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ABSTRACT

RESOURCE PROVISIONING FOR DATA-INTENSIVE USER-FACING
APPLICATIONS

Huiyang Li, Ph.D.
The University of Texas at Arlington, 2023

Supervising Professor: Hao Che & Hong Jiang

Data-intensive, User-facing Services (DUSes) such as web searching, digital mar-
keting, online social networking, and online retailing are critical workloads in clouds and
datacenters. Meeting stringent query tail-latency Service Level Objectives (SLO) for DUS
queries is essential for optimal user experience and business success. However, achieving
these objectives is challenging due to the scale-out nature of DUese workloads and the
varying resource demands of queries with different fanouts. Additionally, the design and
configuration options for clusters significantly impact query performance.

In this dissertation, we present solutions of DUSes performance online and offline
optimization. We highlight the importance of reducing query tail latency and the impact
on user experience and revenue. We discuss the complexities of meeting tail-latency SLOs
considering query fanout and the need to allocate resources accordingly. Furthermore, we
explore the wide range of cluster design and configuration options and propose model-
based approaches to compare and identify promising configurations.

Through queuing models, we establish the maximum sustainable cluster loads and
analyze worker and cluster-level performance. We validate our models through extensive
simulation and testing, providing valuable insights for DUSes design and efficient resource
planning. Our work contributes to improving user experience, resource optimization and
resource provisioning plan in cloud-based DUSes environments.

Overall, our online solution optimized/guaranteed the tail latency while improve re-
source utilization, and our offline models analysis and findings provide guidance for DUSes
service providers, enabling enhanced user experience and effective resource provisioning.
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CHAPTER 1

INTRODUCTION

Data-intensive, User-facing Services (DUSes) such as web searching, digital mar-
keting, online social networking, and online retailing have become predominant workloads
in clouds and datacenters. Meeting stringent query tail-latency Service Level Objectives
(SLO) for DUS queries is crucial for ensuring optimal user experience, application adop-
tion, customer satisfaction, and business revenue. However, achieving these objectives
presents challenges due to the large scale of DUSes workloads, where queries may need
to access massive data sets distributed across a large number of servers. In other words, a
query may spawn a number of tasks (known as query fanout) to be sent to some or all of the
workers in the cluster to be queued and processed in parallel. The query response time is
determined by the slowest task of the query. Furthermore, the resource demands for queries
with different fanouts vary, making it essential to consider query expansion when allocating
resources. Additionally, there is a wide range of possible cluster design and configuration
options and different options may lead to vastly different query tail latency and throughput
performance. Besides the above feature, in today’s datacenters, the workload is heteroge-
neous which means the DUSes are served with long batch jobs to help improve datacenter
resource utilization. Therefore, it’s a long-standing challenge in datacenter scheduling.

This dissertation aims to investigate both online techniques for optimizing and guar-
anteeing query tail latency and improving throughput and resource utilization, as well as
offline performance models and tools for providing initial resource provisioning plans.

1.1 Optimize the user-facing service’s latency and maintain high re-
source utilization
Workload heterogeneity poses challenges for schedulers to simultaneously meet la-

tency requirements and maintain high resource utilization. Workloads that differ in execu-
tion time and fanout degree have distinct requirements for scheduling. While short jobs are
usually user-facing application [19, 63] have stringent latency requirements and are sensi-
tive to scheduling delays; long jobs such as batch jobs help improve datacenter resource
utilization and can tolerate some scheduling delays. The state-of-the-art schedulers, in-
cluding centralized, distributed, and hybrid ones, struggle to ensure low latency for short
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jobs in large-scale, highly loaded systems. The main issues lie in the scalability of central-
ized schedulers and the ineffective probing and resource sharing in distributed and hybrid
schedulers. Addressing these challenges and achieving low latency for short jobs while
optimizing resource utilization are key research objectives in datacenter scheduling.

We propose Pigeon, a distributed, hierarchical job scheduler based on a two-layer
design that can significantly optimize the tail latency of the user-facing services online. Pi-
geon divides workers into groups, each managed by a separate master. In Pigeon, upon a job
arrival, a distributed scheduler directly distributes tasks evenly among masters with min-
imum job processing overhead, hence, preserving the highest possible scalability. Mean-
while, each master manages and distributes all the received tasks centrally, oblivious of the
job context, allowing for full sharing of the worker pool at the group level to maximize
multiplexing gain. To minimize the chance of head-of-line blocking for short jobs and
avoid starvation for long jobs, two weighted fair queues are employed in each master to ac-
commodate tasks from short and long jobs, separately, and a small portion of the workers
are reserved for short jobs. Evaluation via theoretical analysis, trace-driven simulations,
and a prototype implementation shows that Pigeon significantly outperforms Sparrow up
to 150X, a representative distributed scheduler, and Eagle up to 30X, a hybrid scheduler at
90th percentile tail latency for short jobs(user-facing services).

1.2 Guarantee the tail latency SLO for DUSes
It has been widely recognized that the query tail latency for Data-intensive User-

facing (DU) services, such as web searching, online social networking, and emergency re-
sponse through edge-based crowdsensing, has a great impact on user experience and hence,
business revenues. For example, for Amazon online web services, every 100-millisecond
addition of query tail latency causes 1% decrease in sales [? ]. To meet strict tail la-
tency Service Level Objectives (SLOs), the resources for DU services are generally over-
provisioned [26, 12], at the cost of reduced profit. As a result, a key design objective of
a DU service, called the design objective in short hereafter, is to maximize the resource
utilization or query throughput while meeting tail latency SLOs for individual queries. Un-
fortunately, the existing solutions fall short of achieving this design objective, which we
argue, is largely attributed to the fact that they fail to take the query fanout explicitly into
account. For example, assume that with a given amount of resources allocated to process
each task and the task response time for each task has 1% probability to be over 100 ms.
Then the query response time for a query with fanout kf has a probability, 1-0.99kf , to be
over 100ms, meaning that a query with kf=1 and kf=100 have 1% and 63.4% probabilities
of being over 100 ms, respectively. This implies that while a query with kf=1 can meet the
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tail latency SLO in terms of the 99th percentile tail latency of 100ms, a query with kf=100
cannot. In order to allow the query with kf=100 to also meet the same tail latency SLO, a
task associated with the query must be allocated a much larger amount of resource so that
the chance it will exceed 100 ms is as small as 0.01%. This ensures that the probability
that the query response time exceeds 100 ms is 1-0.9999100 = 0.01 or 1%, i.e., meeting
the same tail latency SLO as the query with kf=1. This example clearly demonstrates that
to meet a query tail latency SLO for all queries regardless of query fanouts, the task re-
source demands for tasks belonging to queries with different fanouts are different and a
task belonging to a query with a larger fanout demands more resources

To address the challenge of the design objective of a DUSes, we propose TailGuard,
a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-First Queuing(TF-EDFQ) policy,
as a first step towards achieving the design objective for DU services in general. In other
words, on top of optimizing the latency, we further guarantee the tail latency. As a top-
down approach, TailGuard decouples the upper query level design from the lower task level
design. First, at the query level, a task decomposition technique is developed to translate the
query tail latency SLO for a query with a given fanout into a task queuing deadline for tasks
spawned by the query at the task level, reflecting the resource demand of the tasks. This
effectively decomposes a hard cotask scheduling problem at the query level into individual
queue management subproblems at the task level. Second, at the task level, a single TF-
EDFQ corresponding to a task server is used to enforce the task queuing deadlines, as
a way to differentiate resource allocation for tasks with different resource demands. In
principle, TailGuard permits unlimited number of query classes and is lightweight, as it
incurs minimum overhead for task queuing deadline estimation and requires to implement
only a single earliest-deadline-first queue per task server for any DU applications. A query
admission control scheme is also developed to provide a tail latency SLO guarantee in the
face of resource shortages.

The experiment results demonstrate that TailGuard can improve resource utilization
by up to 80%, while meeting the targeted tail latency SLOs, as compared with the other
three policies: First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ), and
Tail-latency-SLO-aware EDFQ (T-EDFQ) policies.

1.3 Address different cluster design and configuration options for DUSes
The first challenge to achieve the above design objective is failing to take the query

fanout explicitly into account as mentioned in the above section. Second, there are a wide
range of possible cluster design and configuration options and different options may lead
to vastly different query tail latency and throughput performance. We identify some widely
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adopted design and configuration choices, in terms of, scale-up or scale-out, with or without
redundant task issues [126] at the worker level; and vertical scaling or horizontal scaling
with or without tail cutting [61] at the cluster level. This leads to a total of 16 distinct
design and configuration options. It becomes apparent that it is impractical to design and
configure a cluster to exhaust all the options and then identify which one should be adopted
to achieve the above design objective. Instead, one must resort to model-based approaches
that can help quickly compare different possible options to identify the most promising few
before field trial.

We develop queuing models that provide a direct connection between cluster re-
source demand, query tail-latency SLO and throughput for all design and configuration
options. It derives the maximum sustainable cluster loads at different query tail-latency-to-
mean ratios for different design and configuration options; under certain resource scaling
conditions, there is a worker-level cross-over load, independent of query fanout and there is
a cluster-level cross-over load, a function of query fanout. By combining these performance
models it can assist decision-makers in reducing the number of options to consider when
designing and configuring clusters, thereby improving efficiency and achieve the design
objective goal.

The accuracy of the proposed models in predicting the DUS performance is verified
by simulation that details can be found in Section 4.3.

1.4 Initial resource provisioning tool
With the cloud computing evolution, traditional on-premise computing is increas-

ingly being left behind. A large number of organizations are trying to migrate their existing
workflows and applications to the cloud. The average cloud server pricing is about $400
monthly for one server, to $15,000 monthly for the entire back-office infrastructure. This
is the cost of a rental server which doesn’t include other costs such as maintenance, and
operation. We call the purchase price plus the costs of operation TCO. In conclusion, it is
very important to have an offline initial resource planning tool to help users who need to
deploy their services into the cloud with minor changes after the services are fully deployed
and running and meet the user tail latency SLO requirements in the meantime.

We developed an initial resource provisioning tool based on our performance models.
This tool is measurement based, in that user provides some initial measurement informa-
tion of their DUSes input into the tool, as the output it will give the user an overview
of the tail latency at different loads at both worker and cluster levels. Users can use this
output as a reference to choose their initial plan with their special requirements. We use
our highly heterogeneous Sensing-as-a-Service (SaS) testbed to do an experiment, explain
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how the tool with proposed models make it possible to decouple the worker-level decision
making from the cluster-level decision making, hence, substantially reducing the number
of possible design and configuration options to be compared as a use case of our tool.

1.5 Organization
The rest of the dissertation is organized as follows. In Chapter 2, we introduce the

Pigeon scheduler, an effective distributed, hierarchical datacenter job scheduler that opti-
mized the user-facing application tail latency online. In Chapter 3, we present TailGuard:
tail latency SLO guaranteed task scheduling for Data-Intensive User-Facing applications.
In Chapter 4, we propose offline performance models for Data-intensive, User-facing work-
loads with query tail latency SLO improving initial resource provisioning plan efficiency
and achieving the design objective goal. In Chapter 5, We develop an initial resource pro-
visioning tool with the performance model to help users build their DUSes in the cloud. In
Chapter 6, we summarize our contributions and discuss future work.

5



CHAPTER 2

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Sched-
uler

In today’s datacenters, job heterogeneity makes it difficult for schedulers to simul-
taneously meet latency requirements and maintain high resource utilization. The state-of-
the-art datacenter schedulers, including centralized, distributed, and hybrid schedulers, fail
to ensure low latency for short jobs in large-scale and highly loaded systems. The key
issues are the scalability in centralized schedulers, ineffective and inefficient probing and
resource sharing in both distributed and hybrid schedulers.

In this paper, we propose Pigeon, a distributed, hierarchical job scheduler based
on a two-layer design. Pigeon divides workers into groups, each managed by a separate
master. In Pigeon, upon a job arrival, a distributed scheduler directly distribute tasks evenly
among masters with minimum job processing overhead, hence, preserving highest possible
scalability. Meanwhile, each master manages and distributes all the received tasks centrally,
oblivious of the job context, allowing for full sharing of the worker pool at the group level
to maximize multiplexing gain. To minimize the chance of head-of-line blocking for short
jobs and avoid starvation for long jobs, two weighted fair queues are employed in each
master to accommodate tasks from short and long jobs, separately, and a small portion of
the workers are reserved for short jobs. Evaluation via theoretical analysis, trace-driven
simulations, and a prototype implementation shows that Pigeon significantly outperforms
Sparrow, a representative distributed scheduler, and Eagle, a hybrid scheduler.

2.1 Introduction
Workload heterogeneity has been a long-standing challenge in datacenter schedul-

ing. Jobs that differ in execution time and fanout degree have distinct requirements for
scheduling. Short jobs have stringent latency requirements and are sensitive to scheduling
delays; long jobs, which usually have a large fanout and high resource demands, require
high-quality scheduling, e.g., improving load balance, but can tolerate some scheduling
delays. While short jobs are usually user-facing applications [19, 63] and important to
user-perceived quality-of-service, long jobs help improve datacenter resource utilization.
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Therefore, it is common practice to collocate short and long jobs in datacenter manage-
ment, but meeting the diverse needs of heterogeneous jobs remains a critical challenge.

Early datacenter job schedulers, e.g., Jockey [44], Quincy [60], Tetrished [123], De-
lay Scheduling [139], Firmament [46] and Yarn [125] are centralized by design. Central-
ized schedulers rely on a global view of resource availability to make scheduling decisions.
As systems scale, handling a large number of jobs and collecting runtime status from a
large number of nodes inevitably become a bottleneck and incur a significant scheduling
delay for each job. This is particularly problematic for short jobs with tight deadlines.

To address the scalability issue, recent research, such as Sparrow [91] and Pea-
cock [73], employs multiple schedulers to dispatch tasks in an independent and distributed
manner. Without requiring a global view of resources, distributed schedulers probe ran-
domly selected nodes (usually twice as many as the number of tasks to be dispatched) and
dispatch tasks onto the least loaded nodes. The probe based technique has been proved to
greatly improve task queuing time compared to random placement [91]. However, each
scheduler still needs to maintain a fairly large amount of probe related states and incurs
non-negligible probe processing overheads.

Besides the above issues, the collocation of heterogeneous workloads presents unique
challenges to the centralized and distributed schedulers. First, heterogeneous workloads re-
quire an effective mechanism to prioritize short jobs over long jobs. Distributed schedulers
lack coordination among one another, thereby unable to enforce global service differentia-
tion among jobs. While centralized schedulers can employ priority queues to differentiate
task scheduling for different types of jobs, they are usually work conserving – low priority,
long jobs can utilize the entire cluster to avoid wasting cluster resources. However, by do-
ing so, a burst of long jobs can inflict the so called head-of-line blocking to short jobs that
arrive immediately after the burst. Even in the presence of centralized priority queues, tasks
from short jobs need to wait for the tasks of long jobs that have already been dispatched
onto workers. Recent work BigC [22] and Karios [35] propose to suspend long jobs’ tasks
via lightweight virtualization to enable preemption on individual workers, but have shown
significant overhead in preempting resource-intensive tasks. Second, high resource utiliza-
tion in datacenters that embrace workload consolidation makes randomized load balancing
less effective. For heterogeneous workloads that contain tasks of various sizes, it is difficult
to identify less loaded nodes. It has also been reported that randomized load balancing is
inefficient and requires multiple rounds of probing to locate idle or less busy nodes if most
nodes are highly loaded [115].

Hybrid approaches, such as Mercury [69], Hawk [36] and Eagle [34], combine cen-
tralized and distributed schedulers, with former handling long jobs and the latter short jobs.
However, long and short jobs are scheduled independently. This makes it difficult to miti-
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gate the negative impact of long jobs on the performance of short jobs. For example, Eagle
[34] employs two techniques to entirely eliminate the head-of-line blocking, i.e., multiple
rounds of probing for short-job task placement and a reserved worker pool for short jobs.
However, as the cluster load becomes high, most of the short jobs are driven by long jobs to
the reserved pool [35], resulting in rapid performance deterioration for short jobs. Our sim-
ulations based on the Yahoo trace [25] show that the performance of short jobs drastically
degrades, by as many as 70 times at high load compared with the non-resource-constrained
case (see Section 4 for details).

In this paper, we demonstrate that a hierarchical scheduler that employs a divide-
and-conquer approach in task scheduling can effectively overcome the shortcomings of
centralized, distributed and hybrid schedulers, and ensure low latency for short jobs while
maintaining high resource utilization without significantly sacrificing the performance of
long jobs. Specially, we propose Pigeon, a two-layer, hierarchical scheduler for heteroge-
neous jobs. Pigeon divides workers in a cluster into groups and delegates task scheduling
in each group to a group master. Upon job submission, Pigeon assigns the tasks of an in-
coming job to the masters as evenly as possible. The dispatching of tasks onto masters is
intended to be simple and does not consider the type of tasks. The master in each group
implements more sophisticated scheduling by maintaining two weighted fair queues, one
for tasks from short jobs and the other for tasks from long jobs, respectively, and partition-
ing workers in each group into high and low priority workers. Tasks of short jobs can run
on any workers while tasks of long jobs can only run on low priority workers. Tasks are
only dispatched when there are idle workers from a group and are otherwise queued at a
respective priority queue according to their types.

Pigeon is a hierarchical solution purposely designed for effective task distribution to
combat heterogeneity. Pigeon’s two-layer design is specially useful for heterogeneous jobs.
First, it effectively mitigates head-of-line blocking of short jobs. The simple job-oblivious
task dispatching among masters prevents a burst of tasks from monopolizing all workers
and provides a certain level of isolation between jobs. Unlike in a centralized scheduler,
where tasks of the same type (e.g., short jobs) are usually served in FIFO order, tasks of
different jobs in Pigeon are evenly distributed among masters, allowing tasks that arrive late
to start to execute even before some tasks of an earlier job start to execute (see Section 4.1
for details). Second, the two-layer design preserves good scalability of distributed sched-
ulers but avoids the pitfalls of randomized load balancing. The size- and type-oblivious
task dispatching among masters provide sufficient randomness for effective load balancing
without global knowledge and the weighted fair queuing based scheduling within a group
is deterministic, ensuring that idle workers are rapidly located to serve latency-sensitive
jobs without starving the long jobs.
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We perform an evaluation of Pigeon through theoretical analysis, simulation, and a
prototype implementation on the Amazon EC2 cloud. Analysis results show that Pigeon
can greatly increase the job-zero-queuing probability compared to Sparrow, a representative
distributed scheduler, for workloads that only contain short jobs. Trace-driven simulations
based on the Yahoo, Cloudera and Google traces demonstrate that Pigeon outperforms
Eagle, a state-of-the-art hybrid scheduler, on short job performance by as many as tens of
times in a highly loaded cluster. Experimental results on the Amazon EC2 further confirm
the effectiveness of Pigeon.

2.2 Pigeon Scheduler
This section presents Pigeon. We first give an overview of Pigeon and introduce its

task placement scheme, and then discuss how it handles tasks at the master level.

2.2.1 System model
We consider a datacenter cluster composed of a large number of workers, each of

which can be an independent processing unit, such as a CPU core. The workers can run in
parallel to execute different tasks. A key idea in Pigeon is to divide workers into groups.
Each group is managed by a master which centrally controls all the tasks handled by the
group and places tasks among the workers in the group. Distributed job schedulers directly
distribute the tasks belonging to a job to the masters. After a master receives a task, it
either directly sends the task to an idle worker to be processed immediately or puts it in
the corresponding task queue if there is no idle worker in the group at the time. Figure
2.1 gives a system overview of Pigeon. The system is composed of multiple distributed
job schedulers, masters, and workers. All job schedulers work independently and do not
exchange any task placement information among themselves.

A master works at the task level and is mostly job oblivious except for its awareness
of whether a task is a low or high priority one, based on whether the task is from a short
or a long job. It maintains two weighted fair task queues, where the high priority and low
priority queues store tasks belonging to short and long jobs, respectively. The classification
of a job as a short or long job is handled by schedulers, based on the type of application
the job belongs to. For example, user-facing applications, such as web searching and so-
cial networking, that generally have short task execution times and require stringent tail
latency guarantee, can be classified as short jobs. On the other hand, background batch
applications, such as data backup, that usually have long task execution times and call for
loose mean response time assurance, can be classified as long jobs. In Pigeon, a small
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Figure 2.1: Overview of Pigeon.

number of workers in the group, called high priority workers, are reserved exclusively for
serving high priority tasks. The other workers, called low priority workers, can serve both
low and high priority tasks. Since all the workers in a group are shared among tasks from
short jobs in a work-conserving manner, while all the low priority workers are shared by
tasks from long jobs, Pigeon can greatly improve resource efficiency, achieving high mul-
tiplexing gain, compared with the existing job schedulers that distribute tasks directly to
individual workers.

A master can run in a worker who needs to be be allocated enough computation
resource to effectively handle group status report and task placement functions. As we
shall discuss in more detail later, in Pigeon a master needs to handle about one incoming
task per second on average, which is modest from computation resource demand point of
view.

2.2.2 Task Scheduling
Assume that a system has Ns schedulers and Ng groups (i.e., Ng masters). Each

group has Nw workers in it. For a job with F tasks (i.e., fanout degree, F ), the scheduler
that handles the job will distribute the tasks as follows. It sends S = ⌊F/Ng⌋ task(s) to
each master (here ⌊x⌋ represents the floor of x, i.e., the integer part of x) and the remaining
r = F%Ng to r randomly selected masters. Since the number of workers in each group is
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much larger than one (i.e., in the range of 50 to 100), according to the law of large numbers,
the workloads distributed to different groups are expected to be much more balanced than
those distributed directly to individual workers. This helps synchronize the task processing
for tasks belonging to the same job and hence, reduce the job completion time, with respect
to the existing job scheduling solutions.

Two task queues of different scheduling priorities are set in each master to store the
corresponding types of tasks1, i.e., tasks belonging to short and long jobs. More specifi-
cally, the two queues are scheduled based on weighted fair queuing with a single integer
weight to ensure that tasks from the high priority queue are served with higher priority
than those from the low priority queue, without starving the low priority tasks. The queue
scheduler ensures that out of every W tasks to be served, at least one comes from the low
priority task queue if it is not empty. The queue scheduler degenerates to strict priority
queuing, when W is set to infinity. In this case, the low priority tasks can be served only
when the high priority task queue is empty.

A master maintains two idle worker lists, i.e., the high and low priority idle worker
lists that record all high and low priority workers that are currently idle, respectively. A
task sent to a master must include the priority of the task. When a master receives a high
priority task, it first checks whether the low priority idle worker list is empty or not. If the
list is not empty, an idle worker from the list is removed and assigned to handle the task.
Otherwise, the master checks whether the high priority idle worker list is empty or not. If it
is not empty, a worker is removed from the list and assigned to handle the task. If both idle
worker lists are empty, the high priority task is put into the high priority task queue. When
a master gets a low priority task, it only checks the low priority idle worker list. If the list
is not empty, a worker is removed from the list to serve the task. Otherwise, the task is put
into the low priority task queue. Whenever a worker is selected to handle a task, the master
sends the task to the worker, together with the scheduler identifier (ID) for the scheduler
from which the task is received. If a master receives multiple tasks from a job at a time, it
handles these tasks one by one consecutively following the same procedure.

