 

𝑣 = EM wave velocity in the concrete 

𝑑 = Concrete cover thickness found by core drilling  
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𝑡 = EM wave travel time between the concrete surface and the buried rebar 

However, because core drilling is destructive and time-consuming, the hyperbolic method 

in EM wave velocity estimation has become a non-destructive alternative. As shown by Laurens 

et al. [19], the shape of GPR hyperbolic signals, in the theoretical equation, is controlled by the 

EM wave velocity. Such velocity is affected by the water content, the concrete grade, the material 

distribution, and other factors.  

Wiwatrojanagul et al. [20] proposed the use of an imaginary curve method to estimate the 

EM wave velocity in concrete. This method consists of drawing an imaginary curve that allocates 

the possible location of the reinforcement on the B-scan for each scan position. The curves are 

drawn by changing the estimated velocity of propagation. If all the curves obtained for different 

scans and a given velocity cross at the same point, this point corresponds to the position of the 

reinforcement, and that estimated velocity is the true EM wave velocity in the concrete. 

Wiwatrojanagul showed that the diameter of the object has no significant effect on concrete cover 

detection. The relative error is less than 5% for concrete cover thickness greater than 50 mm, 

whereas, for a smaller cover thickness (less than 25 mm), this error is approximately 15%. 

However, it is not a reliable method because the study estimated the time-zero before deciding the 

EM wave velocity.  

1.4.3 Automatic GPR Data Processing 

As for the automatic GPR data processing, a few attempts were made on extracting the 

information of rebar location from the raw GPR image. Dinh et al. [21] presented a new method 

to automatically pick rebars from the raw GPR image. The proposed approach is a deep learning-

based software algorithm. It utilized GPR data processing methods like migration, normalized 

cross-correlation, and thresholding to extract the pixels from the hyperbolic signals. A trained 
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convolutional neural network (CNN) was then used to spot the peaks of the hyperboles. The 

authors claimed that the accuracy of GPR detection of rebar location improved significantly 

through the proposed method. However, this method involves a large amount of data in CNN 

training. Besides, the training data must be representative of the bridge decks that will be scanned.  

The neural network approach has been researched in another study. Al-Nuaimy et al. [22] 

employed an algorithm to automatically select the pixels which contain the locations of the buried 

objects from the GPR image.  The study suggested using feature extraction and neural network 

classification to split up the GPR images. The segment that has information about the peaks of the 

hyperboles was then further processed by using edge detection and pattern recognition algorithms. 

However, the limitation is that sufficient representative data was required for the neural network 

training.  

Krause et al. [23] applied the image segment method to detect the rebar location from GPR 

B-scan images. Different from the segmentation method used in Al-Nuaimy et al. [22], Krause 

proposed to separate the arcs of the GPR B-scan hyperboles. The arc which matches the hyperbolic 

shape the best was then recognized as the hyperbolic rebar signature by an arc detector. However, 

limitations still exist in this method. The accuracy improved by this method cannot be 

demonstrated in complicated GPR profiles which are common in GPR applications.  

Gamba et al. [24] employed a new neural network method in underground pipe detection. 

The authors also employed some pre-processing steps before the neural network detector was 

applied. The purpose of these pre-processing steps was to improve the visibility of the GPR 

hyperbole signatures. However, the pipes detected in the article had bigger sizes and the layout is 

less complicated than rebars in a reinforced structure. Hence, this method has uncertainty for use 

in rebar detection.  
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A new neural network approach was proposed by Shaw et al. [12] to detect the rebar 

signatures. The edge detection process was used in the GPR image processing. The authors 

proposed to train and test the networks to find the hyperbolic rebar patterns using the detected edge 

lines.  However, the concrete property used in the simulation is not continuous in the real situation, 

which can limit the improvement of accuracy. Besides, the GPR images used for validation were 

much less complicated than the real case; therefore, the proposed method remains uncertain for in-

site application. 

Pasolli et al. [25] proposed the use of a support vector machine (SVM) to automatically 

analyze GPR images. A pattern recognition algorithm was developed to first separate the GPR 

images into binary images, linear signatures, and hyperbolic signatures. Certain features were then 

used to extract linear and hyperbolic signatures from the binary images. SVM was finally used to 

categorize linear and hyperbolic shapes.  

In a more recent study, the SVM classifier was presented by Kaur et al. [26] in an automatic 

rebar detection. In the first step, they suggested using an SVM classifier to locate the rebar region 

from GPR images. Then, a developed hyperbola-fitting algorithm was used to locate the peak 

within the region. The advantage of this method is to avoid using poorly performed data processing 

techniques, such as edge detection, thresholding, and template matching.  

Similar to the method proposed by Kaur et al. [26], Gibb et al. [27] developed another 

machine learning-based algorithm to detect the rebar from GPR images. They suggested using 

Naïve Bayes classifier to approximately extract the images containing rebar signatures from GPR 

images. Then, a histogram maxima detection along with a local search was applied. The rebar 

locations were precisely identified as the peaks of the hyperboles in GPR images. Instead of using 

the hyperbola-fitting method proposed by Kaur et al. (25), they used a histogram localization 
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method to spot the point that has the highest pixel density. The hyperbolic signatures having low 

contrast can be detected more efficiently through this method.  

However, among these data processing methods, the focus is all on finding the peaks in the 

GPR hyperbolas to represent the rebar location. The existing challenges in GPR data processing, 

such as time-zero correction, and EM wave velocity estimation still need to be addressed.  

Kien Dinh et al. [21] presented a new methodology to automatically pick rebar from GPR signals. 

The proposed approach is a deep learning-based software algorithm. It utilized GPR signal 

processing methods like migration, normalized cross-correlation, and thresholding to extra the 

pixels from the hyperbole signals. A trained convolutional neural network (CNN) was then used 

to spot the peaks of the hyperboles. The author claimed that the accuracy of GPR detecting rebar 

location improved significantly through the proposed methods. However, this methodology 

involves a large amount of data in CNN training. Besides, those data have to be representative of 

the bridge decks that will be detected.  

The neural network approach has been researched in another study. Al-Nuaimy et al. [22] 

employed an algorithm to automatically select the pixels which contain the location of the buried 

objects.  The authors suggest using feature extraction and neural network classification to split up 

the GPR images. The segment that has information about the peaks of the hyperboles is then further 

processed using edge detection and pattern recognition algorithms. However, the same limitation 

presented in this approach is that enough representative data is required for the neural network 

training. Gamba and Lossani [24] employed neural networks in underground pipe detection. 

However, the authors proposed some pre-processing steps before the neural network detector was 

applied. The purpose of these pre-processing steps is to improve the visibility of the GPR 

hyperbole signatures. Another neural network approach was proposed by Shaw et al. [12] to detect 
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the rebar signatures. The edge detection process was used in image processing. The author 

proposes to train and test the networks to find the hyperbolic rebar patterns using the detected edge 

lines.  However, the concrete property used in the simulation is not continuous in the real situation, 

which can limit the improvement of accuracy. Besides, the GPR images used for validation were 

much less complicated than the real case, therefore, the proposed methodology remains uncertain 

for in-site application. 

The image segmentation method was applied by Krause et al. [23] to detect the rebar 

location from the GPR B-scan image. Different from the segmentation method used in Al-Nuaimy 

et al. [22] research, the authors proposed to separate the arcs of the GPR B-scan hyperboles. The 

arc which matches the hyperbolic shape the best is then recognized as the hyperbolic rebar 

signature by an arc detector. However, limitations still exist in this methodology. The accuracy 

improved by this method can’t be demonstrated in complicated GPR profiles which is common in 

GPR applications.  

Pasolli et al. [28] proposed to use of a support vector machine (SVM) to automatically 

analyze GPR images. A pattern recognition algorithm was developed to first separate the GPR 

images into binary images, linear and hyperbolic signatures. Certain features then are used to 

extract linear and hyperbolic signatures from the binary images. SVM was finally used to 

categorize linear and hyperbolic shapes.  

In a more recent study [26], the support vector machine (SVM) classifier was presented in 

automatic rebar detection. In the first step, the authors suggest using an SVM classifier to locate 

the rebar region from the GPR scan image. Then, a developed hyperbola-fitting algorithm was 

used to locate the peaks within the region. The advantage of this methodology is avoiding using 
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poorly performed data process techniques, such as edge detection, thresholding, and template 

matching.  

Similar to the methodology proposed in [26], Spencer Gibb et al. [27] developed another 

machine learning-based algorithm to detect the rebar from GPR images. The authors proposed to 

use Naïve Bayes classifier to approximately extra the images containing rebar signatures from the 

GPR scan. Then, a histogram maxima detection along with a local search was applied. The rebar 

location is precisely located as the peaks of the hyperboles. Instead of using the hyperbola-fitting 

method proposed in [26], the author used a histogram localization method that spots the point that 

has the highest pixel density. The hyperbolic signatures which have low contrast can be detected 

more efficiently through this methodology.  

Magdalena Szymczyk et. al [29] presented a set of data processing techniques after raw 

data was produced by GPR. These basic procedures include editing, rubber-banding, dewow, time-

zero correction, filtering, etc. Additionally, the other also described the automatic imaging 

processing techniques. Various 1D temporal filters and spatial filters are illustrated in this paper. 

This paper stresses the importance of choosing the proper processing technique. Moreover, the 

same scheme should be throughout the whole data processing procedure.  

L. W. Galagedara et.al [30] proposed a method to calculate the GPR-time zero value. In 

the author’s methodology, wave arrival time is automatically determined by picking the arrival 

time of the ground wave peak for fixed-offset data. The author suggests conducting a time-zero air 

wave calibration at both the beginning and the end station of a data set. Then by using those 

obtained data, a more accurate time-zero estimation should be produced. However, this method is 

only conducted in soil water content. It will be more valuable if reinforced concrete structures are 

tested.  
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The rebar size determination is the least reliability application of the GPR device. The estimation 

of EM wave velocity in concrete has been too. Aleksandar Vaso Ristic et. al [20] proposed a new 

approach to estimate cylindric object radius (R) and EM wave propagation velocity (V) from GPR. 

In the new method, the author suggested three steps. First, using the extracted raw data to find the 

hyperbola peak point (𝑥0, 𝑡0), then the boundary speed 𝑣 is calculated. Finally, 𝑣 is refined to a 

more accurate value 𝑣𝑚𝑖𝑛 . Although the methodology is not applied in RC structures, it is still 

valuable for estimating the rebar size (R) and EM wave velocity.  

Traditionally, core drilling has been the common way to estimate EM wave velocity. Due 

to the increase requirement of non-destructive detection, the hyperbolic method to calculate EM 

wave velocity became popular. However, the accuracy of the hyperbolic velocity method highly 

depends on the method algorithm and raw GPR image. Jenet F.C. Sham et. al [31] proposed a new 

approach to estimate the EM wave velocity of GPR. The steps of this new method are the import 

of radargram, select suitable antenna frequency, set the region of interest (ROI) for locating the 

position of time zero in the direct wave, set the ROI for locating the position of the hyperbola 

signal from the reflector, set the desired standard deviation (SD) to eliminate the erroneous data. 

However, the new method was only applied in tests using a high-frequency antenna (2 GHz). If 

the author considered using various frequency antennae, the result will be more comprehensive 

and reliable.  

Automated data processing for GPR has become more and more popular. However, there 

are a few fully developed automated algorithms to visualize the radargram. Kien Dinh et. al [32] 

developed a new algorithm that can both locate the rebar and detect the corrosive area in the 

concrete structure. This method is based on background removal, depth correction, and synthetic 

aperture of focusing technique (SAFT). Although the authors claimed the proposed method has 
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improved the accuracy of GPR data processing, the time consumed in the data training step is 

remarkable.  

While most of the automated data processing approaches are based on the analysis of 

amplitudes of reflection, Tarussov et al. [33] argued that a visual interpretation by an experienced 

GPR analyst would provide much more accurate evaluations. To justify their claim, the authors 

pointed out three specific reasons. First, they view the GPR as an imaging device and not a 

measuring instrument. Second, they stated that a simple analysis of amplitude would ignore most 

information contained in the B-scans, and such an analysis can be affected by many factors, such 

as the rebar depth, surface anomalies, rebar configuration, polarization effects, etc. Finally, the 

authors explained the issue with the conventional method of contour mapping. According to them, 

as this method was based on interpolation, it was not suitable to map corroded areas, which usually 

had sharp limits in B-scans.  

Hai Liu et al. [34] proposed an automatic detection and localization method using a Single 

Shot Multibox Detector (SSD) model and migration. However, the performance of this method 

highly depends on the dataset. Without appropriately adjusting the time zero position and 

calculating EM wave velocity, the accuracy of depth measurement is inefficient. 

Maas et al. [35] proposed a GPR data process algorithm to only detect the presence of 

buried objects with high accuracy. Their method, like other neural network systems, requires 

training examples in similar environments and performance depends on the neural network 

structure. Moreover, these techniques fail in the presence of incomplete or highly disturbed profiles.  

Another machine learning-driven approach proposed by Pasolli et al.[28] which includes 

utilizing Genetic Algorithm (GA) with Support Vector Machine (SVM) classifier for object 

detection and material recognition with 80% percent accuracy. Lu et. al [36] Proposed a new 



18 
 

algorithm for the automatic detection and material classification of buried objects with 92% 

accuracy using SVM after applying discrete wavelet transform (DWT) and fractional Fourier 

transforms (FRFT). Although the accuracy of the proposed method is high, the system is not fully 

automatic and does not provide a depth estimation which is of utmost importance in real 

applications. Qiao et al. [37] proposed a multi-stage process called the Multiresolution Monogenic 

Signal Analysis (MMSA) which detected targets and estimated their horizontal and vertical 

position with an average 5.8 cm distance error.  

