
University of Texas at Arlington University of Texas at Arlington 

MavMatrix MavMatrix 

Electrical Engineering Dissertations Department of Electrical Engineering 

2023 

MODEL OPTIMIZATION AND APPLICATIONS IN DEEP LEARNING MODEL OPTIMIZATION AND APPLICATIONS IN DEEP LEARNING 

Chengchen Mao 

Follow this and additional works at: https://mavmatrix.uta.edu/electricaleng_dissertations 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Mao, Chengchen, "MODEL OPTIMIZATION AND APPLICATIONS IN DEEP LEARNING" (2023). Electrical 
Engineering Dissertations. 354. 
https://mavmatrix.uta.edu/electricaleng_dissertations/354 

This Dissertation is brought to you for free and open access by the Department of Electrical Engineering at 
MavMatrix. It has been accepted for inclusion in Electrical Engineering Dissertations by an authorized administrator 
of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, 
vanessa.garrett@uta.edu. 

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/electricaleng_dissertations
https://mavmatrix.uta.edu/electricaleng
https://mavmatrix.uta.edu/electricaleng_dissertations?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/electricaleng_dissertations/354?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu


MODEL OPTIMIZATION AND APPLICATIONS

IN DEEP LEARNING

by

CHENGCHEN MAO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023



Copyright © by Chengchen Mao 2023

All Rights Reserved



To my dear family.



ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Qilian Liang for constantly

motivating and encouraging me, and also for his invaluable advice during the course

of my doctoral studies. Without his training, I would not be able have the chances

to explore the broad scope of signal processing and deep learning. I wish to thank

my academic advisors Dr. Chenyun Pan, Dr. Ioannis D. Schizas, for their interest in

my research and for taking time to serve in my dissertation committee.

I am grateful to all the teachers who taught me during the years I spent in

school, first in China, then in the United States. I would like to thank my supervisor

of master degree Dr. Jing Liang, who used to be the outstanding graduate from the

University of Texas at Arlington, for encouraging and inspiring me to pursue graduate

studies in the United States.

Great thanks are expressed to our group members from the Wireless Communi-

cations and Networking (WCN) Laboratory, Dr. Zikai Wang, Dr. Zhangliang Chen,

Dr. Dheeral Bhole, and Swarada, for their interest in my research, helpful discussions,

and invaluable comments. I would also like to extend my appreciation to the people

I met during these years. I want to thank Dr. Yuxin Zhao, Dr. Yangyang Qian, and

Dr. Guangda Zang for their emotional support.

Finally, I would like to express my deep gratitude to my parents who have

encouraged and inspired me. I am extremely fortunate to be so blessed to have such

loving and supportive parents. Without their constant encouragement and guidance,

I could not have made it through the difficult times of the COVID-19 pandemic.

iv



During the pandemic, when I was feeling anxious and stressed, my parents provided

me with emotional support that helped me get through those tough moments.

This work was supported by U.S. National Science Foundation (NSF) under

Grant CCF-2219753.

August 9, 2023

v



ABSTRACT

MODEL OPTIMIZATION AND APPLICATIONS

IN DEEP LEARNING

Chengchen Mao, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Qilian Liang

Machine learning refers to a machine or an algorithm that draws experience

from data. A certain pattern is found to build a model, which is used to solve real

problems.

Deep learning, an important branch and extension of machine learning, employs

a neural network structure containing multiple hidden layers. It learns critical fea-

tures of the data by combining lower-level features to form more abstract higher-level

representations of attribute categories or features.

In this dissertation, deep learning network models were applied to sense-through-

foliage target detection and extended with Rake structure. The deep learning network

models had a large number of redundant parameters from the convolutional layer to

the fully-connected layer, and a large number of neuron activation values converged

to zero. The challenging task was to reduce parameter redundancy while maintaining

model accuracy.

In Chapter 2, an approach based on stacked autoencoders (SAE) was proposed

for ultra wide band radar for sense-through-foliage target detection. SAE, as one of

vi



the widely used deep learning structures, could learn representations of data with

multiple levels of abstraction automatically. The SAE-based target detection ap-

proach performed well in processing poor signal collections in some positions. In

other positions, a single radar target detection performed under satisfaction. Rake

structure was applied in radar sensor networks with maximum ratio combining and

equal combining to combine radar echoes from different radar cluster-members.

In Chapter 3, pruning in deep learning network models was investigated. Prun-

ing presented significant opportunities for compression and acceleration in deep neural

networks by eliminating redundant parameters. Structured pruning gained popularity

in the edge computing research area, especially with more terminal chips integrated

with AI accelerators for Internet of Things (IoT) devices. Stripe-wise pruning (SWP),

which conducted pruning at the level of stripes in each filter, was different from filter

pruning and group-wise pruning. The existing SWP method introduced filter skeleton

(FS) to each stripe, setting an absolute threshold for the values in FS, and removing

stripes whose corresponding values in FS could not meet the threshold. The research

involved investigating the process of stripe-wise convolution and using the statistical

properties of the weights located on each stripe to learn the importance between those

stripes in a filter and remove stripes with low importance.

In Chapter 4, the conception of a deep energy autoencoder (EA) for a nonco-

herent multicarrier single-input and multiple-output (SIMO) system operating amidst

multipath channels was explored. The multicarrier SIMO structure involved a single-

antenna sender and a multi-antenna receiver, both depicted via neural networks. The

encoder generated a real-valued vector for each subcarrier, while the decoder received

the combination of energy from all the receiving antennas. To address the major

challenge of mitigating intersymbol interference (ISI) caused by multipath channels

without relying on delicate designs common in traditional communication systems,

vii



two different types of neural networks, namely DNN (Deep Neural Network) and RNN

(Recurrent Neural Network), were adopted for the demodulation rule at the receiver.

Simulation results demonstrated that, with adequate training, RNN efficiently recov-

ered the transmitted data even in the absence of channel state information, which

was often required in traditional communication systems.

viii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fundamentals of UWB ranging . . . . . . . . . . . . . . . . . . . . . 3

1.3 Essentials of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Sense-Through-Foliage Target Detection Based on Stacked Autoencoder and

UWB Radar Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data Measurement and collection . . . . . . . . . . . . . . . . . . . . 10

2.3 Stacked Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Sense-Through-Foliage Target Detection Using Signal Radar and SAE 16

2.5 Sense-Through-Foliage Target Detection Using RSN and SAE . . . . 17

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. A Statistical Approach for Neural Network Pruning with Application to

Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



3.3 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Stripe Wise Convolution . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . 32

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Experiments on CIFAR-10 . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Experiments on Bearings Dataset . . . . . . . . . . . . . . . . 34

3.4.2.1 Symmetrized Dot Pattern . . . . . . . . . . . . . . . 35

3.4.2.2 Data categories and preprocess . . . . . . . . . . . . 36

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Results on on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . 38

3.5.1.1 Comparing with the original SWP . . . . . . . . . . 38

3.5.1.2 Ablation study . . . . . . . . . . . . . . . . . . . . . 40

3.5.1.3 Edge device performance . . . . . . . . . . . . . . . . 41

3.5.2 Results on Bearings Dataset . . . . . . . . . . . . . . . . . . . 45

3.5.2.1 Comparison of the original model and the pruned Model 45

3.5.2.2 Edge device performance . . . . . . . . . . . . . . . . 47

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. Enhancing Multipath Mitigation in Noncoherent Multicarrier SIMO Sys-

tems with Deep Energy Autoencoder . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Multipath Environments . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Jakes’ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5. Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Introduction regularizers to prune filters and applications in

other areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Advancing Research with GAN Integration and Multi-User Adap-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6. Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



LIST OF ILLUSTRATIONS

Figure Page

1.1 A VGG network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Residual Connection skips two layers . . . . . . . . . . . . . . . . 6

1.3 Parts of an RNN network . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The target (a trihedral reflector) . . . . . . . . . . . . . . . . . . . . . 11

2.2 Received echoes used in this chapter. (a) Without target. (b) Target

on range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Expanded view of received echoes used in this chapter from samples

13,000 to 14,999. (a) Without target. (b)Target on range. (c) Differ-

ences between echoes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 An illustration of an autoencoder (AE). . . . . . . . . . . . . . . . . . 14

2.5 An illustration of a stacked autoencoder (SAE). . . . . . . . . . . . . . 15

2.6 RAKE structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Different types of pruning. (Red parts were pruned.) (a) Filter-wise.

(b) Channel-wise. (c) Group-wise. . . . . . . . . . . . . . . . . . . . . 22

3.2 Standard convolution (The kernel size of the filter is 3). . . . . . . . . 26

3.3 Stripe wise convolution (The kernel size of the filter is 3). . . . . . . . 27

3.4 Stripe wise convolution (Single filter case). The squares with dark or-

ange indicate they have larger stripe convolution results than the light

orange ones, which means the corresponding stripes could be remained

during pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xii



3.5 CWRU bearing test rig. (The components of the test stand include a 2

hp motor on the left, a torque transducer/encoder in the center, and a

dynamometer on the right.) . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Typical time-domain signal for SDP technique (a) and corresponding

SDP plot (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 SDP (a) Normal case. (b) Inner race fault. (c) Outer race fault. (d)

Rolling element fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 The ratio of remaining stripes in each layer. . . . . . . . . . . . . . . . 41

3.9 Experiment setup of edge device performance. . . . . . . . . . . . . . . 42

3.10 Inference Time Required for Pruned VGG16 . . . . . . . . . . . . . . . 43

3.11 Inference Time Required for Pruned VGG13 . . . . . . . . . . . . . . . 43

3.12 Inference Time Required for Pruned VGG11 . . . . . . . . . . . . . . . 44

3.13 Inference Time Required for Pruned ResNet56 . . . . . . . . . . . . . . 44

3.14 Inference Time Required for Different Backbone Models . . . . . . . . 45

3.15 Inference Time Required for Pruned VGG16 . . . . . . . . . . . . . . . 47

4.1 Over multipath fading channels . . . . . . . . . . . . . . . . . . . . . . 52

4.2 A basic autoencoder-based end-to-end communication system. . . . . . 53

4.3 Structure of the noncoherent energy-based autoencoder system. . . . . 54

4.4 Structure of the noncoherent energy-based autoencoder system under

multipath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Structure of CNN receiver under multipath. . . . . . . . . . . . . . . . 57

4.6 Structure of RNN receiver under multipath. . . . . . . . . . . . . . . . 58

4.7 BLER comparison between two types of receivers under different SNRs,

when (N,M,L,D) = (4, 4, 2, 3). . . . . . . . . . . . . . . . . . . . . . . 61

4.8 BLER comparison between various numbers of antennas at different

SNRs, when (N,M,D) = (4, 4, 3). . . . . . . . . . . . . . . . . . . . . 62

xiii



4.9 BLER comparison between various lengths of message sequences at dif-

ferent SNRs, when (N,M,L) = (4, 4, 2). . . . . . . . . . . . . . . . . . 63

4.10 BLER comparison between using Jakes model or not under different

SNRs, when (N,M,L,D) = (4, 4, 2, 3). . . . . . . . . . . . . . . . . . . 64

4.11 BLER comparison between various numbers of carriers at different SNRs,

when (L,D) = (2, 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv



LIST OF TABLES

Table Page

1.1 List of activation functions . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sample range from 13500 to 14499 . . . . . . . . . . . . . . . . . . . . 16

2.2 Sample range from 13000 to 14999 . . . . . . . . . . . . . . . . . . . . 16

2.3 Sample range from 13500 to 14499 in position 2 . . . . . . . . . . . . . 18

2.4 Sample range from 13000 to 14999 in position 2 . . . . . . . . . . . . . 19

3.1 Unstructured and structured pruning methods. . . . . . . . . . . . . . 25

3.2 Twelve fault categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Comparison with the original SWP on CIFAR-10. . . . . . . . . . . . . 40

3.4 Different coefficient α and weight combination threshold. . . . . . . . . 41

3.5 Comparison of Accuracy Under Different Sub-datasets . . . . . . . . . 46

3.6 Comparison with the original SWP on D03. . . . . . . . . . . . . . . . 46

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation

Deep learning (DL) has demonstrated its remarkable power across various do-

mains, transforming the way we understand and interact with technology. In the field

of computer vision, deep learning models facilitate deep analysis of images, making

tasks like facial recognition, object detection, and semantic segmentation possible [1].

These advancements have revolutionized industries, ranging from security to enter-

tainment. Meanwhile, in the realm of speech recognition, deep learning has taken

the lead, enabling applications such as speech-to-text and voice assistants [2]. These

applications have become integral in our daily lives, enhancing accessibility and conve-

nience in communication and information retrieval. The capabilities of deep learning

extend beyond visual and auditory processing. Large language models, like GPT,

leverage the power of deep learning to deeply understand natural language [3], pro-

viding powerful tools for tasks like chatbots, machine translation, and automated

text generation. This has brought significant strides in bridging language barriers

and personalizing user experiences. Additionally, deep learning’s application in data

analysis, including signal propagation in complex networks [4], enables the extraction

of valuable insights and patterns from large datasets. These insights have been piv-

otal in understanding how signals propagate and interact within various networks.

