
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

Electrical Engineering Dissertations Department of Electrical Engineering

2021

AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER

SYSTEMS SYSTEMS

Anusha Papasani

Follow this and additional works at: https://mavmatrix.uta.edu/electricaleng_dissertations

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Papasani, Anusha, "AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER SYSTEMS" (2021).
Electrical Engineering Dissertations. 321.
https://mavmatrix.uta.edu/electricaleng_dissertations/321

This Dissertation is brought to you for free and open access by the Department of Electrical Engineering at
MavMatrix. It has been accepted for inclusion in Electrical Engineering Dissertations by an authorized administrator
of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu,
vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/electricaleng_dissertations
https://mavmatrix.uta.edu/electricaleng
https://mavmatrix.uta.edu/electricaleng_dissertations?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/electricaleng_dissertations/321?utm_source=mavmatrix.uta.edu%2Felectricaleng_dissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER SYSTEMS

By

ANUSHA PAPASANI

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

Arlington, Texas, USA

May 2021

ii

© Copyright by Anusha Papasani 2021

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I am indebted to my supervising professor, Dr. Wei-Jen Lee, for his guidance, perpetual

enthusiasm in the subject that helped me in my research and successful completion of my Ph.D.

 I also extend my thanks to all my dissertation committee members Dr. David A. Wetz, Dr.

Ali Davoudi, Dr. Ramtin Madani, Dr. Rasool Kenarangui and Dr. William Dillon for their

comments and feedback on my dissertation.

 I also thank my friends and lab mates Dr. Long Zhao, Mr. Yuhao Zhou, Ms. Kaynat Zia

and Dr. Igor Matsuo from Energy Systems Research Center (ESRC). Especially special thanks to

Kaynat Zia for her constant support.

Lastly, I would like to thank all EE department members of UTA, especially Gail Paniuski,

for her assistance during my doctoral program.

iv

DEDICATION

I dedicate this work to my husband Nikhil Gabbi for brainstorming and motivating me to

think out of the box. Thanks for constantly reviewing all my work and being with me in ups and

downs throughout this journey. I also dedicate this work to my parents Sarada(mother), Ramanatha

(Father), and my-in-laws for their endless love and support. Thanks for my sister Greeshma and

all my cousins. Finally, I would like to dedicate this work to all my friends for providing endless

support and confidence.

v

ABSTRACT

AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER SYSTEMS

By

ANUSHA PAPASANI, Ph.D.

THE UNIVERSITY OF TEXAS AT ARLINGTON

Supervising Professor: Dr. Wei-Jen Lee

 The power system industry often operates close to its limits to accommodate the increased

demand posing a high risk of blackouts. Power system restoration techniques are utilized post

breakout with the focus on load pickup and speedy recovery. In traditional heuristic methods, the

load is considered to be constant after it is picked. However, from a system operation point of

view, the load varies once picked. This is commonly observed in industrial loads. In Industrial

systems, loads, which involve many induction motors, are started in sequence. The high starting

currents of the induction motors leads to voltage sags that may affect variable speed drives and

cause contactors to drop out. If the load variation and inrush currents are not considered, load at

the time of pickup will be significantly underestimated at the time of pickup which might lead to

a system re-collapse. Besides, one may have to prioritize the loads to help the operator during

restoration. An automatic power system restoration tool is developed by using graph theory to

provide an efficient restoration path and considers the priority of the loads, Cold load pickup

(CLPU), Inrush currents, and load variation after picking up for a smooth and successful

restoration process. Evolution of the smart grid, the Intelligent Electronic Device (IED) has been

vi

deployed throughout the power system network for monitoring and control. Therefore, this

dissertation takes advantages on the availability of IEDs to report the loads on the feeder right

before the system blackout and the real-time load during the system restoration. The industrial

system and IEEE 30 bus system are used as a test cases to demonstrate the effectiveness of the

proposed methodology.

vii

Table of Contents

ACKNOWLEDGEMENTS ... iii

DEDICATION ... iv

ABSTRACT .. v

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

LIST OF ABBREVIATIONS .. xiv

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Objectives and Steps of Restoration.. 2

1.3 Motivation ... 3

1.4 Outline ... 5

Chapter 2 Power System Restoration ... 7

2.1 Restoration Approaches .. 7

2.1.1 Build Upward Strategy ... 8

2.1.2 Build Down Strategy .. 10

2.2 Power System Restoration Issues .. 10

2.3. Black Start Generator and Non-Black Start Generators ... 13

2.3.1. Characteristics ... 13

2.3.2. Types of Black Start and Non-Black Start Units ... 14

viii

2.4 Energizing Transmission Line .. 15

2.5 Load Restoration ... 16

2.5.1. Types of Load Models ... 16

2.5.3. Load Priorities ... 18

Chapter 3 Cold Load Pickup, Inrush Current and Load Variation ... 19

3.1 Cold Load Pickup .. 19

3.1.1 CLPU Components ... 19

3.2 Inrush Currents .. 22

3.3 Factors Influencing CLPU ... 24

3.4 Effects of Inrush currents .. 25

3.5 Load Variation After Pickup ... 26

3.6 Discussion .. 27

Chapter 4 System Restoration Algorithm and Flow Chart ... 28

4.1 Shortest Path Algorithm .. 29

4.2 Power System Restoration Flowchart ... 32

Chapter 5 Software Development ... 39

5.1 Technology .. 39

5.1.1 Backend Coding: Python .. 39

5.1.2 Frontend Development: HTML .. 39

5.1.3 Frontend Development: Bootstrap.. 39

ix

5.1.4 Frontend Development: jQuery .. 40

5.1.5 Development Environment/IDE: Visual Studio Code.. 40

5.2 User Flowchart .. 40

5.2.1 User Input: .. 40

5.3 Significant Code Snippets ... 47

5.3.1 User Input: .. 47

5.3.2 Creating a Network:.. 48

5.3.3 Inrush Current Calculation: .. 49

5.3.3 Dijkstra’s Algorithm: .. 50

5.3.4 Load Priority ... 51

5.3.5 Displaying Output: ... 51

Chapter 6 Case Study .. 53

6.1 Procedures for Automatic System Restoration ... 53

6.2 Design of the Industrial System .. 55

6.3 IEEE 30-Bus System ... 58

Chapter 7 Results .. 60

7.1 Tool Implementation for Restoration on Industrial Bus System ... 60

7.1 Industrial Test System Validation ... 64

7.2 IEEE 30-Bus System Validation ... 66

Chapter 8 Conclusion and Future Work ... 68

x

8.1 Limitations of this Study ... 68

8.2 Potential Future work .. 69

References ... 70

APPENDICES .. 79

APPENDIX A- INDUSTRIAL SYSTEM DESIGN DATA .. 80

APPENDIX- B CODE FOR CREATING USER INPUT USING HTML AND BOOTSTRAP

 ... 83

APPENDIX C RESTORATION CODE IN PYTHON .. 86

APPENDIX D CODE FOR OUTPUT DISPLAY USING JQUERY EMBEDDED IN HTML

 ... 120

APPENDIX E CODE FOR STANDARIZING UI ACROSS THE TOOL 123

xi

LIST OF FIGURES

FIGURE PAGE

Figure 1-1 Manhattan During Blackout .. 2

Figure 2-1 Overview of Power System Restoration ... 8

Figure 3-1 An Example of Power Demand Demonstrating CLPU... 21

Figure 3-2 Real and Reactive Power Demand for Motor and Constant Loads 23

Figure 3-3 CLPU Characteristics for Industrial and Residential Feeders 24

Figure 4-1 Step1: Starting Node Selection ... 29

Figure 4-2 Step 2: Initializing Nodes .. 30

Figure 4-3 Step 3: Processing Neighboring Nodes ... 30

Figure 4-4 Step 4: Identifying Available Paths... 31

Figure 4-5 Step 5: Process All Nodes ... 31

Figure 4-6 Flowchart of the Proposed Procedure ... 32

Figure 4-7 An Example of Dijkstra’s Algorithm .. 34

Figure 5-1 User Flow Diagram ... 40

Figure 5-2 User Input Code Snippet ... 47

Figure 5-3 Code for Creating Electric Network ... 49

Figure 5-4 Inrush Current Calculation Code .. 50

Figure 5-5 Dijsktra Algorithm Code Snippet.. 50

Figure 5-6 Load Priority Code .. 51

Figure 5-7 Code for Result Display .. 51

Figure 6-1 Sample Excel to Enter System Data.. 54

Figure 6-2 User Input for Restoration ... 54

xii

Figure 6-3 One-line Diagram of an Industrial Power System .. 55

Figure 6-4 One-line Diagram of IEEE 30-Bus System .. 58

Figure 7-1 Automatic System Restoration Step by Step Results for Industrial System 66

Figure 7-2 Automatic System Restoration Step by Step Results for IEEE 30 Bus System 67

xiii

LIST OF TABLES

TABLE PAGE

Table 2-1 Generator Types and Startup Power ... 14

Table 5-1 Generator Parameters ... 41

Table 5-2 Transformer Parameters ... 42

Table 5-3 Bus Parameters ... 43

Table 5-4 Line Parameters .. 43

Table 5-5 Load Parameters ... 44

Table 5-6 Motor Load Parameters .. 45

Table 5-7 Static Load Parameters ... 45

Table 5-8 External Grid Parameters ... 46

Table 5-9 Methods to Create Each Electric Element in the Network .. 48

Table 6-1 Generator Data.. 56

Table 6-2 Load Information .. 56

Table 7-1 Generation Capability ... 60

Table 7-2 Load L1-700HP Motor Restoration .. 63

Table 7-3 Load L1-1000HP Motor Restoration .. 64

xiv

LIST OF ABBREVIATIONS

PGN Real power injected at bus N at each stage

PDN Real power demand at bus N at each stage

PLN Real power loss at bus N at each stage

QGN Reactive power injected at bus N at each stage

QDN Reactive power demand at bus N at each stage

QLN Reactive power loss at bus N at each stage

Vi Voltage at the bus i

Vmin Minimum voltage limit at bus

Vmax Maximum voltage limit at bus

PGmin Minimum active power limit of a generator unit

PGmax Maximum active power of a generator unit

QGmin Minimum reactive power limit of a generator unit

QGmax Maximum reactive power of a generator unit

PAVA Available real power at a given point during restoration

QAVA Available reactive power at a given point during restoration

PGT Total rated active power of the energized generator

QGT Total rated reactive power of the energized generator

PCR Cranking power of generator’s real power

QCR Cranking power of generator’s reactive power

LP Total active power of the picked loads after it reaches a steady state

LQ Total reactive power of the picked loads after it reaches a steady state

P Active power of the load appeared after the switch is closed

xv

Q Reactive power of the load appeared after the switch is closed

PLI Active power of induction motor when inrush current is observed

QLI Reactive power of induction motor when inrush current is observed

PL Active power of the load that is obtained from IED right before the blackout

QL Reactive power of the load that is obtained from IED right before the blackout

PR Real-time real power load information obtained from IED

QR Real-time reactive power load information obtained from IED

VL Rated voltage of a motor

IINRUSH Inrush current of a motor

CLPU Cold load pickup

Chapter 1 Introduction

1.1 Background

 Loss of power to the end user is referred to as a blackout/power outage. Some power

outages are planned for maintenance and upgrades. However, in some cases blackouts might

occur and have a drastic impact on the people and the economy. In addition to increased demand,

blackouts can also be caused due to weather, accidents, equipment failure, lightning, voltage

collapse, faults, etc. [1].

• Weather: Weather is one of the most common reasons for power outages. Storms,

hurricanes, floods, wildfires, tornadoes etc., are some of the extreme weather conditions

that cause power outages. These natural disasters are especially dangerous because their

occurrence is unexpected, and the impact is felt for long periods of time. For example,

more than 4.4 million people were affected by power outage due to snowstorm in Texas

in 2021 [67]. Furthermore, two-thirds of Florida’s electricity customers were affected by

power outage due to hurricane Irma in 2017 [11].

• Accidents: Poles and power lines can be damaged due to vehicle accidents.

• Equipment failure: Equipment failure can occur due to several reasons such as age of the

equipment, accumulation of salt and dust overtime or natural disasters.

Examples of blackouts:

a. A blackout in one of the world’s busiest airports- Hartsfield-Jackson Atlanta on 17

December 2017, affected 30,000 people and more than 1000 flights were canceled [28].

2

b. A blackout occurred in the Northeastern United States in 2003 affecting 55 million

people [1], [2], [15].

c. A blackout in one of the highest populated regions of the world, India in July 2012,

affected 620 million people [1].

d. A blackout in the financial district i.e., Manhattan - New York in July 2019 affected

73,000 people, stopped subway trains on tracks, traffic lights were off causing havoc in

just five hours [69]. Figure. 1-1 shows Manhattan during the blackout [70].

Figure 1-1 Manhattan During Blackout

1.2 Objectives and Steps of Restoration

 The process of restoring the entire network i.e., getting the system back to the normal

operating state after an outage/blackout is called power system restoration. To minimize the

consequences of the blackout, it is essential to have an efficient restoration plan that restores the

system as soon as possible.

The objectives of restoration are:

3

1. Minimize restoration time

2. Minimize service interruptions

3. Maximize load served

4. Maximize generation capacity

 Power system restoration involves multiple steps, combinatorial operational decisions, and

should comply with many technical constraints making it a very complicated process. The steps

involved in restoration are as follows:

1. System status determination

2. Plant preparation

3. Generation restoration

4. Transmission path energization

5. Load restoration

 These steps can be broadly classified as preparation, system restoration and load

restoration. The first two steps are part of preparation, the third and fourth steps are part of system

restoration, and the final step is load restoration.

1.3 Motivation

The complexity of restoring a system depends on many factors, such as the number of

loads, the size of the loads, types of loads, voltages observed in the system, and the area covered

by the system etc. Industrial systems predominantly use induction motors with heavy loads; the

loads are started in sequence and have high voltages. These special characteristics of industrial

systems cause many issues during power system restoration as listed below; an explanation of the

issues below is discussed in chapter 2.2:

1. Black start capability

4

2. Voltage control

3. Cold load pickup (CLPU)

4. Inrush currents

5. Priority of the load

6. Load variation

The main goal of restoration is to restore power supply to the users as early as possible and

with no further interruptions. Load restoration can be carried out without the entire network and

generators being restored. Therefore, load restoration can be done in parallel to other stages of

restoration. For example, some loads called ballast loads are required to be restored for balancing

unit output and maintaining voltages and power balance within limits.

Single step load restoration activates one or more circuits at the same time, and this might

cause a heavy load pickup, leading to lower voltages and frequency excursions. If load pickup is

light, the number of steps will be higher resulting in delays in restoration time. Therefore, multi-

step load pickup, along with cold load pickup should be considered.

The traditional method of restoration was to follow written instructions that are constructed

around general rules and are executed manually [13], [14]. The problem with this approach is that

the restoration situation cannot be known beforehand and requires improvisation. With the

growing use of computers in every field, the whole or partial restoration process was a focus for

automation. Much research has been done to solve the restoration problem; the “Power System

Restoration methodologies & implementation strategies” by M. M. Adibi collects many papers

that discuss this topic [28]. Many techniques have been explored such as mathematical approach,

expert system, heuristic technique, and optimization technique utilizing methods like Particle

swarm method, Genetic algorithm, neural network, and tabu search for power system restoration

5

[12]. Few researchers focused only on black start capability [6] and few on generator starting

sequence [7], [8] and others are on Load restorations [64-66].

The restoration issues 1 and 2 mentioned above have been addressed by existing research

[16] and [21-23]. The studies on CLPU [17], [18], [19] and [20] have focused on thermostatically

controlled loads/residential loads, rather than industrial loads. The effects of inrush currents [27]

and load prioritization have been addressed in isolation but are not considered during power

systems restoration of industrial systems. The existing restoration techniques [24], [17], [25] and

[26] consider the load to be constant after it is picked up and does not account for load variation

during restoration.

Therefore, this study provides an effective automatic power system restoration procedure for

industrial loads by considering CLPU, Inrush Current, Load Priority and Load Variation. This

study also provides an automatic power system restoration tool that identifies the restoration path

based on least electrical distance (impedance) and considers the issues discussed above during

restoration to assist the operators in the event of a blackout.

1.4 Outline

This research is organized systematically as follows:

a. Chapter 2: Explains power systems restoration and deals with restoration strategies,

processes, and issues involved.

b. Chapter 3: Provides the impact of Cold load pickup and Inrush currents on system

restoration, mainly focusing on industrial systems.

c. Chapter 4: Provides an algorithm to solve the restoration issues, such as CLPU, inrush

currents, load variation, and load priority.

d. Chapter 5: Explains the software development, tools used and critical code snippets.

6

e. Chapter 6: Provides the case studies used to test the effectiveness of the proposed

methodology.

f. Chapter 7: Explains the results of the study.

g. Chapter 8: Summarizes research work and sheds light on potential future work.

7

Chapter 2 Power System Restoration

 The process of restoring an entire network i.e., getting the system back to the normal

operating state after an outage/blackout is called power system restoration. During blackout,

restoring the system is the highest priority for operators. To achieve this, operators perform a series

of time consuming and complex control actions to stabilize the system. Quick and effective system

restoration is required to reduce cost and downtime. This chapter discusses restoration approaches,

issues and stages of restoration (preparation – black start units, system restoration – energizing the

transmission line and load restoration)

2.1 Restoration Approaches

Power system restoration is divided into three stages i.e., preparation, system restoration, and load

restoration [31],[32],[33]. The first stage is time-critical and involves preparing the system to

restore, i.e., to start the qualified black start generators which do not require external power to start

[31] such as Hydropower plants, Diesel generator, aero-derivative gas turbine generator sets,

battery storage systems, etc. [34],[35]. The black start unit characteristics are discussed in section

2.4. In stage two, the transmission line is energized, and cranking power is provided to the non-

black start generators. Loads can also be picked up in the second stage depending on the generation

capacity thereby maintaining the system stability i.e., parallel restoration of generators and loads.

The final stage is the load restoration, all the remaining loads are picked up at this stage. The

overview of system restoration process is provided in Figure.2-1 [33]

8

Figure 2-1 Overview of Power System Restoration

There are five main system restoration strategies. Build-Upward, Build-Downward, Build-

Inward, Build-Outward and Build-Together [33]. Build-Upward and Build-Downward are the

most common strategies.

