University of Texas at Arlington

MavMatrix

Computer Science and Engineering

Dissertations Computer Science and Engineering Department

2023

Fuzz Testing of Zigbee Protocol Implementations

Mengfei Ren

Follow this and additional works at: https://mavmatrix.uta.edu/cse_dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Ren, Mengfei, "Fuzz Testing of Zigbee Protocol Implementations" (2023). Computer Science and
Engineering Dissertations. 317.

https://mavmatrix.uta.edu/cse_dissertations/317

This Dissertation is brought to you for free and open access by the Computer Science and Engineering Department
at MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Dissertations by an
authorized administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu,
erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_dissertations?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_dissertations/317?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

FUZZ TESTING OF ZIGBEE PROTOCOL IMPLEMENTATIONS

by
MENGFEI REN

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2023

Copyright (© by MENGFEI REN 2023
All Rights Reserved

To my dear mother, stepfather and stepsister Onna

who support me to explore this wonderful world.

Acknowledgements

Reflecting on the past 25 years, it feels as though my journey began just yester-
day when I stepped foot into elementary school. This incredible voyage has encom-
passed the pursuit of Bachelor’s, Master’s, and Ph.D. degrees, presenting numerous
challenges along the way. In particular, the decision to return to academia for a Ph.D.
after spending several years in the industry was a formidable one. I vividly remember
the internal struggle I faced in making that pivotal choice. I am profoundly grateful
to my beloved parents and grandparents who wholeheartedly supported my aspira-
tions, enabling me to embark on this transformative path of self-discovery. Despite
the countless difficulties and obstacles encountered over the past six years, I have no
regrets about pursuing advanced education. In its entirety, my Ph.D. journey has
been a profoundly fortunate and blessed experience. I have been fortunate to receive
invaluable guidance and support from esteemed professors, dedicated teammates, and
members of my church community. Their collective influence has brought me to this
very moment of writing my dissertation.

First and foremost, I would like to express my deepest gratitude to my super-
vising professor, Dr. Lei, for his unwavering patience, guidance, encouragement, and
profound inspiration throughout the entirety of this dissertation. Without his bound-
less support, this work would not have come to fruition. Dr. Lei’s mentorship has
not only fostered my growth as an independent thinker, problem solver, and decision
maker but has also been an immense honor to be associated with.

Furthermore, I extend my heartfelt thanks to my co-supervisor, Dr. Ming, for

his exceptional patience, guidance, and unwavering encouragement throughout my

v

research journey. Collaborating with him for five years in the capacity of a GTA for
the course ”Information Security” has been an enlightening experience. Specifically,
his staunch encouragement to pursue a faculty position post-graduation, along with
the abundant opportunities and guidance he provided, played an instrumental role in
securing a tenure-track faculty job offer. Additionally, I wish to express my gratitude
to my esteemed committee members, Dr. Christoph Csallner and Dr. Hao Che, for
their profound interest in my research and invaluable feedback.

I would also like to extend my appreciation to all my current and former col-
leagues from the Software Engineering Lab and Information Security Lab. Dr. Feng
Duan, Dr. Huadong Jack Feng, Michael Hou, Xiaolei Ren, Sunny Shree, Qiping Wei,
Fadul Sidker, Krishna Khadka, Dr. Haotian Zhang, and Erika Leal have been in-
strumental in providing support, assistance, and valuable feedback throughout the
years.

Lastly, I wish to convey my deepest respect and gratitude to my stepsister
Onna and my parents for their unwavering support and selfless sacrifices. They have
been my unwavering pillar, enabling me to explore uncharted territories to my heart’s
content. I express my heartfelt gratitude to my stepsister for her unwavering presence
and guidance throughout my journey, particularly for providing solace during the
challenging times of homesickness caused by the epidemic, when returning to my
home country was not possible during pandemic. Moreover, I am grateful to my
mother for her lighthearted conversations that help alleviate anxiety, restlessness, and
unhappiness. Similarly, I express my gratitude to my father for his profound insights
into life and unyielding support for my decisions. Without their unwavering backing,
I have no doubt that it would have been arduous to dedicate myself wholeheartedly
to my Ph.D. studies.

July 10, 2023

Abstract

FUZZ TESTING OF ZIGBEE PROTOCOL IMPLEMENTATIONS

MENGFEI REN, Ph.D.
The University of Texas at Arlington, 2023

Supervising Professor: Dr. Yu Lei

In recent years, we have witnessed the increasing of the Internet of Things (IoT')
devices deployed by many areas, such as home automation, healthcare, manufacture,
and smart vehicle. Among the numerous IoT wireless standards available, Zighee
stands out as one of the most globally popular choices, with major companies like
Amazon, Samsung, IKEA, Huawei, and Xiaomi incorporating it into their products.
Notably, Zigbee has even been utilized in NASA’s Mars mission, where it serves as
the communication radio between the flying drone and the Perseverance rover.

However, with the rapid growth of Zighee’s global market presence, the incen-
tive for cybercriminal attacks has also escalated. Recent incidents have highlighted
severe vulnerabilities in Zigbee protocol implementations, compromising [oT devices
from multiple manufacturers. Consequently, conducting security testing on Zigbee
protocol implementations has become an imperative task. Nevertheless, applying ex-
isting vulnerability detection techniques like fuzzing and data flow analysis to Zigbee
protocols is nontrivial, especially when dealing with vendor-specific requirements and
low-level hardware events. Additionally, many existing protocol fuzzing tools lack an
appropriate execution environment for Zigbee, as it relies on radio communication
rather than internet connectivity.

vi

This dissertation aims to address the aforementioned gaps by proposing com-
prehensive fuzzing solutions tailored to the security testing of Zighee protocol imple-
mentations. The goal is to assist [oT application manufacturers and protocol vendors
in mitigating security risks during their development process. The dissertation makes
the following contributions: (i) Z-Fuzzer: A device-agnostic fuzzing platform that
utilizes code coverage feedback to detect security issues of the Zigbee protocol imple-
mentations. It leverages a commercial embedded device simulator with pre-defined
peripherals and hardware interrupt setups to interact with the fuzzing engine. It
also addresses the communication gap between the fuzzing engine and the simulator
to make fuzzing applicable to Zigbee protocol stack. (ii) TaintBFuzz: An intelli-
gent Zigbee protocol fuzzing solution via constraint-field dependency inference. It
utilizes static taint analysis to infer the dependency between the protocol message
field and path constraints, which augment the mutation process during the fuzzing.
(iii) CT-BFuzz: A fuzzing platform with combinatorial approach of Zigbee protocol
implementation. It utilizes static taint analysis and fuzzing to identify important mes-
sage fields and their representative values for dynamically generating combinatorial
testing model. While combinatorial testing helps fuzzing generate cover important
combination values of message fields that may explore uncovered execution paths.

This dissertation is presented in a monograph based format and includes three
research articles. The first article introduces our work of Z-Fuzzer that is the first
device-agnostic fuzzing tool making fuzzing applicable to detect security problems of
Zighee protocol implementation. The second article reports the work of TaintBFuzz
that uses constraint-field dependency inference to augment test input mutation in
fuzzing Zighee protocol implementation. The third article presents C'T-BFuzz that
optimizes the Zigbee protocol fuzzing via combinatorial test generation to generate

test cases for efficiently covering combination values of important message fields. The

vil

first two papers have been accepted at peer-reviewed venues, while the third one is

currently in press.

viii

Table of Contents

Acknowledgements
Abstract
Table of Contents
List of Illustrations L
List of Tables o
Chapters
1. Imtroduction
2. Related Work
2.1 Zigbee Protocolo
2.2 Security Analysis on Zigbee Protocol
2.3 Fuzz Testing
2.3.1 Conventional Protocol Fuzzing
2.3.2 Coverage-guided Fuzzing
2.3.3 Taint Inference Based Fuzzing
2.4 Combinatorial Testing

3. Device-Agnostic Fuzzing of Zigbee Protocol Implementation . . .

3.1 Overview o
3.2 Protocol Fuzzing Algorithm
3.3 Implementation Details,
3.3.1 Test Case Generation and Mutation
3.3.2 Execution Engine oo
3.3.3 Coverage Report Analysis

X

10
11
11

3.4 Evaluation of Z-Fuzzer 32

3.4.1 Vulnerability Detection Capability 33
34.2 Code Coverage i 39
3.5 Conclusion 42

. Intelligent Zigbee Protocol Fuzzing via Constraint-Field Depen-

dency Inference 43
4.1 Overview 43
4.2 Design of TaintBFuzz L. 45
4.2.1 Constraint Variable Identification 45
4.2.2 Constraint-Field Dependency Inference 46
4.2.3 Inference-guided Mutation A7
4.3 Implementation of TaintBFuzz 51
4.4 Evaluation of TaintBFuzz 53
4.4.1 Fuzzing Performance 54
4.4.2 Vulnerability Detection 59
4.5 Conclusion 61

. Fuzzing Zigbee Protocol Implementation with Combinatorial Test-

INg . . . e 63
5.1 Overview 63
5.2 Design of CT-BFuzz, 65
5.2.1 Path Variable Identification 66
5.2.2 Control Field Identification 67
5.2.3 Fuzzing with Combinatorial Testing 68
5.3 Implementation of CT-BFuzz 74
5.4 Evaluation of CT-BFuzz 75
5.4.1 Fuzzing Performance 76

5.4.2 Vulnerability Detection 80

5.5 Conclusion 82
6. Conclusion L 84
References 86
Biographical Statemento 97

x1

Figure

1.1
2.1

2.2

3.1
3.2
3.3
3.4

3.5
3.6
4.1
4.2
5.1
5.2
2.3

List of Illustrations

Compiler Validation Example in A Popular Zigbee Protocol Stack.

Zighee Protocol Communication.
Example of ZCL Message Construction with Block-based Representa-
tlon.
The workflow of Z-Fuzzer framework.
Example of mutation on a favored test case
Example of coverage report of Z-Stack execution.
The relationship between line coverage and the number of detected pro-
tocol crashes in 10 runs. Lo
Message transmission on TT CC2538 with the evaluation board.
Line coverage and edge coverage achieved by fuzzers over 10 runs. . . .

Overall design of TaintBFuzz.

Statement coverage and edge coverage achieved by fuzzers over 10 runs.

Overall design of CT-BFuzz.

An example of message fields used for combinatorial testing.

Statement coverage and edge coverage achieved by fuzzers over 10 runs.

xil

Page
4

12
22
24
30

35
36
40
45
57
65
71
78

Table
3.1

3.2
3.3
4.1
4.2
4.3
4.4
5.1
5.2
2.3

List of Tables

Page
Total number of crashes and unique vulnerabilities detected by BooFooz,
Peach and Z-Fuzzer.o 33

Summary of new vulnerabilities detected by BooFuzz, Peach and Z-Fuzzer. 34

Evaluation results on Z-stack in 10 runs. 39
Fuzzing performance of all fuzzers on Z-stack in 10 runs. 54
Test cases generated by TaintBFuzz for different inference threshold. . 56
Unique vulnerabilities detected all fuzzers over ten fuzzing. 59
Dependent constraints and fields for each vulnerability. 60
Fuzzing performance of all fuzzers on Z-stack in 10 runs. 77

Number of messages generated by all fuzzers for triggering vulnerabilities. 80

Time consumption (mins) of triggering vulnerabilities by all fuzzers. . 81

xiil

Chapter 1
Introduction

The global market has witnessed a rapid surge in the popularity of Internet of
Things (IoT) devices. These devices have found applications in diverse fields such
as home automation, healthcare, manufacturing, and smart vehicles. According to
a recent survey report [1], the global market value of IoT is projected to reach
hundreds of millions of dollars by 2023. However, this exponential growth in the
market also attracts the attention of cybercriminals who seek to exploit vulnerabilities
in [oT devices. Various cyberattacks [2,3,4,5] have been demonstrated, targeting IoT
firmware, mobile applications, and network communications.

Among the numerous wireless communication protocols, Zighee protocol stands
out as one of the most widely used. It is employed by millions of devices and favored
by renowned companies such as Amazon, Samsung, IKEA, Huawei, and Xiaomi. No-
tably, Zigbee protocol was even utilized in NASA’s Mars mission for communication
between the flying drone and Perseverance rover [6]. According to a recent report
by the Zigbee Alliance, it is estimated that approximately four billion Zigbee devices
will be sold globally by 2023 [7]. The Zigbee protocol transmits data through radio
channels rather than the internet, making it closely tied to the hardware configuration
of embedded devices.