Building on these successes, the applications of deep learning continue to expand into

more specialized fields, such as the analysis of criminal networks [5] and decoding

complex brain signals in EEG Signal Analysis [6]. These explorations demonstrate

1



deep learning’s potential to address intricate challenges, contributing to fields like law

enforcement and healthcare, and further emphasizing its pivotal role in technological

innovation.

Model Optimization is a critical aspect of deep learning that involves the fine-

tuning and alteration of algorithms to enhance efficiency and performance. This may

include reducing the complexity of the model, the number of computations required,

or the memory needed to execute the program. Optimization techniques such as

pruning, quantization, and the use of efficient architectures like MobileNets are com-

monly implemented [7]. These methods enable deep learning models to run on a

broader range of platforms, including low-power devices like smartphones and em-

bedded systems. By reducing resource requirements, model optimization opens doors

to real-time applications and makes the deployment of advanced AI technologies more

accessible and cost-effective.

In this dissertation, we will delve into the subject of model optimization and

applications in deep learning. The focus of our discussion will be on pivotal topics

that illustrate the range and capability of optimized models within complex envi-

ronments. First, we will explore the sense-through-foliage target detection based

on stacked autoencoder and UWB radar sensor networks. Next, we will examine a

statistical spproach for neural network pruning with application to the Internet of

Things (IoT). Lastly, we will discuss the implementation of deep energy autoencoder

for noncoherent multicarrier SIMO systems in multipath scenarios. Together, these

subjects encapsulate the cutting-edge developments in model optimization, shedding

light on the applicability of these methods across a variety of fields and applications.

Through the exploration of these intricate topics, we aim to provide a comprehensive

understanding of how model optimization shapes the landscape of deep learning and

empowers new technological frontiers.

2



1.2 Fundamentals of UWB ranging

Ultra-wideband (UWB) is a low-energy, short-range, high-bandwidth wireless

protocol using 3.1 to 10.6 GHz frequencies. Initially defined by DARPA with a

fractional bandwidth (Bf ) over 0.25, it was later reduced to 0.2, based on specific

frequency parameters [8]. The FCC considers a signal as UWB if it’s 500MHz or

more and under 0.5mW, limiting applications but allowing co-existence with other

signals.

The fractional bandwidth, as specified in (1.1), is determined by two frequencies:

fL, representing the lower frequency of the -10dB emission input, and fH, representing

the upper frequency of the -10dB emission point.

Bf = 2
fH − fL
fH + fL

(1.1)

The transmission center frequency, denoted as fc, is computed by taking the

average of the indicated cut-off frequencies in (1.2):

fc =
fH − fL
fH + fL

(1.2)

The IEEE 802.15.4a standard provides support for the UWB PHY option, which

grants devices a remarkable ranging capability [9]. UWB technology utilizes the time

it takes for radio waves to travel between devices, enabling precise tracking of objects.

Apple’s AirTag makes the most of this UWB capability, empowering users to locate

lost or misplaced items with unparalleled accuracy via the Find My network [10].

In Chapter 2, we will utilize the ranging capabilities of UWB in conjunction

with the stacked autoencoder to detect sense-through-foliage targets.

3



1.3 Essentials of Deep Learning

Activation functions are crucial to Deep Neural Networks (DNNs). They trans-

form the weighted input into the neuron’s output, adding non-linearity to the network

which helps it learn complex patterns. Common activation functions include ReLU,

tanh, sigmoid, and softmax. Each has specific benefits and is suitable for different sce-

narios. Choosing the right function depends on the problem and data characteristics.

Table 1.1 summarizes the commonly used activation functions.

Table 1.1: List of activation functions

Name [σ(u)]i Range
linear ui (−∞,∞)
ReLU max(0, ui) [0,∞)
tanh tanh(ui) (−1, 1)

sigmoid 1
1+e−ui

(0, 1)

softmax eui∑
j e

uj (0, 1)

Convolutional Neural Networks (CNNs) are a class of deep learning algorithms,

mainly utilized in image processing. They consist of convolutional layers that auto-

matically detect patterns like edges, colors, and textures. By stacking these layers,

CNNs can recognize complex features. In Chapter 3, we will delve into the optimiza-

tion of two prominent CNN architectures, namely VGG (Visual Geometry Group)

and ResNet (Residual Networks). These optimizations are targeted at enhancing

their performance and efficiency, adapting them for various applications.

VGG network is a convolutional neural network model known for its simplicity

and effectiveness. Created by the VGG team at Oxford, VGG has become a popular

choice for image recognition tasks. It consists of multiple convolution layers with

small 3 × 3 filters, followed by max-pooling layers. The architecture is followed by

fully connected layers leading to the final classification output. As shown in Figure

4



1.1, the VGG network consists of several convolution layers and max-pooling layers.

Despite its performance, VGG is often criticized for being computationally intensive,

which may lead to challenges in deployment on devices with limited resources.

6464

22
4

224

conv1

128 128

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512

14

conv5

1

40
96

fc6

1

40
96

fc7

1

fc8+softmax

K

Figure 1.1: A VGG network

ResNet, is a pioneering architecture in deep learning that leverages residual con-

nections or ”skip connections”, as shown in Figure. 1.2. These connections allow the

gradient to flow directly through the network, making it easier to train deeper mod-

els [11]. By having layers learn residual functions and performing identity mappings

merged with layer outputs, ResNet can significantly mitigate the vanishing gradient

problem. This unique mechanism has enabled the training of networks with hun-

dreds of layers, pushing the boundaries of depth and complexity. ResNet has become

foundational in various applications including image recognition, and its principles

are found in other advanced models and systems like Transformer models [12] and

AlphaGo.

Recurrent Neural Networks (RNNs) have been designed to imbue neural net-

works with the capability of memory. This property is key for handling sequential

data such as in Natural Language Processing (NLP) where the context plays a signifi-

5



x

Layer

Layer

⊕

identityF (x)

F (x) + x

Figure 1.2: The Residual Connection skips two layers

cant role. In more traditional, memoryless neural networks, the neurons in each layer

are connected only to those in the preceding and subsequent layers, with no intra-

layer connections. However, this architecture does not provide the network with the

ability to maintain and utilize any contextual or sequential information from prior

states, which could limit its performance on tasks that inherently require knowledge

about prior inputs. RNNs address this limitation by incorporating feedback connec-

tions in the hidden layers (Figure. 1.3). This means that the neurons in a given layer

receive not just inputs from the preceding layer, but also the outputs of their own

layer from previous steps. In essence, a recurrent neuron maintains a kind of memory

by using its output from the previous step as part of its input for the current step.

This allows the network to ’remember’ and use information from the past, effectively

enabling it to handle data where temporal dynamics and dependencies matter. In

chapter 4, we will leverage the memory capabilities of RNN to mitigate the signal

detection problem in SIMO systems caused by different delays in multipath channels.

6



A A A

h0

x0

h1

x1

h2

x2

Figure 1.3: Parts of an RNN network

1.4 Overview of Dissertation

Chapter 2 introduces a method for sense-through-foliage target detection utiliz-

ing a Stacked Autoencoder (SAE) based approach. The SAE is capable of extracting

essential information and deep features from radar echoes, even in cases of poor sig-

nal quality. Experimental results demonstrate its high detection accuracy, although

there are positions where performance is suboptimal. To enhance the system, a

RAKE structure in RSN has been implemented, which preprocesses input by com-

bining echoes from different cluster-member radars. Simulations confirm that this

integration significantly improves detection accuracy.”

Chapter 3 presents an exploration of pruning’s remarkable potential for com-

pressing and accelerating deep neural networks, with a focus on eliminating redundant

parameters. In conjunction with the integration of terminal chips with AI accelera-

tors in Internet of Things (IoT) devices, structured pruning, specifically stripe-wise

pruning (SWP), is emerging as a significant trend in edge computing. Unlike tradi-

tional methods, SWP targets the stripes in each filter, introducing a filter skeleton

(FS) to set a threshold for value removal. The chapter delves into the statistical

7



examination of the weights on each stripe, learning their importance and removing

those with low significance. This novel approach has led to substantial results in our

pruned VGG-16 model, achieving a 4-fold reduction in parameters with only a minor

decrease in accuracy.

Chapter 4 explores the potential of a deep energy autoencoder (EA) for non-

coherent multicarrier SIMO systems operating in multipath channel environments.

The heart of our methodology lies in a distinctive multicarrier SIMO architecture,

employing a single-antenna sender and multi-antenna receiver, both modeled through

neural networks. The encoder uniquely generates real-valued vectors for individual

subcarriers, while the decoder skillfully compiles energy from all receiving antennas.

Challenging conventional methods, we addressed the issue of ISI caused by multipath

channels not through traditional complex designs, but by capitalizing on DNNs and

RNNs during the demodulation process. Our simulations incorporated the Jakes’

model, considering variable Doppler frequencies, thus enhancing the design’s practi-

cality and robustness.

Chapter 5 concludes the dissertation by emphasizing its main accomplishments

and outlining potential avenues for future research.

8



CHAPTER 2

Sense-Through-Foliage Target Detection Based on Stacked Autoencoder and UWB

Radar Sensor Networks

2.1 Introduction

Radar target detection is a significant topic in obstacle avoidance as well as

homeland security. Especially in a strong background clutter, the non-stationary na-

ture of the complex environment like forest, provides a good cover for hostile forces

and sabotage activities, where the doppler shift caused by the wind blowing through

the leaves and the branches makes the target detection difficult. Meanwhile, in the

rich scattering environment the multipath fading that impulsively corrupts received

echoes including target as well as clutter information can degrade detection perfor-

mance [13].

In this work, we focus on sense-through-foliage target detection problems using

ultra wide band (UWB) radar. There are a wide range of signals on target detection in

foliage related applications, like signals at VHF and UHF bands in near ground path

loss modeling in a foliage [14], and millimeter-wave frequencies in wave propagation

through foliage and forest ground reflectivity [15]. Good penetration capability and

high range resolutions make UWB radar ideal for target detection behind clutter.

There are several works conducted on sense-through-foliage target detection

with UWB radar. Approaches with discrete-cosine-transform (DCT)-based and short-

time Fourier transform (STFT)-based approach were proposed for target detection

in [16] and [17], respectively. Methods based on information theory using mutual

information [18] and relative entropy [19, 20] were also appeared in this area. Some

9



feature-extraction based detection methods were also put forward [21]. However, these

features are mostly designated by the researchers and would be incomplete without

sufficient prior knowledge. The deep learning theory could automatically extract the

deep abstract features. It constructs a neural network containing multiple processing

layers to learn representations of data with multiple levels of abstraction [22]. As a

widely utilized deep learning structure, stacked autoencoder (SAE) [23], has attracted

considerable attention in radar sensing society, including hyperspectral remote sensing

[24], SAR image classification [25] and HRRP target recognition [26].

Inspired by the prior researches, with UWB radar, we apply the SAE to sense-

through-foliage target detection. In addition, to overcome the poor quality echo

signal collected from radar sensors [27–29], we combine RAKE structure and SAE

based sense-through-foliage target detection, which brings a significant improvement

in performance.

In this chapter, we applied stacked autoencoder and UWB radar sensor networks

sense-through-foliage target detection. The reminder of this chapter is organized as

follows: Section 2.2 briefly introduces measurement and data collection used in this

chapter. In Section 2.3, we present the basic knowledge of SAE. In Section 2.4, the

SAE based sense-through-foliage target detection approach is present. Section 2.5

adds RAKE structure and shows the improvement. In Section 2.6, this chapter is

summarized.

2.2 Data Measurement and collection

The sense through foliage UWB data were collected by Virtual Machine Com-

pany in Massachusetts in late summer and early fall. As show in Figure. 2.1, the

target is a trihedral shape metal reflector.

10



Figure 2.1: The target (a trihedral reflector)

For the data utilized in this work, 16,000 samples are included in each data

collection. In Figure. 2.2a and Figure. 2.2b we plot the received echoes without

target and the received echoes with target on range respectively. The target’s presence

around 14,000 sample.

For clarity, we enlarge the relevant area in Figure. 2.2 from sample 13,000 to

14,999 as shown in the first two subfigures in Figure. 2.3. The difference is shown in

the third one, from which we can’t tell if there is a target. These collections as poor

signal quality.

2.3 Stacked Autoencoder

An autoencoder (AE) is an unsupervised learning algorithm [30]. It is a neural

network that learns to generate its output which is almost close to its input.