We note that both reserving a given portion of workers in a group for high priority
tasks and setting W to be a finite integer help to avoid head-of-line-blocking of short jobs
and starvation of long jobs, respectively. The exact values of these two parameters must be
properly selected in practice. For all our real-world-trace-driven case studies (see Section
4), we found that no more than 10% of workers need to be reserved to achieve high short
job performance, lower than that of Eagle, a state-of-the-art hybrid scheduler. In the mean-
time, W can be simply set to infinity to achieve the highest short job performance without

1Pigeon can be easily extended to support more than two job types by allocating as many priority queues
as the number of job types with weighted fair queuing.
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significantly impacting the long job performance. This is because the trace statistics show
that the short job execution time is less than 20% of the overall job execution time and
hence, long jobs have little chance to be starved by short jobs.

When a worker completes a task, it sends the reports/results directly to the corre-
sponding scheduler and meanwhile, sends an idle notification message to its master. This
may further trigger a task in one of the two queues to be sent to the worker or the worker
to be added to the high priority worker list if it is reserved for high priority jobs, otherwise,
to the low priority worker list.

2.3 Performance Modeling and Analysis
To gain insights on the Pigeon performance, in this section, we conduct simple per-

formance modeling and analyses for Pigeon, compared with the analysis of a performance
model for Sparrow [91]. To be mathematically tractable, we consider only one class of jobs
and assume that the job fanout degree (i.e., the number of tasks in a job) is less than the
number of groups and the number of workers in Pigeon and Sparrow, respectively. Hence,
only one task queue is used in each master. In this case, all the workers serve tasks from all
jobs. We focus on short jobs, which are usually more latency sensitive and whose fanout
degrees are smaller than long jobs. We assume that the job fanout degrees are no larger
than the number of groups.

Consider a cluster with Ng groups and each group with Nw workers, with a total of
Nc = NgNw workers in the cluster. Assume that jobs arrive following a Poisson arrival
process with average arrival rate λ. All the jobs have fanout degree, F , where F ≤ Ng, and
the task execution time follows an exponential distribution with average execution time, Te.

With the above model, each master can then be approximately modeled as running
a single M/M/Nw task queue [29] with average task arrival rate λt = λF/Ng. The worker
utilization is ρ = λtTe/Nw. Given that F ≤ Ng, the probability, Ptask(0), that a task
experiences zero queuing time in a group is then given as follows [29],

Ptask(0) = 1− 1

1 + (1− ρ)( Nw!
(Nwρ)Nw )

∑Nw−1
k=0

(Nwρ)k

k!

, (2.1)

and the average queuing time Tq for a task in a master is

Tq =
1− Ptask(0)

Nw/Te − λt
. (2.2)
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In this paper, a job is considered to have zero queuing time if the job completion
time (not including the communication time) is equal to its longest task execution time.
For example, assume that a job has 2 tasks with execution time 10s and 100s, respectively.
If the job completion time is 100s, it experiences no queuing delay, even though its task
with 10s execution time may have queued for some time, e.g., 50s.

Now we first consider the case that all the tasks in a job have the same execution
time. Then the job-zero-queuing probability in Pigeon, P PI

job(0), can be written as,

P PI
job(0) = (Ptask(0))

F . (2.3)

In this case, the job-zero-queuing probability for Sparrow, P SP
job (0), using 2F probes

per job, is derived in the original paper on Sparrow [91], as follows,

P SP
job (0) =

2F∑
i=F

(1− ρ)iρ2F−iC(2F, i), (2.4)

where C(2F, i) is the combination function.
Figure 2.2 depicts the analytical job-zero-queuing probability for Sparrow (i.e., Eqn.(2.4))

and Pigeon (i.e., Eqn.(2.3)) for two different group sizes, i.e., Nw=100 and 200 and two job
fanout degrees, i.e., F = 50 and 100. As one can see, the job-zero-queuing probability
for Sparrow starts to drop at load 0.4 and quickly drops to near zero at load 0.6, whereas
for Pigeon, similar drops occur in a much higher load region, i.e., 0.6 to 0.8. It means
that Pigeon can work at 20 - 40% higher load than Sparrow, while achieving similar job-
zero-queuing performance as Sparrow, demonstrating the effectiveness of Pigeon for job
scheduling, compared with Sparrow.

We also note that for Pigeon, when Nw increases from 100 to 200, the job-zero-
queuing probability starts to drop at load 0.7, 0.1 higher than the former case. But it quickly
approaches 0 as the load approaches 0.9, similar to the former case. This suggests that a
larger group can improve performance in the medium load region (0.7 to 0.8), but not much
in high load region (>0.9).

The above analyses assume that each task in a job has the same execution time.
However, real trace analyses indicate that the task execution time can vary significantly
from one task to another for a given job. To capture the performance impact of such vari-
ability, we consider the case where the task execution time for a task in a given job follows
an exponential distribution.

We first calculate the average job queuing time, Tjob. Since the job queuing time is
defined as the queuing time of the slowest task of the job, we need to find the queuing time
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Figure 2.2: Job-zero-queuing probabilities for Sparrow and Pigeon with two different group
sizes (Nw=100 and 200). All tasks in a job have the same execution time. (a) Job fanout
F=50; (b) F=100.

for the slowest task of the job. To this end, we observe from figs/pigeon 2.3(b) and 3.6(b)
that the average queuing time in Pigeon is much shorter than the average task execution
time (i.e., Te=100 ms) even at a high load (e.g., 90%). This suggests that whichever task
has the largest execution time is likely to be the slowest one, regardless of its queuing time.
This implies that the average queuing time for the slowest task can be simply approximated
as the average queuing time for all tasks, i.e., Tjob ≈ Tq.

Now we calculate the job-zero-queuing probability. Consider two independent expo-
nential distribution random variables (t1 and t2) with average value Te, the joint probability
density function f(t1, t2) = 1

T 2
e
e−(t1+t2)/Te . Then the probability of t1 − t2 > Tq under

condition t1 > t2 [106] is

P (t1 − t2 > Tq|t1 > t2) = e−Tq/Te . (2.5)

Let A1 and A2 be the tasks with the longest (t1) and second longest (t2) execution
times in a job, respectively. Now the job-zero-queuing probability P dt

job(0) for a job with
different task execution times can be approximately expressed as the probability ofA1 with
zero-queuing time (i.e., Ptask(0)) while t1 − t2 > Tq, i.e., the execution time difference
between the longest and the second longest task execution time is greater than the average
task queuing time Tq, namely,

P dt
job(0) ≈ Ptask(0)e

−Tq/Te . (2.6)
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Figure 2.3: Analysis (denoted as AN) vs Simulation (denoted as SM) at different group
sizes. (a) Job-zero-queuing Probabilities (b) Average job wait time.

We verify the analytical approximations for Tjob and P dt
job by simulation. Assume that

Nc=30,000, F = 100, and Te=100 ms. Each task execution time follows an exponential
distribution. The communication time is set at 0.5 ms between any two nodes. We note
that with communication delay, the average job waiting time Tw is no longer equal to the
average queuing time, but rather the average queuing time plus the communication time.

We study the Pigeon performance by changing Nw from 50 to 200 (the total number
of workers Nc in the system is fixed). Figure 2.3 depicts the job-zero-queuing probability
and the average job waiting time at two different high loads (i.e., 80% and 90%). We note
that the simulation results (denoted as SM) closely match the analytical ones (denoted as
AN), e.g., less than 1% for the job-zero-queuing probability for all Nw’s tested. The largest
difference is about 12% for the average waiting time at Nw=50 and the load of 90%. In
this case, the simulated waiting time (also queuing time) is longer than the analytical one
because the analytical results only consider the waiting time for the task with the longest
execution time. As the job-zero-queuing probability is low (below 60%), the contribution
of other tasks may not be neglected, resulting in larger errors.

The results verify that Eqns. (2.2) and (2.6) can be used to estimate the performance
of Pigeon for handling jobs with fanout degrees less than the number of groups. The re-
sults indicate that the job-zero-queuing probability increases and the average waiting time
decreases as the group size increases. It means that a larger group can provide better per-
formance, particularly from 50 to 100. The performance improves slower as the group size
increases from 100 to 200, particularly for the average waiting time. Further increasing
the group size is expected to offer marginal performance gain. This result provides some
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Figure 2.4: Analysis (denoted as AN) vs Simulation (denoted as SM) results with various
cluster loads. (a) Job-zero-queuing probabilities (b) Average job wait time.

Trace Fmax Fmin Favg Tmax
e (s) Tmin

e (s) T avg
e (s)

Yahoo 5900 1 39.91 21259.9 1.54E-5 118.78
Cloudera 51834 1 272.93 97941.8 3.89E-5 162.19
Google 49960 1 35.32 774922 1E-6 661.74

Table 2.1: Trace statistics of job fanout and execution time

insight on how to set the right group size when a cluster handles jobs with small fanout
degree (i.e., the number of tasks in a job is less than the number of groups in the cluster).

Now we study the performance of Pigeon by varying cluster loads. Two cases with
Nw set at 100 and 200 are studied. The results are given in Figure 3.6. Again, the simulation
results closely match the analytical ones. The results indicate that the job-zero-queuing
probability is close to 1 even at load 80% and reduces to 0.7 at load 90%. This means
that most jobs do not need to be queued even at high load, hence offering high probability
of meeting the tightest job performance requirements at high load. We also note that the
average waiting time is very small (less than 4%) compared to the average task execution
time even at very high load, e.g., 90%. These results clearly demonstrate the effectiveness
of Pigeon for job scheduling.

The following two sections test the efficiency of Pigeon by large-scale simulation
and on a small EC2 cloud cluster, respectively.
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2.4 Simulation Testing
To test the scalability and efficiency, we use simulation to evaluate the performance

of Pigeon against Eagle2 in large clusters, using three real-world traces as input, i.e., Yahoo
[25], Cloudera [24], and Google traces [98]. The open source simulation code of Eagle
[34] is used and an event-driven simulator is developed for Pigeon.

Table 2.1 provides the statistics of these traces, including the maximum/minimum/av-
erage job fanout degrees (denoted as Fmax/Fmin/ Favg) and maximum/minimum/average
task execution time (denoted as Tmax

e /Tmin
e /T avg

e ). We see that the job fanout degree
ranges from 1 to 51834; the execution time varies from microseconds to over 700K sec-
onds; and the average task execution time ranges from 118.78 seconds to 661.74 seconds.
Unlike the modeled workload in the previous section, these statistics indicate that the job
size in terms of both fanout degree and task execution time vary significantly from job to
job in practice. Such job heterogeneity makes it difficult to meet service requirements for
individual applications, e.g., in terms of providing job completion time or throughput guar-
antee. For example, for a cluster with 10K workers and a long job with fanout degree of
50K, each worker needs to execute 5 tasks for the job on average. The placement of such
a job evenly among all the workers in the cluster can take up all the cluster resources at
once, causing head-of-line blocking to the upcoming short jobs. As aforementioned, to ef-
fectively deal with the job heterogeneity issue, both Pigeon and Eagle [34] reserve a subset
of workers to be used by short jobs only, at the group-level and cluster-level, respectively.
In what follows, we first discuss the parameter settings, in terms of the short-vs-long job
thresholds, the reserved worker pool size, the communication delays, the group size, and
the weight value for weighted fair queuing and then performance evaluation.

2.4.1 Parameter Settings
Short Jobs vs Long Jobs: As mentioned earlier, in practice, a scheduler may rely

on whether a job belongs to a user-facing application to classify it as a short job or not.
However, due to the lack of the application information for the three traces and to fairly
compare against Eagle, for Pigeon, we simply use the same short job cutoff times, defined
as the average task execution time of a job, as those used in Eagle, i.e., 90.5811, 272.783
and 1129.532 seconds for the Yahoo, Cloudera and Google traces, respectively.

Reserved Worker Pool Size: The actual number of workers reserved for tasks of short
jobs has significant impact on job completion times for both short and long jobs. The more
workers are reserved, the smaller the job completion time for short jobs but the larger the

2As Eagle outperforms Sparrow and Hawk[36], only Eagle is compared here.
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job completion time for long jobs. We study the performance using the three traces by
varying the worker reservation ratio (due to page limitation, the results are not presented
here). By taking into account of the performance for both short and long jobs, we decide
to set the reservation ratios at 2%, 7% and 9% for the Yahoo, Cloudera and Google traces,
respectively. For Eagle, against which Pigeon is to be compared in the following section,
we set the reservation ratios for the three traces at the same values as those used in [34],
i.e., 2%, 9% and 17%, respectively.

The reservation ratio that gives the best performance tradeoffs for Pigeon is between
2%-9% for the three traces. We also found that setting this ratio at 5% for all the traces
leads to a maximal performance deviation from the best tradeoffs within 20% for both short
and long jobs. Hence, to address the possible lack of the traces in practice, the ratio can be
initially set at 5% and then adjusted as the trace workload runs long enough to estimate the
best ratio.

Weight Value for Fair Queuing: The weight value W is an important parameter for
Pigeon. A smaller (larger) W helps improve the performance of long (short) jobs at the
cost of the other. We study the Pigeon performance by varying W from 5 to 100 and com-
pared to that with strict priority queuing (i.e. W is set to infinity) (again, the results are
not presented here due to page limitation). We find that the short job performance becomes
very sensitive to W at high cluster loads when W gets below 20. For example, while the
99th-percentile short job completion time at W = 20 is within 140% of that at W = ∞,
it increases to more than 300% at W = 5, at high cluster loads for all the three traces.
Meanwhile, we find that the long job performance is insensitive to W in a wide range, e.g.,
only 2% difference from W = 10 to ∞ at all cluster loads for all the three traces. In other
words, no long job starvation occurs even at W = ∞ for all the three traces. Hence, for all
the cases studied, we set W in the range of 20 to ∞.

Communication Delays: The communication delays are set at 0.5 ms between any two
nodes, i.e., a scheduler and a master, a master and a worker, or a worker and a scheduler.

Group Size: Without knowing the exact processing overhead per task scheduling at each
master, we have not taken this overhead into account in both performance modeling in the
previous section and the simulation in this section. As a result, intuitively, one would ex-
pect that the testing results in both previous and this section will be always in favor of larger
group size, with the group size equal to the cluster size offering the highest performance
(i.e., the case when Pigeon degenerates to a centralized scheduler). While this intuition is
confirmed in the previous section based on the results from an ideal model, much to our
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Figure 2.5: Pigeon performance at different group sizes (Pigeon is normalized to the cen-
tralized scheduler).

surprise, it turns out to be false as confirmed by the simulation results in this section. More
specifically, we can conclude that Pigeon with the group size in a finite range actually out-
performs its centralized counterpart, even when the centralized scheduler incurs negligible
processing overhead. The implication of this is significant. It means that one can no longer
assume that so long as it is free from scalability concerns, centralized scheduling is always
the best choice, as it has a global view of the cluster resource availability. In what follows,
we first identify the range and the preferred group size, and then provide an explanation of
why this seemingly counter-intuitive phenomenon can happen.

We compare the Pigeon performance at different group sizes, using the Cloudera
trace as input for the simulation (similar results are obtained for the Yahoo and Google
traces and hence are not given here). We consider the cluster size of 12K and 18K, cor-
responding to high (about 93%) and medium (about 62%) cluster loads, respectively. All
other parameters pertaining to Pigeon are the same as those given above. The 50th, 90th
and 99th percentiles of the short and long job completion times are used as performance
metrics.

From the results depicted in Figure 2.5 (normalized to the centralized one), we can
see that Pigeon performs better than its centralized counterpart for all the three performance
metrics for short jobs, particularly at the high load (figs/pigeon 2.5 (a)). At high load,
the short job performance gets better as the group size reduces from 150 to 50 and then
becomes slightly worse as it further reduces to 25. The largest performance gains for short
jobs are about 17%, 18% and 14% for 50th, 90th and 99th percentile job completion times
at group size 50, compared to the centralized one, respectively. Similar results with smaller
gains are observed at the medium cluster load (Figure 2.5 (c)). For long jobs at high load
(Figure 2.5 (b)), the performance is better (worse) than the centralized one when group
size is above (below) 50. The three percentiles of job completion times decrease when the
group size reduces from 150 to 100, and then increase when the group size further reduces.
In the medium load (Figure 2.5 (d)), the performance for long jobs is worse than that of
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(a) (b)

Figure 2.6: Task scheduling example: (a) tasks at time 0; (b) tasks at time 10. X-t at a
worker or a queue: X is the task name, and t is the remaining task execution time.

the centralized one in the entire group size range studied. All the three percentiles of long
job completion time decrease as the group size increases. The above results indicate that
Pigeon is not only more scalable but also performs better than its centralized counterpart
for handling heterogeneous jobs, particularly at high cluster loads.

Although the optimal group size may be workload dependent (such as the ratio be-
tween the number of short and long jobs, the task execution time distribution, etc.), based
on the above observation, which agree with the observation made for the other two traces,
and consistent with the analytical results for jobs at small fanout (i.e., the multiplexing gain
is small when the group size is over 100), we can safely conclude that in general, the per-
formance is insensitive to the group size in a wide range, i.e., between 50 and 100. Hence
it suffices to set group size anywhere in between 50 and 100 and we set the group size at
100 for all the cases studied in this section.

Explanations for the Counterintuitive Phenomenon: A key observation we make is
that this phenomenon may occur when both job fanout degree and task execution time vary
in a wide range, which is the case in practice (see Table 2.1) but not for the model in the
previous section (that explains why we did not observe this phenomenon there). The best
way to see why this is true is by example.

Consider job scheduling for a single type of jobs and a cluster of 4 workers. At time
0, all the workers are idle and job A with 6 tasks (called as tasks A1, ..., A6) arrives, with
task execution times of 20, 1, 1, 10, 10 and 10 units. Immediately following it are two other
jobs B and C, each having 1 task with execution time of 2 units. We further assume that
there is no processing overhead and the communication time can be neglected. Now we
compare the performance of a Pigeon scheduler and its centralized counterpart.

First consider a Pigeon scheduler, where 4 workers are divided into 2 groups with 2
workers each. Upon the arrival of jobs A, B, and C, in that order, the first 3 tasks from A
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(i.e., A1, A2 and A3 with execution times 20, 1 and 1) are sent to group one and the other 3
tasks from A (i.e., A4, A5 and A6 all with execution time 10) to group two. Then the task
from job B is sent to group one and the task from job C to group two. At time 0, in group
one, two tasks A1 and A2 with execution times 20 and 1 are served by workers 1 and 2,
respectively; and in group two, workers 3 and 4 serve tasks A4 and A5, respectively. The
tasks at time 0 in Pigeon are shown in Figure 3.10 (a). At time 1, worker 2 completes the
task A2 and immediately starts serving the task A3. It finishes the task A3 at time 2 and
then serves the task from job B which is completed at time 4. Hence job B is finished at
time 4. At time 10, workers 4 and 5 complete the tasks A4 and A5, and then serve the tasks
A6 and C. The tasks in Pigeon are now given in Figure 3.10 (b). The task from job C is
finished at time 12, so job C is completed at time 12. As tasks A1 and A6 are finished at
time 20, so job A finishes at time 20. The job completion times in Pigeon for the three jobs
are 20, 4 and 12, for a total of 36 units.

Now, consider a centralized scheduler. The first 4 tasks (i.e., A1, A2, A3 and A4)
from job A are sent to workers 1-4 at time 0, respectively, as given in Figure 3.10 (a). At
time 1, workers 2 and 3 complete their tasks and then serve the other two tasks (i.e., A5

and A6) from job A. At time 10, worker 4 finishes its task and then serves the task from
job B which will be completed at time 12. So job B is completed at time 12. The tasks at
time 10 is given in Figure 3.10 (b). At time 11, workers 2 and 3 complete their tasks, and
then worker 2 serves the task from job C which is completed at time 13, and hence job C
is completed at time 13. Task A1 finishes at time 20, and hence job A finishes at time 20.
So the job completion times for the three jobs are 20, 12 and 13, respectively, for a total of
45 units, 9 units or 25% more than the Pigeon scheduler!

From the above example, we see that for centralized scheduling, a job with a large
fanout degree (i.e., job A) causes head-of-line blocking of the following jobs of the same
type, even when their fanout degrees are low (i.e., jobsB andC). The head-of-line blocking
caused by the same type of jobs may be alleviated by enabling task preemption [3,8], which
however, may incur significant preempting overhead, particularly for resource-intensive
tasks.

In contrast, for Pigeon, the tasks for jobs are distributed to different groups. This
enhances the chance for tasks from later jobs to be served before tasks from the earlier
jobs due to heterogeneous task execution time distribution. This helps reduce the chance of
head-of-line blocking of jobs with small fanout degrees by jobs with large fanout degrees,
hence, resulting in better overall performance. While helping more in alleviating head-of-
line blocking by dispersing the tasks of a job with a large fan-out degree to more groups,
using a smaller group size reduces multiplexing gain. This help explain why Pigeon gives
the overall best performance at the group size in a certain range, i.e., 50 to 100.
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Figure 2.7: Short job completion time, W = 20.

Master Workload Estimation: Finally, with the parameters given above, we can now
estimate the offered task load at a master. Assume that the cluster size, Nc=20,000, and
hence, the total number of masters, Ng=200, given the group size, Nw=100. The real trace
statistics in Table 2.1 suggest that the average task execution time is more than 100s (from
118s to 661s, to be exact). It means that a master needs to handle about only 1 task per
second on average (or equivalently, 1 task per 100 seconds per worker), this overhead is
negligible. In the case of a long job with a huge number of tasks, such as a job with 50,000
tasks, each master will see a burst of task arrivals of size 250. This is in stark contrast
with a distributed scheduler, who needs to generate and dispatch 50,000 tasks. This exam-
ple clearly indicates that the resource demand on a master is modest and a single worker
should be sufficient to serve as a master, which consumes only 1% (i.e., 1 out of 100) of the
total worker resources in the cluster. This means that indeed, Pigeon is a highly scalable
solution.

In practice, to save the cluster resource, a master may run in a regular worker as long
as the worker has enough resource to act as both a master and a regular worker. An alter-
native is to allow a worker to run multiple masters. For example, consider a system with
10,000 workers and each group with 100 workers. We may use 10 workers, each hosting
10 masters, instead of 100 workers with one master each, hence, cutting the overhead from
1% to 0.1%.