While IoT applications and protocol vendors have implemented security mea-
sures based on specification requirements, several research studies [8,9,10,11] have
uncovered security vulnerabilities in the Zigbee protocol. Exploiting these vulner-

abilities could lead to distributed denial-of-service (DDoS) attacks or remote code

execution on Zighee-based systems such as the Philips lighting system. Despite ef-
forts to address previous security flaws in the latest Zighee protocol version, it still
remains relatively understudied in the research community. Consequently, the de-
tection of security vulnerabilities in Zigbee protocol implementations is crucial and
holds significant practical implications.

Fuzz testing [12], also known as fuzzing, is a widely used and effective tech-
nique for detecting security vulnerabilities. It involves running the target program
with random inputs to identify potential weaknesses. Conventional protocol fuzzing
approaches, such as Spike [13], Boofuzz [14], and Peach [15], rely on constructing pro-
tocol messages according to the protocol specifications and then randomly mutating
them to explore the program’s input space. While these approaches generate test
inputs that conform to the format requirements of the program, they often struggle
to trigger vulnerabilities that lie deep within the program. This limitation arises
from a lack of consideration for execution feedback and program structure. In other
words, these conventional approaches overlook the valuable information obtained dur-
ing program execution and fail to leverage the underlying structure of the program.
As a result, they may miss certain vulnerabilities that require specific combinations
of inputs to manifest.

Coverage-guided grey-box fuzzing (CGF) has demonstrated promising results
in bug discovery [16,17,18,19]. AFL [16], a widely used grey-box fuzzing platform,
utilizes code-coverage heuristics to guide the generation of test inputs. It achieves
this by instrumenting the source code of the software under test, if available, or
by executing a closed-source binary file on the QEMU [20] emulation platform to
obtain dynamic instrumentation output. Many advanced coverage-guided fuzzing
approaches have built upon AFL’s solution [21,22,23]. Furthermore, in scenarios

where the source code of the software under test is unavailable, certain existing fuzzing

2

tools [17,18,19,24,25,26] are capable of fuzzing the binary file of the software within
a simulation environment.

However, the efficiency of CGF solutions is often hindered by the large search
space of inputs. To address this challenge, numerous approaches have been proposed
to enhance the efficiency of CGF, with one prominent optimization method being
the inference of the relationship between input bytes and path constraints. Existing
solutions have found data flow analysis, such as dynamic taint analysis, to be bene-
ficial for such optimizations. VUzzer [27] and GREYONE [28] utilize dynamic taint
analysis to determine where and how to mutate inputs. REDQUEEN [29] focuses on
solving magic values and checksums in fuzzing by ”coloring” an input seed, replacing
each input byte with the maximum number of random bytes possible. Angora [23]
employs dynamic taint analysis to depict the pattern of input bytes relevant to path
constraints. PATA [30] proposes a path-aware taint analysis to identify and mutate
critical bytes, thereby addressing path constraints. These approaches leverage data
flow analysis, particularly dynamic taint analysis, to gain insights into the relationship
between input bytes and path constraints. By doing so, they enhance the effectiveness
and efficiency of CGF by enabling targeted and informed mutations of inputs.

Despite the impressive performance exhibited by state-of-the-art fuzzers in var-
ious applications, applying them to Zigbee protocol implementations presents unique
challenges. Firstly, these fuzzers encounter restrictions when attempting to compile
the source code of Zighee protocols for injecting instrumentation to collect code cov-
erage data. Zigbee protocol vendors typically develop the protocol specifically for
embedded devices using particular development toolchains [31]. These vendors incor-
porate compiler validation into their implementations to restrict the use of compilers
that are not on the supported list, especially general-purpose compilers like GCC,

LLVM, and Clang that are commonly used by existing fuzzing tools.
3

/*

* Check that the correct C compiler is used.

*/
#ifndef __ ICCARM__

#error "File intrinsics.h can only be used together with iccarm."
#endif

#ifndef _ ICCARM_INTRINSICS_VERSION__
#error "Unknown compiler intrinsics version”

#elif _ ICCARM_INTRINSICS_VERSION__ != 2
#error "Compiler intrinsics version does not match this file"
#endif

Figure 1.1: Compiler Validation Example in A Popular Zigbee Protocol Stack.

Though these state-of-the-art fuzzers have shown good performance in general
applications, it is not a trivial task to apply them to Zigbee protocol implementa-
tions. Firstly, these fuzzers are not allowed to compile Zighee protocol’s source code
when injecting instrumentation for code coverage collection. Zigbee protocol vendors
generally develop the protocol for specific embedded devices using a particular de-
velopment toolchain [31]. In terms of protocol availability, vendors deploy compiler
validation in their implementations to prevent compilers that are not in the supported
list, especially the general compilers (e.g., GCC, LLVM, and Clang) used by many
existing fuzzing tools. For example, Figure 1.1 illustrates how Texas Instruments (TT)
has implemented specific compiler validation in their Zigbee protocol stack, Z-Stack.
This prevents the usage of general open-source compilers such as GCC, Clang, and
LLVM for compiling the protocol stack. Therefore, fuzzing tools that rely on these
general-purpose compilers face limitations when it comes to fuzzing Zighee protocol
implementations due to the compiler restrictions imposed by the protocol vendors.

Another challenge in applying existing fuzzing approaches to Zigbee protocol
implementations lies in the lack of a suitable simulation environment that can ac-
commodate the specific hardware configuration required by Zighee protocol vendors.
The execution of the Zigbee protocol typically occurs on embedded devices, which are

system-on-chip (SoC) devices running bare-metal programs that consist of a single

4

control loop for task scheduling and event handling [31]. Consequently, fuzzing the
Zigbee protocol on simulation platforms [17,18,19,25,26] that rely on the presence of
a Linux kernel or an abstraction layer becomes infeasible. While some QEMU-based
embedded fuzzers, like P2IM [24], do support bare-metal programs and various em-
bedded CPU types, they currently lack support for devices capable of executing the
different Zigbee protocol implementations required by protocol vendors [32]. Since
the Zigbee protocol is developed for specific devices by different vendors, the protocol
binary file cannot even boot on QEMU if the required devices are not supported.

Furthermore, the Zighee protocol stack interacts with events triggered by spe-
cific peripheral interrupts, which are not accounted for in existing solutions [33].
Moreover, the same peripheral may be configured differently on various devices with
different interrupts [24]. Incorporating support for all device-specific peripherals and
new embedded chips into existing simulation platforms would require significant en-
gineering efforts, and in some cases, it may not be feasible. Consequently, these
limitations hinder the direct deployment of state-of-the-art fuzzing methods on Zig-
bee protocol implementations, as they are unable to provide a proper simulation
environment that aligns with the particular hardware configuration and peripheral
interactions of the Zighee protocol.

Furthermore, existing protocol fuzzing solutions have limitations when it comes
to efficiently mutating test cases to generate new ones. Conventional protocol fuzzers
typically generate test cases from scratch based on the protocol specification. They
either sequentially mutate message fields (e.g., Boofuzz [14]) or randomly mutate a
single message field (e.g., Peach [15]). However, these approaches often overlook the
constraints between multiple message fields. In our observations, we have noticed that
most vulnerabilities in communication protocols are triggered by specific messages

that satisfy branch conditions, leading to the execution of vulnerable code paths.
5

These path constraints often require specific combinations of values across multiple
message fields. Therefore, protocol fuzzers that only mutate a single message field at
a time are likely to generate test cases that fail to satisfy these conditions effectively.
As a result, a significant amount of computing power is wasted on exploring the vast
test input space, yielding suboptimal results. Hence, there is a need for improved
protocol fuzzers that take into account the inter-field dependencies and can efficiently
generate test cases that satisfy the required path constraints, thereby optimizing the
fuzzing process.

To address the aforementioned gaps, this dissertation proposes several com-
prehensive fuzzing solutions specifically designed to detect security vulnerabilities in
Zigbee protocol implementations. The primary objective of these solutions is to aid
[oT application developers in assessing the security risks associated with the Zigbee
protocol during the development of their applications. By applying these solutions,
developers will be able to identify potential security threats and weaknesses within
their Zigbee-based systems. First, Chapter 2 will introduce the basic background
knowledge of the Zighee protocol and state-of-the-art approaches of Zigbee security
analysis, fuzz testing can combinatorial testing. In Chapter 3, I will present a pro-
totype of a device-agnostic fuzzing platform that makes fuzzing applicable to
Zighee protocol implementation. It leverages grammar-based fuzzing with code cov-
erage heuristics to generate high-quality test cases for detecting security issues in
the Zighee protocol implementations. In Chapter 4, I will propose an intelligent
fuzzing solution to improve Zigbee protocol fuzzing performance by utilizing static
taint analysis to infer the relationship between message field and path constraints.
The inference result then guides the mutation process during fuzzing to generate
more diversified test cases efficiently. In Chapter 5, I will report an optimized test

generation method for Zigbee protocol fuzzing to reduce test input space and re-

6

dundant test cases generation with combinatorial test generation. CT-BFuzz utilizes
static taint analysis and fuzzing to identify the important message fields and their
representative values for dynamically generating CT test models, while the CT test
set helps fuzzing generate more diversified test cases to cover important combination
values of message fields that may explore uncovered program branches. Finally, I will
summarize this dissertation in Chapter 6.

In addition to their practical impact, the proposed research solutions are ex-
pected to yield several academic publications that will be shared with the research
community through academic channels. These publications will document the method-
ologies, findings, and contributions of the research, allowing other researchers to build
upon and further advance the field of security analysis in Zigbee protocol implementa-
tions. The dissemination of these research publications will contribute to the collective
knowledge and understanding of security issues in Zighee-based systems. By sharing
the proposed solutions and their outcomes, protocol vendors and IoT application de-
velopers will have access to valuable insights that can help them proactively address
and mitigate potential security risks during the development phase. And I believe
these publications will foster collaboration and engagement within the research com-
munity, enabling researchers from different backgrounds to exchange ideas, provide
feedback, and collectively work towards enhancing the security of Zigbee protocol

implementations.

Chapter 2
Related Work

This chapter will provide a comprehensive overview of the background, current
research, and methodologies relevant to the security analysis of the Zighee protocol. I
first introduce background knowledge of the Zigbee protocol. Then I will summarize
the current security analysis work on Zigbee protocol. I will also discuss related
work of fuzz testing, including conventional protocol fuzzing, coverage-guided fuzzing,
and taint inference based fuzzing. Finally, I will discuss related work of utilizing

combinatorial testing to detect security problems.

2.1 Zigbee Protocol

The Zighee protocol is a low-cost, low-power-consumption, two-way wireless
communication protocol [34]. The Connectivity Standards Alliance (previously called
Zigbee Alliance) defines the operation of a Zigbee network and the protocol specifi-
cation.

The Zigbee protocol stack, as shown in Figure 2.1a, is designed as a four-layer
stack on top of the IEEE 802.15.4 standard. The Connectivity Standards Alliance de-
fines the upper two layers, i.e., Application Layer (APL) and Network Layer (NWK).
The IEEE 802.15.4 standard defines the Medium Access Control Layer (MAC) and
Physical Layer (PHY). The MAC and PHY aim to support packet transmission via the
radio channel in a Zigbee network. The APL is responsible for the application-level
functionalities, whereas the NWK layer manages the Zigbee network and forwards

packets. The Zigbee protocol also provides security services on its NWK and APS

Application Layer (APL) Controller End Device
Zigbee Cluster Zigbee Device
Library (ZCL) Object (ZDO) User-Level Application User-Level Application
v 4 v 4
’ Application Support Sublayer (APS) l Zigbee Cluster Library Zigbee Cluster Library
v t ¥ 4
Network Layer (NWK) WIS s NWK layer
\ t ¥ 4
MAC | MAC |
Medium Access Control Layer (MAC) el ayer
+ * Message + ?
A 2
X PHY layer PHY layer
Physical Layer (PHY) Overthe-Air

Connectivity Standards Alliance Connectivity Standards Alliance

|EEE 802.15.4 IEEE 802.15.4

(a) Overview of Zigbee Protocol (b) Zigbee Protocol Message Exchange [35].
Stack [34].

Figure 2.1: Zigbee Protocol Communication.

layers by using AES-128 algorithms for the packet traffic encryption. In a Zigbee
network, there are two types of encryption keys. One is shared across all devices,
which is referred as the network key. Another one shared only between two paired
devices is referred to as link keys.