As shown in Figure. 2.4, an AE consists of two parts, the encoder, which

computes a latent representation of the input, and the decoder, which reproduces the

11



0 2000 4000 6000 8000 10000 12000 14000 16000

Sample Index

-4

-3

-2

-1

0

1

2

3

4

E
c
h

o
e

s

10
4

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000

Sample Index

-4

-3

-2

-1

0

1

2

3

4

E
c
h

o
e

s

10
4

(b)

Figure 2.2: Received echoes used in this chapter. (a) Without target. (b) Target on
range.

original input from the latent representation. Define the encoder parameters as ϕ and

the decoder parameters as ψ, i.e.,

ϕ : X → F (2.1)

ψ : F → X (2.2)

ϕ, ψ = arg min
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2 (2.3)

where X is the data space, F is the latent space and X ∈ X .

12



1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

Sample Index 10
4

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

E
c
h

o
e

s

(a)

1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

Sample Index 10
4

-3000

-2000

-1000

0

1000

2000

3000

4000

E
c
h

o
e

s

(b)

1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

Sample Index 10
4

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

E
c
h

o
e

s

(c)

Figure 2.3: Expanded view of received echoes used in this chapter from samples 13,000
to 14,999. (a) Without target. (b)Target on range. (c) Differences between echoes.

13



x5

x4

x3

x2

x1

Encoder

h1

h2

x̃5

x̃4

x̃3

x̃2

x̃1

Decoder

Figure 2.4: An illustration of an autoencoder (AE).

Without loss of generality, we assume that the data and the latent spaces are

real-valued with dimension d and p, respectively. The encoder takes the input x ∈

Rd = X and maps it to h ∈ Rp = F :

h = σ(Wx + b) (2.4)

where σ is an activation function, W is a weight matrix and b is a bias vector. The

decoder maps h to the reconstruction x′:

x′ = σ′(W′h + b′) (2.5)

where σ′ is an activation function, W′ is a weight matrix and b′ is a bias vector.

When x ≈ x′, it is considered that the trained AE reconstructs the input. The

cost function could be defined as follows:

L(x,x′) = ∥x− x′∥2 +
∑

i,j,k

(ω
(i)
jk )2 (2.6)

where ω
(i)
jk is the connection weights between the j-th neurons of layer i and the k-th

neurons of layer i + 1. The first term (mean squared errors) is the reconstruction

14



error, and the second term (weight decay) is a regularizing penalty which is typically

included to prevent overfitting.

x5

x4

x3

x2

x1

Input

h
(1)
4

h
(1)
3

h
(1)
2

h
(1)
1

Layer 1

h
(2)
3

h
(2)
2

h
(2)
1

Layer 2 Output

Figure 2.5: An illustration of a stacked autoencoder (SAE).

As shown in Figure. 2.5, SAE is a neural network structure stacking multiple

layers of autoencoders in which the output of each layer is connected to the inputs

of the successive layer. By using greedy layer-wise training [31], we could obtain the

optimal parameters for a SAE. The training process could be divided into following

steps:

1. Train the first autoencoder using the raw input data and acquire a vector con-

sisting of the latent feature.

2. Use the latent vector from the previous layer as the input of the next layer, and

repeat this step until the training is completed.

3. Use the backpropagation (BP) algorithm to minimize the cost function and

update the weights with the training set to achieve fine tuning.

15



2.4 Sense-Through-Foliage Target Detection Using Signal Radar and SAE

In this section, we present the results of Sense-Through-Foliage target detection

using signal radar and SAE. The data used here is present in Figure 2.3 from 2

positions. Each position has 2 sample ranges, i.e. 13500 to 14499, and 13000 to 14999.

The number of hidden layers is two and the number of nodes in the hidden layers are

1000-100, and 2000-100, for different sample ranges. Before network training, echoes

are pre-processed to fit the need of input.

Table 2.1 and 2.2 show the confusion matrix of sense-through-foliage target

detection results in two different positions for different sample ranges.

From both tables, we could find the SAE scheme could finish the target de-

tection mission and the detection performance in position 1 is better than position

2. Compare table 2.1 with 2.2, we might draw a conclusion that the large input size

could increase the detection rate.

Table 2.1: Sample range from 13500 to 14499

position 1 position 2
NO YES NO YES

no target 0.9360 0.0640 no target 0.9040 0.0960
target 0.0293 0.9707 target 0.2053 0.7947

Table 2.2: Sample range from 13000 to 14999

position 1 position 2
NO YES NO YES

no target 0.9707 0.0293 no target 0.9107 0.0893
target 0.0133 0.9867 target 0.1560 0.8440

16



2.5 Sense-Through-Foliage Target Detection Using RSN and SAE

From Table 2.1 and 2.2, we found that the detection performance in position

2 was under satisfaction. Assuming that the measurements are independent, we use

some diverse combination techniques in the radar sensor network (RSN) to improve

the quality of the received signal [32, 33]. In the RSN, each radar can provide their

pulse parameters such as timing to their clusterhead radar, and the clusterhead radar

can combine the echos (RF returns) from the target and clutter.

radar 1
received echo

radar 2
received echo

radar n
received echo

· · · · · ·

×

×

×

∫
T

()dt

∫
T

()dt

∫
T

()dt

∑
ω1

ω2

ωn

combined
echo

Figure 2.6: RAKE structure.

Therefore, we propose to use a RAKE structure to control poor signal quality

target detection problem, as illustrated by Figure. 2.6 . Because uncorrelated radar

measurements may experience different attenuation levels, the RAKE structure is an

effective diversity combining method. The echoes from the radars of different cluster

members are combined by the cluster leader.

In RAKE structure used in this chapter, two different diversity combing schemes

are under consideration: one is equal gain combing; the other one is maximum ratio

combining. Suppose the number of radar echoes is R.

17



The equal gain combined signal has following formula:

xeq(n) =
1

N

R∑

i=1

xi(n) (2.7)

The power of each echo xi(n) is Ei = var(xi(n)) + [mean(xi(n))]2. Construct

weight coefficient ωi

ωi =
Ei∑R
i=1Ei

(2.8)

The combined signal xMRC(n) through the method of maximum ratio:

xMRC(n) =
R∑

i=1

ωixi(n) (2.9)

In our database, totally 70 radar echoes can be used to construct the Rake

structure receiver. We choose R = 3, radar echoes in the database and 50 Monte

Carlo simulations are performed at each combing level. Table 2.3 and 2.4 show the

confusion matrix of sense-through-foliage target detection results in position 2 using

two different combination schemes.

Table 2.3: Sample range from 13500 to 14499 in position 2

single radar
NO YES

no target 0.9040 0.0960
target 0.2053 0.7947

equal combine
NO YES

no target 0.9916 0.0084
target 0.0428 0.9672

MRC
NO YES

no target 0.9976 0.0024
target 0.0172 0.9828

From Table 2.3 and 2.4, we find the usage of RSN and the RAKE structure

could improve the detection level drastically. And maximum ratio combing method

18



performs better than the method of equal gain combing in both sample ranges. How-

ever, when the sample range is 13000 to 14999, the target detection accuracy (0.9788)

under maximum ratio combing method is not larger than when the sample range is

13500 to 14499 (0.9828), which is different from the single radar case. The main

reason is that when the RSN is using maximum ratio combing, the clutters exist-

ing in different sample ranges are all considered into the combined echoes, which

compromises the final detection performance.

Table 2.4: Sample range from 13000 to 14999 in position 2

single radar
NO YES

no target 0.9107 0.0993
target 0.1560 0.8440

equal combine
NO YES

no target 0.9984 0.0016
target 0.0252 0.9748

MRC
NO YES

no target 1 0
target 0.0212 0.9788

2.6 Conclusion

This chapter presented a SAE based approach for sense-through-foliage target

detection. SAE could uncover the essential information and extract deep features of

sense-through-foliage radar echoes, especially when the received echoes are in the poor

signal quality. The experimental results showed that SAE could achieve a high de-

tection accuracy. However, in some positions the performance was under satisfaction.

A RAKE structure using in RSN by combining echoes from different cluster-member

radars is utilized for preprocessing before inputting the neural network. The results of

19



simulation indicate that integrating different radar echoes could improve the detection

accuracy significantly.

20



CHAPTER 3

A Statistical Approach for Neural Network Pruning with Application to Internet of

Things

3.1 Introduction

In the internet of Things (IoT) realm, sensors and actuators seamlessly integrate

with the environment [34], enabling cross-platform information flow for environmen-

tal metrics, while numerous connected devices generate massive data, offering con-

venience but also high latency [35]. However, applications such as vehicle-to-vehicle

(V2V) communication which enhances the traffic safety by automobile collaboration,

are highly latency-sensitive and security-sensitive [36]. Edge computing offers vast

potential for consumers and entrepreneurs by bringing data processing closer to end

users, enhancing response times, bandwidth availability, privacy, and alleviating in-

formation security threats [37, 38].

Even though chip giants are integrating more and more AI accelerators into

their design for the IoT devices [39, 40], the massive number of parameters and the

huge amount of computation would bring horrible experience to the consumers when

Deep Neural Networks (DNNs) are employed in their devices [41]. To alleviate such

kind of problems, researchers have made efforts in many directions, which could be

mainly categorized into two types: unstructured ones and structured ones.

Pruning the individual weights whose values are close to 0 is one way to downsize

the number of parameters in DNNs [42,43]. This kind of unstructured method could

wind up as a sparse structure and maintain the original performance. However, the

random and unpredictable positions of the remaining weights bring the burden of

21



extra records of themselves and make this method unable to utilize AI accelerators

effectively [44].

By contrast, as shown in Figure. 3.1, structured methods remove the weights at

higher levels and avoid the problem brought by unstructured ones. Filter (channel)

pruning (FP) based methods prunes weights at the level of filters or channels [45–47].

Usually, a traditional FP-based method needs to follow the “Train, Prune, Fine-

tune” pipeline. Group-wise pruning based methods delete the weights at the identical

position among all the filters in a certain layer [48]. However, these approaches ignore

the assumption of filters’ independence. Stripe-wise pruning (SWP) based methods

trim all the weights laid in some stripes of certain filters [49]. The proposed method

introduced the concept of filter skeleton (FS). During the training, when some values

on FS are under a certain threshold, the corresponding stripes can be pruned.

(a)

(b)

(c)

Figure 3.1: Different types of pruning. (Red parts were pruned.) (a) Filter-wise. (b)
Channel-wise. (c) Group-wise.

22



However setting an absolute threshold sometimes could not express the relative

importance of each stripe in a filter. To resolve this problem, in this work, we put

forward a new method, using the statistical properties of the weights located on each

stripe, to learn the importance between those stripes in a filter. The intuition of this

method is triggered by the process during stripe wise convolution and the properties of

normal distributions. Our principal contributions in this paper could be summarized

as follows:

• New threshold determination approach for SWP: The research proposes a new

method for determining which weights in a neural network can be pruned with-

out sacrificing accuracy. Our pruned VGG16 achieves results comparable to the

existing model, with a 4-fold reduction in parameters and only a 0.4% decrease

in accuracy.

• Stable theoretical basis: The proposed method is based on sound theoretical

principles, making it more trustworthy and easier to understand and apply.

• Deployment of different deep layers on edge devices: The effectiveness of the

proposed approach is tested on different neural network architectures (VGG11,

VGG13, VGG16, and ResNet56) and evaluated on edge devices with limited

computational resources.

In this chapter, we investigated pruning in deep learning network models. As a

reminder, this chapter is organized as follows. In Section 3.2, we briefly review related

work. In Section 3.3, we present our method as well as the theoretical framework be-

hind it. Section 3.4 explains the experimental details and data processing. In Section

3.5, we demonstrate comparisons between our method and the original method, as

well as exhibit the performance of our method deployed on edge devices. In Sec-

tion 3.6, we discuss the implications of our findings. Finally, concluding remarks are

provided in Section 5.

23



3.2 Related work

Neural network pruning algorithms have undergone decades of research [50].

As mentioned in Section 3.1, these algorithms could be mainly categorized into two

types, i.e., unstructured ones and structured ones.

Unstructured pruning methods prune individual weights based on the impor-

tance of themselves. For example, by using the second-order derivatives of the error

function, Optimal Brain Damage and Optimal Brain Surgery proposed to remove

unimportance weights from a trained network [42,43]. Deep Compression compressed

neural networks by pruning the unimportant connections, quantizing the network, and

applying Huffman coding [51]. With Taylor expansion that approximates the change

in the cost function, [52] pruned convolutional kernels to enable efficient inference

and could handle the transfer learning tasks effectively. Lookahead pruning scheme,

a magnitude-based method, minimized the Frobenius distortion of multi-layer opera-

tion and avoids tuning hyper-parameters [53]. A major downside of the unstructured

methods is the sparse matrix and the relative indices after pruning, which leads to

the complexity and inefficiency on hardware [44].