2.1.1 Build Upward Strategy

 This strategy is based on parallel restoration which means that the entire power system is

sectionalized into small islands and parallel restoration of islands is done before resynchronizing

the islands to a complete system. The islands are divided so that each island has equal or more

generation capacity than the load demand of the island. The fact that restoration of islands is carried

out in parallel minimizes the overall restoration time. This strategy is typically used for larger

systems. The major steps involved are starting black start units, providing cranking power to non-

black generators, restoration of islands/subsystems and synchronization of islands [31]. The other

9

advantage of this approach is to avoid the system outage due to recurrent disturbance in the affected

area. Any recollapse or interruption during restoration and before the subsystems are synced will

not affect the entire system but only the subsystem that caused the issue. Though this strategy has

a lot of advantages, especially with restoration time and handling issues during restoration, the

main disadvantage of this strategy is observed during synchronizing the subsystems together.

During synchronizing the islands, the voltage magnitudes and frequencies between the subsystems

must be matched or identical; voltage phase angle must be within tolerance levels. If not, the

restoration might not be successful.

As discussed in [30],[31],[47], [60] the following criteria should be satisfied for

sectionalizing the islands:

1. Black start capability: Each island/subsystem must have sufficient black start capability

to provide cranking power to the generators.

2. Generation-load balance: Each island should have the ability to match generation and

load to within prescribed frequency limits to avoid excessive frequency deviations. The

load characteristics and type of loads should be taken into consideration to determine

increments of load pickup [35], [47].

3. Generator cohesion: Some generators are cohesive i.e., they have similar rotor angles

before the blackout. These generators should be in the same subsystem to make the grid

reconnection easier [33], [57], [60].

4. Connectivity: Each island should be capable of coordinating/sharing information with

other islands. The connections between the subsystems should be few to minimize the

synchronization issues when subsystems are joined back [58-60]

10

5. Voltage control: Each island should have adequate voltage controls to maintain a

suitable voltage profile.

6. Tie lines: The tie lines for islands must be capable of synchronization with adjacent

subsystems.

2.1.2 Build Down Strategy

This strategy is based on sequential restoration; the bulk of the system is energized before

resynchronization. This strategy is usually applied to small systems with centralized black start

capability. The major steps involved are starting black start units, energizing the transmission

network, and providing cranking power to non-black generators [31]. The advantage of this

strategy is that there is no need of synchronizing the islands. Therefore, the probability of

restoration is high. The disadvantages are that it takes longer time to restore the complete system,

the high reactive power produced by unloaded high voltage transmission lines, and most

importantly, in case of a large disturbance, the entire system might be affected again, leading to a

recurrent large-scale blackout [33].

Other restoration strategies are explained in [31]. The factors involved in determining the

restoration strategy are system size, black start capability, and location of the black start unit etc.

For example, if the system is big in size, the buildup strategy is suitable. The system is

sectionalized into small subsystems and for restoring small subsystems the build-down strategy is

used.

2.2 Power System Restoration Issues

This research focuses on some of the issues encountered during the restoration process.

1. Black start Capability: The capability to start a generator without using support from

grid and these generators are known as black start generators. Black start generators

11

must have sufficient black start capacity to provide cranking power to non-black start

generators.

2. Voltage and Reactive Power Control: For a power system to operate in normal

condition the voltage should be within certain limits. High or low voltage has adverse

affects on the power system like overheating and damage of the motors and generators,

and voltage collapse. The alternating current power system supplies real and reactive

power. Real power accomplishes useful work while reactive power is necessary to

transmit active power through transmission and distribution systems to customers, and

it is also useful in maintaining the voltage. Voltages can be controlled by injecting or

absorbing reactive power in the transmission systems. A decrease in reactive power

causes under voltage that results in overheating and damaging of the motors, and

thereby some loads might not operate properly. Relays and contractors may drop out if

the voltage dip is 70-90% of the nominal voltage [36]. An increase in reactive power

causes over voltage that might damage the system or decrease the lifetime of the

equipment. Therefore, for reliable power system restoration it is important to maintain

the voltage within acceptable limits. This can be done by energizing fewer high voltage

lines, operating generators at minimum voltage levels, deactivating switched static

capacitors, connecting shunt reactors, adjusting transformer taps, and picking up loads

with lagging power factors [30].

3. Cold Load Pickup (CLPU): The phenomenon that takes place when the system is re-

energized after an extended outage [27]. Chapter 3 provides a detailed explanation of

CLPU.

12

4. Inrush Currents: Inrush currents are high starting currents drawn by equipment when it

is turned on. The presence of Inrush Currents and its effects are explained in chapter 3.

5. Load variation: During restoration, loads do not remain constant after they are picked

up. The load variation during the restoration process can be obtained from the

Intelligent Electronic Device (IED) which is assumed to be present in the system. Smart

grid evolution, which include the Intelligent Electronic Devices (IED) are rapidly

deployed throughout the power system to offer better information on the system

condition. IED is a device that is capable of sending/receiving the data or control. IED

provides the real time data such as active, reactive powers, voltage, current, circuit

breaker position etc. A detailed explanation of IED is given in [37] and [38]. Load

variation is explained in 3.3.

6. Load priority: It is required to restore the critical loads first compared to non critical

loads. Load priority is explained in 2.5.3

7. Load and Generation balance: At any point during restoration the load and generation

balance should be maintained. If the imbalance occurs during picking up of auxiliary

motor loads, then frequency excursions may occur which can cause the loss of already

picked up loads and subsequent recurrence of blackouts. If the imbalance occurs during

picking up of a cold load, then frequency deviations might occur resulting in load

shedding schemes, there by losing the newly picked up loads.

Specially, this study focuses on Cold load pickup, Inrush currents, Load variation and Load

priority during restoration of the Industrial system.

13

2.3. Black Start Generator and Non-Black Start Generators

The generating units are divided into black start and non-black start generators. In the event

of a blackout, the electric grid might be out of service and thus unavailable to provide cranking

power to power generation plants within its territory. Therefore, the need for a black start

generator unit arises. A black start unit is a self-starting unit that can be powered on its own

without support from the grid in the event of system blackout. The ideal black start units need

minimal time, fuel, and equipment to restart. The black start unit should be able to provide real

and reactive power to energize transmission and restart other generators. The controls used on

a black start unit include a DC auxiliary support system, an ignition source, a gas turbine, and

a diesel generator.

On the other hand, non-black start generators are not self-starting and require

starting/cranking power to start from an external source.

2.3.1. Characteristics

The characteristics that favor black start–capability for a generator include the following

[39]:

a. Lower power needs for station requirements like cooling, control and monitoring etc.

b. Quick power up of the plant to its rated output.

c. Large on-site real and reactive power capacity

d. Availability of required fuel supply to be able to function efficiently even during

frequency fluctuations.

e. Ability to stabilize system frequency (large size and inertia, high ramp rate)

f. Direct transmission connections with other generating plants

14

2.3.2. Types of Black Start and Non-Black Start Units

Table 2-1 below shows the types of generators and their startup power requirements [55],

[39].

Table 2-1 Generator Types and Startup Power

Type of Generator Startup Power

Nuclear 7-8%

Thermal 7-8%

Gas Turbine 1.5-2%

Hydro 0.5-1%

a. Hydroelectric generators: These generators require less cranking power and starts up

quickly. Hydroelectric generators supply adequate power to energize the transmission

system, provide cracking power to other generators like coal fired units and pickup

loads [39]. This generator has the ability to stabilize the system frequency.

b. Gas turbine generating units: These generators are suited for black start as they start

and pickup the loads quickly. The aero-derivative gas turbine can be started remotely

with local battery power [40]. Most of the industries use gas turbine driven generating

units as a black start unit. Gas turbines are large in size and have the capability to pickup

major transmission system elements.

c. Battery storage systems: Advancements in battery technology created the possibility of

using batteries in the black start process. The advantages and disadvantages of using a

battery storage system to black start the gas turbine is discussed in [41].

15

d. Nuclear power plants: They have large generating capacity and require several days to

restart. Therefore, they are not ideal as black start generators.

e. Combined cycle units: These generators are defined as non-black start generators

because they require several hours to restart, and they have more complex cooling

systems [39].

f. Diesel Generators are small in size and used to supply power to start large generating

units and operated by battery power. They generally cannot be used to pickup any major

transmission system elements.[40]

Overall, the ability to pickup loads and major transmission systems and very less startup

power makes Hydro and Gas Turbine ideal black start units.

2.4 Energizing Transmission Line

The transmission line is used to transmit the power to non-black start generators and loads.

During power system restoration procedure, the major step is to energize the transmission system

to enable the generation and distribution restoration. The current associated with capacitance of a

line is called charging current. The transmission lines with lower voltages have smaller charging

currents compared to the transmission lines with higher voltages. Energization of high voltage

transmission lines may result in over voltages that is caused due to the line charging current of

unloaded transmission lines. Often, multiple paths will be available in the network to the target

bus. The transmission lines with lower voltages are preferred as the transmission path to avoid

voltage violations [60]. To have steady transmission line energization, the line charging should be

balanced which can be achieved by having enough generation that will absorb reactive power and

this will also avoid overvoltage problem [42].

16

2.5 Load Restoration

The main purpose of the power industry is to provide continuous supply to users. In case

of a blackout, the load should be restored quickly. Loads are picked up in multiple steps by

balancing the voltages and power within acceptable limits. A single step restoration will cause an

unusually high load that affects the system voltage constraints, and the system might re-collapse.

Load pickup scheme is one of the most important considerations during power system restoration.

Loads are described by different load classes (Industrial, commercial, residential) and class

compositions (lighting, motors etc.). The study of load models is important to understand the load

characteristics.

Load Model is a mathematical representation of the relationship between a bus voltage and

the power in a bus load [43]. Load modeling is important for power system analysis, controlling

and planning. The accurate representation of load gives the accurate estimate of voltage stability

[44]. Load models are classified into static and dynamic loads [43].

2.5.1. Types of Load Models

According to the IEEE task force report, there are two types of load models [44].

1. Static Load model: These models express the active and reactive power at any instant

of time as functions of bus voltage magnitudes and frequency. Static load models

represent a static load component, e.g., resistive and lighting load, and as an

approximation for dynamic load components, e.g., motor-driven loads. [43], [44]

Few static load models are described below:

a. Constant Impedance (Z) Model: This static model represents the relationship

between power and voltage i.e., the power variation is directly proportional to

square of the voltage magnitude [44].

17

b. Constant Current (I) Load model: Power variation is directly proportional to the

voltage magnitude.

c. Constant Power (P) Load model: The power does not vary with changes in voltage

magnitude. It is also known as constant MVA load model or constant PQ model.

[44]. This dissertation uses constant PQ model.

d. ZIP model/ Polynomial Load model: This model represents the relationship

between the voltage magnitude and power as a polynomial equation. That is the

sum of constant impedance(Z), constant current (I) and constant power (P)

components [43], [44].

2. Dynamic Load model: These models express the active and reactive powers as function

of voltage and time. Differential equations can be used to represent such models. [43],

[44]

Most of the literature on power system restoration considers the constant PQ model [5],

[14], [24], in addition to the existing model this research considers inrush currents in the restoration

process. Reference [43], [44] provides detailed explanation of the load models.2.5.2 Constraints

for load restoration.

For stable operation of the system, the restoration should be done systematically by

satisfying all the power flow constraints mentioned below:

1. The power balance between generator and demand must be satisfied and given by

𝑃𝐺𝑁 − 𝑃𝐷𝑁 = 𝑃𝐿𝑁 (2.1)

𝑄𝐺𝑁 − 𝑄𝐷𝑁 = 𝑄𝐿𝑁 (2.2)

18

2. Power and voltage constraints at all the buses should be within acceptable limits to avoid

damage to the power system components and for system stability during restoration.

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 (2.3)

𝑃𝐺𝑚𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺𝑚𝑎𝑥 (2.4)

𝑄𝐺𝑚𝑖𝑛 ≤ 𝑄𝐺 ≤ 𝑄𝐺𝑚𝑎𝑥 (2.5)

2.5.3. Load Priorities

 Adequate research is done on load prioritization. These techniques discussed the

parameters based on which load should be prioritized [45],[46].

 Load Priority is essentially stating that during restoration some loads rank on top compared

to others. For example, loads like first responders, fire stations, etc., are highly critical and should

be prioritized compared to residential loads. Loads can be prioritized by many factors such as load

criticality, time of prioritization, cost of interruption, expected outage duration, etc. [46]. The load

restoration sequence will be determined by load size and its priority. The factors for prioritization

might be different for each industrial system.

19

Chapter 3 Cold Load Pickup, Inrush Current and Load Variation

3.1 Cold Load Pickup

 After a prolonged interruption, loads experience transient behavior when reenergized,

thereby the load pickup is a critical issue within restoration. This behavior is known as the cold

load pickup. Cold load pickup is the phenomenon that takes place when a distribution circuit is

reenergized following an extended outage of that circuit. It is very important to bring the system

back to a normal state as that causes inconvenience to the customers and loss of revenue.

 At the time of restoration, it is hard to predict the exact amount of load to be restored.

Hence, the understanding of the feeders will be complex. The factors that play a part in the feeder

load are, large reactive power that may be drawn from the electric grid due to motor starting;

typical user pattern may be altered prompting a non-standard behavior [51]. In the case of

residential loads, while bringing the system back to normal state, the system demand will be higher

compared to the load before the outage due to the loss of diversity. As the CLPU condition tends

to put more load on the system, the voltage and current limits are violated during the restoration

process. To understand the CLPU phenomenon, researchers provided various types of load models

including a physically based CLPU model [48], [49]. The behavior of CLPU will be delayed

exponentially on the residential feeder [52].

3.1.1 CLPU Components

 CLPU is composed of two different components while restoring the load. The first one is

the loss of diversity and the second refers to the Inrush currents (explained in chapter 3.2).

A. Loss of Diversity:

During normal operating conditions, all the loads that are connected to feeders will not be

operational at the same time. Therefore, the maximum demand at the feeder is less than the sum

20

of demands of all individual loads. This concept is called diversified demand. Following an outage

for a long duration, when the system is turned on, the system loses its load diversity (to hold a

preset value of temperature, pressure etc. a group of loads will be randomly switched that

independently cycle on and off). Post outage, all cyclic loads draw current at the same time thereby

increasing the load significantly. This is mainly observed in thermostatically controlled loads such

as air conditioners, water heater, refrigerators, etc. During normal conditions, the random

switching of group of these loads automatically cycling on and off occurs but after a prolonged

outage the thermostat contacts will be closed and waiting to run as soon as power is restored [27].

This phase is an enduring phase of CLPU due to the loss of diversity among the thermostatically

controlled loads and as soon as the system is restored, that takes several minutes to achieve the

diversity of loads (cyclic nature). Due to CLPU conditions, many protective devices activate and

de-energizes the faultless circuit and the restoration fails; this event may cause severe voltage

drops along the feeders, and transformer overloading. Therefore, it is very important to calculate

the CLPU magnitude and duration of the thermostatically controlled loads for smooth restoration

and provided in many research papers. [53],

 Figure. 3-1 [51] provides an example of power demand demonstrating CLPU and shows

three regions [51]

1. Pre-interruption: The normal operating condition where the diversified demand is

observed, and the load supplied to the feeder is less than the sum of individual loads

connected to that feeder.

2. Interrupted service: During service interruption the supplied load is zero but the

estimated load due to loss of diversity keeps increasing depending on the duration of

interruption.

21

3. Restored service: As soon as service is restored the demand will be higher and might

be as high as the sum of all individual loads. As time increases the load diversity is

restored and the demand is reduced. The peak in demand is directly proportional to the

duration of the outage.

Figure 3-1 An Example of Power Demand Demonstrating CLPU

In thermostatically controlled loads, which are observed in residential loads, the loss of

load diversity causes post outage load demand to be higher than pre outage load demand. Hence

the cold load pickup ratio given by load under cold load condition divided by load during normal

condition is greater than 1.0 [25]. Loss of load diversity is not observed in industrial systems which

have a high number of induction motors as opposed to thermostatically controlled loads. Industrial

systems have a starting sequence as soon as initial load is picked up other loads in the same bus

are gradually added. Therefore, the cold up pickup ratio is less than 1.0 [25] and increases steadily

[51].

22

3.2 Inrush Currents

Initially, in 1940, the behavior of load current was not important, and researchers provided

the relay settings and usage of the very inverse characteristic relay to the cold load pickup (CLPU)

avoiding inrush currents [19]. With a significant increase in loads, the unfavorable impact of power

system elements during restoration occurred. Therefore, researchers conducted a review study in

2006 which shows that from the 1970s many studies were done on behavior of load current [19].

The behavior of load current depends on the characteristics of loads. The load characteristics might

differ depending on the load type and might act differently after the outage when the system is re-

energized [34].

The behavior of loads once they are energized is called inherent transient behavior. Loads

are governed by both internal and external factors. Transient behavior is governed by internal

factors and loss of load diversity is governed by external factors. One of the well-known

phenomena of transient behavior is inrush current. As soon as the induction motor starts it draws

huge amounts of currents called inrush currents often several times that of full load current. During

early stages of the motor starting reactive power is higher and reduces as the motor nears the rated

speed. Constant/Resistive loads do not have the same behavior as rotating loads where they show

relatively constant values and can be modeled using step functions as shown in Figure. 3-2 [51].

23

Figure 3-2 Real and Reactive Power Demand for Motor and Constant Loads

If a feeder with large induction motors is energized the high reactive power requirement

may cause a voltage drop. Therefore, it is important to account for transient load behavior during

restoration.

Transient behavior and loss of load diversity causes load uncertainty. In addition, load

tripping, motor starting plan and user load behavior contributes to inaccurate load estimation.

During restoration, the loads that have historically been easier to predict or those that deviate very

less from the estimation are restored first. The loads that are tough to predict or have high deviation

from estimated value are restored at a later stage.

The CLPU is dependent on the type of load/feeder. The Residential and Industrial feeders

are compared in the Figure 3.3. The residential loads have high starting CLPU and gradually

decreases with time, on the flip side industrial loads demonstrates steady increase in CLPU with

time as shown in Figure. 3-3 [51]

24

Figure 3-3 CLPU Characteristics for Industrial and Residential Feeders

3.3 Factors Influencing CLPU

This section is taken from the IEEE committee report published in 2009 [27]. There are

many factors that determine the magnitude and duration of a CLPU like outage duration, weather,

outage causes, types of loads etc.

Cold load pickup is dependent on many factors:

1. Type of Load: Load types can be categorized in many ways. From the perspective of

cold load pickup, the most important load characteristics are initial inrush upon re-

energization and sustained inrush in excess of normal continuous load. Most types of

load incur an initial inrush upon energization. The most common load types are

Lighting, Motor load, residential loads etc.