2.4.2 Performance evaluation
The number of workers in the whole cluster is used as a tunable parameter to adjust

the load level. We use 50th, 90th and 99th percentile job slowdowns with respect to the
case of unlimited resources (i.e., the case with zero communication time and zero task
queuing time) for both short and long jobs as performance metrics. More specifically,
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Figure 2.8: Long job completion time, W = 20.

the xth-percentile short/long job slowdown is defined as the xth-percentile short/long job
completion time divided by the xth-percentile short/long job execution time. Here a job
execution time is defined as the largest task execution time among all the tasks in the job.

figs/pigeon 2.7 and 2.8 give the slowdowns of the 50th, 90th and 99th percentiles
of short and long jobs for all the three traces. Here W is set at 20 in Pigeon. First, we
note that at the fixed job arrival rate, as the number of workers in the cluster increases,
the slowdowns of the two schedulers converge and approach 1 for both short and long
jobs. This is expected, because as the cluster size becomes larger, or equivalently, the
load becomes lighter, all the jobs experience smaller queuing delays and hence, smaller
job completion times, regardless what scheduling mechanism is used. Hence, it is more
interesting and important to focus on small cluster sizes or high load regions. As the cluster
size reduces, we can see that remarkable performance gaps between the two emerge.

In the case of the Yahoo trace, at the cluster size of 3K, the slowdowns for short jobs
in Pigeon are about 1.3, 1.5 and 5.3 times which indicates the queuing times are less than
one job execution time for the 50th and 90th percentiles, and just above 3 job execution
times for the 99th percentile. The results indicate that Pigeon achieves excellent short job
performance even at very high cluster loads (about 95%). In contrast, the slowdowns for
Eagle are above 70 times for all the three percentiles, implying that for Eagle, the queuing
times are more than 70 job execution times for short jobs. Similar results can be found
with the Google and Cloudera traces as shown in figs/pigeon 2.7(b)-(c). In what follows,
we explain why Pigeon outperforms Eagle by such big margins.

Eagle improves over Hawk, as detailed in [34], by allowing workers who are han-
dling long jobs to reject the probes coming from distributed schedulers who handle short
jobs. This allows a distributed job scheduler to issue more rounds of probes to discover
workers that are not handling long jobs, hence alleviating the head-of-line blocking ef-
fect for short jobs. However, most lower priority (i.e., non-reserved) workers can still be
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Figure 2.9: Short job completion time, W = ∞.
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Figure 2.10: Long job completion time, W = ∞.

blocked by the long jobs, either at high load or whenever a long job with a large fan-out
degree arrives. In this case, after multiple rounds of random probing, most of the tasks
from short jobs are forced to be served by the high priority (i.e., reserved) workers, which
however, may become the bottlenecks themselves. For example, for the Yahoo trace, con-
sider the case of a cluster with 3K workers and 60 high priority workers (2% as set in Eagle
[34]) for short jobs. When a long job with 5900 tasks (i.e., the maximum number of tasks
in a job for the Yahoo trace) arrives, each low priority worker has to serve, on average,
about 2 tasks of the job. After the tasks of the long job are placed, all the upcoming short
jobs following this long job are forced to be served by only 60 high priority workers after
a number of rounds of probing. In other words, all the low priority workers are blocked by
the long job, hence resulting in big job completion time for short jobs. The key difficulty is
that as a hybrid scheduler, Eagle distributes tasks from short and long jobs independently
by distributed and centralized schedulers, respectively.

In contrast, Pigeon allows centralized scheduling of tasks coming from both short and
long jobs and full resource sharing at the group level. This makes it possible for Pigeon
to largely remove head-of-line blocking without starving the long job through weighted
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fair queuing and worker reservation. Again, consider the above example where a long job
with 5900 tasks arrives at a cluster with 3K workers. Assume that the workers are divided
into 30 groups of 100 each with 2 (i.e., 2%) workers reserved for the tasks from short
jobs. Now about 197 (i.e., 5900/30) tasks from the long job are sent to each group. In a
given group, the master dispatches as many tasks out of 197 to the available low priority
workers as possible and the rest to the low priority queue, e.g., with 10 to the available low
priority workers at the load of 90% (i.e., about 90% or 88 out of 98 are currently busy)
and 187 queued. The upcoming tasks of short jobs are either served by an idle reserved
worker or queued in the high priority queue. However, in addition to the 2 high priority
workers, whenever a low priority worker becomes idle, it will first have high chance ( 19/20
at W = 20) to serve a task from the high priority queue. Unlike Eagle, most of the long
tasks (i.e., 187) are not queued at the low priority workers, but centrally at the master,
high priority tasks following these low priority tasks will not be blocked by the latter from
accessing the low priority workers. Moreover, a task at the head of the high priority queue
is likely to find an idle low priority worker soon, because the probability that one out of 98
busy lower priority workers will finish its task in the near future is high. This explains why
Pigeon can significantly outperform Eagle in terms of short job performance, especially in
the high load region.

The fact that Pigeon performs slightly better than Eagle even for long jobs, despite
the use of the weighted fair queuing for short jobs over long ones, as depicted in Figure 2.8,
can be explained as follows. First, Pigeon generally reserves a smaller number of workers
for short jobs than Eagle (i.e., 9% vs. 17% and 7% vs. 9% in the cases of the Google and
Cloudera traces, respectively and 2% vs. 2% in the case of the Yahoo trace), hence allowing
more workers to be used by the long jobs. This explains why overall Pigeon outperforms
Eagle in the cases of the Google and Cloudera traces but not as much in the Yahoo trace.
Second, for all the real traces studied, the overall execution time for short jobs constitutes
less than 20% of the total job execution time, implying that the possible negative impact
of giving high priority to short jobs (i.e., letting W=20) on the performance of long jobs is
quite limited.

We also test the effect of W by comparing the setting of W = ∞ against that of
W=20. The results are given in figs/pigeon 2.9 and 2.10. We can see that only the short job
completion times at very high load are different. For example, when W changes from 20
to ∞, the slowdowns of the 50th, 90th, and 99th short job completion times for the Yahoo
trace are reduced from 1.3, 1.5 and 5.3 to 1.2, 1.4 and 3.6, respectively, in a cluster with
3K workers. while the corresponding slowdowns for long jobs are within 2%. The results
indicate that the performance of Pigeon is indeed insensitive to W, in the range of [20, ∞].
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The above results clearly demonstrate that Pigeon is a much more effective job sched-
uler than Eagle in terms of both design complexity (e.g., without probing phase, without
having to run two different types of schedulers, and no worker involvement of scheduling)
and performance.

2.5 Performance Evaluation on EC2 Cloud
In this study, we compare the performance of Pigeon against both Sparrow [91] and

Eagle [34], the state-of-the-art distributed and hybrid job schedulers, respectively, in a small
cluster on the Amazon EC2 cloud. The Pigeon implementation includes two parts: the Pi-
geon scheduler code and the Spark plug-in. Distributed Pigeon schedulers are concurrently
deployed at the application frontends, exposing services to allow the framework to sub-
mit job scheduling requests using remote procedure calls (RPCs). All RPCs for internal
communications between modules of a Pigeon scheduler are defined with Apache Thrift
[120]. We directly run the available open source implementation codes for Sparrow [91]
and Eagle [34]. m4.large instances are used to serve as workers, masters and schedulers.

The cluster is composed of 10 schedulers and 120 workers. For Pigeon and Eagle,
10% of the workers are reserved for short jobs. In Pigeon, the workers are divided into 3
groups with 40 workers each. One worker in each group is selected as a master and W
is set to infinite (i.e., each master runs two strict priority task queues). A sample job trace
including 5000 jobs is extracted from the Google trace. The task execution time is scaled to
the range of 10ms to 100s and the job fanout degree is scaled to the range of 1 to 100. The
short job cutoff time is set at 1s. It turns out that 10% jobs are long jobs, which however,
consume about 88% overall task execution time, in line with the statistics of the original
trace.

We use average job arrival rate as a tuning knob to adjust the cluster load. As the
Poisson arrival process has been widely considered a good model for datacenter workload,
we assume that the job arrival process follows the Poisson distribution. The experimental
results are also compared against the simulation results. The simulators for Pigeon and
Eagle are the same as the ones described in the previous section and the open source event-
driven simulator for Sparrow [91] is used.

We find that the short job performance for Sparrow and Eagle are very sensitive to
the number of schedulers in use (by changing the number of schedulers from 1 to 10). This
is because the processing delay in the probe phase becomes non-negligible compared to the
job execution time for short jobs. In contrast, Pigeon offers almost the same performance,
regardless how many schedulers are used. In all the experiments, we use 10 schedulers to
minimize the impact of the processing delay for Sparrow and Eagle.

26



60 70 80 90

Load (%)

0

50

100

150

200

250

S
pa

rr
ow

 n
or

m
al

iz
ed

 to
 P

ig
eo

n
Short jobs

50th-Imp
50th-Sim

90th-Imp
90th-Sim

99th-Imp
99th-Sim

(a)

60 70 80 90

Load (%)

0

0.2

0.4

0.6

0.8

1

1.2

S
pa

rr
ow

 n
or

m
al

iz
ed

 to
 P

ig
eo

n

Long jobs

50th-Imp
50th-Sim

90th-Imp
90th-Sim

99th-Imp
99th-Sim

(b)

60 70 80 90

Load (%)

0

10

20

30

40

E
ag

le
 n

or
m

al
iz

ed
 to

 P
ig

eo
n

Short jobs

50th-Imp
50th-Sim

90th-Imp
90th-Sim
99th-Imp
99th-Sim

(c)

60 70 80 90

Load (%)

0

0.2

0.4

0.6

0.8

1

1.2

E
ag

le
 n

or
m

al
iz

ed
 to

 P
ig

eo
n

Long jobs

50th-Imp
50th-Sim
90th-Imp
90th-Sim
99th-Imp
99th-Sim

(d)

Figure 2.11: Experiment vs Simulation. Sparrow (a) short job and (b) long job; Eagle (c)
short job and (d) long job.

Figure 3.9 depicts both measured (on EC2) (denoted as Imp) and simulated (denoted
as Sim) 50th, 90th and 99th short and long job completion times normalized to Pigeon.
The results for Sparrow and Eagle are depicted in figs/pigeon 3.9 (a) and (b) and figs/pi-
geon 3.9(c) and (d), respectively. Clearly, the experiment results are consistent with the
simulation results. The differences between experiment and simulation are within 15% for
short jobs and 5% for long jobs, mainly caused by the unaccounted processing overhead in
the simulation.

As Sparrow does not distinguish between short and long jobs, it incurs up to 200 (10)
times longer short job completion times than Pigeon (Eagle), although it offers up to 15%
better long job completion times than both Pigeon and Eagle. This means that Sparrow
is not effective in supporting short jobs in the presence of heterogeneous workloads. We
also see that Pigeon provides significant performance gain for short jobs over Eagle. For
example, at 90% load, the 50th, 90th and 99th percentile short job completion times for
Eagle reaches about 25, 30 and 7 times longer than those for Pigeon. Pigeon and Eagle
achieve comparable performance for long jobs at all cluster loads. The experiment results
indicate that Pigeon is highly effective in handling heterogeneous jobs, which agrees with
the simulation results obtained from the previous section.

The Pigeon project information and all the simulation and prototype implementation
source codes can be found at https://github.com/ ruby-/pigeon.

2.6 Practical Considerations
This section discusses some practical implementation issues, i.e., how to handle mas-

ter failure and how to deal with heterogeneous workers and task assignment constraints.
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2.6.1 Master Failure Recovery
A master plays a key role in a group. If a master fails, all the group information,

such as the queued tasks and idle worker lists, are lost. In a full-fledged implementation
of Pigeon, one may borrow a failure recovery mechanism widely used in the traditional
distributed systems for failure recovery [114]. To allow fast recovery from a master failure,
a second master is selected in a group. The second master can be another worker. A master
needs to periodically update the second master on the group information and task state
information. Whenever a master failure is detected, the second master can immediately
take the master responsibility from the failed master without losing any state information.
After a master failure happens, the second master sends a notice to each worker in the group
and each scheduler in the cluster to notify them of the changes, so that the subsequent tasks
and idle worker notices are sent to the new master. Now the second master acts as a new
primary master of the group and then a new secondary master should also be chosen for
subsequent backups.

If both masters fail at the same time, the group information is lost. To quickly recover
the group information, any worker in the group that detects such a failure can take the
responsibility as a master. It broadcasts a message into the group to ask worker status.
Each worker sends its response back to the new master with its status (idle or busy, priority,
executing task, etc.). The new master also needs to send a message to each scheduler to
get the task information sent to the group to recover the task queue list in the group. In
case that multiple workers take the responsibility as a new master at the similar time, these
workers can elect one as the new master based on some rules, e.g., the timestamp of master
declaration time, CPU power or storage capacity and so on.

2.6.2 Dealing with Heterogeneous Workers and Tasks with Assign-
ment Constraints

In the Pigeon design, we implicitly assumed that the same number of workers are
assigned to each group and all the workers have the same processing power. In practice,
however, the number of workers in a group may not be conveniently set to be the same.
Even if the numbers of workers assigned to different groups are the same, different workers
may have different processing powers. In this case, the schedulers in Pigeon may need to
assign tasks to different groups in proportion to their relative processing powers to balance
the task load among groups. More specifically, the probability of a task assigned to a group
is proportional to the group’s processing power.

Moreover, in practice, some tasks may have to be assigned to specific workers, as
the needed resources or data are only available at those workers. All these may cause load
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imbalance among worker groups and hence have a negative impact on the performance of
Pigeon. One possible solution is to require that all masters report their queue lengths for all
the priority queues periodically to distributed schedulers. This will allow distributed sched-
ulers to make more informed decision as to how to balance the load among groups. The
well-balanced task assignment will reduce the overall job completion latency and increase
the overall throughput, and hence resulting in high system utilization.

2.7 Related Work
Today’s datacenter job schedulers can be classified into three categories, i.e., cen-

tralized, distributed and hybrid. The earlier job schedulers, e.g., Jockey [44], Quincy [60],
Tetrished [123], Delay Scheduling[139], Firmament [46] and Yarn [125] are centralized by
design. A centralized scheduler can potentially provide high worker utilization, as it has
a global view of the worker status for individual workers. But the scalability and head-
of-line blocking are the major problems concerning centralized scheduling solutions. The
scheduling decisions and status reports can overwhelm a centralized scheduler and cause
additional job delay. Some shared-state schedulers, e.g., Apollo [17], Omega [103], and
Mesos [56], use a centralized resource manager to maintain shared state. The job distribu-
tors are distributed but the decision making is based on the shared status of the cluster re-
source availability. The shared status is updated by the distributed schedulers and/or work-
ers. However, the shared state may not be always up-to-date and hence may result in job
placement conflict and retries. This approach still requires a central entity for shared status
maintenance. Recent work BigC [22] and Karios [35] propose to deal with job heterogene-
ity by suspending long jobs’ tasks via lightweight virtualization to enable preemption on
individual workers, but have shown significant overhead in preempting resource-intensive
tasks.

Yarn Federation [45] is developed to address the scalability issue of Yarn [125]. In
Yarn Federation, a cluster is split into sub-clusters. Jobs are distributed to sub-clusters,
Jobs are distributed to sub-clusters, each of which in turn performs job scheduling (i.e.,
distributing tasks of received jobs). With the coordination between resource managers and
nodes from different sub-clusters, the tasks of a job can span the entire cluster, not limited
to the sub-cluster the job is mapped to. As a result, YARN federation is more of a quasi-
centralized task scheduling solution than a hierarchical one. Hydra [30] leverages the Yarn
Federation architecture, in which a collection of loosely coupled sub-clusters coordinates
to provide the illusion of a single massive cluster. In contrast, Pigeon is indeed a two-level
hierarchical task scheduling solution, in which the tasks from a job spans across multiple
groups (or sub-clusters). First, distributed job schedulers evenly distribute tasks of jobs to
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all group masters. Then, in turn, each group master, which is job-agnostic, uses priority
queues to differentiate the scheduling of short and long tasks. Moreover, while YARN
federation aims to address the scalability issue of the resource manager in YARN, Pigeon
mainly aims to address job heterogeneity concerning centralized and hybrid job scheduling
solutions.

Sparrow [91], on the other hand, is a fully distributed job scheduler based on ran-
dom batch-based probe and late task binding. Although free from the scalability issues
that plague the centralized job schedulers, the distributed schedulers and workers in Spar-
row need to maintain fairly large amounts of task related state information and incur high
communication cost for probing, including probe management, probe queuing, probe pro-
cessing, and redundant probe removals. Furthermore, it does not perform well in highly
loaded clusters nor in the presence of heterogeneous workloads. Another probe-based dis-
tributed scheduler, Peacock [73], organizes workers in a ring overlay network and a probe
can be rotated to its neighbors at fixed time intervals to balance the probe queue lengths
among workers. Peacock, however, requires that the workers communicate with each other
to form and maintain a ring topology. Moreover, it inherits much of the drawbacks pertain-
ing to probe-based solutions in general.

To solve the scalability issue while providing high performance in the presence of
heterogeneous jobs, Hybrid schedulers [36, 34, 69, 134] are proposed. Hybrid schedulers
combine a centralized scheduler and a set of distributed schedulers. Mercury [69] uses
distributed schedulers to place jobs without latency requirement and a centralized scheduler
to place jobs with guaranteed resource requirement. Hawk [36] uses a centralized scheduler
for long job placement and the distributed schedulers for short job placement. The short
job scheduling is similar to the techniques used in Sparrow, i.e., batch probing and late task
binding based. Some workers are reserved to serve short jobs only, as a way to mitigate
head-of-line bocking. Moreover, an idle worker can steal tasks belonging to short jobs
from other workers to improve efficiency. Eagle [34] improves over Hawk by introducing
sticky batch probe with each probe staying on a worker until all the tasks of the job finish.
It also allows multiple rounds of probing to mitigate head-of-line blocking. These hybrid
schedulers need a central scheduler that can still pose a potential bottleneck. Moreover,
short job scheduling is still probe-based and hence, inheriting its shortcomings.

More complex queuing mechanisms than priority queuing are being used to mini-
mize the job performance. Queue reordering [34, 57, 123, 103] is used to reduce the job
completion time. More complex queue management techniques [96] such as appropriate
queue sizing, prioritization of task execution via queue reordering, and starvation freedom
are also being used to improve the efficiency of job scheduling.
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Some job scheduling solutions [67, 33, 116] are developed to improve the service
level objectives (SLOs) violations. Morpheus [67] is designed to reduce the SLOs viola-
tions through automatically deriving SLOs and job resource models from historical data,
relying on recurrent reservations and packing algorithms to enforce SLOs, and dynamic re-
provisioning to mitigate inherent execution variance. The tail-cutting techniques [33, 116]
can help mitigate the impact of stragglers on the job tail-latency performance.

Pigeon differs from the existing solutions in two important aspects. First, it is a
hierarchically distributed solution to avoid head-of-line block in centralized schedulers.
Second, it is free of the probing phase, a technique shared by all the existing distributed
and hybrid solutions.

2.8 Conclusions
In this paper, we propose Pigeon, a distributed hierarchical job scheduler for datacen-

ters. In Pigeon, workers are divided into groups. Each group has a master worker which
centrally manages all the tasks handled by the group. Weighted fair queuing is used to
provide priority service differentiation between tasks of short jobs and tasks of long jobs.
A small portion of workers in each group are reserved to serve short job tasks only. The
ability of each master in managing its group resources centrally makes Pigeon highly ef-
fective in scheduling heterogeneous jobs. The analysis, simulation and experiment results
demonstrate that Pigeon outperforms Sparrow and Eagle by significant margins. Pigeon is
implemented and tested in Amazon EC2 cloud, which has validated the Pigeon simulator
used for the Pigeon evaluation.
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CHAPTER 3

TailGuard: Tail Latency SLO Guaranteed Task Scheduling for Data-
Intensive User-Facing Applications

A primary design objective for Data-intensive User-facing (DU) services for cloud
and edge computing is to maximize query throughput, while meeting query tail latency
Service Level Objectives (SLOs) for individual queries. Unfortunately, the existing solu-
tions fall short of achieving this design objective, which we argue, is largely attributed to
the fact that they fail to take the query fanout explicitly into account. In this paper, we
propose TailGuard based on a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-First
Queuing policy (TF-EDFQ) for task queuing at individual task servers the query tasks are
fanned out to. With the task queuing deadline for each task being derived based on both
query tail latency SLO and query fanout, TailGuard takes an important first step towards
achieving the design objective. A query admission control scheme is also developed to
provide tail latency SLO guarantee in the presence of resource shortages. TailGuard is
evaluated against First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ)
and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by both simulation and testing in
the Amazon EC2 cloud. It is driven by three types of applications in the Tailbench bench-
mark suite. The results demonstrate that TailGuard can improve resource utilization by up
to 80%, while meeting the targeted tail latency SLOs, as compared with the other three
policies. TailGuard is also implemented and tested in a highly heterogeneous Sensing-as-
a-Service (SaS) testbed for a data sensing service, with test results in line with the other
ones.

3.1 Introduction
It has been widely recognized that the query tail latency for Data-intensive User-

facing (DU) services, such as web searching, online social networking, and emergency re-
sponse through edge-based crowdsensing, has a great impact on user experience and hence,
business revenues. For example, for Amazon online web services, every 100-millisecond
addition of query tail latency causes 1% decrease in sale [7]. To meet strict tail latency Ser-
vice Level Objectives (SLOs), the resources for DU services are generally over-provisioned
[26, 12], at the cost of reduced profit. As a result, a key design objective of a DU service,
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called the design objective in short hereafter, is to maximize the resource utilization or
query throughput, while meeting tail latency SLOs for individual queries.

However, achieving the above design objective is by no means easy. A query for a
typical DU service may spawn a number of tasks, known as query fanout, to be dispatched
to, queued and serviced in parallel in different servers or edge nodes where the data shards
reside and the slowest task of the query determines the query response time [27, 33]. The
range of query fanouts may differ from one service to another, e.g., up to several hundreds
for online social networking [89], on the order of several thousands to tens of thousands
for web search [33], and potentially up to millions for emergency response through edge
crowdsening [99]. A small number of outliers (caused by, e.g., skewed workloads [116] or
software/hardware resource variations [77]) can significantly impact the query tail latency
performance [33]. While a large body of works have been devoted to alleviating the impact
of outliers on the query tail latency performance (e.g., [97, 127, 93, 80, 38, 37, 136, 63, 51,
135, 112, 53]), to the best of our knowledge, no existing solution attempts to meet more
than one query tail latency SLO to satisfy different performance requirements of individual
users, while maximizing the resource utilization or query throughput, hence falling short
of the design objective.