1.5 Dissertation Organization  

The dissertation is organized as follows: Chapter 1 provides an introduction to the research, 

presenting the background, problem statement, and research objectives, followed by an extensive 

literature review. The main body of the dissertation consists of three papers: Chapter 2 introduces 

a novel GPR time-zero correction method for concrete structure evaluation, Chapter 3 describes a 

nondestructive method to calculate the EM wave velocity in concrete during depth measurement, 

and Chapter 4 presents a comprehensive algorithm for processing GPR data with full automation. 

The dissertation concludes with Chapter 5, where a summary of the research findings and their 

implications are discussed, followed by conclusive remarks. 
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CHAPTER 2 

GROUND PENETRATING RADAR TIME ZERO CORRECTION FOR 

CONCRETE STRUCTURE EVALUATION 

 

ABSTRACT 

Ground penetrating radar (GPR) has been widely used for the Non-Destructive Evaluation 

(NDE) of reinforced concrete (RC) structures, especially for determining the concrete cover 

thickness and locating reinforcement. Accurate determination of these parameters is essential for 

maintenance and repair design. However, establishing an accurate time zero (TZ) position, which 

directly impacts the depth measurement accuracy, remains challenging. Existing methods for TZ 

correction lack accuracy and consensus. To overcome this limitation, this study proposed a novel 

approach by identifying the first negative peak in the direct wave as the temporary TZ position 

and then applying an adjusting value relative to this position. GPR scanning data from 32 RC 

samples with different rebar depths were used to come up with a -0.14299 ns adjustment value, 

locating the TZ position at 0.14299 ns ahead of the first negative peak. An antenna pulling-away 

test was conducted on a metal panel to validate the proposed approach, considering both the first 

positive and negative peaks as the temporary TZ and subsequently adjusting the real TZ. It was 

found that the adjusted TZ positions obtained from the two temporary TZ positions coincided, 

confirming the accuracy and reliability of the proposed approach. Due to the influence of 

subsurface material on the arrival time of the first positive and negative peaks, the calculated 

adjustment value is only applicable to RC structures.  

Keywords: time zero, ground-penetrating, concrete, first negative peak, first positive peak 
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2.1 Introduction 

Ground Penetrating Radar (GPR) is a widely used Non-Destructive Evaluation (NDE) 

technique for subsurface investigations, including the determination of concrete reinforcement 

cover and locations [38]. Accurate rebar placement and depth information are important for 

effective repair and maintenance of Reinforced Concrete (RC) buildings and bridges [33, 39, 40]. 

GPR offers several advantages over alternative approaches, including non-destructiveness, high 

resolution, and excellent measurement accuracy [41]. The GPR system typically consists of a radar 

control unit (radargram), a data acquisition system, and a transmitting and receiving antenna. It 

gathers subsurface data by employing high-frequency (10 to 3000 MHz) pulsed electromagnetic 

(EM) waves, often known as radar waves. The transmitting antenna emits an EM pulse into the 

subsurface. When the EM pulse encounters buried objects or changes in subsurface material, it 

reflects to the surface. The receiving antenna receives the returning signals and records the 

corresponding variations. The detected subsurface image is interpreted and displayed on the 

radargram. Measurement of the time the reflected signals take to travel back provides information 

about the depth and location of the interruption (e.g., embedded rebars in concrete) [42-45].  

To ensure accurate depth measurements with GPR systems, a good assessment of the time 

the EM wave takes to travel from the transmitting antenna to the target and back to the receiving 

antenna is required. The time zero (TZ) position, serving as the time origin on radar measurements, 

is often assumed to be the moment when the direct wave, traveling from the transmitting antenna 

to the receiving antenna (Figure 2- 1), is collected by the antenna [46]. However, practical GPR 

applications involve a delay between the emission of the pulse by the transmitting antenna and the 

start of recording by the receiving antenna. Laurens [19] demonstrated that the arrival time of the 

direct wave varies and is not a valid time reference since it is affected by the moisture content of 
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the subsurface material. Therefore, the TZ position is an essential time reference that needs to be 

adjusted. Neglecting the proper TZ correction can significantly impact the two-way travel (TWT) 

time of the EM wave, leading to an error in the depth investigation of the buried objects.  

 

Figure 2- 1. Schematic diagram of the GPR signal 

Most GPR manufacturers have TZ guidelines [47] specific to their systems. The need for 

TZ adjustment for GPR scans has been known for some time. Yelf [17] reported that the true TZ 

position is not a fixed value and is affected by the type of antenna, the height above the surface, 

and the moisture content of the substrate. Ernenwin [48] used the first break position of the direct 

wave as the TZ position, which is typically used in archeology where the ground is not too 

conductive and the depth of an object is not a major concern. Dinh et al. [8, 21, 32, 49, 50] proposed 

first finding the position of the first positive peak for all the GPR A-scans, and then calculating the 

average position of the first positive peak for the whole B-scan. The TZ position can be corrected 

by deleting all data before 0.61 ns of the average position of the first positive peak. Pongsak et al. 
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[51] suggested placing the TZ position for a 1.5 GHz antenna at 0.13 ns. Steinbeck et al. [52] 

compared pairwise and mesh calibration approaches by utilizing the ability of the monitoring 

system to conduct reciprocal measurements between any pair of antennae. The TZ position was 

calculated through a combination of pairwise and mesh calibrations. The former involves 

reciprocal measurements between individual antennae, while the latter combines reciprocal 

measurements from multiple transceivers. The calibration strategy considers the characteristics of 

the monitoring system and enables accurate measurements of signal propagation time between 

antennas in the absence of a known material for calibration. Zadhoush et al. [53] proposed using a 

realistic three-dimensional numerical model of a GPR transducer to generate a better process of 

TZ adjustment and time picking of the GPR wavelets.   

Prior research on TZ corrections can be summarized as follows: 

1. First-break picking: It involves identifying the first arrival of the radar signal from the 

subsurface corresponding to the reflection from the top layer. The time delay is used to 

correct the TZ that relies on accurately identifying the first arrival of the radar signal, which 

can be challenging in noisy or complex subsurface environments. Additionally, the first-

break arrival time may not necessarily correspond to the true TZ position, particularly for 

multiple subsurface layers with different velocities. 

2. Pulse stretching: It involves modifying the radar pulse shape to account for any distortions 

introduced by the antenna or cable delays. The pulse shape can be adjusted to match a 

reference signal, such as a synthetic pulse, to correct the TZ position. This method can be 

effective in correcting antenna ringing or cable delays. However, it can introduce additional 

noise or distortions in the radar signal and may also require extensive calibration or signal 

processing. 
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3. Waveform cross-correlation: This method involves comparing the recorded radar signal 

with a reference signal to determine the time delay. It requires a reference signal closely 

matching the recorded radar signal, which may not always be available. It can also be 

computationally intensive, particularly for large datasets or high-resolution imaging. 

There is apparently a knowledge gap in the existing literature due to the limitations in the 

current approaches to the TZ correction for GPR scans and no consensus on any single method.  It 

is possible that shallow wave reflections or near-field data can be deleted from the radargram or 

may not be seen if TZs are not correctly positioned, limiting the accuracy of exiting methods. The 

current study aims to plug this knowledge gap by proposing a more reliable and logical method 

for adjusting the GPR TZ position for RC structures.  

2.2 Methodology 

Figure 2- 2 illustrates the direct and reflected wave signals of the A-scan of a rebar with 

the horizontal and vertical axes corresponding to time and wave amplitude, respectively.  The left 

box encloses the direct wave, while the right box is for the reflected wave. The two signals 

exhibited opposite polarities due to the shift in wave polarity caused by the reflection of a metallic 

medium.  Times t1, t2, and t3 represent the first positive peak in the direct wave, the negative peak 

of the direct wave, and the positive peak of the reflected wave, respectively. The signal TWT time 

between the scanning surface and rebar was calculated by measuring the time difference between 

the positive peak of the reflected wave and the temporary TZ.  
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Figure 2- 2. A-scan of an embedded rebar 

The proposed methodology (Figure 2- 3) included two main procedures: scanning RC 

specimens and conducting antenna pulling-away testing. The RC specimen testing, with the 

workflow depicted in Figure 2- 3 (a), involved scanning 32 samples with various rebar embedment 

depths. The first negative peak, denoted as t2 in the direct wave, was used as the time reference. 

The signal travel time between the concrete surface and rebar was measured as the difference 

between t3 and t2. The travel distance corresponds to the signal path length from the concrete 

surface to the rebar and then reflects back to the concrete. Linear regression analysis was conducted 

on the plot of TWT distance versus travel time for each rebar size with variable depth. The slope 

of the regression line provided the EM wave velocity in the concrete specimen, while the intercept 

on the time axis offered the adjusting value for locating the true TZ position relative to the first 

negative peak of the direct wave, t2. To compensate for the possible error in calculating the correct 

TZ position, the average intercept for each rebar size was used as the adjusting value. 

In order to verify the proposed method, an antenna pulling-away test, with workflow shown 

in Figure 2- 3 (b), was conducted on a steel panel. Steel panel was chosen for its controlled 

interaction with GPR signals, well-defined electromagnetic properties, and stability. This ensured 
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the validation of the GPR system while minimizing interference and maintaining uniformity in the 

experiment. Figure 2- 4 shows the antenna pulled-away test. Similar to the RC specimens, GPR 

scanning of the steel panel was conducted to obtain the A-scans. The antenna was placed on a 

plastic box, which was later pulled away from the steel panel at different distances. The distance 

between the panel and the antenna requires no-overlapping of the direct wave with the reflected 

wave; hence the minimum distance was bigger than zero. The GPR antenna was pulled further 

away from a steel plate at distances of 50, 100, 150, 200, 250, and 300 mm (1.97, 3.94, 5.91, 7.87, 

9.84 and 11.81 in.). As air is a simple and homogeneous media, the A-scan clearly contains the 

direct and the reflected waves. The radar images can be clean and easily interpreted, even though 

clutter due to unwanted targets can be detected.  A careful interpretation considering this difficulty 

can provide information to calibrate an antenna [54]. The temporary TZ position was initially 

placed at the first positive peak, denoted as t1 in the A-scan. A linearly best-fit trend line was then 

developed from the recorded TWT time and distance while putting the antenna at different 

distances. The intercept on the time axis represents the adjusting value for calibrating the TZ 

position in reference to the first positive peak.  In this case, the signal travel velocity was known 

as 300 mm/ns due to the homogeneous nature of air. Next, the temporary TZ was set at the first 

negative peak, labeled as t2 in the direct wave of the A-scan. Similar to the positive peak, TWT 

time and distance were calculated. Then, a linear regression graph of the TWT distance versus 

time data was generated. The time axis intercept was used to calibrate the TZ position with respect 

to the first negative peak. Comparing the location of the calibrated TZ using the first positive and 

negative peaks, they were found to coincide. It means that the location of the calibrated Temporary 

Zero (TZ) relative to the first negative peak aligns with the location of the calibrated TZ relative 
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to the first positive peak. This confirmed the accuracy of putting the temporary TZ position at the 

negative peak.  

 

 

(a) 
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(b) 

Figure 2- 3. Proposed methodology workflow: (a) RC sample scanning; (b) Antenna pulling 

away testing 
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(a) 

 

 

(b) 

Figure 2- 4. Antenna pull-away test (a) Testing scheme; (b) Actual testing 

Additionally, scanning of different surfaces was conducted to verify the material 

dependency of the values of the first positive and negative peaks. Consequently, the calculated 

adjusting TZ value in reference to the first negative peak was determined to be suitable for the RC 

structure surface. 
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2.2.1 Specimen design 

To prevent GPR antenna footprint interference with reflections from the edges and bottom, 

RC specimens, each measuring 914 x 381 x 203 mm (36 x 15 x 8 in.), were selected as shown in 

Figure 2- 5. The dimensions allowed the GPR waveforms to capture two distinct signals, direct 

and reflected waves. A factorial design method was employed to determine the number of samples 

considering rebar depth, size, and spacing. Minitab statistical software was utilized, incorporating 

three degrees of freedom [55]. Concrete covers of 25, 38, 64, and 89 mm (1, 1.5, 2.5, and 3.5 in.) 

were considered to incorporate the most frequently used values specified in ACI 318-19 [56]. 

Rebar sizes of #3 to #11 were considered, encompassing commonly used sizes. The minimum 

rebar spacing requirement per ACI-318-19 [56] was taken into account to ensure proper concrete 

consolidation around the reinforcement. The minimum spacing was determined to be a maximum 

of 25 mm (1 in.), a bar diameter, or 1.33 times the maximum aggregate size. In addition, as-built 

plans for various structures, including RC slabs, bridge decks, and girders, showed a wide range 

of spacings, from 76 to 457 mm (3 to 18 in.). Therefore, rebar spacings of 76, 102, 127, and 179 

mm (3, 4, 5, and 7 in.) were used for the specimens, as these are commonly used in RC structures. 

Table 2- 1 shows the rebar information for the 32 samples. 
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Figure 2- 5. RC specimens (All dimensions in mm) 

Table 2- 1. Test matrix 

Specimen 

number 

Rebar cover 

mm (in.) 
Rebar size 

Rebar spacing 

mm (in.) 

