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ABSTRACT

INVESTIGATING THE EFFECT OF PEEPHOLE OPTIMIZATIONS ON

BINARY CODE DIFFERENCES

XIAOLEI REN, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professors: Dr. Yu Lei and Dr. Jiang Ming

Binary diffing is a technique used to compare and identify differences or similarities

in executable files without access to source code. The potential applications of binary

diffing in various software security tasks, such as vulnerability search, code clone

detection, and malware analysis, have generated a vast body of literature in recent

years. One of the recurring themes in binary diffing research is the evaluation of its

resilience against the impact of compiler optimization, which is the most common

source of syntactic differences in binary code. Despite that most binary diffing tools

claim that they are immune to compiler optimization, recent studies have highlighted

the need for the research community to revisit this claim, particularly regarding non-

default optimization settings and function inlining.

In this study, we investigate the effect of peephole optimization on binary diffing

analysis. Peephole optimization is a feature of mainstream compilers that allows local

rewriting of the input program. It replaces instruction sequences within a window

(i.e., peephole) with shorter, faster, or functionally equivalent instruction sequences.

Our research reveals that peephole optimization primarily affects binary code differ-

ences at the intra-procedural level, which contradicts the assumptions made by basic-
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block-centric comparison approaches. We conducted systematic experiments using

LLVM’s unit test suite. We also customized Alive2, an LLVM translation validation

tool, to isolate the impact of peephole optimization from the overall optimization

process.

Our investigation determines the pervasiveness of peephole optimization in the

resulting compiled code and explores its effects on current binary diffing techniques.

The noticeable decline in performance highlights the importance of considering peep-

hole optimization in the analysis and improvement of binary diffing methodologies.

Therefore, our findings suggest that researchers and practitioners should consider the

impact of peephole optimization when developing and evaluating binary diffing tools.

Further research is necessary to address this challenge and improve the effectiveness

of binary diffing in various software security tasks.
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CHAPTER 1

Introduction

In the contemporary digital ecosystem, marked by a high degree of interconnectivity,

software security has emerged as a critical concern for various stakeholders, includ-

ing individuals, corporations, and governments. This heightened importance can be

attributed to the rapid proliferation of Internet of Things (IoT) devices and the es-

calating threats posed by malicious software, or malware [5, 6].

A considerable portion of system programs, IoT device firmware, and malware

are developed using C/C++ programming languages, resulting in their distribution in

binary code form. Binary code, a low-level representation of software, often lacks the

high-level language information required for comprehensive analysis. Consequently,

security analysts are faced with the challenge of assessing software security without

access to the source code in numerous real-world scenarios [7, 8, 9].

In such situations, binary diffing serves as a valuable tool for comparing and

differentiating between two or more binary code pieces. This technique facilitates

the identification of similarities and differences among multiple instances of binary

code, enabling a wide array of security tasks. These tasks include vulnerability

search [10, 11, 12, 13, 14, 15, 16], security patch analysis [17, 18, 19], code clone de-

tection [20,21,22,23,24], and malware analysis [25,26,27,28,29,30,31]. By effectively

identifying potential security threats and promoting the development of suitable coun-

termeasures, binary diffing techniques substantially contribute to enhancing overall

software security.
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1.1 Binary Diffing

Binary diffing is a technique used to compare differences or similarities between two

binary code versions, uncovering valuable information even without the source code.

For instance, analyzing the similarities between different binary codes can reveal

underlying relationships, such as code clones and similar malware lineage. Therefore,

the benefits of binary diffing have led to wide adoption by various software security

analysis tasks.

Binary diffing involves identifying functions, addressing indirect calls and vir-

tual function tables, as well as modifying calling conventions. To achieve this, binary

comparison tools parse binary code and gather relevant information, such as func-

tions, control flow graphs (CFGs), function flow graphs, basic blocks, edges, and

instructions. After collecting the data, these binary comparison tools employ CFG-

based graph comparison and function comparison algorithms, delving into the basic

blocks. This process results in a comprehensive difference analysis between the two

binary files, taking into consideration all the aforementioned code representations. To

further enhance the comparison analysis results, some binary comparison approaches

integrate with advanced analysis toolkits such as IDA Pro [32], enabling access to

higher levels of abstraction and filtering out low-level noise.

1.2 The Importance of Binary Diffing in Software

Security

The significance of analyzing and understanding binary code behavior has surged

in recent years, mainly due to the rapid growth of system programs, Internet of

Things (IoT) device firmware, and various software, which heighten software secu-
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rity threats [5,6]. Binary diffing can analyze the similarities between different binary

codes, revealing crucial underlying relationships. For example, comparing a binary file

with its patched version can expose a fixed vulnerability that attackers might exploit

to compromise the unpatched programs. Similarly, detecting similarities between an

intellectual property-protected program and a suspicious program could indicate soft-

ware plagiarism. In malware analysis, binary diffing helps classify malware samples

with shared functions, allowing security professionals to concentrate on new variants

and enhance overall software security.

1.2.1 Vulnerability Search and Security Patch Anal-

ysis

Vulnerability search [10, 11, 12, 13, 14, 15, 16] is the process of identifying weaknesses

and flaws in a software system that can be exploited by malicious actors. The pur-

pose of vulnerability search is to expose and address these issues proactively to secure

the system before any potential breaches or attacks occur. Binary diffing is an effec-

tive technique used in vulnerability search that compares two binary files to detect

similarities or differences. In the context of software security, binary diffing is often

applied to identify vulnerabilities in software patches or different versions of the same

application. This method enables security analysts to uncover newly introduced or

fixed vulnerabilities by comparing a patched binary with its previous unpatched ver-

sion. It can also be used to find similarities between a known vulnerable binary and

other binaries, revealing potential shared vulnerabilities.

Security patch analysis [17, 18, 19] is a vital aspect of vulnerability search, fo-

cusing on the evaluation of patches applied to software to address identified security

vulnerabilities. By examining the differences between the two versions, researchers

3



can understand the specific fixes applied to address security issues, assess the effec-

tiveness of the patch, evaluate its potential impact on system performance, and even

reverse-engineer the vulnerability. Gaining insights into potential exploits helps secu-

rity experts better understand the threats they face and develop more robust defenses

against them. In this way, security patch analysis complements the vulnerability

search process, providing a comprehensive understanding of software vulnerabilities

and their remediation strategies.

1.2.2 Code Clone Detection

Code clone detection is the process of identifying identical or similar code fragments in

different binary programs, which can arise from code reuse, duplication, or plagiarism.

Detecting code clones is essential in various scenarios, such as understanding software

evolution, refactoring, and detecting potential security vulnerabilities. If the cloned

code contains any exploitable flaws, it may pose a significant risk to the system’s

security, as the vulnerability may be present in multiple instances [20, 21, 22, 23, 24].

Binary diffing is a valuable technique for code clone detection, as it allows comparing

binary files directly without requiring access to the source code. This is particularly

useful when working with proprietary or obfuscated binaries, where source code may

not be available. By comparing the binary files of a new application and a vulnerable

component, researchers can identify similarities and differences that not only help

detect code clones but also enable security experts to determine whether the same

vulnerability exists in the new software system.
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1.2.3 Malware Analysis

Malware analysis [25, 26, 27, 28, 29, 30, 31] is a crucial process that involves examin-

ing and dissecting malicious software to understand its behavior, functionality, and

potential impact on targeted systems. This analysis is essential for developing effec-

tive countermeasures and mitigating risks posed by malware. A primary objective

of malware analysis is identifying and classifying malware samples based on shared

functionalities, which assists security professionals in detecting new variants of known

malware families and focusing their efforts on understanding and combating emerg-

ing threats. Binary diffing plays a critical role in malware analysis, as it enables

researchers to compare different binary files and identify similarities and differences

between them. By analyzing the shared functionalities between malware samples,

binary diffing aids in classifying and categorizing malware into families and detecting

new variants or evolutions of existing malware. This capability is particularly valu-

able when dealing with obfuscated or encrypted malware, where traditional analysis

techniques may struggle to extract key information about the malware.

1.3 Technical Challenges of Binary Diffing

The field of binary diffing has experienced significant growth and research interest in

recent years. As evidenced by a survey conducted by Haq et al. [33], over 100 pub-

lished papers in top computer science venues have covered various aspects of binary

diffing. These contributions span multiple disciplines, including computer security,

software engineering, programming languages, and machine learning. These papers

address problems including vulnerability search, malware analysis, patch inspection,

plagiarism detection, and de-anonymizing code authors, using different code repre-

sentations and semantic similarity measures. Despite its versatile applications, the
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accuracy of binary diffing is subject to several challenges from code representation,

the similarity measurement of code presentation, and compiler optimization. Among

them, compiler optimization makes it difficult to define a semantics-aware code rep-

resentation that effectively captures the similarities between programs [9].

1.3.1 How to Define a Code Representation

In the realm of software security, binary diffing plays a vital role in facilitating the

in-depth analysis and comparison of similarities between different programs. To effec-

tively carry out binary diffing, it is essential to carefully select and define appropriate

code representations that enable the identification of connections and similarities

between similar programs. To achieve this goal, researchers have explored various

code representation techniques, including control flow graphs (CFGs), functions, ba-

sic blocks, and instruction n-grams [33]. These representations serve as a foundation

for identifying similarities between binary files, allowing researchers to pinpoint code

sections with potential modifications or vulnerabilities.

1.3.1.1 Defining Code Representation

A control flow graph (CFG) is a directed graph that represents all potential execu-

tion paths within a program. In binary diffing analysis, CFG can assist researchers

in examining the structural differences between two binary files. However, the rep-

resentation of CFG can be influenced by factors such as the compiler, optimization

options, and the program’s architecture, thereby posing challenges for binary diffing

analysis. For instance, function inlining optimization integrates callee functions into

the caller’s body, subsequently impacting the CFG.
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Functions serve as logical organizational units of code, typically designed to per-

form specific tasks. In binary diffing analysis, representing code as functions can aid

researchers in identifying potential modifications and vulnerabilities. Nevertheless, in

certain cases, similarities between functions may not necessarily indicate functional

similarity, requiring further analysis and verification.

A basic block represents a linear organization of instruction sequences, wherein

each instruction is executed in order, without jumps or branches. Basic blocks can

help researchers analyze similarities between instruction sequences. However, factors

like compiler optimizations can affect the similarity between basic blocks, making

binary diffing analysis more challenging. For example, peephole optimization can

replace a basic block’s instruction sequence with simplified instructions, thus altering

the basic block and its instructions.

Instruction n-grams [34] provide a method for representing local features of

instruction sequences. In binary diffing analysis, instruction n-grams can help re-

searchers pinpoint potential similarities and differences. However, factors such as the

compiler and optimization options can impact the analysis using instruction n-grams,

resulting in false positives or false negatives.

1.3.1.2 Challenges in Defining Code Representation

This is primarily due to the low-level and intricate nature of binary code, which lacks

the high-level language information found in source code, such as variable names,

data structures, and types. The absence of this information makes it significantly

more difficult to discern the underlying logic of a program, which in turn hampers

the accuracy of binary diffing techniques.
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One of the primary challenges in binary diffing is the absence of symbolic in-

formation in the code representation. In source code, meaningful names are assigned

to variables, functions, and data structures, providing context and facilitating com-

prehension. However, binary code does not retain this information, making it more

challenging to identify and analyze corresponding program components. As a result,

researchers must rely on alternative methods, such as pattern matching and statistical

analysis, to bridge this gap.

Another challenge in binary diffing is the presence of compiler optimizations,

which can alter the structure and content of the generated binary code, consequently

affecting the code representation. For instance, function inlining optimization impacts

the function scope and control flow, while peephole optimization affects basic blocks.

These optimizations can vary depending on the compiler used, the optimization level

selected, and the target architecture, resulting in different binary representations for

the same source code. This variability can hinder the process of accurately comparing

and identifying similarities between binary files.

Additionally, the handling of different instruction sets and architectures presents

further challenges in defining effective code representations. Different processor ar-

chitectures have unique instruction sets and conventions, which can lead to dissimilar

binary code representations for equivalent functionality. Malware originating from

the same virus family is distributed across various computing systems, including PC

software and IoT software, spanning architectures such as x86-32, x86-64, ARM,

and MIPS. Consequently, researchers must account for these differences and develop

techniques to normalize and compare code across various architectures.
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1.3.2 How to Measure Similarities Between Code

Representations

The evaluation of code representation similarities is a multifaceted task that requires

the use of various evaluation metrics, including graph comparison, black-box testing,

and equivalence checking through software verification.

Graph comparison techniques are employed to assess structural similarities be-

tween code representations, such as control flow graphs or data flow graphs. These

methods involve comparing nodes and edges, which represent program components

and their relationships, respectively. However, graph comparison can be computation-

ally expensive and may not always provide an accurate representation of functional

similarity, as different graph structures can potentially lead to the same functionality.

Black-box testing focuses on evaluating the functionality of programs based

on their responses to specific inputs, without examining their internal structures

or implementation details. This approach can be advantageous in assessing code

similarity, as it solely relies on the observable behavior of the programs. However,

black-box testing may not be exhaustive, as it is often impractical to test every

possible input combination. Additionally, it may not detect similarities in code that

are not executed during testing.