In this paper, we claim that a solution that stands a chance to achieve the design ob-
jective must be not only tail latency SLO aware but also query fanout aware. This is simply
because to meet a given tail latency SLO, the task resource demands for tasks belonging to
queries with different fanouts are different. For example, assume that with a given amount
of resource allocated to process each task and the task response time for each task has 1%
probability to be over 100 ms. Then the query response time for a query with fanout kf has
probability, 1-0.99kf , to be over 100 ms, meaning that a query with kf=1 and kf=100 have
1% and 63.4% probabilities of being over 100 ms, respectively. This implies that while a
query with kf=1 can meet the tail latency SLO in terms of the 99th percentile tail latency
of 100 ms, a query with kf=100 cannot. In order to allow the query with kf=100 to also
meet the same tail latency SLO, a task associated with the query must be allocated a much
larger amount of resource so that the chance it will exceed 100 ms is as small as 0.01%.
This ensures that the probably that the query response time exceeds 100 ms is 1-0.9999100

= 0.01 or 1%, i.e., meeting the same tail latency SLO as the query with kf=1. This example
clearly demonstrates that to meet a query tail latency SLO for all queries regardless query
fanouts, the task resource demands for tasks belonging to queries with different fanouts
are different and a task belonging to a query with a larger fanout demands more resources,
confirming our claim.

The implication of the above observation is significant. First, even with all the
queries sharing a given tail latency SLO, the tasks belonging to queries with different
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fanouts should be treated differently, e.g., by being allocated different amounts of resource
to closely match their resource demands so that all the queries can meet the tail latency
SLO at the lowest possible resource consumption. Any solution that fails to take the query
fanout explicitly into account is guaranteed to result in resource overprovisioning, sim-
ply because such a solution will have to allocate task resources based on the worst-case
task resource demand. This partially explains why the way to meet stringent tail latency
SLOs for large-scale DU services in today’s datacenters is normally through resource over-
provisioning [26, 12]. Our simulation results (see Section 4.2 for details) indicate that by
taking fanout into account, TailGuard can improve resource utilization by 80% compared
to the First-In-First-Out (FIFO) queuing policy, while meeting a stringent query tail latency
SLO for DU workloads.

Second, consider a DU service that supports multiple classes of queries with a higher
class requiring a more stringent tail latency SLO. Since the resource demand for a task is
a function of not only the tail latency SLO but also the fanout of the query the task be-
longs to, it becomes apparent that a task associated with a query of a lower class but with
a larger fanout may end up demanding more resources than a task in a query of a higher
class but with a smaller fanout. This renders class-based task queue scheduling disci-
plines (e.g., PRIority-based task Queuing (PRIQ) [122, 48, 26]), task fanout-unaware queue
management policies (e.g., the Tail-latency-SLO-aware Earliest-Deadline-First Queuing
(T-EDFQ)), or task preemption [22] policies inadequate to achieve the design objective.
This may also render some task reordering solutions solely based on task sizes [77, 86] in-
adequate. Our simulation results (see details in Section 4.2) demonstrate that TailGuard can
improve overall resource utilization by 40% over the PRIQ policy and 22% over T-EDFQ
in supporting two classes of tail latency SLOs for DU workloads.

In this paper, we propose TailGuard, a Tail-latency-SLO-and-Fanout-aware Earliest-
Deadline-First Queuing(TF-EDFQ) policy, as a first step towards achieving the design ob-
jective for DU services in general. As a top-down approach, TailGuard decouples the upper
query level design from the lower task level design. First, at the query level, a task decom-
position technique is developed to translate the query tail latency SLO for a query with a
given fanout into a task queuing deadline for tasks spawned by the query at the task level,
reflecting the resource demand of the tasks. This effectively decomposes a hard cotask
scheduling problem at the query level into individual queue management subproblems at
the task level. Second, at the task level, a single TF-EDFQ corresponding to a task server is
used to enforce the task queuing deadlines, as a way to differentiate resource allocation for
tasks with different resource demands. In principle, TailGuard permits unlimited number of
query classes and is lightweight, as it incurs minimum overhead for task queuing deadline
estimation and requires to implement only a single earliest-deadline-first queue per task

34



server for any DU applications. A query admission control scheme is also developed to
provide tail latency SLO guarantee in the face of resource shortages.

TailGuard, or equivalently, TF-EDFQ, is evaluated against FIFO, PRIQ and T-EDFQ
(Section 3.1 gives their exact definitions) by both simulation and testing in the Amazon EC2
cloud. Three traces generated from the Tailbench benchmark suite [71] are used as input.
The results demonstrate that TailGuard can improve resource utilization by up to 80%,
while meeting the targeted tail latency SLOs, as compared with the other three policies.
The query admission control scheme is also tested and the results indicate that it can indeed
provide query tail latency SLO guarantee. Finally, TailGuard is implemented and tested in
a highly heterogeneous Sensing-as-a-Service (SaS) testbed for an edge-based temperature-
and-humidity sensing service, with test results in lines with the other ones.

3.2 Background and Related Work
3.2.1 Data-Intensive User-Facing Services

DU services are a predominant class of workloads in today’s cloud and have also
emerged as an important class of workloads in an edge-cloud ecosystem, generally known
as SaS1[92, 108]. Predominant DU services are driven by queries that require query re-
sponsiveness in sub-seconds to seconds and may need to touch on massive datasets, which
are typically carried out in a data parallel fashion. The working dataset for a service (e.g.,
the total amount of crowdsensing data in the case of an SaS) in this class are distributed to
a large number of task servers/edge nodes. Accordingly, a query may spawn a number of
tasks to be dispatched to some or all of these task servers/edge nodes to be processed. A
notable subclass of such services is OnLine Data-intensive (OLDI) services [83]. A query
for an OLDI service needs to touch upon every part of the working dataset, i.e., the query
fanout for each query is equal to the total number of servers involved (ranging from a few
to tens of thousands). Large online search products, online advertising and online machine
translation, are examples of OLDI services. For other DU services, different queries may
need to touch upon different parts of the working dataset. A notable example of such a
service is social networking services, such as Facebook and LinkedIn. For instance, the
fanout for a typical Facebook page query is in the range of one to several hundreds with
65% under 20 [89]. Other examples are emergency response SaSes, e.g., finding a miss-
ing person through surveillance cameras and fire detection and alert via crowd temperature

1For an SaS, users send sensing requests to the cloud. The cloud then dispatches related query tasks to
geo-distributed edge nodes to acquire desired sensing data collected and processed through crowdsensing,
which are subsequently merged in and returned to the users from the cloud.
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Figure 3.1: A typical DU application process architecture

sensing. A query of such a service is expected to have a fanout anywhere between one to a
few millions depending on the scope of sensing.

A DU service may be launched in a dedicated datacenter cluster owned by a service
provider, e.g., the web search service by Google, in a cloud by a tenant who rents cloud re-
sources from a cloud service provider (e.g., Amazon cloud), or in an edge-cloud ecosystem
owned by multiple stake-holders, including individuals who own the sensing data and/or
edge devices and cloud service providers.

Figure 3.1 depicts a generic DU application processing model [111, 83]. It is com-
posed of three parts, including a front-end server, a mid-tier server (called query handler in
this paper), and a set of back-end leaf servers (called task servers in this paper2), each host-
ing a piece of the total dataset, also known as a shard, a partition, or a published sensing
dataset (e.g., in an edge node).

When a user request arrives at the front-end server, its workflow is parsed to generate
a set of queries to be issued sequentially to the query handler at the mid-tier server. Due
to query/task dependency, the next query cannot be issued until the current one finishes.
For each query received, the query handler spawns a number of tasks for the query and

2Task servers are also known as, e.g., workers, virtual-machines (VMs), containers, or edge nodes, de-
pending on the specific services to be studied.
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dispatches them to the queues corresponding to the task servers3 that will serve them when
they reach the queue heads. The tasks for the same task server are queued based on a given
queuing mechanism. In practice, task servers are usually allocated dedicated CPU/mem-
ory/storage resources in the form of, e.g., cores, VMs, containers, or pods, as well as
fix-sized data shards, forming a more or less homogeneous task server cluster. As a re-
sult, the differentiation of resource allocation among tasks with different resource demands
are mainly through task queuing policies, e.g., PRIQ [122, 48, 26], task-reordering-based
queuing [77, 86, 94], or EDFQ, unless task-aware resource auto-scaling [101] is allowed.

Upon completion of the execution of a task, the task result is returned to the query
handler to be merged with the task results from the other tasks of the query. The query
finishes when all the task results are merged and sent to the front-end server. Hence the
task response time for the slowest task dictates the query response time. In turn, the request
completes when the last query in the request finishes.

3.2.2 Tail Latency Aware Solutions for DU Services
Many works have been devoted to addressing query tail latency related issues for

DU services, which can be broadly classified into two categories, i.e., outlier alleviation,
focusing on curtailing the tail length of the task response time to improve overall query
tail latency performance, and tail latency SLO guarantee for queries sharing a single tail
latency SLO. In what follows, we elaborate more on the solutions in the two categories,
respectively.
Outlier Alleviation: Most existing solutions fall into this category. Some typical examples
in this category are listed as follows. Solutions based on task-size-aware task reordering
in a task queue [77, 86, 94? ] are proposed to avoid head-of-line blocking of small-sized
tasks by large-sized ones to reduce the mean task latency. Task-aware scheduling schemes
[93, 80, 38, 37, 136? ] are designed to shorten the tail latency for tail latency critical
tasks in workloads with both batch and tail latency critical queries. Redundant-task-issue
solutions [127, 65, 116, 112] are developed to reduce the task tail latency by allowing a
task to be issued to multiple task server replicas. Task execution time prediction through
workload profiling [97, 63, 51, 135? ] and machine learning [62, 90, 46] are widely em-
ployed to adjust the level of parallelism to remove task bottlenecks or to avoid sending tasks
with predicted long execution time to poorly performing task severs to reduce task tail la-
tency. Solutions based on synchronized garbage collection for all task servers [115, 33]
are proposed to minimize variabilities of task execution times among parallel tasks to re-
duce query tail latency. Solutions that allow partial results to be returned to fulfill a query,

3Note that the queuing may take place either centrally at the query handler or at individual task servers.
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e.g., [53], can maintain more predictable query tail latency at the cost of possible loss of
partial results. Dynamic resource allocation based on the feedback loop control mecha-
nisms [15, 77, 20] are proposed to help reduce query tail latencies. CPU power control
schemes [52, 68, 70, 83, 112? ] are developed to dynamically adjust voltage and fre-
quency scaling (DVFS) for task servers based on task execution time to save energy and
maintain low task tail latency. A query fanout control scheme [27] is designed to control
the fanout in queries to optimize the system performance. Flow deadline-aware datacenter
networking solutions [124, 132, 9, 75, 47] and coordinated coflow scheduling in datacenter
switches [119, 28, 8, 39] are also developed to provide predictable delays for task related
flows and hence reduce query tail latencies, usually at the cost of significant software/hard-
ware changes to datacenter switches. A transaction scheduling solution for geo-distributed
databases [23] uses transaction timestamps to reduce both mean and tail latencies for edge
computing. All these solutions help reduce the query tail latency, but cannot provide SLO
guarantee.
Tail Latency SLO guarantee: There are a few existing solutions in this category, includ-
ing Cake [128], PriorityMeister [143], SNC-Meister [141], WorkloadCompactor [142] and
PSLO [78], all for shared datacenter storage applications. All these solutions, except Cake,
aim at meeting a single query tail latency SLO for all queries with fanout of one only.
Cake can handle fanout of more than one, but is unable to enable per-class or per-query
tail latency SLOs, as it relies on direct measurement of the overall tail latency statistics
as input for control, resulting in fanout-unaware resource overprovisioning. Clearly, a so-
lution based on direct tail latency statistics measurement like Cake cannot be extended to
allow per-query resource allocation, simply because the needed statistics are unavailable
at this granularity. Some tail latency SLO guaranteed solutions for micro-service such as
GrandSLAm [? ] and Sinan [? ] are proposed. But, again, they cannot support per-query
tail latency SLO.

3.3 TailGuard
In this section, we first give the TailGuard query processing model. Then we present

the task decomposition, or equivalently, task queuing deadline estimation solution and ad-
dress its implementation issues. Finally we present the query admission control scheme.
The major symbols used in TailGuard are listed and defined in Table 3.1.
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Figure 3.2: TailGuard query processing model. A task queue for a task server can be set in
the task server or in the query handler.

3.3.1 TailGuard Query Processing Model
Consider a query processing model directly derived from Figure 3.1, as depicted in

Figure 3.2. It is composed of a query arrival process, a query handler, and N task servers.
The query arrival process characterizes the randomness of queries arriving at the query
handler.

At the query level, upon receiving a query at time, t0, the query handler first deter-
mines how many tasks (i.e., the query fanout, kf ) need to be spawned and to which kf task
servers these tasks need to be dispatched. The query handler estimates task pre-dequeuing
time budget Tb and computes the task queuing deadline tD = t0 + Tb, shared by all the
tasks associated with the query 4. Here tD is defined as the deadline when the task must
be dequeued and given to the corresponding task server to be processed in order to meet
the tail latency SLO for the query. As we shall show in the next subsection, Tb (or tD) is
a function of both query tail latency SLO in terms of the pth percentile query latency of
xSLOp and query fanout, kf , i.e., Tb = Tb(x

SLO
p , kf ) and tD = tD(x

SLO
p , kf ). Finally, the

4The rationale for assigning the same budget to all the tasks of a query is as follows. Mathematically, with
two reasonable assumptions made, i.e., a task resource demand is an decreasing function of the task budget
and the sum of the task budgets for all the tasks in a query must be upper bounded to meet a given query tail
latency SLO, it can be easily shown that assigning the same budget results in the minimum overall resource
allocation.
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Symbol Description
N number of task servers
kf fanout of a query
Tb task pre-dequeuing time budget for

a query
t0 query arrival time
tD task queuing deadline, tD = t0+Tb

tpr task pre-dequeuing time
tpo task post-queuing time or unloaded

task response time
tr task response time, tr = tpr + tpo
xSLOp pth percentile query tail latency

SLO
xup(kf )/xp(kf ) unloaded/loaded pth percentile tail

latency for a query with fanout kf
F u
l (t)/Fl(t) CDF of unloaded/loaded task re-

sponse time with respect to task
server l

F u
Q(t)/FQ(t) CDF of unloaded/loaded response

time for a query
P (kf ) probability of a query with fanout

kf

Table 3.1: The symbols used in TailGuard.

tasks, together with their deadlines, are dispatched to the queues corresponding to the task
servers. Since task pre-dequeuing time budget, Tb, is an explicit function of both xSLOp and
kf for the query, TailGuard by design permits per-query tail latency SLOs.

At the task level, each task queue adopts a TF-EDFQ, based on tD(xSLOp , kf ). When
a task is to be enqueued at a task queue, if the corresponding task server is idle, the task
is serviced immediately, otherwise, it is inserted into the task queue with tasks ordered in
increasing order of tD’s, hence with the task of the smallest tD at the head of the queue.
Whenever a task in service finishes, the task at the head of the queue is put in service
immediately. Finally, upon the completion of execution of a task, the task result is sent
back to the query handler to be merged. A query finishes as soon as the merging of all the
task results completes.

TailGuard ensures that tasks with a higher chance to cause the violation of the associ-
ated query tail latency SLO will be serviced earlier, thus improving the system utilization.

Finally, as mentioned in Section 1, the performance of TailGuard will be compared
against FIFO, PRIQ and T-EDFQ. In terms of queuing policy, FIFO is simply a first-in-
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first-out queuing policy. PRIQ assigns tasks of different classes to different queues with
strict priorities given to the queue of a higher class over that of a lower class. T-EDFQ
works the same way as TailGuard except that tD = t0 + xSLOp . In other words, the queuing
deadline for a task is dependent on the corresponding query tail latency SLO, xSLOp , but
independent of query fanout, kf . Clearly, both PRIQ and T-EDFQ degenerate to FIFO if
all queries have the same tail latency SLO, i.e., the case with a single class.

3.3.2 Task Queuing Deadline Estimation
The key to the design of TailGuard is the task queuing deadline estimation or task

decomposition. In this subsection, we first present the task queuing deadline estimation
solution and then propose a way to implement it.

3.3.2.1 Solution

The task queuing deadline estimation problem can be formally stated as follows: For
a query with fanout, kf , a given tail latency SLO in term of xSLOp , and arrival time, t0,
find the task queuing deadline, tD = t0 + Tb(x

SLO
p , kf ), for tasks spawned by the query.

Here, Tb(xSLOp , kf ), the task pre-dequeuing time budget, is the maximum allowable task
pre-dequeuing time before the task must be dequeued and given/sent to the task server to
be processed, in order to meet the query tail latency SLO.

First, we note that the task response time (also called loaded task response time), tr,
can be generally expressed as, tr = tpr + tpo, where tpr represents the task pre-dequeuing
time and tpo stands for task post-queuing time or unloaded task response time. tpr is com-
posed of task scheduling time and task queuing time, if task queuing takes place centrally
at the query handler. It also includes task dispatching time, if task queuing occurs at the
task server. tpo includes all the times the task incurs after de-queuing.

Now we assume that the Cumulative Distribution Function (CDF) of the unloaded
task response time tpo, F u

l (t), with respect to task server, l, can be measured and updated
(see Section 3.2.2 for details) for all task servers l = 1, ..., N . Furthermore, let xup(kf ) and
F u
Q(t, kf ) represent the pth percentile unloaded query tail latency for a query with fanout kf

and the CDF of unloaded query latency, respectively. Here, a query latency is considered as
unloaded (loaded) if the query response time does not (does) include pre-dequeuing delay,
tpr. Also define n = n(k) to be the mapping between the k-th task in a query and the n-th
task server the task is dispatched to, for k = 1, ..., kf . Clearly, the unloaded query latency is
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the task post-queuing time of the slowest of all kf tasks. According to the ordered statistics
[3], we have,

F u
Q(t, kf ) =

kf∏
k=1

F u
n(k)(t). (3.1)

By definition, we have,
xup(kf ) = F u

Q
−1(

p

100
), (3.2)

where F u
Q
−1(.) is the inverse function of F u

Q(.).
Assuming that all the tasks in a query experience the same pre-dequeuing delay tpr,

we can express the CDF of the response time for task l, Fl(t), as follows,

Fl(t) =

{
F u
l (t− tpr), if t ≥ tpr

0, otherwise.
(3.3)

Hence

FQ(t, kf ) =

kf∏
k=1

Fn(k)(t) =

{
F u
Q(t− tpr, kf ), if t ≥ tpr

0, otherwise,
(3.4)

and
xp(kf )− tpr = F u

Q
−1(

p

100
). (3.5)

From Eqns. (3.2) and (3.5), we have,

xp(kf ) = xup(kf ) + tpr. (3.6)

This result means that with any given query tail latency SLO, xSLOp , as long as, tpr ≤
xSLOp −xup(kf ), the query tail latency SLO is guaranteed to be met, i.e., xp(kf ) = xup(kf )+

tpr ≤ xSLOp . This means that the task pre-dequeuing time budget Tb(xSLOp , kf ) can be
defined as, Tb(xSLOp , kf ) = xSLOp − xup(kf ), or equivalently, the task queuing deadline can
be defined as,

tD = t0 + Tb(x
SLO
p , kf ) = t0 + xSLOp − xup(kf ). (3.7)

In other words, for a query arrived at t = t0, as shown in Figure 3.2, so long as all the tasks
belonging to this query are dequeued no later than tD, the query tail latency SLO, xSLOp , is
guaranteed to be met.
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Ideally, under the work conserving condition5, if a queuing policy can ensure that
all the tasks exactly meet their queuing deadlines, the design objective is achieved. In
practice, however, such a queuing policy may not exist. As a first step, TailGuard adopts
EDFQ based on tD, i.e., TF-EDFQ, to enforce the task queuing deadlines. This queuing
policy can ensure that the task with the earliest queuing deadline is placed at the head of
the queue before deadline. However, it cannot guarantee that the task at the head of the
queue can always be served before deadline, simply because the task ahead of it may be
still in service when the deadline is reached. On the other hand, the task may also have
a chance to be dequeued before deadline, if the task server becomes idle before deadline.
This implies that TailGuard may tolerate a small percentage of tasks missing their deadlines
without violating the tail latency SLOs as the tail latency is a probabilistic measure. This
observation underlays the query admission control solution given in Section 3.3.
A remark on meeting request tail latency SLO: Here we present preliminary ideas on
how to extend the above task decomposition technique for queries to a task decomposition
technique for requests that account for query/task dependencies.

Consider a request composed of M queries to be issued sequentially and with the re-
quest tail latency SLO expressed in terms of the pth percentile of request latency of, xR,SLO

p .
Now, the request response time tRr =

∑M
i=1 tr,i, where tr,i is the query response time for the

i-th query. Although this relationship is an additive one, the one for the corresponding tail
latency is not. As the CDF of the request response time, FR(t), is the convolutions of all the
CDFs of the constituent query response times, in general, xR,SLO

p <
∑M

i=1 x
SLO
p,i , making

query decomposition for requests difficult. In what follows, we show that the above task
decomposition technique can be generalized to establish an additive relationship between
the request pre-dequeuing time budget and task pre-dequeuing time budgets for the con-
stituent queries, paving the way for the development of a task decomposition technique for
requests.

Define unloaded request latency, tRpo =
∑M

i=1 tpo,i, and the CDF of the unloaded
request response time, F u

R(t), to be the CDF of tRpo, where tpo,i is the unloaded query latency
for the i-th query. Further assume that all the tasks of query i have the same pre-dequeuing
time, tpr,i, and define request pre-dequeuing time, tRpr =

∑M
i=1 tpr,i. Then we have the

loaded request response time tRr =
∑M

i=1(tpo,i + tpr,i) = tRpo + tRpr. Clearly, by substituting
tr, tpr, tpo, FQ, and F u

Q with tRr , tRpr, t
R
po, FR, and F u

R, respectively, and following Eqs. (3.5)
and (3.6), we have,

xRp = xRp
u
+ tRpr = xRp

u
+

M∑
i=1

tpr,i (3.8)

5The work conserving condition refers to the condition whereby the task server is always busy as long as
there are unfinished tasks at the server.
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where xRp and xRp
u are the loaded and unloaded pth percentile tail latency of the request.

Eq. (3.8) means that the request pre-dequeuing time budget, TR
b = xR,SLO

p − xRp
u, and it

is additive, i.e., TR
b =

∑M
i=1 Tb,i, here Tb,i is the task pre-dequeuing budget for query i, for

i = 1, ...,M .
Note that as long as TR

b (i.e., tRpr ≤ TR
b ) is met, the request tail latency SLO will be

met, regardless the assignments of Tb,i’s. However, different assignments may lead to dif-
ferent resource utilizations. Hence, a key challenge that will be the main focus of our future
work is: with a given total budget TR

b , how to assign budgets Tb,i to individual queries so
that the resource utilization is maximized.
A remark on the relationship with outlier-alleviation solutions: Finally, note that Tail-
Guard is orthogonal and complementary to many of the existing outlier-alleviation solu-
tions. While an outlier-alleviation solution can help effectively reduce the tail lengths of
the task service time distributions, Fl(t)’s, hence, improving the achievable query tail la-
tency SLOs, TailGuard ensures that the improved tail latency SLOs can indeed be achieved
at the minimum resource consumption (see Section 4.5 for a case study).