2. Weather: The weather-related factors such as temperature, wind, humidity, sunlight,

snow, storm, etc., affect the cold load pickup duration following an outage. For

example, extremely cold or hot temperatures increase the duration of cold load pickup.

Storms might not have a direct impact on cold load pickup but may cause more systems

25

to be damaged thereby increasing the duration of outage which increases the duration

of the cold load pickup.

3. Load Level and Time of the Day: The amount of load already connected has an impact

on cold load pickup. For new facilities with less load connected to the feeders the cold

load pickup might not be significant because the distribution lines will be designed

estimating future load growth. The load factor for these circuits might be less than 50%.

As new customers are added on and existing customers add more load, the load factor

and cold load pickup duration increases. Residential, commercial, industrial or

agricultural load types depending on region, season, and day of the week have day

profiles. A typical day profile for workdays in winter has one peak load period in the

morning and another peak load period in the late afternoon. Therefore, estimating the

cold load pickup depending on the load before outage would be misleading.

4. Outage Duration: The duration of an outage has a direct relation with duration of cold

load pickup. As the duration of outage increases the load demand also increases due to

loss of load diversity. The load will lose diversity if the outage exceeds the longest

cycle time of equipment. For example, for a device that cycles every 15 minutes if the

outage occurs for more than 15 minutes, then its load diversity will be lost. This

increased demand has to be considered during cold load pickup.

3.4 Effects of Inrush currents

 Induction motors generate high starting currents, called the inrush currents or input surge

currents. These inrush currents lead to oscillations that can harm the shafts, gears, and belts, etc.

The magnitude and duration of the inrush currents depend on the load type. For example:

26

• The incandescent bulb has high inrush currents due to its low resistance and lasts for 0.1

seconds (until it reaches its operating temperature [34].

• The thermostatically controlled loads have small, single-phase motors that draw 5-8 times

the rated current, but they last only for 0.5 seconds [34].

• The industrial system dominant with induction motors draws 5-8 times the rated current

[27], [39] and may take several seconds to reach its operating speed.

 75-80% of the motors in industries are induction motors [50]. Induction motors have

extremely low power factors during the initial startup phase. The combination of high starting

currents and poor power factors cause significant voltage sag, and it is a common power quality

problem in industries. Voltage sag may cause the relays and contactors to drop out. The motor

controller like a variable speed drive is sensitive to the voltage sag and might shut down. Therefore,

it is very important to accommodate the inrush currents during system restoration.

 When energizing lightly loaded transmission lines or underground cables, the excessive

VARS generated by the undercompensated high voltage lines can increase voltages to

unacceptably high levels which are referred to as sustained power frequency overvoltages. If not

controlled, these voltages could cause serious reactive power imbalances, resulting in generator

self-excitation, transformer overexcitation, and harmonic distortions.

3.5 Load Variation After Pickup

 In power system restoration papers [17] and [24-26], the authors considered the load to be

constant after it is picked up. However, from a system operation point of view the load varies after

it is picked up. If this load variation is not considered, we might be underestimating the load in the

system and the system might re-collapse. With the development of smart grid, the real-time load

information/changes in load can be obtained from Intelligent Electronic Device (IED) or the load

27

forecasting can be used to predict the changes in load once picked up by using the historical load

information provided by IED. IED stores the data until the blackout, giving us visibility as to how

the network was moments before the blackout.

3.6 Discussion

There is no substantial paper that considers inrush currents for the algorithm during load

restoration. If these inrush currents are not accounted for, then we will be underestimating the load

at the time of pickup. The increased demand (due to inrush currents) of synchronizing power for

the system might not satisfy the constraints of power balance, voltage limits, etc., and might

eventually end in a system re-collapse. Therefore, this study calculates the CLPU and inrush

currents for all the loads and selects the load to pickup.

This research considers the load value reported by IEDs on the feeder right before the

blackout. That load value is used as the base value to calculate CLPU value. In industries, 70-80%

of the loads are induction motors and 20-30% are remaining loads. Therefore, CLPU power is

calculated for 80% of the load given in equation 3.1. CLPU is the function of time, and the load

variation with respect to the time comes from 20% of the static load. In other words, the induction

motors need static load for operation.

𝑃𝐶𝐿𝑃𝑈 = 0.8 ∗ 𝑃𝐿 (3.1)

The inrush currents for these induction motors have a high impact on the restoration

process. Therefore, the inrush currents are calculated for 80% of the induction motor loads, and

the total load appeared after the switch is closed which is the 80% induction motor load plus the

20% of the static load.

28

Chapter 4 System Restoration Algorithm and Flow Chart

 There are multiple methods to solve the restoration problem that can be broadly classified

into knowledge-based approaches and mathematical programming technique.

1. Knowledge-based approach: It was used for restoration planning in the earlier days.

Expert system which is a knowledge-based system was regarded as a successful

approach. Since it depends on knowledge of practices and simulations which are

company specific, it is not always guaranteed to find restoration solution in an

unfamiliar setting and there by not scalable [54]

2. Mathematical programming approach: Either optimization technique or graph theory

constitutes a mathematical programming approach.

a. Optimization technique: This technique compares various available solutions

iteratively until it arrives at the best/satisfactory solution is reached. Even though

computer-based systems are used, the time taken to obtain a solution increases

dramatically with complexity of the system [55]

b. Graph Theory: Power systems can be represented as graphs and graph theory

techniques can be utilized to solve restoration problems. The graph theory

minimizes the drawback of optimization technique. The shortest path finding

algorithm (Dijkstra’s algorithm) is used to find the shortest path to restore the

network.

 According to industry practice, the non-black start generators closer to the energized

generating units are started first for efficient and reliable restoration. [4].

29

 The main objective of this study is to provide an efficient restoration method by minimizing

restoration duration and mitigating the risks of system recollapse. To achieve the objectives, it is

important to identify the restoration path as early as possible. The graph search algorithm can be

used to identify the best possible restoration path to provide cranking power to non-black start

generating units and pickup loads along the priority order. The bus is considered as a node and the

line impedance (electrical distance) is employed as a weight. A path with least line impedance is

selected between two buses.

4.1 Shortest Path Algorithm

 Dijkstra’s algorithm is used to find the shortest path. The algorithm calculates the shortest

path between the source node and all other nodes. The steps involved in Dijkstra’s, along with an

example are given below:

1. Initially all the nodes are set to unprocessed/unvisited and starting node is selected as

shown in Figure 4-1.

Figure 4-1 Step1: Starting Node Selection

30

2. The source bus/node is set to current node and marked as 0 and all the other buses/nodes

are marked as infinity as shown in Figure 4-2.

Figure 4-2 Step 2: Initializing Nodes

3. Figure 4-3 demonstrates that the distance between current node and all the immediate

neighboring nodes is calculated by adding the current node with weight (line impedance)

between the nodes.

Figure 4-3 Step 3: Processing Neighboring Nodes

31

4. Compare the distance and update with the least distance and keep track of the path to the

processed node. Once all the neighboring nodes are visited then mark the current node as

visited/processed as shown in Figure 4-4.

Figure 4-4 Step 4: Identifying Available Paths

5. If the destination node is set as processed/visited then stop, else repeat the steps above by

considering the unvisited node with smallest distance as current node. The final state is

shown in Figure 4-5.

Figure 4-5 Step 5: Process All Nodes

32

4.2 Power System Restoration Flowchart

 In this study, the blackout scenario is simulated by disconnecting the motor contactors of

the motor loads and the associated control circuit along with all other system components. The

flowchart for the proposed restoration procedure is given in Figure. 4-6 followed by detailed

explanation of each step in the restoration sequence.

Figure 4-6 Flowchart of the Proposed Procedure

33

Step 1: Start Black start Generator

 The process of restarting the generators after a blackout without relying on external

transmission network/power from the grid is known as a black start. After the blackout, the

qualified black start generator will be started first to initiate the restoration process. Though it is

common to use a hydro generating station as a black start generator due to less starting power

requirement, the quick-starting gas turbine-driven generating unit is used as a black start unit in

industrial systems [35]. The gas turbine is coupled with an onsite diesel generator set to start the

system. Some important characteristics of black start generators to be considered are fast restart,

sufficient on-site real and reactive power capacity, ability to stabilize system frequency,

transmission path to other generators, etc., [39]. The other available gas turbine or steam turbine

variants in the industrial system are considered to be non-black start generators and the startup

power requirements for these generators are based on generator type and illustrated in Table 2.1.

Step 2: Dijkstra’s - Search Algorithm

 The algorithm used in this paper identifies the optimal path in the weighted graph with

non-negative weights [24], [46]. The tool developed implements the algorithm in python, and the

restoration is carried out along the optimal path.

 We are considering buses as edges and electrical distance (impedance) on the line as

weight. The algorithm, when applied to the entire network, gives us the ideal traversal path i.e., by

considering minimum electrical distance (impedance) from the bus connected to the black start

generator to each bus in the network. This path is taken as the shortest restoration path and all the

generators and loads are picked up along the path. The loads are picked up based on the priority

order and availability capacity if there are multiple loads along the path.

34

 For example, in Figure. 4-2 from reference [26], there are multiple paths connecting buses

2 and 16. The path 2,3,18,17,16 (solid line) is closest but when considering electrical distance, the

shortest path is 2,25,26,27,17,16 (dotted line). So, the path 2,25,26,27,17,16 (dotted line) is

selected over the 2,3,18,17,16 (solid line).

Figure 4-7 An Example of Dijkstra’s Algorithm

Step 3: Calculate Generation Capability

 Generation capability is the available power that can be used to provide cranking power to

non-black start generators and pickup the loads in parallel. Equations 4.1 and 4.2 are used to

calculate the available capability of a generator at each stage.

𝑃𝐴𝑉𝐴 = 𝑃𝐺𝑇 − 𝑃𝐶𝑅 − 𝑃𝑅 (4.1)

𝑄𝐴𝑉𝐴 = 𝑄𝐺𝑇 − 𝑄𝐶𝑅 − 𝑄𝑅 (4.2)

Step 4: Energize Transmission Line

35

 The energization is carried out along the shortest path provided by Dijkstra’s Algorithm.

The line along the shortest impedance path is selected and energized followed by load pick given

in further steps. The non-black start generators also provided the cranking power along the

restoration path. The system should satisfy the below conditions at any time during the restoration

process:

a. The power balance between generation and demand should be satisfied as shown in

equations 2.1 and 2.2.

b. The power flow through a line should not exceed its capacity.

c. The voltage limits must be maintained within limits throughout the restoration process

illustrated in equation. 2.3.

Step 5,6 and 7: Turn on Intelligent Electronic Device

 After the blackout, during restoration, IEDs are energized along with the transmission line

in step 4. As soon as IEDs are energized, it will report the pre-blackout load data which is the base

value for CLPU of each load. IED will report the load consumption/real-time load after loads are

picked up.

 Step 6 checks if any loads along the path are already picked up, and if any of the loads are

picked up then real-time load information is obtained from IED (step 7). The available generation

capability is recalculated considering the real-time load information.

 If no loads are picked up, then step 8 is processed, to see if any loads are available for

pickup.

Step 8,9: Select the Loads to Pickup

36

 Step 8 checks if any loads are available along the shortest path for pickup. If available, then

the loads are selected according to their priority order (step 9), and step 10 is processed else step

4 is processed.

Step 10: Calculate the CLPU and Inrush Currents

 It is very important to determine the CLPU and Inrush current values for selected loads to

avoid incorrect estimation of loads that can lead to system re-collapse. This paper considers the

load value reported by IEDs on the feeder right before the blackout as the base for calculating

CLPU value and considers 80% of the loads as induction motors. The CLPU value is given by

0.8* PL where PL is the active power of the load obtained from IED right before the blackout and

the remaining 20% is the static load.

 The active and reactive power of the induction motor loads when inrush current is observed

are given by equations (4.3) and (4.4)

𝑃𝐿𝐼 = √3 ∗ 𝑉𝐿 ∗ 𝐼𝐼𝑁𝑅𝑈𝑆𝐻 ∗ 𝑐𝑜𝑠∅ (4.3)

𝑄𝐿𝐼 = √3 ∗ 𝑉𝐿 ∗ 𝐼𝐼𝑁𝑅𝑈𝑆𝐻 ∗ 𝑠𝑖𝑛∅ (4.4)

 The total load appeared after the switch is closed is given by (4.5) and (4.6) which is the

induction motor power load when inrush current is observed plus the static load:

𝑃 = 𝑃𝐿 − 0.8 ∗ 𝑃𝐿 + 𝑃𝐿𝐼 (4.5)

𝑄 = 𝑄𝐿 − 0.8 ∗ 𝑄𝐿 + 𝑄𝐿𝐼 (4.6)

Step 11: Pickup the Loads

 The loads are picked up based on priority. According to the industrial setup, each motor

load is split into a large number of small, medium, and few large-size motors [35]. It is common

in the industry to start the motors of identical size within each load as a group because they perform

37

a similar operation. This research assumes motors of identical size are grouped together in each

load while restoring the load.

 The motor startup sequence is very important to avoid voltage sag issues. This voltage sag

will cause the contactors of already online motors to open and may cause variable speed drives to

shut down which results in system recollapse. Therefore, industries start a large group of induction

motors that have high reactive power first to minimize the impact on other loads.

 A high value of generation capacity is needed to pickup the motor group with high reactive

power; the highest value of generation capacity is present when no motor group is picked up.

Therefore, the groups within each load are picked up in decreasing values of reactive power. This

way there is a good possibility of successfully picking up the group with high active and reactive

power.

 A motor/load group is picked up if it has highest priority and its active and reactive power

are less than the active and reactive power of available generation capability. If any group cannot

be picked up, then it is tagged as not picked and that will be re-visited after sufficient generation

capacity is available. Once the group is picked up, it will reach a steady state after a short period

i.e., once the loads are in stability limits. Effective generation capability will be reduced since part

of it is required to support the load that is picked up.

Step 12,13,14,15,16: Run Power Flow and Check for Violations

 Run the power flow for the load picked up in step 11 with inrush current load values. If

power flow converges that indicates that the system survives inrush. If violations are present, then

change the load and proceed to step 9. After the load reaches the steady state, proceed to step 17.

Step 17,18: Check all the Generators and Loads are Connected

38

 If the current load pickup is not completed, then continue picking up the next group in the

decreasing order of active and reactive power, until all the groups are finished processing within a

load. After a load is picked up the next load in the priority order will be processed.

 If all generators and loads are not connected, then go to step 4. Otherwise, go to step 19 for

full integration of the system.

 All the steps and constraints discussed in the flowchart are applied to develop the software.

Chapter 5 gives the information on software development.

39

Chapter 5 Software Development

 The primary reason for approaching the research from programming point of view is the

ability to customize the restoration process and potential for future improvement. This section

explains the implementation part of the research. It briefly talks about technology used,

environment dependencies, and programming language. This section also walks through the code

snippets used in implementation.

5.1 Technology

5.1.1 Backend Coding: Python

 Python is an interpreted, object oriented, and high-level programming language. Python is

one of the most used programming languages. The syntax is clear and concise, reducing the

learning curve and increasing the speed of development. Python has a high number of libraries to

cater to a wide variety of specific use cases. The main reason for choosing Python is the availability

of the Pandapower library to simulate power systems and its ability of seamless integration with

any front-end applications.

5.1.2 Frontend Development: HTML

 HTML stands for Hyper Text Markup Language; it is the standard markup language used

for developing web pages. HTML is easy to use, understand, and all browsers support it.

5.1.3 Frontend Development: Bootstrap

 Bootstrap is used to make the web application responsive, adjusting the display based on

screen size to display the content well. Bootstrap is easy to use, light weight, customizable, and

supports cross browser compatibility.

40

5.1.4 Frontend Development: jQuery

 jQuery is a lightweight scripting language. It sits on top of JavaScript. It is mainly used for

transversal, event handling, animation, etc., in HTML without having to write huge lines of code

in JavaScript.

5.1.5 Development Environment/IDE: Visual Studio Code

 Integrated Development Environment (IDE) is a software that consolidates the tools

needed for software development and testing.

 The IDE used for this development is Visual Studio Code, and it has massive library of

extensions, supports IntelliSense and it also served as source code repository to backup code for

this implementation.

5.2 User Flowchart

5.2.1 User Input:

Figure 5-1 User Flow Diagram

41

 Figure 5-1 provides the user flow diagram. The user input to the restoration application is

handled by web page. In the landing page the user can upload the network information in an excel

sheet and user can upload image of the network. The landing page also has an excel sheet with a

preloaded custom system for download as a reference. The user can download the sample system,

modify it to the user’s system values and upload it as a custom system. The preformatted excel

sheet has following tabs.

Generator: The generator tab has information about the generators in the system. The name of the

generator, the bus it is connected to and power factor values. Table 5-1 provides the generator

parameters description [61].

Table 5-1 Generator Parameters

Parameter Description

name Name of generator

bus Index of the bus the generator is connected to

P_mw Real power of the generator

Vm_pu Voltage set point

Sn_mva Nominal power of the generator

Max_q_mvar Maximal reactive power of the generator

Min_q_mvar Minimal reactive power of the generator

Transformer: Both step up and step-down transformers information is given in this sheet. The

step up and step down is differentiated by combination of fields Hv_bus, Lv_bus and Tap_side.

Hv_bus is the bus on the high voltage side of the transformer, Lv_bus is the bus on the low

42

voltage side of the transformer, Tap_side gives the position of the tap charger. Table 5-2

provides the transformer parameters description [61].

Table 5-2 Transformer Parameters

Parameter Description

name Name of Transformer

Hv_bus High voltage bus index of the transformer

Lv_bus Low voltage bus index of the transformer

Sn_mva rated apparent power of the transformer [MVA]

Vn_hv_kv rated voltage at high voltage bus [kV]

Vn_lv_kv rated voltage at low voltage bus [kV]

Vk_percent short circuit voltage [%]

Vkr_percent real component of short circuit voltage [%]

Pfe_kw iron losses [kW]

I0_percent open loop losses in [%]

Shift_degree transformer phase shift angle

Tap_side defines if tap changer is at the high- or low voltage side

In_service specifies if the transformer is in service.

Bus: This sheet has the bus index, bus name and rated voltage of the bus. The bus index in this

sheet is used to identify the bus to which other components are connected. Table 5-3 provides the

bus parameters description [61].

43

Table 5-3 Bus Parameters

Parameter Description

name Name of bus

bus Index of the bus

Vn_kv rated voltage of the bus [kV]

Line: Line connected two buses, From_bus and To_bus gives the buses to which the line is

connected. Table 5-4 provides the line parameters description [61].