Structured methods prune weights in a predictable way. [45] pruned unimpor-

tant filters with L1 norm. [54] pruned filters based on statistics information computed

from its next layer, not the current layer. [46] pruned channels by LASSO regression.

By using scaling factors from batch normalization layers, [47] removed unimportant

channels. [48] revisited the idea of brain damage and extended it to group wise, ob-

taining the sparsities in new neural network. [55] put forward a structured sparsity

learning (SSL) approach. With group Lasso regularization, SSL could learn a com-

pressed structure, including filters, channels and filter shapes. To the best of our

knowledge, one recent study [49] proposed a stripe-wise pruning based methods by

introducing filter skeleton to learn the shape of filters and then performed pruning

24



on the stripes according to the corresponding values of the filter skeleton. However

setting an absolute threshold sometimes is unable to distinguish the importance of

the convolution result for one stripe from the other result for corresponding stripes.

The comparisons of the two methods are summarized in Table. 3.1.

Table 3.1: Unstructured and structured pruning methods.

Methods Advantages Disadvantages

Unstructured [42–44]
Sparse structure
original performance

High complexity and
inefficiency on hardware

Structured [45–48,55]
Prune weights
in a predictable way

May not maintain
unpruned performance

3.3 The proposed method

In this section, we begin with introducing stripe wise convolution (SWC), then

analyze our threshold determination with stripe weight combination based on the

properties of normal distributions. Furthermore, we discuss our approach for stripe

wise pruning (SWP).

3.3.1 Stripe Wise Convolution

In l-th convolution layer, suppose the weight 4-D matrixW is of size RN×C×K×K ,

where N , C and K are the numbers of filters, the channel dimension and the kernel

size, respectively.

Let xlc,h,w be one point of feature map in the l-th layer and xl+1
n,h,w be the con-

volution result in the l + 1-th layer. Mathematically, the standard convolution in a

neural network could be written as (3.1). We modify the calculation order as (3.2) to

25



stripe wise convolution. These two types of convolution are illustrated in Figure. 3.2

and Figure. 3.3, respectively.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

C

MW

MHX l
C

⊗

Filter 1 Filter 2 Filter n Filter N

X l+1
1 X l+1

2 X l+1
n X l+1

N

Figure 3.2: Standard convolution (The kernel size of the filter is 3).

26



1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

C

MW

MHX l
C

⊗

⇓
Σ

⇓
Σ

⇓
Σ

⇓
Σ

X l+1
1 X l+1

2 X l+1
n X l+1

N

Figure 3.3: Stripe wise convolution (The kernel size of the filter is 3).

27



xl+1
n,h,w =

C∑

c

K∑

i

K∑

j

(wln,c,i,j × xl
c,h+i−K+1

2
,w+j−K+1

2

) (3.1)

=
K∑

i

K∑

j

(
C∑

c

wln,c,i,j × xl
c,h+i−K+1

2
,w+j−K+1

2

) (3.2)

=
K∑

i

K∑

j

(xl+1
n,h,w,i,j) (3.3)

xlc,p,q = 0, when p < 1 or p > MH or q < 1 or q > MW . MH is the height of the

feature map, while MW represents the width.

From Figure. 3.3, we could find that in stripe wise convolution, the convolution

result of individual filter is the summation of the convolution result of the stripes

which belongs to this filter. One intuition is that if the convolution result of the

stripe 1 is much smaller than the convolution result of the stripe 2, Stripe 1 could be

pruned and Stripe 2 could be kept as shown in Figure. 3.4. The following part will

prove it in a theoretical manner.

3.3.2 Theoretical Analysis

Batch normalization (BN) is widely used in a neural network. This method

could make DNN faster and more stable [56]. In one filter, suppose B is a mini-batch

of size m, i.e., B = {a1, ...am}. BN layer processes these following transformation

steps:

28



1 2 3 4 5 6 7 8 9

MW

MHX l
C

⊗Filter n

(X l+1
n )3,3· · ·(X l+1

n )1,1

⇒

Σ

X l+1
n

Figure 3.4: Stripe wise convolution (Single filter case). The squares with dark orange
indicate they have larger stripe convolution results than the light orange ones, which
means the corresponding stripes could be remained during pruning.

µB =
1

m

m∑

i=1

ai (3.4)

σ2
B =

1

m

m∑

i=1

(ai − µB)2 (3.5)

âi =
ai − µB√
σ2
B + ϵ

(3.6)

xi = γâi + β ≡ BNγ,β(ai) (3.7)

29



where µB and σB are the empirical mean and standard deviation of B. To resume

the representation ability of the network, scale γ and shift β are learned during the

whole process.

After transformation in the BN layer, in c-th channel of l-th layer, the input

feature map could be

X l
c ∼ N (βlc, (γ

l
c)

2). (3.8)

When MH is large, (X l
c)i,j ∼ N (βlc, (γ

l
c)

2). From (3.2), we could get

X l+1
n =

K∑

i

K∑

j

(
C∑

c

wln,c,i,j × (X l
c)i,j) (3.9)

Assuming all data is independently identically distribution, with the properties

of normal distribution [57], we have

X l+1
n ∼ N (µl+1

n , (σl+1
n )2) (3.10)

where

µl+1
n =

K∑

i

K∑

j

(
C∑

c

wln,c,i,jβ
l
c) (3.11)

(σl+1
n )2 =

K∑

i

K∑

j

(
C∑

c

(wln,c,i,j)
2(γlc)

2) (3.12)

To reduce the number of parameters wln,c,i,j and avoid the value of µl+1
n in (3.11)

change, we introducing an importance indicator Ql
n,i,j to the output of convolution of

each stripe and have the following loss function.

Ln = loss(µl+1
n ,

K∑

i

K∑

j

Ql
n,i,j(

C∑

c

wl
n,c,i,jβ

l
c)) + αgn(Q) (3.13)

where gn(Q) =
∑K

i

∑K
j

∣∣Ql
n,i,j

∣∣ , Ql
n,i,j = 1 or 0.

30



Let

sln,i,j ≜
C∑

c

wln,c,i,j. (3.14)

If we assume βl1 = βl2 · · · = βlc = βl, combing with (3.11), (3.13) could be written

as

Ln = loss(βl

K∑

a

K∑

b

sln,a,b, β
l

K∑

i

K∑

j

Ql
n,i,js

l
n,i,j) + αgn(Q) (3.15)

which can be further written as

Ln = loss(1,

∑K
i

∑K
j Ql

n,i,js
l
n,i,j∑K

a

∑K
b sln,a,b

) + α′gn(Q)

= loss(1,
K∑

i

K∑

j

Ql
n,i,jT

l
n,i,j) + α′gn(Q) (3.16)

where

T ln,i,j =
sln,i,j∑K

a

∑K
b s

l
n,a,b

(3.17)

Obviously,
K∑

i

K∑

j

T ln,i,j = 1, 0 ≤ T ln,i,j < 1 (3.18)

To minimize (3.16), we could set Ql
n,i,j = 0 to those T ln,i,j close to 0, which

means the corresponding stripes will be pruned.

T ln,i,j could be used to describe the relative importance of stripei,j in filtern.

When T ln,i,j → 1, stripei,j contributes more than other stripes. When T ln,i,j → 0,

stripei,j contributes less than other stripes and could be pruned.

3.3.3 Method Description

Before setting a threshold for T ln,i,j to prune stripes, we need to impose regu-

larization on the whole neural network to achieve sparsity. This method could avoid

so-called “Train, Prune, Fine-tune” pipeline. The regularization on the FS will be

L =
∑

(x,y)

loss(f(x,W), y) + αg(W) (3.19)

31



where α adjusts the degree of regularization. g(W ) is L1 norm penalty on W and

could be written as:

g(W ) =
L∑

l=1

(
N∑

n=1

C∑

c=1

K∑

i=1

K∑

j=1

∣∣W l
n,c,i,j

∣∣) (3.20)

To avoid using sub-gradient at non-smooth point, instead of the L1 penalty, we

deploy the smooth-L1 penalty [58].

Summarize the proposed algorithm below.

Algorithm 1 The Proposed Algorithm

1: The training dataset D, the unpruned neural network model, the regularization

factor α, stripe pruning threshold T , the total iteration number itotal.

2: Initialize the FS with all-one matrix.

3: Initialize the iteration number i = 0.

4: repeat

5: Have the stripe wise convolution by (3.2);

6: Update weights W by (3.19) with the smooth-L1 penalty;

7: Calculate T ln,i,j by (3.17);

8: Prune stripes with T ln,i,j smaller than T ;

9: i = i+ 1;

10: until i = itotal;

11: Output the pruned model;

3.3.4 Computational Complexity

Assuming the number of weight parameters to be P , the computational cost for

implementing the smooth-L1 penalty is O(P ). Assuming that the computational cost

of each epoch of neural network training is O(Q), the process of pruning costs O(e ·Q)

32



computations, where e denotes the percentage of pruning in the neural network of

an epoch. Therefore, the computational cost for each epoch is O(P + e · Q). If K

denotes the total number of iterations, the computational complexity of our method

is O(K(P + e ·Q)).

3.4 Experiments

In order to assess the performance of the proposed model and confirm its effec-

tiveness, we carry out experiments on two datasets including CIFAR-10 and bearings

dataset from the Case Western Reserve University.

3.4.1 Experiments on CIFAR-10

Our method is implemented using the publicly available Torch [59].

Dataset and Model: CIFAR-10 [60] is one of the most popular image col-

lection data sets. This dataset contains 60K color images from 10 different classes.

50K and 10K images are included in the training and testing sets respectively. By

adopting CIFAR-10, we evaluated the proposed method mainly on VGG [61] and

ResNet56 [11]. VGG16 and ResNet56 are the networks used to demonstrate the per-

formance before and after network pruning. VGG11 and VGG13, which have sizes

more compact than VGG16, are then deployed to make comparisons with VGG16 in

terms of the total time which is required for classifying 3270 image patches of size

224 × 224, i.e. inference time.

Baseline Setting: We train the model using mini-batch size of 64 for 100

epochs. The initial learning rate is set to 0.1, and is divided by 10 at the epoch 50.

Random crop and random horizontal flip are used as data augmentation for training

images. Image is scaled to 256 × 256. Then a 224 × 224 part is randomly cropped

from the scaled image for training. The testing is the center crop with 224 × 224.

33



Experiment environment: NVidia 1080-TI and Intel Core i5-8500B are se-

lected as two different computing platforms representatives of the server and the edge

device, respectively. The first is a GPU which has high computation ability, however

needs communication with sensors and actuators. The second is a CPU to represent

the restricted computer power of an edge device.

3.4.2 Experiments on Bearings Dataset

Rotating element bearings (REBs) are among the most common parts in rotat-

ing equipment, and their malfunction is a leading cause of machinery failure. The Case

Western Reserve University (CWRU) Bearing Data Center’s dataset has emerged as

a benchmark in the domain of bearing diagnostics [62]. We will use the data from

this center for the following part of the experiment. The fundamental configuration

of the testing apparatus is displayed in the Figure. 3.5.

Figure 3.5: CWRU bearing test rig. (The components of the test stand include a 2
hp motor on the left, a torque transducer/encoder in the center, and a dynamometer
on the right.)

34



The testing setup includes a 2 hp reliance electric motor that powers a shaft

equipped with a torque transducer and encoder. Torque is exerted on the shaft via a

dynamometer and electronic control system.

3.4.2.1 Symmetrized Dot Pattern

Symmetrized Dot Pattern (SDP) is a technique used for visual representation

of acoustic and vibration signals to quickly identify any faulty condition of the sys-

tem [63]. This technique transforms the time-domain signal into a scatter plot with

sextuple symmetry.

The time-domain signal is S = {s1, s2..., si..., sD}, si is the ith sampling point.

Then, given a specific index i, the value si could be transformed into its corresponding

polar coordinate space, represented by the expression P (r(i), θ(i), ϕ(i)).

P (r(i)) is the radius, which could be expressed as follows:

r(i) =
si − smin

smax − smin

(3.21)

where smax and smin are the maximum and minimum amplitudes values of the time-

domain signal sequence, respectively.

θ(i) is the clockwise rotation angle of the initial line, while ϕ(i) represents the

counterclockwise one. These angles could be expressed as follows:

θ(i) = ϕ− si − smin

smax − smin

ζ (3.22)

ϕ(i) = ϕ+
si − smin

smax − smin

ζ (3.23)

where ϕ is the initial rotation angle (ϕ = 60m+ ϕ0,m = 1, ..., 6, ϕ0 is a starting term

that can rotate the plot). ζ is the amplification coefficient.

The time-domain signal S can be transformed into its corresponding polar plot

by marking all θ points as red and all ϕ points as blue, as shown in Figure. 3.6.