1 25 (1) #3, #4, # 5, #6, #7 76 (3) 

2 25 (1) #8, #9, # 10, #11 76 (3) 

3 38 (1.5) #3, #4, # 5, #6, #7 76 (3) 

4 38 (1.5) #8, #9, # 10, #11 76 (3) 

5 64 (2.5) #3, #4, # 5, #6, #7 76 (3) 

6 64 (2.5) #8, #9, # 10, #11 76 (3) 

7 89 (3.5) #3, #4, # 5, #6, #7 76 (3) 

8 89 (3.5) #8, #9, # 10, #11 76 (3) 

9 25 (1) #3, #4, # 5, #6, #7 102 (4) 

10 25 (1) #8, #9, # 10, #11 102 (4) 

11 38 (1.5) #3, #4, # 5, #6, #7 102 (4) 

12 38 (1.5) #8, #9, # 10, #11 102 (4) 

13 64 (2.5) #3, #4, # 5, #6, #7 102 (4) 

14 64 (2.5) #8, #9, # 10, #11 102 (4) 

15 89 (3.5) #3, #4, # 5, #6, #7 102 (4) 

16 89 (3.5) #8, #9, # 10, #11 102 (4) 

17 25 (1) #3, #4, # 5, #6, #7 127 (5) 

18 25 (1) #8, #9, # 10, #11 127 (5) 

19 38 (1.5) #3, #4, # 5, #6, #7 127 (5) 

20 38 (1.5) #8, #9, # 10, #11 127 (5) 

21 64 (2.5) #3, #4, # 5, #6, #7 127 (5) 

22 64 (2.5) #8, #9, # 10, #11 127 (5) 

23 89 (3.5) #3, #4, # 5, #6, #7 127 (5) 

24 89 (3.5) #8, #9, # 10, #11 127 (5) 

25 25 (1) #3, #4, # 5, #6, #7 178 (7) 

26 25 (1) #8, #9, # 10, #11 178 (7) 

27 38 (1.5) #3, #4, # 5, #6, #7 178 (7) 

28 38 (1.5) #8, #9, # 10, #11 178 (7) 

29 64 (2.5) #3, #4, # 5, #6, #7 178 (7) 

30 64 (2.5) #8, #9, # 10, #11 178 (7) 

31 89 (3.5) #3, #4, # 5, #6, #7 178 (7) 

32 89 (3.5) #8, #9, # 10, #11 178 (7) 

 

2.2.2 Specimen preparation 

Normal strength concrete from a local ready-mixed supplier was used to cast the samples 

as it is the most commonly used in RC structures. Target compressive strength of 27.6 MPa (4 
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ksi), slump of 102 ±25 mm (4 ± 1 in.), and air content of 4.5% (± 1.5%) were selected. Detailed 

information on the concrete mix is shown in Table 2- 2. 

Table 2- 2. Concrete mix design, per 0.765 m3 (1 cy) 

Material 
      Weight  

 

Type I Cement 205 kg (451 lb) 

Class C Fly Ash 51 kg (113 lb) 

Size #57 coarse Aggregate 839 kg (1850 lb) 

Fine Aggregate (Bristol Sand) 145 kg (320 lb) 

Fine Aggregate (Bridgeport sand) 436 kg (961 lb) 

Water-reducing Admixture  13 kg (28 lb) 

Air-entraining admixture 7.94 g (2.8 oz) 

City Water 59 kg (120 lb) 

 

A combination of plywood and lumber was used to construct the formworks, as shown in 

Figure 2- 6. Holes were drilled in the plywood to install the rebars at the prescribed depths. The 

specimens were vibrated and troweled during casting to ensure proper consolidation and finish, 

per ASTM C-31 [57] (Figure 2- 6). After finishing, a curing compound was applied to each 

specimen and protected from direct sunlight to prevent moisture loss. Concrete cylinder specimens 

per ASTM C39 [57] were prepared to verify the target compressive strength. 

 

(a)  



32 
 

  

(b) 

 

(c) 

Figure 2- 6. Samples preparation: (a) Formwork with rebars; (b) Concrete casting 

2.2.3 GPR scanning of RC specimens 

SIR-30 ground-coupled 2.6 GHz high-frequency GPR antenna was used for this study 

(Figure 2- 7). The 2.6 GHz central frequency is appropriate for shallow-depth concrete 

investigation, usually in the range of 0 to 305 mm (0 to 12 in.). The offset between the transmitting 

and the receiving antennas is 39 mm, as shown in Figure 2- 7. To ensure a straight scanning path 

along the length, two survey lines were marked on the surface of the samples, as depicted in Figure 

2- 8. The antenna was then rolled along these two lines during the scanning process.  
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Figure 2- 7. 2.6 GHz GPR antenna 

 

 

Figure 2- 8. RC specimen scanning 
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2.2.3 Scanning of different material surfaces  

In this laboratory test, wood, plastic, and concrete surfaces were scanned using the SIR-30 

antenna (Figure 2- 9), and their respective first positive and negative peak values were recorded. 

Subsequently, the time difference between the first positive peak and the first negative peak was 

calculated for each material.   

 

Figure 2- 9. GPR scanning of concrete, plastic, and wood surfaces 

2.3 Result and Discussion 

2.3.1 RC specimen scanning 

Figure 2- 10 shows the plots of TWT distance versus the best fit linear trend lines for 

samples with rebar sizes #3 to #11 at different cover depths and the corresponding TZ positions. 

As demonstrated in Figure 2- 10 (a) to 11(i), the EM wave velocity remained mostly stable at 

around 95 mm/ns. The velocity variation depends on moisture content, concrete composition, 

porosity, and density. Generally, the velocity of EM waves in concrete falls within a range of 55 

to 112 mm/ns [58]. All plots had an excellent coefficient of determination, R2, ranging from 0.9930 

to 0.9973. This implied that the linear regression model efficiently captured the variation in the 

data. The intercept in the horizontal time axis, where TWT time equals zero, represents the real-
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time origin or the TZ position. Hence, the intercept value is used to accurately locate the TZ 

position in reference to the first negative peak of the direct wave. Ranges of intercept values from 

different samples and depths were obtained, reflecting the variations in the arrival time of the EM 

wave at the TZ position. The average of the intercept values was calculated to ensure a 

representative TZ position adjustment value. This helps mitigate potential outliers or unforeseen 

measurement errors that may occur in individual samples. The intercept values from each graph 

are summarized in Table 2- 3, resulting in an average of -0.14299 ns. This average value adjusts 

the TZ position slightly before the first negative peak, ensuring precise TWT time determination 

and subsequent accurate depth measurement.  

   

(a) (b) 

 

(c) (d) 
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(e) (f) 

 

 

(g) (h) 

                     

(i)  

Figure 2- 10. TWT distance vs. time plots: (a) #3; (b) #4; (c) #5; (d) #6; (e) #7; (f) #8; (g) #9; (h) 

#10; (i) #11 
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Table 2- 3. Adjusted values for true Time Zero 

Rebar TZ to the first negative peak (ns)   
#3 -0.178311077   
#4 -0.12625382   
#5 -0.145508358   
#6 -0.122360573   
#7 -0.123826846   
#8 -0.142203369   
#9 -0.170210935   
#10 -0.154533274   
#11 -0.12374235   

    -0.14299 

 

2.3.2 Antenna pulling away test  

The TWT time versus distance plot for temporary TZ placed at the first positive peak is 

shown in Figure 2- 11.TWT time vs. distance with the first positive peak as reference point. Linear 

fitting was employed due to the assumption of a constant EM wave velocity, which corresponds 

to the gradient of the graph. The 300.84 mm/ns trend line slope agrees with the fact that EM wave 

travels at 300 mm/ns in air.  The R2 value of 0.9992 demonstrated an excellent fit of the collected 

data point to the best-fit line. The time axis intercept shows that the TZ position is 0.131123 ns 

behind the first positive peak, verified by several studies [14, 51, 59]. Therefore, the true TZ 

position for the antenna pulling way test may be considered as 0.131123 ns behind the first positive 

peak.  
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Figure 2- 11.TWT time vs. distance with the first positive peak as reference point 

The TWT time versus distance plot, when the time origin was placed at the first negative 

peak, is shown in Figure 2- 12. TWT time vs. distance with the negative peak as reference point. 

The linear regression trend line shows that the calculated EM velocity in air is 299.18 mm/ns, 

closely matching the 300 mm/ns expected value. The adjusted TZ value is 0.17831 ns ahead of the 

first negative peak, corresponding to the true TZ position in the A-scan. The difference between 

the first positive and negative is 0.308 ns as shown in Table 2- 1. Hence, the proposed method of 

using the first negative peak as the temporary time origin is verified.  

 

Figure 2- 12. TWT time vs. distance with the negative peak as reference point 
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Table 2- 4. First positive and negative peaks for different materials 

Material 

A-scan first positive peak in 

the time axis 

(ns) 

A-scan first negative peak in 

the time axis 

(ns) 

Concrete 0.785 1.105 

Plastic  0.781 1.014 

Wood  0.680 1.233 

Steel  0.805 1.113 

 

2.3.3 Scanning of different materials  

Table 2- 1 summarizes the scanning results of concrete, plastic, wood and steel surfaces. 

The test verified that the first positive and negative peaks and the difference between the two points 

depend on the surface materials. It is noted that calibrated TZ with respect to the first negative 

peak is not a fixed value for different material surfaces. However, the -0.14299 ns value generated 

from this research is suitable for RC structures. 

2.4 Conclusion  

The following conclusions can be made based on the findings from this study: 

1) This research presented a novel TZ correction method for RC structures application. It 

involved identifying the first negative peak in the direct wave as the temporary TZ and then 

applying an adjusting value in regard to this position to obtain the true TZ. This approach 

enables more accurate depth measurements and facilitates reliable assessment of concrete 

infrastructure with GPR.  

2) The specific adjusting value for RC structures using the proposed method was obtained 

through GPR scanning of 32 RC specimens with different rebar depths, sizes, and spacings.  

From the data analysis, a 0.14299 ns adjustment value ahead of the first negative GPR 

wave peak was determined.  
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3) To validate the proposed approach, an antenna pulling-away test was conducted on a metal 

panel which entailed considering both the first positive and negative peaks as the temporary 

TZ and adjusting the real TZ accordingly. It was found that the adjusted TZ positions 

obtained from the two temporary TZ positions coincided, confirming the accuracy and 

reliability of the proposed approach.  

4) Additionally, the study explored the behavior of the first positive and negative peaks on 

different material surfaces using the same GPR configuration. The results indicated that 

the positions of these peaks and their differences depend on the surface materials. 

Therefore, it can be concluded that the adjusting value with respect to the first negative 

peak is not a fixed value for different material surfaces.   

In conclusion, this research provides a significant contribution to the GPR-based 

assessment of concrete structures through the development of an innovative TZ correction method. 

The validated approach improves the accuracy and reliability of depth measurements in GPR data 

analysis. These findings open an avenue for further research and encourage the application of the 

proposed method in various concrete infrastructure evaluation scenarios.  

2.5 Limitation 

The approach presented in this research assumes relatively equal water content in all the 

samples since they were made of the same concrete mix and subjected to the same curing 

condition. However, in reality, the water content in concrete varies. Thus, the effect of water 

content on TZ correction should be investigated. The type of subsurface material affects the first 

negative and positive peaks' arrival time; hence, the -0.14299 ns adjusting value only applies to 

RC structures. However, the proposed methodology in this research could be used for determining 

the TZ corrections for other materials.  
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CHAPTER 3 

A Nondestructive Method to Estimate GPR Propagation Velocity  

 

ABSTRACT 

Ground Penetrating Radar (GPR) is a widely used nondestructive testing technique for 

subsurface imaging and characterization. Accurate estimation of the GPR propagation velocity is 

crucial for interpreting radar signals and obtaining accurate depth measurements. However, 

existing methods for velocity estimation in GPR are often limited by the reliance on empirical 

models or assumptions, which may lead to inaccuracies in complex subsurface conditions. This 

paper presents a nondestructive method for estimating GPR propagation velocity based on the 

analysis of hyperbolic fitting and travel-time analysis. The proposed method is validated through 

laboratory experiments, demonstrating its effectiveness in estimating propagation velocity with 

high precision. The results indicate that the proposed method offers a practical and reliable solution 

for GPR practitioners to enhance subsurface imaging capabilities and improve data interpretation. 

Keywords: Ground-penetrating radar (GPR), propagation velocity estimation, nondestructive 

testing, hyperbolic fitting, travel-time analysis. 

3.1 Introduction 

Ground Penetrating Radar (GPR) is a valuable non-destructive geophysical tool used in 

subsurface investigations for infrastructure condition assessment, as well as for geophysics, 

environmental studies, and archaeology [12, 60-63]. It provides valuable information about the 

internal structures and properties of materials, such as concrete, soil, and pavement. GPR works 

by emitting electromagnetic waves into the subsurface and detecting the reflected signals to 

construct a detailed image of subsurface structures and properties (Figure 1)[64]. One of the critical 



42 
 

parameters in GPR data analysis is the electromagnetic wave velocity, which affects the depth and 

location calculation of subsurface features. Accurate estimation of GPR propagation velocity is 

crucial as it directly impacts the interpretation of radar data and the accuracy of subsurface imaging.  

 

Figure 3- 1. GPR working principle 

Several factors affect GPR propagation velocity [65, 66], including the soil type, material 

and  Different soil types have varying electrical properties, such as permittivity and conductivity, 

which influence the propagation velocity of GPR waves. Materials with higher electrical 

conductivity tend to slow down the radar waves, while those with higher permittivity accelerate 

them. Second, the moisture content. The moisture content in the subsurface can significantly 

impact GPR propagation velocity. Moisture affects the dielectric properties of the material, 

altering its permittivity and conductivity and, consequently, the speed of radar waves. Moist soils 

with higher moisture content tend to exhibit reduced propagation velocities [67-70]. Third, 

temperature. Temperature variations in the subsurface can influence the propagation velocity of 

GPR waves. Temperature changes affect the dielectric properties of materials, causing variations 

in their permittivity and conductivity and, thus, impacting the radar wave speed. Last, is the 

antenna frequency. The frequency of the GPR system used for data collection also affects 
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propagation velocity. Higher frequencies tend to result in shorter wavelengths and increased 

resolution but are more sensitive to subsurface variations. The propagation velocity is inversely 

related to frequency, meaning that higher frequencies generally result in slower radar wave speeds.  