Figure 2.1b shows a prototype of a message exchange between two Zigbee de-
vices. The manufacturer’s application in the controller can initiate a service request
with commands in the Zigbee Cluster Library (ZCL), which are defined to perform
device functionalities. The ZCL then sends the request to the lower layers. The
message is transmitted over the air. After receiving the message, the ZCL in the end
device processes the message and passes the request to the upper application to make
a response. From the user’s perspective, the ZCL is an application layer protocol and
the Zighee protocol stack’s main library to perform all of the device’s functionalities.
Therefore, I use ZCL as a case study for fuzzing the Zigbee protocol implementation

in this dissertation.

2.2 Security Analysis on Zighee Protocol

Since the standardization of the Zigbee protocol in 2003, numerous research
works have been published to analyze the security risks associated with the protocol.
Previous studies have primarily focused on the security of Zigbee network transmis-
sion.

Z3Sec [9], and Snout [36] mploy penetration testing techniques to assess vulner-
abilities in Zigbee networks. IoTcube [37] and beSTORM [38] have been developed to
analyze the security of the Zigbee protocol on specific embedded devices. Akestoridis
et al. [39] propose Zigator, a tool that analyzes encrypted Zigbee packets to detect
selective jamming and spoofing attacks. Wang et al. [10] introduce VEREJOIN, an
automated verification tool based on model checking, to evaluate the Zighee network
rejoin procedure. Ronen et al. [8] demonstrate the potential damage caused by a
worm that targets all Zigbee-enabled lamps, affecting smart lighting in an entire city.
Recently, Ma et al. [40] also proposed a hub-based fuzzing solution for IoT devices,
enabling the discovery of vulnerabilities without relying on companion apps. They
capture the setting-up message sequences between an [oT device and a hub (e.g., a
gateway device to manage all other IoT devices and connect them to the Internet)
and identify the supported functions for fuzzing.

Most of these solutions are considered black-box approaches as they monitor
and manipulate Zigbee network traffic to identify security issues. Additionally, Cui et
al. proposed two fuzzing approaches, namely FSM-Fuzzing [41] and CG-Fuzzing [42],
to detect security risks in Zigbee. FSM-Fuzzing is based on a finite state machine,
while CG-Fuzzing relies on a genetic algorithm. However, both of these approaches
are closed-source and thus cannot be directly compared with the proposed fuzzing
solution presented in this dissertation. Recently, Wang et al. [43] also evaluated new

threat models of Zigbee network with real IoT devices, in which the adversaries are
10

outside the network. They also utilize semantic fuzzing to generate test packets that
have higher chance to produce meaningful results.

Unlike the aforementioned vulnerability exploitation works that focus on ana-
lyzing network traffic or targeting real IoT devices, the approaches proposed in this
dissertation aim to identify unknown vulnerabilities in Zighee protocol implementa-
tions themselves, rather than in real-time Zigbee networks. These fuzzing platforms
do not rely on physical devices or specific knowledge of the underlying hardware de-
sign. By leveraging fuzzing techniques, my proposed approaches generate and mutate
test cases for the Zighee protocol, aiming to trigger potential security vulnerabilities
within the protocol implementation. This allows for a systematic exploration of the
protocol’s code paths and the identification of security issues that may have been
overlooked during the development phase. The fuzzing platforms developed in this
research can be applied independently of real devices, providing a cost-effective and

efficient means of detecting vulnerabilities in Zigbee protocol implementations.

2.3 Fuzz Testing

Fuzz testing is a widely used technique to detect vulnerabilities. The basic
idea is to execute a program under test with random inputs and monitor execution
failures that can be used for further analysis. Many techniques have been proposed

to improve the fuzzing performance.

2.3.1 Conventional Protocol Fuzzing

Many black-box protocol fuzzing approaches are proposed and developed to gen-
erate high-structured packets that conform to network protocol format requirements.
These fuzzing approaches (e.g., SPIKE [13], Sulley [44], Boofuzz [14], AutoFuzz [45],

and SNOOZE [46]) employ grammar-based fuzzing [47] to generate well-structured
11

ZCL Header ZCL Payload (Write Attribute Cmd)

1 Format
Def-i'niti::;ma Frame Manufacturer | Transaction Sequence Attribute Attribute Data | Attribute
Control Code Number Identifer Type Data
A Real ZCL Message 01 00 01 01 02 0003 42 7zcltest |

(a) ZCL Frame Format Definition [48].

1 5 initialize("ZCLMessage")

2 s_group(“frame_control", values=<USER_GIVEN_VALUES>)

3 with s_block("manuCode", dep="frame_control", dep_values =
<USER_GIVEN_VALUES>):

4 s_word(0, endian='<', name="manu")

5 s_byte(1, name="tranSeq")

6 s _group("commandld", values=<USER_GIVEN_VALUES>)

7 with s_block("payload”, dep="commandId", values =
<USER_GIVEN_VALUES>):

8 ...

(b) Example of Message Format Script.

Figure 2.2: Example of ZCL Message Construction with Block-based Representation.

packets that adhere to network protocol format requirements. These approaches con-
struct test inputs based on input specifications, which define the data format and
integrity constraints, enabling effective fuzzing of network protocols.

Block-based protocol representation, also known as abstract representation blocks,
is utilized by protocol fuzzers [49]. In this representation, a block represents a set of
abstracted data or nested blocks that conform to the protocol format. By organizing
the protocol frames into blocks, the fuzzers can generate test inputs that conform to
the format definition, allowing for format validation without early rejection during
runtime. An example of generating a ZCL message using the block-based represen-
tation is illustrated in Figure 2.2b, where the format definition script specifies the
placement of primitive data within the ZCL message. A ZCL message is initialized as
a block with the name ZCLMessage (line 1 in Figure 2.2b). With the format definition
script, the protocol fuzzers represent the protocol message with primitive data follow-
ing their placements. The generated test inputs could satisfy the format validation

without early rejection during the execution time.
12

Although these protocol fuzzers with block-based representation define and gen-
erate highly structured input formats, they have a disadvantage of the quality of test
inputs generation. For example, as shown in Figure 2.2a, the fuzzer first mutates the
field Frame Control. Once the mutation on this field finishes, the fuzzer resets the
field to its initial value. The fuzzer mutates a single field at a time. Then the fuzzer
moves to the following field Manufacturer Code for mutation. The field Attribute
Data would be the last for mutation. Thus, if a message consists of M fields and
each field has N possible values, the fuzzer can generate (M % N) new test cases in
total. Without considering execution feedback and program structure, those protocol
fuzzers suffer from large input space and fail to explore deeper code of the target
program.

Unlike the mentioned protocol fuzzers, our proposed fuzzing solution, Z-Fuzzer
integrates grammar-based fuzzing with code coverage heuristics for testing Zigbee
protocol implementations.Z-Fuzzer starts by generating an initial test corpus using a
provided Zigbee message format script, ensuring that the test cases pass the pre-check
of the target program. It then prioritizes test cases that explore new execution paths,

allowing for further mutation.

2.3.2 Coverage-guided Fuzzing

Some researchers have recognized the importance of code coverage in guid-
ing protocol fuzzing to improve performance. AFL [16] and its derivatives, such as
AFL++ [21], have gained popularity in automated security analysis. However, they
face limitations when it comes to compiling the source code of the Zighee protocol.
Zigbee protocol vendors typically use specific development toolchains for their proto-
col stack, which restricts the use of general compilers like GCC and LLVM, commonly

used in AFL and its derivatives, for building the protocol stack.
13

Fuzzing on IoT embedded devices poses additional challenges due to the reliance
on specific hardware configurations. Several existing research works [17,18,19,24,26]
address this challenge by integrating emulators into their fuzzing tools. A notable
emulator is QEMU [20] which provides user-mode emulation and full emulation for a
variety of embedded devices. However, using QEMU in user-mode typically requires
a Linux kernel or a hardware abstraction layer (HAL) to execute the target pro-
gram. AFL QEMU mode [50], Frankenstein [18] and BaseSAFE [19] utilize QEMU
in user-mode, which require presence of Linux kernel or an abstract layer. Some
researches [17,24,26] propose hybrid solutions that combine user-mode and full em-
ulation together.

However, the execution environment required by Zigbhee protocol implementa-
tions, particularly on specific chipsets and embedded devices, poses a challenge for
existing simulation platforms like QEMU. The Zighee protocol is typically executed
on system-on-chip (SoC) devices and bare-metal systems, which may not be compati-
ble with the Linux kernel or hardware abstraction layers used in simulation platforms.
Additionally, vendor-specific embedded devices often have unique hardware and pe-
ripheral interrupt configurations that are not supported by existing simulators. For
example, the Zigbee protocol stack Z-Stack from Texas Instruments can only be exe-
cuted in three embedded devices, which instead are not supported by current simula-
tors. This lack of support for the specific configurations required by Zigbee protocol
vendors makes it difficult, or even impossible, for existing simulation platforms to

provide an appropriate execution environment for Zighee protocol stacks.

2.3.3 Taint Inference Based Fuzzing
Indeed, symbolic execution-based approaches, like Driller [51] and QSYM [52],

have been proposed to address the challenge of generating test inputs that satisfy

14

complex path constraints. These techniques use symbolic execution to explore dif-
ferent program paths and generate inputs that satisfy specific conditions. However,
symbolic execution can suffer from scalability issues and slow execution speed, espe-
cially when dealing with large and complex applications. The path explosion problem,
where the number of possible execution paths grows exponentially, further limits the
scalability of symbolic execution-based approaches. As a result, while these tech-
niques can be effective in certain scenarios, they may not be suitable for fuzzing
large-scale applications due to their limitations in scalability and execution speed.
In order to efficiently resolve path constraints, several lightweight solutions
have been proposed to efficiently resolve path constraints in fuzzing by inferring the
relationship between input bytes and constraints. These approaches aim to guide seed
mutation to generate test cases that satisfy specific path constraints. VUzzer [27]
focuses on passing magic value validations by using taint analysis to identify critical
bytes that need to be mutated to satisfy path constraints. Angora [23] locates input
bytes that flow into path constraints using byte-level taint tracking and mutates
them with a gradient descent algorithm to satisfy the constraints. REDQUEEN [29]
aims to solve magic values and checksums by coloring an input seed, replacing every
input byte with as many random bytes as possible while preserving the execution
path. Matryoshka [53] explores nested branches for fuzzing based on both control flow
and taint flow, allowing for deeper exploration of program paths. GREYONE [28§]
utilizes taint analysis to locate critical input bytes and determines how to mutate
them effectively during the fuzzing process. PATA [30] proposes a path-awareness
taint analysis for fuzzing, inferring taints based on control flow and value changes
to guide mutation. TRUZZ [54] infers the relationship between input bytes and
validation checks, preventing those bytes from being mutated during fuzzing to avoid

violating constraints.

15

Though these fuzzers have shown good performance on general applications,
they are hard to directly deploy on the Zigbee protocol implementation due to
the vendor-specific requirements of compiler and underlying hardware configuration.
Most of these fuzzers develop their approaches with general compilers such as LLVM
or Clang for dynamic taint analysis, which are prevented by many Zigbee protocol
vendors in their protocol stacks. Compared to these fuzzers, our proposed solution
TaintBFuzz utilizes vendor-specific compiler to pre-process the protocol source code
for static taint analysis. It also customizes static analysis application to parse vendor-

specific syntaxes that are not intially supported.

2.4 Combinatorial Testing

Combinatorial Testing (CT), which is also referred to as t-way testing, is a pop-
ular testing method for examining interaction between input parameters that affect
software execution [55,56]. The key insight of this approach is that most execution
failures are triggered by a single input parameter or combinations of several relative
parameter values. Assume that a program under test P has n input parameters,
P = {p1,p2,...,pn}, and each parameter can take values from a finite set V;, for
1 < i < n. Then a CT test model is consists of parameters P and value domains
V = {W,Va,...,V,}, depicting the test input space of the target program. CT can
efficiently generate a covering array for any t (out of n) parameters, in which every
t-way combination is covered at least once. It aims to achieve a good balance between
test input space and the efficiency of failure discovery.