35



(a) (b)

Figure 3.6: Typical time-domain signal for SDP technique (a) and corresponding SDP
plot (b).

3.4.2.2 Data categories and preprocess

Four different operational conditions were tested at varying bearing loads (0-3

hp) to collect vibration signals. Each operational condition contains datasets rep-

resenting rolling element faults and inner and outer race faults. In addition to the

normal condition, the SDP for these three operating faults are shown in Figure. 3.7.

The outer race faults are further classified into three categories based on their location

relative to the load zone: ‘centered’ (fault at 6 o’clock position), ‘orthogonal’ (fault

at 3 o’clock position), and ‘opposite’ (fault at 12 o’clock position). Combining with

fault size (0.007 to 0.028 in.), we choose twelve fault categories as shown in Table. 3.2.

Adding one healthy state resulted in a total of thirteen different bearing categories.

In order to test the performance of the proposed framework under various work-

ing environments, several sub-datasets are created as follows.

36



(a) (b)

(c) (d)

Figure 3.7: SDP (a) Normal case. (b) Inner race fault. (c) Outer race fault. (d)
Rolling element fault.

• Training data and testing data are both from vibration signals under the same

working load.

– e.g. Training data and testing data are both from vibration signals under

working load of 0 hp.

• Training data come from vibration signals under a certain working load while

testing data are from different working loads.

37



Table 3.2: Twelve fault categories.

Fault
Diameter

Inner
Race

Ball
Outer Race

Position Relative to Load Zone
centered

@6
orthogonal

@3
opposite

@12
0.007” IR007 B007 OR007@6 OR007@3 OR007@12
0.014” IR014 B014 - - -
0.021” IR021 B021 OR021@6 OR021@3 OR021@12

– e.g. Training data come from vibration signals under working load 0 hp

while testing data are from working load of 3 hp.

Therefore, there are 16 sub-datasets, with each bearing sub-dataset treated as a 13-

class classification task for fault diagnosis. To facilitate the demonstration, we use Dij

to represent a sub-dataset, where the training set is derived from the workload of i hp,

and the testing set is derived from the workload of j hp. Each sub-dataset consists of

500 samples for each machine state, resulting in a total of 6,500 samples for the 13

classes. Each sample is derived from a randomly cropped 1600-length time-domain

signal, and augmented by rotating the image using a random value of ϕ0 in the SDP

transformation to expand the dataset.

The following steps are the same as those used with CIFAR-10.

3.5 Results

3.5.1 Results on on CIFAR-10

3.5.1.1 Comparing with the original SWP

To compare our method with the original SWP, we revisit the concept of filter

skeleton (FS) from [49]. As mentioned before, in l-th layer, the weight W is of

size RN×C×K×K . Then the size of FS in this layer is RN×K×K . Each value in FS

38



corresponds to a stripe in the filter. During training, the filters’ weights are multiplied

with FS. With I representing the FS, the stripe wise convolution could be written as

xl+1
n,h,w =

K∑

i

K∑

j

I ln,i,j(
C∑

c

wln,c,i,j × xl
c,h+i−K+1

2
,w+j−K+1

2

) (3.24)

where I ln,i,j is initialized with 1.

The regularization on the FS will be

L =
∑

(x,y)

loss(f(x,W ⊙ I), y) + αg(I) (3.25)

where ⊙ denotes dot product and α adjusts the degree of regularization. g(I) is

written as:

g(I) =
L∑

l=1

(
N∑

n=1

K∑

i=1

K∑

j=1

∣∣I ln,i,j
∣∣) (3.26)

For convenience, in Table. 3.3 for the comparison on CIFAR-10, both the

original method and our method use FS to train and prune the whole neural network.

Both of them use the coefficient α of regularization, which is set to 1e− 5 and 5e− 5.

The difference is that for the original method, pruning is based on the value in FS

which corresponds to a stripe and for our method, pruning is based on T ln,i,j which

combines the weights located in a stripe. Regarding the choice of T , we used the

value corresponding to the highest accuracy.

From the table, we could find both methods could reduce the number of pa-

rameters and the amount of computation (FLOPs) in a considerable volume without

losing network performance. For the backbone is VGG16 situation, when α = 1e− 5,

the number of parameters and the amount of computation of our method are larger

than the original approach. This is because our method will keep at least one stripe

in a filter, while the original approach might prune a whole filter. However, when

α = 5e− 5, the original approach could not converge and our method could reach a

39



Table 3.3: Comparison with the original SWP on CIFAR-10.

Backbone Metrics Params FLOPS Accuracy

VGG16

baseline 14.76M 627.37M 93.76 %
Original(α = 1e− 5) 3.62M 350.28M 93.46 %
Original(α = 5e− 5) could not converge

Ours (α = 1e− 5, T = 0.0001) 4.63M 385.49M 93.43 %
Ours (α = 5e− 5, T = 0.005) 0.84M 126.03M 93.06 %

ResNet56
baseline 0.87M 251.50M 93.11 %

Original(α = 1e− 5) 0.60M 150.63M 93.41 %
Ours (α = 5e− 5, T = 0.001) 0.23M 60.76M 92.96 %

high compression rate both in the number of parameters and the amount of compu-

tation. Our pruned VGG16 could achieve 95% reduction in memory demands.

For the backbone is Resnet56 situation, we present our result of α = 5e − 5.

To compare with the original approach’s result of α = 1e− 5, our method could see

a large reduction in the number of parameters and the amount of computation while

sacrificing a bit of accuracy. Our pruned Resnet56 could achieve 75% reduction in

memory demands.

3.5.1.2 Ablation study

In our method, there are two decisive hyper-parameters in the neural network,

the coefficient α of regularization in (3.25) and the weight combination threshold T

in (3.17). As the outcomes of the experiment demonstrated in Table. 3.4, we display

the effects of the hyper-parameters in pruning consequences. It could be noticed that

α = 5e− 5 and T = 0.005 holds an acceptable pruning ratio as well as test accuracy.

In Figure. 3.8, we show how many stripes in VGG16 on CIFAR-10 are kept

after SWP. We could find that most stripes (around 85%) in the first and the last

40



Table 3.4: Different coefficient α and weight combination threshold.

α 1e-5 5e-5
T 0.0001 0.001 0.01 0.0001 0.0005 0.001 0.005

Params (M) 4.63 4,17 2.89 0.78 0.80 0.79 0.84
FLOPS (M) 385.49 327.17 200.09 130.96 135.56 134.68 126.03
Accuracy (%) 93.43 93.28 92.99 92.79 92.86 92.96 93.06

layers are pruned. There are higher pruning ratios in the second half layers than the

first half ones. The pruning ratio for this VGG16 neural network is 26.25%.

1 2 3 4 5 6 7 8 9 10 11 12 13

Convolution Layer Index

0

0.1

0.2

0.3

0.4

0.5

0.6

S
tr

ip
es

 R
em

ai
n

 R
at

io

Figure 3.8: The ratio of remaining stripes in each layer.

3.5.1.3 Edge device performance

We further verify our approach in an edge device. As shown in Figure. 3.9,

pruning is executed on the server as training consumes computing resources on learn-

ing the importance between the stripes and serval complete passes of the training

41



dataset through the whole neural network. The pruned networks are then deployed

on these two computing platforms to test results and get the inference time. The

comparison is shown in Figure. 3.10-3.13. It should be noted that stripe wise con-

volution is not yet optimized in CUDA. Along with the increase in percentage of

parameters pruned, the decline in inference time in servers is not quite clear. How-

ever, the inference time in edge device drops by half when 75 − 95% of parameters

are pruned.

Server

Server

Edge device

Training Dataset Testing Dataset

Figure 3.9: Experiment setup of edge device performance.

Separately speaking, Figure 3.10 shows the variation of the inference time when

using pruned VGG16. On edge device, the inference time decreases from 195.1 (sec)

to 77.9 (sec). For the server setup, the inference time decreases from 24.01 (sec) to

19.53 (sec). Figure 3.11 and Figure 3.12 show the variation of the inference time with

pruned VGG13 and VGG11, respectively. Similar results of decrease in inference time

could be observed on both VGG structures.

Figure 3.13 reports the results of using pruned ResNet56. On edge device, the

inference time decreases from 277.7 (sec) to 100.5 (sec). For the server setup, the

inference time decreases from 61.9 (sec) to 54.9 (sec).

Figure 3.14 compares the inference time of 3 types of VGG as well as ResNet56

when deployed on the edge device. Due to the reduction of the number of layers,

42



0 20 40 60 80

Percentage of Parameters Pruned (%)

0

20

40

60

80

100

120

140

160

180

200

In
fe

re
n

ce
 T

im
e 

(S
ec

)

Server setup

Edge device

Figure 3.10: Inference Time Required for Pruned VGG16

0 20 40 60 80

Percentage of Parameters Pruned (%)

0

20

40

60

80

100

120

140

160

180

In
fe

re
n

ce
 T

im
e 

(S
ec

)

Server setup

Edge device

Figure 3.11: Inference Time Required for Pruned VGG13

43



0 20 40 60 80

Percentage of Parameters Pruned (%)

0

20

40

60

80

100

120

In
fe

re
n

ce
 T

im
e 

(S
ec

)

Server setup

Edge device

Figure 3.12: Inference Time Required for Pruned VGG11

0 20 40 60 80

Percentage of Parameters Pruned (%)

0

50

100

150

200

250

300

In
fe

re
n

ce
 T

im
e 

(S
ec

)

Server setup

Edge device

Figure 3.13: Inference Time Required for Pruned ResNet56

44



regardless of parameters pruned percentage, VGG11 could classify the most images

at the same time in all pruned models, while ResNet56 classifies the least.

0 10 20 30 40 50 60 70 80

Percentage of Parameters Pruned (%)

50

100

150

200

250

300

In
fe

re
n
ce

 T
im

e 
(S

ec
)

ResNet56

VGG16

VGG13

VGG11

Figure 3.14: Inference Time Required for Different Backbone Models

It could also be found in Table. 3.3, in terms of memory requirement, the

percentage reduction in parameters for our pruned ResNet56 is also not great as

pruned VGG16.

3.5.2 Results on Bearings Dataset

3.5.2.1 Comparison of the original model and the pruned Model

Without loss of generality, we choose VGG16 as the backbone and set the

coefficient α to 5e−5 and the weight combination threshold T to 0.005 in the pruned

model. The accuracy results of the classification are shown in Table. 3.5. It can be

45



observed that both the original and pruned models achieved good accuracy rates in

each of the sub-datasets.

Table 3.5: Comparison of Accuracy Under Different Sub-datasets

(a) Original Model

Sub-dataset Accuracy
D00 0.94385
D01 0.99277
D02 0.92292
D03 0.97400
D10 0.98923
D11 0.96615
D12 0.97908
D13 0.98846
D20 0.98031
D21 0.98308
D22 0.97077
D23 0.98892
D30 0.98600
D31 0.98092
D32 0.98877
D33 0.96462

(b) Pruned Model

Sub-dataset Accuracy
D00 0.97846
D01 0.99323
D02 0.98800
D03 0.97246
D10 0.98785
D11 0.95077
D12 0.98554
D13 0.99031
D20 0.97477
D21 0.98600
D22 0.97000
D23 0.99031
D30 0.98923
D31 0.98062
D32 0.97754
D33 0.97615

In Table. 3.6, we compare the performance on the original method and our

method. The sub-dataset used is D03 and the backbone is VGG16. It is noticeable

that pruned models are capable of reducing the number of parameters and FLOPs

significantly, without compromising network performance.

Table 3.6: Comparison with the original SWP on D03.

Backbone Metrics Params FLOPS Accuracy

VGG16
baseline 14.76M 627.37M 97.40 %

Original(α = 1e− 5) 3.32M 341.65M 97.35 %
Ours (α = 1e− 5, T = 0.0001) 4.43M 375.68M 97.43 %

46



3.5.2.2 Edge device performance

We also verify our approach in the edge device. The experimental setup and

procedures are identical to that used for the CIFAR-10 dataset in the previous part.

The sub-dataset used is D12 and the backbone is VGG16. The results are presented

in Figure. 3.15, which shows that the inference time of the pruned model did not

significantly change in terms of edge device performance.

0 20 40 60 80

Percentage of Parameters Pruned (%)

0

20

40

60

80

100

120

140

160

180

200

In
fe

re
n
ce

 T
im

e 
(S

ec
)

Server setup

Edge device

Figure 3.15: Inference Time Required for Pruned VGG16

3.6 Discussion

Our pruned VGG16 achieves results comparable to the existing model, with a

4-fold reduction in parameters and only a 0.4% decrease in accuracy. When deployed

on the edge device, the inference time in the pruned network could drop by half. In

addition to validating our pruned model on CIFAR-10, we also tested our model on

47



the widely used bearing dataset from the Case Western Reserve University (CWRU)

Bearing Data Center. The accuracy and the inference time are similar to those when

using CIFAR-10. To the best of our knowledge, this is the first time that a stripe-

wise pruning algorithm has been applied to the edge devices and Bearing datasets.