Traditionally, GPR propagation velocity estimation has relied on empirical models or 

assumptions, but their accuracy is often limited due to the complex nature of subsurface conditions 

mentioned above. To overcome this limitation, there is a growing need for an automated and robust 

algorithm that can provide accurate velocity estimation, enabling practitioners to obtain more 

reliable subsurface information. Several studies have explored different approaches for estimating 

GPR wave velocity.  

Similar to migration in the domain of seismic techniques, Anxue et al. [71] present an 

approach to focus on GPR data and estimate the electromagnetic wave velocity underground. Lin 

et. al [72] study the estimation of underground electromagnetic wave velocity based on 

characteristics of shallow-buried small target echo. The traditional estimation of underground 

electromagnetic wave transmission velocity adopts the method of measuring the dielectric constant.  

A validation study was conducted by Lai et. al [73] over a fixed alignment of underground utilities 

to study the effects of GPR traverse directions on the GPR wave velocity estimation of utilities. 

Delf et. al [74] present an automated workflow to estimate an englacial radar velocity field from 

zero offset data and apply the algorithm to GPR data collected on Von Postbreen, a polythermal 

glacier in Svalbard, using a 25 MHz zero-offset GPR system. At present, there is a lack of such a 

relationship for active-layer soil moisture estimation for the Qinghai–Tibet plateau permafrost 

regions. Lau et. al [75] propose a combination of velocity algorithms for the estimation of velocity, 

followed by characterizing water leak location where wave velocity is reduced compared to non-

leak location, without prior information of utility depth. Liu et. al [76] use a 1‐GHz GPR system 
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to measure the travel times for direct and reflected waves for computing the EM wave 

velocity. The development of a new algorithm to estimate EM wave propagation velocity (v) with 

a shielded GPR antenna with a high frequency of 2 GHz is presented by sham et. al [31]. Nguyen 

et. al [77] study determining velocities in a high-frequency electromagnetic prospecting by phase 

shift plus interpolation migration. The problem of how to apply PSPI Migration to interpret GPR 

data will be presented. Nguyen et. al [78]  are also going to present two processing steps to define 

the electromagnetic wave velocity and the position of the object from GPR data that was acquired 

by using a shield antenna machine prototype. Perroud et. al [79] describe the use of the common-

reflection-surface (CRS) method to estimate velocities from ground-penetrating radar (GPR) data. 

Ristic et.al [20] present a new method to simultaneously estimate cylindrical object radius and EM 

wave propagation velocity (v) from GPR data. Weifeng et. al [80] study the estimation of the GPR 

wave velocity based on template matching. A new GPR wave velocity estimation method is 

proposed based on template matching. Wijewardana et. al [81] focus on the estimation of 

spatiotemporal variability of volumetric soil water content in raised bed agricultural fields using 

GPR, comparison of the GPR method with gravimetric sampling data, and development of 2D 

maps of water content. Liu et.al [82] study dynamic groundwater level estimation by the velocity 

spectrum analysis of GPR. A new algorithm that involves envelope velocity spectrum and an 

automatic velocity picking scheme was proposed. The purpose of Pue et. al [83] is to evaluate the 

velocity semblance analysis technique for air-coupled common midpoint (CMP) measurements 

with a small antenna offset. In order to improve the resolution of GPR profiles from the perspective 

of data processing, the migration technique is applied to forward and measured GPR profiles [84]. 

Yuan et. al [85] apply a diffraction imaging method to improve imaging for surface reflection GPR 

data. At present, there is a lack of such a relationship for active-layer soil moisture estimation for 
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the Qinghai–Tibet plateau permafrost regions. Du et. al [86] utilize the Complex Refractive Index 

Model to establish such a calibration equation that is suitable for active-layer soil moisture 

estimation with GPR velocity. Other influential works include the work of Huggernberger et. al 

[87].  

Those methods mentioned above involve manual picking of arrival times or curve fitting, 

which are subjective and prone to errors. Researchers have also investigated waveform analysis, 

frequency-domain techniques, and migration methods to improve the accuracy of velocity 

estimation. However, these approaches can be computationally intensive and may not be well-

suited for real-time applications. In recent years, machine learning techniques, such as neural 

networks and support vector machines, have shown promise in GPR velocity estimation. 

Nevertheless, these methods often require large training datasets and depend on the availability of 

labeled data, which can be a limitation. To address these challenges, this research presents a novel 

nondestructive method for estimating GPR propagation velocity. The proposed method relies on 

hyperbolic fitting and travel-time analysis, leveraging the characteristics of GPR waveforms and 

their relationship with the subsurface. The hyperbolic fitting technique enables the modeling of 

the relationship between arrival times and offsets, providing a robust estimation of the wave 

velocity. Additionally, travel-time analysis techniques account for the variation of wave velocity 

with depth and consider the effects of subsurface heterogeneity, further enhancing the accuracy of 

velocity estimation. Through the integration of these advanced techniques, the proposed algorithm 

presents a reliable and accurate solution for the estimation of GPR wave velocity. The 

effectiveness of the algorithm, as well as its capability to enhance subsurface imaging and improve 

data interpretation, has been successfully validated through a laboratory experiment.  
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3.2 Methodology 

This research proposes a nondestructive method in GPR velocity estimation, contributing 

to the broader field of non-destructive evaluation and providing valuable insights for subsurface 

characterization. The proposed algorithm consists of the following steps: 

1. Data Preprocessing: Raw GPR data is preprocessed to remove noise, filter unwanted 

frequencies, and enhance the signal-to-noise ratio. This step improves the quality of the 

data and ensures reliable velocity estimation. 

2. Hyperbolic Fitting: A hyperbolic curve fitting technique is applied to the preprocessed data. 

By fitting a hyperbolic curve to the arrival times and corresponding offsets, the peak 

coordinates of each hyperbola can be obtained for further velocity analysis. 

3. Travel-Time Analysis: Travel-time analysis is performed to account for the variation of 

wave velocity with depth and the effects of subsurface heterogeneity. This analysis refines 

the velocity estimation and provides a more accurate estimation of the wave velocity. 

4. Validation and Calibration: The estimated wave velocity is compared with reference values 

obtained from known subsurface features or calibration targets. This validation step 

ensures the accuracy and reliability of the algorithm. 

Through laboratory experiments and field measurements, the proposed algorithm's 

performance is assessed, and its effectiveness in estimating GPR's electromagnetic wave velocity 

is validated. The results demonstrate the algorithm's capability to provide accurate and reliable 

velocity estimation. 

Hyperbola fitting  

Artificial neural networks, which treat radargrams as images, can be used to detect 

hyperbolas. Object detection in radargrams is often accomplished using machine learning and deep 
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learning approaches [34, 88]. For hyperbola identification, several networks are commonly 

employed, including regions with convolutional neural work (R-CNN) [89, 90], Faster R-CNN 

[91], Cascade R-CNN [92], Single shot multi-box detector (SSD) [93], You Only Look Once 

(YOLO) [94], and RetinaNet [95]. These networks can be constructed using deep learning 

frameworks like Python or MATLAB's Deep Learning toolbox. To address the challenge of 

acquiring a large number of images for training, pre-trained models can be utilized in transfer 

learning, adapting the model specifically for hyperbola detection in radargrams.  

Once the hyperbolas are detected, the hyperbolic curve can be fitted in each hyperbola 

reflection in the radargram by extracting attributes that characterize hyperbolic signatures and 

distinguishing them from other undesired backgrounds. In a GPR image, the detected hyperbolae 

are manifested as “south-opening” branches, given by Eq. 3-1. Figure 3- 2 (a) and (b) show the 

hyperbola reflections and the hyperbola with the fitted curve, respectively.   

 (
𝑦−𝑦0

𝑎2 )
2

− (
𝑥−𝑥0

𝑏2 )
2

= 1, with 𝑦 < 0 (3-1) 

Where: 

 𝑦 = Two-way travel time of the EM waves 

𝑥 = Distance along the measured direction 

(𝑥0, 𝑦0) = Center of the hyperbola 

a = Length of the semi-major axis 

b = Length of semi-minor axis 
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Figure 3- 2. Radar scan: (a)Images with original hyperbolas; (b) Fitted hyperbolas 

Travel time analysis 

Figure 3- 3 (a) shows a GPR hyperbolic reflection from the location of a buried object. 

Point (𝑥0, 𝑡0) is the coordinate at the peak hyperbolic reflection from the buried object. The points 

(𝑥𝑖 , 𝑡𝑖)  are the extracted points from the first positive peak amplitude of the hyperbolic pattern 

from the buried object, the signal travel path for those points is demonstrated in Figure 3- 3 (b). 
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(b) 

Figure 3- 3. Hyperbolic reflection of a buried object: (a) Hyperbola curve with the extracted 

points; (b) Signal ravel path 

The right triangle with sizes D, 𝐷𝑖, and ∆𝑥 in Figure 3 (b) can be described as Eq. (3-2) 

 𝐷𝑖
2 = 𝐷2 + ∆𝑥2 (3-2) 

Where: 

𝐷𝑖  = Distance between the antenna at 𝑥𝑖 position and the buried object 

𝐷 = Distance between the antenna at 𝑥0 position and the buried object 

∆𝑥 = Horizontal distance between antennas at 𝑥0 and 𝑥𝑖  position 

𝑟 = Radius of the buried object 

Based on the meaning of 𝐷, 𝐷𝑖, and ∆𝑥, Eq. (3-2) also can be written as Eq. (3-3). 

 (
𝑣𝑖 ∗ 𝑡𝑖

2
+ 𝑟)

2

= (
𝑣0 ∗ 𝑡0

2
+ 𝑟)

2

+ (𝑥𝑖 − 𝑥0)2 (3-3) 
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Where: 

𝑡𝑖 = Actual two-way travel time (after time-zero correction) between the antenna and the buried 

object at the GPR image location 𝑥𝑖  

𝑡0 = Actual two-way travel time at the GPR image location 𝑥0  

𝑥0 = Location of GPR at the peak hyperbolic reflection from the buried object  

𝑥𝑖  = Horizontal location of a selected point 𝑖 in the GPR image  

𝑣𝑖 = EM wave velocity when the EM wave propagates from the position 𝑥𝑖 to the buried object 

𝑣0 = EM wave velocity when the EM wave propagates from the position 𝑥0 to the buried object 

According to Al-Nuaimy [21], for rebar diameter, not over 32 mm, (1.26 in.) the rebar 

diameter does not significantly affect the concrete cover thickness measuring. Therefore, this 

research assumes 𝑟 ≈ 0, and Eq. (3) can be rewritten as Eq. (3-4). 

 (
𝑣𝑖 ∗ 𝑡𝑖

2
)

2

= (
𝑣0 ∗ 𝑡0

2
)

2

+ (𝑥𝑖 − 𝑥0)2 (3-4) 

Define 𝑣0 = 𝑣𝑖 , Eq. (3-4) can be written as a function of 𝑡0 , 𝑡𝑖 , 𝑥𝑖 , 𝑥0 , as shown in Eq. 

(3-5). 

 𝑣𝑖 = √
4(𝑥𝑖 − 𝑥0)2

(𝑡𝑖)2 − (𝑡0)2
 (3-5) 

Therefore, each pair of (𝑥𝑖 , 𝑡𝑖)  will generate a singular EM wave velocity 𝑣𝑖. To ensure the 

accuracy of the analysis, erroneous data points are eliminated by applying a standard deviation 

(SD) limit. This limit regulates the number of discrete velocities selected for the final velocity 

analysis. In order to decide the final EM wave velocity at each GPR hyperbolic peak location, the 

average of the 𝑣𝑖 at each hyperbolic signature is calculated. This average 𝑣 value represents the 
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EM wave velocity at the GPR hyperbolic peak location. Subsequently, this EM wave velocity is 

utilized in the calculation of the concrete cover thickness during the subsequent GPR data 

processing stage. 

Validation and Calibration 

To validate the proposed methodology, a total of ten concrete specimens were cast in the 

laboratory. Each specimen had dimensions of 914.4 x 381 x 203.2 mm (36 x 15 x 8 in.), as shown 

in Figure 3- 4. The chosen dimensions, along with a spacing of 76 mm (3 in.) between rebars, 

ensured that the GPR waveforms captured both the direct and reflected waves for each rebar. In 

order to investigate the impact of the buried object's radius on velocity estimation, rebars ranging 

from size #3 to #11 were utilized in the specimens. Additionally, four different rebar embedded 

depths were considered: 25, 38, 64, and 89 mm (1, 1.5, 2.5, and 3.5 in.), which are commonly 

specified values according to ACI 318-19 guidelines. Detailed information on each cast concrete 

specimen can be found in Table 3- 1 . 

 

Figure 3- 4. Concrete specimens with rebar embedded 
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Table 3- 1.The rebar information for the concrete specimen 

Sample 
No. 