Equivalence checking utilizes software verification techniques to determine if

two code representations are functionally identical. This method typically involves

constructing mathematical models of the programs and proving their equivalence

using formal methods, such as theorem proving or model checking. While equivalence

checking can provide rigorous guarantees of code similarity, it can be time-consuming

and may not scale well to large or complex programs.
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It is essential to consider the inherent challenges and limitations of these evalua-

tion metrics when assessing similarities between code representations in binary diffing

analysis. Researchers must balance the trade-offs between accuracy, scalability, and

computational complexity while selecting the most suitable evaluation methods for

their specific use cases. Furthermore, leveraging a combination of these evaluation

metrics can help achieve a more comprehensive understanding of the similarities be-

tween code representations, ultimately enhancing the effectiveness of binary diffing

analysis.

1.3.3 Compiler Optimizations Affecting Binary Diff-

ing

The study of compiler optimization has garnered substantial attention from researchers

in the fields of software engineering and programming languages. This growing in-

terest is primarily attributed to the potential implications of binary differences on

aspects such as software security and performance.

Compiler optimization refers to the process of refining the generated code by a

compiler to improve the software’s overall performance, reduce its size, or minimize

its resource consumption. However, these optimizations may result in changes to

the binary code, which can lead to binary code differences. Recent research has

highlighted the importance of understanding the various factors that contribute to

binary differences during compilation, such as the type and version of the compiler, the

target architecture of the executable file, and compiler optimization techniques [33,

35].

In their study, Kim et al. [35] systematically analyzed the impact of these

factors on binary differences. They discovered that compiler optimization is a common
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and critical determinant of these differences. This finding implies that the choice of

optimization techniques and levels can significantly influence the resulting binary

code. Consequently, it is crucial for security experts to understand the implications

of compiler optimization techniques on binary differences to make informed decisions

during the binary diffing process.

On the other hand, the prevailing belief in the field of binary diffing is that

most tools are capable of producing satisfactory results across a range of compiler

optimization levels. As a result, the extensive research conducted in this area should

enable a comprehensive understanding of how different code representations and com-

parison methodologies can adequately discern the syntactic differences that arise from

compiler optimization. However, recent studies by Ren et al. [36] and Jia et al. [37]

have called these assumptions into question, positing that the impact of compiler

optimization on binary code differences may have been significantly underestimated.

Ren et al.’s BinTuner [36] investigates the effects of non-default optimization

settings by adopting an iterative compilation technique [38,39]. This method searches

for near-optimal optimization sequences that maximize binary code differences. When

compared to leading binary diffing tools, there is a noticeable decline in accuracy

when these tools are applied to binary code generated by BinTuner. This finding

underscores the need for a more in-depth examination of the impact of compiler

optimization on binary diffing tools.

Moreover, Jia et al.’s study [37] highlights that many binary function compari-

son approaches fail to account for the consequences of function inlining optimization.

This optimization technique integrates callee functions into the body of the caller,

and can account for as much as 70% of inlined functions when using O3. Existing

binary function matching strategies, however, can result in a reduction of up to 30%

in code search performance and a decrease of 40% in vulnerability detection effective-
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ness. This evidence further emphasizes the necessity for ongoing research in this area

to better comprehend the subtleties of binary diffing tools and the ramifications of

compiler optimization on their efficacy.

Previous researchers have explored how compiler optimizations can influence

binary diffing, but there is still much to uncover about the complex relationships

between these optimizations and the accuracy of binary comparison techniques. By

examining specific optimization methods, such as peephole optimization, we can gain

a deeper understanding of the challenges faced by binary diffing tools in the presence

of optimized code.

1.4 The Importance of Studying the Impact of Peep-

hole Optimization on Binary Diffing

The investigation of the ramifications of peephole optimization on binary diffing pos-

sesses substantial importance within the realms of computer science and system se-

curity. Peephole optimization, a compiler optimization technique, primarily concen-

trates on localized enhancements within a confined scope of instructions, frequently

culminating in the generation of more efficient code. A critical analysis of the conse-

quences stemming from peephole optimization on binary diffing is essential for several

reasons:

Augmenting Security Analysis: A thorough comprehension of the impacts of

peephole optimization can facilitate the advancement of malware detection and anal-

ysis methodologies. By pinpointing the manner in which peephole optimization mod-

ifies binary code, security specialists can conceive more efficacious approaches for

monitoring malware progression and discovering commonalities between distinct ma-

licious binaries, even in cases where obfuscation or packing is employed.
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Fostering Compiler Technique Progression: The examination of the effects of

peephole optimization on binary diffing may contribute to the evolution of increasingly

sophisticated compiler optimization methodologies. As researchers acquire a more

profound understanding of the complex interconnections between code optimizations

and binary representations, they can devise novel strategies for optimizing compilers

to a greater extent, ultimately resulting in the creation of more efficient and secure

software.

Enabling Reverse Engineering and Debugging Proficiency: Acquiring insight

into the implications of peephole optimization on binary diffing can support reverse

engineers and debuggers in accomplishing their objectives. By discerning the pat-

terns and transformations introduced through peephole optimization, these profes-

sionals can more precisely decode binary code, pinpoint discrepancies, and detect

issues within software systems.

In summary, the significance of exploring the impact of peephole optimization

on binary diffing resides in its potential to amplify system security, promote compiler

technique advancements, and streamline reverse engineering and debugging endeav-

ors. By immersing themselves in this research domain, computer science and system

security experts can contribute to the cultivation of increasingly efficient, secure, and

dependable software systems.

1.4.1 How Peephole Optimizations Affecting Binary

Diffing

As compiler technology advances, modern compilers, like LLVM, offer an extensive

array of peephole optimization options, providing over a thousand such alternatives

through the InstCombine pass [3, 4]. This optimization technique enables more ef-
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ficient and streamlined code generation. However, this process can inadvertently

complicate binary diffing, the comparative analysis of binary executables to identify

similarities and differences. The transformations introduced by peephole optimiza-

tions may result in distinct binary representations of functionally equivalent code,

consequently increasing the difficulty of accurately discerning and correlating the

underlying algorithms or data structures. Therefore, understanding the impact of

peephole optimizations on binary diffing is vital for the development of robust and

precise reverse engineering techniques and tools in the realm of software security. The

impact of peephole optimizations on binary code is also an intriguing topic, and we

will explore later their influence on binary code and its subsequent analysis through

two illustrative examples in the motivation section.

1.5 Approach

Unlike previous studies that focused on non-default optimization options [36] or inter-

procedural effects [37], in this paper, we zoom in on a local code optimization tech-

nique: peephole optimization [40]. It recurs from O1 to O3 settings and enables local

modifications to the input program. Specifically, it can replace instruction sequences

within a specific window (i.e., peephole) with more concise or faster equivalent instruc-

tions [41,42,43,44]. LLVM compiler optimizations are achieved through a sequence of

Passes [1,2], which are responsible for executing code transformations and optimiza-

tions. Peephole optimization is particularly effective in generating code customized

based on specific hardware architectures. It can leverage architecture-specific instruc-

tions and features, thereby improving code execution efficiency and better utilizing

available hardware resources.

It is important to note that from the user’s perspective, LLVM does not pro-

vide options to separately disable or enable peephole optimizations, such as (-fno-
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peephole). For example, it is not possible to specifically enable peephole optimiza-

tions in an unoptimized setting (O0), nor activate all default optimizations (O3) while

only disabling peephole optimizations and keeping other optimizations unchanged.

In other words, users cannot compile different binary codes containing only peephole

optimizations or no peephole optimizations by setting the disabling or enabling of

peephole optimizations at compile time. Therefore, analyzing the impact of peephole

optimizations on binary code remains an unresolved technical challenge.

1.5.1 Implementation

Examining the impact of peephole optimization on a binary code segment within the

final optimized binary code poses a considerable challenge, owing to the amalgama-

tion of optimization outcomes at the binary level. To comprehensively evaluate the

effect of peephole optimization on binary code discrepancies, we propose a two-step

method that utilizes the LLVM unit test suite and Alive2 [45], an LLVM translation

verification tool. This approach ensures an analysis of the optimization process and

its implications on binary code differences.

In the first step, we concentrate on isolating the specific impact of peephole

optimization within the broader optimization process. To achieve this, we focus on

how peephole optimization InstCombine Pass [3, 4] changes the intermediate repre-

sentation (IR), conducting a series of methodical experiments on IRs changes. By

identifying and examining the transformations applied solely by the InstCombine

Pass, we can separate the influence of peephole optimization from other optimization

techniques.

In the second step, we delve into the evaluation of the influence of peephole

optimization on basic blocks. By analyzing the changes in basic blocks resulting from
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the application of peephole optimization, we can assess its impact on binary diffing

tools’ performance. This granular analysis allows us to better understand the specific

benefits and drawbacks of peephole optimization in relation to other optimization

techniques.

Through this approach, we aim to provide an assessment of the impact of peep-

hole optimization on binary code variance and offer valuable insights into its role

within the broader optimization process. This information can be used to guide

future research and development efforts in the field of compiler optimizations and

system security.

1.6 Contributions

The utilization of peephole optimization introduces complications in the pair-wise

comparison of basic blocks. This poses a challenge to numerous binary diffing tools

that rely heavily on such comparisons as their fundamental framework. Despite this

challenge, there is a lack of systematic study into the extent and impact of peephole

optimization on existing binary diffing techniques. Our paper aims to fill this gap by

investigating the following three research questions (RQs):

RQ1: How does peephole optimization affect the syntactic differences of binary code?

Gaining a deep understanding of these effects is vital to the design of a robust

binary diffing tool.

RQ2: To what extent does peephole optimization happen throughout the entire op-

timization process? This demonstrates whether peephole optimization prevails

in the compiled code.

RQ3: What impact does peephole optimization have on existing binary diffing tech-

niques? The performance degradation indicates the importance of considering

peephole optimization.
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The first challenge of our study is to identify the code changes that are solely caused by

peephole optimization. To illustrate this point, we can consider LLVM’s InstCombine

pass, which performs peephole optimization in an iterative manner throughout the

entire optimization process. Furthermore, this pass significantly interacts with other

optimization passes, such as the simplifyCFG pass. Therefore, to answer RQ1 & RQ2,

we leverage Alive2 [45], an LLVM translation validation tool, to track the effect of each

InstCombine pass with a default optimization setting (e.g., O1∼O3) and LLVM’s unit

test suite as inputs. In particular, we take snapshots of pre- and post-optimization IR

code that have equivalent semantics; then, we adopt Myers algorithm [46] to identify

syntactic differences of basic block pairs. We present a new taxonomy to summarize

such binary code changes at the intra-procedural level. By doing so, we can closely

monitor the optimization pipeline and collect statistical data on the effect of peephole

optimization.

In summary, by integrating the three research questions to conduct experiments

and analyses, our main contributions are as follows:

We propose a novel classification method for summarizing intra-program-level

binary code changes of this nature. By doing so, we can monitor the optimization

process and analyze the ubiquity of peephole optimization effects (Chapter 5).

We present a feasible approach to observe the transformation process of peep-

hole optimization on each function during the optimization process, addressing the

challenge of isolating peephole optimization effects from the optimization process

(Chapter 6).

Our findings indicate that peephole optimization is the most prevalent opti-

mization pass, with an average invocation frequency ranging from 20.1% to 37.9%.

Across all O1 to O3 levels, the average percentage of basic blocks modified by peep-
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hole optimization varies between 32.8% and 60.2%, with a maximum value of 76.3%

(Chapter 8).

Our study demonstrates that peephole optimization affects current binary dif-

ference methods at both the basic block and control flow levels. The performance

degradation underscores the importance of considering peephole optimization. Bin-

Diff results indicate that peephole optimization can cause 50% of optimized instruc-

tions within basic blocks to be unmatchable and lead to modifications spanning multi-

ple basic blocks. Jumps and Calls identify over 50% of the differences. These changes

in basic blocks significantly impact DeepBinDiff’s basic block embedding-based ap-

proach, resulting in a substantial number of unmatched basic blocks (Chapter 9).
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CHAPTER 2

Background

In this section, we first provide a concise overview of binary difference analysis re-

search. Next, we delve into the LLVM compiler optimization process and the origin

and significance of peephole optimization from the compiler’s perspective.

2.1 Binary Difference Analysis Research

The similarities between two pieces of different binary code can reveal underlying

relationships, such as code clones and close malware lineage, even without access to

the source code. As a result, binary diffing’s multifaceted benefits have led to its

widespread adoption in various software security analysis tasks. In recent years, the

field of binary diffing has witnessed significant growth and research interest.

A survey by Haq et al. [33] highlights that over 100 published papers in top com-

puter science venues have explored different aspects of binary diffing. These contribu-

tions encompass multiple disciplines, such as computer security, software engineering,

programming languages, and machine learning. They address a range of problems,

including vulnerability search, malware analysis, patch inspection, plagiarism detec-

tion, and de-anonymizing code authors, employing diverse code representations and

semantic similarity measures.

The foundation of a binary diffing approach lies in defining a semantics-aware

code representation that enables similar programs to exhibit close representations.

Consequently, the representation and comparison of code semantics become crucial

aspects of binary analysis.
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At the syntactic level, most research papers focus on discernible binary code

structures as code representations, including functions, basic blocks, loops, traces,

control flow graphs (CFGs), and call graphs (CGs). The accuracy of detecting these

representations depends on precisely locating their scope within the code.