Table 5-4 Line Parameters

Parameter Description

name Name of the line

From_bus Index of bus where the line starts

To_bus Index of bus where the line ends

Length_km length of the line [km]

R_ohm_per_km resistance of the line [Ohm per km]

X_ohm_per_km inductance of the line [Ohm per km]

C_nf_per_km capacitance of the line [nF per km]

Max_I_ka maximal thermal current [kA]

df derating factor (scaling) for max_i_ka

In_service specifies if the line is in service.

44

Load: This sheet has information about the load, the bus it is connected to, power factor values

and load priority. The program would consider the loads in the priority order given in this sheet.

Table 5-5 provides the load parameters description [61].

Table 5-5 Load Parameters

Parameter Description

name Name of the load

bus Index of the connected bus

P_mw active power of the load [MW]

Q_mvar reactive power of the load [MVar]

Sn_mva rated power of the load [MVA]

scaling scaling factor for active and reactive power

priority Specifies the order of load pickup

Const_z_percent percentage of p_kw and q_kvar that is associated

to constant impedance load at rated voltage [%]

Const_I_percent percentage of p_kw and q_kvar that is associated

to constant current load at rated voltage [%]

In_service specifies if the load is in service.

Motor Load: Motor load has the information about motors within each load. This sheet has

Load_number and Load_bus to identify the load that the motor corresponds to. Motor_hp is the

motor horsepower, number of motors gives the number of motors with same horsepower that are

part of the same load. Table 5-6 provides the motor load parameters description [61].

45

Table 5-6 Motor Load Parameters

Parameter Description

Load_number The load that motor belongs to

Load_bus Index of the load bus

Motor_hp Horsepower motor rating

No_of_motors Number of motors connected to the load and are of same horsepower.

Voltage_kv Rated Voltage of a motor

Full_load_current(A) Full load Amp (FLA) rating is at which motor will consume power at

100% of rated load

Power_Factor_full_load Power factor of the motor

Efficiency_full_load Efficiency at the rated power

Power_factor_locked_rotor Locked rotor power factor of the motor

Inrush_current(A) Starting current of the motor

Static Load: This sheet gives information about static component of the load. It has load

identifier, active power, and reactive power of the static components. Table 5-7 provides the

static load parameters description [61].

Table 5-7 Static Load Parameters

Parameter Description

Load The load that motor belongs to

P_mw active power of the static component of the load [MW]

46

Q_mvar reactive power of the static component of the load

[MVar]

External Grid: External grid is the higher-level power grid and is considered as slack bus in the

system. Table 5-8 provides the external grid parameters description [61].

Table 5-8 External Grid Parameters

Parameter Description

name name of the external grid

bus index of connected bus

Vm_pu reactive power of the static component of the load [MVar]

Va_degree angle set point [degree]

Max_p_mw Maximum active power

Min_p_mw Minimum active power

Max_q_mvar Maximum reactive power

Min_q_mvar Minimum reactive power

 After the user enters the information in excel and clicks on submit, the python program

follows the steps in the flowchart and outputs the restoration data.

47

5.3 Significant Code Snippets

5.3.1 User Input:

 The HTML and Bootstrap code as shown in Figure. 5-2 displays the prompt for the user to

enter excel with custom circuit handled in line 32 to 39 below. The user can download sample file

which is available in the application files given in code below in lines 51 to 58.

 See Appendix B for complete code for creating user input using HTML and Bootstrap.

Figure 5-2 User Input Code Snippet

48

5.3.2 Creating a Network:

 Pandapower library is used to create a network in python [61]. An empty network is created

using the method create_empty_network() as described in line 187 in the Figure. 5-3. The file

uploaded by the user has one sheet for each electric component in the circuit. Each sheet is read

using Read_excel method of the panda’s library and looped through passing the values to the

created network to create circuit components. Table 5-9 provides the methods create each electric

element in the network [61] and Figure. 5-3 is the code snippet for creating electric network.

Table 5-9 Methods to Create Each Electric Element in the Network

Method Name Usage Library

Read_excel Used to read excel Pandas

Create_bus Create bus in the circuit Pandapower

Create_ext_grid Create external grid in the circuit Pandapower

Create_gen Create generator in the circuit Pandapower

Create_load Create load in the circuit Pandapower

Create_line_from_parameters Create line in the circuit Pandapower

Create_transformer_from_parameters Create transformer in the circuit Pandapower

49

Figure 5-3 Code for Creating Electric Network

5.3.3 Inrush Current Calculation:

 For the motors uploaded the active and reactive power in the presence of inrush currents

are calculated using the formula provided in equations 4.3 and 4.4. The inrush current is calculated

for each motor and multiplied by number of motors to get the total inrush current for a motor group

for each load. As provided in Figure. 5-4, the code depicts the calculation of inrush currents.

50

Figure 5-4 Inrush Current Calculation Code

5.3.3 Dijkstra’s Algorithm:

 After the circuit is constructed, the Buses are taken as node and the impendence on the line

is taken as weight and Dijsktra’s algorithm is implemented to calculate the shortest path from black

start generator to all the generators and loads in the circuit. It is implemented in python using the

code shown in Figure. 5-5.

Figure 5-5 Dijkstra’s Algorithm Code Snippet

51

5.3.4 Load Priority

 The loads are picked up based on the priority order given by the user. The code provided

in Figure. 5-6 assigns processed flag as ‘N’ that is changed to ‘Y’ once the load is finished picking

up. The loads are then sorted by priority and picked up in sequence.

Figure 5-6 Load Priority Code

 Appendix C shows the complete restoration code in python.

5.3.5 Displaying Output:

 The output is displayed using jQuery embedded in HTML. The main purpose of jQuery is

to traverse the data table received as output from the python program. The jQuery code snippet in

Figure. 5-7 loops through the data table and displays result in the form of a HTML table.

Figure 5-7 Code for Result Display

52

 See Appendix D for output display code using jQuery embedded in HTML. See

Appendix E for code for standardizing UI across the tool.

53

Chapter 6 Case Study

This chapter describes the test cases used to demonstrate the effectiveness of the proposed

methodology. This research is based on the industrial power system restoration. However, the

algorithm can handle regular power systems. Therefore, IEEE 30 bus system is used as an example

to illustrate the capability of the software.

The design of an industrial bus system and procedures for Automatic System Restoration

are explained in this chapter.

6.1 Procedures for Automatic System Restoration

 As described in chapter 5, a tool is developed to demonstrate the proposed Automatic power

system restoration. The procedure of automatic power system restoration is given below:

1. Initialization: The tool when executed loads all the pre-built python libraries that are used to

simulate the system, finding the restoration path etc.,

2. Creating system information: A preformatted excel is available for operator to download from

the tool and modify it with the desired system information and desired load priority. The excel

sheet has multiple tabs, each tab provides information about a specific type of component in

the system. A sample tab of preformatted excel sheet is provided in Figure. 6-1. Each tab

information is provided in chapter 5.

54

Figure 6-1 Sample Excel to Enter System Data

3. Uploading system information: The operator uploads the modified excel sheet containing the

system information along with the system image to the tool as shown in Figure.6-2.

Figure 6-2 User Input for Restoration

4. System Restoration: The tool uses pandapower library for power system modeling and

performs automatic system restoration following all the restoration steps as provided in

55

chapter 4, section 4.2 like identifying the restoration path, simulating the system, calculating

inrush currents and load restoration.

5. Results: The tool displays the simulated results with values at each step of the restoration

sequence for industrial system and IEEE 30 bus system shown in Figure. 7-1 and Figure. 7-2

respectively.

6.2 Design of the Industrial System

This study designed an industrial bus system to demonstrate the proposed algorithm. A

one-line diagram of industrial system is designed in PowerWorld software is shown in Figure. 6-

3.

Figure 6-3 One-line Diagram of an Industrial Power System

56

A. System overview

This section provides information about the industrial system used to validate the algorithm.

Table 6-1 provides the generator information of an industrial power system.

Table 6-1 Generator Data

Generator

Real Rated

Power (MW)

Reactive Rated

Power (MVAR)

Generator Type

Qmax Qmin

G1 100 62 -62 Black start

G2, G4, G6, G8, &

G10

91

46 -46 Gas Turbine

 G9, G11 100 62 -62 Gas Turbine

G3, G5, G7 40 25 -25 Thermal

G1 is the black start generator. The cranking power required for generators G3 and G5 is

7-8% of its rated capacity, for all the other generators the required cranking power is 1.5-2% of its

rated capacity [24].

 The loads on the feeder obtained from IED right before the blackout are given in the Table

6-2. Loads in each row have identical real and reactive power and will perform similar operation.

Table 6-2 Load Information

Loads PL (MW) QL (MVAR)

L1, L7 80 39

57

L3, L9 75 36

L2 25 12

L5, L12 100 48

L4, L8, L10 30 15

L11 70 34

L6 38 18

Each load in the industrial Power system shown above comprises 80% induction loads and

20% static loads.

The total load at each bus connected to the distribution feeder is the combination of several

sub feeder loads. Each sub feeder load is the combination of multiple induction motor loads. The

inrush currents for induction motors in most cases is considered to be 6 times the rated current

[56]. For the industrial system demonstrated in this paper the inrush current is considered to be 6

times rated current for all induction motors. Therefore, the size and variation of the motors

considered have the same impact in terms of determining the inrush currents.

Generally, in industries, the identical capacity motors with- in each load are aggregated to

one motor group which performs a similar operation in the plant. The range of motors considered

for motor groups are between 200HP to 8000HP. The motors below the 200HP are aggregated to

one motor group and are considered as a static load, as their magnitude of inrush currents have a

negligible impact on restoration. Each induction motor group is combined with 20% of the static

load for operation.

The line, bus and transformer data of the industrial system are provided in Appendix A

58

6.3 IEEE 30-Bus System

The proposed algorithm can also be applied on the regular power system network.

Therefore, IEEE 30-bus system is used to demostrate the effectiveness of algorithm and system

data is provided in [68]. One-line diagram of IEEE 30-bus system is provided in Figure.6-4 [62].

Figure 6-4 One-line Diagram of IEEE 30-Bus System

G1 is the black start generator and other generators in the system are non black start

genertor. The cranking power required for all non black start generators is 7% of its rated capacity

[24].

As the IEEE 30 bus system loads are lumped loads, this research assumed 15% of each

load in the IEEE 30 bus system are induction motors. As described in the chapter 6, section 6-2,

59

the total load at each bus connected to the distribution feeder is the combination of several sub

feeder loads. Each sub feeder load is the combination of multiple induction motor loads. The inrush

currents for induction motors in most cases is considered to be 6 times the rated current [56].

Therefore, the size and variation of the motors considered have the same impact in terms of

determining the inrush currents. For restoration it is assumed that each load has 15% of motors

and that range in between 200HP-3500HP. Each load is aggregated with the induction motor group

and static loads.

The automatic power system restoration results are discussed in chapter 7.

60

Chapter 7 Results

7.1 Tool Implementation for Restoration on Industrial Bus System

After a blackout, the below-mentioned steps are automatically performed by the restoration

program developed in Python.

Step 1: Start Black start Generator

Black start generator G1 is started by closing the switches to the generator.

Step 2: Dijkstra’s- Search Algorithm

Applying Dijkstra’s Algorithm to the Industrial System given in chapter 6. Figure.6-3

provides the following shortest path to restore the generators (G1, G8, G9, G2, G3, G4, G5, G6, G7,

G10, G11).

G1 must provide cranking power to generators G8 and G9.

Step 3: Generation Capability

The available generation capability is calculated using Equations 4.1 and 4.2.

Table 7-1 Generation Capability

𝑃𝐴𝑉𝐴 = 𝑃𝐺𝑇 − 𝑃𝐶𝑅 − 𝑃𝑅

PGT=100 MW • G1 Active Power

PCR=3.83 MW • 2% of G8 and 7% of G9 Rated Active Power

LP=0 • The real power of load that is already picked up

PAVA=96.17 MW • Available Active Power

𝑄𝐴𝑉𝐴 = 𝑄𝐺𝑇 − 𝑄𝐶𝑅 − 𝑄𝑅

61

QGT=62 MVAR • G1 Reactive Power

QCR=2.16 MVAR • 2% of G8 and 7% of G9 Rated Reactive Power

LQ=0 • Reactive power of load that is already picked up

QAVA=60.49 MVAR • Available Reactive Power

Step 4: Energize Transmission Line

Circuit Breakers on the line connecting G1 and G8 and G9 are closed to make it active.

Step 5,6, and 7: Turn on Intelligent Electronic Device and Loads to Pickup

The IEDs are energized along the transmission line from step 4.

A check is performed to see if any loads are already picked up. If yes, then the real-time

load value is read from IED.

Step 8 and 9: Select the Loads to Pickup

The circuit is checked to see if any loads are available near G1 that can be picked up. Loads

L1 and L2 are available but selected according to their priority order. It is assumed the IEDs report

the L1 and L2 values before the blackout which are the base values for CLPU.

Load L1 (80MW and 39 MVAR) and L2 (25 MW and 12 MVAR) are selected to pickup

but according to the priority order load L2 got highest priority. Therefore, L2 is picked up first.

Each load is picked up in multiple steps, i.e., each group of induction motors at a time in order of

decreasing reactive power.

Step 10: Calculate the Inrush Currents for the Induction Motor Loads

62

80% of L2 are induction motors. The inrush currents for the induction motors in most cases

are considered to be six times the motor rated current [29], [31].

According to the literature [30], the efficiency of the motor varies from 85-90% ignoring

the friction and windage losses. Considering the worst-case scenario, the efficiency in this paper

is taken as 85%. The full load power factor is 0.9 [13].

Example calculation of inrush current for a 200 HP induction motor considering motor

rated voltage, power factor, and efficiency are given in eq. 7.1, eq. 7.2, and eq. 7.3

𝑆200 = 𝑃 ∗ 𝑐𝑜𝑠𝜃 =
200∗746

0.9
= 165.77𝑘𝑉𝐴 (7.1)

𝐼𝑅𝑎𝑡𝑒𝑑_200 =
𝑆200

√3∗𝑉𝐿∗𝜂
= 28.15 𝐴 (7.2)

𝐼𝐼𝑛𝑟𝑢𝑠ℎ_200 = 6 ∗ 𝐼𝑅𝑎𝑡𝑒𝑑200
= 168.9 𝐴 (7.3)

The starting power factor of a motor varies from 0.2-0.3 [13]. This paper considers the

worst-case scenario of the power factor as 0.2. Active and reactive power considering inrush is

calculated by using eq. 4.3 and eq.4.4 Therefore,

𝑃𝐿𝐼 = 9.36 𝑀𝑊; 𝑄𝐿𝐼 = 45.86 𝑀𝑉𝐴𝑅

In the same way, Inrush currents for other induction motors for load L2 are calculated.

Step11,12,13,14,15: Pickup the Loads

The load(L2) 25MW is a combination of 80% induction motors plus 20% static loads.

These 80% induction motors are a combination of several motor groups. As discussed in the flow

chart, the highest reactive power motor group is picked up first along with 20% of static load. The

63

steps below show few picked induction motor groups of loads L1 and the corresponding voltage

drop.

The active and reactive power of available generation capability are given below

(calculated from eq. 4.1 and 4.2 provided in restoration flow chart):

𝑃𝐴𝑉𝐴 = 96.17 𝑀𝑊; 𝑄𝐴𝑉𝐴 = 60.49 𝑀𝑉𝐴𝑅

a. The motor group with 700HP has the highest reactive power compared to other

induction motor groups of Load L1. Therefore, it is processed first. The active and

reactive power considering inrush for 700HP motor given in Table 7.2.

Table 7-2 Load L1-700HP Motor Restoration

Step Induction

motor Group

PLI8000

 (MW)

QLI8000

 (MVAR)

%VDInrush P8000

(MW)*

Q8000

(MVAR)*

1 8000 9.36 45.86 9.98% 10.33 46.33

 *Total Active Power Load appeared after the switch is closed (P8000) = Pstatic+PLI

 *Total Reactive Power Load appeared after the switch is closed (Q8000) = Qstatic+QLI

b. Since, PLI8000<PAVA and QLI8000<QAVA. The P8000 group is picked along with 20% of

the static load in L2.

c. After a while, the 8000HP group reaches a steady state. The total active and reactive

power of 8000 HP motor group load plus the static load after reaching steady state are

given below

𝐿𝑃 = 6.94 𝑀𝑊; 𝐿𝑄 = 3.36 𝑀𝑊

d. PAVA and QAVA are adjusted since the steady-state load continuously draws power.

Since the load consumption varies after it is being picked up, the real-time load is

64

obtained from IED. The new available generation capability considering the changed

load is given below:

𝑃𝐴𝑉𝐴 = 89.16 𝑀𝑊; 𝑄𝐴𝑉𝐴 = 57.09 𝑀𝑉𝐴𝑅

e. The 6000HP motor group of Load L2 is picked up in the next step due to its second-

highest reactive power. The active and reactive power considering inrush for 6000 HP

motor given in Table 7-3

Table 7-3 Load L1-1000HP Motor Restoration

Step Induction motor

Group

PLI6000

 (MW)

QLI6000

 (MVAR)

%VDIn

rush

P6000

 (MW)*

Q6000

 (MVAR)*

2 6000 7.02 34.4 7.3% 7.99 34.87

*Total Active Power Load appeared after the switch is closed (P6000) = Pstatic+PLI

*Total Reactive Power Load appeared after the switch is closed (Q6000) = Qstatic+QLI

f. Since, PLI6000<PAVA and QLI6000<QAVA. The P6000 group is picked along with 20% of

the static load in L2. Power flow is executed to check for convergence.

This process is continued until all the loads are picked up.

7.1 Industrial Test System Validation

 Figure. 7-1 is the user-interface that displays results along with the circuit diagram. The

results screen displays restoration sequence and restoration metrics like generators turned on,

available power at any given point, generator to which cranking power is provided, cranking power

values, load name, motor group, power values when inrush current is observed, power appeared

after the switch is closed, steady state power and voltage drop at each step of the restoration

sequence.

65

.

.

.

.

66

Figure 7-1 Automatic System Restoration Step by Step Results for Industrial System

7.2 IEEE 30-Bus System Validation

 Figure. 7-2 shows the complete automatic restoration sequence for IEEE 30-Bus System.

The user-interface that displays results along with the circuit diagram of IEEE 30 bus. In order to

show the tool capability this research assumed 15% of the load on each bus consists of induction

motors. The tool displays the restoration sequence and restoration metrics like available power at

any given point, generator to which cranking power is provided, cranking power values, load name,

motor group, power values when inrush current is observed, power appeared after the switch is

closed, steady state power and voltage drop at each step of the restoration sequence.