However, due to the relatively small size of the CIFAR-10 and Bearing Data Center

datasets, the pruned model may have limitations. We need to validate our theories

on larger datasets.

3.7 Conclusion

In this work, we avoid using an absolute threshold in existing stripe-wise prun-

ing by combining the weights located on each stripe. This allows us to learn the

importance between stripes in a filter and remove those with low importance. Our

pruned method effectively reduces the parameters and inference time of our VGG16

model without significantly impacting accuracy. In future work, we will explore the

introduction of regularizers to prune filters with single stripes, which may further

compress deep neural networks and improve performance.

48



CHAPTER 4

Enhancing Multipath Mitigation in Noncoherent Multicarrier SIMO Systems with

Deep Energy Autoencoder

4.1 Introduction

In the realm of wireless communication, the precision and efficiency of data

transfer are considered paramount. To ensure these, conventional systems rely heavily

on a well-structured division of processing modules [64]. Each of these modules has

been expertly designed and assigned with a unique responsibility to handle a specific

aspect of the communication process.

Deep learning (DL) has significantly impacted various fields with its extraordi-

nary capabilities. In computer vision, DL models enable tasks like facial recognition,

object detection, and semantic segmentation [1]. In speech recognition, it powers

applications like speech-to-text and voice assistants [2], becoming crucial in our daily

lives. Large language models, such as GPT [3], use deep learning to understand natu-

ral language, offering powerful tools for chatbots, machine translation, and automated

text generation.

Building on the remarkable influence DL has demonstrated across diverse do-

mains, its potential has also been increasingly acknowledged in the field of communi-

cation, especially in recent years. This can be attributed to deep learning’s capacity

to decipher and analyze intricate non-linear relationships between inputs and out-

puts. Such ability has led to substantial enhancements in several processing modules

within the communication system [65]. Moreover, DL’s automatic feature extraction

capability can reduce the reliance on handcrafted features [66], thereby simplifying

49



the communication system’s design. For instance, DL can be employed to enhance

the performance of processing modules such as signal detection [67], channel estima-

tion [68], and power allocationsn [69].

To address the challenges posed by the interdependence among different mod-

ules in a communication system, a comprehensive design approach is necessary. As

stated earlier, alterations made to one module can have repercussions on the opera-

tion of other modules, potentially leading to a decline in overall efficiency. However,

there have been emerging DL applications that involve the joint design of certain

modules [70, 71], offering potential solutions to these challenges. In recent years, an

alternative approach called end-to-end learning-based systems has gained attention.

In this approach, deep neural networks are used to represent both the transmitter

and the receiver, allowing the entire communication system to be trained end-to-end

as a single entity. This approach offers the potential for improved efficiency and

seamless integration of the system components. Incorporating autoencoder (AE),

by considering the interplay between system modules and leveraging the power of

neural networks, end-to-end learning-based systems present a promising direction for

advancing communication technology [72].

Noncoherent transmissions refer to wireless communication systems where the

receiver does not have a phase reference for the received signal, and thus cannot

perform coherent demodulation. In these systems, various energy-based detection

(ED) schemes have been proposed. In ED, the receiver calculates the energy of the

received signal, and compares it to a threshold to determine the transmitted symbol.

In the domain of noncoherent single-carrier transmissions, extensive research has been

conducted into a variety of ED mechanisms under the scope of nonnegative pulse

amplitude modulation (PAM). These studies have been particularly prevalent within

the context of single-input multiple-output (SIMO) systems. In [73], an analysis

50



was conducted on the performance of a massive SIMO system based on ED, leading

to the derivation of an optimal power allocation design. A proposal was made in

[74] for noncoherent SIMO systems, introducing a distinctively factorable hexagonal

constellation. The assumption is that the channels remain constant within consecutive

pairs of time slots.

Inspired by articles such as [72], the concept of AE was also applied to nonco-

herent SIMO systems [75]. For ED applications, a deep energy autoencoder (EA) was

proposed for noncoherent multicarrier multiuser single-input multiple-output (MU-

SIMO) systems under fading channels in [76]. This proposed system employed a

single-user noncoherent EA-based (NC-EA) approach within the multicarrier SIMO

framework. In this system, deep neural networks (DNNs) were used to represent both

the transmitter and receiver, serving as the encoder and decoder of an EA. However,

one noticeable shortcoming in [76] is the insufficient discussion of the impact of mul-

tipath fading as shown in Figure. 4.1. Fading channels, particularly the Doppler

frequency shifts caused by relative motion between the transmitter and receiver, may

significantly impact the performance of wireless communications. Furthermore, a

noncoherent massive SIMO system over a multipath channel was discussed in [77],

yet this research similarly lacks an in-depth exploration of fading channel conditions

and the implications of Doppler frequency shifts.

This chapter presents an extension of the deep energy autoencoder (EA) tech-

nique to address multipath scenes in multicarrier SIMO systems. Our primary con-

tributions can be summarized as follows:

• We extended the use of the deep energy autoencoder (EA) technique in multi-

carrier SIMO systems from handling only a single message to being capable of

processing message sequences.

51



Figure 4.1: Over multipath fading channels

• Under the influence of the multipath fading channel, we explored two receiver

architectures for the decoder: the DNN (Deep Neural Network) from the original

design and the RNN (Recurrent Neural Network), which leverages its memory

properties.

• By integrating the Jakes’ model to account for varying Doppler frequencies,

we enhanced the practicality and robustness of our design. This contribution

enriches the accuracy and reliability of our approach in real-world scenarios.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the system model of deep energy autoencoder (EA) for multicarrier SIMO systems.

Section 4.3 presents our scheme for multipath scenes. In Section 4.4, we present the

simulation results of the proposed schemes and system performances. Section 4.5

concludes this paper.

52



Transmitter

Channel

Receiver

s ∈ RM

ŝ ∈ RM

x ∈ R2N

y ∈ R2N

Figure 4.2: A basic autoencoder-based end-to-end communication system.

4.2 System Model

As illustrated in Figure. 4.2, a transmitter, a channel, and a receiver together

form a communication system in its simplest way, which could be interpreted as an

autoencoder [72].

The transmitter intends to transmit one of M possible messages, denoted as

s ∈ M = {1, 2, ...,M}, to the receiver using 2N discrete channel uses. In order to

achieve this, the transmitter applies the function f : M → R2N to the message s,

resulting in the transmitted signal x = f(s) ∈ R2N . The channel can be characterized

by the conditional probability density function p(y|x), where y ∈ R2Nrepresents the

received signal. After receiving y the receiver applies a transformation function g :

R2N → M. This transformation is used to generate an estimate ŝ of the transmitted

message s.

Drawing inspiration from the architecture and its variations presented in Figure.

4.2, [76] introduces an efficient autoencoder-based SIMO system with noncoherent

multicarrier energy-based detection, as illustrated in Figure. 4.3. This unique system

consists of transmitter and receiver components that are intricately designed using

Deep Neural Network (DNN) layers. Furthermore, these layers are jointly optimized

to achieve optimal performance, as indicated by the design methodology employed.

It assumes that the communication system uses N sub-carriers without any CSI

53



1s︷ ︸︸ ︷


0
...
0

1
0
...
0




D
en

se
la
ye
r

M N N

TX

N
o
rm

al
iz
at
io
n
la
y
er

y
α
=

h
α
x
α
+

n
α

α = 1, · · ·N

Channel

z α
=

∥y
α
∥2

=
∑

L l=
1
|y l

(α
)|2

D
en

se
la
ye
r

S
of
tm

ax

RX

p︷ ︸︸ ︷


0.01
...

0.05

0.87
0.02
...

0.01




MN

x Y z
s ŝ

Figure 4.3: Structure of the noncoherent energy-based autoencoder system.

estimation. There is only one antenna for the transmitter, but the receiver has L

antennas.

To be more precise, at the transmitter, the message, denoted as s, is mapped

to a distinct one-hot vector of dimensions M × 1. This one-hot vector is then utilized

as the input for the encoder. The set of all possible messages is denoted by s ∈ M =

{1, 2, ...,M}, where there are M = 2m messages in total, each containing m data

bits. The encoder comprises a fully-connected (FC) layer, leveraging the hyperbolic

tangent (Tanh) activation function σTanh. This FC layer produces an output u.

Subsequently, u is normalized to ensure the mean transmission power across

each sub-carrier is restricted to a fixed value, as demonstrated below

x =

√
NSEsu√∑S
i=1 ∥ui∥

2
(4.1)

In above equation, Es represents the average transmit power per sub-carrier. The

output corresponding to the i-th batch from the set Ω = {s1, · · · , sT}, where T is the

batch size and the set consists of S training samples, is represented by ui.

54



The signal vector received by L antennas is represented as follows for each

frequency sub-carrier α ranging from 1 to N , with an additive noise nα:

yα = hαxα + nα (4.2)

where yα = [y1α, · · · , yLα]⊤ , xα is the α-th entry of x. hα = [h1α, · · · , hLα]⊤ denotes

the fading channel response between the transmitter to L receive antennas with hlα ∼

CN (0, 1).

The total energy captured from L receiving antennas for each sub-carrier is

initially computed as the decoder’s input:

zα = ∥yα∥2 =
L∑

l=1

|yl(α)|2 (4.3)

This leads to the formation of the collective energy vector z = [z1, ..., zN ]T , having

dimensions ofN×1, applicable to all sub-carriers. In the architecture of the decoder, it

includes two non-linear fully connected (FC) layers. The initial FC layer is comprised

of Q nodes, and it employs the Tanh activation function, denoted as σTanh. On the

other hand, the latter FC layer, which functions as the output layer, contains M

nodes and uses the softmax activation function, symbolized as σSoftmax.

The calculation of the estimated value ŝ is dependent on the highest value of ŝ.

4.3 Multipath Environments

Multipath in wireless communication is the phenomenon of radio signals trav-

eling multiple paths from the transmitter to the receiver. This results in multiple

copies of the signal arriving at the receiver at different times and with varying signal

strengths.

Given this challenge of multipath propagation, we extend the NC-EA system

to handle the multipath case, enabling robust communication even when signals take

55



...

...

TX’

TX’

TX’

y
α
(τ
)
=

∑
K

−
1

k
=
0
h
α
(τ

−
k
)x

α
(k
)
+

n
α
(τ
)

α = 1, · · ·N

Channel

∥·∥2

∥·∥2

∥·∥2

D
es
ig
n
ed

N
N

la
ye
rs

RX

x(t)
s(t)

x(t− 2)

x(t− 1)
s(t− 1)

x(t+ 1)

x(t+ 2)

s(t+ 1)

Y(t− 2)

Y(t− 1)

Y(t)

Y(t+ 2)

Y(t+ 1)

z(t− 1)

z(t)

z(t+ 1)

ŝ(t− 1)

ŝ(t)

ŝ(t+ 1)

Figure 4.4: Structure of the noncoherent energy-based autoencoder system under
multipath.

multipaths between the transmitter and receiver, as shown in Figure. 4.4. Each

message in the message sequences sm is randomly sampled from the training dataset

M = {1, 2, ...,M}. The number of the messages in the message sequences is D. In

each one-time slot t, only one message s(t) enters the transmitter. After passing

through the dense layer and normalized layer, the allocation to each subcarrier α is

denoted as xα(t). The number of multipath channels is represented by N . In each

sub-carrier α, for α = 1, · · · , N , the received signal is at time slot τ represented by

yα(τ) =
K−1∑

k=0

hα(τ − k)xα(k) + nα(τ) (4.4)

where yα(τ) = [y1α(τ), · · · , yLα(τ)]⊤ , xα(n) is the α-th entry of x(n). hα(τ) =

[h1α(τ), · · · , hLα(τ)]⊤ denotes the fading channel response between the transmitter to

L receive antennas with hlα(τ) ∼ CN (0, 1), and nα(τ) is the additive noise vector.

56



Likewise, when t = τ , the decoder’s input is determined by calculating the total

energy received from L antennas for each sub-carrier:

zα(τ) = ∥yα(τ)∥2 =
L∑

l=1

|ylα(τ)|2 (4.5)

This results in the formation of the collective energy vector, z(τ) = [z1(τ), ..., zN(τ)]T .

Composing a matrix using the collective energy vectors received at fixed inter-

vals z = [z(1), ...z(τ)..., z(t)]T , the next part implements an NN receiver as described

in the right-hand side of Figure. 4.4.
D
en
se

la
ye
r

D
en
se

la
ye
r

S
of
tm

ax

RX

z(t− 1)

z(t)

z(t+ 1)

ŝ(t− 1)

ŝ(t)

ŝ(t+ 1)

Figure 4.5: Structure of CNN receiver under multipath.