In contrast, at the semantic level, methods for measuring code representation

semantics are more diverse. They range from computationally expensive yet accurate

approaches to scalable but less robust techniques. Some examples include: Sym-

bolic execution, which represents input-output relationships as formulas and verifies

their equivalence using a theorem prover [22, 25, 47, 48, 49]. Dynamic testing, which

generates concrete inputs automatically to compare output values [13, 16, 50, 51, 52].

Basic block re-optimization, which normalizes syntactically different data-flow slices

to facilitate scalable search [11,53]. Descriptive statistic features, such as the number

of transfer instructions, aim for fast matching of target functions among large-scale

binaries (large-scale executable files) [14,54].

Recent research has also explored the potential of deep learning and neural

networks to learn the relationship between binary code snippets [20, 55, 56, 57]. For

instance, Asm2Vec [20] learns the lexical semantic relationships within the x86/64

instruction set in a function scope. It identifies patterns such as Streaming SIMD Ex-

tensions (SSE) operands being related to SSE registers and the typical co-occurrence

of file-related APIs.

Binary diffing hinges on the effective representation and comparison of code

semantics, with various techniques employed at both the syntactic and semantic lev-

els. By leveraging these techniques, researchers can better understand and identify

similarities or differences between binary code snippets, ultimately improving the

accuracy and efficiency of binary diffing approaches.
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Figure 2.1: LLVM compiler optimizations utilize a sequence of Passes [1, 2] for
code transformations and enhancements. EarlyCSE : identifies and removes repet-
itive subexpressions or operations within a function. SimplifyCFG : streamlines the
program’s Control Flow Graph (CFG) by eliminating redundant control structures,
merging adjacent basic blocks, and removing unreachable code. LoopRotate: by ro-
tating the loop body, it aligns the loop header with the most frequent exit path,
reducing branches during execution, and improving code locality and cache utiliza-
tion. SROA (Scalar Replacement of Aggregates): Enhances performance by breaking
down aggregate data structures like arrays and structures into individual scalar vari-
ables. This promotes efficient memory access and further optimization opportunities
for other LLVM passes, improving execution efficiency, especially in applications with
intricate data structures and memory access patterns.

2.2 Optimization Processes in LLVM

Compiler optimization is an essential process in modern software development, aiming

to enhance the performance of compiled programs and reduce resource consumption,

such as memory usage and power consumption. This process involves a series of

transformations applied to the intermediate representation (IR) of the source code to

improve the quality of the final executable code while preserving the semantics of the

original program. Compiler optimizations impact binary code and binary structures

and make it difficult to define a semantics-aware code representation that effectively

captures program similarities.
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The LLVM compilation toolchain is a popular choice for compiler optimization

due to its modular design, robustness, and support for a wide range of programming

languages and target platforms. Fig. 2.1 shows LLVM provides a rich set of optimiza-

tion passes organized and orchestrated by the Pass Manager, a crucial component in

the LLVM toolchain. The Pass Manager’s primary responsibility is to manage the

scheduling and execution of optimization passes, ensuring that they are applied effi-

ciently and effectively [1, 2]. It considers various factors, such as optimization levels,

target-specific optimizations, and inter-pass dependencies, to determine the most ap-

propriate order and combination of passes for a given input program. Each pass can

be called multiple times, either to optimize the same function multiple times or to

optimize different functions separately in each pass. For instance, Fig. 2.1 illustrates

that the red-highlighted peephole optimization is called multiple times. Given that

peephole optimization operates at the function level, multiple calls may indicate that

the same function is optimized repeatedly or that multiple functions undergo separate

optimizations. Therefore, when analyzing peephole optimization later, it is crucial to

identify them based on functions and analyze multiple times peephole optimizations

separately for different functions.

LLVM optimization passes can be broadly classified into two categories: local

optimizations, which focus on improving individual basic blocks or functions, and

global optimizations, which target the entire program or module. Examples of key

optimization passes include loop unrolling, function inlining, and peephole optimiza-

tion. Local optimizations aim to simplify and streamline code within a basic block

or function by eliminating redundancies, applying algebraic simplifications, and re-

placing inefficient instruction sequences with more efficient alternatives. In contrast,

global optimizations, such as interprocedural analysis and loop optimizations, address
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higher-level code structures and interactions between functions, seeking to optimize

the overall program structure and control flow.

The Pass Manager [2] plays a crucial role in the compilation optimization pro-

cess by overseeing the execution of various compilation passes responsible for analyz-

ing and transforming the program’s IR to generate optimized machine code for the

target architecture. It manages to pass registration, scheduling, and dependencies,

enabling a seamless and efficient compilation pipeline. The Pass Manager ensures

that all essential analysis results are obtained before executing a pass, which is vital

for the effectiveness of a transformation pass that often depends on the availability of

accurate and up-to-date information about the program’s data flow, control flow, and

other properties. By guaranteeing that all necessary analyses are performed before

a transformation passes, the Pass Manager contributes to the generation of highly

optimized code.

Furthermore, the Pass Manager takes care of scheduling and handling depen-

dencies between passes by establishing an order of execution that respects the inter-

dependence of various passes, preventing potential conflicts or redundancies. This

optimized scheduling allows the compilation pipeline to function efficiently, eliminat-

ing wasted resources and time.

In the LLVM compilation toolchain, the Pass Manager serves as the scheduling

driver, enabling the optimization of real-world programs through numerous optimiza-

tion cycles when using the O3 level. This aggressive optimization level applies a wide

range of techniques, such as loop unrolling, function inlining, and dead code elimi-

nation, to significantly improve the performance of the compiled code. For instance,

the bzip2 program underwent 16,167 optimizations during the O3 level, resulting in

a total IR file size of 22.08 GB.
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The LLVM Pass’s strategy is instrumental in evaluating the impact of indi-

vidual peephole optimizations, given the compilation optimization process’s inherent

complexity involving numerous passes, analyses, and transformations. To effectively

manage this complexity, the Pass Manager ensures proper execution, scheduling, and

resource management, thereby optimizing machine code and enhancing performance

and resource utilization in real-world applications through the LLVM compilation

toolchain. In contrast to GCC, which generates a dump file containing final opti-

mizations, this approach allows us to track changes to basic blocks and instructions

within a function at each step of optimization, providing a more logical and detailed

view of the process.

2.2.1 Peephole Optimization

Peephole optimization, first introduced by McKeeman in the early 1960s, is a funda-

mental technique in compiler optimization [40,41,42,43]. It enhances code efficiency

by analyzing and optimizing small instruction sequences, known as “peepholes”. Typ-

ically consisting of 2 to 3 contiguous instructions, peephole optimization does not

significantly increase the compiler’s complexity or slow it down [42]. By examining

a limited window of adjacent instructions, the compiler can eliminate redundant or

inefficient code, thereby improving program performance. Over the years, peephole

optimization has evolved, extending its scope from early assemblers to various code

representations and providing over a thousand optimizations [58,59].

Peephole optimization is a critical technique in the late stages of compilation,

aiming to achieve optimal instruction selection. It employs thousands of rules to

enhance code quality, eliminate redundancies, and normalize code. This technique

excels at identifying and replacing common code patterns with more efficient alterna-

tives like constant folding, strength reduction, and instruction substitution. Applying

24



cmp eax, 0; 
cmovnz ebx, 1; 
mov ebx, ebx ;

(a) Branch-free instruction

No optimization No optimization
Peephole 
optimization

(b) Conditional moves

cmp eax, ebx;
jne not_equal;

mov ecx, 0; 
jmp continue; 

not_equal;
mov ecx, 1;
continue:

if (eax != ebx) {
    ecx = 1;
} else {
    ecx = 0;
}

cmp eax, ebx;
setne cl; 
mov ecx, ecx;

if (eax != 0) {
    ebx = 1;
} else {
    ebx = 0;
} Peephole 

optimization

cmp eax, 0;
jne not_zero;

mov ebx, 0; 
jmp continue; not_zero;

mov ebx, 1;
continue:

Figure 2.2: Peephole Optimizations.

these optimizations at the peephole level brings notable improvements in program ex-

ecution time, memory usage, and code quality. Moreover, peephole optimization is

crucial for generating efficient code across different platforms by targeting specific

instructions or patterns that exhibit suboptimal behavior. It tailors the optimiza-

tion process to leverage the unique characteristics and capabilities of the underlying

hardware. By significantly enhancing performance and reducing code size, peephole

optimization plays a vital role in producing efficient and streamlined executable files.

Its impact on the binary is reflected in code transformations at the intraprocedural

level, including the impact of instruction sequences, basic blocks, and control flow

edges.

Peephole optimization can lead to the complete modification of basic blocks,

posing challenges to mainstream binary difference comparison methods, particularly

those using basic blocks as code representations in their comparison approaches.

One example of peephole optimization is the use of branch-free instructions

to eliminate conditional branches in certain scenarios, resulting in potentially more
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efficient code. In Fig. 2.2 (a), the setne instruction is an x86 assembly instruction

that sets a byte-sized register to 1 if the previous comparison resulted in a “not equal”

condition, and sets it to 0 otherwise. By using the setne instruction, it can avoid

branching and directly set the value of a register based on the result of a comparison.

This can lead to improved code execution and reduced branch mispredictions.

Another example is the use of conditional moves, as shown in Fig. 2.2 (b). The

cmovnz instruction is an x86 assembly instruction that performs a conditional move

based on the “not zero” condition. It copies the value from one register to another if

the zero flag is not set, avoiding the need for explicit branching. Instead of branching

based on a condition, the conditional move allows the value to be directly moved based

on the condition, reducing pipeline stalls and improving performance. By employing

such techniques, peephole optimization can significantly enhance the efficiency of the

generated code.
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CHAPTER 3

Motivation

In this chapter, we present the necessity of revisiting the impact of compiler opti-

mization on binary code, show how significant peephole optimization transforms basic

blocks with two examples, and discuss the current limitations of binary comparison

tools in handling peephole optimizations.

3.1 The Imperative to Re-evaluate the Consequences

of Compiler Optimization on Binary Code

In the field of binary comparison, a multitude of tools assert their adaptability to

various compiler optimization configurations and have the capacity to deliver sat-

isfactory results in the analysis of binary code across a wide range of optimization

levels. As such, one anticipates that the extensive research conducted in this domain

would effectively address crucial research questions regarding the selection of appro-

priate code representations and corresponding comparison methodologies that can

efficiently discern the syntactic disparities emerging from compiler optimization.

Contrary to these expectations, recent investigations [36, 37] have raised con-

cerns, insinuating that the impact of compiler optimization on binary code discrep-

ancies has not been entirely addressed. Many binary analysis techniques struggle

to cope with the changes introduced by compiler optimizations. Research has con-

firmed that function inlining leads to the merging of multiple functions, which hinders

the comparison methods from accurately aligning function matches [37]. Similarly,

peephole optimization replaces instruction sequences within basic blocks, resulting in
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comparison methods being unable to correspond to the fundamental matchable pairs,

ultimately affecting the precision of the final comparison results. Consequently, fur-

ther systematic compiler optimizations (such as peephole optimization) are deemed

necessary.

3.2 Peephole Optimization Modifies Binary Code at

Intra-procedural Level

As compiler technology continues to progress, the optimization capabilities of compil-

ers are becoming increasingly powerful. For example, LLVM’s peephole optimizations

have expanded to cover more than a thousand distinct types. Mainstream compilers

enhance code performance and reduce binary size through peephole optimizations in-

volving proprietary instructions. The impact of peephole optimizations on code is an

intriguing topic, and we will explore their influence through two illustrative examples.

Fig. 3.1 and Fig. 3.2 present two motivating examples of peephole optimiza-

tion: the optimized versions exhibit shorter instruction sequences while also show-

casing significant performance improvements. Notably, the optimized code shown in

Fig. 3.2 replaces the complex implementation of “counting the number of bits set

to 1” with a specific instruction, popcnt, which was introduced since Intel Nehalem

micro-architecture. As a result, the original CFG, which involves several basic blocks

and a loop, is optimized as a single basic block consisting of only two instructions.

Fig. 3.1 and Fig. 3.2 also reflect how peephole optimization modifies binary code at

the intra-procedural level in two major ways. First, as shown in Fig. 3.1, the effect

happens within a basic block: it rewrites the original basic block with a shorter in-

struction sequence. Second, as shown in Fig. 3.2, the effect spreads across multiple

basic blocks, causing changes to the control flow graph.
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Fig. 3.1 visually illustrates the application of peephole optimization by main-

stream compilers to improve the rotate-left algorithm through the implementation

of the ROL (Rotate Left) instruction. The ROL instruction efficiently executes a

left-shift operation while preserving the leftmost bit by relocating it to the right.

This optimization replaces the original sequence of instructions with a specialized

one, leading to substantial improvements in program performance and a marked re-

duction in program size. Instead of executing numerous assembly instructions, only a

single ROL instruction is needed. Moreover, related instructions such as ROR (rotate

right), RCL (rotate through carry left), and RCR (rotate through carry right) can

significantly boost performance and reduce code size. Concurrently, this peephole

optimization entirely alters the basic block within a function, a scenario known as

“1-to-1” modification at the basic block level.

Fig. 3.2 showcases the POPCNT function, a bit-counting operation that calcu-

lates the number of set bits (bits with a value of 1) in a given input. The unoptimized

instruction sequence is depicted on the left, while the POPCNT instruction, applied

following peephole optimization, operates on integer operands and stores the count of

set bits in a destination register on the right. This optimization streamlines code size

and improves runtime performance. Simultaneously, these optimizations also consol-

idate multiple basic blocks into a single block within a function, a scenario referred

to as “m-to-1” modification at the basic block level.