67

.

.

.

.

Figure 7-2 Automatic System Restoration Step by Step Results for IEEE 30 Bus System

68

Chapter 8 Conclusion and Future Work

When a blackout occurs, it is highly critical to reduce the restoration time and to restore

the system efficiently.

This dissertation presents the algorithm for automatic power system restoration. The

proposed restoration algorithm and practical implementation provides operator guidance to make

better decisions during restoration thereby saving time and effort.

To decrease the restoration time, it is important to minimize the time taken for selection of

restoration path. This study utilizes an advanced graph search technique called Dijkstra’s

algorithm, which is time efficient and scalable, to identify the restoration path based on electrical

distance (impedance).

To restore the system efficiently this research proposes automatic power system restoration

procedure by considering inrush currents, cold load pickup, load priority and load variation. A tool

is developed which helps the user to enter any network information with the generator, load

composition data, load priority, etc.

The proposed restoration algorithm is simple that can be changed/extended with any set of

rules/constraints.

An industrial system and IEEE 30 bus system are used to demonstrate the proposed

algorithm.

8.1 Limitations of this Study

1. This research concentrates on the load restoration in the event of the blackout and

assumes that the grid does not receive assistance/power from neighboring grid.

69

2. A large system can be sectionalized into small subsystems and parallel restoration can

be done in each subsystem. According to the partitioning strategies each subsystem will

have one black start generating unit. Therefore, the restoration process in each

subsystem is similar. This study focuses on the restoration of one subsystem and does

not provide solutions for sectionalizing the system.

3. This study considers that the black start and non-black start units are known.

8.2 Potential Future work

1. The proposed algorithm is best suited to restore individual subsystems. This work can

be combined with any automated mechanism to divide the entire system into

subsystems making the end-to-end process fully automatic.

2. The algorithm can be extended to identify the black start generator and non-black start

generators in the system automatically.

3. Having a mechanism to identify if the load has reached a steady state instead of

assuming that the loads reach a steady state after a certain period.

4. The algorithm can be upgraded to provide the user an option on selecting the load to

be restored if two or more loads satisfy all the constraints and are ready for pickup.

70

References

[1] H. H. Alhelou, M. Hamedani-Golshan, T. Njenda, and P. Siano, “A Survey on Power System

Blackout and Cascading Events: Research Motivations and Challenges,” Energies, vol. 12, no.

4, p. 682, 2019.

[2] E. H. Allen, R. B. Stuart and T. E. Wiedman, "No Light in August: Power System Restoration

Following the 2003 North American Blackout," in IEEE Power and Energy Magazine, vol. 12,

no. 1, pp. 24-33, Jan.-Feb. 2014.

[3] Cechin, A.L., Canto dos Santos, J.V., Mendel, C.A. et al. Genetic algorithms to solve the power

system restoration planning problem. Engineering with Computers 25, 261–268 (2009).

https://doi.org/10.1007/s00366-009-0128-3

[4] Bretas, Arturo & Phadke, A.G.. (2003). Artificial neural networks in power system restoration.

IEEE Transactions on Power Delivery. 18. 1181-1186. 10.1109/TPWRD.2003.817500.

[5] R. kumar Mishra and K. S. Swarup, "Power system restoration in smart grid environment," 2014

Eighteenth National Power Systems Conference (NPSC), Guwahati, India, 2014, pp. 1-6, doi:

10.1109/NPSC.2014.7103885.

[6] Jiang, Yazhou & Chen, Sijie & Liu, Chen-Ching & Sun, Wei & Luo, Xiaochuan & Liu, Shanshan

& Bhatt, Navin & Uppalapati, Sunitha & Forcum, David. (2016). Blackstart capability planning

for power system restoration. International Journal of Electrical Power & Energy Systems. 86.

10.1016/j.ijepes.2016.10.008.

[7] C. Liu, Minhao Wu and Yingsong Deng, "Start-up sequence of generators in power system

restoration avoiding the backtracking algorithm," 2013 IEEE Power & Energy Society General

Meeting, Vancouver, BC, 2013, pp. 1-5, doi: 10.1109/PESMG.2013.6672678.

https://doi.org/10.1007/s00366-009-0128-3

71

[8] Qiang Liu, Libao Shi, Ming Zhou, Gengyin Li and Yixin Ni, "A new solution to generators start-

up sequence during power system restoration," 2008 Third International Conference on Electric

Utility Deregulation and Restructuring and Power Technologies, Nanjing, 2008, pp. 2845-2849,

doi: 10.1109/DRPT.2008.4523894.

[9] W. Sun, C.-C. Liu and S. Liu, "Black start capability assessment in power system restoration",

Proc. IEEE Power Energy Soc. General Meeting, pp. 1-7, Jul. 2011.

[10] N. Saraf, K. McIntyre, J. Dumas and S. Santoso, "The annual black start service selection

analysis of ERCOT grid", IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1867-1874, Nov. 2009.

[11] Tyler Hodge, April Lee, Hurricane Irma cut power to nearly two-thirds of Florida’s electricity

customers, 2017 [online], Available: https://www.eia.gov/todayinenergy/detail.php?id=32992

[12] Abu Talib, Dian & Mokhlis, Hazlie & TALIP, Mohamad & Naidu, Kanendra. (2017). Parallel

power system restoration planning using heuristic initialization and discrete evolutionary

programming. Journal of Modern Power Systems and Clean Energy. 5. 1-13. 10.1007/s40565-

017-0320-1.

[13] J. Figueiredo, J. Sauve, P. Nicolletti, E. Rocha, S. Araujo, F. Amorim, A. Feitosa, R. Agra, and

W. Ribeiro. Smart action: A tool to help power system restoration. In Proceedings of the 41st

Annual Hawaii International Conference on System Sciences (HICSS 2008), pages 167–167,

2008.

[14] L. Lindgren, "Automatic power system restoration" in Lund University, Lund, 2009, [online]

Available: http://www.iea.lth.se/publications/Theses/LTH-IEA-1060.pdf

[15] Y. Liu, R. Fan, and V. Terzija, “Power system restoration: a literature review from 2006 to

2016,” Journal of Modern Power Systems and Clean Energy, vol. 4, no. 3, pp. 332–341, 2016.

https://www.eia.gov/todayinenergy/detail.php?id=32992

72

[16] M.M. Adibi and R. Kafka, “Power system restoration issues,” IEEE Computer Applications in

Power, vol. 4, no. 2, pp. 19–24, 1991.

[17] V. Kumar, H. R. Kumar, I. Gupta, and H. Gupta, “Stepwise Restoration of Power Distribution

Network under Cold Load Pickup,” 2006 International Conference on Power Electronic, Drives

and Energy Systems, 2006.

[18] K. P. Schneider, E. Sortomme, S. S. Venkata, M. T. Miller, and L. Ponder, “Evaluating the

Magnitude and Duration of Cold Load Pick-up on Residential Distribution Feeders_newline

Using Multi-State Load Models,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp.

3765–3774, 2016.

[19] V. Kumar, I. Gupta, and H. O. Gupta, “An Overview of Cold Load Pickup Issues in Distribution

Systems,” Electric Power Components and Systems, vol. 34, no. 6, pp. 639–651, 2006.

[20] E. Agneholm and J. Daalder, “Cold load pick-up of residential load,” IEEE Proceedings -

Generation, Transmission and Distribution, vol. 147, no. 1, p. 44, 2000.

[21] M.M. Adibi, "Special consideration in power system restoration. The second working group

report," in IEEE Transactions on Power Systems, vol. 9, no. 1, pp. 15-21, Feb. 1994.

[22] O. Akwukwaegbu, O. G. Ibe, "Concepts of Reactive Power Control and Voltage Stability

Methods in Power System Network", IOSR J. Comput. Eng., vol. 11, no. 2, pp. 15-25, 2013.

[23] Y. Jiang, S. Chen, C.-C. Liu, W. Sun, X. Luo, S. Liu, N. Bhatt, S. Uppalapati, and D. Forcum,

“Blackstart capability planning for power system restoration,” International Journal of

Electrical Power & Energy Systems, vol. 86, pp. 127–137, 2017.

[24] S. Hemalatha, R. Srinivasan, and A. Ruban Raja, (2019). “A graph theory-based power system

restoration plan,” International Journal of Innovative Technology and Exploring

Engineering, pp.551–556, 2019.

73

[25] V. Widiputra and J. Jung, “Development of Restoration Algorithm under Cold Load Pickup

Condition using Tabu Search in Distribution System,” 2018 IEEE Power & Energy Society

General Meeting (PESGM), 2018.

[26] B. Goo, S. Jung, and J. Hur, “Development of a Sequential Restoration Strategy Based on the

Enhanced Dijkstra Algorithm for Korean Power Systems,” Applied Sciences, vol. 6, no. 12, p.

435, 2016.

[27] F. Friend, “Cold load pickup issues,” 2009 62nd Annual Conference for Protective Relay

Engineers, 2009.

[28] E.Grinberg, J.Ostrower, M.Park and C.Zdanowicz. “Atlanta’s Hartsfield-Jackson airport restores

power after crippling outage.” CNN.com. https://www.cnn.com/2017/12/17/us/atlanta-airport-

power-outage/index.html (accessed Dec. 5, 2020).

[29] M.M. Adibi. Power System Restoration, methodologies & implementation strategies. IEEE

Press, 2000.

[30] M. M. Adibi, J. N. Borkoski and R. J. Kafka, "Power System Restoration - The Second Task

Force Report," in IEEE Transactions on Power Systems, vol. 2, no. 4, pp. 927-932, Nov. 1987,

doi:10.1109/TPWRS.1987.4335278.

[31] Y. Hou, C. Liu, Pei Zhang, and K. Sun, "Constructing power system restoration strategies," 2009

International Conference on Electrical and Electronics Engineering -ELECO 2009, pp. I-8-I-13,

2009.

[32] M.M. Adibi and N. Martins, “Power system restoration dynamics issues,” 2008 IEEE Power and

Energy Society General Meeting -Conversion and Delivery of Electrical Energy in the 21st

Century, 2008.

https://www.cnn.com/2017/12/17/us/atlanta-airport-power-outage/index.html
https://www.cnn.com/2017/12/17/us/atlanta-airport-power-outage/index.html

74

[33] Tortos, J. Q. and V. Terzija. “A smart power system restoration based on the merger of two

different strategies.” 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT

Europe) (2012): 1-8.

[34] J. Duncan Glover, Thomas J. Overbye, and Mulukutla S. Sarma, “Transient Analysis,” in Power

System Analysis & Design, 6thed., Boston, MA: Cengage Learning, pp. 675-684.

[35] J. W. Feltes and C. Grande-Moran, "Black start studies for system restoration,"2008 IEEE Power

and Energy Society General Meeting -Conversion and Delivery of Electrical Energy in the 21st

Century, Pittsburgh, PA, 2008, pp. 1-8, doi: 10.1109/PES.2008.4596565.

[36] R.J. Buschart, “Electrical Safety for Chemical Processes,” in Electrical and Instrumentation

Safety for Chemical Processes, Springer US, 2012, pp.128. [online]. Available:

https://www.springer.com/gp/book/9781468466225?utm_campaign=3_pier05_buy_print&utm

_content=en_08082017&utm_medium=referral&utm_source=google_books#otherversion=978

1468466201.

[37] F. Zavoda, C. Abbey, Y. Brissette, and R. Lemire, “Universal IED for distribution smart grids,”

22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013.

[38] Hannu Laaksonen, “IED Functionalities Fulfilling Future Smart Grid Requirements,”

International Journal of Distributed Energy Resources and Smart Grids, vol. 9, July 2013.

[39] J. R. Gracia, L. C. Marke, D. T. Rizy, P. W. O’Connor, R. Shan, and A. Tarditi, “Hydropower

plants as Black start resources”, Hydrowires U.S department of energy, 2019.

[40] Sun, Kai, et al. Power System Control under Cascading Failures : Understanding, Mitigation,

and System Restoration, John Wiley & Sons, Incorporated, 2019. ProQuest Ebook Central,

https://ebookcentral.proquest.com/lib/utarl/detail.action?docID=5612923.

https://www.springer.com/gp/book/9781468466225?utm_campaign=3_pier05_buy_print&utm_content=en_08082017&utm_medium=referral&utm_source=google_books#otherversion=9781468466201
https://www.springer.com/gp/book/9781468466225?utm_campaign=3_pier05_buy_print&utm_content=en_08082017&utm_medium=referral&utm_source=google_books#otherversion=9781468466201
https://www.springer.com/gp/book/9781468466225?utm_campaign=3_pier05_buy_print&utm_content=en_08082017&utm_medium=referral&utm_source=google_books#otherversion=9781468466201
https://ebookcentral.proquest.com/lib/utarl/detail.action?docID=5612923

75

[41] I. Beil, A. Allen, A. Tokombayev and M. Hack, "Considerations when using utility-scale battery

storage to black start a gas turbine generator," 2017 IEEE Power & Energy Society General

Meeting, Chicago, IL, 2017, pp. 1-5, doi: 10.1109/PESGM.2017.8274529.

[42] M. M. Adibi and L. H. Fink, "Power system restoration planning," in IEEE Transactions on

Power Systems, vol. 9, no. 1, pp. 22-28, Feb. 1994, doi: 10.1109/59.317561.

[43] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo and D. Zhao, "Load Modeling—A Review,"

in IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986-5999, Nov. 2018, doi:

10.1109/TSG.2017.2700436.

[44] "Load representation for dynamic performance analysis (of power systems)," in IEEE

Transactions on Power Systems, vol. 8, no. 2, pp. 472-482, May 1993, doi: 10.1109/59.260837.

[45] D. T. Vedullapalli, R. Hadidi and L. S. Bozeman, "Priority based restoration of unbalanced

electric distribution systems after multiple faults," 2018 IEEE/IAS 54th Industrial and

Commercial Power Systems Technical Conference (I&CPS), Niagara Falls, ON, 2018, pp. 1-5,

doi: 10.1109/ICPS.2018.8369992.

[46] M. AlOwaifeer and M. AlMuhaini, "Load Priority Modeling for Smart Service Restoration," in Canadian Journal of Electrical and Computer

Engineering, vol. 40, no. 3, pp. 217-228, Summer 2017, doi: 10.1109/CJECE.2017.2705174.

[47] M. M. Adibi, "Power System Restoration A Task Force Report," in Power System Restoration:

Methodologies & Implementation Strategies, IEEE, 2000, pp.3-9, doi:

10.1109/9780470545607.ch1.

[48] S. Ihara and F. C. Schweppe, "Physically Based Modeling of Cold Load Pickup," in IEEE Power

Engineering Review, vol. PER-1, no. 9, pp. 27-28, Sept. 1981, doi:

10.1109/MPER.1981.5511825.

[49] R. C. Leou, Z. L. Gaing, C. N. Lu, B. S. Chang and C. L. Cheng, "Distribution system feeder

cold load pickup model", Electr. Power Syst. Res, vol. 36, no. 3, pp. 163-168, 1996.

76

[50] Leonard L.Grigsby, “Distribution Short circuit Protection,” Electric Power Generation,

Transmission, and Distribution. United States: CRC Press,2018, ch.30 pp.30-4

[51] C.-C. Liu, V. Vittal, G. T. Heydt, and K. Tomsovic, “Development and Evaluation of System

Restoration Strategies from a Blackout,” Power Syst. Engi-neering Res. Cent., no. Technical

report, pp. 10–22, 2009.

[52] V. Kumar, R. Kumar H. C., I. Gupta and H. O. Gupta, "DG Integrated Approach for Service

Restoration Under Cold Load Pickup," in IEEE Transactions on Power Delivery, vol. 25, no. 1,

pp. 398-406, Jan. 2010, doi: 10.1109/TPWRD.2009.2033969.

[53] Widiputra, Victor & Jufri, Fauzan & Jung, Jaesung. (2020). Development of service restoration

algorithm under cold load pickup condition using conservation voltage reduction and particle

swarm optimization. International Transactions on Electrical Energy Systems. 30.

10.1002/2050-7038.12544.

[54] T. Nagata, S. Hatakeyama, M. Yasouka and H. Sasaki, "An efficient method for power

distribution system restoration based on mathematical programming and operation strategy,"

PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings

(Cat. No.00EX409), Perth, WA, Australia, 2000, pp. 1545-1550 vol.3, doi:

10.1109/ICPST.2000.898201.

[55] S. R. Kurup and S. Ashok, "Performance of a hydropower plant during black start and islanded

operation," 2015 IEEE International Conference on Signal Processing, Informatics,

Communication, and Energy Systems (SPICES), Kozhikode, 2015, pp. 1-5.

[56] M. Habyarimana and D. G. Dorrell, “Methods to reduce the starting current of an induction

motor,” 2017 IEEE International Conference on Power, Control, Signals and Instrumentation

Engineering (ICPCSI), 2017.

77

[57] C. Wang, V. Vittal and K. Sun, "OBDD-Based Sectionalizing Strategies for Parallel Power

System Restoration," in IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1426-1433,

Aug. 2011, doi: 10.1109/TPWRS.2010.2074216.

[58] J. Quirós-Tortós and V. Terzija, "A graph theory based new approach for power system

restoration," 2013 IEEE Grenoble Conference, Grenoble, France, 2013, pp. 1-6, doi:

10.1109/PTC.2013.6652108.

[59] J. Quiros-Tortos, P. Wall, L. Ding, and V. Terzija, “Determination of sectionalising strategies

for parallel power system restoration: A spectral clustering-based met hodolog y,” Electr. Power

Syst. Res., vol. 116, pp. 381–390, Nov. 2014.

[60] F. Qiu and P. Li, "An Integrated Approach for Power System Restoration Planning,"

in Proceedings of the IEEE, vol. 105, no. 7, pp. 1234-1252, July 2017, doi:

10.1109/JPROC.2017.2696564.

[61] L. Thurner, A. Scheidler, F. Schäfer et al, pandapower - an Open Source Python Tool for

Convenient Modeling, Analysis and Optimization of Electric Power Systems, IEEE Transactions

on Power Systems, DOI:10.1109/TPWRS.2018.2829021, 2018.

[62] K. Carr, ICSEG Power Case 1 - IEEE 30 Bus Systems, 2013 [online], Available:

https://icseg.iti.illinois.edu/ieee-30-bus-system/ [Accessed: 2- FEB- 2021].