3.3.2.2 Implementation

The above task queuing deadline estimation solution requires the availability of the
task post-queuing time distributions, Fl(t), for all the task servers, l=1,...N , which must
be conveyed to the query handler for task pre-dequeuing time budget estimation. Here, we
propose an approach to estimate Fl(t)’s by means of a combined initial offline estimation
process and a periodical online updating process.
Offline Estimation Process: As mentioned earlier, DU services are likely to run in a
more or less homogeneous cluster. So before the service starts, we set Fl(t) ≈ F (t), for
l=1,...N . This lends us a handy way to perform an initial offline estimation of only a single
distribution function F (t), which serves as the initial distribution for all the task servers.

More specifically, use a query handler and single task server and load it with a typi-
cal task workload trace to collect a sufficient number of samples of task post-queuing times
offline. Then use these samples to construct F (t) to be used as the initial distribution func-
tion for all task servers. This will allow task queuing deadlines to be estimated at the very
start of a DU service.
Online updating process: To account for the inevitable heterogeneity in practice (e.g.,
due to skewed workloads, uneven resource allocation and resource availability changes),
Fl(t)’s must be periodically updated online. Fortunately, this can be done with low cost.
When the query handler receives and merges the task result for a task from task server l, it
uses the current time minus the task dequeue time (which is either locally available if the
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queuing takes place in the query handler, or comes with the task result from the task server
l) as the post-queuing time for the task to update Fl(t). This updating process accounts for
all the possible post-queuing delays incurred by the tasks, including the long delays caused
by outliers. Hence TailGuard captures heterogeneity through online updating process.
TailGuard implementation complexity: The computation complexities for both task
queuing deadline estimation and queuing management in TailGuard are low. The former
entails the evaluation of two equations, i.e., Eq. (3.2) for xup(kf ), which can be done in
the background for all possible kf ’s in advance and updated when Fl(t)’s change and Eq.
(3.7) for each query. The latter requires the management of a single EDFQ. As a result,
TailGuard is a lightweight solution.

3.3.3 Query admission control
TailGuard can provide tail latency SLO guarantee for all queries, when there are

enough resources to sustain the workload. In the presence of resource shortages due to,
e.g., sudden surges of workloads or hardware/software failures, some upcoming queries
may need to be rejected to ensure that all admitted queries can meet the prepaid tail latency
SLOs. Query admission control is particularly desirable in the case where resource auto-
scaling cannot be done, e.g., due to monetary budget or resource constraints (e.g., edge
resources may be quite limited to allow an SaS to scale).

We tested TailGuard using various workloads and found that the query tail latency
SLOs can still be met, when a small portion (less than 2% in our tests) of tasks miss their
deadlines, confirming the aforementioned observation. With this understanding, TailGuard
sets a threshold for the percentage of tasks missing their deadlines,Rth, for query admission
control. If the task queuing takes place centrally at the query handler, the information on
whether a task misses its deadline or not is immediately available to the query handler,
otherwise, this information can be piggybacked on the task results returned from the task
sever. The query handler can update the task deadline violation ratio in a given moving
time window. When the ratio exceeds Rth, upcoming queries are rejected, till the ratio falls
back below Rth again. The moving time window can be set to be the same as the time
window in which the tail latency SLOs should be guaranteed.

3.4 Performance Evaluation
To cover a wide range of applications, TailGuard is firstly evaluated based on simu-

lation using the workload statistics for three datacenter applications available in Tailbench
[71] as input. We first characterize the workload and then present the simulation results
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along the fanout and service class dimensions; with an outlier alleviation scheme; and with
query admission control. We then implement and test TailGuard in the Amazon EC2 cloud.
Finally we verify TailGuard in a highly heterogeneous SaS testbed.

3.4.1 Workloads
For simulation, a DU workload must be characterized by a query arrival process,

a query fanout distribution and a task post-queuing time distribution. Unfortunately, the
available real traces simply do not contain the needed information. Although traces for
commercial DU services in cloud are available, e.g., those made available by Google
[122, 102] and Alibaba [48, 81, 26, 121], they only include the CPU and memory us-
age information for task servers, not the information needed to drive the simulation at the
task level, including the arrival process, query fanouts and task service times. Hence, we
resort to modeling for the first two and benchmarks for the third one, as described in detail
below.

First, since the Poisson process [5] has been widely recognized as a good model for
cloud applications in general [83], by default, we assume that the query arrival process is
Poisson with mean arrival rate, λ, a tunning knob to adjust the system load. Meanwhile, to
test the performance sensitivity of TailGuard with respect to the burstiness of query arrivals,
a burstier arrival process, i.e., the Pareto arrival process [4], is also used in one simulation
case.

Second, although a few publications do offer fanout distribution, P (kf ), for kf=1,...,N ,
for the DU services, e.g., the Facebook social networking service [89], they do not provide
task service times needed for the task-level simulation. This, however, should not be too
much of a concern, as TailGuard needs to be applicable to both the existing and future
workloads whose P (kf )’s are not known yet. Hence, we adopt quite different P (kf ) mod-
els for different case studies to gain a wide coverage. As we shall see, for all those cases
tested, TailGuard consistently outperforms the FIFO, PRIQ and T-EDFQ queuing policies,
which strongly suggests that the TailGuard’s performance gain is insensitive to P (kf )’s.

Third, as a solution meant to be used by the current and future DU services in gen-
eral, TailGuard should be tested against DU services with a wide range of task service time
distributions. To this end, we resort to Tailbench [71] to gain access to applications with
a wide range of task service time distributions. Tailbench provides eight DU task bench-
marks. Each of these workloads allows a sufficiently large number of task service time
samples to be collected to construct F (t) for task service time, assuming that the post-
queuing time, tpo, is dominated by the task service time, for the lack of the information
about the rest of the post-queuing delays. We further assume that Fl(t)=F (t) for l=1,...,N ,
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(a) (b) (c)

Figure 3.3: The CDFs and the unloaded 95th and 99th percentile task tail latencies of the
three Tailbench workloads.

Bench Tm xu99(1) xu99(10) xu99(100)

Masstree 0.176 0.212 0.247 0.473
Shore 0.341 2.117 2.721 2.829
Xapian 0.925 2.592 2.998 3.307

Table 3.2: The mean task service time Tm (ms) and the unloaded 99th percentile query tail
latency xu99 (ms) with various fanouts.

i.e., the homogeneous case, which do not change over time (All the other delays and het-
erogeneity will be accounted for partially in the Amazon EC2 case study and fully in the
SaS case study). These workloads can be classified into three groups with distinct charac-
teristics for F (t). We select one workload from each group to be tested, including Masstree
for in-memory key-value store, Shore for SSD-based transactional database and Xapian for
web search.

Figure 3.3 depicts the CDFs and the unloaded 95/99th percentile task tail latencies
for the three workloads. Table 3.2 also gives the related statistics, including the mean task
service time (Tm) and the unloaded 99th percentile query tail latency at fanouts kf=1, 10
and 100, derived from Eqs. (3.1) and (3.2).

3.4.2 Impact of query fanout
In this subsection, we focus on testing the impact of the query fanout. We present

two cases, i.e., a single class case and a two-class case. Consider a cluster of size N=100
and three different types of queries corresponding to three different fanouts 1, 10 and 100,
similar to the testing scenario in [91], in which fanouts 1, 8 and 33 are used. Further
assume P (1)=100/111, P (10)=10/111, and P (100)=1/111, i.e., the probability for a fanout
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Figure 3.4: The maximum loads with a single service class.

is inversely proportional to the fanout itself, similar to the one observed by Facebook [89].
This makes the total numbers of tasks from the three query types to be, on average, the
same. For a given tail latency SLO of xSLO99 , the task pre-dequeuing time budget for a query
with fanout kf (1, 10 or 100) is Tb=xSLO99 − xu99(kf ).

Note that meeting the tail latency SLO for queries as a whole does not guarantee
that queries of individual types can meet the tail latency SLO. Hence, in the following
simulation, we measure the tail latency for each type of queries and identify the maximum
load at which all three types of queries meet their tail latency SLOs.

We first consider the case with a single service class, i.e., all the queries have to
meet a single SLO. In this case, both PRIQ and T-EDFQ behave exactly the same as FIFO
and hence, we only compare TailGuard against FIFO. Figure 3.4 depicts the maximum
loads that can meet the tail latency SLO for TailGuard and FIFO for four different tail
latency SLOs ( these SLOs are chosen such that the corresponding maximum loads fall in
the range of 20% to 60% which are the typical system loads for the current commercial
clouds serving DU applications [122, 48]). This gives us a good idea about TailGuard’s
performance gain/loss with respect to those of the currently practiced ones. As we can see,
for all the cases, TailGuard achieves higher loads compared to FIFO, while meeting the
same tail latency SLO. The performance gain increases as the tail latency SLO becomes
tighter. This is because a query with a higher fanout has a tighter task queuing deadline and
hence, higher chance to violate the tail latency SLO. Therefore, TailGuard that reorders
the tasks based on queuing deadlines can help meet the tail latency SLO for all queries,
resulting in higher performance than FIFO, especially when the tail latency SLO becomes
more stringent. For example, for Masstree, the maximum load increases from 20% for
FIFO to 28% for TailGuard at xSLO99 = 0.8ms, resulting in about 40% higher resource
utilization. In other words, TailGuard can save 40% task server resources over FIFO (also
PRIQ and T-EDFQ), while meeting the same tail latency SLO, hence reducing the cost.
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Kf= 1 Kf= 10 Kf=100
x99=0.8 FIFO 0.439 0.594 0.798

TailGuard 0.572 0.745 0.797
x99=1.0 FIFO 0.533 0.731 0.997

TailGuard 0.705 0.941 0.994
x99=1.2 FIFO 0.647 0.889 1.192

TailGuard 0.817 1.098 1.193
x99=1.4 FIFO 0.751 1.061 1.389

TailGuard 0.945 1.262 1.392

Table 3.3: The 99th tail latency (ms) of three types of queries at maximum loads for the
Masstree workload.

To gain more insights, for Masstree, Table 3.3 gives the breakdowns of the tail laten-
cies at the maximum loads for the three types of queries. First, we note that at the maximum
loads, the query type with kf=100 barely meets the tail latency SLOs for both schemes. In
other words, the maximum achievable load for both queuing policies are constrained by the
query type with the highest kf . For the other two query types, the tail latencies are smaller
than the corresponding tail latency SLOs, implying that they get more resources than they
need, especially for the one with kf=1. The performance gain for TailGuard comes from
more balanced resource allocation among the three types, as evidenced by the closer tail
latencies among the three types than those for FIFO. The results clearly indicate that the
query fanout has to be taken into consideration in task resource allocation for meeting query
tail latency SLO to maximize the system performance.

Now we consider the case with two service classes with the tail latency SLO of
the lower class being 1.5 times of that of the higher class, i.e., 1.5x99, where x99 is the tail
latency SLO for the higher class. Each query is randomly assigned to one of the two classes
with equal probability. Both the Poisson and Pareto arrival processes are considered. Due
to limited space, only the results for the Masstree workload are given (the results for the
other two workloads are similar).

Figure 3.5 shows the maximum loads under which all queries can meet their tail
latency SLOs. From the results (Figure 3.5 (a)) with the Poisson arrival process, we can
see that the performance gains of TailGuard over FIFO increase to up to 80%, much higher
than that in the single class case (i.e., up to 40%). FIFO treats every task equally. Hence its
performance is constrained by the most resource demanding queries, i.e., the higher class
queries with the largest fanout. The TailGuard performance gain is up to 40% with respect
to PRIQ. PRIQ gives higher priority to the higher class queries, resulting in lower class
queries having less resources to meet their tail latency SLOs. The TailGuard performance
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Figure 3.5: The Maximum loads with two classes for the Masstree workload: (a) Poisson
and (b) Pareto arrival process.

gain is up to about 22% with respect to T-EDFQ, smaller than that with respect to PRIQ.
This means that by incorporating the actual tail latency SLO, rather than just the class
information, T-EDFQ can allocate task resources more accurately than PRIQ does. In turn,
TailGuard improves over T-EDFQ by further incorporating query fanout information in
task resource allocation.

The performance gains for TailGuard against the other three schemes with the Pareto
arrival process (Figure 3.5(b)) are similar to those with the Poisson arrival process. Mean-
while, the maximum loads decease about 2% to 6% for all schemes compared to those with
the Poisson arrival process. This means that the burstiness of query arrivals mainly impact
the overall achievable load, but much less on the relative performance of different queuing
policies. Hence, in the following cases studies, we only present those with the Poisson
arrival process.

3.4.3 Impact of service class
Again, consider the cluster of size N=100. Now all queries have the same fanout

of kf=100, i.e., for each query, its tasks are served by all the task servers in the cluster in
parallel, which is the case for OLDI services. We evaluate the performance of TailGuard
for workloads with two different service classes, denoted as Class I and Class II. The tail
latency SLOs for Class I/II are 1/1.5, 6/10 and 10/15 ms for Masstree, Shore and Xapian,
respectively. Again, these tail latency SLOs are chosen such that the achievable maximum
load ranges from 20% to 60%. A query has equal probability to request for either of the
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Figure 3.6: The 99th percentile latency at different loads. The cyan line indicates the
required tail latency and the arrows points to the maximum load that the tail latency can be
met.

two classes. For any query of a given class, by substituting the corresponding xSLO99 and
xu99(100) from Table 3.2 into Eq. (3.7), we arrive at the task pre-dequeuing time budgets.
For example, for Masstree, the budgets for classes I and II are 1-0.473=0.527ms and 1.5-
0.473=1.027ms, respectively. As the fanout is the same for all queries, T-EDFQ behaves
the same as TailGuard, and hence we compare the performance of TailGuard against both
FIFO and PRIQ.

Figure 3.6 presents the simulation results. For each plot, the cyan dash line represents
the tail latency SLO for that class and the arrows, each having the same color as the tail
latency curve for a queuing policy, indicate the maximum achievable loads that meet the
tail latency SLOs.

As one can see, for all three workloads, FIFO, which is class unaware, gives equal
resources to queries from both classes. Since the task resource demands or task pre-
dequeuing time budgets for tasks from classes I and II are quite different, e.g., 0.527ms
and 1.027ms, respectively, as calculated above, for Masstree, indiscriminately allocating
equal resources to tasks results in a very low achievable load for class I queries but very
high achievable load for class II queries, e.g., 45% for class I, as shown in Figure 3.6(a),
and higher than 60% for class II, as shown in Figure 3.6(b). Consequently, to meet the tail
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latency SLOs for both classes, FIFO allows the cluster to run at 45% for Masstree, 36% for
Shore (see Figure 3.6(c)) and 49% for Xapian (see Figure 3.6(e)).

PRIQ, on the other hand, is class aware, but it gives strict priority to tasks in Class I
over Class II. This results in unbalanced resource allocation in favor of Class I over Class
II. Consequently, the maximum load for class II is about 48% for Masstree, and about 45%
for both Shore and Xapian, while the maximum load for class I reaches more than 60% for
all three workloads. Again, the low load for class II limits the overall achievable load that
meets both tail latency SLOs.

In contrast, as a class-aware approach and with task budgeting, TailGuard can bal-
ance the resources allocated to tasks closely in proportion to their resource demands, re-
sulting in much closer maximum loads for the two classes (i.e., within 5% difference)
for all three workloads. As shown in Figure 3.6, the maximum loads for Classes I and
II for Masstree/Shore/Xapian are about 54%/51%/58% and 57%/56%/ 59%, respectively.
Hence, the maximum loads that meet both tail latency SLOs are 54%/51%/58% for the
three workloads, respectively. The performance gain of TailGuard over FIFO and PRIQ
are up to 40% (i.e , from 36% to 51%) compared to FIFO and up to 30% (i.e., from 45% to
58%) compared to PRIQ.

3.4.4 Joint with Outlier Alleviation Solution
As we mentioned earlier, TailGuard is orthogonal and complementary to most exist-

ing outlier-alleviation solutions. To demonstrate this, we test the performance of TailGuard,
along with the Adaptive Slow-to-Fast task scheduling scheme (called ASF in this paper)
based on DVFS [52]. In ASF, a task server starts to serve a task at a low power level and
switches to a higher power level to shorten the task execution time if a task service time
runs longer than a threshold. The goal of ASF is to alleviate the impact of outliers, while
minimizing the power consumption. In our simulation, a task runs at a normal (low) power
level until its service time reaches twice the mean task service time, when it switches to
run at a higher power level so that the remaining task service time is reduced by half (i.e.,
the task service speed doubles). Clearly, TailGuard is orthogonal to ASF. From TailGuard’s
point of view, the only difference ASF makes is that the CDF of the task service time, F (t),
seen by TailGuard is changed to a new one with a shorter tail. Hence ASF helps TailGuard
to achieve either a higher query throughput or tighter query tail latency SLOs. We use the
same case given in Section 4.3 to test it. Again, we only present the results for the Masstree
workload due to space limitation.

Figure 3.7 depicts the performance of TailGuard compared with FIFO and PRIQ. We
can see that all three schemes can run at higher loads to support the required tail latency
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Figure 3.7: TailGuard with ASF.

SLOs, thanks to ASF (see Figure 3.6 (a) and (b)). The performance gains of TailGuard
over FIFO and PRIQ are almost the same as that without ASF. Namely, the maximum load
with guaranteed tail latency SLO increases from about 54%, 44% and 48% to about 63%,
54% and 54% for TailGuard, FIFO and PRIQ, respectively. These results demonstrate that
TailGuard may indeed work with some of the outlier-alleviation solutions seamlessly to
further improve the performance.

3.4.5 TailGuard with Query Admission Control
Now we test the TailGuard query admission control scheme. Consider the same case

presented in Section 4.3 (only the result of Masstree is given due to limited space). We
first run TailGuard without admission control to find the task queuing deadline violation
threshold Rth at the maximum acceptable load when TailGuard can barely provide the tail
latency SLO guarantee. The maximum acceptable load thus found is about 54% and the
corresponding threshold is 1.7%. We use a moving window with size of 1000 queries (or
100000 tasks) to compute the task queuing deadline violation ratio.

Figure 3.8 shows the accepted/rejected loads and the query tail latencies at different
loads. First, we see that the query tail latency SLOs for both classes are guaranteed at all
loads. When the load is over the maximum acceptable loads, the query tail latency of Class
I closely approaches its tail latency SLO, while the tail latency of Class II is a little below
its SLO. This is due to the fact that Class I tasks have tighter pre-dequeuing time budgets
to meet and hence have higher chances to miss the queuing deadlines as we explained
in Section 4.3. Second, we note that the accepted loads (the load is computed using the
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Figure 3.8: TailGuard with query admission control. (a) is the accepted/rejected load; and
(b) is the query tail latency for Class I and II.

accepted queries only) closely approach its respective maximum acceptable loads (within
2.5%). Further increasing the load beyond the maximum acceptable loads, the accepted
load drops to about 6% below the maximum acceptable loads. There are two reasons
for this to happen. First, TailGuard may not drop the exact number of queries needed to
perfectly meet the tail latency SLO. Second, just like any feedback loop control solutions,
TailGuard incurs a delay between the measurement and control, which inevitably makes
the achievable load to be lower than the maximum acceptable load. Nevertheless, these
results demonstrated that the TailGuard query admission control can indeed provide tail
latency SLO guarantee, while maintaining high resource utilization.

Finally, we note that the simulation results for cluster size, N=1,000, and in the
presence of 4 classes are also available and consistent with the ones above, which however,
are not presented here for the lack of space.

3.4.6 Evaluation in the Amazon EC2 cloud
To verify the simulation results, with all possible delays (e.g., dispathcing and com-

munication delays) accounted for, we implement and test TailGuard in a small cluster in
the Amazon EC2 cloud. The TailGuard implementation includes the query scheduling code
and the Spark plug-in code. TailGuard is implemented by modifying the open source im-
plementation codes for Eagle [34] and Pigeon [131]. The query scheduler is deployed at the
application front-end, exposing services to allow the framework to submit query schedul-
ing requests using remote procedure calls (RPCs). Apache Thrift [120] is used by all RPCs
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Figure 3.9: Amazon EC2 implementation (IMP) vs simulation (SIM).

for internal communications between modules of a scheduler. Both the query handler and
task servers are all hosted on m4.large instances.

The cluster is composed of 1 query handler and 100 task servers. The task non-
service time tx that accounts for the query processing delay, task dispatching delay, task
result returning delay, and merging processing delay turns out to be much larger than the
mean service times for all three workloads, which are in sub-milliseconds. Hence, to alle-
viate the domination of the task response time by tx, for our experiment, we increase the
mean task service times by 300, 200 and 100 times, i.e., 52.8, 68.3 and 92.5ms for Mas-
tree, Shore and Xapian, respectively. With this setup, the task service time is on the same
order as the task non-service time. Consider two service classes with the corresponding tail
latency SLOs 250/350, 1000/1500 and 800/1200 ms for Class III/IV in Mastree, Shore and
Xapian workloads, respectively. Similar to Case 4.3, all queries have the same fanout 100.

Figure 3.9 presents the results for both experiments, denoted as IMP, and simulation,
denoted as SIM. As expected, TailGuard achieves better performance than both FIFO and
PRIQ for all the three workloads. Clearly, the experiment results are consistent with the
simulation results, with the differences within 15%. The difference increases as the load
increases. This is because tx, which is overlooked in simulation, becomes larger for the
experiment as the load increases. The increased tx value makes the tail latency for the
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experiment alway larger than that for the simulation. Nevertheless, we can see that the per-
formance gains of TailGuard over FIFO and PRIQ for the experiment are almost the same
as those for the simulation for all the three workloads. These results, to some extent, verify
the effectiveness and accuracy of simulation results presented in the previous sections.

3.4.7 Evaluation in an SaS Testbed
Finally, we evaluate and compare TailGuard against the other three schemes in an

on-campus SaS testbed being developed.
Testbed Setup: The testbed is currently composed of four clusters of edge nodes, located
in four rooms in two buildings, including a server room and a Graduate Research Assis-
tant (GRA) office next to a wet lab in one building, and a faculty office and a Graduate
Teaching Assistant (GTA) office in another building. Each of these four clusters, referred
to as Server-room, Wet-lab, Faculty and GTA clusters hereafter, consists of 8 Raspberry Pi
devices, serving as edge nodes, with each currently attached with a temperature sensor and
humidity sensor and connected to the Internet through an Ethernet switch. Each edge node
receives sensing data from both sensors periodically and keeps up to eighteen-month-worth
of the data records. Since the Wet-lab cluster may require low delay sensing data, we use
the higher performing Raspberry Pi’s to furnish the cluster than the ones for the other three
and have the query handler co-located with the cluster to minimize the communication de-
lay.
Use Cases: We consider three likely use cases belonging to three distinct classes, A, B,
and C, to stress test TailGuard, with the 99th percentile tail latency SLOs equal to 800,
1300, and 1800 ms, respectively.