Peephole optimizations play a crucial role in significantly modifying the instruc-

tion sequences within basic blocks, leading to the effective transformation of a basic

block’s structure. Furthermore, these optimizations also can result in the merging of

multiple unoptimized basic blocks into a single, newly optimized basic block. Con-

sequently, this process impacts the code representations of basic blocks in binary

analysis methods, causing comparison methods to face challenges when dealing with
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unsigned RotateLeft(unsigned value, int offset){

    return (value << offset) | (value >> (32 - offset));

}

RotateLeft(unsigned int, int):

  push rbp

  mov rbp, rsp 

  mov dword ptr [rbp - 4], edi

  mov dword ptr [rbp - 8], esi

  mov eax, dword ptr [rbp - 4]

  mov ecx, dword ptr [rbp - 8]

  shl eax, cl

  mov edx, dword ptr [rbp - 4]

  mov ecx, 32

  sub ecx, dword ptr [rbp - 8]

  shr edx, cl

  mov ecx, edx 

  or eax, ecx 

  pop rbp

  ret

RotateLeft(unsigned int, int):

  mov ecx, esi 

  mov eax, edi 

  rol eax, cl

  ret

No optimization Peephole optimization

Figure 3.1: Peephole optimization with ROL instruction. The ROL instruction is uti-
lized to implement the rotate left algorithm. Peephole optimization alters instruction
sequences within basic blocks.

the altered “1-to-1” in Fig. 3.1 and “m-to-1” in Fig. 3.2 basic block matching sce-

narios. In summary, a basic block may undergo an extensive transformation into a

new basic block due to peephole optimizations. This change can entail the removal or

replacement of numerous instruction sequences, or even the amalgamation of several

basic blocks into a new, optimized basic block.
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int PopCnt(unsigned long x){
    int v = 0;
    while(x !=0){
        x &= x - 1;
        v++;
    } return v; 
}

  popcnt rax, rdi

  ret

No optimization Peephole optimization

  push rbp
  mov rbp, rsp
  mov qword ptr [rbp - 8], rdi
  mov dword ptr [rbp - 12], 0

  mov rax, qword ptr [rbp - 8]
  sub rax, 1
  and rax, qword ptr [rbp - 8]
  mov qword ptr [rbp - 8], rax
  mov eax, dword ptr [rbp - 12]
  add eax, 1
  mov dword ptr [rbp - 12], eax
  jmp .LBB0_1

.LBB0_3:  
  mov eax, dword ptr [rbp - 12]
  pop rbp
  ret

.LBB0_1: 
  cmp qword ptr [rbp - 8], 0
  je .LBB0_3

Figure 3.2: Peephole optimization with POPCNT instruction. The POPCNT in-
struction is employed to count the number of 1 bits in a given input. Peephole
optimizations alter instruction sequences and basic blocks within functions.

3.3 Current Limitations of Binary Comparison Tools

of Handling Peephole Optimizations

The crux of a binary diffing approach hinges on defining a semantics-aware code

representation that allows similar programs to exhibit closely related representations.

At the syntactic level, the majority of research papers concentrate on discernible

binary code structures for code representations, encompassing functions, basic blocks,

loops, traces, control flow graphs (CFGs), and call graphs (CGs). The precision in

detecting these representations relies on accurately identifying their scope within the
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code. At the semantics level, symbolic execution involves expressing the input-output

relationships of basic blocks as formulas and employing theorem provers to verify their

equivalence [22,25,47,48,49].

3.3.1 Syntactic-Level Limitations

Binary comparison methods rely on examining the Control Flow Graph (CFG) and

following the basic blocks of each function in order to compare the binary code of

different executables. Specifically, the binary diffing tool drills down to the same or

similar function in different binary versions to compare pairs of basic blocks in order to

determine their similarities. Basic blocks are sequences of instructions that execute

sequentially and have a single entry and a single exit point. Binary comparison

tools use the comparison of basic blocks to determine whether the functions have the

same functionality or not. However, when basic blocks are optimized using peephole

optimization techniques, binary comparison tools may not be able to compare them

effectively. These optimizations can alter the instruction sequence of basic blocks,

making it difficult for binary comparison tools to compare them at the syntactic

level. As a result, most comparison tools can only perform heuristic comparisons

through statistical instruction rules combined with control flow and other methods.

3.3.2 Semantic-Level Limitations

From a semantic standpoint, binary diffing tools can assess the semantics of basic

blocks by utilizing resource-intensive symbolic execution techniques to address the

“1-to-1” basic block transformation cases. Symbolic execution involves expressing the

input-output relationships of basic blocks as formulas and employing theorem provers

to verify their equivalence [22, 25, 47, 48, 49]. However, this approach is limited in
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addressing “m-to-1” situations, as it focuses exclusively on the internals of individual

basic blocks and does not consider modifications involving multiple basic blocks.

Furthermore, implementing symbolic execution in large-scale programs presents

a significant challenge due to the considerable computational overhead associated with

this method. Consequently, alternative strategies must be explored to effectively

manage both “1-to-1” and “m-to-1” basic block transformation scenarios in binary

analysis.

It is important to be aware of the limitations of these methods in order to make

more informed analyses of the basic blocks of different binaries and take appropriate

actions to improve the accuracy of the analysis results. These tools can still be

valuable, but they should be used in conjunction with other analysis methods to

increase the accuracy of their findings.

33



CHAPTER 4

Related Work

In recent years, compiler optimization has garnered attention among researchers,

particularly concerning its impact on binary differences. Notably, recent publications

in the fields of software engineering and programming languages have emphasized the

importance of understanding the various factors contributing to binary disparities

during the compilation process [33,35].

4.1 Compiler Optimization as the Main Factor Caus-

ing Syntactic Differences

A comprehensive study conducted by Kim et al. [35] systematically investigates the

factors influencing binary disparities during the compilation process, while simulta-

neously focusing on the development of cross-architecture Binary Code Similarity

Analysis (BCSA). The factors under consideration encompass the type and version

of the compiler, the target architecture of the executable file, and the level of com-

piler optimization, among others. Through rigorous experimentation, the findings

of this study reveal that the target architecture may not be the predominant factor

driving BCSA. Instead, compiler optimization emerges as the most crucial element

in determining the relative disparities between semantic features within the binary

code.
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4.2 Study Analyzing the Impact of All Available

Compiler Optimization Options on Binaries

In the programming languages community, a study focuses on studying the effects of

compiler optimization on binary code differences and investigating the latent capa-

bility of optimization options [36]. The research is motivated by the fact that many

performance-critical applications use non-default optimization settings, and adver-

saries like software plagiarists or malware developers might not restrict themselves

to default -Ox settings. The authors developed an auto-tuning platform called Bin-

Tuner [36], which uses a genetic algorithm to guide optimization space exploration

and maximize binary code differences.

The key step in BinTuner is to design a fitness function that evaluates compi-

lation results and steers the search process toward optimal solutions. The authors

use normalized compression distance (NCD) as a fitness function to measure binary

code structural differences. They tested BinTuner on various benchmarks and found

that it can find custom optimization sequences that outperform default settings in all

cases. Comparative evaluations with prominent binary diffing tools indicate a signif-

icant decrease in their accuracy when applied to the tuned binary code generated by

BinTuner. The results highlight a new potential threat: cybercriminals can use it-

erative compilation to automatically generate numerous metamorphic samples. This

study aims to inspire the research community to redesign resilience evaluations for

binary diffing approaches and consider the impact of compiler optimization on binary

code differences.

This study discusses the effects of compiler optimization on syntactic binary

code representations, which is crucial for designing robust binary diffing tools. Com-
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piler optimization algorithms can break the integrity of common code representations

like binary functions, basic blocks, and control flow graphs.

Function scope is mainly affected by inter-procedural optimizations like function

inlining and tail call optimization. Function inlining replaces function call instructions

with the actual code of the callee function, while tail call optimization switches to a

jump instruction instead of using a traditional call instruction. Both optimizations

complicate function recognition and can mislead function matchings in binary diffing

tools.

Basic block identification is simpler than recovering binary function scope and

parameters. However, intra-procedural optimizations like loop unrolling, compound

conditionals, and basic-block merging tend to produce branchless code. This can

merge several basic blocks into one, violating the assumptions of basic-block-centric

comparison models and requiring heavyweight inter-basic-block control flow analysis.

4.3 Study on the Effect of Function Inlining Opti-

mization on Binaries

Moreover, the majority of binary function similarity approaches tend to disregard the

influence of function inlining optimization, which involves integrating callee functions

into the caller’s body. In the domain of software engineering, Jia et al.’s investiga-

tion [37] the impact of function inlining on binary similarity analysis for the first time.

The authors construct four datasets and propose an automatic identification method

to analyze function inlining, which is found to be present in 36%-70% of binary func-

tions under high optimization. This mismatch between the actual function inlining

and the “1-to-1” mapping assumption in most binary code similarity analyses results

in a 30% drop in code search performance and a 40% drop in vulnerability detection
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performance. Moreover, intrinsic functions are often ignored in open-source software

reuse detection and patch presence testing.

Over 90% of development organizations rely on open-source components, but

their inappropriate use can lead to legal and security risks. Binary code similarity

analysis aims to match query binary functions with target functions. However, func-

tion inlining complicates this process, making it a “1-to-n” or “n-vs-n” problem rather

than a simple 1-to-1 mapping. This challenge has not been systematically studied in

previous research.

Recent studies have raised concerns about the accuracy of binary diffing tools

in detecting syntactic differences due to compiler optimization. Therefore, ongoing

research is necessary to enhance our understanding of how compiler optimization

influences binary code discrepancies.
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CHAPTER 5

Investigation on How Peephole Optimizations Affect Binary Diffing

Despite the progress achieved in binary diffing, challenges remain due to the inher-

ently complex and low-level nature of binary code. As a result, identifying similari-

ties or differences among programs is far from straightforward, calling for continued

research and innovation in the development of code representations and similarity

metrics [7, 9]. In this section, we focus on what manner peephole optimization influ-

ences the syntactic disparities in binary code. Acquiring a profound comprehension

of these ramifications is essential for devising a resilient binary diffing instrument.

Our investigation proceeds in two main parts. Firstly, we conducted a meticulous

examination of the prevalent characteristics and patterns in peephole optimization

and proposed a classification designed to impact binary differences through peephole

optimization. Subsequently, we explain two examples of peephole optimization that

encompass distinct types.

5.1 Peephole Optimizations Optimizing Binary Code

at Intra-procedural Level

The inquiry commences by conducting a comprehensive evaluation of the inherent

attributes and regularities pertaining to the realm of peephole optimization. This

localized optimization approach refines code through the meticulous examination of

minute segments within a program, commonly referred to as “peepholes”. We devise

a classification scheme that encompasses the vast array of peephole optimizations

relevant to binary code discrepancies. This taxonomical framework is crucial for
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clarifying the influence of optimization processes on basic block code representations,

thus facilitating the progression of more proficient binary diffing methodologies to

detect and address intraprocedural variances in binary code.

Peephole optimizations comprise techniques such as constant folding, algebraic

simplification, strength reduction, dead code, and common subexpression elimination,

along with instruction replacement that leverages hardware characteristics. These

fundamental peephole optimizations ultimately result in instruction replacements

within binary basic blocks, necessitating further investigation into the ramifications of

these substitutions. This entails not only the substitution, removal, and repositioning

of instructions within a basic block but also the merging of multiple basic blocks.

To examine the influence of peephole optimization on binary discrepancies,

we consider its core optimization principle, which involves the replacement of the

instruction sequence within a basic block or the merging of multiple basic blocks.

Consequently, our attention is centered on the code representation wherein the basic

block serves as the comparative unit. This encompasses the resilience of numerous

comparison algorithms exemplified by basic block code representations.

5.1.1 Effect Within a Basic Block

Accurately identifying code representation at the block level is vital for effective

comparisons in many binary differencing methods, as it allows for fine-grained analysis

of code similarities between basic blocks [33]. However, this assumption becomes

less reliable in real-world scenarios involving peephole optimization. For instance,

peephole optimization transforms the original basic block by replacing instruction

sequences, as illustrated in Fig. 5.2 (a), where the rol instruction optimizes the

rotate-left algorithm. This optimization significantly enhances program performance
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Non-optimized Function

Peephole-optimized Basic Block

Focal Basic Block

1-to-1 matching

Peephole optimized Function

(a) Replace Instructions (b) Merge Basic Blocks

m-to-n matching

(c) Reorder Basic Blocks

… … ……

m-to-n matching

…

…

Basic Block

… 0XOWLSOH�Basic Blocks

Figure 5.1: The illustration elucidates the implications of the peephole optimization
process on a basic block and its subsequent influence on the control flow graph. As
evidenced in (a), the effect manifests within a basic block, resulting in a modification
of the original basic block by shortening its instruction sequence. As visible in (b)
and (c), the effect spreads across multiple basic blocks, thus causing changes to the
control flow graph.

and considerably reduces program size. We refer to this type of peephole optimization

as intra-basic block peephole optimization.