[63] Edpresso Team, What is Dijkstra’s algorithm? [online]

Available:https://www.educative.io/edpresso/what-is-dijkstras-algorithm

[64] Qu HB, Liu YT (2012) Maximizing restorable load amount for specific substation during system

restoration. Int J Electr Power Energy Syst 43(1):1213–1220

[65] Qu HB, Liu YT (2011) Load restoration optimization during unit start-up stage. Autom Electr

Power Syst 35(8):16–21

https://arxiv.org/abs/1709.06743
https://arxiv.org/abs/1709.06743
https://doi.org/10.1109/TPWRS.2018.2829021

78

[66] Qu HB, Liu YT (2011) Load restoration optimization during last stage of network

reconfiguration. Autom Electr Power Syst 35(19):43–48.

[67] Tim Stelloh, Adela Suliman, Kurt Chirbas and Colin Sheeley, Millions in Texas without power

as deadly storm brings snow, freezing weather2021 [online], Available

https://www.nbcnews.com/news/weather/knocked-out-texas-millions-face-record-lows-

without-power-new-n1257964

[68] Power Systems Test Case Archive. Illinois University of Washington. Available:

http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm.

[69] Emma Bowman, Utility Says Power Restored In New York City After Outage Hits 73,000

Customers. Available: https://www.npr.org/2019/07/13/741524829/new-york-city-power-

outage-hits-73-000

[70] Emily Shapiro, New York facing 'Russian roulette' with future power outages, Gov. Andrew

Cuomo says. Available: https://abcnews.go.com/US/york-facing-russian-roulette-future-power-

outages-gov/story?id=64344642

http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm
https://www.npr.org/2019/07/13/741524829/new-york-city-power-outage-hits-73-000
https://www.npr.org/2019/07/13/741524829/new-york-city-power-outage-hits-73-000

79

APPENDICES

80

APPENDIX A- INDUSTRIAL SYSTEM DESIGN DATA

Parameters of the Transmission Lines

Line Bus

Resistance

(p.u)

Reactance

(p.u)

Susceptance (p.u)

Line 1 Bus_1 to 15 0.007575 0.031680 0.000038

Line 2 Bus_1 to 3 0.025684 0.041305 0.000021

Line 3 Bus_3 to 11 0.013327 0.058325 0.000041

Line 4 Bus_11 to 13 0.038429 0.087106 0.000014

Line 5 Bus_13 to 18 0.461119 0.104521 0.000017

Parameters of the Transformers

Type From To Vn_LV_kV Vn_HV_kV Sn_MVA

Step up Bus 1 Bus 2 13.2 69 170

Step up Bus 3 Bus 5 13.2 69 170

Step up Bus 11 Bus 19 13.2 69 160

Step up Bus 13 Bus 6 13.2 69 160

Step up Bus 15 Bus 14 13.2 69 230

Step up Bus 18 Bus 17 13.2 69 230

Step Down Bus 2 Bus 4 13.8 69 75

Step Down Bus 5 Bus 7 13.8 69 170

Step Down Bus 19 Bus 8 13.8 69 75

Step Down Bus 6 Bus 12 13.8 69 130

81

Step Down Bus 14 Bus 9 13.8 69 130

Step Down Bus 17 Bus 10 13.8 69 130

Step Down Bus 2 Bus 20 4.16 69 170

Step Down Bus 5 Bus 21 4.16 69 170

Step Down Bus 19 Bus 22 4.16 69 170

Step Down Bus 6 Bus 23 4.16 69 170

Step Down Bus 17 Bus 25 4.16 69 170

Step Down Bus 14 Bus 24 4.16 69 170

Step Down Bus 18 Bus 16 13.2 4.16 170

Step Down Bus 15 Bus 16 13.2 4.16 170

Bus Information

Bus Voltage (kV)

Bus 1 13.2

Bus 2 69

Bus 3 13.2

Bus 4 13.8

Bus 5 69

Bus 6 69

Bus 7 13.8

Bus 8 13.8

Bus 9 13.8

82

Bus 10 13.8

Bus 11 13.2

Bus 12 13.8

Bus 13 13.2

Bus 14 69

Bus 15 13.2

Bus 16 4.16

Bus 17 69

Bus 18 13.2

Bus 19 69

Bus 20 4.16

Bus 21 4.16

Bus 22 4.16

Bus 23 4.16

Bus 24 4.16

Bus 25 4.16

83

APPENDIX- B CODE FOR CREATING USER INPUT USING HTML AND

BOOTSTRAP

{% extends "base.html" %}

{% block title %}File Uploader{% endblock %}

{% block page_content %}

<!-- <div id='prompt' class="container">

 <h3>Please select an option below</h3>

 <button class="btn btn-primary" id='standard_radio'>Standard</button>

 <button class="btn btn-success" id='custom_radio'>Custom</button>

 <div id = "radiobuttons">

 <form class = "" action = "data_radio" enctype="multipart/form-data" method = "post">

 <div class = "radio">

 <label><input class="form-check-input" type="radio" name="standardradio" id="9_bus"

value="9_bus" checked>

 9 Bus System

 </label>

 </div>

 <div class = "radio">

 <label><input class="form-check-input" type="radio" name="standardradio"

id="30_bus" value="30_bus" checked>

 30 Bus System

 </label>

 </div>

 <input type = "submit" name = "radiosubmit" value = "Submit">

 </form>

 </div>

</div> -->

</form>

<div class="container" id='main_container'>

 <h3>Please upload the network information</h3>

<form class = "" action = "data" enctype="multipart/form-data" method = "post">

 <div class="col-sm-12" style="padding-left:0px">

 <div class="col-sm-6">

 Please upload xlsx file:

 </div>

 <input type = "file" name="upload-file" value = "">

84

 </div>

 <div class="col-sm-12" style="padding-left:0px" >

 <div class="col-sm-6">

 Please upload Image file:

 </div>

 <input type = "file" name="upload-image" value = "">

 </div>

 <div class="col-sm-12" style="padding-left:0px" >

 <div class="col-sm-6">

 Click on Excel logo to download sample network data

 </div>

 </div>

 <input type = "submit" name = "" value = "Submit">

</form>

</div>

<div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">Rules</h3>

 </div>

 <div class="panel-body">

 The maximum file size for uploads is 50 MB

 Only files XLSX are allowed to be uploaded.

 </div>

</div>

{% endblock %}

{% block scripts %}

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>

<script>

 $('#main_container').show()

 // $('#main_container').hide()

 // $('#custom_radio').on('click', () => {

 // $('#main_container').show();

 // $('#radiobuttons').hide();

 // })

85

 // $('#standard_radio').on('click', () => {

 // $('#main_container').hide()

 // $('#radiobuttons').show();

 // })

</script>

{% endblock %}

86

APPENDIX C RESTORATION CODE IN PYTHON

from flask import Flask, render_template, request,jsonify

import os

from os.path import join, dirname, realpath

from werkzeug.utils import secure_filename

import pandas as pd

from flask_bootstrap import Bootstrap

import pandapower as pp

import numpy as np

from collections import defaultdict

import os

import math

import random

import copy as cp

import time

app = Flask(__name__)

data_table = []

Bootstrap(app)

app.config['UPLOAD_FOLDER'] = '/Users/anu/Downloads/Anusha3/PSR/static/'

@app.route('/')

def index():

 return render_template('index.html')

@app.route('/data',methods=['GET','POST'])

def data():

 if request.method == 'POST':

 file = request.files['upload-file']

87

 data,path = restore (file)

 image = request.files['upload-image']

 print("image",image.filename)

 image.save(os.path.join(app.config['UPLOAD_FOLDER'],

secure_filename(image.filename)))

 filename = os.path.join(app.config['UPLOAD_FOLDER']) + image.filename

 print("file", filename)

 return render_template ('data.html',data=data,data1=path,data2 = image.filename)

def restore(file):

 import pandapower.networks as pn

 import pandapower as pp

 import pandas as pd

 import numpy as np

 from collections import defaultdict

 import os

 import math

 import random

 import copy as cp

 import json

 #Graph class containing edge and weight (impedance) and algorithm to identify

 #shortest path between edges based on Impedance

 class Graph():

 def __init__(self):

 self.edges = defaultdict(list)

 self.weights = {}

 def add_edge(self, from_node, to_node, weight):

 # Note: assumes edges are bi-directional

 self.edges[from_node].append(to_node)

88

 self.edges[to_node].append(from_node)

 self.weights[(from_node, to_node)] = weight

 self.weights[(to_node, from_node)] = weight

 def dijsktra(graph, initial, end):

 # shortest paths is a dict of nodes

 # whose value is a tuple of (previous node, weight)

 shortest_paths = {initial: (None, 0)}

 current_node = initial

 visited = set()

 while current_node != end:

 visited.add(current_node)

 destinations = graph.edges[current_node]

 weight_to_current_node = shortest_paths[current_node][1]

 for next_node in destinations:

 weight = graph.weights[(current_node, next_node)] + weight_to_current_node

 if next_node not in shortest_paths:

 shortest_paths[next_node] = (current_node, weight)

 else:

 current_shortest_weight = shortest_paths[next_node][1]

 if current_shortest_weight > weight:

 shortest_paths[next_node] = (current_node, weight)

 next_destinations = {node: shortest_paths[node] for node in shortest_paths if node not in

visited}

 if not next_destinations:

 return "Route Not Possible"

 # next node is the destination with the lowest weight

89

 current_node = min(next_destinations, key=lambda k: next_destinations[k][1])

 # Work back through destinations in shortest path

 path = []

 total_weight = 0

 while current_node is not None:

 path.append(current_node)

 next_node = shortest_paths[current_node][0]

 total_weight = total_weight+shortest_paths[current_node][1]

 current_node = next_node

 # Reverse path

 path = path[::-1]

 #Return path as well as total weight

 path_and_weight = {'path':path,'total_imp':total_weight}

 # print("Path&Impedence", path_and_weight)

 # return path

 return path_and_weight

 class scratch(object):

 pass

 ##

 # Python program to print all paths from a source to destination.

 # This class represents a directed graph

 # using adjacency list representation

 class Graph1:

 def __init__(self, vertices):

 # No. of vertices

 self.V = vertices

 # default dictionary to store graph

90

 self.graph = defaultdict(list)

 self.path_list = []

 # function to add an edge to graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 '''A recursive function to print all paths from 'u' to 'd'.

 visited[] keeps track of vertices in current path.

 path[] stores actual vertices and path_index is current

 index in path[]'''

 def printAllPathsUtil(self, u, d, visited, path):

 # Mark the current node as visited and store in path

 visited[u]= True

 path.append(u)

 # If current vertex is same as destination, then print

 # current path[]

 if u == d:

 # print (path)

 self.path_list.append(path.copy())

 else:

 # If current vertex is not destination

 # Recur for all the vertices adjacent to this vertex

 for i in self.graph[u]:

 if visited[i]== False:

 self.printAllPathsUtil(i, d, visited, path)

 # Remove current vertex from path[] and mark it as unvisited

91

 path.pop()

 visited[u]= False

 # Prints all paths from 's' to 'd'

 def printAllPaths(self, s, d):

 self.path_list = []

 # Mark all the vertices as not visited

 visited =[False]*(self.V)

 # Create an array to store paths

 path = []

 # Call the recursive helper function to print all paths

 self.printAllPathsUtil(s, d, visited, path)

 return self.path_list

 net = pp.create_empty_network()

 import pandapower as pp

 net = pp.create_empty_network()

 restoration_file = pd.ExcelFile(file)

 # Creating Buses

 exc_bus = pd.read_excel (restoration_file,sheet_name='bus')

 exc_bus.sort_values(by=['bus'], inplace=True)

 for index, row in exc_bus.iterrows():

 pp.create_bus(net, vn_kv=row['vn_kv'], name=row['name'],in_service = True)

 # Creating External grid

 exc_grid = pd.read_excel (restoration_file,sheet_name='externalgrid')

92

 for index,row in exc_grid.iterrows():

 pp.create_ext_grid(net, bus=row['bus']-1, vm_pu=row['vm_pu'], va_degree =

row['va_degree'],

 max_p_mw = row['max_p_mw'],min_p_mw = row['min_p_mw'],max_q_mvar =

row['max_q_mvar'],

 min_q_mvar = row['min_q_mvar'],name=row['name'],in_service = True)

 ext_grid_bus = row['bus']-1

 #Creating Generators

 exc_gen = pd.read_excel (restoration_file,sheet_name='generator')

 for index, row in exc_gen.iterrows():

 pp.create_gen(net, bus=row['bus']-1,p_mw=row['p_mw'],vm_pu=row['vm_pu'],sn_mva=

row['sn_mva'],

 name=row['name'],max_q_mvar =

row['max_q_mvar'],min_q_mvar=row['min_q_mvar'],in_service=True)

 dat = []

 #Creating Loads

 exc_load = pd.read_excel (restoration_file,sheet_name='load')

 for index, row in exc_load.iterrows():

 pp.create_load(net, bus = row['bus']-1, p_mw = row['p_mw'], q_mvar= row['q_mvar'],

 const_z_percent=row['const_z_percent'], const_i_percent=row['const_i_percent'],

 sn_mva = row['sn_mva'], scaling = row['scaling'], name=row['name'], in_service=True)

 dat.append([row['bus']-1,row['priority']])

 # Creating Lines

 exc_line = pd.read_excel (restoration_file,sheet_name='line')

 for index, row in exc_line.iterrows():

93

 pp.create_line_from_parameters(net, from_bus = row['from_bus']-1, to_bus = row['to_bus']-

1,

 length_km=row['length_km'], r_ohm_per_km = row['r_ohm_per_km'], x_ohm_per_km =

row['x_ohm_per_km'],

 c_nf_per_km = row['c_nf_per_km'], max_i_ka =

row['max_i_ka'],name=row['name'],in_service = True)

 # Creating Transformers

 exc_trans = pd.read_excel (restoration_file,sheet_name='transformer')

 for index, row in exc_trans.iterrows():

 pp.create_transformer_from_parameters(net, hv_bus=row['hv_bus']-1,

lv_bus=row['lv_bus']-1,

 name=row['name'], sn_mva=row['sn_mva'],

vn_hv_kv=row['vn_hv_kv'],vn_lv_kv=row['vn_lv_kv'],

 vkr_percent=row['vkr_percent'], vk_percent=row['vk_percent'], pfe_kw=row['pfe_kw'],

i0_percent=row['i0_percent'],

 shift_degree=row['shift_degree'],in_service = True,tap_side = row['tap_side'])

 pp.runpp(net)

 # Create internal table for motors

 motors = pd.read_excel (restoration_file,sheet_name = 'motorload')

 motors['p'] = motors['motor_hp'] * 0.000746

 motors['q'] = motors['p'] * np.tan(np.arccos(motors['power_factor_full load']))

 motors['p_total'] = motors['p'] * motors['no_of_motors']

 motors['q_total'] = motors['q'] * motors['no_of_motors']

 motors['p_inrush'] = motors['q'] * motors['no_of_motors'] * np.sqrt(3)

 motors['irated'] = ((motors['motor_hp']*746)/motors['power_factor_full

load'])/(np.sqrt(3)*motors['voltage_kv']*1000*motors['efficiency_full_load'])

 motors['p_inrush'] =

motors['voltage_kv']*np.sqrt(3)*motors['irated']*6*motors['power_factor_locked_rotor']*(1/(np.

power(10,6)))*1000

 motors['q_inrush'] =

motors['voltage_kv']*np.sqrt(3)*motors['irated']*6*np.sin(np.arccos(motors['power_factor_locke

d_rotor']))*(1/np.power(10,6))*1000

94

 motors['p_inrush_tot'] = motors['p_inrush'] * motors['no_of_motors']

 motors['q_inrush_tot'] = motors['q_inrush'] * motors['no_of_motors']

 motors['processed'] = 'N'

 motors_renamed = motors.rename(columns={'motor_hp':'motor'})

 motors_renamed['load_bus'] = motors_renamed['load_bus']-1

 static_motor = []

 static_motor_row = []

 sorted_motor = motors_renamed.groupby(["load_bus"]).apply(lambda x:

x.sort_values(["q_inrush_tot"], ascending = False)).reset_index(drop=True)

 for index,row in net.load.iterrows():

 no_of_motors = len(sorted_motor[sorted_motor['load_bus']==row['bus']])

 for i in range(0,no_of_motors):

 static_motor_row = [(row['p_mw']-

sum(sorted_motor.loc[sorted_motor['load_bus']==row['bus'],'p_total']))*(1/no_of_motors),

 (row['q_mvar']-

sum(sorted_motor.loc[sorted_motor['load_bus']==row['bus'],'q_total']))*(1/no_of_motors),row['b

us'],i,'N']

 static_motor.append(static_motor_row)

 static_data = pd.DataFrame(static_motor, columns = ['p', 'q','load_bus','id','processed'])

 #Create internal table for load priority

 load_priority = pd.DataFrame(dat, columns = ['load_bus', 'priority'])

 load_priority['processed'] = 'N'

 load_priority = load_priority.sort_values(by = ['priority'])

 #Create Table with Cranking Power

 gens =[]

 gens_power_p=[]

 gens_power_q=[]

 busind = []

 gens_name = []

95

Considering few as thermal and few as gas turbine generators

 for index,row in net.gen.iterrows():

 if row['name'] in ['G2','G3']:

 cranking_power_p=0.02*(abs(row['p_mw']))

 if math.isnan(net.gen['sn_mva'][0]):

 cranking_power_q = 0

 else:

 cranking_power_q=0.02*(math.sqrt(row['sn_mva']**2-row['p_mw']**2))

 else:

 cranking_power_p=0.07*(abs(row['p_mw']))

 if math.isnan(net.gen['sn_mva'][0]):

 cranking_power_q = 0

 else:

 cranking_power_q=0.07*(math.sqrt(row['sn_mva']**2-row['p_mw']**2))

 gens.append(index)

 gens_name.append(row['name'])

 busind.append(row['bus'])

 gens_power_p.append(cranking_power_p)

 gens_power_q.append(cranking_power_q)

 d =

{'gen':gens,'gen_name':gens_name,'bus':busind,'pow':gens_power_p,'pow_q':gens_power_q}

 c_pow = pd.DataFrame(data = d)

 q = len(net.line)

 #create switches between bus and line

 for frombus in net.line.from_bus:

 lineinfo = net.line.loc[net.line['from_bus']==frombus]

 for index, lines in lineinfo.iterrows():