Combinatorial testing has been widely applied in various domains to detect
security issues and improve test generation. Wang et al. [57] introduced Tance, a
specification-based testing approach that leverages combinatorial testing to efficiently

generate test inputs for external parameters, aiming to detect buffer overflow vulner-

16

abilities. Chandrasekaran et al. [58] applied combinatorial testing to Deep Neural
Network-based autonomous driving systems, effectively detecting safety-critical bugs
before deployment. To efficiently test RESTful APIs, RESTCT [59] was developed
as a systematic approach for testing RESTful APIs, using combinatorial testing to
generate operation sequences and test different combinations of operations. Feng et
al. [60] proposed MagicMirror, which integrates combinatorial testing with fuzzing to
test smart contracts, effectively exploring function parameter interactions and crit-
ical values. These studies demonstrate the effectiveness of combinatorial testing in
different contexts for security analysis and improving test generation.

Compared to these solutions, our proposed approach CT-BFuzz, makes fuzzing
and combinatorial testing interact to improve test case generation for testing Zigbee
protocol implementation. It utilizes static taint analysis and fuzzing to identify the
important message fields and their representative values for dynamically generating
CT test models. At the same time, the CT test set helps the fuzzing process generate
more diversified test case, particularly the combination values of critical fields that

have higher probability to explore uncovered execution paths.

17

Chapter 3
Device-Agnostic Fuzzing of Zigbee Protocol Implementation

The content of this chapter is based on a paper published in the 14" ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec), in
June 2021! and an article published in ACM journal Digital Threats: Research and
Practice (DTRAP), in March 20232

3.1 Overview

In this chapter, we present the first device-agnostic fuzzing framework of Zighee
Protocol Implementation Z-Fuzzer. The goal of Z-Fuzzer is to detect vulnerabilities in
the Zigbee protocol implementations without the real embedded devices; that is, sim-
ulating the execution of the Zigbee protocol in a proper software environment. Most
existing IoT firmware simulation applications encounter obstacles to execute the Zig-
bee protocol due to the diverse underlying hardware and system configurations. The
Zigbee protocol interacts with the events triggered by peripheral interrupts varying
in different embedded devices. Unfortunately, existing embedded simulators have in-
sufficient knowledge to simulate all of the peripheral interrupts. Besides, the Zigbee

protocol is usually executed in a baremetal embedded device. The system can be

LCopyright (© 2021 Association for Computing Machinery. Reprinted, with permission, from
Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. Z-Fuzzer: Device-agnostic
Fuzzing of Zigbee Protocol Implementation. In Proceedings of the 14*" ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec ’21). Association for Computing Machinery,
New York, NY, USA, 347-358. https://doi.org/10.1145/3448300.3468296

2Copyright (© 2023 Association for Computing Machinery. Repritned, with permission from
Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. 2023. Security Analysis of
Zigbee Protocol Implementation via Device-agnostic Fuzzing. Digit. Threat.: Res. Pract. 4, 1,
Article 9 (March 2023), 24 pages. https://doi.org/10.1145/3551894

18

https://doi.org/10.1145/3448300.3468296
https://doi.org/10.1145/3551894

customized based on particular embedded devices required by manufacturers that
are not supported by most existing simulators. Therefore, we need to develop a
proper software execution environment to simulate the peripheral interrupts without
considering the underlying hardware of specific embedded devices.

Moreover, we design our framework based on grammar-based fuzzing with
block-based representation that has been widely used in existing protocol fuzzing
frameworks [13,44,45,46]. This approach aims to construct test messages, which
satisfy the protocol frame format requirements. However, it has a limitation on the
quality of test inputs. It does not prioritize test cases with execution feedback for
further fuzzing, which could cover the target program’s more execution paths. To
effectively detect vulnerabilities in the protocol implementations, we need to consider
such feedback from the protocol execution and generate more valuable test inputs.

To tackle these challenges, we design Z-Fuzzer with two main components: a test
harness and a mutation engine. The test harness consists of an execution engine to run
the Zigbee protocol stack with the generated test cases in a simulator and a coverage
report parser to calculate cumulative coverage information. We leverage the coverage
feedback to retain the interesting test cases for further fuzzing. Additionally, we
develop a proxy server in the execution engine to bridge the communication between
the simulator and the mutation engine without forming an entire Zighee network.

We have implemented Z-Fuzzer and evaluated its effectiveness in detecting se-
curity vulnerabilities. In terms of fuzzing strategy, we select two state-of-art protocol
fuzzing platforms, BooFuzz [14] and Peach [15], as our comparative tools. BooFuzz
is the successor of industry-standard protocol fuzzer Sulley [44], and Peach [15] is a
commercial protocol fuzzer that has been widely used. We run BooFuzz and Peach
on top of our Zigbee protocol simulation platform and compare them with Z-Fuzzer

by fuzzing Z-Stack [61], a mainstream Zigbee protocol implementation developed by

19

Texas Instruments (TT), for which the source code is available. The results indicate
that Z-Fuzzer effectively increases code coverage and detects security vulnerabilities.
Z-Fuzzer has identified six unique previously unknown vulnerabilities in Z-Stack im-
plementation with fewer test cases than BooFuzz and Peach. We have reported all of
the new vulnerabilities to TI. Three of these vulnerabilities have been assigned CVE
IDs with high CVSS scores (7.5~8.2) at the time of writing, while others are still
under review. Our work sheds light on detecting the Zighee protocol vulnerabilities

in a software simulation environment without accessing a physical device.

3.2 Protocol Fuzzing Algorithm

The fuzzing engine of Z-Fuzzer adopts the grammar-based fuzzing using the
block-based protocol representation. The overall fuzzing process is displayed in Al-
gorithm 1.

With a message format script, Z-Fuzzer constructs a list of Blocks containing
all message fields’ representations with their constraints (line 2). Initially, the fields
are selected from this list to generate a test case (line 13). We now use an additional
list of top_rated to record favored test cases that increase code coverage in previous
executions. If a favored test case is waiting to be mutated, we prioritize the favored
test case for the following mutations (line 7). The selected favored test case is the
one that has covered the most number of edges in the previous executions.

The message fields that are selected to generate a test case are mutated accord-
ing to their selection sequence. When a favored test case is selected, the interesting
values in this test case that result in coverage increment are retained. Z-Fuzzer then
mutates other field values in the test case in sequential order of their placements
during the initialization phase. If a message field is defined with user-specific val-

ues, Z-Fuzzer sequentially selects these values for mutation. Otherwise, the fuzzer
20

Algorithm 1: Z-Fuzzer Protocol Fuzzing Algorithm
Input : Input format script S, Program under test P

Output: Seeds that crash the program crash,

the current cumulative code coverage current_coverage

1 crash < ()
2 blocks « Initialize(S)
3 top_rated < ()

4 current_coverage <— 0

5 repeat

6 if top_rated is not () then

7 favored <— Select(top_rated)

8 seed < Mutate(favored)

9 if favored.was_fuzzed then

10 top_rated < top_rated - favored
11 else

12 tescase <— Choose(blocks)

13 seed < Mutate(testcase)

14 end

15 coverage, result <— RunTarget(P, seed)

16 if isInteresting(coverage, result) then

17 top_rated <— top_rated U seed

18 current_coverage <— CalculateCoverage(coverage)
19 crash < crash U result

20 end

21 until top_rated is O and all fields in blocks are fuzzed

22 return crash, current_coverage

mutates it with the pre-defined fuzzing dictionary. If all of the message fields of a fa-
vored test case are completely mutated, we label the favored test case as was_fuzzed

and remove it from top_rated list (lines 9 - 10). Z-Fuzzer completes the entire fuzzing

21

Input Z-Fuzzer St e Output

Offline Parser D *j Simulator
— e ey
CFG Constructor e Stack Protocol

CFG C Driver Stack

Source File ;\é?)fge fh Crash

Code ‘ Report

| Proxy Server
N e Calculate
Coverage Report QxExecute
Parser

Format Coverage Mutated Input [[[|
Script 6 Feedback

QI Mutate

e

o e s | .

CT—T—1 Mutaf‘/on
— Select Engine

e e s s e e e

Corpus

Generate

Test Case
Generator

Figure 3.1: The workflow of Z-Fuzzer framework.

process when no favored test cases are pending in top_rated, and all of the message
fields in Blocks have been fuzzed.

A test case is evaluated based on code coverage, including line coverage and
control-flow edge coverage. If the test case leads to the code coverage improvement,
we save it in the top_rated list with the associated interesting values that increase
coverage for future mutations (line 18). Otherwise, the test case is ignored. Z-
Fuzzer also monitors the execution results and records the test cases that result in an

execution error.

3.3 Implementation Details
Figure 3.1 presents the workflow of Z-Fuzzer framework®. It consists of five
components: an offline parser, a test case generator, a mutation engine, an execution

engine, and a coverage report parser.

3The source code of Z-Fuzzer is avaliable at https://github.com/zigbeeprotocol/Z-Fuzzer.

22

https://github.com/zigbeeprotocol/Z-Fuzzer.

3.3.1 Test Case Generation and Mutation

We use Zigbee Cluster Library (ZCL) as a case study to demonstrate our frame-
work. The format script represents ZCL message format defined in the Zigbee protocol
specification, as displayed in Figure 2.2a.

All of the message fields of a ZCL frame are represented as primitive data,
e.g., bit, byte, integer, string, or random data, in the format script. Some message
fields are defined without user-specific types and values. We represent such fields as
string primitive data, e.g., a variant attribute data field in the ZCL payload. For
other message fields, we represent them based on their defined length and values,
such as bit, byte, and word. All of the representations are saved in a list of primitive
data. The test case generator then constructs a test case by selecting corresponding
primitive data from the list based on the format definition and the constraints (@ in
Figure 3.1).

If favored test cases are pending for mutation, Z-Fuzzer selects one for the
following fuzzing; otherwise, it selects a test case that is generated with the primitive
data list (@ in Figure 3.1). The selected favored test case has covered the most
number of edges in a previous execution and has not been fully mutated. Here an
edge is a connection between two basic blocks in a control flow graph (CFG) of the
target program. We add a flag skip_mutation to the primitive data in the favored
test case in which the interesting value increases the code coverage. With this flag,
the primitive data will be retained during the following mutation process.

All of the message fields selected to generate a test case are mutated accord-
ing to their selection sequence (@ in Figure 3.1). When a favored test case is se-
lected, the mutation engine will skip the mutation of the interesting values if the flag
skip_mutation is present. Moreover, other primitive data representing the following

fields are mutated in sequential order. Z-Fuzzer fuzzes primitive data assembling a

23

FC Manu TranSeq CmdID Payload Manu TranSeq CmdID Payload Manu TranSeq CmdID Payload

- 00 01 - 01 01 00 00 ‘::>- 02 01 00

Favored test case 1 _ Testcase 1_1 Test case 1_2
_/ -
‘/
FC Manu TranSeq CmdID Payload FC Manu TranSeq CmdID Payload FC Manu TranSeq CmdID Payload
-01 01 | 00 | 00 | "t -01 N | 00 | 00 |- -01 01 | 00 | M
Favored tets case 2 Test case 2_N Testcase 2 N_O_M

Figure 3.2: Example of mutation on a favored test case

typical test case based on the primitive data’s selection order. If a user defines a mes-
sage field with a list of possible values in the format script, Z-Fuzzer will sequentially
select these values for mutation. Otherwise, the mutation engine mutates it with the
pre-defined fuzzing library. The favored test case is removed from the corpus when all
its message fields are entirely mutated. Z-Fuzzer completes the entire fuzzing process
when no favored test cases are pending, and all of the test cases in the corpus have
been fuzzed. The mutated input is then sent to the execution engine for testing at
runtime (@ in Figure 3.1).

Example. Figure 3.2 shows an example to explain the mutation of the favored
test cases. Suppose the favored test case 1 is generated when we fuzz the field FC
to the value 04. The test case 1_1 is then generated based on this favored test case,
which results in new code coverage. It also exercises more edges than the favored test
case 1 and therefore becomes the new favored test case 2. Both interesting values
04 and 01 are recorded. We now fuzz the favored test case 2 on its following fields:
TransSeq, ComdID, and Payload. Assume TranSeq has N possible values, CmdID
has O values, and Payload has M values in their fuzzing libraries. We will generate
(N + O + M) new test cases in total because we mutate a single primitive data in
each fuzzing iteration. The mutation of favored test case 2 is regarded as completed

once all of those values have been rendered. If no more favored test cases are better

24

than the favored test case 1, we resume its previous mutation process to continue
generating test case 1_2 rather than starting from scratch. This process is repeated

until all of the message fields are fuzzed.