First, we note that the server room and wet lab are shared by many research groups
and individuals, who may want to closely monitor individual devices they own to track
the sensing data. This use case can stress test TailGuard by generating heavier workload
on these two clusters than the other two. To create even more unbalanced load, instead of
evenly distributing the load on these two clusters6, we place 80% of such workload on the
Server-room cluster and the rest 20% randomly assigned to the others. Moreover, queries of
this use case are considered class A with the most stringent tail latency SLO and constitute
50% of the total queries.

Second, we consider a use case targeting at potential users who may want to get
an overall reading of the temperature and humidity in all areas with low delay. For such
use case, a query fans out 4 tasks, each accessing a randomly selected edge node in a

6Note that equipped with the highest performing nodes and closest to the query handler, the Wet-lab
cluster can hardly pose a performance bottleneck.
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Figure 3.10: SaS testbed architecture.

(a) (b) (c) (d)

Figure 3.11: (a) The task post-queuing time CDFs in four clusters. Circle and diamond
represent the 95th and 99th percentile tail latencies, respectively. (b), (c) and (d) are the
99th percentile query tail latency of the three classes at various loads.

separate cluster. This use case is considered less time critical than the previous one and
thus designated class B. We assume that it takes up 40% of the total queries.

Third, some users may require detailed, relatively longer term sensing data records
to be retrieved from all edge nodes with a loose tail latency SLO. Hence, all the queries in
this use case have fanout 32 and are assigned as class C, and 10% of the total queries are
assigned to this class.
SaS testbed Architecture: Figure 3.10 depicts the SaS testbed architecture. The query
handler runs in a PC and consists of a query/task process module and an aggregator module.
Queuing takes place centrally in the query/task process module with 32 sets of queuing
buffers allocated, one for each edge node. The testbed resources are managed by K3s [1],
which orchestrates the pod resource allocation in edge nodes. All the communications
between the query handler and an edge node use keep-alive HTTP/1.1 connections.

A task arriving at an edge node retrieves one or multiple temperature and/or humidity
records from the local database. It has an equal probability of retrieving one to up to
thirty-day-worth of consecutive records starting from a random time in the eighteen-month
period. After retrieving the records, the edge node sends the records to the aggregator
module as well as an edge-node-idle message to the process module. Upon receiving the
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records for all the query tasks, the aggregator merges the records for the query, which are
finally sent to the user.

To further test if TailGuard can perform well with inaccurate CDFs of unloaded task
post-queuing times, we let all 8 edge nodes in each cluster share the same CDF based on
the samples evenly collected from all edge nodes in the cluster. Figure 3.11 (a) presents
the CDFs for all four clusters. First, we note that the CDFs (red and green lines) for
Faculty and GTA clusters are almost identical, as they use the same model of Raspberry
Pi’s and located in the same building. With the same model of Raspberry Pi’s but lo-
cated in a different building and closer to the query handler, the CDF for the Sever-room
cluster concentrates more in the lower post-queuing time region than the previous two.
In contrast, equipped with the highest performing Raspberry Pi’s and co-located with the
query handler, the Wet-lab cluster offers significantly smaller overall post-queuing time
than the other three. More specifically, the mean, 95th and 99th task post-queuing times are
about 82/31/92/91, 235/112/226/228, and 300/136/306/304 ms for the Server-room/Wet-
lab/Faculty/GTA clusters, respectively, making the system highly heterogeneous.
Results and Analysis: Figure: 3.11 (b), (c) and (d) present the results. We note that
TailGuard, FIFO, PRIQ and T-EDFQ can achieve the maximum load of about 48%, 38%,
36% and 42%, respectively. This results in the performance gains of TailGuard over FIFO,
PRIQ and T-EDFQ to be 26.3%, 33.3% and 14.3%, respectively. As one can see, both
the performance gains and the maximum load differences in such a highly heterogeneous
system are in line with the simulated and the Amazon EC2 ones (homogeneous systems).

The above stress test, together with the simulation and Amazon EC2 test, demon-
strates that TailGuard is effective to improve resource allocation performance for DU ap-
plications, even in a heterogeneous system with highly unbalanced workload patterns, and
varied processing and communication delays.

All source codes will be made available online after the paper is published.

3.5 Conclusions
In this paper, we propose TailGuard for data-intensive user-facing applications, aim-

ing at maximizing resource utilization, while providing tail latency SLO guarantee. Tail-
Guard decouples the upper query level design from the lower task level design. First, at the
query level, a decomposition technique is developed to compute the task queuing deadline
for a query with the given tail latency SLO and fanout. Second, at the task level, based
on the task queuing deadline, a simple earliest-deadline-first queuing policy is employed to
manage task queues to improve the resource utilization. TailGuard is evaluated by simula-
tion using three Tailbench workloads as input. The results demonstrate that TailGuard can
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improve resource utilization by up to 80% while meeting tail latency SLOs, compared to
the FIFO, PRIQ and T-EDFQ queuing policies. TailGuard is also implemented and tested
in the Amazon EC2 cloud and a heterogeneous SaS testbed and the test results agree with
the simulated ones.
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CHAPTER 4

Performance Models for Data-intensive, User-facing Workloads with
Query Tail Latency SLO

Data-intensive, User-facing Services (DUSes), such as web searching and online so-
cial networking, must meet stringent query tail-latency service level objectives (SLOs) and
deal with scale-out workloads with each query spawning potentially a large number of tasks
(i.e., query fanout) to be processed in parallel. Meanwhile, a DUS service provider needs
to maximize its revenue or net profit, by minimizing its resource allocation. However,
achieving this dual design objective is challenging, as there is no existing mathematical
underpinning that can capture the resource demand for such workloads, especially in the
presence of a wide range of possible cluster design and configuration options in practice.
In this paper, we develop a unified mathematical model that provide a direct link between
query tail latency, throughput and resource demand under a range of system design and
configuration options, including vertically scaled versus horizontally scaled clusters, with
or without tail cutting, and scale-out versus scale-up workers in the cluster, with or without
redundant task issues. With this model, we are able to derive the maximum sustainable
cluster loads at different query tail latency for different design and configuration options.
We also find that under scaling conditions, there is a cross-over load beyond which the hor-
izontal scaling/scale-out outperforms vertical scaling/scale-up at the cluster/worker level.
The accuracy of the proposed model in predicting the DUS performance is verified by
extensive simulation, making it a useful mathematical tool to facilitate the effective DUS
resource planning in cloud.

4.1 Introduction
Data-intensive, User-facing Services (DUSes), such as web searching, digital mar-

keting, online social networking, and online retailing, have emerged as predominate work-
loads in clouds and datacenters. Meeting stringent query tail-latency Service Level Ob-
jectives (SLO) for queries of a DUS has been widely recognized as a critical requirement,
which has an enormous impact on user experience, application adoption, customer satisfac-
tion, and ultimately, business revenue and net profit. For example, at Shopzilla, reducing
query tail latency from seven seconds to two seconds increases page views by 25%, and
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revenue by 7%. And, for Amazon online web services, every 100-millisecond addition
of query tail latency causes 1% decrease in sales [7]. As a result, from a DUS service
provider’s point of view (e.g., a DUS service provider who wants to deploy a DUS by rent-
ing virtual machine instances in Amazon EC2 cloud), an important design objective is to
allocate the minimum amount of the cluster resources to satisfy a desired given query tail
latency SLO and a target query throughput.

However, it is challenging to achieve the above design objective for two major rea-
sons. First, DUSes are driven by queries that require query responsiveness in sub-seconds
to seconds and they have to deal with scale-out workloads, i.e., a query may need to touch
on massive datasets that are partitioned into shards and distributed to a large number of
workers (i.e., servers) in the cluster. In other words, a query may spawn a number of tasks
(known as query fanout) to be sent to some or all of the workers in the cluster to be queued
and processed in parallel. The query response time is determined by the slowest task of
the query. The difficulty lies in the fact that to meet a given query tail-latency SLO, the
resource demands for queries with different fanouts are different. For example, assume
that with a given amount of resource allocated to process each task, there is 1% probability
that the task response time will be over 100ms. Then, at query fanout, kf , the probability
that the response time for the query will be over 100ms is 1 − 0.99kf . This means that a
query with kf = 1 and kf = 100 have 1% and 63.4% probabilities of being over 100 ms.
This example implies that with the given per-task resource allocation, a query with kf = 1

can exact meet the tail latency SLO in terms of the 99th-percentile query latency of 100
ms, whereas a query with kf = 100 cannot. In order to meet the same tail-latency SLO,
its tasks must be allocated a much larger amount of resources. This clearly demonstrates
that to achieve the above design objective, the cluster resource allocation must take query
fanouts into account. Unfortunately, none of the existing datacenter workload models at-
tempts to provide a link between the query fanout and task resource demand (see Section
4.4 for more details).

Second, there are a wide range of possible cluster design and configuration options
and different options may lead to vastly different query tail latency and throughput per-
formance. We identify some widely adopted design and configuration options, as given in
Table 4.1, in terms of, scale-up or scale-out, with or without redundant task issues [126]
at the worker level; and vertical scaling or horizontal scaling with or without tail cutting
[61] at the cluster level. This leads to a total of 16 distinct design and configuration op-
tions. It becomes apparent that it is impractical to design and configure a cluster to exhaust
all the options and then identify which one should be adopted to achieve the above de-
sign objective. Instead, one must resort to model-based approaches that can help quickly
compare different possible options to identify the most promising few before field trial. Al-
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Table 4.1: System Configuration

System Configuration Worker Level Cluster Level

Scaling mode
Scale-up Vertical scaling
Scale-out Horizontal scaling

Tail optimize policy Redundant issue Tail Cutting

though there have been some recent efforts made along this line based on queuing models
[130, 104], they have limited scope, focusing on a few design and configuration options,
e.g., scale-out versus scale-up, or with or without redundant task issues (see Section 4.4 for
more details).

In this paper, we develop a unified queuing network model that provides a direct link
between cluster resource demand, query tail-latency SLO and throughput for all design and
configuration options listed in Table 1 and scale-out workloads that characterize DUSes.
Other main contributions main of this paper include:

1. We derive the maximum sustainable cluster loads at different query tail-latency-to-
mean ratios for different design and configuration options;

2. We prove that under certain resource scaling conditions, there is a worker-level cross-
over load, below (above) which the scale-up (scale-out) workers outperform scale-out
(scale-up) ones, independent of query fanout;

3. We prove that under certain resource scaling conditions, there is a cluster-level cross-
over load, a function of query fanout, below (above) which the vertical-scaling (horizontal-
scaling) outperforms horizontal-scaling (vertical-scaling);

4. We perform comprehensive test of the accuracy of the proposed model in predicting
the DUS performance by simulation.

We also briefly discuss how the proposed model may potentially be used to aid highly
effective cluster resource planning for DUS service providers who rent cloud resources to
enable DUSes.

The rest of the paper is organized as follows. Section 4.2 describes the models and
the main results. Section 4.3 verifies the accuracy of the proposed model by extensive
simulation. Section 4.4 reviews the related work. Finally, Section 4.5 concludes the paper.

4.2 A Unified Model
In this section, we first introduce the cluster and worker level model components in

Section 4.2.1. Then we describe the performance scaling model components that estab-
lishes a link between resource scaling and performance for different system design and
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Figure 4.1: Fork-Join Structure, cluster level, and worker level scaling model

configuration options in Section 4.2.2. Based on the unified model given in these two sub-
sections, a special case that can capture the performance bounds is derived in Section 4.2.3.
As the unified model generally works for any task response time distributions, a solution
as to how to estimate the task response time distribution with minimum measurement cost
in practice is given in Section 4.2.4. The symbols used in this paper are listed and defined
in Table 4.2.

4.2.1 Model for Cluster Scaling
First, consider the cluster level scaling. The upper left plot in Figure 4.1 depicts a

fork-join queuing network model for a vertically scaled cluster with a total number of Nv

fork nodes representing Nv high-performance workers, each hosting a big data shard of the
total dataset. The query arrivals follow a random arrival process. Each query spawns kvf
tasks on average, mapped to kvf out of Nv fork nodes (kvf ≤ Nv) with equal probability (to
limit the exposure, in this paper, we only consider homogeneous workload), resulting in
an average task arrival rate, λt =

kvf
Nv
λ, at each fork node. The average task workload is

denoted as E(W ).
The horizontally scaled cluster model, depicted in the upper right plot in Fig. 4.1,

replaces each fork node in the vertically scaled cluster model with Ch fork nodes, repre-
senting Ch low-performance workers, resulting in a total number of Nh = ChNv workers
in the cluster. It models the case where each worker hosts a data shard equal to one-Chth
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Table 4.2: Symbol and Description

Symbol Description Symbol Description

λ Average query arrival rate ρ Worker Load
λt Average task arrival rate ρout The load of Scale-out worker
Nh Total number of fork nodes in vertically ρup The load of Scale-up worker

scaled cluster ρc Scale-up-vs-scale-out crossover load
Nh Total number of fork nodes in horizontally ρ′c Vertical-vs-horizontal crossover load

scaled cluster c Number of processing unit in M/G/c queue
Co Number of processing units in scale-out worker ρh Load for horizontally scaled cluster
Ch Number of horizontally scaled workers ρv Load for vertically scaled cluster
E(S) Mean task service time xp pth-percentile query tail latency
E(Sh) Mean task service time for horizontally scaled cluster xoutp pth-percentile tail latency of scale-out worker
E(Sv) Mean service time for vertically scaled cluster xupp pth-percentile tail latency of scale-up worker
µu Average task service rate for scale-up worker xhp pth-percentile query tail latency for horizontally scaled cluster
µo Average task service rate for scale-out worker xvp pth-percentile query tail latency for vertically scaled cluster
E(W ) Average task workload n Number of task issues for redundant-task-issue
E(Wv) Average task workload for vertically scaled cluster p pth-percentile
E(Wh) Average task workload for horizontally scaled cluster γtm Query tail-to-mean ratio: Tail latency

Mean service time

v Workload processing speed at a processing unit kf Query fanout
vh Workload processing speed at a processing unit khf Query fanout in horizontally scaled cluster

in horizontally scaled cluster kvf Query fanout in vertically scaled cluster
vv Workload processing speed at a processing unit α Shape parameter of the generalized

in vertically scaled cluster exponential distribution
δ Positive scaling factor at worker level β Scale parameter of generalized
ζ Positive scaling factor at cluster level exponential distribution

of the big data shard in the vertically scaled cluster. Accordingly, each query fans out to
khf = Chk

v
f fork nodes on average to reflect the fact that a query sent to either a horizontally

or a vertically scaled cluster should touch upon the same portion of the dataset. As a result,
the average task arrival rate, λt =

Chk
v
f

ChNv
λ =

kvf
Nv
λ, the same as that in the vertically scaled

cluster and the average task workload is now E(W )/Ch, assuming that the workload is
linearly proportional to the shard size (e.g., for a search engine, the number of indices to
be searched reduces by half, as the index shard size is cut by half).

Second, let’s look at the worker level scaling, depicted in the lower middle plot in
Fig. 4.1. Each fork node is either modeled as a G/G/1 queuing server or G/G/c queuing
server. The former models a scale-up worker with a single task queue and a single high-
performance processing unit that processes tasks one at a time. And the latter models a
scale-out worker with a single task queue and Co low-performance processing units that
can process up to Co tasks in parallel. For both server models, the first and second G
represent any given random arrival process and task service time distribution, respectively.

A Unified Model: Now, denote the cumulative distribution function (CDF) of the
task response time for tasks at any fork node generally as FT (t) for both scale-up (G/G/1)
and scale-out (G/G/c) workers (We only consider homogeneous workers in the cluster).
Also denote the average query fanout and cluster size for both vertically scaled and hori-
zontally scaled clusters generally as, kf and N , which equal kvf and Nv for vertically scaled

64



cluster and khf andNh for horizontally scaled cluster. Then we have the following generally
results,
Lemma 1: The query response time distribution G(t) can be approximately written as,

G(t) ≈ FT (t)
kf (4.1)

Proof: As the slowest task of the query determines the query response time, according to
the order statistics[3], we have,

G(t) = Prob(MAX{T1, ..., Tkf}) = FT (t)
kf , (4.2)

given that task response times Ti’s for all kf tasks are i.i.d. (i.e., independent and identi-
cally distributed) random variables. Although the i.i.d. assumption does not hold true for
the tasks in a query, this approximation is found to be fairly accurate in capturing the query
tail latency, as verified in Section 4.4. □

Lemma 2: The pth-percentile query tail latency of xp is given by,

xp = G−1(
p

100
) (4.3)

Proof: By definition, we have p
100

= G(xp) and hence, Eq. 5.2, by taking the inverse func-
tion of G(t). □

Tail latency with tail cutting: In this paper, tail cutting refers to a category of techniques
that deal with slow tasks or stragglers [61]. Specifically, it refers to techniques that return
partial results without waiting for the results from some slowest tasks, usually by setting
a result return deadline, tD, i.e., only the results returned by tD will be included in the
response to the query. We have the following result:

Lemma 3: With deadline tD for tail cutting and task response time distribution, FT (t), the
query response time distribution G(t) is given by

G(t) ≈ FTcutail
(t)kf (4.4)

where,

FTcutail
(t)


FT (t)
FT (tD)

if t ≤ tD

0 if t > tD
(4.5)
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Proof: With deadline tD, the task response time distribution, FTcutail
(t), for a task is the

task response time distribution, FT (t), truncated at t = tD, and hence, is given by Eq. 4.5.
For all the tasks of a query including those past the deadline tD, they can be viewed as
being able to finish by the deadline and hence, we have Eq. 4.4. Note that Lemma 2 still
holds true in the case with tail cutting □

Tail latency with redundant task issues: Redundant task issues is another cat-

Figure 4.2: Worker level redundant issue policy

egory of techniques to combat slow tasks or stragglers [32, 129]. It takes advantage of
the fact that for fault tolerance, in practice, a shard in a worker is copied to a few worker
replicas, e.g., three for a scale-up worker and two for a scale-out worker in Figure 4.2.
Specifically, the same task may be issued to one or more worker replicas if the task is-
sued to the original worker does not finish by a certain deadline [32]. Then whichever task
finishes first will result in the removal of the other tasks from other worker replicas.

In this paper, we consider an ideal algorithm that leads to the query tail performance
upper bound for this category of techniques. Specifically, for each task arrival, the worker
issues n copies of the task to be queued at n worker replicas, simultaneously (e.g., n = 3

and 2 for the scale-up and scale-out workers in Figure 4.2). The completion of the first
task among all n copies of the task causes all the other copies of the task to be removed
from the other worker replicas with no impact on their queuing performance. This is an
ideal algorithm that cannot be realized in practice, simply because some of those being re-
moved may be already in service and hence, have consumed resources of the corresponding
worker replicas. As a result, this ideal algorithm provides a performance upper bound for
this category of techniques. We have the following result,
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Lemma 4: The query response time distribution with n task issues is,

G(t) = [FTmin
(t)]kf , (4.6)

where FTmin
(t) = 1− [1− FT (t)]

n without tail cutting. With tail cutting, FT (t) should be
replaced with FTcutail

.
Proof: According to the order statistics, the task response time, FTmin

(t), is:

FTmin
(t) = Prob(MIN{T1, ..., Tn}) = 1− [1− FT (t)]

n (4.7)

By substituting FT (t) with FTmin
(t) in Eq. 5.1, we arrive at Eqs. 4.6. □

4.2.2 Models for Resource Scaling
Scale-up versus scale-out Scaling: We assume that the resource allocated to a

worker only impacts the average task service time, not the distribution function of the
task service time. Let µo and µu represent the average task service rates (i.e., the inverse
of the average task service times) for scale-out and scale-up workers, respectively. To be
comparable, we assume that some cost measure, e.g., the capital expenditure per worker,
for both scale-up and scale-out workers are the same, denoted as CX . Then we use the
following performance scaling model to capture the relative performance of the two types
of scaled workers,

µu = Cδ
oµo, (4.8)

where δ is a scaling factor and δ > 0, meaning that the processing unit for the scale-up
worker must be more powerful and hence, process tasks faster than the individual ones for
the scale-out worker. For example, in the case of hardware scaling, i.e., scaling up or out by
using brawny cores or wimpy cores of the same die size [79], we have δ = 0.5 according
to the Pollack’s rule [6]. In general, δ can be obtained by measurement, e.g., in the case of
software scaling using virtual machines (VMs), containers, or pods[105]. With this scaling
model, we have,

Lemma 5:
ρup = C(1−δ)

o ρout (4.9)

where ρup and ρout are the loads for scale-up and scale-out workers, respectively.
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Proof: For the scale-out worker, since there are Co processing units, the average arrival
rate at each processing unit is λt/Co. Then by definition, we have,

ρout =
λt
µoCo

(4.10)

and for the scale-up worker, by definition, we have,

ρup =
λt
µu

. (4.11)

By applying the scaling model (i.e., Eq. 4.8) to these definitions, we can easily arrive at
Eq. 4.9. □
Now, we have the following important result,
Theorem I: For δ > 1, the scale-up worker outperforms the scale-out worker in terms of
the tail-latency performance, in the entire load range of ρup ∈ [0, 1]. and for δ < 1,There is
a cross-over load, ρc < 1, independent of query fanout kf , such that,


xout
p (µo, ρout, kf ) = xup

p (µu, ρup, kf ), ρup = C
(1−δ)
o ρout = ρc

xout
p (µo, ρout, kf ) > xup

p (µu, ρup, kf ), ρup = C
(1−δ)
o ρout < ρc

xout
p (µo, ρout, kf ) < xup

p (µu, ρup, kf ), ρup = C
(1−δ)
o ρout > ρc

(4.12)

where xoutp (µo, ρout, kf ) and xupp (µu, ρup, kf ) are the pth-percentile query tail latencies for
the scale-out and scale-up clusters, respectively.
Proof: First, consider a single worker with extremely low load, i.e., λt and hence, ρup
and ρout, are extremely small. In this case, a task arriving at either a scale-up or scale-out
worker has a high probability to be serviced immediately without queuing delay. Since
δ > 0, µu > µo, according to Eq. 4.8, with the same service time distribution, except
a larger service rate, or equivalently, a smaller mean service time, it is clear that at any
percentile, pt, the task tail-latency for the scale-up worker must be smaller than that for the
scale-out worker.

Now, for δ < 1, since ρup > ρout, according to Eq. 4.9, as λt increases, ρup will
approach 1 sooner than ρout. Namely, the queue length and hence, the task tail latency
of the scale-up worker will approach infinity, as ρup approaches one, whereas the queue
length and hence, the task tail latency of the scale-out worker are still finite. This proves
that there must be a crossover load, ρc < 1, beyond which (i.e., ρup>ρc), the scale-out
worker outperforms the scale-up worker.