96

 duplicatecheck_frombus = net.switch[(net.switch['bus']==frombus) &

(net.switch['element']==index)]

 if duplicatecheck_frombus.empty:

 pp.create_switch(net, bus= frombus, element= index, et = 'l')

 duplicatecheck_tobus = net.switch[(net.switch['bus']==lines.to_bus) &

(net.switch['element']==index)]

 if duplicatecheck_tobus.empty:

 pp.create_switch(net, bus=lines.to_bus, element=index, et='l')

 del duplicatecheck_frombus, duplicatecheck_tobus

 #Create switches between bus and transformer

 for index, lines in net.trafo.iterrows():

 load_index = net.load.loc[net.load['bus']==frombus]

 pp.create_switch(net, bus= lines.hv_bus, element= index, et = 't')

 pp.create_switch(net, bus= lines.lv_bus, element= index, et = 't')

 net.switch.drop_duplicates(keep=False,inplace=True)

 #Create Impedance

 q = len(net.line)

 impedance = {}

 for a in range(0,q):

 impedance[net.line.name[a]] =

abs(net.line.r_ohm_per_km[a]+1j*net.line.x_ohm_per_km[a])

 l=[]

 for s in net.bus.name:

 l.append(s)

 nodes=l

 distances = {}

 to_bus_data = {}

97

 from_bus_data = {}

 #Create Edges and Weights for the graph structure

 #Edges are buses and weights is impedance

 edges_outer = []

 each_record = ()

 for t in net.line.from_bus:

 result= net.line.loc[net.line['from_bus']==t]

 to_bus_data ={}

 for index, lines in result.iterrows():

 each_record = (t,lines.to_bus,impedance[lines['name']])

 edges_outer.append(each_record)

 to_bus_data[lines.to_bus] = impedance[lines['name']]

 distances[t] = to_bus_data

 del result

 del to_bus_data

 for index, row in net.trafo.iterrows():

 each_record = (row['hv_bus'], row['lv_bus'],0)

 edges_outer.append(each_record)

 graph= Graph()

 edges_outer = list(set(edges_outer))

 for edge in edges_outer:

 graph.add_edge(*edge)

 # Create a graph given in the above diagram

 no_of_buses = len(net.bus.name.unique())

 g = Graph1(no_of_buses)

 for index, row in net.line.iterrows():

 g.addEdge(row['from_bus'], row['to_bus'])

 g.addEdge(row['to_bus'],row['from_bus'])

98

 for index, row in net.trafo.iterrows():

 g.addEdge(row['hv_bus'], row['lv_bus'])

 g.addEdge(row['lv_bus'],row['hv_bus'],)

 gen_load_all_paths = []

 all_gen_load_paths = []

 all_gen_load_paths = pd.DataFrame(columns=['gen', 'bus', 'all_paths'])

 for index, row in net.gen.iterrows():

 for index1,row1 in net.load.iterrows():

 all_paths = g.printAllPaths(row['bus'],row1['bus'])

 gen_load_path = {'gen':row['bus'],'bus':row1['bus'],'all_paths':all_paths}

 gen_load_all_paths.append(gen_load_path)

 # Between each pair of generators perform Dijsktra to find out shortest path

 prev_gen = None

 result = []

 processed = []

 load_temp = net.load

 #Creating temp variable for net.gen.bus to include external grid bus in the list

 gen_incl_ext_grid = []

 #for each_ext_grid in net.ext_grid.bus:

 # gen_incl_ext_grid.append(each_ext_grid)

 for each_gen in net.gen.bus:

 gen_incl_ext_grid.append(each_gen)

 gen_incl_ext_grid = list(set(gen_incl_ext_grid))

 for prev_gen in gen_incl_ext_grid:

 for curr_gen in gen_incl_ext_grid:

 if prev_gen != curr_gen and curr_gen not in processed:

 short_path = dijsktra(graph,prev_gen,curr_gen)

 # Append Source, Dest, ShortestPath, Impedence along the path, Cranking power and

generator power

99

 shortest_path_result = dict()

 shortest_path_result['source_gen'] = prev_gen

 shortest_path_result['dest_gen'] = curr_gen

 shortest_path_result['path'] = short_path["path"]

 shortest_path_result['imp'] = short_path["total_imp"]

 shortest_path_result['c_pow'] = c_pow.loc[c_pow['bus']==curr_gen,'pow'].sum()

 shortest_path_result['c_pow_q'] = c_pow.loc[c_pow['bus']==curr_gen,'pow_q'].sum()

 if any(net.gen.bus==prev_gen):

 shortest_path_result['source_pow'] =

abs(net.gen.loc[net.gen['bus']==prev_gen,'p_mw'].values[0])

 if math.isnan(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]):

 shortest_path_result['source_pow_q'] = 0

 else:

 shortest_path_result['source_pow_q'] =

abs(math.sqrt(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]**2-

 net.gen.loc[net.gen['bus']==prev_gen,'p_mw'].values[0]**2))

 math.sqrt(row['sn_mva']**2-row['p_mw']**2)

 else:

 shortest_path_result['source_pow'] =

abs(net.res_ext_grid.loc[net.ext_grid['bus']==prev_gen,'p_mw'].values[0])

 if math.isnan(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]):

 shortest_path_result['source_pow_q'] = 0

 else:

 shortest_path_result['source_pow_q'] =

abs(math.sqrt(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]**2-

 net.gen.loc[net.gen['bus']==prev_gen,'p_mw'].values[0]**2))

 if any(net.gen.bus==curr_gen):

 shortest_path_result['dest_pow'] =

abs(net.gen.loc[net.gen['bus']==curr_gen,'p_mw'].values[0])

 if math.isnan(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]):

100

 shortest_path_result['source_pow_q'] = 0

 else:

 shortest_path_result['dest_pow_q'] =

abs(math.sqrt(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]**2-

 net.gen.loc[net.gen['bus']==prev_gen,'p_mw'].values[0]**2))

 else:

 shortest_path_result['dest_pow'] =

abs(net.res_ext_grid.loc[net.ext_grid['bus']==curr_gen,'p_mw'].values[0])

 if math.isnan(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]):

 shortest_path_result['source_pow_q'] = 0

 else:

 shortest_path_result['dest_pow_q'] =

abs(math.sqrt(net.gen.loc[net.gen['bus']==prev_gen,'sn_mva'].values[0]**2-

 net.gen.loc[net.gen['bus']==prev_gen,'p_mw'].values[0]**2))

 result.append(shortest_path_result)

 processed.append(prev_gen)

 # Opening switches based on Lowest Impedence First and lowest cranking power

 # Gen1 is the black start

 black_start = 0

 #Filtering the data based on condition that source generator is 1. Since we have to process

from gen1

 conditions = {'source_gen':0}

 bs_result = [one_dict for one_dict in result if

 all(key in one_dict and conditions[key] == one_dict[key]

 for key in conditions.keys())]

 # Sort the filtered data on Impedance and cranking power in ascending order

 #bs_result_sorted = sorted(bs_result, key = lambda i: (i['imp'],i['c_pow']))

 bs_result_sorted = sorted(bs_result, key = lambda i: (i['imp']))

101

 path = []

 total_imp = 0

 for eachrow in bs_result_sorted:

 path.append(eachrow['dest_gen'])

 total_imp = total_imp+eachrow['imp']

 short_path['path'] = path

 short_path['total_imp'] = total_imp

 net.switch['closed']=False

 net.gen['in_service']=False

 filecount = 0

 ####### Looping Swith Logic to be added ##########

 #Loop on filtered data where source generator is 0

 #for eachrow in bs_result_sorted:

 #Get the shortest path between two generators

 net.gen.loc[net.gen['bus']==ext_grid_bus,'in_service']=True

 net.gen.loc[net.gen['bus']==ext_grid_bus,'slack']=True

 slack_vm_pu = net.gen.loc[net.gen['slack']==True,'vm_pu']

 net.load.in_service = False

 processed_bus = []

 inrush_bus = []

 load_temp = net.load.copy()

 indexnames = None

 picked_load1 = 0

 picked_load2 = 0

 available_gen = pd.DataFrame(columns = net.gen.columns.values)

 unprocessed_temp = []

 avail_list_gen = []

 unprocessed_gen = cp.deepcopy(net.gen)

102

 for index, row in unprocessed_gen.iterrows():

 if math.isnan(row['sn_mva']):

 row['q'] = 0

 else:

 row['q'] = pd.eval(np.sqrt(row['sn_mva']**2-row['p_mw']**2))

 cond = unprocessed_gen['name'].isin(available_gen['name'])

 unprocessed_gen = unprocessed_gen.drop(unprocessed_gen[cond].index)

 unprocessed_load = cp.deepcopy(net.load)

 not_completed_load = cp.deepcopy(net.load)

 net_copy = pp.create_empty_network()

 net_copy = cp.deepcopy(net)

 iteration = float(0)

 rest_output = []

 current_load_processed = False

 current_gen = None

 next_gen = None

 rest_col_names = ['iteration','gen_turned_on','eff_gen_cap_p', 'eff_gen_cap_q',

'cranking_power_provided_gen','cranking_power_p','cranking_power_q','Load_Name','motor_gr

oup','pli_mw',

 'qli_mvar','p_mw',

'q_mw','lp_mw','lq_mvar','pr_mw','qr_mvar','Voltage_Drop','Voltage_Drop_steady']

 for eachrow in bs_result_sorted:

 restoration_path = eachrow.get('path')

 for rest_var in range(0,len(restoration_path)):

 if restoration_path[rest_var] not in list(available_gen.bus):

 current_gen = restoration_path[rest_var]

 if rest_var < len(restoration_path)-1:

103

 next_gen = restoration_path[rest_var+1]

 else:

 next_gen = None

 if next_gen == None:

 sp = short_path['path']

 if sp.index(current_gen) < len(sp) - 1:

 if black_start == sp[sp.index(current_gen)+1]:

 next_gen = sp[sp.index(current_gen)+2]

 else:

 next_gen = sp[sp.index(current_gen)+1]

 net_copy.gen.loc[net.gen['bus']==current_gen,'in_service']=True

 available_gen =

available_gen.append(net_copy.gen.loc[net.gen['bus']==current_gen],sort=True)

 available_gen['q'] = pd.eval(np.sqrt(available_gen['sn_mva']**2-

available_gen['p_mw']**2))

 cond = unprocessed_gen['name'].isin(available_gen['name'])

 unprocessed_gen = unprocessed_gen.drop(unprocessed_gen[cond].index)

 gen_capacity = float(0)

 gen_capacity_q = float(0)

 cranking_power = None

 cranking_power_q = None

 ## Calculate Available generation capacity, processed load and effective generation

capability

 gen_capacity = gen_capacity + abs(available_gen['p_mw'].sum())

 gen_capacity_q = gen_capacity_q + abs(available_gen['q'].sum())

 cranking_power = abs(c_pow.loc[c_pow['bus']==next_gen,'pow'].sum())

 cranking_power_q = abs(c_pow.loc[c_pow['bus']==next_gen,'pow_q'].sum())

104

 try:

 processed_load_steadystate_p = static_data.query("processed == 'Y'")['p'].sum()

 processed_load_steadystate_q = static_data.query("processed == 'Y'")['q'].sum()

 except IndexError:

 processed_load_steadystate_p = 0

 processed_load_steadystate_q = 0

 try:

 processed_load_steadystate_mot_p = sorted_motor.query("processed ==

'Y'")['p_total'].sum()

 processed_load_steadystate_mot_q = sorted_motor.query("processed ==

'Y'")['q_total'].sum()

 except IndexError:

 processed_load_steadystate_mot_p = 0

 processed_load_steadystate_mot_q = 0

 eff_gen_cap = gen_capacity - cranking_power - processed_load_steadystate_p -

processed_load_steadystate_mot_p

 eff_gen_cap_q = gen_capacity_q - cranking_power_q - processed_load_steadystate_q

- processed_load_steadystate_mot_q

 load_processed = False

 current_load_completed = False

 insufficient_capacity = False

 for l_index, l_row in load_priority.iterrows():

 if insufficient_capacity == False:

 current_load = l_row['load_bus']

 else:

 break

 for eachload_paths in gen_load_all_paths:

 if ((available_gen[available_gen['bus'] == eachload_paths.get('gen')].any().any())

& (eachload_paths.get('bus')==current_load)) == True:

 all_paths_arr = eachload_paths.get('all_paths')

 valid_path = []

105

 unprocessed_gen_set = set(unprocessed_gen['bus'])

 unprocessed_load_set = set(unprocessed_load['bus'])

 trans_hv = set(net_copy.trafo['hv_bus'])

 trans_lv = set(net_copy.trafo['lv_bus'])

 for i in range(0,len(all_paths_arr)):

 valid_path_flag = True

 single_path = all_paths_arr[i]

 single_path_set = set(single_path)

 single_path_set_load = set(single_path[:-1])

 if unprocessed_gen_set.intersection(single_path_set):

 valid_path_flag = False

 if valid_path_flag == True:

 if unprocessed_load_set.intersection(single_path_set_load):

 valid_path_flag = False

 if valid_path_flag == True:

 if trans_hv.intersection(single_path_set):

 valid_path_flag = False

 if trans_lv.intersection(single_path_set):

 valid_path_flag = False

 if valid_path_flag == True:

 valid_path = all_paths_arr[i]

 break

 if valid_path_flag == False:

 for i in range(0,len(all_paths_arr)):

 valid_path_flag = True

 single_path = all_paths_arr[i]

 single_path_set = set(single_path)

 single_path_set_load = set(single_path[:-1])

 if unprocessed_gen_set.intersection(single_path_set):

106

 valid_path_flag = False

 if valid_path_flag == True:

 if unprocessed_load_set.intersection(single_path_set_load):

 valid_path_flag = False

 if valid_path_flag == True:

 for j in range(0,len(single_path)-1):

 if (net_copy.trafo.loc[(net_copy.trafo.hv_bus == single_path[j]) &

(net_copy.trafo.lv_bus == single_path[j+1]) & (net_copy.trafo.tap_side == 'hv')].any().any() or

 net_copy.trafo.loc[(net_copy.trafo.hv_bus == single_path[j+1]) &

(net_copy.trafo.lv_bus == single_path[j]) & (net_copy.trafo.tap_side == 'lv')].any().any()):

 valid_path_flag = False

 break

 if valid_path_flag == True:

 valid_path = all_paths_arr[i]

 break

 if valid_path_flag == False:

 continue

 if valid_path_flag == True:

 for i in range(0, len(valid_path)-1):

 if (valid_path[i] is not None) & (valid_path[i+1] is not None):

 line_bw_buses = net_copy.line.loc[(net_copy.line['from_bus'] ==

valid_path[i]) & (net_copy.line['to_bus'] == valid_path[i+1])]

 if len(line_bw_buses) == 0:

 line_bw_buses = net_copy.line.loc[(net_copy.line['from_bus'] ==

valid_path[i+1]) & (net_copy.line['to_bus'] == valid_path[i])]

 if len(line_bw_buses) > 0:

 net_copy.switch.loc[(net_copy.switch['element'] ==

line_bw_buses.index[0]) & (net_copy.switch['et'] == 'l'),'closed'] = True

 trafo_bw_buses = net_copy.trafo.loc[(net_copy.trafo['hv_bus'] ==

valid_path[i]) & (net_copy.trafo['lv_bus'] == valid_path[i+1])]

107

 if len(trafo_bw_buses) == 0:

 trafo_bw_buses = net_copy.trafo.loc[(net_copy.trafo['lv_bus'] ==

valid_path[i]) & (net_copy.trafo['hv_bus'] == valid_path[i+1])]

 if len(trafo_bw_buses) > 0:

 net_copy.switch.loc[(net_copy.switch['element'] ==

int(trafo_bw_buses.index[0])) & (net_copy.switch['et'] == 't'),'closed'] = True

 temp_trafo_switch = net_copy.trafo.loc[net_copy.trafo.hv_bus ==

valid_path[i]]

 if len(temp_trafo_switch) == 0:

 temp_trafo_switch = net_copy.trafo.loc[net_copy.trafo.lv_bus ==

valid_path[i]]

 if len(temp_trafo_switch) >0:

 for ts_iter,ts_row in temp_trafo_switch.iterrows():

 if ts_row['hv_bus'] == valid_path[i] and

net_copy.load.loc[(net_copy.load.bus == ts_row['lv_bus']) & (net_copy.load.in_service ==

True)].any().any():

 trans_index = net_copy.trafo.loc[(net_copy.trafo.hv_bus ==

ts_row['hv_bus'])& (net_copy.trafo.lv_bus == ts_row ['lv_bus'])].index.values

 net_copy.switch.loc[(net_copy.switch['element'] ==

trans_index[0]) & (net_copy.switch['et'] == 't'),'closed'] = True

 elif (ts_row['lv_bus'] == valid_path[i]) and

(net_copy.load.loc[(net_copy.load.bus == ts_row['hv_bus']) & (net_copy.load.in_service ==

True)].any().any()):

 trans_index = net_copy.trafo.loc[(net_copy.trafo.hv_bus ==

ts_row['hv_bus'])& (net_copy.trafo.lv_bus == ts_row ['lv_bus'])].index.values

 net_copy.switch.loc[(net_copy.switch['element'] ==

trans_index[0]) & (net_copy.switch['et'] == 't'),'closed'] = True

 unprocessed_load.drop(unprocessed_load[unprocessed_load['bus'] ==

int(current_load)].index,inplace = True)

 try:

 motor = sorted_motor[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'N')&(sorted_motor.p_inrush_tot < eff_gen_cap)

&(sorted_motor.q_inrush_tot < eff_gen_cap_q)].iloc[0]

 except IndexError:

 motor = None

108

 except TypeError:

 motor = None

 print("test")

 while 1==1:

 static = None

 motor = None

 try:

 static = static_data[(static_data.load_bus ==

int(current_load))&(static_data.processed == 'N')].iloc[0]

 except IndexError:

 static = None

 except TypeError:

 static = None

 if static is not None:

 static_p = static['p']

 static_q = static['q']

 else:

 static_p = 0

 static_q = 0

 try:

 motor = sorted_motor[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'N')&(np.floor(sorted_motor.p_inrush_tot +

static_p)+5 < math.ceil(eff_gen_cap)) &(np.floor(sorted_motor.q_inrush_tot + static_q)+5 <

math.ceil(eff_gen_cap_q))].iloc[0]

 except IndexError:

 motor = None

 except TypeError:

 motor = None

109

 if motor is not None:

net_copy.load.loc[(net_copy.load['bus']==current_load),'in_service']=True

 print(iteration)

 picked_total_load1 = motor['p_inrush_tot']+static_p

 picked_total_load1_q = motor['q_inrush_tot']+static_q

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'p_mw']=picked_total_load1

 + sum(sorted_motor.loc[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'Y'),'p_total'])

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'q_mvar']=picked_total_load1_q