3.3.2 Execution Engine

The execution engine is responsible for executing the Zigbee protocol stack
with the test cases, consisting of a local proxy server and a simulator. The local
proxy server is used to bridge the communication between the mutation engine and
the simulator through a socket connection. It also saves the received message in a
file for later processing by the protocol stack. We also develop a stack driver to
initialize proper system configuration based on the source code of target protocol
implementation. We compile the driver with the protocol stack as a single binary file
and execute it in the simulator.

Embedded Device Simulator. We utilize the simulator from TAR Embed-
ded Workbench [62] to fully simulate a physical embedded device, which supports
different microcontroller architectures. We choose the ARM version since most IoT
devices are built on this architecture. The IAR Workbench contains a development
toolchain, particularly for IoT devices, including a specific compiler, linker, debug-
ger, and simulator. Currently, the IAR Workbench for ARM architecture supports 50
different ARM CPUs and hundreds of devices from 42 [oT manufacturers [62], which
are not supported by a generic simulator such as QEMU. Most embedded devices re-
quired by different Zigbee protocol vendors for their implementations are supported
in the TAR device list. We also observe that AR provides diverse device-specific
description files, including memory layout, hardware, and peripheral interrupts. We
can simulate the embedded device to execute the Zigbee protocol with the pre-defined

device description files without considering the underlying hardware design.

25

Before executing the Zighee protocol stack, we first build the stack driver with
the protocol stack implementation as a single binary file using the AR compiler and
the linker. The IAR C-SPY Debugger communicates with the simulator through a
built-in simulator driver [63]. The IAR Workbench also defines various flash loader
configurations to download the executable file for all of the supported embedded
devices. According to the device description file and the flash loader configuration, the
simulator loads the binary file to the corresponding RAM location for execution. The
proxy server invokes the C-SPY debugger as a child process to run the Zigbee protocol
stack. Additionally, the C-SPY debugger also provides several plugin modules, such
as a coverage report and call stack, which we can leverage to guide our fuzzing process.

Stack Driver. The Zigbee protocol is usually executed in an environment that
handles events triggered by peripheral interrupts. Though the execution environment
can be customized by different protocol vendors, some system properties defined in the
protocol specification are mandatory for all implementations. We analyze the sample
project provided in the source code of the target protocol implementation. Then
we develop a stack driver to initialize the protocol stack system, including memory
initialization and basic functionalities of a simulated embedded device. The stack
driver then invokes the target protocol implementation with the received message for
execution.

In practice, the Zigbee protocol handles the system events when an on-chip
communication peripheral interrupt (e.g., UART) is triggered. Hence, we also develop
an interrupt handler in the stack driver to simulate the UART interrupt by reading
the incoming message from a file using the C-SPY Macro System in conjunction with
immediate breakpoints [63]. We set up a repeatable interrupt and an immediate read
breakpoint in the macro file according to the device description files. Whenever the

interrupt is triggered, the breakpoint temporarily suspends the execution and reads a

26

Listing 3.1: Example of interrupt setting in a macro file and an interrupt handler in
the stack driver.

1 /x Interrupt Settings in Macro Filex/

> execUserSetup ()

3 //Read the incoming message from the file

1 _fileHandle __openFile(” file\\location” ,”r”);

5 //Set up interrupt

6 _interruptID __orderInterrupt (?"UARTR.VECTOR”
,100000,60000,0,1,0,100) ;

7 //Set up the immediate breakpoint

8 _breakID __setSimBreak (?"SBUF” ;”R” ,” Access()”);
9 }

10

11 Access(){

12 _var _msg;

13 if (__readFile(_fileHandle ,& msg) = 0){

14 SBUF=_seedData ;

15 }

6}

15 //The interrupt handler in the stack driver.

1o #pragma vector = UARTR.VECTOR

_-interrupt __root void UartReceiveHandler (void){
uint32 data;
//Save the value from the serial data buffer

data = SBUF;

}

[V [V] [V] [V] [\V]
TS R

¥

r6

value from the file, storing an incoming message from the proxy server. The interrupt
will be disabled if no values are available in the file. Note that different devices may
configure a different register for the interrupt; Z-Fuzzer can set the correct register in
the handler based on the device description file.

We present an example of an interrupt setting in the macro file and the interrupt
handler in Listing 3.1. This example simulates the UART interrupt on an embedded
device, CC2538, a popular device for IoT application development. The function
execUserSetup() is a built-in function in the Macro System that is called when the
system starts up (line 2). Inside this function, we set a file handler to read the incom-

ing message (line 4), a UART interrupt with the function __orderInterrupt() (line 6),

27

and an immediate read breakpoint with the function __setSimBreak() (line 8). The
interrupt will be activated after 100000 system cycles and repeat every 60000 cycles.
When the interrupt is triggered, the immediate breakpoint is enabled on SBUF, which
is a data buffer to save the data received from UART. Rather than collecting data
from the actual peripheral device, we simulate the operation by reading the incoming
message from the saved file by the proxy server (line 11-16). Besides, we define the
interrupt handler in the stack driver with the keyword wvector=UARTR_VECTOR,
which is the same interrupt variable configured in the macro file (see lines 6 and 19).
The handler can directly access the UART’s data buffer (SBUF') to read the data
and save it to a variable for further use. In practice, the name UARTR_VECTOR of
the UART peripheral device and its data buffer SBUF will be configured differently

on various embedded devices.

3.3.3 Coverage Report Analysis

We evaluate test cases in terms of line coverage and edge coverage. A test case
is saved as a favored test case if it increases code coverage. The C-SPY debugger
can generate a coverage report for the current execution. Unfortunately, the coverage
report does not provide adequate information. Thus, we developed an offline parser
and a coverage report parser to calculate cumulative coverage results.

Offline Parser. The offline parser is a static code analysis tool to generate
a control flow graph (CFG) data from the protocol implementation’s source code.
It is used later by the coverage report parser. The offline parse only executes once
before the entire fuzzing iterations. The coverage report only records the uncovered
statements in functions in a single execution, which is insufficient for calculating cu-
mulative line coverage and edge coverage. Hence, we leverage the CFG information,

including statements, basic blocks, and branches of every function, to calculate cu-

28

mulative code coverage. We assign every basic block with a random number with
hashing to obtain edge coverage information when analyzing the CFG information.
The random number acts as the label of every basic block. These analysis results are
saved as formatted data in a file for the coverage report parser to compute detailed
line coverage and edge coverage.

Coverage Report Parser. The coverage report parser analyzes the coverage
report and the CFG file to calculate cumulative line coverage and edge coverage (@
in Fig 3.1). We use two lists, line_hits and edge_hits, to record lines of code and
edges that have been covered in the previous executions. The value of line_hits|i]
means the total executed times of the statement in line ¢. The value of edge_hits|i] is
the total accessed times of the ith edge. We utilize the coverage measurement used

in AFL* to calculate edge coverage. The calculation is shown below,

cur_location =< RANDOM _NUMBER >;

edge_hits|cur_location @ prev_location] + +;
prev_location = cur_location >> 1;

The cur_location value is generated randomly for each basic block when the offline
parser generates the CFG of source code. The result of XOR operation records a
hit for a particular edge tuple. Though there might be a risk of collision caused by
the XOR operation if the branch count becomes larger in complex programs [50],
we observed that it could not be an issue in our scenario because the branch size in

our target is relatively small. The shift operation is to update the previous location,

4More coverage measurement details have been explained in the AFL technical paper [50].

29

Part of CFG of zcl.c as shown in JSON
format

"name": "zclGetAttrDataLength”,
"total_blocks": 7

gl

{ "block_number": "2",
"location™; 24855,
"statements": [3247, 3249],
"succs": [3, 4]

Part of coverage report of Z-Stack in a single run of
execution

{ "block_number": "3",
"location™; 42705,
"statements": [3251],
"succs": [7]

Function "zclGetAttrDatal.ength" coverage: 42.86%
Steppoint(s) not covered:

File XXXX\Components\stack\zcl\zcl.c
{ "block_number": "4",
"location™: 59348,
"statements": [3253],

"succs": [5, 6]

Line 3251 : Col5-5
addr(0x002011F8-0x00201203)
Line 3255 : Col 5 - 25
addr(0x00201214-0x00201219)
{ "block_number": "7",
"location": 7187,
"statements": [3262],
"succs": [1]

Figure 3.3: Example of coverage report of Z-Stack execution.

which also preserves the directionality of tuples, e.g., (X >> 1) @ Y distinguishes
from (Y >> 1) @ X.

The parser firstly scans a coverage report to collect functions that have been
accessed in the last execution. The uncovered lines of code in the accessed function
are saved into a list. All the statements contained by a basic block are also extracted
from the CFG file to a list. Then we compare these two lists to check whether the
current basic block is covered in the last execution. If a basic block is accessed, we also
record the covered edge between the block and its source block to the list edge_hits.
After completing parsing the entire coverage report, we calculate the non-zero values
in the list line_hits and the list edge_hits to find out if any new lines and edges have
been added. If so, we consider the current test case as a favored one and put it in the

pending favored queue for a further mutation (@ in Figure 3.1).

30

Example [64]. Fig 3.3 displays an example of the coverage report of Z-
Stack in a single run of execution along with CFG information of file zcl.c. We
use these two files to calculate the code coverage of function zclGetAttrdataLength.
The function coverage is shown in the right side of Fig 3.3. When scanning this
function, we first extract the uncovered statements from the coverage report to a list
uncovered_stmt, which contains 3251 and 3255. Then we compare this list with the
variable statements of each basic block in the CFG file (see the left side of Fig 3.3). A
basic block is labeled as executed if all statements are not in the list uncovered_stmt.
Then we increase the value of statement_hitsi], where i is the line number of the
statement contained in the covered basic block. In this case, when the block 2 is
covered in the current execution, we increase the values of statement_hits[3247] and
statement_hits[3249] to record the executed statements. We then record the covered
edge that is a path from the source block to block 2. The label of block 2 is saved
as location variable in the CFG file. Assume the source block’s label is 0. We then
increase the value of edge_hits[24855 @ 0] to record the executed edge.

Now we continue checking statements in block 2’s successors: basic block 3
and basic block 4. Compare the statements of block 3 and block 4 with the list
uncovered_stmt, we can derive that block 4 is executed after block 2 in the cur-
rent execution since the statement 3251 of block 3 is in the list uncovered_stmdt.
The same process is repeated until the last block. The parsing process of function
zclGeAttrDataLength has completed when the basic block 1 is triggered, which in-
dicates the function has returned. Finally, all of the statements and edges that have

been executed are recorded.

31

3.4 Evaluation of Z-Fuzzer

In this section, we evaluate Z-Fuzzer through multiple experiments. The exper-
iments are designed to answer the following research questions:

e RQ1: Can Z-Fuzzer detect more vulnerabilities in comparison with the state-

of-the-art fuzzers? (Section 3.4.1)

e RQ2: Can Z-Fuzzer achieve higher coverage rate in comparison with the state-

of-the-art fuzzers? (Section 3.4.2)

The target of the protocol fuzzing approach is to generate more high-quality
test inputs that conform to the protocol frame format. Thus, we demonstrate the
novelty of Z-Fuzzer in comparison with two baseline protocol fuzzers, BooFuzz [14]
and Peach [15]. BooFuzz is the successor of industry-standard protocol fuzzer Sul-
ley [44], and Peach fuzzer is a model-based commercial fuzzer. Both of them have
been widely used in existing research papers [65,66]. BooFuzz and Peach initially
do not target IoT wireless protocols like the Zighee protocol. Thus, we incorporated
them into our simulation platform to communicate with the Zigbee protocol. We
specifically compared the number of vulnerabilities and code coverage exposed in 24-
hour fuzzing experiments. All of our experiments were performed on a machine with
8 cores (Intel® Core™ i7-6700 CPU @ 3.40GHz) and 32 GB memory running the
Windows 10 Pro operating system and IAR Embedded Workbench for ARM 8.3. We
tested a widespread Zigbee protocol implementation, Z-Stack [61], which is developed
by Texas Instruments with various sample project codebases and its source code is

available.

32

Table 3.1: Total number of crashes and unique vulnerabilities detected by BooFooz,
Peach and Z-Fuzzer.

Fuzzer Total # of Unique
Crashes (median) Vulnerabilities
BooFuzz 62 2
Peach 3 3
Z-Fuzzer 223 6

3.4.1 Vulnerability Detection Capability

To answer RQ1, we measure the number of detected crashes and the number
of unique vulnerabilities discovered by all fuzzers. We repeated experiments 10 times
on fuzzers and present the result in Table 3.1.