As shown in Figure. 4.5, the first approach continues to use the Dense layer

combined with the softmax function, except that multiple layers of Dense layers are

required here. As shown in Figure. 4.6, the second approach considers the effects

of multipath delay, taking advantage of the memory properties of RNN (Recurrent

57



Neural Network). This allows the use of previous channel information to help decode

information at later moments.

A

A

A

Softmax

Softmax

Softmax

RX

z(t− 1)

z(t)

z(t+ 1)

ŝ(t− 1)

ŝ(t)

ŝ(t+ 1)

Figure 4.6: Structure of RNN receiver under multipath.

At each moment t, the calculation of the estimated value ŝ(t) depends on the

highest value of ŝ(t).

4.3.1 Loss function

During each training phase, both the transmitters and the receiver are trained

in parallel. For a message sequences of length D, the loss function is

L(θ) =
D∑

d=1

εd +
D∑

d=1

(εd − ε̄)2 (4.6)

58



where εd = ∥s(d) − ŝ(d)∥2 is the least squared error (LSE) at time slot d and ε̄ =

1
D

∑D
d=1 εd. The first term of 4.6 represents the reconstruction loss, which is the total

LSE of the whole message sequences. The second term is introduced to minimize

the standard deviation of individual LSEs (εd), aiming to make them as similar as

possible.

Utilizing (4.6), the parameters of the whole model undergo updates through the

stochastic gradient descent (SGD) algorithm according to the following procedure:

θ := θ − η▽L(θ) (4.7)

where η represents the learning rate, governing the extent to which the parameters

are adjusted.

4.4 Simulation

We conduct thorough simulations to validate the error performance of the pro-

posed methods.

4.4.1 Jakes’ model

Specifically, we integrate the Jakes’s model, which accounts for varying Doppler

frequencies, to simulate the Rayleigh fading channel.

A Rayleigh fading channel can be characterized by generating the real and

imaginary parts of a complex number using independent normal Gaussian variables.

However, this method overlooks the Doppler effect induced by the relative movement

between the transmitter and the receiver. In this paper, we consider Jakes’ model,

which takes into consideration this effect. Jakes’ model is based on the concept that

59



the overall received signal at a mobile unit is the summation of numerous plane waves

arriving from various directions.

Assumes R rays of identical intensity reach the moving receiver, distributed

evenly across all arrival angles. This premise allows the kth fading waveform to be

conceptualized as follows [78]:

Rk(t) = 2
√

2

[
R∑

n=1

(cos βn + j sin βn) cos (2πfnt+ θn,k) (4.8)

+
1√
2

cos(2πfdt+ θ0,k)

]

where fd is the Doppler shift while fn = fd cosαn is the Doppler shift on ray n.

βn = πn
R+1

. To generate the multiple waveform,

θn,k = βn +
2π(k − 1)

R + 1
(4.9)

There are two crucial parameters in Jakes’ model, namely the number of scat-

terers R and the Doppler shift fd. Without loss of generality, in the simulation, let

R be equal to 50. Set fd to 20Hz and 200Hz, representing the relative motion of low

speed and high speed, respectively.

4.4.2 Simulation setting

We utilize the block error ratio (BLER) as a metric to demonstrate the system’s

performance. BLER is defined as the probability of error in the integer z, which

represents the message in the message sequence. The training set comprises 20,000

samples, and the testing set comprises 50,000 samples. All simulation results are

conducted within the Keras framework.

Due to the EA’s reliance on received energy for signal detection, its decoding

performance is highly sensitive to the Signal-to-Noise Ratio (SNR) level γ̄ used during

training. Consequently, the model trained with a specific training SNR (γ̄tr) excels

60



only when tested at SNRs close to γ̄tr (designated as γ̄te). Conversely, it performs

poorly when tested at other SNRs significantly different from γ̄tr.

To address this issue of overfitting, we employ a solution proposed in [76] where

the model is trained with multiple SNRs. Subsequently, we test the trained models

using the same SNR value for testing (γ̄te = γ̄tr). This approach helps mitigate the

overfitting problem and enhances the generalization capability of the model across

various SNR levels during testing. Therefore, when facing different channel variances,

it is necessary to either retrain the model whenever γ̄ undergoes a change or maintain

several pre-trained models with distinct values of γ̄tr.

4.4.3 Results

Figure 4.7: BLER comparison between two types of receivers under different SNRs,
when (N,M,L,D) = (4, 4, 2, 3).

61



Figure. 4.7 plots the block error probability (BLER) as a function of the dif-

ferent SNRs in comparison with the RNN and DNN as receivers. It also presents

different curves at Doppler frequencies (fd) of 20Hz and 200Hz. It is noticeable that

DNNs are not an optimal design for every SNR level, while the RNN can obtain a

better performance curve for any SNR levels via training. In addition, because the

fluctuation of the channel at 20Hz is smaller than at 200Hz, the performance curve

at 20Hz is superior to that under the same conditions at 200Hz.

Figure. 4.8 plots the BLER as a function of different SNRs for various perfor-

mance curves at different numbers of receiver antennas. It can be observed that as the

number of receiver antennas increases, the BLER performance improves accordingly.

Figure 4.8: BLER comparison between various numbers of antennas at different SNRs,
when (N,M,D) = (4, 4, 3).

62



Figure. 4.9 plots the BLER as a function of different SNRs for performance

curves with varying message sequence lengths. It can be observed that as the message

sequence length increases, the BLER performance weakens. This is because, in longer

sequence lengths, RNN cannot fully memorize the channel information, leading to a

decrease in detection performance.

Figure 4.9: BLER comparison between various lengths of message sequences at dif-
ferent SNRs, when (N,M,L) = (4, 4, 2).

Figure. 4.10 plots the BLER as a function of different SNRs for various curves

without using the Jakes’ model and with the Jakes model at different fd of 20Hz

and 200Hz in a Rayleigh fading channel. Without using the Jakes’ model, there is

significant fluctuation, and the performance curve is worse compared to the curves at

the same conditions with fd at 20Hz and 200Hz.

63



Figure 4.10: BLER comparison between using Jakes model or not under different
SNRs, when (N,M,L,D) = (4, 4, 2, 3).

Figure. 4.11 plots the BLER as a function of different SNRs for performance

curves with varying numbers of carriers N and optional signal numbers M . It can be

noticed that under the same conditions (N,M) = (4, 4), the performance is slightly

better than (N,M) = (8, 8). As with traditional communications, increasing the

number of symbols allows the system to transmit more data, but it may also lead to

a higher occurrence of bit errors.

4.5 Conclusion

In this work, we delved into the potential of a deep energy autoencoder (EA)

tailored for a noncoherent multicarrier SIMO system that operates in multipath chan-

nel environments. Our approach pivots on a unique multicarrier SIMO architecture

characterized by a single-antenna sender and a multi-antenna receiver, both encapsu-

64



Figure 4.11: BLER comparison between various numbers of carriers at different SNRs,
when (L,D) = (2, 3).

lated through neural networks. A pivotal highlight of our method lies in the encoder’s

ability to generate a real-valued vector for individual subcarriers, while the decoder

proficiently aggregates energy from all the receiving antennas. To counteract the

significant concern of ISI caused by multipath channels, we sidestepped the intricate

designs traditionally employed and instead leveraged the capabilities of DNNs and

RNNs in the demodulation procedure. Notably, during our simulations, we also incor-

porated the Jakes’ model to consider varying Doppler frequencies, enriching the prac-

ticality and robustness of our design. Our results affirm the proficiency of RNNs in

restoring the transmitted data, even without the typically mandated channel state in-

formation inherent to conventional communication methodologies. As we look ahead,

our research trajectory is set to embrace advancements such as integrating Generative

Adversarial Networks (GAN) and accommodating multi-user scenarios.

65



CHAPTER 5

Conclusion and Future Works

This chapter represents the culmination of the entire dissertation. It com-

mences with a recapitulation of the dissertation’s findings and contributions, and

subsequently delves into exploring potential avenues for future research concerning

the optimization and applications in deep learning.

5.1 Conclusions

This thesis has centered on the optimization and applications in deep learning.

The key accomplishments of this research are:

1. Sense-Through-Foliage Target Detection Based on Stacked Autoencoder and UWB

Radar Sensor Networks:An approach for sense-through-foliage target detection

using a Sparse Autoencoder (SAE) technique was presented. SAE proved effec-

tive in extracting essential information and deep features from sense-through-

foliage radar echoes, particularly in scenarios where the received echoes had

poor signal quality. The experimental results demonstrated that SAE achieved

high detection accuracy, although there were some instances where the perfor-

mance was not entirely satisfactory. To enhance the detection accuracy further,

a preprocessing step was introduced before feeding the data into the neural

network. This step involved utilizing a RAKE structure in the Radar Sensor

Network (RSN), which combined echoes from different cluster-member radars.

The simulation results indicated that integrating different radar echoes signifi-

cantly improved the detection accuracy.

66



2. A Statistical Approach for Neural Network Pruning with Application to Internet

of Things:We combine the weights located on each stripe in existing stripe-wise

pruning, allowing us to learn the importance between stripes in a filter and

remove those with low importance. Our pruned method effectively reduces the

parameters and inference time of our VGG16 model with only a 0.4% decrease

in accuracy, achieving results comparable to the existing model and a 4-fold

reduction in parameters. When deployed on an edge device, the inference time

in the pruned network drops by half. Our method has been validated on both

the CIFAR-10 and the widely used bearing dataset from the Case Western

Reserve University (CWRU) Bearing Data Center, with similar accuracy and

inference time. To the best of our knowledge, this is the first application of a

stripe-wise pruning algorithm to edge devices and Bearing datasets.

3. Enhancing Multipath Mitigation in Noncoherent Multicarrier SIMO Systems

with Deep Energy Autoencoder: Our contribution is the extension and enhance-

ment of the deep energy autoencoder (EA) technique for multicarrier SIMO

systems to enable sequence-based message processing under multipath channel

conditions. Specifically, we explore the integration of recurrent neural network

(RNN) architectures in the decoder to leverage memory properties for sequence

learning, as an alternative to the original deep neural network (DNN) design.

Further, by incorporating the Jakes’ model to simulate Doppler frequency shifts

induced by mobility, we significantly improve the practicality and robustness of

the EA approach.

67



5.2 Future Direction

5.2.1 Introduction regularizers to prune filters and applications in other areas

In future work, we will explore the introduction of regularizers to prune filters

with single stripes, which may further compress deep neural networks and improve

performance. This approach is particularly relevant in the context of large language

models like GPT-4 [79], where the number of parameters is vast. The need for pruning

in these situations becomes increasingly crucial as it can contribute to making the

models more efficient and manageable, without sacrificing much in terms of predictive

power or accuracy. By actively employing pruning within these complex models, we

may uncover innovative ways to enhance their functionality and scalability, catering

to the ever-growing demands of modern machine learning applications.

Similarly, we will extend the use of my pruning model to other domains, ex-

ploring its potential to optimize various systems and contribute to a wide range of

applications. This decision has arisen from the recognition of the model’s inherent

flexibility and its proven success in previous projects. By adapting it to new contexts,

we aim to further leverage its capabilities for broad technological advancements. In

particular, we are planning to apply the pruning model to areas such as network op-

timization, where it could streamline data flow and reduce unnecessary redundancy.

Additionally, the model’s utility in energy efficiency could lead to more sustainable

operations in industrial settings, minimizing waste and potentially reducing costs.

5.2.2 Advancing Research with GAN Integration and Multi-User Adaptation

As for SIMO’s part, we are gearing up to integrate GANs into our research.

GANs comprise two neural networks – a generator and a discriminator. As these

two networks engage in competition, they gradually refine themselves, eventually

producing highly realistic data. We believe incorporating GANs can furnish our

68



models with superior quality data, enhancing accuracy and robustness. Moreover, we

are also setting our sights on accommodating multi-user scenarios.

69



CHAPTER 6

Publication List

1. Chengchen Mao and Qilian Liang. “ Sense-through-foliage target detection

based on stacked autoencoder and uwb radar sensor networks,” In Lecture Notes

in Electrical Engineering, pages 390–397. Springer, 2022.

2. Chengchen Mao, Qilian Liang, Chenyun Pan, and Ioannis Schizas “ A

Statistical Approach for Neural Network Pruning with Application to Internet of

Things,” In EURASIP Journal on Wireless Communications and Networking,

pages 1–21. SpringerOpen, 2022.

3. Chengchen Mao, Qilian Liang, Chenyun Pan, and Ioannis Schizas. “ Ad-

vancing Internet of Things Through Statistical Pruning of Neural Networks,”

In Lecture Notes in Electrical Engineering, 2023.