As a result, industry-standard binary comparison tools (such as BinDiff [60,61])

produce inaccurate results when comparing peephole-optimized basic blocks with

their original counterparts, as the optimization fundamentally alters the basic block,

rendering them unidentical. Peephole optimization can also replace entirely different

instructions, substantially modifying the instructions within the basic block. Con-

sequently, it affects binary comparison methods that rely on instruction frequency

statistics and opcodes within basic blocks. Although methods like BinHunt [62] can

utilize resource-intensive symbolic execution to address peephole optimization within

basic blocks and compare basic block input-output relations through accurate seman-

tic modeling, this approach is impractical for large-scale binary search scenarios due

to the overhead of symbolic execution. Therefore, the basic-block-centric compari-

son model assumption is compromised by the presence of peephole-optimized code
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int PopCnt(unsigned long x){
    int v = 0;
    while(x !=0){
        x &= x - 1;
        v++;
    } return v; 
}

2 instructions

No optimization Peephole optimization

unsigned RotateLeft(unsigned value, int offset){

    return (value << offset) | (value >> (32 - offset));

}

15 instructions

4 instructions

(a) ROL instruction changed intra-basic block.

No optimization Peephole optimization

(b) POPCNT instruction merged inter-basic blocks.

4 instructions

8 instructions
4 instructions

3 instructions
Source Code

No Optimization Code

Code after Peephole Optimization

Figure 5.2: The technique of peephole optimization has been found to exert a signif-
icant impact on various categories of basic blocks.

within basic blocks. These assumptions are based on a simplistic “1-to-1” match-

ing paradigm, where basic blocks extracted from two distinct binary files undergo

pairwise comparison [16, 22, 47, 55, 62], or multiple one-to-one cases form an “n-to-

n” matching scenario [63], in which several basic blocks from the same function are

optimized during the same peephole pass, leading to modifications in multiple basic

blocks.

5.1.2 Effect Across Multiple Basic Blocks

Peephole optimization not only involves modifying the instruction sequence within

basic blocks, but also encompasses various operations such as deletion or merging

of multiple basic blocks, and modifications to the control flow graph between basic

blocks. An example of this is the popcnt optimization illustrated in Fig. 5.2 (b). The

popcnt function is a bit-counting operation that counts the number of set bits (bits

41



with a value of “1”) in a given input. In Fig. 5.2 (b), the unoptimized instruction

sequence is shown on the left, while the peephole-optimized instruction sequence on

the right utilizes the popcnt instruction directly to operate on integer operands and

stores the count of set bits in a destination register. This optimization reduces code

size and improves runtime performance. Notably, this optimization and modification

involve multiple basic blocks. We refer to this type of peephole optimization as inter-

basic block peephole optimization.

When applying this type of peephole optimization technique, modifications to

basic blocks involve multiple blocks, leading to a mismatch between un-optimized and

optimized basic block pairs. Consequently, heuristic matching based on basic block

pairs, such as BinDiff, may fail, reducing the accuracy of the final result. Additionally,

methods like BinHunt [62] focus solely on symbolic execution analysis for individual

basic blocks, without taking into account simultaneous changes spanning multiple

basic blocks within a function. In other words, when the original m basic blocks are

merged into n new basic blocks, these methods would fail to match in the “m-to-n”

scenarios.

Furthermore, optimization patterns for complex “m-to-n” matching scenarios

involving multiple basic blocks may impact AI-based binary comparison methods

that rely on basic block embeddings. This is because the embedded vector values

corresponding to basic blocks have been substantially modified, thereby undermining

the assumption of a basic-block-embedding comparison model.

Although peephole optimization can improve the performance and efficiency of

code, its implementation of changed basic blocks can compromise binary code analysis

and comparison. To address the issue of modifications to multiple basic blocks, it is

necessary to conduct an in-depth inter-block control flow analysis. This involves

analyzing the control flow graph to identify the relationships between basic blocks
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and their respective instructions. By understanding the inter-block control flow, it is

possible to match pre-optimized and optimized basic block pairs accurately, enabling

binary matching algorithms to produce more precise results.

5.2 Answer to RQ1

Peephole optimization affects binary code at the intra-procedural level in two dis-

tinct ways. Firstly, it modifies the original basic block by shortening its instruction

sequence, thus resulting in an effect that is confined within the block. Secondly, the

effect spreads across multiple basic blocks, ultimately altering the control flow graph.

This introduces complications in the pair-wise comparison of basic blocks and poses

a challenge to binary diffing tools that rely heavily on such comparisons as their fun-

damental framework. In Chapter 8, we will investigate the extent to which peephole

optimization occurs throughout the entire optimization process.
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CHAPTER 6

Approach

It is crucial to highlight that LLVM does not allow users to selectively disable or

enable peephole optimizations through specific options such as (-fno-peephole or -

disable-instcombine). Consequently, one cannot enable peephole optimizations in an

unoptimized setting (O0) or activate all default optimizations (O3) while solely dis-

abling peephole optimizations and retaining other optimizations. In essence, users are

unable to compile distinct binary codes containing only peephole optimizations or no

peephole optimizations by setting the disabling or enabling of peephole optimizations

during compilation. Thus, assessing the impact of peephole optimizations on binary

code remains an open technical challenge.

Once compiled, the source code undergoes the cumulative effects of all opti-

mizations, resulting in the final binary code. This makes it impossible to isolate the

influence of a single optimization, such as peephole optimization, at the binary level.

Thus, our focus lies on the compilation’s optimization process, analyzing the inter-

mediate representation (IR) to extract the pass-affected peephole optimization from

the compilation process.

The peephole optimization’s scope is function-based. To accurately analyze the

IR comparison of a specific function before and after optimization, we employ the

LLVM translation verification tool. This ensures that the IR semantics of the two

function versions being compared are identical, and peephole optimizations solely

modify the function’s syntax. We utilize Alive2 [45] to capture each optimization’s

code translation process in the optimization pipeline and extract the intermediate
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code representation before and after peephole optimization for each function. This

customized tool allows us to confirm the correctness of each compared function pair

(before and after peephole optimization) and effectively isolate and evaluate the spe-

cific effects of peephole optimization separately from the overall optimization process.

6.1 Overview

Our workflow is illustrated in Fig. 6.1. Initially, we capture a snapshot of the peephole

optimization pipeline during the optimization process, preserving the intermediate

representation (IR) before and after optimization. Subsequently, we perform an IR

comparison of the peephole optimization pipeline (blue for pre-peephole optimization

IR and red for post-peephole optimization IR) and confirm that the compared pair

shares the same semantics. Lastly, we conduct syntax difference analysis on the two

IR versions with identical semantics but different syntax to identify the modifications

made to the basic blocks and instructions within the function under the current

peephole optimization pass.

It should be noted that in the optimization process, the optimization manager

may call each optimization multiple times, and the peephole optimization technique

may optimize the same function multiple times. Consequently, the optimization pro-

cess involves the application of peephole optimization multiple times, either for the

same function or different functions, and these optimizations are intermixed through-

out the process.

Given that peephole optimization is performed at the function level, multiple

calls may indicate repeated optimization of the same function or separate optimiza-

tions of multiple functions. For example, Figure 2.1 illustrates multiple occurrences of

peephole optimization, which may be optimizations of different functions or multiple

optimizations of the same function. Therefore, it is crucial to identify and analyze
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Figure 6.1: Workflow for analyzing peephole optimizations.

multiple peephole optimizations separately for different functions based on their func-

tionality when analyzing peephole optimization.

6.2 Challenge: Difficult to Isolate the Effect of Peep-

hole Optimizations at Binary Level

Given the complexity of real-world source programs, compiler optimization necessi-

tates the execution of numerous optimization iterations, which can range from thou-

sands to tens of thousands. Each of these iterations is referred to as a pass [1, 2].

Operating sequentially, these passes target all functions within the program to ensure

a comprehensive optimization process.
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Figure 6.2: In the context of compiler optimization, the process is characterized by
a complex, iterative nature. Each function within the source program undergoes
multiple, distinct optimizations, and may repeatedly invoke the same optimization
following others, in pursuit of any possible opportunity to enhance the optimized IR,
such as the peephole optimization (implemented by LLVM’s InstCombine pass [3,4])
called frequently during optimization.

The initial phase of this intricate procedure involves transforming the source

code into an intermediate representation (IR). This IR serves as a platform-independent,

low-level format that facilitates further optimization. Crucially, this transformation

bridges the gap between the high-level source code and the target machine code,

promoting a more efficient and streamlined optimization process. Subsequent to the

generation of the unoptimized IR, optimization passes are iteratively applied. These

passes encompass a diverse array of techniques, including constant propagation, dead

code elimination, and loop invariant code motion, among others. The primary objec-

tive of these optimizations is to enhance the efficiency and performance of the target

program while preserving its original semantics.

From the perspective of compiler optimization, the optimization process is akin

to an assembly line team, with each member stationed along the line to perform con-
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secutive optimizations on the parsing code. The code is then handed over to the next

member for further processing. After several iterations, the team’s work concludes

when the code has been optimized to the greatest extent possible, and the optimized

IR is delivered to the linker. For example, the peephole optimization (implemented

by the InstCombine pass in LLVM) is repeatedly called by the optimization manager

in Fig. 6.2 with a gray highlighted background. Through numerous iterations of the

Peephole optimization technique, a particular function is subject to continuous re-

finement to achieve the overarching objectives of minimizing program size, conserving

resource utilization, and enhancing overall execution performance.

Ultimately, the constructed binary executable file loses the specific details of

each optimization process. As a result, all optimization outcomes are combined into

a single binary executable file. Consequently, attempting to identify the effect of a

specific optimization, such as peephole optimization, solely from the binary level is

nearly unfeasible.

6.2.1 Solution

To address this challenge, we focus on the changes in the Intermediate Representation

(IR) during compilation, rather than on the impact of final peephole optimizations

on the binary code. Fig. 6.2 illustrates how we accomplish this by concentrating on

the InstCombine Pass [3, 4] in the IR during compilation.

In the realm of optimization analysis, examining the alterations introduced

by peephole optimization to the IR can yield invaluable insights into its impact on

the overall optimization process. This approach enables us to isolate the effects of

peephole optimization from other optimizations and gain a deeper understanding of

its contributions to the optimization process.
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Furthermore, quantifying the influence of peephole optimization on the program

being optimized can be achieved by counting and analyzing these changes. Scruti-

nizing the changes induced by peephole optimization to the IR and quantifying its

influence on the program being optimized can provide valuable insights into the over-

all optimization process’s contributions. While not a perfect solution, this method

offers a beneficial starting point for assessing peephole optimization’s impact and

guiding subsequent optimization endeavors.

6.3 Challenge: How to Isolate the Effects of Peep-

hole Optimization from Complex and Intertwined

Optimization Processes

In our research, we delve into the effects of peephole optimization on Intermediate

Representation (IR) by examining the influence of peephole optimization on each

function during the LLVM optimization process. However, even when analyzing the

IR optimization process, certain technical challenges persist.

Specifically, peephole optimization’s scope of impact encompasses the function

level. Consequently, we endeavor to identify a suitable approach that enables sequen-

tial analysis of all functions within the program, commencing with a single function

and extending to all others. The goal of this method is to capture the multiple code

modifications elicited by peephole optimization on each function, thereby offering a

comprehensive understanding of its effects on the optimization process.
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6.3.1 Multiple Modifications in the Same Function

Induced by Peephole Optimization During the

Optimization Processes

We have observed that peephole optimization often applies multiple modifications

to the same function during the optimization process. This iterative procedure is

typically carried out in several stages, with each stage focusing on specific aspects

of the code being optimized. As depicted in Fig. 6.3, the peephole optimization

process involves multiple code modifications for a single function. The highlighted

regions in red, green, and blue represent different functions that undergo optimization.

For instance, the function highlighted in red experiences modifications by peephole

optimization at four distinct locations, namely (a), (b), (c), and (d). Similarly, the

function highlighted in green undergoes modifications by peephole optimization at

positions (e) and (f).

After the function has been subjected to other optimizations, such as loop

optimization, the peephole pass is invoked once again to assess the potential for

further peephole optimization. This indicates that peephole optimization involves

numerous code modifications for a single function throughout the entire optimization

process.

Peephole optimization implements repeated local instruction sequence mod-

ifications during the optimization process. These modifications contribute to the

optimization of the function in the process. Consequently, it is crucial to devise

an appropriate method for tracking each function and recording the modifications

applied by peephole optimization during each iteration.
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Figure 6.3: The optimization of multiple functions is interleaved and mixed together
throughout the optimization process. EarlyCSE : identifies and removes repetitive
subexpressions or operations within a function. SimplifyCFG : streamlines the pro-
gram’s Control Flow Graph (CFG) by eliminating redundant control structures, merg-
ing adjacent basic blocks, and removing unreachable code. LoopRotate: by rotating
the loop body, it aligns the loop header with the most frequent exit path, reducing
branches during execution, and improving code locality and cache utilization. SROA
(Scalar Replacement of Aggregates): Enhances performance by breaking down aggre-
gate data structures like arrays and structures into individual scalar variables. This
promotes efficient memory access and further optimization opportunities for other
LLVM passes, improving execution efficiency, especially in applications with intri-
cate data structures and memory access patterns. LoopSimplify pass is responsible
for canonicalizing loop structures, transforming them into a more manageable and
predictable form for further analysis and optimization. LICM (Loop Invariant Code
Motion) Pass aims to optimize performance by moving loop-invariant code out of the
loop body, reducing redundant computations.