Rebar Embed Depth 
mm(in) Rebar Size 

1 
25.4 (1) 

# 3, # 4, # 5, # 6, # 7 
2 # 8, # 9, # 10, # 11 

3 
38.1 (1.5) 

# 3, # 4, # 5, # 6, # 7 
4 # 8, # 9, # 10, # 11 

5 
63.5 (2.5) 

# 3, # 4, # 5, # 6, # 7 
6 # 8, # 9, # 10, # 11 

7 
88.9 (3.5) 

# 3, # 4, # 5, # 6, # 7 
8 # 8, # 9, # 10, # 11 

9 
101.6 (4.0) 

# 3, # 4, # 5, # 6, # 7 
10 # 8, # 9, # 10, # 11 

3.3 Experimental Result and Discussion 

GPR data were collected from the ten concrete specimens. After hyperbola fitting, each 

hyperbola will generate a peak coordinate (𝑥0 , 𝑡0), the reference velocity 𝑣0  of each rebar is 

calculated using known depth divided by the travel time. The coordinates (𝑥𝑖 , 𝑡𝑖 ) along each 

hyperbola were collected to calculate the EM velocity using the proposed method.  The results 

from the velocity estimation analysis for different rebar depths are presented in Tables 2 to 6. Each 

table provides the data for different rebar depths, along with the corresponding sample, rebar size, 

𝑥0 (mm), 𝑡0 (ns), 𝑣0  (mm/ns), 𝑣 (mm/ns), and the percentage error. 

Table 3- 2 shows the results for the rebar depth of 25.4 mm (1 in.). It can be observed that 

the absolute error of the calculated velocity compared to the reference velocity is generally low, 

with most rebar sizes (#3 to #9) demonstrating an absolute error rate of less than 5%. The highest 

absolute error is observed for the #11 rebar, with a 6.78% error rate. These results suggest that the 

proposed algorithm performs well in estimating the velocities for these rebar sizes. For example, 

in table 1. sample 1, the absolute error for rebar size #3 is 3.31%. This indicates that the estimated 

velocity of 96.539 mm/ns is very close to the reference velocity of 93.446 mm/ns. Similarly, for 

rebar sizes #4 to #7, the absolute error rates range from -2.76% to 4.25%, indicating reasonably 
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accurate velocity estimations. However, for larger rebar sizes such as #10 and #11, the absolute 

error rates are slightly higher, reaching 5.75% and 6.78% respectively. 

Table 3- 2. Rebar depth 25.4 mm (1 in.) 

Sample Rebar 𝑥0 (mm) 𝑡0 (ns) 𝑣0 (mm/ns) 𝑣 (mm/ns) % Error 

1 #3 7.629 0.544 93.446 96.539 3.31% 
  #4 83.067 0.542 93.779 91.191 -2.76% 
  #5 158.251 0.514 98.898 94.349 -4.60% 
  #6 232.165 0.511 99.374 101.749 2.39% 
  #7 305.317 0.535 95.012 99.050 4.25% 

2 #8 8.732 0.534 95.201 99.685 4.71% 
  #9 83.650 0.551 92.163 96.697 4.92% 
  #10 157.038 0.514 98.894 104.581 5.75% 
  #11 232.240 0.511 99.335 106.070 6.78% 

 

Table 3- 3 presents the results for the rebar depth of 38.1 mm (1.5 in.). Similar to Table 2, 

the absolute error is generally low, with most rebar sizes (#3 to #9) showing an absolute error rate 

of less than 5%. The highest error rate is observed for the #11 rebar, with a 6.28% error. 

Table 3- 3. Rebar depth 38.1 mm (1.5 in.) 

Sample Rebar 𝑥0 (mm) 𝑡0 (ns) 𝑣0 (mm/ns) 𝑣 (mm/ns) % Error 

3 #3 4.380 0.844 90.323 88.236 -2.31% 
  #4 82.925 0.812 93.876 90.318 -3.79% 
  #5 152.293 0.864 88.228 91.890 4.15% 
  #6 228.975 0.811 93.934 97.118 3.39% 
  #7 302.127 0.835 91.292 95.455 4.56% 

4 #8 11.663 0.821 92.858 97.603 5.11% 
  #9 86.581 0.838 90.909 96.291 5.92% 
  #10 159.969 0.801 95.169 100.622 5.73% 
  #11 235.171 0.798 95.441 101.435 6.28% 

 

In Table 3- 4, the results for the rebar depth of 63.5 mm (2.5 in.) are displayed. The absolute 

error remains relatively low, with most rebar sizes (#3 to #9) demonstrating an absolute error rate 

of less than 5%. The highest error rate is observed for the #11 rebar, with a 6.34% error. 
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Table 3- 4. Rebar depth 63.5 mm (2.5 in.) 

Sample Rebar 𝑥0 (mm) 𝑡0 (ns) 𝑣0 (mm/ns) 𝑣 (mm/ns) % Error 

5 #3 10.323 1.367 92.929 94.946 2.17% 
  #4 88.867 1.384 91.796 94.357 2.79% 
  #5 158.241 1.398 90.865 88.929 -2.13% 
  #6 234.924 1.334 95.180 98.264 3.24% 
  #7 308.076 1.358 93.543 97.435 4.16% 

6 #8 8.299 1.356 93.647 98.077 4.73% 
  #9 83.216 1.385 91.703 97.086 5.87% 
  #10 156.604 1.337 94.997 100.982 6.30% 
  #11 231.806 1.352 93.928 99.883 6.34% 

 

Moving on to Table 3- 5, which represents the rebar depth of 88.9 mm (3.5 in.), it can be 

observed that the absolute error remains within an acceptable range. Most rebar sizes (#3 to #9) 

exhibit an absolute error rate of less than 5%. The highest error rate is observed for the #11 rebar, 

with a 6.70% error. 

Table 3- 5. Rebar depth 88.9 mm (3.5 in.) 

Sample Rebar 𝑥0 (mm) 𝑡0 (ns) 𝑣0 (mm/ns) 𝑣 (mm/ns) % Error 

7 #3 9.819 1.836 96.855 99.887 3.13% 
  #4 88.363 1.854 95.911 92.852 -3.19% 
  #5 157.736 1.796 99.011 102.704 3.73% 
  #6 234.419 1.803 98.597 102.748 4.21% 
  #7 307.571 1.827 97.330 101.574 4.36% 

8 #8 11.384 1.826 97.387 102.412 5.16% 
  #9 86.302 1.843 96.457 102.168 5.92% 
  #10 159.690 1.806 98.462 104.832 6.47% 
  #11 234.892 1.804 98.586 105.191 6.70% 

 

Lastly, Table 3- 6 presents the results for the rebar depth of 101.6 mm (4.0 in.). The 

absolute error remains relatively low, with most rebar sizes (#3 to #9) showing an absolute error 

rate of less than 5%. The highest error rate is observed for the #11 rebar, with a 7.01% error. 

Table 3- 6. Rebar depth 101.6 mm (4.0 in.) 



55 
 

Sample Rebar 𝑥0 (mm) 𝑡0 (ns) 𝑣0 (mm/ns) 𝑣 (mm/ns) % Error 

9 #3 10.589 2.048 99.212 103.310 4.13% 
  #4 89.133 2.066 98.345 102.200 3.92% 
  #5 158.506 2.008 101.187 105.214 3.98% 
  #6 235.190 2.016 100.809 105.446 4.60% 
  #7 308.341 2.039 99.648 104.402 4.77% 

10 #8 8.399 2.038 99.700 105.792 6.11% 
  #9 83.316 2.056 98.847 104.758 5.98% 
  #10 156.705 2.018 100.685 107.451 6.72% 
  #11 231.906 2.016 100.799 107.865 7.01% 

 

Overall, the results demonstrate that the proposed method provides reasonably accurate 

velocity estimation for different rebar depths. The absolute error rates are generally within an 

acceptable range, with most rebar sizes showing errors of less than 5%. The higher error rates 

observed for the #11 rebar could be attributed to the increased complexity introduced by larger 

rebar sizes. Nevertheless, the proposed methodology proves to be effective in estimating GPR 

wave velocity for a range of rebar depths, providing valuable insights for non-destructive 

evaluation and subsurface characterization. 

The velocity analysis for different rebar sizes (#3 to #11) at varying depths (25.1 mm to 

101.6 mm) was conducted, and the results are presented in Figure 3- 5 (a) to (i), based on the 

values extracted from Table 3- 2 to Table 3- 6. Figure 3- 5 (a) represents the velocity analysis for 

the #3 rebar. The horizontal axis denotes the rebar depth, ranging from 25.1 mm to 101.6 mm, 

while the vertical axis represents the velocity. Both the reference and the calculated velocity for 

the #3 rebar at depths from Table 3- 2 to Table 3- 6 are plotted on the graph. The data points 

illustrate the variations in velocity for different rebar depths, providing insights into the behavior 

of the #3 rebar at varying depths. Similarly, Figure 3- 5 (b) to (i) depict the velocity analysis for 

the #4 to #11 rebars, respectively. Each graph follows the same format, with the rebar depth on the 
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horizontal axis and the velocity on the vertical axis. The reference and the calculated velocity 

extracted from Table 3- 2 to Table 3- 6 are plotted on the respective graphs for each rebar size. 

The analysis of the graphs reveals trends in velocity variation for different rebar sizes and 

depths. The closeness of these two values indicates the reliability of the estimation method, while 

larger discrepancies may suggest potential sources of error or limitations in the estimation process. 

Upon observing Figure 3- 5 (a) to 5(c), corresponding to rebar #3 to #5, it can be noted that there 

is an up-and-down variance in velocity at different depths compared to the reference velocity. 

However, these differences fall within a range of 5 mm/ns, indicating a good level of accuracy in 

the velocity estimation. 

Similarly, Figure 3- 5 (d) to 5(i), corresponding to rebar #6 to #11, show that the calculated 

velocities are slightly above the reference velocities, but still within 5 mm/ns. This indicates that 

the velocity estimation remains accurate. 

Overall, the velocity analysis graphs provide a visual representation of the relationship 

between rebar depth and velocity for different rebar sizes. These insights contribute to the 

understanding of the behavior of GPR wave velocities in concrete structures with varying rebar 

depths, and they validate the effectiveness of the proposed methodology in estimating GPR wave 

velocities accurately.  
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(a) (b) 

   

(c) (d) 

   

(e) (f) 

   

(g) (h) 
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       (i)  

Figure 3- 5. Rebar Velocity Analysis with rebar size of: (a) #3; (b) #4; (c)#5; (d) #6; (e)#7; (f) 

#8; (g) #9; (h)#10; (i) #11 

3.4 Conclusion 

This paper has presented a novel nondestructive algorithm for accurately estimating GPR's 

electromagnetic wave velocity. The proposed algorithm, based on hyperbolic fitting and travel-

time analysis, offers a practical solution for GPR practitioners to enhance subsurface imaging 

capabilities and improve data interpretation. One of the significant advantages of this research lies 

in its ability to provide accurate velocity estimation without the need for core drilling. Core drilling 

is a traditional method used to obtain concrete samples for velocity estimation, but it can be time-

consuming, expensive, and destructive to the structure being investigated. The proposed 

nondestructive algorithm eliminates the need for core drilling, making the velocity estimation 

process much more efficient and cost-effective. Through laboratory experiments, the algorithm's 

performance was thoroughly assessed and validated. The results consistently demonstrated the 

algorithm's accuracy and reliability in estimating the wave velocity. The algorithm maintained its 

effectiveness across various GPR system configurations, highlighting its robustness and 

adaptability. By providing an accurate estimation of GPR's electromagnetic wave velocity, the 

proposed algorithm enables enhanced subsurface investigations, such as concrete rebar location 
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and subsurface characterization. This contributes to more precise data interpretation, informed 

depth measuring, and improved overall efficiency in civil engineering and geophysical 

applications.  

Future research can focus on further refining the algorithm's performance and exploring its 

applicability in different scenarios. Additionally, the integration of this algorithm with other GPR 

data processing techniques may lead to more comprehensive and advanced subsurface imaging 

methodologies. In conclusion, the proposed nondestructive algorithm represents a significant 

advancement in GPR technology, offering a reliable and efficient approach for estimating 

electromagnetic wave velocity. Its implementation has the potential to significantly enhance 

subsurface imaging capabilities and improve data interpretation in various practical applications.  
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CHAPTER 4 

Comprehensive GPR Data Processing Algorithm in Reinforced Concrete 

Structures 

 

 

ABSTRACT 

Nondestructive Evaluation (NDE) of reinforced concrete (RC) structures in civil 

engineering often relies on Ground Penetrating Radar (GPR) as a versatile tool to determine 

concrete cover thickness and locate reinforcement. However, the complexities associated with 

processing raw GPR data, including time zero correction, electromagnetic (EM) wave velocity 

calculation, background noise removal, and hyperbola signature identification, require the 

specialized knowledge of GPR practitioners and manual rebar picking. Achieving fully automated 

GPR data processing remains a challenge. To address this issue, this paper proposes a 

comprehensive method based on image processing, and curve-fitting principles to process the raw 

GPR data to identify and localize the rebar. The proposed method has been validated on forty lab-

made reinforced concrete blocks, three bridge decks, and one culvert data. Results of conducting 

the experiments are promising and reveal that: (1) the processing application developed in this 

study has achieved full automation, eliminating the need for manual interpretation or manual rebar-

picking; (2) the proposed data processing algorithm can correct the time-zero, and calculate the 

EM wave velocity without core-drilling; (3) the proposed data processing system has improved 

the data processing efficiency significantly. 