4. Chengchen Mao, Zongwen Mu, Qilian Liang, Ioannis Schizas, and Chenyun

Pan. “ Deep Learning in Physical Layer Communications: Evolution and

Prospects in 5G and 6G Networks,” In IET Communications, 2023.

70



REFERENCES

[1] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,

S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment

anything,” 2023.

[2] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever,

“Robust speech recognition via large-scale weak supervision,” in International

Conference on Machine Learning. PMLR, 2023, pp. 28 492–28 518.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot

learners,” Advances in neural information processing systems, vol. 33, pp. 1877–

1901, 2020.

[4] P. Ji, J. Ye, Y. Mu, W. Lin, Y. Tian, C. Hens, M. Perc, Y. Tang, J. Sun, and

J. Kurths, “Signal propagation in complex networks,” Physics Reports, vol. 1017,

pp. 1–96, 2023.

[5] H. V. Ribeiro, D. D. Lopes, A. A. Pessa, A. F. Martins, B. R. da Cunha,

S. Gonçalves, E. K. Lenzi, Q. S. Hanley, and M. Perc, “Deep learning crimi-

nal networks,” Chaos, Solitons & Fractals, vol. 172, p. 113579, 2023.

[6] Z. Gao, W. Dang, X. Wang, X. Hong, L. Hou, K. Ma, and M. Perc, “Complex

networks and deep learning for eeg signal analysis,” Cognitive Neurodynamics,

vol. 15, pp. 369–388, 2021.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

71



[8] I. Oppermann, M. Hämäläinen, and J. Iinatti, UWB: theory and applications.

John Wiley & Sons, 2004.

[9] E. Karapistoli, F.-N. Pavlidou, I. Gragopoulos, and I. Tsetsinas, “An overview of

the ieee 802.15. 4a standard,” IEEE Communications Magazine, vol. 48, no. 1,

pp. 47–53, 2010.

[10] A. Heinrich, N. Bittner, and M. Hollick, “Airguard-protecting android users

from stalking attacks by apple find my devices,” in Proceedings of the 15th ACM

Conference on Security and Privacy in Wireless and Mobile Networks, 2022, pp.

26–38.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

[13] J. Liang, Q. Liang, and S. W. Samn, “Foliage clutter modeling using the uwb

radar,” in 2008 IEEE International Conference on Communications. IEEE,

2008, pp. 1937–1941.

[14] Y. S. Meng, Y. H. Lee, and B. C. Ng, “Empirical near ground path loss mod-

eling in a forest at vhf and uhf bands,” IEEE transactions on antennas and

propagation, vol. 57, no. 5, pp. 1461–1468, 2009.

[15] A. Y. Nashashibi, K. Sarabandi, S. Oveisgharan, M. C. Dobson, W. S. Walker,

and E. Burke, “Millimeter-wave measurements of foliage attenuation and ground

reflectivity of tree stands at nadir incidence,” IEEE Transactions on Antennas

and Propagation, vol. 52, no. 5, pp. 1211–1222, 2004.

72



[16] Q. Liang, S. W. Samn, and X. Cheng, “Uwb radar sensor networks for sense-

through-foliage target detection,” in 2008 IEEE International Conference on

Communications. IEEE, 2008, pp. 2228–2232.

[17] J. Liang and Q. Liang, “Sense-through-foliage target detection using uwb radar

sensor networks,” Pattern Recognition Letters, vol. 31, no. 11, pp. 1412–1421,

2010.

[18] I. Maherin and Q. Liang, “A mutual information based approach for target de-

tection through foliage using uwb radar,” in 2012 IEEE International Conference

on Communications (ICC). IEEE, 2012, pp. 6406–6410.

[19] ——, “Radar sensor network for target detection using chernoff information and

relative entropy,” Physical Communication, vol. 13, pp. 244–252, 2014.

[20] ——, “Multistep information fusion for target detection using uwb radar sensor

network,” IEEE Sensors Journal, vol. 15, no. 10, pp. 5927–5937, 2015.

[21] G. Zhao, Q. Liang, and T. S. Durrani, “Uwb radar target detection based on

hidden markov models,” IEEE Access, vol. 6, pp. 28 702–28 711, 2018.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[23] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[24] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classifi-

cation of hyperspectral data,” IEEE Journal of Selected topics in applied earth

observations and remote sensing, vol. 7, no. 6, pp. 2094–2107, 2014.

[25] J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, “High-resolution sar

image classification via deep convolutional autoencoders,” IEEE Geoscience and

Remote Sensing Letters, vol. 12, no. 11, pp. 2351–2355, 2015.

73



[26] B. Feng, B. Chen, and H. Liu, “Radar hrrp target recognition with deep net-

works,” Pattern Recognition, vol. 61, pp. 379–393, 2017.

[27] Q. Ren and Q. Liang, “Fuzzy logic-optimized secure media access control (fs-

mac) protocol wireless sensor networks,” in CIHSPS 2005. Proceedings of the

2005 IEEE International Conference on Computational Intelligence for Home-

land Security and Personal Safety, 2005. IEEE, 2005, pp. 37–43.

[28] ——, “Energy and quality aware query processing in wireless sensor database

systems,” Information Sciences, vol. 177, no. 10, pp. 2188–2205, 2007.

[29] ——, “Throughput and energy-efficiency-aware protocol for ultrawideband com-

munication in wireless sensor networks: a cross-layer approach,” IEEE Transac-

tions on Mobile Computing, vol. 7, no. 6, pp. 805–816, 2008.

[30] M. A. Kramer, “Nonlinear principal component analysis using autoassociative

neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[31] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise train-

ing of deep networks,” in Advances in neural information processing systems,

2007, pp. 153–160.

[32] Q. Liang, L. Wang, and Q. Ren, “Fault-tolerant and energy efficient cross-layer

design for wireless sensor networks,” International Journal of Sensor Networks,

vol. 2, no. 3-4, pp. 248–257, 2007.

[33] L. Xu and Q. Liang, “Zero correlation zone sequence pair sets for mimo radar,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 3, pp.

2100–2113, 2012.

[34] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):

A vision, architectural elements, and future directions,” Future generation com-

puter systems, vol. 29, no. 7, pp. 1645–1660, 2013.

74



[35] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf,

B. Almeroth, J. Voigt, I. Riedel, et al., “Latency critical iot applications in 5g:

Perspective on the design of radio interface and network architecture,” IEEE

Communications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[36] J. Mei, K. Zheng, L. Zhao, Y. Teng, and X. Wang, “A latency and reliability

guaranteed resource allocation scheme for lte v2v communication systems,” IEEE

Transactions on Wireless Communications, vol. 17, no. 6, pp. 3850–3860, 2018.

[37] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey

on the edge computing for the internet of things,” IEEE Access, vol. 6, pp.

6900–6919, 2018.

[38] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[39] J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot, “Enabling deep learning on iot

devices,” Computer, vol. 50, no. 10, pp. 92–96, 2017.

[40] S. Hooker, “The hardware lottery,” Communications of the ACM, vol. 64, pp.

58 – 65, 2021.

[41] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet

of things with edge computing,” IEEE network, vol. 32, no. 1, pp. 96–101, 2018.

[42] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances

in neural information processing systems, 1990, pp. 598–605.

[43] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university

press, 1995.

[44] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:

Efficient inference engine on compressed deep neural network,” ACM SIGARCH

Computer Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

75



[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for

efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[46] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neu-

ral networks,” in Proceedings of the IEEE international conference on computer

vision, 2017, pp. 1389–1397.

[47] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient

convolutional networks through network slimming,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 2736–2744.

[48] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016, pp. 2554–2564.

[49] F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, and X. Sun, “Pruning filter in

filter,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 629–

17 640, 2020.

[50] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on Neural Networks,

vol. 4, no. 5, pp. 740–747, 1993.

[51] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.

[52] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-

volutional neural networks for resource efficient inference,” arXiv preprint

arXiv:1611.06440, 2016.

[53] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A far-sighted alternative of

magnitude-based pruning,” arXiv preprint arXiv:2002.04809, 2020.

76



[54] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep

neural network compression,” in Proceedings of the IEEE international confer-

ence on computer vision, 2017, pp. 5058–5066.

[55] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity

in deep neural networks,” Advances in neural information processing systems,

vol. 29, pp. 2074–2082, 2016.

[56] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International conference on machine

learning. PMLR, 2015, pp. 448–456.

[57] W. Feller, An introduction to probability theory and its applications, vol 2. John

Wiley & Sons, 2008.

[58] M. Schmidt, G. Fung, and R. Rosales, “Fast optimization methods for l1 regular-

ization: A comparative study and two new approaches,” in European Conference

on Machine Learning. Springer, 2007, pp. 286–297.

[59] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environ-

ment for machine learning,” in BigLearn, NIPS workshop, no. CONF, 2021.

[60] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” University of Toronto, Toronto, Ontario, Tech. Rep., 2009.

[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[62] K. Loparo, “Case western reserve university bearing data center,” Bearings Vi-

bration Data Sets, Case Western Reserve University, pp. 22–28, 2012.

[63] C. A. Pickover, “On the use of symmetrized dot patterns for the visual char-

acterization of speech waveforms and other sampled data,” The Journal of the

Acoustical Society of America, vol. 80, no. 3, pp. 955–960, 1986.

[64] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

77



[65] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks:

A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20,

no. 4, pp. 2595–2621, 2018.

[66] L. Nanni, S. Ghidoni, and S. Brahnam, “Handcrafted vs. non-handcrafted fea-

tures for computer vision classification,” Pattern Recognition, vol. 71, pp. 158–

172, 2017.

[67] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for mimo

detection,” IEEE Transactions on Signal Processing, vol. 68, pp. 1702–1715,

2020.

[68] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep learning-

based channel estimation,” IEEE Communications Letters, vol. 23, no. 4, pp.

652–655, 2019.

[69] X. Chen, G. Liu, Z. Ma, X. Zhang, W. Xu, and P. Fan, “Optimal power allo-

cations for non-orthogonal multiple access over 5g full/half-duplex relaying mo-

bile wireless networks,” IEEE transactions on Wireless communications, vol. 18,

no. 1, pp. 77–92, 2018.

[70] X. Wang, H. Hua, and Y. Xu, “Pilot-assisted channel estimation and signal

detection in uplink multi-user mimo systems with deep learning,” IEEE Access,

vol. 8, pp. 44 936–44 946, 2020.

[71] Y. Zhang, J. Sun, J. Xue, G. Y. Li, and Z. Xu, “Deep expectation-maximization

for joint mimo channel estimation and signal detection,” IEEE Transactions on

Signal Processing, vol. 70, pp. 4483–4497, 2022.

[72] T. O’shea and J. Hoydis, “An introduction to deep learning for the physical

layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3,

no. 4, pp. 563–575, 2017.

78



[73] M. Hammouda, S. Akin, and J. Peissig, “Performance analysis of energy-

detection-based massive simo,” in 2015 IEEE International Black Sea Conference

on Communications and Networking (BlackSeaCom). IEEE, 2015, pp. 152–156.

[74] E. Leung, Z. Dong, and J.-K. Zhang, “Uniquely factorable hexagonal constel-

lation designs for noncoherent simo systems,” IEEE Transactions on Vehicular

Technology, vol. 66, no. 6, pp. 5495–5501, 2016.

[75] S. Xue, Y. Ma, N. Yi, and R. Tafazolli, “Unsupervised deep learning for mu-simo

joint transmitter and noncoherent receiver design,” ieee wireless communications

letters, vol. 8, no. 1, pp. 177–180, 2018.

[76] T. Van Luong, Y. Ko, N. A. Vien, M. Matthaiou, and H. Q. Ngo, “Deep energy

autoencoder for noncoherent multicarrier mu-simo systems,” IEEE Transactions

on Wireless Communications, vol. 19, no. 6, pp. 3952–3962, 2020.

[77] H. Zhang, M. Lan, J. Huang, C. Huang, and S. Cui, “Noncoherent energy-

modulated massive simo in multipath channels: A machine learning approach,”

IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8263–8270, 2020.

[78] W. C. Jakes and D. C. Cox, Microwave mobile communications. Wiley-IEEE

press, 1994.

[79] OpenAI, “Gpt-4 technical report,” 2023.

79



BIOGRAPHICAL STATEMENT

Chengchen Mao was born in Yiwu, China in 1992. He received his B.S. and

M.Sc degree from University of Electronic Science and Technology of China, China,

in 2014 and 2017 respectively, both in Electrical Engineering. From 2015 to 2016,

he was with the School of Communication and Information Engineering, University

of Electronic Science and Technology of China as a Research Assistant in the Radar

and Localization Lab. His current research interest is in the area of Deep Learning,

Signal Processing, and Wireless Communication.

80


	MODEL OPTIMIZATION AND APPLICATIONS IN DEEP LEARNING
	Recommended Citation

	tmp.1725464163.pdf.hzEue