6.3.2 Interwoven Optimization Processes Across Dis-

tinct Functions

We have observed that peephole optimization typically interweaves the optimization

processes of different functions. The iterative optimization of various functions is

often blended, with each phase concentrating on specific aspects of the code being

optimized.

As illustrated in Fig. 6.3, the peephole optimization process encompasses mul-

tiple code modifications for numerous functions, intertwined in their execution. The
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regions highlighted in red, green, and blue represent distinct functions that undergo

optimization. For instance, during this optimization process, the blue function is ini-

tially optimized through the identification and removal of repetitive subexpressions

or operations within the function. Subsequently, the red function is optimized by

eliminating redundant control structures, performing Scalar Replacement of Aggre-

gates, and applying peephole optimization. Then, the green function is optimized

and continues like this until the end.

The optimization passes for different functions in peephole optimization are in-

terlaced, resembling parallel processing pipelines. They do not influence one another

while concurrently optimizing various aspects of distinct functions. These modifica-

tions collectively contribute to the overall success of peephole optimization. Therefore,

to find out the peephole optimization specific to each function from the intertwined

optimization passes, it is crucial to devise an appropriate method to track each func-

tion and record the modifications applied by the peephole optimization during each

iteration.

6.3.3 Interaction between Peephole Optimizations

and Preceding Interleaved Optimizations in

Optimization Processes

In our study, we aim to identify peephole optimizations for each function within inter-

leaved passes. One approach is to track each function and record any modifications

made by peephole optimizations throughout the optimization process. However, ad-

vanced optimizations like function inlining can disrupt this tracking process by merg-
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ing multiple functions, while loop optimizations can alter the order and number of

basic blocks, leading to the disappearance of functions or blocks during tracking.

The intricate relationship between optimizations demonstrates a complex inter-

dependence and interconnectedness that must be carefully considered in the compiler

optimization analysis process. Peephole optimization serves as a step within the opti-

mization pipeline, relying on the outcomes of previous optimizations and influencing

subsequent optimizations in turn. Therefore, it is crucial to account for the impact

of various optimizations on the overall optimization process.

As shown in Fig 6.3, the red highlighted function undergoes peephole optimiza-

tion at position (d). However, prior to this step, the function has undergone Loop

Invariant Code Motion optimization, followed by rotating the loop body to align the

loop header with the most frequent exit path. These optimizations improve code lo-

cality and enhance cache utilization. These optimizations may lead to changes in the

loop structure within the function, resulting in alterations to the number and order

of basic blocks. These changes create more opportunities for peephole optimization,

but may also cause the instruction sequence previously optimized by peephole opti-

mization at position (c) to be removed or replaced.

If we were to systematically track the entire optimization process, document-

ing every iteration of optimization for each function from start to finish, and then

extract the corresponding effects of peephole optimization, we would encounter two

problems. Firstly, other optimizations that merge functions and basic blocks may

cause truncation of optimization records for specific functions during the tracking

process. This may result in incomplete information about the optimization paths, as

short tracking of optimization paths may not capture the complete picture. Secondly,

we must deal with the cost of analyzing a vast number of optimization processes for

practical programs that may require more than ten thousand optimization steps. For
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instance, the bzip2.c program has over 16,000 passes. If we consider four optimization

levels (O1, Os, O2, and O3), we would need to track a total of 4 * 16,000 passes.

This would require a significant amount of time and resources, and the resulting data

may be incomplete.

In conclusion, while tracking and documenting all changes made by optimiza-

tions in the pipeline may provide a comprehensive view of the process, it comes with

significant costs and may be obstructed by the merging of functions during other

optimizations. As a result, it may be difficult to obtain a clear understanding of the

impact of peephole optimization.

6.3.4 Our Solution

In fact, a more targeted approach to analyzing the impact of optimizations in the

optimization process may be more effective than tracking and documenting all opti-

mizations. One approach is to focus specifically on the peephole optimization pass,

treating each peephole optimization pass as a separate optimization rather than con-

tinuously tracking all steps of peephole optimization for a given function. We can

analyze each peephole pass separately, comparing the IR before and after optimiza-

tion at the function level (since the scope of peephole optimization is at the function

level), and examining the impact of each peephole pass on the basic blocks within the

function.

In our study, for example, we do not track all optimized passes for the red, green,

and blue functions in Fig. 6.3. Instead, we will analyze the specific impact of each

peephole optimization on different functions individually. This involves separately

analyzing the positions (a), (b), (c), and (d) in the function marked in red 4 times,

and recording the influence of each peephole optimization in this pass on the basic

block of the function. Finally, we will add the results of the 4 times together and
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obtain an average contribution rate to the impact of peephole optimization on the

current program. Although this method is not perfect, it can help us evaluate the

utilization of peephole optimization and introduce complications in the basic block

comparison methods when the overhead is acceptable.

By counting the impact of each peephole optimization pass on a specific func-

tion and adding up all the impacts of peephole optimization for that function, we

can obtain statistical results on the specific function’s impact, including the peephole

optimization’s final impact on all functions in the program and its average contri-

bution rate at different optimization levels. This method of analyzing the impact of

peephole optimization by separately analyzing each peephole pass, then summing up

and averaging the results, can provide a clear understanding of the contribution of

peephole optimization as a local optimization in the entire optimization process.
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CHAPTER 7

Experiments and Datasets

In this chapter, we present a thorough overview of the experimental design, setup,

and data sets utilized in our study. This comprehensive account ensures that both

distinct experiments are clearly and effectively conveyed.

7.1 Experimental Design

In our research, we investigate the impact of peephole optimization on binary code

through two distinct experiments.

Firstly, in Chapter 8, we analyze the extent to which peephole optimization oc-

curs during various compiler optimization levels by capturing the peephole optimiza-

tion process that takes place during LLVM compilation. This analysis is conducted

from three different perspectives to determine whether peephole optimization plays a

dominant role in the compiler process.

Secondly, in Chapter 9, to address the challenge of hard-to-isolating peephole

optimization for individual analysis in binary segments, we collect hundreds of pro-

gram units with peephole optimization properties from the experiment as a new

dataset, covering two different types of peephole optimizations. We employ two rep-

resentative binary comparison tools to examine the impact of peephole optimization

on these two distinct binary comparison techniques. We assess two different cate-

gories of datasets, each influenced by peephole optimizations related to binary code

generation in varying ways. By binary diffing these two datasets separately, our goal
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is to understand the effect of peephole optimization on binary difference methods and

their effectiveness in various situations.

7.2 Experimental Setup

Our experimental testbed is comprised of twelve i5-10400 CPUs operating at a fre-

quency of 2.90GHz, along with 32GB of RAM, and runs on the Ubuntu 22.04 LTS

operating system.

In our analysis of peephole optimization experiments, we observed that in real

programs, the pass responsible for peephole optimization and control flow graph op-

timization within the optimization pipeline is invoked multiple times, often reaching

thousands of iterations. However, it is important to note that not every invocation of

these optimization passes necessarily modifies the Intermediate Representation (IR)

code. Instead, these invocations can be seen as attempts to optimize the code. Con-

sequently, for the first experiment in Chapter 8, we carefully designed our approach

to exclude passes that were called but did not result in any code changes. This strat-

egy ensures that the experimental results encompass only those peephole passes that

genuinely modified the code.

In the first experiment, we compile all test set programs using a total of four

optimization levels: O1, O2, Os, and O3. Our program tracks the compilation process

for each individual program. Specifically, during the compilation process, we capture

the function-level optimization changes (changes to basic blocks before and after

optimization) from the peephole pass snapshots. This allows us to perform cumulative

statistics of all functions and programs.

In the second experiment, we use binary code compiled with O0 as the baseline

and binary files compiled with O3 as the comparison. Due to the extracted program

collection carrying only peephole optimization features, using O3 as the optimization
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Table 7.1: LLVM’s unit test suite.

Dataset # of Programs Binary Versions

PolyBench 30 150
CoyoteBench 4 20
Adobe-C++ 6 30
BenchmarkGame 8 40
Dhrystone 2 10
Linpack 1 5
McGill 4 20
Misc 27 135
Misc-C++ 5 25
Shootout 15 75
Shootout-C++ 25 125
SmallPT 1 5
Stanford 11 55
Regression 50 250
bzip2 1 5
UnitTests 142 710

level will result in enabling peephole optimization only. We then compare the gener-

ated binary files using comparison tools to obtain results, such as the proportion of

basic block match rates.

7.3 Two Different Datasets

In the first experiment, we utilize LLVM’s unit test suite, featuring classic programs

gathered over a decade and extensively employed in compiler testing, to examine

peephole optimization’s influence on binary diffing. As shown in Table 7.1, this suite

encompasses hundreds of programs and various small test sets. These utilities serve

as crucial research datasets due to their practical applications and representative at-

tributes. These programs were selected as datasets due to their practical use and

representativeness in their respective domains, which will help us more comprehen-

sively analyze and evaluate the impact of peephole optimization techniques on binary

code differences.
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In the second experiment, the ideal method to evaluate the impact of peep-

hole optimizations on binary code would involve directly compiling programs from

the LLVM test set and analyzing the resulting binary code. Unfortunately, LLVM

does not provide options for selectively enabling or disabling peephole optimizations,

making it challenging to isolate their influence at the binary level. To circumvent

this issue, we adopted a compromise strategy that involves statistically analyzing the

test set program’s optimization process and extracting common and general peep-

hole optimizations. These small program units, characterized by specific structures

or specialized peephole instructions, effectively represent a subset of peephole opti-

mizations and are divided into two categories based on different types. Using this

curated dataset, we assess the impact of peephole optimization on binary code, albeit

with certain limitations. Despite not covering the entire spectrum of peephole opti-

mizations, this approach allows us to investigate the influence of two distinct types

of peephole optimizations on binary code and the performance of binary comparison

tools, providing valuable insights into the effect of peephole optimizations on binary

code differences.

59



CHAPTER 8

Investigation on the Extent of Peephole Optimization

Before delving into the extent of peephole optimization, we find that peephole op-

timization is not uniform across all scenarios. Firstly, peephole optimization may

vary depending on the different levels of compiler optimization settings, as it is in-

voked multiple times for local code optimization after other optimizations have been

completed. Consequently, peephole optimization is influenced by other compiler op-

timizations and changes according to the number of optimization options enabled.

Secondly, at different compiler optimization levels, the popularity of individual opti-

mization passes within the overall optimization process varies, as does the popularity

of peephole optimization. Lastly, at different compiler optimization levels, the extent

of peephole optimization’s impact on basic blocks and functions also varies.

Therefore, in this section, we propose three research components to facilitate a

better understanding of the scope of peephole optimization.

8.1 What Is the Extent of Peephole Optimization

under Different Levels of Compiler Optimiza-

tion Settings?

In our experiment, we assessed the applicability of peephole optimization across var-

ious LLVM optimization levels, ranging from O1 to O3. Each level is designed to

fulfill a specific objective and encompasses a diverse array of optimization options,

thereby leading to distinct effects on code generation. O1 is geared toward lightweight
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optimizations, enhancing execution speed with minimal impact on compilation time.

O2 strikes a balance between execution speed and compilation time by employing

techniques such as function inlining, loop unrolling, and constant propagation. Os,

on the other hand, emphasizes code size optimization through code compression and

the elimination of unused functions. O3 embodies a high-level optimization level, pri-

oritizing maximum execution performance through advanced methods, including loop

optimization, vectorization, and memory optimization. By comparing the optimized

results with the unoptimized baseline (before and after peephole optimization in the

InstCombine pass), we were able to gauge the influence of peephole optimization on

binary code differences.

Fig. 8.1 shows the statistics of peephole optimization in the dataset compiled

by LLVM Clang 13.0.0 from O1 to O3. Considering the proportion of the peephole

pass invoked by the optimization manager relative to all other optimization passes,

it is observed that at the O1 optimization level, the median invocation frequency of

the peephole optimization pass is 32%. This frequency ranges from a minimum of

14.6% to a maximum of 39.7%, reflecting the differences in complexity among various

programs.

As the optimization level progresses from O1 to O3, there is an increase in the

number of enabled optimization options, which subsequently leads to a rise in the

number of passes not related to peephole optimization throughout the optimization

process. Consequently, with the activation of additional optimization options and

the involvement of more diverse optimizations, the overall proportion of peephole

optimization invocation frequency experiences a declining trend. In essence, as the

number of activated optimization options and participating optimizations increases,

the proportion of peephole optimization decreases.
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Figure 8.1: Statistics on how often peephole optimization is invoked by the optimiza-
tion manager at different compiler optimization levels throughout the optimization
process.

Within the O1 to O3 optimization levels, the average invocation frequency of

peephole optimization varies from 19.7% to 33.9%. The minimum and maximum

recorded frequencies are 11.8% and 39.7%, respectively.
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8.2 What Is the Most Frequently Used Pass Rank-

ing in the Optimization Process Across Various

Optimization Levels?

During the optimization process, the optimization manager applies diverse optimiza-

tions repeatedly to enhance the code, based on the specific requirements of various

functions within the program. Certain critical optimization passes frequently occur

throughout the process. Therefore, we conducted a statistical analysis of the invo-

cation of all common passes and presented the top 10 most popular optimization

passes, based on their highest invocation frequency, under different optimization lev-

els, in Fig. 8.2. The result indicates that the peephole optimization pass is the most

frequently utilized among the top 10 popular optimization passes. Across the four

optimization levels, the average invocation frequency by the optimization manager

ranges between 25% and 29%.