Keywords: Ground-penetrating radar (GPR), Hyperbola, Rebar location, Image processing, Curve 

fitting, Automated rebar recognition  



61 
 

4.1 Introduction 

Condition assessment is one of the most crucial maintenance procedures for reinforced 

concrete (RC) structures. During an inspection, it is frequently necessary to know the as-built 

locations and cover thickness of the reinforcing steel bars [1-3]. Ground Penetrating Radar (GPR) 

is one of the most popular Non-Destructive Evaluation (NDE) methods to carry out work such 

tasks due to its high penetrating capabilities, quick scanning speed, and capacity to detect hidden 

objects [4-6]. It comprised a radar control unit (radargram), a data acquisition system, a 

transmitting antenna, and a receiving antenna. High-frequency pulsed Electromagnetic (EM) 

waves (between 10 and 3000 MHz) or radar waves are used to collect subsurface data. In the 

subsoil, the transmitting antenna sends off an EM pulse. Any buried objects or modifications in 

the subsurface material cause the EM pulse to reflect back to the surface. The receiving antenna 

picks up the return signals and logs the related fluctuations. The radargram interprets and shows 

the detected subsurface image. The depth and position of the interruption (buried object) are 

revealed by measuring the time it takes for the reflected signals to return [7-10].  

GPR A-scan is a graphical representation of the reflected signal from the subsurface when 

a single pulse of electromagnetic energy is transmitted to the ground, as depicted in Figure 4- 1. It 

provides information about the depth and amplitude of reflections, allowing for the identification 

of subsurface targets such as buried utilities, geological layers, or archaeological artifacts. On the 

other hand, GPR B-scan is a two-dimensional representation of the subsurface obtained by 

continuously scanning the ground surface with a GPR antenna while collecting A-scan data along 

a specific line. It provides a cross-sectional view of the subsurface, displaying variations in 

reflection patterns and depths. GPR B-scans are valuable for mapping and interpreting subsurface 

features over larger areas, aiding in geological, engineering, and environmental investigations. 
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Figure 4- 1. GPR A-scan and B-scan data 

Steel reinforcement in RC can often be found and located using GPR. Although GPR data 

collecting is quick and effective, its data interpretation is labor-intensive and depends on the 

operator's expertise to deliver accurate output. Currently, commercial software such as Radan from 

GSSI and GPRslice have limitations in effectively and accurately processing GPR data. [11] 

underscores that GPRslice is inadequate for handling large datasets or multiple frequencies, limited 

by the available computer memory. The program's functionality is based on the assumption of data 

collection along a straight line and a relatively uniform subsurface. It also encounters challenges 

in automated data analysis. Additionally, RADAN's capabilities are constrained to data with 

minimal noise, resulting in recognition accuracy for datasets as low as 54% [12]. Therefore, 

academic scholars have looked into a potential method for automatically identifying rebar from 

the GPR data [13]. These studies can be divided into two groups: (a) Image-based approach 

(pattern recognition); and (b) Machine learning-based approach.  

The output of a GPR is often interpreted as images due to its characteristic hyperbolic 

signature [14]. Image processing techniques have been extensively used to generate visual 

representations of GPR data and extract relevant features from these images. For instance, visual 
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patterns of buried objects recorded in GPR data reflect depth and size and this has been used to 

determine rebar depth from the extracted parameters of these patterns [15, 16]. However, the 

inherent difficulties in analyzing GPR data limit this method's efficacy. Several studies have 

focused on identifying rebar signals through the distinct reflection of hyperbolic traces, such as 

the automated rebar recognition technique developed by Sato et al. [11]. The research utilized a 

wavelet recognition technique that filtered the concentrated energy of hyperbolic traces and 

transformed the GPR data using a parabolic wavelet. Compared to the inverse scattering problem 

[12], the image-based solution benefits from its computational efficiency by employing pattern 

analysis within specific areas of the bridge deck. The pattern-based methods have limited 

applicability in other contexts and are primarily used in geological surveys [17, 18]. Researchers 

have also explored various image processing techniques, including edge detection, thresholding, 

and texture analysis [19-25]. Using edge detection and thresholding to identify potential hyperbola 

regions on local extrema of intensity for image pre-processing has been an intuitive strategy 

frequently employed in prior studies. However, these techniques have inherent limitations, such 

as subpar performance in the presence of noise and image blurring. Moreover, thresholding often 

requires manual selection and adjusting parameters specific to the analyzed dataset.  

Some studies have employed neural networks as a machine learning approach for 

automated rebar detection in GPR data [4, 23, 24, 26, 27]. It is important to note that these methods 

utilize edge detection as a pre-processing step, posing similar limitations in terms of sensitivity to 

noise and the need for parameter adjustment as conventional edge detectors. Singh and Nene [27] 

focused on a single GPR image featuring four hyperbolas, and the investigation yielded promising 

outcomes in the classification stage through neural networks. Another technique [26] involved 

trapezoidal image cropping before neural network classification, enabling the identification of 
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hyperbolic regions. However, this method lacks curve fitting and roughly localizes the hyperbola 

apex by evaluating pixels within the fixed trapezoidal region. Support Vector Machines (SVM) 

have also been utilized for automated rebar classification [28-30]. Although it utilized synthetic 

data, earlier studies on SVM-based rebar detection demonstrated favorable results [17]. However, 

this approach involves thresholding the image for binarization, resulting in a fragile image 

representation that heavily relies on parameter selection. 

While automated GPR data processing techniques have shown promise, there is still a need 

for further research to address shortcomings, including (1) Lack of a comprehensive algorithm to 

automate the GPR data processing from collected raw data to generate rebar information; (2) The 

accuracy of the data processing still needs to be improved, due to the effects of unknown time-

zero offset, interference from background noise, unknown EM wave velocity, challenges of 

recognizing the hyperboles, and interpreting the location of the rebar; and (3) Inefficient GPR data 

processing since traditional method involves manual rebar picking which is labor demanding. To 

address these limitations, the primary objective of this research is to develop a robust automated 

algorithm. This advanced algorithm will be designed and implemented to conduct a seamless and 

automated GPR data processing workflow. This comprehensive workflow will encompass crucial 

stages such as raw data import, noise reduction, time-zero correction, EM wave velocity estimation, 

hyperbola identification, and precise rebar localization. The goal is to eliminate the need for 

manual intervention and significantly enhance the efficiency of the entire GPR data processing 

process. 
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4. 2 Methodology  

The general processing steps are illustrated in Figure 4- 2, and the specifics of each step 

are described in the subsequent subsections. All the processing scripts in this research are 

implemented using  MATLAB [96].  

 

Figure 4- 2. Flowchart of the proposed GPR data processing algorithm 
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Importing GPR profile 

SIR-10H type GSSI radar exploration system outputs the scan data in a binary DZT file 

containing two-part, the header followed by scan data as shown in Figure 4- 3. It is necessary to 

have a detailed interpretation of the header concerning the settings used to collect the data and the 

header size per the guidance provided in the literature [32]. Using MATLAB software's 'uigetfile' 

function, the original file input can be obtained via a Graphical User Interface (GUI). The user is 

then prompted with a dialog box, enabling the selection of the appropriate raw data file. 

Subsequently, the 'fopen' function is employed to open the chosen file, while the 'fseek' and 'fread' 

functions are utilized to read the header files and data volume sequentially. This approach enables 

systematically retrieving the file's header parameters and data based on the specific header 

structures and interpretations. Finally, leveraging the graphical tools of MATLAB, the collected 

GPR data can be visualized (Figure 4- 4). 

 

Figure 4- 3. DZT file format 
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Figure 4- 4. Visualization of the collected raw data 

DC removal and bandpass 

After importing the DZT file into MATLAB, Direct current (DC) removal and bandpass 

filtering are applied before time-zero correction. DC removal eliminates the low-frequency 

baseline or average signal level, effectively removing slow-varying components and 

environmental noise from the data. This step enhances the visibility of actual radar reflections and 

prepares the data for further analysis. Subsequently, bandpass filtering is employed to selectively 

allow a specific frequency range of the GPR signal to pass through while attenuating frequencies 

outside the designated range. It is carefully optimized to focus on the depth range of interest and 

to suppress unwanted noise or interference. The GPR data is effectively conditioned by applying 
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these pre-processing steps in the specified order, improving data quality and facilitating subsequent 

automatic data processing algorithms. 

Time-zero correction 

After pre-processing the GPR data, the next step involves applying the time-zero to 

determine the two-way travel time and precisely measure depth. Depending on the type of antennae 

used, the time-zero corresponds to different reflections. It aligns with the reflection from the 

ground surface for an air-coupled antenna, while it corresponds to the direct-coupling reflection 

for a ground-coupled antenna. Conventionally, the time-zero is positioned at either the maximum 

negative or positive peaks of the first wavelet, but these peaks do not represent the true time-zero 

position. Based on previous research [33], the authors propose a more accurate time-zero position 

at 0.14 ns ahead of the first negative peak of each GPR A-scan. This choice is informed by the 

understanding that the first wavelet in an A-scan corresponds to the ground surface, which is mixed 

with the direct wave between the transmitter and receiver, resulting in a direct-coupling reflection. 

These reflections can be notably strong, especially for concrete bridge decks, comparable to those 

from the top reinforcing layer. Detailed information regarding the proposed time-zero correction 

can be found in the literature [33]. Figure 4- 5 displays the GPR image before and after applying 

the proposed time-zero correction. The time-zero corrected GPR data is effectively aligned and 

then saved in PNG format using the 'imwrite' function. This image format maintains the visual 

quality of the GPR results and allows consistent visualization across various platforms and 

software applications, facilitating seamless analysis and collaboration among researchers and 

practitioners. 
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(a) 

 

(b) 

Figure 4- 5. GPR images: (a) before time-zero correction; (b) after time-zero correction 

Filtering and thresholding 

After time-zero correction, moving average filtering and thresholding are implemented to 

facilitate further data analysis. Firstly, the moving average filtering is employed to smooth the 

GPR data, reducing noise and random variations in the signal. It involves taking the average of 

neighboring data points within a specified window. Three by three were used in this research, 

effectively preserving significant features while minimizing undesirable fluctuations. 

Subsequently, thresholding is applied to classify the GPR data into subsurface categories based on 

their amplitudes. By setting a threshold value, reflections above the limit are considered potential 
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targets, while those below it are regarded as noise or background. Figure 4- 6 displays the input 

image after applying the moving average filter and thresholding. 

   

(a) (b) (c) 

Figure 4- 6. Illustration of filtering and thresholding techniques: (a) Input image; (b) Image 

after filtering; (c) Image after thresholding 

Extracting interested clusters containing hyperbolae  

After applying thresholding, the binary image is generated. The column-connection 

clustering (C3) algorithm [29] is then applied to identify regions of interest containing potential 

hyperbolas. The C3 algorithm simplifies the B-scan GPR image by representing objects with single 

central strings, enhancing the B-scan representation and reducing computation time. It operates in 

three phases: column segmentation, column-segment connection (clustering), and central string 

extraction. Scanning the binary image column-wise from left to right, groups distinct regions into 

connected clusters. A cluster is formed when a series of consecutive points exceeds three and if a 

connecting element is found in the neighboring column at the same row. For each column segment 

in the first column, the C3 algorithm checks for connecting elements in the second column, 

ensuring cluster continuity. The process may lead to cluster splitting into multiple clusters. Each 

output cluster yields a central string composed of middle points from each column within the 
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cluster. The longest central string's points are then utilized for subsequent hyperbola fitting. The 

pseudo-code of the C3 Algorithm can be found in reference [34]. 

Hyperbola fitting using a machine learning model   

To effectively identify hyperbolic signatures within the outputs of the C3 algorithm, 

extracting distinctive attributes that characterize these signatures is essential. This enables 

distinguishing the target hyperbola from other undesired and composite clusters formed by 

multiple hyperbolae. In a B-scan image, the identified hyperbolic (Figure 4- 7) features are visually 

represented as "south-opening" branches given by Eq. (4-1): 

 (
𝑦−𝑦0

𝑎2 )
2

− (
𝑥−𝑥0

𝑏2 )
2

= 1, with 𝑦 < 0 (4-1) 

Where: 

𝑦 = Two-way travel time of the EM waves 

𝑥 = Distance along the measured direction 

(𝑥0, 𝑦0) = Center of the hyperbola 

a = Length of the semi-major axis 

b = Length of semi-minor axis 
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Figure 4- 7. Graph of a sample hyperbola 

The flowchart in Figure 4- 8 outlines the step-by-step process of the machine learning 

model for GPR hyperbola detection. It starts with training the samples from the output of the C3 

algorithm, which are then separated into negative and positive groups. Random Sample Consensus 

(RANSAC) [35] is then employed to fit hyperbolas to the detected peaks, handling noise and 

outliers effectively. Non-linear least-squares fitting [36] is then applied to refine hyperbola 

parameters, enhancing model accuracy. The machine learning model is trained using those labeled 

data to predict hyperbola parameters based on input features. Evaluation metrics assess the model's 

performance, and hyperparameter tuning is conducted if the model's performance is not 

satisfactory. Once trained, yielding high accuracy as indicated by the evaluation results, the model 

can be used for hyperbola detection in new GPR data. 

 

Figure 4- 8. Flowchart of the hyperbola fitting model 

Extracting the apex of the hyperbola  

After applying the trained automated hyperbola detection model, the input GPR images 

undergo hyperbola detection to identify hyperbolic curves within the radargram. The hyperbola 

reflections are illustrated in Figure 4- 9 (a), while in Figure 4- 9 (b), the hyperbola curves are 

displayed along with their fitted curves. The apex of each hyperbola, corresponding to the 

coordinates (𝑥0, 𝑦0), is then extracted and saved for subsequent analysis.  
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(a) (b) 

Figure 4- 9. GPR images (a) The input raw image; (b) Target rebar detected and located GPR 

image 

Calculating the EM wave velocity and locating the apex 

By adjusting the time-zero position, the actual two-way travel time of the EM wave in the 

concrete is obtained and consequently used to calculate the concrete cover thickness of rebars. The 

relationship between concrete cover thickness, EM wave velocity in the concrete, and the EM 

wave two-way travel time is given by Eq. (4-2). The EM wave velocity in the concrete is affected 

by the dielectric constant of concrete and the relationship between the two is given by Eq. (4-3). 