Unique Vulnerabilities. We leveraged information in call stack to de-duplicate
detected crashes. The simulator returns a call stack trace for a memory crash, which
contains the executed functions, the line number of particular statements in the func-
tions, and the memory address of the statement. We hashed the memory address
and its function name and line number as an identifier of a detected crash. Stack
hashing may result in bug overcounting [67]. In our case, we manually check function
call trace in the source code for every unique vulnerability to avoid the overcounting
issue. The experiment result is displayed in Table 3.1; it indicates that Z-Fuzzer
can discover more crashes and unique vulnerabilities than the other two fuzzers. We
also cross-checked all detected vulnerabilities. Only one vulnerability can be repro-
duced with the test cases generated by BooFuzz. All of the vulnerabilities can be
reproduced with test cases generated by Peach fuzzer and Z-Fuzzer. We reported all
detected vulnerabilities to the CVE database and vendors, and three of them have

been assigned CVE IDs with high CVSS scores (7.5~8.2).

33

Table 3.2: Summary of new vulnerabilities detected by BooFuzz, Peach and Z-Fuzzer.

Total # of Test Cases

Vulnerabilites Severity Triggering a Vulnerability
BooFuzz Peach Z-Fuzzer

1 CVE-2020-27891 (High 7.5) Improper Input Validation 57 1 10

2 CVE-2020-27892 (High 7.5) Improper Memory Allocation 10 4 219

3 CVE-2020-27890 (High 8.2) Improper Input Validation - - 96

4 zclParseInReportCmd Out-of-bound read - - 2

5 zclParseInReadRspCmd Out-of-bound read - - 3

6 zclProcessInWriteCmd Null pointer reference - 1 231

Test Cases vs. Vulnerabilities. We measure the number of detected vul-
nerabilities over the generated test cases for BooFuzz, Peach fuzzer, and Z-Fuzzer, as
shown in Table 3.2. The vulnerability ID in the table is used to identify each vulner-
ability in other experiments, which does not present the detection order during the
experiment. The result indicates that Z-Fuzzer can generate more test cases and de-
tect more vulnerabilities in the protocol implementation. We noticed that only CVE-
2020-27892 is detected in every fuzzing round over ten times by all fuzzers. Other
bugs are discovered in some particular rounds. All fuzzers can detect CVE-2020-
27891 and CVE-2020-27892, while Z-Fuzzer can generate more unique test cases for
detection. BooFuzz failed to discover other 4 vulnerabilities, especially the function
zclParseInReadRspCmd and zclParselnReportCmd found by Z-Fuzzer with specific
test cases. Compared to BooFuzz, Peach fuzzer can instead discover the vulnerable
function zclProcessIn WriteCmd with a particular test case. According to our analy-
sis of these vulnerabilities, most crashes occurred in a deeper location of vulnerable
functions caused by some long malformed string values at the end of the message
payload field. Before processing these values, the function performs several condi-
tion checks on other preceding primitive data. With the coverage feedback, some
interesting values are retained to generate specific test cases to satisfy such condition

checks.

34

450 uit]

g] BooFuzz

» 4004 |— Z-Fuzzer

-g 1 Peach i3

% 350 + BooFuzzer

© 300_' s Z-Fuzzer

[} = Peach

P .

S 250

>]

‘S 200

5 .

g 150—

> 100 -

=z .

Tg 50

o | #2

= 0 L (74
T T T T T T T T T T 1
30 40 50 60 70 80

Line Coverage (%)

Figure 3.4: The relationship between line coverage and the number of detected pro-
tocol crashes in 10 runs.

Coverage vs. Vulnerabilities. We also analyze the relationship between
line coverage and the number of detected vulnerabilities. Figure 3.4 presents the max
cumulative number of vulnerabilities detected over line coverage. X-axis presents line
coverage on average and Y-axis presents the max cumulative number of vulnerabili-
ties. The symbols are the vulnerability identifiers displayed in Table 3.2 and represent
the minimum line coverage that detects the corresponding vulnerability. We can see
that Z-Fuzzer can detect more vulnerabilities by exercising fewer lines of source code.
Peach and Z-Fuzzer first detected CVE-2020-27892 at the earlier fuzzing stage, while
BooFuzz found the same vulnerability at the end of the fuzzing process. We notice
that some crashes are caused by some abnormal values of the message payload field
with a particular value of a preceding field, which may exercise new code. BooFuzz
and Peach fuzzer fails to generate such test messages since they consider the mes-
sage payload field and its preceding field independent during fuzzing. The particular

value of the preceding field is not retained when the message payload field is mutated.

35

Evaluation Board

Coordinator End Device

Figure 3.5: Message transmission on TT CC2538 with the evaluation board.

However, Z-Fuzzer can generate such a test case once the line coverage is changed.
Therefore, Z-Fuzzer improves the effectiveness and efficiency of vulnerability discovery
by boosting code coverage.

Vulnerabilities on Real Embedded Devices. We also verify the detected
vulnerabilities on real embedded devices. We used two Texas Instruments CC2538 de-
vices with the SmartRF06 Evaluation Board to form a real IoT network. TT CC2538
is a wireless microcontroller System-on-Chip (SoC) for high-performance ZigBee ap-
plications [68] and has been widely adopted in the IoT market.

As shown in Figure 3.5, one device acts as a coordinator that sends the crash
messages we found in the simulator; another acts as an end device that receives the
coordinator’s messages. We added debugging information in the test harness to print
device status on the LED display. The entire protocol stack with the test harness
is built as a single binary file and flashed to CC2538. The coordinator initiates the
network formation, and the end device joins the network.

We executed test cases that triggered vulnerabilities on the physical devices. Ta-
ble 3.2 shows that all fuzzers can detect vulnerabilities in the function zcl_HandleExternal

and the function zclParselnDiscCmdsRspCmd in the simulation environment. How-

36

Listing 3.2: Source code of CVE-2020-27892

static void xzclParseInDiscCmdsRspCmd (zclParseCmd_t *pCmd)

pDiscoverRspCmd=(zclDiscoverCmdsCmdRsp_t x)
zcl-mem_alloc (sizeof (zclDiscoverCmdsCmdRsp-t) +
5 (numCmds* sizeof (uint8)));
6 if (pDiscoverRspCmd != NULL)

7 {

8 for (i = 0;i < numCmds; i++)

9 {

10 pDiscoverRspCmd—>pCmdID [i] = *xpBuf++;
11 }

12 }

13 return ((void x*)pDiscoverRspCmd);

ever, the vulnerability in the function zcl_HandleEzternal cannot be reproduced with
the test cases generated by BooFuzz and Peach. Instead, we could detect those two
crashes with the test cases generated by Z-Fuzzer on the real device. The embedded
device was frozen when processing the received crashing messages. In addition to these
two vulnerabilities, we can also verify the vulnerable function zclParselnWriteCmd
with the test cases generated by Z-Fuzzer. We notice that memory corruption oc-
curred when the device processes the received messages. The Z-Stack implementation
has captured the crash; however, it does not perform further operations and report
the crash. From the user’s perspective, the processing is successful since a success
status code is returned to the end device. Nevertheless, the attribute value is not up-
dated. We have reported all of the six detected vulnerabilities to the protocol vendor,
Texas Instruments. Three vulnerabilities have been confirmed at the time of writing,
and others are still under review.

Case Study. We use CVE-2020-27892 as a case study to explain more details of
our observations. This vulnerability is triggered by two specific valid command iden-
tifiers in the ZCL header. When the command identifier is set to 0x12 or 0x14, which

indicates a Discover Commands Received Response message or a Discover Commands
37

Generated Response message, it crashes the protocol stack when parsing payload val-
ues of such message. The end device is frozen and fails to respond to any operations
unless we restart the board.

We examined this crash on both the simulator and the real device. The root
cause is an incorrect memory allocation for a structure variable. The source code
is showing in Listing 3.2. The struct variable pDiscoverRspCmd is a pointer that
contains an attribute pCmdID pointing to an array. In standard C programs, pCmdID
is assigned to a valid memory address when the system allocates memory space for
pDiscoverRspCmd. As the code shown in line 4, Z-Stack calls its memory allocation
method rather than using the C standard API. However, the self-implemented mem-
ory allocation method fails to assign a valid address to pCmdID. Suppose the memory
address of pDiscoverRspCmd is 0x20005B80 and the size of this structure type is 4
bytes and numCmds equals 1, then pCmdID should point to the address 0x20005B85. In
practice, it points to the content of that address, which is 0xCDCDCDCD and an invalid
memory address. Thus, an out-of-bounds write vulnerability is triggered when code
in line 10 is executed. Similar memory issues like memory copy also lead to other
vulnerabilities.

We observe that most protocol vendors develop their customized APIs to re-
place the standard functions in the C library. The main reason is that an embedded
device has limited memory resources and computing power, which is hard to sup-
port all C standard API libraries like PC software. Besides the bugs in the protocol
implementation itself, this customization may bring potential security risks. Cur-
rently, the protocol vendors bear responsibility for the vulnerabilities of the Zighee
protocol. The mitigation of security problems entirely depends on whether the ven-
dors are proactive or not to the reported issues [69]. The IoT application developers

may not be aware of those potential issues until they complete the entire production.
38

Table 3.3: Evaluation results on Z-stack in 10 runs.

‘ Total # of Unique ‘ Line Coverage ‘ Edge Coverage

Fuzzer

‘ Test Cases ‘ total % ‘ total %
BooFuzz 16,756 912 73.80% 680 73.82%
Peach 18,271 850 68.71% 628 67.58%
Z-Fuzzer 61,386 971 78.52% | 769 82.30%

This observation also motivates us to propose Z-Fuzzer for developers to acknowledge
the Zigbee protocol stack’s potential issues at the earlier development stage; thus,
they can take corresponding actions to avoid such problems without waiting for the

protocol vendor’s feedback.

3.4.2 Code Coverage

To answer RQ2, we examined the ability of fuzzers to improve code coverage in
24h fuzzing, which is a widely accepted and evaluated metric in existing research [67].
We performed a set of experiments on each fuzzer to observe their line coverage and
edge coverage variation over time. Here an edge is a connection between two basic
blocks in CFG. We inputted the same protocol frame format script to all fuzzers.
Therefore, their fuzzing process was initialized with the same valid protocol frame.
Given the frame format script, the fuzzers generate test cases with the user-specific
or pre-defined fuzzing dictionary, for which the total number of test cases is finite.
Results are presented in Table 3.3. We report the line coverage and edge coverage
on average. From the results, we observe that Z-Fuzzer is significantly more effective
than BooFuzz and Peach.

We first analyze the uniqueness of test cases generated by three fuzzers. As
shown in Table 3.3, Z-Fuzzer can generate 6 times more unique test cases than the
other two fuzzers. Moreover, according to the Zigbee protocol specification, we cate-

39

90

80 - 80

= 707 £ 70-
. S
g) 60 © 60
N e
g 50 o) 50-1
o] (q))]
O 4o o 401
o °]
£ 1 L
- 304 BooFuzz 30 BooFuzz
| Peach 1 Peach
20 —— Z-Fuzzer 20'_ —— Z-Fuzzer
T T T T T T T T T T T T T T T T T T T
0 1500 3000 4500 6000 7500 9000 0 1500 3000 4500 6000 7500 9000
Test Case Test Case
(a) Line Coverage (b) Edge Coverage

Figure 3.6: Line coverage and edge coverage achieved by fuzzers over 10 runs.

gorize test cases by the field command identifier in the ZCL header to distinguish the
difference among fuzzers on test case generation. Z-Fuzzer generated 308 different
types of test cases in total, in which 35 of those types can be generated by BooFuzz
and Peach. In addition, many test cases result in coverage increments, and therefore
they are retained as favored test cases for further mutation.

Moreover, we measure the code coverage of Z-Fuzzer in comparison with Boo-
Fuzz and Peach. Without our Zigbee protocol simulation platform, BooFuzz and
Peach cannot directly test Z-Stack implementation. Therefore, we replaced our mu-
tation engine with the other two fuzzers’ fuzzing engines to compare their perfor-
mance. The experiment result is presented in Table 3.3 and Figure 3.6. Table 3.3
indicates that Z-Fuzzer can achieve higher line coverage and edge coverage. Cur-
rently, we focus on generating high-quality test cases that satisfy the message format
of the Zigbee protocol specification. Therefore, we cannot cover exception handling
code and reach full code coverage. As Section 3.4.1 indicates, Z-Fuzzer can discover
more vulnerabilities than the other two fuzzers though it does not achieve full code

coverage.