8.3 What Percentage of Basic Blocks and Functions

Are Affected by Peephole Optimization?

To investigate the impact of peephole optimization on the basic blocks and functions

of programs in a test suite set throughout the entire optimization process, we con-

ducted a statistical analysis of the modifications made to the basic blocks in each

function under different optimization levels. As shown in Figure 8.3, at the O1 level,

the median impact proportion of peephole optimization on the basic blocks in the

program was 40.5%. With the increase of optimization level and the introduction

of more types of optimization, the range of proportion of basic blocks affected ex-
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panded (blue box), as different program structures resulted in a greater possibility

of optimization. If a program is simple, the impact of peephole optimization may be

reduced, while if its complexity is suitable for peephole optimization, it can lead to

a greater possibility of optimization. For functions (pink box), with the introduction

of more optimization at higher levels, more opportunities were provided for peep-

hole optimization, resulting in more functions being optimized. The average impact

proportion of peephole optimization on the basic blocks in the program ranged from

32.8% to 60.2%, with a minimum impact of around 22% and a maximum impact of

76.3%. The average impact proportion of peephole optimization on the functions in

the program ranged from 34.7% to 63.8%, with a minimum impact of 22.6% and a

maximum impact of 79.1%.

8.4 Answer to RQ2

In summary, our findings show that peephole optimization is the most popular op-

timization pass, with an average invocation frequency ranging from 20.1% to 37.9%.

At all O1∼O3 levels, the average percentage of basic blocks modified by peephole

optimization fluctuates between 32.8% and 60.2%, with a maximum value of 76.3%.
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Figure 8.2: The Peephole optimization pass is highly popular among the top 10 opti-
mization passes, with an average invocation frequency ranging between 25% and 29%
across the four optimization levels. Other frequently used optimization passes include
SimplyCFG, which simplifies the control flow graph by removing redundant instruc-
tions and blocks, making it simpler for subsequent passes to analyze and optimize
the code. CSE (Common Subexpression Elimination) identifies common subexpres-
sions in the code and replaces them with a single computation, reducing the number
of executed instructions and improving performance. Looprotate reorders loops to
improve code locality and reduce the number of branch instructions executed. SROA
(Scalar Replacement of Aggregates) replaces complex data structures with simpler
scalar variables, reducing memory usage and improving performance. LICM (Loop
Invariant Code Motion) identifies code that is repeatedly executed in a loop and
moves it outside the loop, reducing the number of executed instructions and improv-
ing performance. These optimization passes are crucial in significantly enhancing the
code’s performance.
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CHAPTER 9

Investigation of the Implications of Peephole Optimization on Two Binary Diffing

Methodologies

The significance of peephole optimization’s impact on existing binary diffing tech-

niques cannot be understated, particularly due to its influence on performance. In

this chapter, our focus will be directed toward examining the consequences of peephole

optimization on a pair of widely-used binary diffing tools, emphasizing the necessity

of addressing this optimization approach in the realms of software security and reverse

engineering.

Initially, we will present an in-depth description of the chosen test dataset,

accentuating the diverse attributes that make it an appropriate subject for our study.

Following this, we will proceed to discuss the two binary diffing tools selected for this

analysis, elaborating on their distinct features, methodologies, and the reasoning that

guided their inclusion in our research.

To ensure a thorough evaluation, we have carried out assessments on two sepa-

rate categories of datasets, with each category being differently impacted by peephole

optimization in relation to binary code generation. Through the separate examination

of these categories, our objective is to offer a comprehension of the repercussions of

peephole optimization on binary diffing methodologies, as well as their efficacy across

a range of situations.
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9.1 Extracted Two Types of Peephole Dataset

The optimal approach to assessing the impact of peephole optimizations on binary

code involves directly compiling with programs from the LLVM test set and verifying

the resulting binary code. By analyzing the binary code after peephole optimiza-

tion and the subsequent changes in basic blocks generated by these optimizations, it

would be possible to evaluate the performance of binary comparison tools. Regret-

tably, LLVM does not offer users the ability to selectively disable or enable peephole

optimizations through options such as (-fno-peephole or -disable-instcombine). Con-

sequently, it is not feasible to enable peephole optimizations in an unoptimized setting

(O0) or to activate all default optimizations (O3) while disabling only peephole opti-

mizations and maintaining other optimizations.

In essence, users are unable to compile distinct binary codes containing only

peephole optimizations or no peephole optimizations by setting the disabling or en-

abling of peephole optimizations during the compilation process. As a result, deter-

mining the influence of peephole optimizations on binary code remains a formidable

technical challenge. The primary obstacle lies in the inability to isolate the impact of

specific peephole optimizations from these intricate programs at the binary level.

To address this issue, a compromise strategy has been adopted, which involves

conducting a statistical analysis of the optimization process for the test set program

and extracting some common and general peephole optimizations from all programs.

These small program units, characterized by specific structures or specialized peep-

hole instructions, can effectively represent a subset of peephole optimizations. The

program units are then divided into two categories based on different types, resulting

in the construction of a collection containing hundreds of refined programs of two

distinct types in Table 9.1.
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Table 9.1: Extracted Peephole Dataset

Two types of collected peephole optimization program units # of Units

Type 1: Effect within a basic block 192
Type 2: Effect across multiple basic blocks 32

Utilizing this curated dataset of peephole programs, we can assess the impact of

peephole optimization on binary code, albeit with certain limitations. Although the

dataset may not be fully representative of the entire spectrum of peephole optimiza-

tions, it provides a pragmatic method for investigating the influence of two distinct

types of peephole optimizations on binary code and the performance of binary com-

parison tools. By analyzing the impact of these programs on the comparison tool, we

can gain valuable insights into the effect of peephole optimizations on binary code

differences.

9.2 Binary Diffing Tools’ Selection

In this study, two prominent binary comparison tools from the past decade have been

selected for analysis, namely BinDiff [60, 61] and DeepBinDiff [64]. These tools en-

compass a broad range of widely employed and established binary analysis methods,

as well as state-of-the-art AI-based approaches, thereby providing coverage for ex-

amining the effects of peephole optimization on basic block and instruction sequence

modifications.

BinDiff, a prominent binary differencing tool in the industry, leverages IDA’s

disassembly code as its input source [32] and integrates a multi-layered statistical

feature system, including control flow, functions, and basic blocks, to improve the

efficiency of graph matching processes [60, 61]. This tool exhibits a strong capability

to endure intermediate syntactic variations, such as register swapping and instruction
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rearrangement. In contrast, DeepBinDiff [64] adopts an unsupervised deep neural

network-based approach for binary diffing, initially learning basic block embeddings

through unsupervised deep learning. These embeddings represent specific blocks with

semantic and contextual information extracted from the interprocedural control flow

graph (ICFG). The prototype implementation indicates that these embeddings are

employed to efficiently and accurately compute basic block similarities. These two

renowned tools in the industry assist in understanding and analyzing the impact of

peephole optimization on binary code differences. For all evaluated works, we utilize

the default settings provided in their respective codes or papers and display the direct

output results.

9.3 What Impact Does Peephole Optimization Have

on Existing Binary Diffing Techniques?

In this section, we will conduct experiments and analyze the impact of peephole

optimizations on binary differences using these two tools.

9.3.1 BinDiff

BinDiff, an extensively cited and widely acknowledged binary difference analysis

tool [60, 61], utilizes disassembly code generated by IDA [32] as its input source and

incorporates a three-tiered statistical system encompassing function, basic block, and

control flow/call graph topological order. This approach enhances the efficiency of the

matching process. The similarity score provided by BinDiff for comparing two binary

codes ranges from 0.0 to 1.0, where higher scores signify greater similarity. This score

constitutes a weighted sum of five metrics1: 35% for matched control flow graph

1BinDiff Manual: https://www.zynamics.com/bindiff/manual/.
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edges, 25% for matched basic blocks, 20% for differences in call graph topological

order, 10% for matched functions, and 10% for matched instructions.

BinDiff employs a general matching strategy that relies on a list of function

attributes suitable for generating matches. This process begins at the global level by

considering all functions of the binary and calculating the first attribute for each func-

tion. Following the initial global matching step, BinDiff examines parents (callers)

and children (callees) of each new match, executing a ”drill down” step to match

functions within the set of parents and children using the next best attribute. This

procedure is repeated until all unmatched functions have been evaluated.

Function matching algorithms are organized according to the resulting match

quality and can be classified into two categories: canonical per function and per

edge. Edge matching seeks to match edges, representing calls in the call graph or

jumps in the flow graph if the source and target function attributes correspond. This

method produces superior matches, but it may be slower in instances where there are

numerous edges per vertex in a graph.

Basic block matching, at the flow graph level, shares algorithmic similarities

with function matching, where global attribute matching is succeeded by drill downs

and matching in the reduced set of parents/children of matched basic blocks. Basic

block matching algorithms are also arranged roughly by the resulting match quality.

In summary, BinDiff’s matching strategy aims to deliver high-quality matches

by employing various algorithms and considering different aspects of functions and

basic blocks. It is crucial to recognize that peephole optimizations can influence

binary code by modifying instructions within basic blocks or combining multiple

basic blocks. These effects manifest in various code representations, such as basic

block comparisons, control flow, and instruction sequence, consequently influencing

the comparison outcomes.
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Table 9.2: Experimental Results on Rotating Left Operation Program: Unoptimized
Binary vs. Peephole Optimized Binary (by BinDiff)

Similarity Modification Difference

Basic blocks 100% / /
Instructions 36.4% 6.8% 56.8%
Functions 100% / /
Calls 50% / 50%
Jumps / / /
Ultimate outcome 58% / 42%

9.3.2 Analysis Results of Two Types of Peephole

Dataset Employing BinDiff

In order to comprehensively investigate the impact of peephole optimization on two

distinct types of binary code, we initially conducted separate experiments on the

previously mentioned motivation examples, namely the rotate left operation algorithm

and the population count algorithm. The experimental results are presented in the

following tables (Table 9.2 and Table 9.3).

Example 1 pertains to the modification of instructions within a basic block. Fol-

lowing peephole optimization, the ROL instruction supersedes the original instruction

sequence. As a result, BinDiff’s experimental findings indicate that a mere 36.4% of

the instruction sequence remains similar post-optimization, with 6.8% modified and

56.8% entirely altered. Calls are identified as 50% modified, potentially due to the

rearrangement of instruction sequences. In contrast, the basic block and function are

recognized as 100% similar. Moreover, no differences in Jumps are observed after opti-

mization. Consequently, Example 1 exemplifies a peephole optimization variant that

impacts the instruction sequence within a basic block, causing substantial syntactic
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Table 9.3: Experimental Results on Population Count Program: Unoptimized Binary
vs. Peephole Optimized Binary (by BinDiff)

Similarity Modification Difference

Basic blocks 50% / 50%
Instructions 26.2% 11.9% 61.9%
Functions 100% / /
Calls 50% / 50%
Jumps / / 100%
Ultimate outcome 48% / 52%

discrepancies between the optimized and preceding instruction sequences. Despite

appearing dissimilar, they represent the same program, with one binary having un-

dergone peephole optimization. These incongruent disparities contribute to a decline

in binary similarity results.

Example 2 encompasses modifications spanning multiple basic blocks. In the

aftermath of peephole optimization, the POPCNT instruction supersedes the original

sequence of instructions, effectively consolidating several basic blocks into a single

unit. This sharply diverges from Example 1. BinDiff’s experimental findings disclose

that only 50% of the basic blocks are identified as similar, while the remaining 50%

are entirely distinct. The similarity of the instruction sequences further decreases,

as merely 26.2% of instructions are identified as similar, 11.9% of instructions are

modified, and 61.9% of instructions are completely different. Jumps are recognized as

100% different, signifying a total transformation in control flow. The call is identified

as a 50% modification, potentially attributed to a rearrangement of the instruction

sequence. In contrast, the functionality is considered 100% similar. Thus, Example 2

exemplifies a peephole optimization variant that influences the instruction sequence

across multiple basic blocks, yielding significant differences between the optimized and

preceding basic blocks. The ramifications on control flow and basic blocks contribute
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to a further reduction in binary similarity results. Ultimately, the final outcome

reveals that the similarity between the binary files pre- and post-optimization is a

mere 48%.

Examples 1 and 2 illustrate the effects of peephole optimization on binary code,

revealing substantial differences between the optimized and preceding instruction se-

quences. Example 1 highlights the impact on instructions within a basic block, while

Example 2 demonstrates modifications that span multiple basic blocks. Both sce-

narios result in a decline in binary similarity results, with Example 2 showing even

more significant differences due to the ramifications on control flow and basic blocks.

These findings prompt further investigation into the collective effects of peephole op-

timization. To this end, we will conduct experiments using hundreds of peephole

optimization program units to observe the influence of peephole optimization on bi-

nary code and the potential chain reactions that emerge when multiple optimizations

are implemented simultaneously.

In the subsequent section, we will carry out experiments employing two different

types of datasets. The first type, denoted as type 1 datasets, encompasses program

units in which the instruction sequence inside basic blocks undergoes modifications

after the application of peephole optimization. Following this, we will scrutinize the

second dataset type, comprising program units that, when subjected to peephole

optimization, exhibit alterations in multiple basic blocks and control flow. Through

the utilization of these datasets, our objective is to comprehensively examine the

impact of peephole optimization on diverse program structures and to augment our

comprehension of its ramifications on binary diffing. The experimental results are

presented in the following tables (Table 9.4 and Table 9.5).