 𝐷 =
𝑣 ∗ 𝑡𝑎

2
 (4-2) 

 𝑣 =
𝑐

√𝜖
 (4-3) 

Where: 

𝐷 = Concrete cover thickness 

𝑡𝑎 = Actual two-way travel time of the EM wave in the concrete 

𝑣 = EM wave velocity  
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𝑐 = Speed of light in air 

𝜖 = Dielectric constant of concrete  

For each detected hyperbola which represents a rebar, 𝑡𝑎 equals 𝑦0 since the vertical axis 

represents the EM wave travel time in the GPR data. Traditionally, core drilling is necessary for 

GPR application to estimate the concrete cover thickness. Multiple cores are drilled to measure the 

clear cover thickness. The true concrete cover thickness values are then used to back-calculate the 

actual concrete dielectric constant, which is used in the subsequent GPR data processing. However, 

this method is destructive, time-consuming, and not accurate because the dielectric constant at 

each core drilling point may differ. In this research, the EM wave velocity is calculated based on 

the analysis of hyperbolic fitting and travel-time analysis. Eq. (4-4) describes the calculation of 

EM wave velocity for each hyperbola.  

 𝑣𝑖 = √
4(𝑥𝑖 − 𝑥0)2

(𝑡𝑖)2 − (𝑡0)2
 (4-4) 

Where: 

𝑣𝑖= EM wave velocity while the antenna is at the location 𝑥𝑖 

(𝑥𝑖 , 𝑡𝑖) = Coordinates of each point in the detected hyperbola curve (Figure 4- 10) 

(𝑥0, 𝑡0)   = Coordinates of the peak in the detected hyperbola curve 

Each pair of (𝑥𝑖 , 𝑡𝑖)  along the detect hyperbola (Figure 4- 10) will generate a singular EM 

wave velocity 𝑣𝑖. To ensure the accuracy of the analysis, erroneous data points are eliminated by 

applying a standard deviation (SD) limit. This limit regulates the number of discrete velocities 

selected for the final velocity analysis. In order to decide the final EM wave velocity at each GPR 

hyperbolic peak location. The average of the collected EM wave velocity 𝑣𝑖 is then calculated, 
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resulting in the EM wave velocity 𝑣 at the GPR hyperbolic peak location. Subsequently, this EM 

wave velocity is utilized in the calculation of the concrete cover thickness during the subsequent 

GPR data processing stage. 

 

Figure 4- 10. Fitted hyperbolic curve of a buried object 

Description of the software implementation  

The proposed comprehensive GPR data processing algorithm can be effectively 

implemented as a user-friendly MATLAB application, offering ease of use and accessibility. The 

interface of the application with four intuitive operation steps is depicted in Figure 4- 11. The 

"Import File" tab empowers users to select the raw data folder and designate a location for storing 

processed data. In the "T0 Correction" tab, users can apply time correction alongside DC removal 

and bandpass filtering. The corrected data is then saved as an image file, facilitating subsequent 

processing. The "Automated Recognition" tab encompasses processing steps ranging from 

filtering to the calculation of each hyperbola apex's location. Lastly, the "Export Result" tab 

enables the conversion of processed data into an Excel sheet for user visualization. 
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Figure 4- 11. The interface of the developed GPR data processing application 

4. 3 Experimental Result  

4. 3.1 Data collection setup and description of the datasets 

In order to assess the efficacy of the proposed GPR data processing algorithm, data were 

collected from laboratory specimens and full-scale structures. Forty laboratory RC blocks, three 

bridge decks, and one culvert were scanned using GSSI SIR-30 GPR. Subsequently, the data was 

processed using commercial software and the proposed algorithm.  

GPR data collection first involves setting up the control unit and the antennae. The 

antennae, typically cart-mounted or held by an operator, emit electromagnetic pulses into the 

ground while moving along the 762 mm (2.5 ft) apart parallel straight paths. Parameters such as 

pulse frequency, antenna orientation, and data sampling rate are typically adjusted based on the 

anticipated subsurface conditions and the desired resolution. 
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Lab Specimens  

Forty samples were meticulously prepared, each exhibiting distinct variations in rebar 

depths, sizes, and spacing. Detailed information about the samples can be found in Table 4- 1. The 

visual representation of the reinforced concrete (RC) samples utilized in the study is depicted in 

Figure 4- 12. To conduct surface scanning, a handheld antenna operating at a frequency of 2.6 

GHz was utilized. The scanning process involved the movement of antenna survey wheels along 

two parallel lines, ensuring comprehensive coverage of the sample surfaces.  

Table 4- 1.The RC sample rebar information 

Specimen 

number 

Rebar depth 

mm (in.) 
Rebar size 

Rebar spacing 

mm (in.) 

1 25 (1) #3, #4, # 5, #6 and #7 76 (3) 

2 25 (1) #8, #9, # 10, and #11 76 (3) 

3 38 (1.5) #3, #4, # 5, #6 and #7 76 (3) 

4 38 (1.5) #8, #9, # 10, and #11 76 (3) 

5 64 (2.5) #3, #4, # 5, #6 and #7 76 (3) 

6 64 (2.5) #8, #9, # 10, and #11 76 (3) 

7 89 (3.5) #3, #4, # 5, #6 and #7 76 (3) 

8 89 (3.5) #8, #9, # 10, and #11 76 (3) 

9 100 (4.0) #3, #4, # 5, #6 and #7 76 (3) 

10 100 (4.0) #8, #9, # 10, and #11 76 (3) 

11 25 (1) #3, #4, # 5, #6 and #7 102 (4) 

12 25 (1) #8, #9, # 10, and #11 102 (4) 

13 38 (1.5) #3, #4, # 5, #6 and #7 102 (4) 

14 38 (1.5) #8, #9, # 10, and #11 102 (4) 

15 64 (2.5) #3, #4, # 5, #6 and #7 102 (4) 

16 64 (2.5) #8, #9, # 10, and #11 102 (4) 

17 89 (3.5) #3, #4, # 5, #6 and #7 102 (4) 

18 89 (3.5) #8, #9, # 10, and #11 102 (4) 

29 100 (4.0) #3, #4, # 5, #6 and #7 102 (4) 

20 100 (4.0) #8, #9, # 10, and #11 102 (4) 

21 25 (1) #3, #4, # 5, #6 and #7 127 (5) 

22 25 (1) #8, #9, # 10, and #11 127 (5) 

23 38 (1.5) #3, #4, # 5, #6 and #7 127 (5) 

24 38 (1.5) #8, #9, # 10, and #11 127 (5) 

25 64 (2.5) #3, #4, # 5, #6 and #7 127 (5) 

26 64 (2.5) #8, #9, # 10, and #11 127 (5) 

27 89 (3.5) #3, #4, # 5, #6 and #7 127 (5) 
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28 89 (3.5) #8, #9, # 10, and #11 127 (5) 

29 100 (4.0) #3, #4, # 5, #6 and #7 127 (5) 

30 100 (4.0) #8, #9, # 10, and #11 127 (5) 

31 25 (1) #3, #4, # 5, #6 and #7 178 (7) 

32 25 (1) #8, #9, # 10, and #11 178 (7) 

33 38 (1.5) #3, #4, # 5, #6 and #7 178 (7) 

34 38 (1.5) #8, #9, # 10, and #11 178 (7) 

35 64 (2.5) #3, #4, # 5, #6 and #7 178 (7) 

36 64 (2.5) #8, #9, # 10, and #11 178 (7) 

37 89 (3.5) #3, #4, # 5, #6 and #7 178 (7) 

38 89 (3.5) #8, #9, # 10, and #11 178 (7) 

39 100 (4.0) #3, #4, # 5, #6 and #7 178 (7) 

40 100 (4.0) #8, #9, # 10, and #11 178 (7) 

 

 

(a) 
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(b) 

Figure 4- 12. Concrete samples: (a) The RC sample scanning; (b) The cured RC samples 

Culvert 

The GPR scanning process involved parallel lines spaced at intervals of 762 mm (2.5 ft) 

within the culvert cells and inner walls. Figure 4- 13 provides an on-site view of the culvert and 

an illustration of its geometry. In total, four cells were thoroughly scanned, including the walls and 

ceilings. Data collected from cell 1 and cell 2 walls were used in this research. The surveying 

wheel was moved along the parallel lines painted on the surface of the structure, as shown in Figure 

4- 14, ensuring comprehensive coverage during the scanning process.  

 
 

(a) 
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(b) 

Figure 4- 13. FM 66 culvert: (a) field view; (2) An illustration of the FM 66 culvert geometry 

 

Figure 4- 14. The GPR scanning on the wall 

Highway Bridges 

GPR data were collected from three different bridge decks in the DFW area, Texas. The 

bridges included the SH 310 bridge in Dallas, the I-45 bridge in Palmer, and the US-bridge in 

Sunnyvale.  

In the case of the SH 310 bridge, Figure 4- 15 provides a top view of spans 41 and 42, 

constructed with fully cast-in-place concrete with a thickness of 178 mm (7 in.). As per the as-

built plans, the concrete cover for the deck top layer rebars was 51 mm (2.0 in.). For the GPR data 

collection, scanning was conducted parallel to the traffic direction on both Lane 1S and Lane 2S. 
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In the case of Lane 1S (Figure 4- 16), survey lines of 762 mm (2.5 ft.) apart were marked on the 

deck to facilitate the scanning process, and a GPR scan was performed along the survey lines. The 

same scanning procedure was applied to Lane 2S of the bridge as well.  

 

Figure 4- 15. SH 310 Bridge plan view 

 

Figure 4- 16. GPR scanning on Lane 1S 

On the I-45 bridge, it was constructed with a cast-in-place concrete deck, measuring 102 

mm (4 in.) in thickness and supported by concrete box beams underneath. GPR scanning was 

carried out parallel to the traffic direction, covering both the Eastbound and Westbound lanes. The 

top view of the scanning lanes, Eastbound and Westbound Lane, is depicted in Figure 4- 17. The 

scanning lines for the Eastbound Lane of the bridge can be observed in Figure 4- 18. Multiple 

paths were scanned using GPR, including path A-C and path B-D, as illustrated in Figure 4- 18. 
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GPR scanning path over the I-45 Bridge deck. An identical scanning procedure was implemented 

for the Westbound Lane of the bridge as well.   

 

Figure 4- 17. I-45 Bridge plan view 

  

Figure 4- 18. GPR scanning path over the I-45 Bridge deck 

As for the US-80 bridge, its superstructure comprises ten U54 prestressed concrete beams 

supporting a cast-in-place concrete deck atop a precast concrete panel. The as-built plans specified 

a top reinforcement cover of 51 mm (2 in.). For GPR scanning, data collection was performed 

parallel to the traffic direction on both sides of US-80 as well. A truck-mounted antenna was used 

for the scanning process, and the scanning speed was maintained at 5 miles per hour (mph), as 

shown in Figure 4- 19.  
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Figure 4- 19. scanning over the US-80 Bridge deck 

4. 3. 2 Performance comparison with other applications 

Lab specimens 

The graph shown in Figure 4- 20 illustrates the results of rebar depth detection using GPR, 

with four separate graphs corresponding to different designed rebar depths of 25, 38, 64, 89, and 

100 mm (1, 1.5, 2.5, 3.5, and 4 in.). The vertical axis represents the rebar depth, while the 

horizontal axis represents the rebar itself. The data was processed using both commercial software 

and the proposed research algorithm. Fluctuations are evident in both lines that depict the rebar 

depth from the commercial software and the proposed algorithm, occurring around the specified 

depth and exhibiting deviations within a range of 0.5 inches. These fluctuations stem from the 

inherent limitations and uncertainties associated with GPR technology, including environmental 

factors, signal processing algorithms, and system limitations. Despite the fluctuations, the rebar 

depths processed by the proposed research algorithm consistently show closer alignment to the 

designed rebar depth, indicating the improved accuracy of the proposed algorithm compared to the 

commercial software. Notably, as the designed rebar depth increases, the algorithm-processed data 

line becomes even closer to the designed rebar depth line in the respective graph. This suggests 
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that the proposed algorithm performs particularly well in detecting deeper rebar depths, exhibiting 

a higher degree of agreement with the designed depths. 

These findings demonstrate the effectiveness of the proposed research algorithm in accurately 

estimating rebar depths using GPR, surpassing the performance of the commercial software. The 

results support the potential applicability of the algorithm for practical rebar depth detection in 

various construction and engineering applications. 

 

 

(a) 

 

(b) 
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(c) 

 

(d)  

 

(e) 

Figure 4- 20. Different designed rebar depth results: (a) 1.0 in (25 mm); (b)1.5 in (38 mm); (c) 

2.5 in (64 mm); (d)3.5 in (89 mm); (d) 4.0 in (102 mm) 

FM 66 Culvert 
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Figure 4- 21 shows the rebar depth estimation from the culvert scanning. The line of the 

rebar depth proposed by the proposed algorithm aligns notably well with the line of ground truth 

depth, indicating the algorithm’s superior accuracy. Conversely, the line representing the 

commercial software's results shows deviations from the ground truth depths, suggesting potential 

inaccuracies. 