40

From Figure 3.6, we can see that BooFuzz and Z-Fuzzer proliferated at a very
early phase. As the Zigbee protocol performs several checks on the ZCL header first
when processing a message, minor changes in the header can lead to a significant
difference in executed code and path. Both of the two fuzzers start fuzzing from
the field Frame Control (the first field in the ZCL header shown in Figure 2.2a). It
is the reason that code coverage rapidly increased in BooFuzz and Z-Fuzzer at the
early phase. Instead, Peach randomly mutated a message field, and therefore its code
coverage increased slowly. Even though BooFuzz achieved its maximum code coverage
with fewer test cases, it terminated the fuzzing process after generating about 6, 200
test cases. BooFuzz uses fewer values for each primitive data to prevent an inevitable
combinatorial explosion in the number of possible mutation values. These values are
specified by the protocol specification or a pre-defined fuzzing dictionary of values. All
values are static over the fuzzing time. Thus, BooFuzz generated fewer test cases and
terminated the fuzzing process earlier than the other two fuzzers. For better result
presentation, we plot the coverage trend of the first 10,000 test cases generation in
Figure 3.6. On the other hand, Z-Fuzzer and Peach fuzzer kept executing more code
and edges and generated more test cases. We also examine the differences in accessed
code and edges. Z-Fuzzer can exercise more different code and edges that BooFuzz
or Peach does not execute.

In summary, Z-Fuzzer achieves a higher code coverage rate than BooFuzz and
Peach with the coverage-guided test case generation. The interesting values are
recorded with the coverage feedback and guide the fuzzing process to generate more
high-quality test cases to access more in-depth code. We observe that many functions
in ZCL process the message payload value for the upper-level application object. They
could require a test case to satisfy some particular condition checks to execute more

in-depth code in those functions. During BooFuzz’s and Peach’s mutation process,

41

the values of specific message fields, which may satisfy such a dependency constraint,
are neglected during the fuzzing. In contrast, Z-Fuzzer can infer such a correlation
with the runtime coverage feedback. The current mutant primitive data and all of the
preceding fields are retained for further fuzzing, satisfying those particular conditions

and covering more code and edges.

3.5 Conclusion

We have presented the first device-agnostic fuzzing framework, Z-Fuzzer, to de-
tect security vulnerabilities in Zighee protocol implementations. Z-Fuzzer integrates
a software simulator to simulate real IoT devices combining the pre-defined hardware
interrupts and peripheral configurations. We also develop a test harness to provide a
proper execution environment for the Zighee protocol stack, including a proxy server
facilitating the communication between the simulator and the mutation engine. Z-
Fuzzer outperforms the state-of-the-art work by detecting more deep vulnerabilities
with fewer test cases. We have identified six unique vulnerabilities, and three of them

have been assigned CVE IDs with high-severity scores.

42

Chapter 4

Intelligent Zigbee Protocol Fuzzing via Constraint-Field Dependency

Inference

The content of this chapter is based on a paper [70] just accepted in European

Symposium on Research in Computer Security (ESORICS), in April 2023!.

4.1 Overview

Though Z-Fuzzer has shown promising results for finding security vulnerabilities
in Zigbee protocol implementation, it still suffers from a large search space of inputs
by ignoring the target program structure. Many existing fuzzers [23, 27,28, 30, 51]
apply various techniques to infer the relationship between input bytes and path con-
straints for generating test inputs efficiently, which can explore the deeper code of
the target program. Data flow analysis (e.g., dynamic taint analysis) is one of the
most adopted methods for dependency inference. However, it is not a trivial task to
directly deploy those fuzzers to Zigbee protocol implementations. First, these fuzzers
use general compilers like LLVM and Clang for dynamic taint analysis. As explained
in Figure 1.1 in Chapter 1, those general compilers are prevented from compiling the
Zighee protocol stack by many protocol vendors. Second, these fuzzers, which utilize
QEMU for program execution simulation, cannot provide a proper simulation envi-
ronment due to the particular hardware configuration required by the Zigbhee protocol

vendors.

'Reproduced with permission from Springer Nature. Mengfei Ren, Haotian Zhang, Xiaolei Ren,
Jiang Ming and Yu Lei, Computer Security — European Symposium on Research in Computer
Security 2023 (ESORICS). Just Accepted.

43

To address these limitations, in this chapter, we propose TuintBFuzz, an intelli-
gent Zighee protocol fuzzing with constraint-field dependency inference. We leverage
static taint analysis to infer the relationship between the message field and the path
constraints, while also satisfying the protocol vendors’ requirement of the specific
compiler. The dependency inference then guides the fuzzing engine to prioritize the
critical message fields for further mutation, which have a higher chance to exercise
unvisited branches.

The fuzzing engine of TaintBFuzz is designed based on Z-Fuzzer’s fuzzing en-
gine. It constructs the initial test seeds based on the message format script from
scratch. To execute the Zighee protocol stack in a simulation environment, we use an
industrial embedded device development platform, IAR Embedded Workbench [62],
to interact with the fuzzing engine of TaintBFuzz. The TAR is used by many Zigbee
protocol vendors, such as TI, Samsung, and Toshiba, and provides a particular com-
piler and a software simulator. The IAR simulator also supports many vendor-specific
embedded devices with pre-defined hardware interrupt/peripheral configurations. We
also develop a stack driver and a proxy server to bridge the communication gap be-
tween the TAR simulator and the fuzzing engine.

We implemented a prototype of TaintBFuzz and evaluated its effectiveness in
security vulnerability detection on Z-Stack [61], a mainstream Zigbee protocol stack
developed by Texas Instruments. We compare TaintBFuzz with three state-of-the-
art protocol fuzzing tools, Peach [15], BooFuzz [14], and Z-Fuzzer [71]. Peach and
BooFuzz are conventional protocol fuzzers widely used in academia and industry. Our
experiment results show that TaintBFuzz outperforms those fuzzers by 27% and 25%
in terms of the number of unique edges found and statements covered. TaintBFuzz
has also identified eight unique vulnerabilities in Z-Stack, of which two are previously

undiscovered.

44

Step 1: Constraint Variables Identification Step 2: Constraint-Field Dependency Inference
Message IR
Format Script fc tranSeq cmdID attrlD o) ¢ Taint Tainted
||§|—> 4] 1] 1 Jo]o g ——*inputf0] -> varx
RM RM - Representative Message Static Taint nput2] > vary
Construction Analysis
N — if(y >)
o0 Constr Vars] Branch | Impact Field
% — olele] - N oY D ranc mpact Fiel
C QOO —> o ranchA: vary > L’D branch A cmdID
Source Code Constraint branchC: var x Dependency branch C fc
Identification | = gl gm e Inference Dependency Result
Step 3: Inference-guided Mutation
Mutated
Seeds .
=« Grammar-based Guided |
+ coverage Mutation
Crash guided fuzzer Y
Report
Candidate Inputs

Figure 4.1: Overall design of TaintBFuzz.

4.2 Design of TaintBFuzz

Figure 4.1 presents the overall design of TaintBFuzz, which contains three main
steps: (1) Constraint Variable Identification, (2) Constraint-Field Dependency Infer-
ence, and (3) Inference-guided Mutation. The black arrows in figure mean the main
workflow of TaintBFuzz. The red arrows mean the intermediate results generated by
the related components. As the ZCL is the core library of Zigbee protocol stack to
implement an IoT device’s functionalities, we will use it to present the details of each

step in the following subsections.

4.2.1 Constraint Variable Identification

The first challenge of TaintBFuzz design is to identify the constraint variables
reasonably. A constraint variable consists of a set of program variables used in a path
constraint. To address this challenge, TaintBFuzz collects program variables used in

all constraints based on the AST analysis of the program. A program variable can

45

directly or indirectly influence a constraint. Notably, a temporary variable saves an
intermediate result that can be used in the following constraints, e.g., in the state-
ments temp = Function_A(x,y);if(temp)..., the result of a function call is saved as
a temporary variable that impacts the IF condition. In addition to the regular condi-
tional constraint statements like IF, LOOP, and SWITCH, TaintBFuzz also collects
program variables used in every function call to address the temporary variable prop-
agation. Accordingly, a constraint variable is defined as a tuple (Vt,loc), where V'
is a set of program variables, ¢t € T that T is a set of pre-defined constraint types
(IF, LOOP, SWITCH, CALL), and loc is a statement line number of a constraint.
A path constraint can be parsed as several sub-constraints during the AST analysis;
thus, we save loc to assemble a completed dependent fields list during the following
inference phase.

Additionally, TaintBFuzz constructs a set of Representative Messages (RM)
based on the given protocol message format script, in which the message format is
defined as Fig 2.2a in Chapter 2. An RM is defined as a tuple (F, Len, data), where
F = (Fy,..., F,) is a set of message fields defined in the script, Len = (L, ..., L,,) is the
length of every message field, and data is a real ZCL message. Each RM represents
a unique type of ZCL message. The generated RMs will be used for taint analysis to

identify the critical fields that impact program variables.

4.2.2 Constraint-Field Dependency Inference

The second challenge of TaintBFuzz is inferring the relationship between the
message fields and the path constraints. A standard solution is utilizing dynamic
taint analysis (DTA) to identify which input bytes are used in branch instructions.
However, it could fail to compile the Zigbhee protocol because of the vendor-specific

compiler requirement as shown in Fig 1.1 in Chapter 1. To tackle this challenge,

46

TaintBFuzz performs static taint analysis on a preprocessed source code compiled by
the protocol vendor-specific compiler to distinguish the dependency between message
fields and path constraints.

Algorithm 2 illustrates the primary process for the dependency inference. First,
we track an external input’s impact on the program execution through static taint
analysis. For each RM, we taint each message value (e.g., input[0] whose value is 4 as
shown in Figure 4.1) and perform static taint analysis to collect the tainted variables
(lines 4-6). After collecting the taint analysis result, we perform dependency inference
based on the constraint variables collected from Step 1 and the taint analysis result.
For each constraint variable, we first identify if its program variable exists in the
tainted variables (line 10).

If a variable is a tainted variable, then we collect its tainted record (line 11)
including the tainted label like input [0] in Step 2 and the message value like the array
[4,1,1,0,0] in Step 1. Then the tainted record is used to search the corresponding
message field in the set of RMs (line 12). Finally, we gather all message fields related
to the program variables used in a path constraint, e.g., constraint A is impacted by
the message field cmdID as shown in Figure 4.1. The collected result is saved as a
map where the key is the constraint, and the value is the message fields influencing
the constraint. As a path constraint could consist of several sub-constraints, we
combine all constraint-field dependencies based on the constraint’s loc value as the

final dependency inference result and pass it to the mutation engine (line 17).

4.2.3 Inference-guided Mutation
The main challenge of TaintBFuzz is effectively leveraging dependency analysis
results, which implicates inference-guided mutation. Our objective is to enhance the

mutation process through dependency inference when a fuzzer is hard to explore more

47

Algorithm 2: Constraint-Field Dependency Inference

Input : A set of representative message: R,
A set of constraint variables: P,
Preprocessed source code: S

Output: Hashmap(constraint — fields): Deps

tainted < ()
Deps < ()
foreach rs € R do
taint < taintField (rs)
taint_vars < taintAnalysis (S, taint)
tainted < tainted U (taint, taint_vars,rs.data)
end

N o oA W=

®

foreach constraint € P do

9 foreach var € constraint.V do

10 if isTainted (var,tainted) then

11 tainted_record < getTainted (var,tainted)
12 field < searchField (R, tainted_record)

13 Deps|constraint] <— Deps[constraint| U field
14 end

15 end

16 end
17 Deps < assembleDependency (Deps)

paths of a program. Remarkably, we use coverage-guided fuzzing (CGF) in our main
fuzzing engine because it is low-cost and efficiently covers the majority of easy-to-
cover branches. Only for hard-to-cover branches, we introduce the constraint-field
dependency to augment the mutation process and generate diversified seeds. Algo-
rithm 3 shows the primary process of coverage-guided fuzzing with constraint-field
dependency inference. A threshold is a pre-defined value of the number of mutations
since the last updated code coverage, indicating when to utilize the constraint-field

dependency for mutation on a particular path to explore more uncovered branches.