For δ > 1, since ρup<ρout, according to Eq. 4.9, the crossover cannot occur as the
load increases, as the task tail latency of the scale-out worker increases faster than that of
the scale-out worker.
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Now, consider the query with fanout kf . According to Eq. 4.4, if the tail for the
task CDF, FTeff

(t), becomes heavier, so does the tail for the query, G(t), regardless of the
query fanout, kf . Therefore, the crossover load, ρc, applies to queries as well, independent
of query fanout, kf . □

The above result can be used to make informed decision, with a single measurable
parameter, δ, as to which types of workers should be adopted, scale-out or scale-up ones,
at any given query tail-latency SLO and target throughput or equivalently, load. Moreover,
the independence of query fanout of the above result makes it possible to decouple the
scaling decision making at the worker level (i.e., scaling out or scaling up) from that at the
cluster level (i.e., horizontal or vertical scaling), greatly reducing the number of design and
configuration options to be compared.

Vertical versus Horizontal scaling Now we assume that CX is the cost per vertically
scaled worker in a vertically scaled cluster with Nv workers. we further assume that in a
horizontally scaled cluster with Nh = ChNv workers, the cost per Ch workers is CX.
This ensures that the total costs for both clusters are the same. Therefore, the relative
performances of the two are comparable. We also assume that the average task workload,
E(W ), linearly increases with the shard size. With this assumption and lettingE(W ) be the
average task workload for a vertically scaled worker, then E(W )/Ch is the task workload
for a horizontally scaled worker, because the shard size at a horizontally scaled worker is
one-Chth of that at a vertically scaled worker.

Furthermore, since the scaling decision making at the worker level can be decouple
from that at the cluster level, the vertically and horizontally scaled cluster configurations
to be compared should use the same types of workers, either scale-up (G/G/1) or scale-out
(G/G/c) workers, and the workers in both clusters have the same number of processing
units. Now we adopt the following scaling model:

vv = Cζ
hvh (4.13)

where vv and vh are the task workload processing speeds at a processing unit in vertically
and horizontally scaled clusters, respectively.

Now we have the following two lemmas:

Lemma 6:
E(Sv) = C

(1−ζ)
h E(Sh) (4.14)
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where E(Sv) and E(Sh) are the average task service times in a processing unit in a verti-
cally scaled worker and a horizontally scaled worker, respectively.
Proof: In general, the mean task service time at a processing unit can be expressed as:

E(S) =
E(W )

v
, (4.15)

where E(W ) is the task workload and v is the workload processing speed at a processing
unit. Now, applying it to vertically and horizontally scaled workers, respectively, we have:{

E(Sh) =
E(Wh)

vh
= E(W )

Chvh
, Horizontally scaled

E(Sv) =
E(Wv)

vv
= E(W )

vv
, V ertically scaled

(4.16)

So we have:
E(Sv) =

E(Sh)Chvh
vv

=
E(Sh)Chvh

Cζ
hvh

= C
(1−ζ)
h E(Sh) (4.17)

□

Lemma 7:
ρv = C

(1−ζ)
h ρh (4.18)

where ρv and ρh are the loads for vertically scaled and horizontally scaled clusters, respec-
tively.
Proof: The load can be generally expressed as:

ρ = λE(S). (4.19)

where λ and E(S) are average task arrival rate and average task service time, respectively.
As explained in Section 2, the task arrival rates at both vertically and horizontally scaled
clusters are the same. By multiplying both side of the equation in Lemma 6, we arrive at
the equation in Lemma 7. □

With the above two lemmas, now we have the following result.
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Theorem II: For ζ ≥ 1, vertical scaling outperforms horizontal scaling regardless of query
fanout, kf , and load, and for ζ < 1, there is a crossover load, ρ′c(kf ) < 1, a function of kf ,
such that

xhp(E(Sh), ρh, Chkf ) = xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh = ρ′c(kf )

xhp(E(Sh), ρh, Chkf ) < xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh > ρ′c(kf )

xhp(E(Sh), ρh, Chkf ) > xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh < ρ′c(kf )

(4.20)

Proof: First, according to Eq. 4.13, ζ ≥ 1 means that vertical scaling has aggregate
task workload processing power equal to or greater than horizontal scaling. Meanwhile,
horizontal scaling incurs Ch times larger query fanout than vertical scaling, resulting in
heavier tailed query distribution. Consequently, if ζ ≥ 1, vertical scaling outperforms
horizontal scaling at any kf and load.

Now, consider setting ζ to be smaller than one, i.e., vertical scaling has aggregate
task workload processing power smaller than horizontal scaling. According to Eq. 4.18,
ρv > ρh. So as the load increases, eventually, the query tail latency for vertical scaling will
grow heavy enough to outweigh the heaviness of the query tail latency caused by Ch times
larger fanout for horizontal scaling, i.e., a crossover load ρ′c(kf ) (< 1) exists for any given
kf . Moreover, ρ′c(kf ) reduces with ζ . □

Theorem II above clearly indicates that the query fanout plays an important role in de-
termining which scaling solution should be adopted, vertical or horizontal.

The model developed so far is a unified one covering all the design and configuration
options in Table I. and works for any task response time distribution, FT (t).

4.2.3 Performance Bounds
In this section, we consider a specific G/G/c task server model (note that G/G/1

is a special case of G/G/c by letting c=1) that can provide performance upper bounds.
Specifically, we consider M/M/c queuing server, i.e., the case where the query/task arrival
process is Poisson and the task service time distribution is exponential. While the Poisson
arrival process, a non-bursty arrival process, is consider to be a reasonable model for query
arrival processes in practice [29], the exponential service time distribution is considered
much lighter tailed than the actual ones for datacenter applications [18]. Hence, the unified
model with M/M/c task queuing servers is expected to provide performance upper bounds
for DUS in general.
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FT (t) for M/M/c queuing server is readily available [29] and can be written as fol-
lows,

FT (t) = 1− P (s > t) (4.21)

and,
P (s > t) =


IIw

1−c(1−ρ)
e−c(1−ρ)µt + (1 − IIw

1−c(1−ρ)
)e−µt c(1 − ρ) ̸= 1

(IIwtµ + 1)e−µt c(1 − ρ) = 1
(4.22)

where µ (= 1
E[S]

) is the average task service rate, and,

IIw =
(cρ)c

c!
((1− ρ)

c−1∑
n=0

(cρ)n

n!
+

(cρ)c

c!
)−1 (4.23)

By letting c = 1, we have, for M/M/1 queue:

P (s > t) = e−(1−ρ)µt. (4.24)

With the above expression for FT (t) as input to the unified model, the performance
bounds can then be derived for all the design and configuration options in Table I. The only
parameter that needs to be measured is the mean task service rate, µ, or equivalently, the
mean task service time, E[S] = µ−1. µ’s for both scale-up (i.e., µu and scale-out (i.e., µo)
workers are also needed to estimate the scaling factor δ in Eq. 4.8. The measurement cost
is low, as E[S] can be estimated as the average of a number of task service time samples,
which can be collected with a single run of a task flow at a task server at any given load,
assuming that the task service time is independent of the task queue length.

In particular, for a cluster in which scale-up workers are in use, i.e., they are modeled
by M/M/1 queues, we have the following lemma:
Lemma 8: For a cluster with M/M/1 workers, the query tail-to-mean ratio, γtm = xp

E[S]
, is

given by:

γtm = − 1

1− ρ
ln(1− kf

√
p

100
). (4.25)

or equivalently, the load is given by,

ρ = 1 +
1

γtm
ln(1− kf

√
p

100
) (4.26)

Proof: With Eq. 4.21, 4.24, 5.1 and 5.2 the p-th percentile tail latency can be written as:

xp = G−1(
p

100
) = −E(S)

1− ρ
ln(1− kf

√
p

100
) (4.27)
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we arrive at Eq. 4.25 by dividing both sides by E(S). Solving this equation for ρ, we have
Eq. 4.26. □

The above results may be used to estimate the achievable query tail-latency SLO
lower bound at a given target query throughput/load or the query throughput/load upper
bound at a given query tail-latency SLO for a cluster with scale-up workers. Similar per-
formance bounds can also be estimated numerically for a cluster with scale-out workers
(M/M/c), albeit the closed-form results are not available,

Following Theorem II, We also have the following result,

Corollary I: When ζ < 1, the crossover load, ρ′c(kf ), for a cluster with M/M/1 fork nodes
can be written as:

ρ′c(kf ) =

1

c1−ζ
h

B(kf , p)− 1

B(kf , p)− 1
, (4.28)

where,

B(kf , p) =
ln(1− Chkf

√
p

100
)

ln(1− kf

√
p

100
)
> 1. (4.29)

It can be easily verified that from Corollary I, ρ′c(Kf ) ≤ 1 if only if ζ ≤ 1, which
agrees with the general findings in Theorem II.

4.2.4 Task Response time distribution: FT (t)
FT (t) cannot be easily obtained for G/G/c queuing servers, other than M/M/c. A

brute-force solution is to direct measure FT (t) at each load of interest (note that FT (t)

is a function of load). For example, construct FT (t) in the form of a histogram using a
large number of task response time samples as input, collected by running the task server at
different loads of interest. The drawback of this approach is that it incurs high measurement
cost, as it has to perform as many runs of experiment as the number of loads of interest and
each run must be long enough to allow a sufficient number of samples to be collected in
order to capture the tail portion of the distribution, critical for the prediction of the query
tail latency performance. Instead of using this brute-force solution, in what follows, we
propose a grey-box solution with the smallest possible measurement cost.

we start with a black-box solution [87, 88] that approximates FT (t) in general as a
generalized exponential distribution function[49]

FT (t) = (1− e−t/β)α (4.30)
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where α and β are the shape and scale parameters, respectively. These parameters can be
uniquely determined, as long as the mean, E[T ], and variance, V [T ], of the task response
time are given. Namely, they are solvable from the following equations,

E[T ] = β[ψ(α + 1)− ψ(1)], (4.31)

V [T ] = β2[ψ′(1)− ψ′(α + 1)] (4.32)

where ψ(.) and its derivatives are digamma and polygamma functions, respectively.
The above modeling technique is found to be able to predict query tail performance

within 20% errors for a wide range of task queuing servers of practical interests [87, 88].
This technique is a black-box solution because it is based on E[T ] and V [T ], which can be
measured by treating the task queuing system as a black box, i.e., using the measured task
response time samples as input. The needed number of samples for the estimation of E[T ]
and V [T ] is expected to be smaller than that for the estimation of FT (t) directly. However,
as both are load dependent, we still need separate runs of experiment at different loads of
interest.

In this paper, we further reduce the measurement cost by proposing a grey-box so-
lution based on the above technique. Specifically, we make use of the following known
results for M/G/c queue.

Let Q, S, and T denote the random variables for task waiting time, service time, and
response time, respectively. Assuming that Q and S are independent random variables, the
mean and variance of the task response time can be written as,

E[T ] = E[Q] + E[S], (4.33)

V [T ] = V [Q] + V [S]. (4.34)

Then the mean and variance of the task response time for the M/G/1 queue are given as
follows[74, 2],

E[Q] = E[S](1 +
ρ

1− ρ
· 1 + C2

2
) (4.35)

V [Q] = E2[Q] +
λE[S3]

3(1− ρ)
+ E[S2]− E2[S] (4.36)

where E[Sk] is the kth moment of the service time and C is the coefficient of variation of
the service time distribution, . which is a function of E[S] and E[S2].
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Furthermore, an approximate solution for the mean and variance of the task response
time for the M/G/c queue is given as follows [118],

E[Q] =
(C2 + 1)

2

ρ

λc(1− ρ)
IIw(c, ρ) (4.37)

V [Q] =
E[Sγ ]

E[S]γ

2
(γ−1)

(VD[Q]− E2
D[Q]) + E2[Q], (4.38)

where C, again, is the coefficient of variation of the service time distribution, ED[Q] and
VD[Q] are the mean and variance of the waiting times of the corresponding M/D/c queuing
systems, and E[Sγ] is the γth moment of the task service time and γ = γ(c, ρ) ≤ 3, which
is given in a table format [118].

With the above results, all we need to know are service time moments no greater than
3, i.e., E[Sk], for k = 1, 2, 3 and E[Sγ], where γ = γ(c, ρ) ≤ 3. These moments can be
estimated with the task service time samples collected from a single run of the experiment,
the same as the case for M/M/c, i.e., the lowest possible measurement cost. Then we have
E[T ] and V [T ] for both M/G/1 and M/G/c queues by plugging those moments into the
above formulae. Finally, by solving α and β from Eqs. 4.32 and 4.31 and plugging them
into Eq. 4.30, we find FT (t) for both M/G/1 and M/G/c queues.

Although the above grey-box solution assumes that the query/task arrival process is
Poisson, our numerical results in the next section demonstrate that it can predict query tail
latency with fairly high accuracy even for highly bursty arrival processes, such as the Pareto
arrival process, especially in the high load region where the resource allocation is desired.

4.3 Numerical Analysis
In this section, we first verify the accuracy of the proposed models by simulation.

Second, we conduct numerical analysis of the scale-up versus scale-out crossover load at
the worker level and vertical versus horizontal crossover load at the cluster level.

4.3.1 Model accuracy evaluation
To check how accurate our model is for both the black box and grey box with mea-

sure mean and variance of task response time under every different load and one round
mean and variance of task service time measurement, respectively. We run simulation tests
for clusters with or without tail cutting or redundant issues and compare them with the
numerical results in terms of the 99th percentile tail latency. The accuracy of the model is
measured by the following relative error between the tail latency from the proposed model,
xp, and the one measured from simulation, xs.
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errorRate =
xp − xs
xs

% (4.39)

where xp and xs are the tails obtained numerically and by simulation, respectively.
We evaluated both regular task service time with Exponential distribution and the

heavy-tailed task service time distributions Weibull, and Truncated Pareto distribution as
M/G/1 and M/G/c queuing model in another word grey box:

• Weibull distribution [16]:

F (t) = 1− exp[−(t/β)α] t ≤ 0, (4.40)

Here α and β are shape and scale parameters, respectively. We set α = 0.6848 and
β = 3.2630, so the mean service time is again 4.22ms.

• Truncated Pareto distribution [4, 84, 87], with same mean service time 4.22ms. The
CDF is:

F (t) =


1−(L/t)α

1−(L/H)α
0 ≤ L ≤ t ≤ H,

0 otherwise,
(4.41)

where α is a shape parameter, L = 2.023ms and H = 276.6ms are the lower and
upper bounds for the service time, respectively. We set α = 2.0119 which is the
worse case. We also set α = 1.6 < 2 consider as a more practice case [42] with
L = 1.87ms and H = 90ms

Note that with Exponential distribution which has a general solution, it transfers the M/G/1
and M/G/c queue to M/M/1 and M/M/c queue, respectively. The result for Exponential
distribution with grey box is shown in figure 4.3a the error rate when kf = 1 is less than
5% and the overall error rate of 99th percentile tail latency is less than 10%.

With the grey box way to measure the mean and variance service time and applying
them to equation 4.30 to 4.38, the result is shown in Figure 4.3b and 4.3c. The error
rate when kf = 1 is less than 7% and 20% for Weibull and Pareto distribution, respectively.
Note that when estimating the scale-up and scale-out crossover we only consider the kf = 1

case. In this case, it proves that our model provides high accuracy with a grey box approach
for worker-level scaling. The overall error rate is less than 23% for the Weibull distribution
and for the Truncate Pareto distribution, this overall error rate is less than 20% at a higher
load. Moreover, we assume the i.i.d case, the response time distribution function equation
5.1 is approximated due to the power of fanout kf . This means with the fanout kf increase
there might be more error involved or neutralizing the error in the model. This explains
why we can see the model first over-estimate and then underestimate or the error rate is
keeping increasing or decreasing.
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(a) (b) (c)

Figure 4.3: grey box error rate of 99th percentile tail latency, (a) Exponential (a) Weibull,
and (c) Truncated Pareto

(a) (b)

Figure 4.4: Black box error rate of 99th percentile tail latency, (a) Weibull, (b) Truncated
Pareto

Another thing that needs to pay attention is that we mentioned the high load’s overall
error rate is less than 20%, which matches the result shown in paper [87] that our model
performs better at high load regions(78% to 95%). Moreover, in the real-world case, most
of them target high load. The sensitivity analysis showed [87] that 20% error rate trans-
lates into about 7% error in load prediction, meaning that if our models are used to aid
the resource provisioning, they may lead to at most 7% resource over-provisioning at high
load regions. We also did the error evaluation with the black box approach which directly
measured the mean and variance of task response time with every specific load and applied
them to equation 4.30 to 4.32. Figure 4.4 shows the error rate of 99th percentile tail la-
tency with Weibull, and Truncated Pareto distribution. As we can see the overall accuracy
performs almost the same. This means that the grey box model we use has high accuracy.
In other words, the grey box is good enough with low measurement complexity. So, in the
rest evaluation for additional cutting tail design, we consider the grey box approach.

Besides the accuracy with different measurement values. There is one more thing
that cannot be ignored, that is the grey box assumes the arrival rate is Poisson arrival. In
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(a) (b) (c)

Figure 4.5: Black box error rate with Pareto arrival process, (a) Exponential (a) Weibull,
and (c) Truncated Pareto

practice, the arrival rate can be the burstiness of request arrivals. We use a burstier arrival
process, the Pareto arrival process[4]. The CDF of the Pareto distribution is

F (α, t) =

1− ( tm
t
)α t > tm

0 otherwise,
(4.42)

where tm is the minimum time interval, used as a tuning knob to adjust the load. α deter-
mines the variance of the arrival time interval, a measure of burtiness, which is less than 2
in practice [42]. We set α = 1.6 to capture heavier bursty arrivals and the queue will be
considered as G/G/c or G/G/1 queue which we use black box to test the accuracy. We run
the simulation with Weibull and Truncate Pareto distribution as service time distribution
with load from 10% to 90%. In the meantime, we collect the mean and variance of task
response time to get the α and β values with eq. 4.31 and 4.32 then apply to eq. 4.30 to
get the 99th tail latency. The error rate result is shown in Figure 4.5. With both Poisson
and Pareto arrival processing, fanout kf = 1, 100, 1000, different c = 1, 2, 3 numbers rep-
resented scale-up and scale-out as Figure 4.5a, 4.5b, and 4.5c show the overall error rate
is less than 20% at higher load. This means the burtiness arrival rate doesn’t affect the
accuracy of our model much. So, in the rest of the evaluation we only consider the Poisson
arrival distribution.

The above evaluation is for basic design without the redundant issue and tail-cutting.
However, in the real world, the cutting tail configuration is needed to satisfy the tight tail la-
tency requirement. Also, people want to achieve a high load to improve resource utilization
at a low tail-to-mean ratio γtm as we mentioned in the previous Section. For example, when
γtm = 40 with Weibull service time distribution the maximum load it can achieve without
redundant issues is 70% while with the redundant issue the maximum load increases to
about 90%. This clearly shows that if we want to achieve high resource utilization the
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(a) (b) (c)

Figure 4.6: grey box with redundant issue error rate of 99th percentile tail latency, (a)
Exponential (a) Weibull, and (c) Truncated Pareto

cutting tail configuration is needed. Under this condition, the following evaluation result
shows that our model can give high accuracy as well when adding additional cutting tail
configuration: redundant issue, and tail-cutting.

In the rest of this section, we evaluated how our model performed with redundant
issues and tail-cutting under grey box approaches. We first give the redundant issue config-
uration evaluation result. Figure 4.6 shows the 99th percentile tail latency error rate with
Exponential, Weibull, and Truncated Pareto with 2 replicas. As we can see the overall error
rate for both is less than 20% at higher load, even for low load(50%0 is less than 30%.
This gives us an idea that if the budget allows, adding the configuration of the redundant
issue is a good way to have better performance in the meantime our models can provide
high-accuracy predicted tail results that translate into about 7% resource overprovisioning.
Moreover, our model is the best case but we set our simulation to be a worst-case without
any cancel policy. By comparing the best and worst case the overall error rate is less than
20% we can see that any other better solution will definitely reduce the error rate. It again
proves that our model provides highly accurate predict.

Tail-cutting configuration is focused on handling the outlier, such as VM failure or
network connecting issue which happened very few. So, we set the cutting threshold to be
2-3 times the tail. The result shows that there is no significant difference with the regular
design and the overall error rate is less than 20% at higher load, again transferring to about
7% error for resource provisioning.

In conclusion, our unified model with simple one-round measurement independent
of load can provide high-accuracy performance evaluation connected to different system
designs and configurations.
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(a) (b) (c)

Figure 4.7: Scale-up VS Scale-out 99-th percentile tail latency with different arrival rate
(load): (a) Exponential (a) Weibull, and (c) Truncated Pareto

4.3.2 Crossover analysis
In this section, we give the crossover load prediction result with our grey box model

and compare it with the simulation result at both the worker level and cluster level.
Scale-up versus scale-out At the worker level the crossover load, ρc, is independent

of query fanout, kf , so we conduct kf = 1 at the worker-level analysis.
We first consider the M/M/1, M/G/1 queue for the scale-up worker versus the M/M/c,

M/G/c queue for the scale-out worker with the Exponential, Weibull and Truncated Pareto
service time distribution. We set the number of processing units in a scale-out worker,
Co = 3 and p = 99th percentile, and scaling factor δ = 0.7, 0.9, 1.3. As shown in Figure
4.7a, 4.7b 4.7c, the arrow points to the crossover point, and the dotted line is the simulation
result, the solid line is the model result, as it shows that the smaller δ is, the smaller ρc will
be. When δ > 1 the scale up is better than the scale out, agreeing with Theorem I and our
postulation. Table 4.7 shows the crossover point error rate by comparing the simulation
and model which is less than 5%.

Vertical versus Horizontal At the cluster level, we set ch = 3 and kf = 20 for the
vertical cluster. To show the crossover point, we evaluate the 99th-percentile tail latency
with ζ = 1.0, 0.95. The result is shown in Figure 4.8. Again, the arrow points to the
crossover point, the dotted line is the simulation result, and the solid line is the model
result. And, table 4.3 gives a clear look at crossover load ρc. The overall error rate when
predicting the crossover is less than 5%. In contrast, people can use our model to make a
more effective and accurate resource provisioning decision.