 

Figure 4- 21. Rebar depth result from FM 66 Culvert scanning 

Highway Bridges 

Figure 4- 22 presents the rebar depth estimation results obtained from GPR scanning of the 

three bridges. Figure 4- 22 (a) shows the algorithm processed depth closely aligns with the ground 

truth depths, indicating the proposed algorithm is outperforming the commercial software. Figure 

4- 22 (b) shows algorithm processed depth consistently aligns with the ground truth depths, while 

the commercial software processed depth tends to overestimate rebar depths. Figure 4- 22 (c) 

shows both the algorithm and commercial software processed are positioned below the ground 

truth depths, but the algorithm processed depth is consistently closer to the truth, demonstrating 

the proposed algorithm's superiority. Overall, the results from all three bridges confirm the 

effectiveness of the proposed algorithm in accurately estimating rebar depths compared to the 

commercial software. 
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(a) 

 

(b) 
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(c) 

Figure 4- 22. Rebar depth result: (a) SH 310 Bridge deck; (b) I 45 Bridge deck; (c) US-80 

Bridge deck 

4. 4 Conclusion 

This research proposed a comprehensive GPR data processing algorithm for rebar 

identification and localization in RC structures. The following conclusions can be made based on 

this research:  

1) The application of this proposed algorithm is effective in addressing inherent challenges, 

such as unknown time-zero, strong noise, and blurred signals, which are common in GPR 

data.  

2) Moreover, the proposed algorithm calculates electromagnetic wave velocity without 

requiring core-drilling, further improving the data processing workflow. 

3) In addition, the system can directly generate *xls files of the results, saving time and 

reducing the need for further operations.  
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4) Notably, the developed processing application achieves full automation, eliminating the 

need for manual interpretation or rebar-picking, thus enhancing efficiency and accuracy in 

data processing.  

5) The results from the validation of the proposed method on various datasets, including lab-

made RC blocks, bridge decks, and a culvert, have shown promising performance in 

determining the rebar's location. Compared with the existing method, the proposed method 

is cost-effective, practical, and efficient in accurately and reliably determining rebar 

location 

In summary, with these accomplishments, the proposed method advances GPR data 

processing for RC structures, offering valuable insights for civil engineering applications. It allows 

further enhancements and integration into real-time GPR data processing, empowering engineers 

and researchers with a robust tool for effective GPR data analysis and structural assessment. 

4. 5 Future work and recommendations 

1) Firstly, high levels of noise remain a challenge for extracting precise areas of interest of the 

hyperboles. Future research can explore the use of advanced signal processing techniques and 

noise reduction methods to address this challenge. 

2) Secondly, machine learning based approaches can be explored to improve the weak hyperbola 

reflection in the pre-processing stage. This can include using deep learning models such as 

convolutional neural networks (CNNs) to enhance the accuracy of detecting and extracting 

weak hyperbola reflections. 

3) Lastly, more field data can be used to further train the machine learning model used in the data 

processing algorithm. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This dissertation aimed to develop novel nondestructive evaluation methods using GPR for 

the assessment of RC structures. The primary objectives were to address the challenges in GPR 

data analysis, improve the accuracy and reliability of depth measurements, and provide efficient 

and practical solutions for concrete infrastructure evaluation. Based on the presented study main 

results were summarized as follows: 

In Chapter 2, a novel time-zero (TZ) correction method was proposed and validated. The 

objective was to address the challenges of unknown TZ, strong noise, and blurry signals in GPR 

data analysis. Through extensive experimentation with GPR scanning of 32 RC specimens with 

different rebar depths, sizes, and spacings, a specific adjusting value of 0.14299 ns ahead of the 

first negative GPR wave peak was determined for RC structures. This value enabled more accurate 

depth measurements and reliable assessment of concrete infrastructure with GPR. The antenna 

pulling-away test further confirmed the accuracy and reliability of the proposed approach. The 

results demonstrated that the TZ correction method effectively improved the accuracy of depth 

calculations, mitigating the effects of TZ uncertainty and enhancing the reliability of GPR data 

interpretation for concrete structures. 

In Chapter 3, a nondestructive method for estimating GPR propagation velocity was 

introduced. The objective was to overcome the limitations of existing empirical models and 

assumptions by leveraging hyperbolic fitting and travel-time analysis. The proposed algorithm 

demonstrated the capability to accurately estimate electromagnetic wave velocity without the need 

for core drilling, making the velocity estimation process more efficient and cost-effective. 
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Laboratory experiments validated the algorithm's performance and highlighted its robustness and 

adaptability across various GPR system configurations. The research results showed that the 

hyperbolic fitting and travel-time analysis technique effectively captured the relationship between 

arrival times and offsets, providing a reliable estimation of the wave velocity. The algorithm's 

accuracy and efficiency in estimating GPR wave velocity contribute to enhanced subsurface 

imaging capabilities and improved data interpretation, benefiting a wide range of applications in 

civil engineering, geophysics, environmental studies, and archaeology. 

In Chapter 4, a comprehensive GPR data processing algorithm for rebar identification and 

localization in RC structures was developed and validated. The objective was to automate the rebar 

recognition process, eliminating the need for manual interpretation and rebar-picking. The 

proposed algorithm corrected time-zero and calculated electromagnetic wave velocity without 

requiring core-drilling, further improving the data processing workflow. Validation on various 

datasets, including lab-made reinforced concrete blocks, bridge decks, and a culvert, demonstrated 

the algorithm's promising performance in determining rebar location. The research results 

indicated that the automated GPR data processing algorithm effectively processed raw GPR data, 

identifying and localizing reinforcement in RC structures with high accuracy and reliability. The 

algorithm's ability to directly generate *xls files of the results also contributed to improved 

efficiency in data processing. The findings from this research open avenues for further 

enhancements and integration into real-time GPR data processing, empowering engineers and 

researchers with a robust tool for effective GPR data analysis and structural assessment. 

The research conducted in this dissertation makes significant contributions to the field of 

GPR-based assessment of concrete structures. The TZ correction method proposed in Chapter 2 

provides an innovative and reliable approach for improving depth measurements and data analysis 
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in GPR scans of RC structures. The nondestructive method for estimating GPR propagation 

velocity presented in Chapter 3 offers a practical solution for enhancing subsurface imaging 

capabilities and improving data interpretation. Lastly, the comprehensive GPR data processing 

algorithm in Chapter 4 contributes a valuable tool for efficient and accurate identification and 

localization of reinforcement in RC structures. 

The results of this research have several implications for theory, practice, and policy. The 

novel TZ correction method enhances the accuracy of depth measurements in GPR data analysis, 

enabling a more reliable assessment of concrete infrastructure health. The nondestructive method 

for estimating GPR propagation velocity eliminates the need for core drilling, making subsurface 

investigations more efficient and cost-effective. The comprehensive GPR data processing 

algorithm streamlines the rebar identification process, facilitating efficient structural assessment 

and maintenance. These advancements have the potential to improve decision-making in civil 

engineering applications and contribute to the overall sustainability and safety of concrete 

structures. 

5.2 Recommendation  

Although the proposed methods have shown promising results, some limitations should be 

acknowledged. The TZ correction method assumes relatively equal water content in concrete 

samples, which may not always be the case in real-world scenarios. The adjusting value for 

different material surfaces requires further investigation. Additionally, the comprehensive GPR 

data processing algorithm may face challenges in extracting precise areas of interest from 

hyperboles in the presence of high levels of noise. 

Future research can focus on addressing the limitations highlighted in this study, including 

investigating the impact of varying water content on TZ correction and evaluating the applicability 
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of the proposed algorithm to different material surfaces. Advanced signal processing techniques 

and machine learning approaches can be explored to enhance the robustness of the GPR data 

processing algorithm in noisy environments. Additional field data can be used to further train and 

validate the machine learning model. Furthermore, improvement can be made to the machine 

learning model for hyperbola fitting by exploring available model packages on the market. 

Additionally, enhancing the developed application could involve incorporating functions such as 

corrosion detection and contour map plotting. Further development to create a standalone app for 

user-friendly download and installation would also be beneficial.  

In conclusion, this Ph.D. dissertation has made significant strides in the field of 

nondestructive evaluation of concrete structures using Ground Penetrating Radar. The novel TZ 

correction method, nondestructive estimation of GPR propagation velocity, and comprehensive 

GPR data processing algorithm contribute valuable tools for enhancing the accuracy, efficiency, 

and reliability of GPR data analysis. These research findings have practical applications in civil 

engineering, offering improved structural assessment capabilities and supporting sustainable 

infrastructure development. The proposed methods hold great promise for future research and 

implementation in real-world scenarios, empowering engineers and researchers with innovative 

techniques for effective and reliable assessment of concrete infrastructure. 
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Appendix A: GPR Data Format 

DZT file format 

The RADAN DZT file is a binary file containing a header followed by scans of data. The 

header contains information concerning the settings used to collect the data and the header size. 

Note: This information is provided to the User for informational use only. It is not 

supported by GSSI technical support and is provided for those Users who are proficient in working 

in a C programming environment. 

Internal structures 

struct tagRFDate // File header date/time structure 

{ 

unsigned sec2 : 5; // second/2 (0-29) 

unsigned min : 6; // minute (0-59) 

unsigned hour : 5; // hour (0-23) 

unsigned day : 5; // day (1-31) 

unsigned month: 4; // month (1=Jan, 2=Feb, etc.) 

unsigned year : 7; // year-1980 (0-127 = 1980-2107) 

}; 

struct tagRFCoords // Start/End position 

{ 

float 

rh_fstart; 

float 

rh_fend; 

}; 

struct RGPS // GPS record/system time SYNC 

{ 

char RecordType[4]; // “GGA” 

DWORD TickCount; // CPU tick count 

double PositionGPS[4]; // Latitude (positive if 'N'), Longitude (positive if ‘E’), 

// Altitude, FIXUTC 



96 
 

}; 

Constants and macros 

// constants 

const int MINHEADSIZE = 

1024; const int 

PARAREASIZE = 128; 

const int GPSAREASIZE = 2 * sizeof(RGPS); 

const int INFOAREASIZE (MINHEADSIZE - PARAREASIZE- GPSAREASIZE) ; 

// structure member alignment macros 

#define TYPEBYTE(x,n) BYTE x##[n] 

#define SHORTBYTE(x) TYPEBYTE(x,2) // short int 

(16 bit) #define FLOATBYTE(x) TYPEBYTE(x,4) // 

float 

#define RFDATEBYTE(x) TYPEBYTE(x,4) // 

tagRFDate #define COORDBYTE(x) 

TYPEBYTE(x,8) // tagRFCoords 

RADAN header structure 

struct tagRFHeader  
 

{ // Offset in bytes 
short rh_tag; // 0x00ff if header, 0xfnff for old file 00 
short rh_data; // Offset to Data from beginning of file 02 

// if rh_data < MINHEADSIZE then 

// offset is MINHEADSIZE * rh_data 

// else offset is MINHEADSIZE *rh_nchan 

short rh_nsamp; // samples per scan 04 
short rh_bits; // bits per data word (8,16, 32) * 06 
short rh_zero; // if rh_system is SIR 30, 08 

// then equals repeats/sample 

// otherwise is 0x80 for 8 bit data and 

// 0x8000 for 16 bit data 

FLOATBYTE(rhf_sps); // scans per second 10 
FLOATBYTE(rhf_spm); // scans per meter 14 
FLOATBYTE(rhf_mpm); // meters per mark 18 
FLOATBYTE(rhf_position); // position (ns) 22 
FLOATBYTE(rhf_range); // range (ns) 26 
short rh_npass; // num of passes for 2-D files 30 
RFDATEBYTE(rhb_cdt); // Creation date & time 32 
RFDATEBYTE(rhb_mdt); // Last modification date & time 36 
short rh_rgain; // offset to range gain function 40 
short rh_nrgain; // size of range gain function 42 
short rh_text; // offset to text 44 
short rh_ntext; // size of text 46 
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short rh_proc; // offset to processing history 48 
short rh_nproc; // size of processing history 50 
short rh_nchan; // number of channels 52 
FLOATBYTE(rhf_epsr); // average dielectric constant 54 
FLOATBYTE(rhf_top); // position in meters 58 
FLOATBYTE(rhf_depth); // range in meters 62 
COORDBYTE(rh_coordX); // X coordinates 66 
FLOATBYTE(rhf_servo_level); // gain servo level 74 
char reserved[3]; // reserved 78 
BYTE rh_accomp; // Ant Conf component 81 
short rh_sconfig; // setup config number 82 
short rh_spp; // scans per pass 84 
short rh_linenum; // line number 86 
COORDBYTE(rh_coordY); // Y coordinates 88 
BYTE rh_lineorder:4; // 96 
BYTE rh_slicetype:4; // 96 
char rh_dtype; // 97 
char rh_antname[14]; // Antenna name 98 
BYTE rh_pass0TX:4; // Activ Transmit mask 112 
BYTE rh_pass1TX:4; // Activ Transmit mask 112 
BYTE rh_version:3; // 1 – no GPS; 2 - GPS 113 

BYTE rh_system:5; // (see below for description)** 113 
char rh_name[12]; // Initial File Name 114 
short rh_chksum; // checksum for header 126 
char variable[INFOAREASIZE]; // Variable data 128 
RGPS rh_RGPS[2]; // GPS info 944 

}; // End of tagRFHeader 

 

*Data format is little-endian. Eight-byte and sixteen-byte samples are unsigned integers. 

Thirty-two-bit samples are signed integers. **rh_system values: 

 

Control Unit Number 

SIR 2000 2 

SIR 3000 3 

TerraVision 4 

SIR 20 6 

SS Mini 7 

SIR 30 9 

 

RADAN DZX File 

Description Version 1.02 
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The RADAN DZX file is an XML file used to store all information related to a RADAN 

DZT file that is not contained in the DZT file. It contains GPS data, user annotations (such as 

marks and mark names), interactive interpretation data (such as layers and targets), 3D 

information, such as profile starting and ending coordinates, and RADAN 7 settings, such as a 

color table, color transform, display gain, and units. 
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