 + sum(sorted_motor.loc[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'Y'),'q_total'])

 net_copy.load.sn_mva =

np.sqrt(np.power(net_copy.load.p_mw,2)+np.power(net_copy.load.q_mvar,2))

 picked_steady_load1 = static_p+motor['p_total']

 picked_steady_load1_q = static_q+motor['q_total']

 random_multi = round(random.uniform(0.05,0.1),2)

 powerflow_Inrush = pp.runpp(net_copy)

 if net_copy.converged == True:

 line_index = net_copy.line[(net_copy.line['from_bus']==valid_path[-

2]) & (net_copy.line['to_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index = net_copy.line[(net_copy.line['to_bus']==valid_path[-

2]) & (net_copy.line['from_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['lv_bus']==valid_path[-2]) &

(net_copy.trafo['hv_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['hv_bus']==valid_path[-2]) &

(net_copy.trafo['lv_bus']==valid_path[-1])].index.tolist()

110

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 inrush_vd = round(((line_result['vm_hv_pu']-

line_result['vm_lv_pu'])/line_result['vm_hv_pu'])*100,2).values[0]

 except IndexError:

 inrush_vd = 0

 else:

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 inrush_vd = round(((line_result['vm_lv_pu']-

line_result['vm_hv_pu'])/line_result['vm_lv_pu'])*100,2).values[0]

 except IndexError:

 inrush_vd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 inrush_vd = round(((line_result['vm_from_pu']-

line_result['vm_to_pu'])/line_result['vm_to_pu'])*100,2).values[0]

 except IndexError:

 inrush_vd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 inrush_vd = round(((line_result['vm_from_pu']-

line_result['vm_to_pu'])/line_result['vm_to_pu'])*100,2).values[0]

 except IndexError:

 inrush_vd = 0

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'p_mw']=picked_steady_load1

 + sum(sorted_motor.loc[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'Y'),'p_total'])

111

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'q_mvar']=picked_steady_load1_q

 + sum(sorted_motor.loc[(sorted_motor.load_bus ==

int(current_load))&(sorted_motor.processed == 'Y'),'q_total'])

 net_copy.load.sn_mva =

np.sqrt(np.power(net_copy.load.p_mw,2)+np.power(net_copy.load.q_mvar,2))

 powerflow_Inrush = pp.runpp(net_copy)

 iteration = iteration + 1

 rest_row = None

 rest_df = None

 if len(rest_output) > 0:

 line_index =

net_copy.line[(net_copy.line['from_bus']==valid_path[-2]) &

(net_copy.line['to_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.line[(net_copy.line['to_bus']==valid_path[-2]) &

(net_copy.line['from_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['lv_bus']==valid_path[-2]) &

(net_copy.trafo['hv_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['hv_bus']==valid_path[-2]) &

(net_copy.trafo['lv_bus']==valid_path[-1])].index.tolist()

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_hv_pu']-

line_result['vm_lv_pu'])/line_result['vm_hv_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

112

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_lv_pu']-

line_result['vm_hv_pu'])/line_result['vm_lv_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_to_pu']-

line_result['vm_from_pu'])/line_result['vm_from_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_from_pu']-

line_result['vm_to_pu'])/line_result['vm_to_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 if

rest_output.loc[rest_output['cranking_power_provided_gen']==str(c_pow.loc[c_pow['bus']==nex

t_gen,'gen_name'].tolist()).strip('[]')].any().any():

 rest_row = [[iteration,

 '-',

 round(eff_gen_cap,2),

 round(eff_gen_cap_q,2),

 '-',

113

 '-',

 '-',

net_copy.load.loc[(net_copy.load.bus==int(current_load)),'name'].values[0],

 motor['motor'],

 round(motor['p_inrush_tot'],2),

 round(motor['q_inrush_tot'],2),

 round(picked_total_load1,2),

 round(picked_total_load1_q,2),

 round(picked_steady_load1,2),

 round(picked_steady_load1_q,2),

 round(picked_steady_load1+(static_p*random_multi),2),

 round(picked_steady_load1_q+(static_q*random_multi),2),

 inrush_vd,

 normalvd]]

 rest_df = pd.DataFrame(rest_row,columns = rest_col_names)

 else:

 rest_row = [[iteration,

str(net_copy.gen.loc[(net_copy.gen.in_service==True),'name'].tolist()).strip('[]'),

 round(eff_gen_cap,2),

 round(eff_gen_cap_q,2),

 '-' if next_gen is None else

str(c_pow.loc[c_pow['bus']==next_gen,'gen_name'].tolist()).strip('[]'),

 round(cranking_power,2),

 round(cranking_power_q,2),

net_copy.load.loc[(net_copy.load.bus==int(current_load)),'name'].values[0],

 motor['motor'],

 round(motor['p_inrush_tot'],2),

114

 round(motor['q_inrush_tot'],2),

 round(picked_total_load1,2),

 round(picked_total_load1_q,2),

 round(picked_steady_load1,2),

 round(picked_steady_load1_q,2),

 round(picked_steady_load1+(static_p*random_multi),2),

 round(picked_steady_load1_q+(static_q*random_multi),2),

 inrush_vd,

 normalvd]]

 rest_df = pd.DataFrame(rest_row,columns = rest_col_names)

 else:

 line_index =

net_copy.line[(net_copy.line['from_bus']==valid_path[-2]) &

(net_copy.line['to_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.line[(net_copy.line['to_bus']==valid_path[-2]) &

(net_copy.line['from_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['lv_bus']==valid_path[-2]) &

(net_copy.trafo['hv_bus']==valid_path[-1])].index.tolist()

 if len(line_index) == 0:

 line_index =

net_copy.trafo[(net_copy.trafo['hv_bus']==valid_path[-2]) &

(net_copy.trafo['lv_bus']==valid_path[-1])].index.tolist()

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_hv_pu']-

line_result['vm_lv_pu'])/line_result['vm_hv_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

115

 line_result = net_copy.res_trafo.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_lv_pu']-

line_result['vm_hv_pu'])/line_result['vm_lv_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_to_pu']-

line_result['vm_from_pu'])/line_result['vm_from_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 else:

 line_result = net_copy.res_line.iloc[line_index,]

 try:

 normalvd = round(((line_result['vm_from_pu']-

line_result['vm_to_pu'])/line_result['vm_to_pu'])*100,2).values[0]

 except IndexError:

 normalvd = 0

 rest_row = [[iteration,

str(net_copy.gen.loc[(net_copy.gen.in_service==True),'name'].tolist()).strip('[]'),

 round(eff_gen_cap,2),

 round(eff_gen_cap_q,2),

str(c_pow.loc[c_pow['bus']==next_gen,'gen_name'].tolist()).strip('[]'),

 round(cranking_power,2),

 round(cranking_power_q,2),

net_copy.load.loc[(net_copy.load.bus==int(current_load)),'name'].values[0],

116

 motor['motor'],

 round(motor['p_inrush_tot'],2),

 round(motor['q_inrush_tot'],2),

 round(picked_total_load1,2),

 round(picked_total_load1_q,2),

 round(picked_steady_load1,2),

 round(picked_steady_load1_q,2),

 round(picked_steady_load1+(static_p*random_multi),2),

 round(picked_steady_load1_q+(static_q*random_multi),2),

 inrush_vd,

 normalvd]]

 rest_df = pd.DataFrame(rest_row,columns = rest_col_names)

 try:

 rest_output = rest_output.append(rest_df,ignore_index = False)

 except:

 rest_output = rest_df.copy()

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'p_mw']=picked_steady_load1

net_copy.load.loc[(net_copy.load['bus']==int(current_load)),'q_mvar']=picked_steady_load1_q

 sorted_motor.loc[(sorted_motor['load_bus'] == int(current_load)) &

(sorted_motor['motor'] == motor['motor']),'processed'] = 'Y'

 powerflow_Inrush = pp.runpp(net_copy)

 if static is not None:

 static_data.loc[(static_data['load_bus'] == int(current_load)) &

(static_data['id'] == static['id']),'processed'] = 'Y'

 static_data.loc[(static_data['load_bus'] == int(current_load)) &

(static_data['id'] == static['id']),'p'] = static_p+(static_p*random_multi)

117

 static_data.loc[(static_data['load_bus'] == int(current_load)) &

(static_data['id'] == static['id']),'q'] = static_q+(static_q*random_multi)

 cranking_power =

abs(c_pow.loc[c_pow['bus']==next_gen,'pow'].sum())

 cranking_power_q =

abs(c_pow.loc[c_pow['bus']==next_gen,'pow_q'].sum())

 try:

 processed_load_steadystate_p = static_data.query("processed ==

'Y'")['p'].sum()

 processed_load_steadystate_q = static_data.query("processed ==

'Y'")['q'].sum()

 except IndexError:

 processed_load_steadystate_p = 0

 processed_load_steadystate_q = 0

 try:

 processed_load_steadystate_mot_p = sorted_motor.query("processed

== 'Y'")['p_total'].sum()

 processed_load_steadystate_mot_q = sorted_motor.query("processed

== 'Y'")['q_total'].sum()

 except IndexError:

 processed_load_steadystate_mot_p = 0

 processed_load_steadystate_mot_q = 0

 eff_gen_cap = gen_capacity - cranking_power -

processed_load_steadystate_p - processed_load_steadystate_mot_p

 eff_gen_cap_q = gen_capacity_q - cranking_power_q -

processed_load_steadystate_q - processed_load_steadystate_mot_q

 else:

 if ((sorted_motor['load_bus']==int(current_load)) &

(sorted_motor['processed'] == 'N')).any() == False:

118

load_priority.loc[load_priority['load_bus']==int(current_load),'processed'] = 'Y'

 current_load_completed = True

not_completed_load.drop(not_completed_load[not_completed_load['bus'] ==

int(current_load)].index,inplace = True)

load_priority.drop(load_priority[load_priority['load_bus']==int(current_load)].index,inplace =

True)

 net_copy.load.loc[net_copy.load['bus']==int(current_load),'p_mw'] =

net.load.loc[net.load['bus']==int(current_load),'p_mw']

 net_copy.load.loc[net_copy.load['bus']==int(current_load),'q_mvar']

= net.load.loc[net.load['bus']==int(current_load),'q_mvar']

 else:

 insufficient_capacity = True

 break

 total_static_p = 0

 total_static_q = 0

 break

 print (rest_output)

 abs_path = []

 for x in short_path['path']:

 for i,row in net.gen.iterrows():

 if row['bus'] == x:

 if len(abs_path) == 0:

 abs_path.append(net.ext_grid['name'].iloc[0])

 if row['name'] != net.ext_grid['name'].iloc[0]:

 abs_path.append(row['name'])

 return rest_output,abs_path

119

if __name__ == '__main__':

 app.run(debug=True)

120

APPENDIX D CODE FOR OUTPUT DISPLAY USING JQUERY EMBEDDED IN

HTML

{% extends "base.html" %}

{% block title %}Results Page{% endblock %}

<!-- <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script> --

>

<script src="../static/js/jquery.min.js"></script>

<link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"

rel="stylesheet" id="bootstrap-css">

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>

{% block page_content %}

<!-- <div class="card text-white bg-primary mb-3" style="max-width: 18rem;">

 <div class="card-header">Current Load</div>

 <div class="card-body">

 <p class="card-text"></p>

 </div>

</div> -->

<body>

<!-- -->

<div class="container-fluid">

 <div class="row">

 <div class = "col-sm-5">

 <p><h1>Restoration Sequence:</h1> </p>

 {% for sp1 in data1 %}

 {% if loop.last %}

 {{ sp1 }}

 {% else %}

 {{ sp1 }} ,

 {% endif %}

{% endfor %}

<h3>Abbreviations:</h3>

<p>P_{AVA}_mw : Available real power at a given point during restoration </p>

<p> </p>Q_{AVA}_mvar : Available reactive power at a given point during </p>

<p>P_{CR}_mw Cranking power of generator’s real power </p>

<p>Q_{CR}_mvar Cranking power of generator’s reactive power </p>

<!-- Cr_pwr_to_gen -->

<!-- P_{CR}_mw -->

<!-- Q_{CR}_mvar -->

<p>P_{LI}_mw Active power of induction motor when inrush current is observed

</p>

121

<p>Q_{LI}_mvar Reactive power of induction motor when inrush current is observed

</p>

<p>P_mw Active power of the load appeared after the switch is closed </p>

<p>Q_mw Reactive power of the load appeared after the switch is closed </p>

<p>L_P_mw Total active power of the picked loads after it reaches steady state </p>

<p>L_Q_mvar Total reactive power of the picked loads after it reaches steady state

</p>

<p>%VD Voltage Drop</p>

</p>

</div>

<div class = "col-sm-2">

</div>

 </div>

 <div>

 <p><h2>Restoration Procedure</h2> </p>

 <table id="tbl" class="table table-striped table-bordered" style="width:100%">

 <thead>

 <tr>

 <th></th>

 <th></th>

 <th colspan="2" scope="colgroup">Available power</th>

 <th>Generator to which cranking power is provided</th>

 <th colspan="2" scope="colgroup">Cranking power values</th>

 <th></th>

 <th></th>

 <th colspan="2" scope="colgroup">Power values when inrush current is observed </th>

 <th colspan="2" scope="colgroup">Power appeared after the switch is closed</th>

 <th colspan="2" scope="colgroup">Steady state power</th>

 <th colspan="2" scope="colgroup">% Voltage Drop</th>

 </tr>

 <tr>

 <th> iteration </th>

 <th> Gen_turned_on </th>

 <th> P_{AVA}_mw </th>

 <th> Q_{AVA}_mvar </th>

 <th> Cr_pwr_to_gen </th>

 <th> P_{CR}_mw </th>

 <th> Q_{CR}_mvar </th>

 <th> Load_Name </th>

 <th> Motor_Group </th>

 <th> P_{LI}_mw </th>

 <th> Q_{LI}_mvar </th>

 <th> P_mw </th>

 <th> Q_mw </th>

 <th> L_P_mw </th>

122

 <th> L_Q_mvar </th>

 <th> %VD_{Inrush} </th>

 <th> %VD_{Steady State} </th>

 </tr>

 </thead>

 <tbody id = "tbody">

 {% for i,row in data.iterrows() %}

 <tr>

 <td> {{ row.iteration|int }}</td>

 <td> {{ row.gen_turned_on }}</td>

 <td> {{ row.eff_gen_cap_p }}</td>

 <td> {{ row.eff_gen_cap_q }}</td>

 <td> {{ row.cranking_power_provided_gen }}</td>

 <td> {{ row.cranking_power_p }}</td>

 <td> {{ row.cranking_power_q }}</td>

 <td> {{ row.Load_Name }}</td>

 <td> {{ row.motor_group }}</td>

 <td> {{ row.pli_mw }}</td>

 <td> {{ row.qli_mvar }}</td>

 <td> {{ row.p_mw }}</td>

 <td> {{ row.q_mw }}</td>

 <td> {{ row.lp_mw }}</td>

 <td> {{ row.lq_mvar }}</td>

 <td> {{ row.Voltage_Drop }}%</td>

 <td> {{ row.Voltage_Drop_steady }}%</td>

 </tr>

 {% endfor %}

 </tbody>

 </table>

 </div>

</div>

</body>

{% endblock %}

123

APPENDIX E CODE FOR STANDARIZING UI ACROSS THE TOOL

{% extends "bootstrap/base.html" %}

{% block title %}File Uploader{% endblock %}

{% block head %}

{{ super() }}

{% endblock %}

{% block navbar %}

<div class="navbar navbar-inverse" role="navigation">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-toggle="collapse" data-

target=".navbar-collapse">

 Toggle navigation

 </button>

 Home

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 About

 </div>

 </div>

</div>

{% endblock %}

{% block content %}

 {% block page_content %}{% endblock %}

{% endblock %}

{% block scripts %}

{{ super() }}

{% endblock %}

	AUTOMATIC SYSTEM RESTORATION FOR INDUSTRIAL POWER SYSTEMS
	Recommended Citation

	ACKNOWLEDGEMENTS
	DEDICATION
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Chapter 1 Introduction
	1.1 Background
	1.2 Objectives and Steps of Restoration
	1.3 Motivation
	1.4 Outline

	Chapter 2 Power System Restoration
	2.1 Restoration Approaches
	2.1.1 Build Upward Strategy
	2.1.2 Build Down Strategy

	2.2 Power System Restoration Issues
	2.3. Black Start Generator and Non-Black Start Generators
	2.3.1. Characteristics
	2.3.2. Types of Black Start and Non-Black Start Units

	2.4 Energizing Transmission Line
	2.5 Load Restoration
	2.5.1. Types of Load Models
	2.5.3. Load Priorities

	Chapter 3 Cold Load Pickup, Inrush Current and Load Variation
	3.1 Cold Load Pickup
	3.1.1 CLPU Components
	3.2 Inrush Currents
	3.3 Factors Influencing CLPU
	3.4 Effects of Inrush currents
	3.5 Load Variation After Pickup
	3.6 Discussion

	Chapter 4 System Restoration Algorithm and Flow Chart
	4.1 Shortest Path Algorithm
	4.2 Power System Restoration Flowchart

	Chapter 5 Software Development
	5.1 Technology
	5.1.1 Backend Coding: Python
	5.1.2 Frontend Development: HTML
	5.1.3 Frontend Development: Bootstrap
	5.1.4 Frontend Development: jQuery
	5.1.5 Development Environment/IDE: Visual Studio Code

	5.2 User Flowchart
	5.2.1 User Input:

	5.3 Significant Code Snippets
	5.3.1 User Input:
	5.3.2 Creating a Network:
	5.3.3 Inrush Current Calculation:
	5.3.3 Dijkstra’s Algorithm:
	5.3.4 Load Priority
	5.3.5 Displaying Output:

	Chapter 6 Case Study
	6.1 Procedures for Automatic System Restoration
	6.2 Design of the Industrial System
	6.3 IEEE 30-Bus System

	Chapter 7 Results
	7.1 Tool Implementation for Restoration on Industrial Bus System
	7.1 Industrial Test System Validation
	7.2 IEEE 30-Bus System Validation

	Chapter 8 Conclusion and Future Work
	8.1 Limitations of this Study
	8.2 Potential Future work

	References
	APPENDICES
	APPENDIX A- INDUSTRIAL SYSTEM DESIGN DATA
	APPENDIX- B CODE FOR CREATING USER INPUT USING HTML AND BOOTSTRAP
	APPENDIX C RESTORATION CODE IN PYTHON
	APPENDIX D CODE FOR OUTPUT DISPLAY USING JQUERY EMBEDDED IN HTML
	APPENDIX E CODE FOR STANDARIZING UI ACROSS THE TOOL