4.4 Related Work
First, queuing models have been widely used for performance modeling of dis-

tributed computing in datacenters and clouds. Mary and Saravanan [82] model the cloud
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(a) (b) (c)

Figure 4.8: Vertical VS Horizontal 99-th percentile tail latency with different arrival rate
(load): (a) Exponential (a) Weibull, and (c) Truncated Pareto

Table 4.3: Crossover load (Simulation vs Model)

Distribution
Worker-level(δ = 0.9)

Error rate(%)
Cluster-level(ζ = 0.95)

Error rate(%)
Sim(%) Mod(%) Sim(%) Mod(%)

Exp 60.62 61.57 1.57 59.40 54.60 8.08
Wei 55.63 57.69 4.17 64.32 61.16 -4.91
TPar 53.73 52.98 -1.40 65.03 62.82 -3.40

center as an M/G/1 queue server with query response time and waiting time distributions
obtained. Chang et al.[21] develop an approximate analytical model to evaluate the perfor-
mance of an M/G/m/m + K queuing system and obtain the mean queue length, the mean
response time, and the blocking probability. Bai et al.[14] construct a complex queuing
model with a single queue and multiple heterogeneous servers to evaluate the performance
of heterogeneous data centers. They analyze the mean response time, the mean waiting
time, and other performance indicators. They also mention that the configuration of server
clusters may impact the performance of the system. Khazaei et al[72] propose an ana-
lytical model based on the M/G/m queue for the performance evaluation of a cloud com-
puting environment. They examine the effects of various parameters, such as arrival rate,
the size of the task, and virtualization degree on the task rejection probability and delay.
Fakhrolmobasheri et al[40] propose an analytical model based on an M/M/1 queue for the
performance evaluation of Infrastructure-as-a-Service (IaaS) cloud systems, also consider-
ing failure/repair behavior of virtual machine monitors and virtual machines. Hanini and
El Kafhali [50] propose an analytical model based on M/M/c queue, derive performance
parameter expressions to estimate the loss probability, mean number of requests in the sys-
tem, and mean requests delay, while varying the incoming request arrival rate. Hellemans
et al.[55] provide a numerical method to assess the performance of workload dependent
policies including many replication policies, as well as strategies for fork-join systems.
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Scully et al.[104] study the optimal mean response time policy in the M/G/k queue. Wang
et al[130] derive stability, queueing probability, and the transient analysis of the number of
jobs in the system based on the M/M/c queue.

However, The above works are focused on the job mean response time, rather than
the tail latency, hence more applicable to batch applications than user-facing applications.
Moreover, the underlying single queuing server structure of these works renders them in-
capable of capturing the fanout nature of the DUS workloads, which must be modeled with
multiple queuing servers working in parallel with barrier, e.g., Fork-Join queuing network
models.

For the sake of completeness, in what follows, we briefly review the related work on
different design and configuration aspects covered in our paper, most of which, however,
are focused on scaling analysis of specific real systems with limited configuration options,
rather than performance modeling of various possible system designs and configurations,
including scale-out, scale-up, vertical scaling, horizontal scaling, redundant issues, and tail
cutting.

Vertical and horizontal scaling Dawoud et al. [31] compare vertical and horizontal
scaling and use a simple threshold-based controller for adapting the resources. CloudScale
[107] uses resource requirement predictions to scale a VM vertically. Yazdanov et al. [137]
use an auto-regressive prediction model to predict the resource requirements without con-
sidering the application performance as a result of scaling. Lakew et al. [76] and Farokhi
et al.[41] propose significantly faster average response time models for vertically scaled
resource allocation. Spinner et al.[110] propose a performance model to ensure that the
application performance meets the user-defined SLO efficiently by runtime vertical scaling
of individual virtual machines, and they [109] also propose a proactive vertical memory ap-
proach to adjust settings associated with application memory management during memory
reconfiguration. Rossi et al[100] propose Reinforcement Learning (RL) solutions for con-
trolling the horizontal and vertical elasticity of container-based applications with the goal
to increase the flexibility to cope with varying workloads. All of these works are mainly
focused on the online scaling of real systems and some of them do so without considering
the performance.

Scale-out and Scale-up TwoSpot[133] is a platform built for scaling out and it makes
the scaling decision depending on the application load. Ferdman et al[43] use performance
counters to analyze the micro-architectural behavior of a wide range of scale-out work-
loads. Ramanathan et al.[95] present a performance model for predicting job completion
time and the Hadoop MapReduce jobs execution time in a private cloud environment using
the scale-out strategy. Hwang et al[58, 59] evaluate both scale-out and scale-up strategies
to satisfy production services and they argue that the choice of scale-up or scale-out so-
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lution should be made primarily by the workload patterns and resource utilization rates
required. Michael et al.[85] investigate the behavior of two competing approaches to par-
allelism, scale-up and scale-out, in an emerging search application. Their result shows that
a scale-out strategy can be the key to good performance even on a scale-up machine. How-
ever, their evaluation is performed on special hardware. Appuswamy et al.[11] claim that
a single “scale-up” server can process each of these jobs and do as well or better than a
cluster in terms of performance, cost, power, and server density. Moreover, they propose
that the correct decision of scale-out or scale-up depends on job size, job characteristics,
and pricing.

Redundant issue and tail cutting Many works have been devoted to reducing tail
latency with redundant task issues or tail cutting.

Some works demonstrate that redundant issues can help improve performance in
real-world applications. Vulimiri et al.[126] demonstrate that redundancy is an effective
general technique to achieve low latency in networked systems. Dean et al.[32] note that
Google’s big table services use redundant issues in order to improve latency. Joshi et
al.[64, 66] analyze how redundant issues affects the latency and the cost of computing
time under fork-join structure and propose a general redundancy strategy for an arbitrary
service time distribution. Zoolander [113] uses redundant accesses to mask outlier response
times. C3 [117] develops an adaptive replica selection mechanism to reduce the latency
tail in the presence of service-time fluctuations in the system. Ayesta et al.[13] present a
unifying analysis for redundancy systems with different cancel policies with exponentially
distributed service times.

Works that allow partial results to be returned to fulfill a query fall into the category
of tail cutting techniques include [54, 61, 138, 10, 140]. All these solutions achieve more
predictable query performance at the cost of possible loss of partial results.

In summary, the existing performance models and works concerning specific systems
have limited scope, covering only certain aspects of the system design and configuration
options concerning the current work.

4.5 Conclusions
This paper provides mathematical models to characterize the performance for data-

intensive, user-facing applications (DUSes). The proposed models provide a direct con-
nection between tail latency, throughput, load, and resource demand under a range of sys-
tem configurations and design choices. We first propose models for both worker-level and
cluster-level scaling and different configurations. Then we describe the performance scal-
ing models that establish a connection between resource scaling and performance for differ-
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ent systems. We also prove that under certain resource scaling conditions, there is a cross-
over load beyond which the horizontal scaling/scale-out outperforms vertical scaling/scale-
up at the cluster/worker level. We also discussed how our models may be applied to aid
resource planning for datacenter clusters to support DUSes.
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CHAPTER 5

Initial Resource Provisioning Plan Tool

5.1 Introduction
With the rapid evolution of cloud computing, traditional on-premise computing is be-

ing surpassed. According to Foundry’s recent Cloud Computing Study (2022), a staggering
84% of organizations already have some of their applications or computing infrastructure
in the cloud. Furthermore, the study reveals that nearly three-quarters of the 850 surveyed
organizations default to cloud-based services. Consequently, many organizations are ac-
tively migrating their existing workflows and applications to the cloud. As user numbers
increase and data access expands, services are becoming more data-intensive. These ser-
vices, known as Data-intensive User-facing services, include web searching, banking apps,
digital marketing, online social networking, and edge-based crowd-sensing for emergency
response.

For data-intensive user-oriented services, time-sensitive factors, especially query tail
latency, are widely recognized as critical requirements and have a huge impact on user
experience, application adoption, customer satisfaction, and ultimately business revenue
and success. Moreover, there is a wide range of possible cluster design and configuration
options and different options may lead to vastly different query tail latency and throughput
performance. We identify some widely adopted design and configuration choices, in terms
of, scale-up or scale-out, with or without redundant task issues [126] at the worker level;
and vertical scaling or horizontal scaling with or without tail cutting [61] at the cluster
level. This leads to a total of 16 distinct design and configuration options. Although, related
issues of cloud computing resource planning and query tail latency optimization have been
made: some of these studies [131] focus on developing online optimization algorithms and
scheduling strategies to achieve low-latency services under high load conditions, others
based on queuing models [130, 104], they have limited scope, focusing on the comparative
study of a few design and configuration options.

In addition, cost-effectiveness is also an essential consideration in cloud comput-
ing. Average cloud server prices range from $400 per month (one server) to $15,000 per
month (entire back-office infrastructure). This only covers the cost of server rental and does
not include other expenses such as maintenance and operations. We refer to the purchase
price plus operating costs as the total cost of ownership (TCO) is an essential indicator
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that enterprises need to consider in cloud computing. Methods to reduce cloud computing
costs include optimizing resource utilization, adopting elastic scaling strategies, and flexi-
ble pricing models. Effectively reducing operating costs and improving resource utilization
efficiency is critical for users to make cost-effective plans when deploying services to the
cloud.

We proposed an offline initial resource provisioning plan tool based on the offline
performance model that provides a direct connection between cluster resource demand,
query tail-latency SLO and throughput for all design and configuration options to predict
the tail latency and resource utilization with different system designs and configurations so
that users can use the predicted result combined with their special requirement to have an
efficient initial plan with as less as further changes after the system is deployed.

The rest of this paper is organized as follows.

5.2 Model
The models we used to build our tool for different system designs and configurations

are described in Section 4.2 of Chapter 4.
We put some important formulas here for easy reading.

Lemma 1: The query response time distribution G(t) can be approximately written as,

G(t) ≈ FT (t)
kf (5.1)

Lemma 2: The pth-percentile query tail latency of xp is given by,

xp = G−1(
p

100
) (5.2)

Theorem I: For δ > 1, the scale-up worker outperforms the scale-out worker in terms of
the tail-latency performance, in the entire load range of ρup ∈ [0, 1]. and for δ < 1,There is
a cross-over load, ρc < 1, independent of query fanout kf , such that,

xoutp (µo, ρout, kf ) = xupp (µu, ρup, kf ), ρup = C
(1−δ)
o ρout = ρc

xoutp (µo, ρout, kf ) > xupp (µu, ρup, kf ), ρup = C
(1−δ)
o ρout < ρc

xoutp (µo, ρout, kf ) < xupp (µu, ρup, kf ), ρup = C
(1−δ)
o ρout > ρc

(5.3)

where xoutp (µo, ρout, kf ) and xupp (µu, ρup, kf ) are the pth-percentile query tail latencies for
the scale-out and scale-up clusters, respectively.
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Figure 5.1: Locations (blue and green colored buildings) of the edge nodes and the query
handler in the SaS testbed.

Theorem II: For ζ ≥ 1, vertical scaling outperforms horizontal scaling regardless of query
fanout, kf , and load, and for ζ < 1, there is a crossover load, ρ′c(kf ) < 1, a function of kf ,
such that

xhp(E(Sh), ρh, Chkf ) = xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh = ρ′c(kf )

xhp(E(Sh), ρh, Chkf ) < xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh > ρ′c(kf )

xhp(E(Sh), ρh, Chkf ) > xvp(E(Sv), ρv, kf ), ρv = C
(1−ζ)
h ρh < ρ′c(kf )

(5.4)

5.3 Methodology
5.3.1 System description

We illustrate our system with our on-campus SaS testbed. The testbed is currently
composed of four clusters of Raspberry Pi edge nodes, located in four rooms in two build-
ings, including a server room and a Graduate Research Assistant (GRA) office next to a
wet lab in one building, and a faculty office and a Graduate Teaching Assistant (GTA) of-
fice in another building as shown in Figure 5.1. In each cluster, there are 8 Raspberry Pi
devices, serving as edge nodes, and connected to the Internet through an Ethernet switch.
As mentioned, we identify some widely adopted design and configuration choices from the
worker to the cluster levels. To cover every choice our tools workflow is shown in Figure
5.2 which gives an overview of how the tool works. As Figure 5.2shows,
Step 1: The user who will rent resources from the resource provider needs to provide some
basic information and requirements of their services, such as average arrival rate λ, mean
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Figure 5.2: Overview

service time E(S), fanout kf , and tail latency SLO xp. More input detail will give in
Section 5.3.2;
Step 2: Decide the worker-level scaling design. With pre-measurement delta of the dif-
ferent type processing unit, if delta < 1 with Theorem I we know that there will be a
cross-over load which will be given by our model so that people know they should choose
scale-out or scale-up at the worker-level based on their tail latency requirement. At this
step, the output will be a figure that shows both scale-out and scale-up tail latency versus
system load. Users can use this figure with the tail latency to figure out it is in which area
and related to which scaling method to make the decision. More detail can be found in
Section 5.4. Now, let’s assume that the input load is smaller than the cross-over load then
we choose the scale-up for each worker;
Step 3: with the previous selection, first of all, each worker in the cluster should apply a
scale-up design. Then, apply fanout kf and ζ to our cluster-level crossover model we can
make the cluster-level scaling strategy selection. Again, if ζ < 1 there is a cross-over load
based on Theorem II. Same as worker-level, it will also generate a guild figure for the user
to relate the tail latency and scaling method. Again, let’s assume the Horizontal scaling can
provide better performance since we found that ρv < ρc;
Step 4: Redo Step 1-3 with the redundant issue and cutting tail configuration if neces-
sary(based on user’s additional requires);
Step 5: Combine all the selection with comparison to make the final initial resource alloca-
tion.

5.3.2 Input Variables and Requirements
The input parameter can be classified into two types: variables from measurement;

and predefined variables which are based on the user application and requirement.
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Worker level Cluster level
Variable Description Variable Description

µu Average task service rate for scale-up worker E(Sv) Mean task service time for vertically scaled cluster
µo Average task service rate for scale-out worker E(Sh) Mean task service time for horizontally scaled cluster
E(Ru) Mean task response time for scale-up worker E(Rv) Mean task response time for vertically scaled cluster
E(Ro) Mean task response time for scale-out worker E(Rh) Mean task response time for horizontally scaled cluster
V (Ru) Variance task response time for scale-up worker V (Rv) Variance task response time for vertically scaled cluster
V (Ro) Variance task response time for scale-out worker V (Rh) Variance task response time for horizontally scaled cluster
δ Scaling factor at worker level ζ Scaling factor at cluster level

Table 5.1: Measurement variables

Predefined variables The predefined variables as following include the variables directly
from the application and other outside factors such as budget, fault-tolerant, reliability, and
so on.

• Co: Number of processing units in scale-out worker
• Ch: Number of horizontally scaled workers
• kf : Average query fanout
• λ: Average query arrival rate
• XSLO

p : p-th percentile tail-latency SLO requirement
• other user requirements: reliability, budget.

Measurement Variables: The measurement variables mean that the user needs to run their
DUSes on a basic processing unit. The input measurement variables are shown in Table
5.1 and we give a detailed explanation of each as follows. Noted, not all the measurement
variables are required in the table, the user needs to collect whatever they need based on
the model they use.
White box model: The white box means that task service time distribution is already
known and follows kind specific distribution, such as, Exponential, Weibull, Pareto, and
so on. This means that we can use the queuing model like M/M/c or M/G/c to get the
query response time distribution as Eq. 4.8 and calculate the pth percentile tail latency. In
this way, if the task service time distribution is Exponential distribution (M/M/c queuing
model), the µu and µo are the variables needed at the worker-level and apply them to Eq.
4.21 - 4.24 can get the δ value. Same, at the cluster level, the E(Sv) and E(Sv) are needed
then we have the ζ value by applying to Eq. ??. Otherwise, for any other task service
time distributions we can use the M/G/c queuing model. And, there are two different
cases: First, the γ (γ ≤ 3) moment can be calculated with a known equation, then the
measurement variable is the same as the Exponential distribution; Second, the moment
calculate equation is unknown, then up to 3 moments of the task service time need to be
measured at both worker-level and cluster level as Eq. ?? - 4.38 shows.
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Black box model: Different from the white box, the black box means that the task service
time distribution of the DUSes is unknown. In this case, we need to measure all of the
variables in Table 5.1 to get the δ, ζ , and query response time distribution function with Eq.
4.30 to 4.32 to calculate the pth percentile tail latency.

5.4 Case Study
In this section, we will give a step-by-step case study that shows how to use our tool

to do the initial resource provisioning plan. In the end, we deploy the system with the plan
and verified it by running the application on our testbed system.

5.4.1 Predefined requirements and variables
Our predefined variables are as follows:

• Co: 3
• Ch: 2
• kf : 15
• λ: 18
• XSLO

p : 200ms
• other user requirements: budget limited

5.4.2 Worker level input variables
First of all, we need to collect the input variables. Based on the testbed we discuss

in Section 5.3.1 and our application. We decided to use the white box model and trade the
task service time following the Exponential distribution. At the worker level, we choose
the basic processing unit (we use "OUT" to represent it) in the scale-out worker with 30%
of 1 core CPU resource and each contains 3 (Co = 3) processing units. Equally, the scale-
up worker is one big processing unit (we use "UP" to represent it) with 90% of 1 core
CPU resource. Then we run the application on each of the "OUT", and "UP" to collect µu,
µo and use those two values to calculate the δ values. All the variables we measured are
shown in Table 5.2 which shows δ = 0.712 < 1 and means there should be a crossover
point between scale-out and scale-up worker. By inputting these worker-level measured
values into our tool we have the following Figure 5.3a as output. As the figure shows,
the crossover point is clearly shown in the figure that it happened when the arrival rate
is 19.75. This means if the application arrival rate is less than 19.75 the scale-up worker
provide better tail performance, otherwise the scale-out worker is better.
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Worker level Cluster level
Variable Value Variable Value

µu 35.34 E(Sv) 11.97
µo 16.16 E(Sh) 28.30
δ 0.712 ζ 1.242

Table 5.2: Measurement variables

(a) (b)

Figure 5.3: Tool output

5.4.3 Cluster level input variables
At the cluster level, 2 of the wimpy worker (we use "VAR" to represent it) in the

horizontally scaling cluster is equal to 1 brawny worker (we use "HON" to represent it) in
the vertically scaling cluster which means the Ch = 2. At the worker level the crossover
arrival rate λc = 19.75, and both arrival rate is less than the crossover arrival rate, so
we choose scale-up worker as each worker’s scaling design. Then we run the application
on both the "VAR" and "HON" to collect E(Sv), E(Sh), respectively. Then use those
values to calculate the ζ values. The variables we measured are shown in Table 5.2 as
well which shows ζ = 1.242 > 1 and means that there is no crossover happening the
vertically scaling cluster is always better than the horizontally scaling cluster. By inputting
these cluster-level measured values into our tool we have the following Figure 5.3b. In
the meantime, we run our application based on the configuration we chose to verify our
model. We set each worker as a scale-up worker and use a total of 15 nodes in our testbed
to build the vertically scaling system. The 99th percentile tail latency results with λ = 18

is 153.3ms which is very close to the result our tool gave 152.4ms. Moreover, it meets
the predefined requirement. There is one more thing that needs to be paid attention to the
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request tail latency is 200ms, from Figure 5.3b it can also be satisfied even if we choose a
horizontally scaling cluster. In this case, the user can use our output figures combined with
their requirements to make the decision very flexible.

This case study is to give our users an idea of how to use our initial resource provi-
sioning tool to make their specific plan. More case studies such as the AWS EC2 resource
plan will be considered as future work.

5.5 Conclusion
This chapter provides a resource provisioning tool that is built on top of a set of

mathematical models. The mathematical models provide a direct connection between a set
of performance metrics such as tail latency and throughput, and resource demand under
different system configurations and design choices. With our tool, users can easily make
a flexible plan with lower complexity measurements. We also give a case study with our
on-campus testbed to show some ideas of how our tool can provide. For future work, we
will extend our tool to more application scenarios such as AWS EC2, Google Cloud, and
so on.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Contributions
The contributions of this dissertation can be summarized as follows:

• We propose Pigeon, a distributed hierarchical job scheduler for datacenters. In Pi-
geon, workers are divided into groups. Each group has a master worker which cen-
trally manages all the tasks handled by the group. Weighted fair queuing is used to
provide priority service differentiation between tasks of short jobs and tasks of long
jobs. A small portion of workers in each group are reserved to serve short job tasks
only. The ability of each master in managing its group resources centrally makes
Pigeon highly effective in scheduling heterogeneous jobs. Evaluation via theoretical
analysis, trace-driven simulations, and a prototype implementation shows that Pigeon
significantly outperforms 30X to 150X with other schedulers Sparrow up to 150X at
90th percentile tail latency for short jobs(user-facing services).

• We propose TailGuard based on a Tail-latency-SLO-and-Fanout-aware Earliest-Deadline-
First Queuing policy (TF-EDFQ) for task queuing at individual task servers the query
tasks are fanned out to. With the task queuing deadline for each task being derived
based on both query tail latency SLO and query fanout, TailGuard takes an essen-
tial first step towards achieving the design objective. A query admission control
scheme is also developed to provide tail latency SLO guarantee in resource shortages.
TailGuard is evaluated against First-In-First-Out (FIFO) task queuing, task PRIority
Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by both sim-
ulation and testing in the Amazon EC2 cloud. The experiment results demonstrate
that TailGuard can improve resource utilization by up to 80%.

• We develop queuing models that provide a direct connection between cluster re-
source demand, query tail-latency SLO and throughput for all design and configura-
tion options. We derive the maximum sustainable cluster loads at different query tail-
latency-to-mean ratios for different design and configuration options; And we prove
that under certain resource scaling conditions, there is a worker-level cross-over load,
below (above) which the scale-up (scale-out) workers outperform scale-out (scale-
up) ones, independent of query fanout, and there is a cluster-level cross-over load,
a function of query fanout, below (above) which the vertical-scaling (horizontal-
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scaling) outperforms horizontal-scaling (vertical-scaling). We perform a comprehen-
sive test of the accuracy of the proposed models in predicting the DUS performance
by simulation. The result shows that the overall accuracy of our model is under 30%
which is about 10% resource over-provisioning at high load region.

• We build a tail latency-aware initial resource provisioning plan tool on top of our
performance model. Users can use this tool with simple input effectively make their
initial resource plan, thereby making as less as future changes after deployment on
the cloud.

6.2 Future Work
The resource provisioning tool described in Section 5 is implemented only for the

off-line initial resource provisioning plan, and gives one use case with the on-campus test-
bed. Our goal is to build a resource provisioning tool for DUSes users with the cloud. With
this goal, we have the following future work targeted:

• Evaluated the existing tool with different real cloud service providers such as AWS,
and GCP with real-cloud VMs based on the real Data-intensive user-facing appli-
cation. Based on the plan build a completed large scale such as a 100 - 200 nodes
cluster system and run the real DUSes to verify our plan;

• Involve budget into our model to have a tool that can give not only a good perfor-
mance plan but also consider the net profit. With the budget and cost involved the tool
can be used by the tenant to maximize their income while providing better service to
their customer.

• Apply our model to online resource provisioning. Nowadays, many DUSes are al-
ready deployed on the cloud, but with the increase of users and data, they need to be
scaled. So, how to scale more efficiently and make it as less effective as the running
system is very important.
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