The type 1 dataset encompasses instances in which peephole optimization al-

ters the instructions within basic blocks. Following the application of peephole opti-
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Table 9.4: Experimental Results on Type 1 Datasets: Unoptimized Binary vs. Peep-
hole Optimized Binary (by BinDiff)

Similarity Modification Difference

Basic blocks 50% 10% 40%
Instructions 1.9% 19.4% 78.6%
Functions 63.6% / 36.4%
Calls 0.3% 49.6% 50.1%
Jumps 33.3% 16.7% 50%
Ultimate outcome 59% / 41%

mization, the original instruction sequences are supplanted by more streamlined and

efficient instructions. Experimental outcomes utilizing BinDiff indicate that post-

peephole optimization, 50% of the basic blocks are identified as similar to their un-

optimized counterparts, 10% are recognized as modified, and 40% are classified as

entirely different.

Intriguingly, the instruction sequences after peephole optimization display a

mere 1.9% similarity, with 19.4% identified as modified and an impressive 78.6%

recognized as entirely distinct. Moreover, as numerous basic blocks experience mod-

ifications, the identification of the final functions is also impacted, with 63.6% ac-

knowledged as similar and 36.4% identified as different. Calls are also substantially

affected, with a scant 0.3% identified as similar and a remarkable 50.1% recognized

as completely dissimilar, illustrating the extensive range of adjustments made to the

instruction sequences.

The ultimate findings exhibit a 59% similarity and a 41% difference. These ex-

perimental results demonstrate that as a considerable number of instruction sequences

are replaced following peephole optimization, various aspects, including basic block

comparisons, instruction comparisons, and calls, are both directly and indirectly in-

fluenced. Ultimately, these effects are manifested in the final results.
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Table 9.5: Experimental Results on Type 2 Datasets: Unoptimized Binary vs. Peep-
hole Optimized Binary (by BinDiff)

Similarity Modification Difference

Basic blocks 11.4% 34.3% 54.3%
Instructions 5.2% 36.5% 58.3%
Functions 70.6% 17.6% 11.8%
Calls 0.6% 64.2% 35.2%
Jumps 2.7% 45.4% 51.9%
Ultimate outcome 26% / 74%

The type 2 program unit collection uses peephole optimization to modify mul-

tiple basic blocks and applies hardware-based streamlined instructions, resulting in

the merging of several basic blocks. This differs significantly from Example 1. Ac-

cording to experimental results from BinDiff, only 11.4% of basic blocks were found

to be similar, 34.3% were modified, and 54.3% were entirely different basic blocks.

This indicates that peephole optimization has a significant impact on basic blocks.

In terms of instruction sequences, only 5.2% of instructions were identified as similar,

36.5% were modified, and 58.3% were entirely different. As basic blocks are modified,

functions are 70.6% similar, while jumps are 51.9% different, indicating a complete

transformation of control flow. The calls were found to be 64.2% modified, possibly

due to the rearrangement of the instruction sequences. Overall, the Type 2 pro-

gram unit experiment demonstrates the significant impact of peephole optimization

on basic blocks and instruction sequences. Only 11.4% of basic blocks were found

to be similar, and there was a reduction in binary similarity results due to the im-

pact on control flow. Therefore, the similarity between binary files before and after

optimization was only 26%.

To summarize, the impact of peephole optimization on basic blocks and instruc-

tion sequences has been investigated in two different datasets. The Type 1 dataset
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involved the alteration of instructions within basic blocks, resulting in 50% similarity

to the unoptimized counterparts, 10% modification, and 40% entirely differences. The

instruction sequences after optimization showed a mere 1.9% similarity, with 19.4%

identified as modified and 78.6% entirely distinct. The Type 2 program unit col-

lection merged multiple basic blocks using hardware-based streamlined instructions,

with only 11.4% of basic blocks being similar, while 34.3% were modified, and 54.3%

were entirely different. The transformation of control flow resulting from peephole

optimization led to a significant impact on binary similarity results. Next, we fur-

ther investigate the impact of peephole optimization on basic blocks and instruction

sequences based on a state-of-the-art AI-based binary tool.

9.3.3 DeepBinDiff

DeepBinDiff [64] is a binary code similarity analysis tool, that excels in identifying

minute discrepancies at the instruction level within binary code. By employing deep

learning methodologies, this tool conducts precise and efficient comparisons of bi-

nary code, outperforming conventional binary diffing tools in discerning alterations

in control flow structures, obfuscation methods, and code enhancements.

The foundation of DeepBinDiff lies in an unsupervised deep neural network-

based approach for binary diffing, which initially learns basic block embeddings

through unsupervised deep learning. These embeddings encapsulate specific blocks

with semantic and contextual information derived from the interprocedural control

flow graph (ICFG). The prototype implementation demonstrates that these embed-

dings facilitate the efficient and accurate computation of basic block similarities,

thereby ensuring logical coherence and readability in the context.
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The process of generating basic block embeddings based on ICFGs (Interpro-

cedural Control Flow Graphs) and feature vectors involves merging two ICFGs into

one graph and modeling the problem as a network representation learning problem.

The Text-associated DeepWalk (TADW) algorithm is employed to generate these

embeddings. TADW is an unsupervised graph embedding learning technique that

incorporates the features of vertices into the network representation learning process.

It is an improvement over the DeepWalk algorithm, which only considers contextual

information from a graph but not the node features.

Graph merging is proposed to address the limitations of running TADW sep-

arately for two graphs. Merging the two ICFGs into one graph allows for a more

efficient matrix factorization and improves similarity detection. DeepBinDiff extracts

string references and detects external library calls and system calls, creating virtual

nodes for strings and library functions and drawing edges from the call sites to these

virtual nodes. Basic block embeddings are generated using the TADW algorithm on

the merged graph. DeepBinDiff feeds the merged graph and the basic block feature

vectors into TADW for multiple iterations of optimization. The resulting basic block

embeddings contain semantic information about the basic block itself as well as infor-

mation from the ICFG structure. A k-hop greedy matching algorithm is introduced

to address the limitations of linear assignment and benefit from the ICFG contextual

information. This algorithm finds matching basic blocks based on the similarity cal-

culated from basic block embeddings within the k-hop neighbors of already matched

ones.

To sum up, the technical merits of DeepBinDiff have piqued our interest. By

employing the TADW algorithm, graph merging, and k-hop greedy matching during

the embedding generation process, DeepBinDiff creates basic block embeddings and
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Table 9.6: Experimental Results on Two Examples: Unoptimized Binary vs. Peephole
Optimized Binary (by DeepBinDiff)

Program Total Nodes of Two Binaries Matched Pairs Matched Ratio

Left rotation operation 22 0 0%
Population count 26 0 0%

locates matching basic blocks within the merged ICFG. As a result, it has established

itself as a state-of-the-art tool for detecting differences at the basic block level.

9.3.4 Analysis Results of Two Types of Peephole

Dataset Employing DeepBinDiff

In order to maintain logical consistency and thoroughly examine the effects of peep-

hole optimization on two distinct types of binary code, we initially conducted sepa-

rate experiments on the aforementioned motivational examples, specifically focusing

on the left rotation operation algorithm and the population count algorithm. It is

important to note that, in order to preserve the integrity and consistency of the tool,

we avoided making unauthorized modifications to the experimental configurations.

The experiment was performed using default settings to ensure the accuracy of our

results. The experimental findings are presented in Table 9.6.

Unexpectedly, the overall experimental results were not as anticipated, since

DeepBinDiff was unable to identify any matches between the two example programs,

which comprised 22 and 26 nodes in the motivational examples. Ultimately, none of

these nodes matched. Moreover, to ensure the tool’s usability, we analyzed the open-

source binary files provided by the author, comparing the binary files2 generated by

Coreutils-5.93/chroot when compiled with different settings at optimization levels O0

2Official Repository for DeepBinDiff: https://github.com/yueduan/DeepBinDiff/tree/

master/experiment_data/coreutils/binaries/.
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Table 9.7: Experimental Results on Two Types of Datasets: Unoptimized Binary vs.
Peephole Optimized Binary (by DeepBinDiff)

Program Total Nodes Matched Pairs Matched Ratio

Type 1: Effect within a basic block 437 0 0%
Type 2: Effect across multiple basic blocks 424 9 4.2%

and O1. These two binaries contained a total of 1,180 nodes, and the final matching

pairs amounted to 100, resulting in a matching rate of 16.9%. Upon analysis, we

hypothesize that the low recognition rate may be attributed to a relatively low range

value set for k-hop.

In the next step, we will conduct an analysis of two datasets, and the corre-

sponding results can be found in Table 9.7. In the analysis of binary files before and

after peephole optimization, DeepBinDiff failed to detect any matches among the 437

nodes in dataset type 1. In dataset type 2, DeepBinDiff identified 9 matching pairs

out of 424 nodes. We have contacted the author of DeepBinDiff about the experimen-

tal results to confirm that this tool’s results are correct, and we will update this part

of the experimental results in the future if necessary. We are willing to contribute

to the advancement of the binary analysis field through joint efforts. Moreover, we

located the basic block embeddings based on the index values in the matching pair

results. We observed and confirmed that significant differences exist in these basic

block embeddings. These significant differences further confirm a low match rate of

results.

Peephole optimization introduces additional complexity to analysis techniques

based on basic block embeddings. Essentially, since peephole optimization not only

thoroughly replaces the instruction sequence within an original basic block but can

also merge multiple basic blocks, this can lead to two issues. First, due to the al-

most complete replacement, the two basic blocks before and after optimization do
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not match at all. Second, as a result of merging multiple basic blocks, the control

flow changes and corresponding basic block pairs cannot be found. For example, the

complete change in basic blocks may cause the two embedding vectors to differ sig-

nificantly, leading to poor matching results. At the same time, the change of control

flow and mismatch in the number of basic blocks will require more computational

resources to handle the “m-to-n” embedding and matching processes.

9.4 Answer to RQ3

In summary, peephole optimization significantly influences existing binary difference

techniques at both basic block and control flow levels, with performance degradation

emphasizing the necessity of considering peephole optimization. We have chosen two

of the most representative and renowned tools for our investigation: BinDiff, an in-

dustry and academic standard for over a decade, and DeepBinDiff, a cutting-edge

unsupervised learning approach that exemplifies AI-based methods concentrating on

basic block-level detection. This influence ultimately manifests itself in binary anal-

ysis tools. BinDiff results indicate that peephole optimization can cause 50% of

optimized instructions within basic blocks to be unmatchable and lead to modifi-

cations spanning multiple basic blocks. Jumps and Calls identify over 50% of the

differences. Simultaneously, peephole optimization introduces significant complexity

to DeepBinDiff’s binary analysis technique, resulting in a mismatch in the number

of basic blocks and the replacement of entirely different new basic blocks, as well

as control flow changes that affect matching strategies based on control flow levels.

These mismatches influence basic block embedding vectors and matching algorithms.

In conclusion, the modifications to basic blocks by peephole optimization impact the

accuracy of binary comparison results, leading to unsatisfactory matching outcomes.
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CHAPTER 10

Discussion and Threats to Validity

In our study, we employed Alive2, a tool specifically designed for capturing LLVM In-

termediate Representation (IR), to investigate peephole optimization. Consequently,

the efficacy and precision of our analysis are heavily dependent on the performance

and accuracy of Alive2. It is important to note that our research primarily focuses on

LLVM rather than the GNU Compiler Collection (GCC). This is because GCC lacks

a mechanism comparable to LLVM’s plugin functionality, which enables the capture

of intermediate IR snapshots before and after optimization. This capability is crucial

for conducting an in-depth analysis of the alterations in basic blocks and instructions

during each optimization phase. Without such a feature, a comprehensive evaluation

of peephole optimization in GCC becomes challenging.

Our investigation is predominantly centered on the x86-64 platform, rather than

examining multiple architectures. The rationale behind this decision is the platform-

dependent nature of peephole optimization. Each architecture has its unique instruc-

tion set and features, which directly influence the types of peephole optimization that

can be applied. By focusing on a single platform, we can delve deeper into the specific

optimizations related to that platform, providing a more detailed and concentrated

analysis.

Finally, in our examination of peephole optimizations using state-of-the-art bi-

nary comparison tools, we selected two highly representative and well-regarded tools:

BinDiff, an industry and academic standard for over a decade, and DeepBinDiff, an

unsupervised learning approach that exemplifies AI-based methods concentrating on
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basic block-level detection. Our analysis does not encompass all existing tools, as

some are similar and belong to the same category, while others are not open-source.
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CHAPTER 11

Conclusion and Future Work

In this study, we employ a customized compiler-based translation verification tool to

systematically analyze the implications of peephole optimizations. We find that the

impact of this long-standing and widely used optimization technique on intraproce-

dural binary code differences has been underestimated. Our study underscores the

importance of addressing the effect of peephole optimization on binary diffing anal-

ysis, as well as the limitations of current basic-block-centric comparison approaches.

We encourage the research community to reconsider experimental designs that include

peephole-optimized scenarios, enabling a more comprehensive evaluation of capabili-

ties beyond peephole optimization. In the future, we will further explore the effects

of other compiler optimizations on binary differences more extensively.
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