48

Algorithm 3: Fuzzing with Constraint-Field Dependency Inference

Input : Input seed: s, Inference result: Infer,

Control flow graph: G, Timeout: timeout
Program for coverage tracking: P,
Program for inference tracking: P’

Output: Detected crash: crash

1 ewecPath + ()

2 crash <)

3 threshold <— user_predefined value
4 def main():

© 0w N o O

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

while not timeout do
cov, execPath, crash + execCheckCoverage (s, P)
if noUpdate (cov,threshold) then
| s « mutateWithInfer (s, cov, execPath)
else
| s < mutate (s)

end

def mutateWithlnfer (s, cov, execPath):

pid < len (execPath)
uncovered < checkPath (cov, execPath, pid, G)
inferFields < getInferFields (uncovered, Infer)
while pid > 0 do
foreach f € inferFields do
s', mutated < mutate (s, f)
if mutated then
‘ break
end
cov', path’, crash + executeGetCovered (s',P’)
if hasCovered (uncovered, cov’) then
return s’
else if callStackChanged (execPath,path’) then
‘ inferFields < updateFieldState (s, execPath,inferFields)
else if not mutated then
pid < pid — 1
uncovered < checkPath (cov’, execPath, pid, G)
inferFields < getInferFields (uncovered, Infer)
end

end

49

4.2.3.1 Grammar Based with Coverage Guided Fuzzing

TaintBFuzz uses a grammar-based fuzzer with coverage-guided feedback as its
fuzzing engine. We generate the initial seed corpus based on the given protocol
message script from scratch so that each seed would satisfy the sanity check of message
processing. If a new edge is discovered, the seed is saved as a favored test case with
higher prioritization in the following mutations. The fuzzer also monitors the protocol
stack execution result and reports any detected crashes. If the code coverage has not
been updated after several seed mutations (threshold), we utilize the inference result

for mutation optimization.

4.2.3.2 Mutation with Dependency Inference

Once no more new codes are explored after the pre-defined threshold, we mutate
the seed based on the constraint-field dependency of the current execution path.
Assume a sample input’s message fields are [fc, manu, seqI D, cmd, attrld, type, data)
and a covered basic block sequence is [By, By, By, Bg, B7|. In order to explore deeper
of the path, TaintBFuzz backtracks the block sequence to identify the last uncovered
block in the current path by examing the control flow graph and coverage feedback
(lines 12-14), e.g., Bg is the predecessor block of B; that contains a condition check and
has an uncovered block Bs. Then TaintBFuzz searches the corresponding constraint
of Bg in the dependency inference result. For example, we find the fields [fc and cmd]
that influence the constraint. TaintBFuzz sequentially mutates each field to generate
new inputs (lines 16-20), and executes the program with the new inputs (line 21). If
the block Bg has been accessed (lines 22-23) indicating the code coverage is increased,

then we return to regular coverage-guided fuzzing with the new input.

50

A mutation on the dependent field may change the predecessor block sequence
of the previously uncovered block. For example, the predecessor block sequence of
Bs is Bi — By — By — Bg. A new value of the inferred field emd leads to a
new execution path that does not exercise Bg anymore. Then, TaintBFuzz first tries
other candidate values of the field ecmd and checks if the previously predecessor block
sequence can be reaccessed (line 25). The worst case is that all candidate values
of the field never explore the uncovered branch. In that case, TaintBFuzz restores
the original value of this field and filters out this field from the inferred fields list
without further mutation. Furthermore, suppose mutations on all dependent fields of
a constraint fail to access the uncovered branch, i.e., the variable mutated is FALSE,
indicating the completed mutation on the fields (line 26). In that case, TaintBFuzz
then backtraces to the next uncovered block in the path to mutate with the inferred

fields until all blocks in the block sequence have been traversed (lines 27-29).

4.3 Implementation of TaintBFuzz

The purpose of TaintBFuzz is to assist Zigbhee protocol vendors and [oT applica-
tion manufacturers in avoiding security risks during their development phase. Thus,
the Zigbee protocol message format and related IoT device configuration are assumed
to be aware and configured in the format script. As Fig 4.1 shows, the constraint
variables identifier, the constraint-field dependency inferrer, and the inference-guided
mutator are the three main components of TaintBFuzz. We illustrated the details
of each component as follows. And the source code of TaintBFuzz is avaliable at
https://github.com/zigbeeprotocol/TaintBFuzz.

The representative message constructor is implemented using the message gen-
erator of Boofuzz [14] with a pre-defined message format script that conforms to

protocol format definition [72]. The constraint variables identifier and taint analy-

51

https://github.com/zigbeeprotocol/TaintBFuzz
https://github.com/zigbeeprotocol/TaintBFuzz

sis tool are developed based on Frama-C [73]. Frama-C is an open-source platform
dedicated to source-code analysis of C software and performs static analysis based
on an abstract syntax tree (AST). The constraint variable collector is performed
with a pre-processing file of the source code that is compiled with the TAR com-
piler to avoid compiler restriction. We modify Frame-C to analyze preprocessed code
with the vendor-specific syntaxes that are not initially supported (e.g., __intrinsic,
__nounwind, #Pragma rtmodel and so on) for AST analysis. We also implement a
script using Ocaml to analyze AST and collect the constraint variables used in IF,
LOOP, SWITCH, and CALL statements.

The constraint-field dependency inferrer implements Algorithm 2. According
to the generated RMs and taint analysis result, it maps message fields to several
message fields that could impact the condition decision. The inference-guided mutator
implements Algorithm 3. Suppose no more new edges are explored after several
mutations (a threshold). In that case, it evaluates each input seed along its execution
path and collects constraint variables helpful in exploring new branches. Then it
mutates the critical fields to generate new seeds to explore the deeper of the path.
We currently set up the threshold as 50 based on our experiment results.

Moreover, several message fields in Zigbee are enumerated types with pre-
defined values defined in the Zighee protocol specification. The protocol checks if
such a field has a particular value that requires a specific handling process. Existing
protocol fuzzers mutate such a field by the following methods:

(1) randomly selecting values (e.g., selecting any value between [0, 255] if the field
is byte type),

(2) enumerating all possible values based on the field size,

(3) selecting values based on their fuzzing dictionary defined according to human

heuristics.
52

Such mutation methods lead to ineffective fuzzing performance. To tackle this prob-
lem, we customize the fuzzing dictionary of those message fields by considering their
pre-defined values in the protocol specification along with several negative values to
reduce the searching space.

The coverage-guided fuzzing engine is developed based on Z-Fuzzer’s fuzzing
engine that considers the code coverage feedback. We integrate our inference-guided
mutator with its fuzzing engine. We utilize the embedded device simulator C-SPY [63]
of IAR Workbench to execute the Zigbee protocol stack. We also create a proxy
server to enable the connection between the fuzzing engine and the simulator, as the
simulator lacks a network interface for sending test messages. According to the static
analysis result, we noticed that some functions do not have any callers, which would
be used depending on the [oT application vendor’s device feature requirements. Thus,

we also add corresponding handlers in the source code to fuzz these corner cases.

4.4 Evaluation of TaintBFuzz

In this section, we evaluate TaintBFuzz through multiple experiments. The
experiments are designed to answer the following research questions:

e RQ1: Can TaintBFuzz achieve better fuzzing performance compared to state-
of-the-art protocol fuzzers?

e RQ2: How efficient is TaintBFuzz at detecting vulnerabilities compared to
state-of-the-art protocol fuzzers?

We illustrate the novelty and efficiency of TaintBFuzz in compariosn with three
basedline protocol fuzzers, Peach [15], Boofuzz [14], and Z-Fuzzer [71]. Boofuzz is
the successor of Sulley [44], an industry-standard protocol fuzzer more actively main-
tained than Sulley. Both Peach and Boofuzz are open source and have been used in

existing research papers [74,75]. Boofuzz and Peach do not initially work with the
53

Table 4.1: Fuzzing performance of all fuzzers on Z-stack in 10 runs.

‘ Unique ‘ Stmt Coverage ‘ Edge Coverage

Fuzzer

‘ Test Cases ‘ total % ‘ total %
TaintBFuzz 12,493 1111 68.88% | 800 74.42%
Z-Fuzzer 61,386 971 63.18% 769 71.53%
Boofuzz 16,756 912 59.33% 680 63.26%
Peach 18,271 850 55.30% 628 58.42%

Zigbee protocol. Hence, we incorporated them with our proxy server and simulation
platform to send test inputs for Zighee protocol execution.

All of our experiments were performed on a machine with eight cores (Intel®
Core™ i7-6700 CPU @ 3.40GHz) and 32 GB memory running the Windows 10 Pro
operating system and IAR Embedded Workbench for ARM 8.3. We use a widespread
Zigbhee protocol implementation Z-Stack [61] as the target program, developed by
Texas Instruments with various sample project codebases, and its source code is
available. From the user’s point of view, the ZCL is a protocol that runs at the
application layer and serves as the core library for the Zigbee protocol stack. We
employ ZCL as a case study in our evaluation. We ran each fuzzer on Z-Stack over
24 hours. All experiments were repeated ten times. We also set the threshold for

inference-guided mutation as 50 when compared with other protocol fuzzers.

4.4.1 Fuzzing Performance

To answer RQ1, we performed a set of fuzzing experiments on each fuzzer to ex-
amine their generated test cases, statement coverage, and edge coverage. The fuzzers
produce test cases with the given message format script using the user-specific or pre-
defined fuzzing dictionary, for which the total number of test cases is finite. During

our evaluation, we noticed that existing research has incorrect percentage calculations

o4

on state-of-the-art fuzzers. Thus, we recalculate them and show in Table 4.1. We
report the total number of unique test cases generated by each fuzzer. The aver-
age statement coverage and average edge coverage of each fuzzer are also presented
in the table. The results show that TaintBFuzz is significantly more effective than

state-of-the-art protocol fuzzers.

4.4.1.1 Test Case Generation

We examine the uniqueness of the test cases produced by all fuzzers. TaintB-
Fuzz can achieve higher code coverage than other fuzzers with fewer test cases, espe-
cially with five times fewer test cases than Z-Fuzzer, due to the reduced input space of
several message fields with the customized fuzzing dictionary. In addition, to differ-
entiate between different fuzzers on test case creation, we classify test cases according
to the Zighee protocol standard using the field Command Identification in the ZCL
header. TaintBFuzz generated 194 distinct types of test cases in total, of which only
34 of them can be generated by other fuzzers. More than half of these distinct types
are generated after mutating the dependent fields in the constraint-field dependency
inference.

We also measure how the constraint-field dependency inference impacts the test
case generation, i.e. when to consider the dependency inference to augment mutation
for generating more diversified test cases. We defined a threshold as the number of
mutation times since the last updated code coverage. If the coverage has not been
updated after the threshold, TaintBFuzz looks up the constraint-field dependency
inference to select an appropriate field for further mutations. The ideal threshold is set
to 1, i.e., the constraint-field dependency is considered for each mutation. However,
it could result in performance issues when the execution path is very long, which

costs much time for TaintBFuzz to search the critical fields for every mutation. In
55

Table 4.2: Test cases generated by TaintBFuzz for different inference threshold.

‘Threshold:lo Threshold=25 Threshold=50

Favored Test Cases 50 49 52
Test Case Types 36 22 57
Type Difference | 29 35 (base)

our evaluation, we compared three different threshold values 10, 25, 50 for and found
that it performs better when setting the threshold as 50.

Table 4.2 presents the comparison results. We present the number of the favored
test cases and the test cases types categorized based on the field Command Identifier.
The type difference show the unique types generated in the base set but not in the
other two sets. We can see there are more favored test cases generated when the
threshold is 50, which provides more candidates for TaintBFuzz to explore new paths
in the target program. We also categorized all generated test cases based on the
field Command Identifier. The result inidicates that there are more different test
cases types when threshold setting to 50, in which 29 are not generated by threshold
10 and 35 are not generated by threshold 25, while threshold 50 can generate all
types in other two sets. The diversity of generated test cases also provides the fuzzer
more probability to access more codes and paths in the target program. Therefore,
we also use threshold 50 for the TaintBFuzz’s mutation when comparing the fuzzing

performance with state-of-the-art fuzzers.

4.4.1.2 Code Coverage

We measure the code coverage on all fuzzers. Peach and Boofuzz cannot directly
work with Z-Stack execution, so we integrated them with our protocol simulation
platform via the proxy server. As shown in Table 4.1, TaintBFuzz can achieve higher

statement coverage and edge coverage with fewer test cases. As we reduced the

56

80

Peach ~——— Z-Fuzzer Peach ———Z-Fuzzer
Boofuzz —— TaintBFuzz 80+ Boofuzz —— TaintBFuzz

70

Statement Coverage (%)
Edge Coverage (%)

0 20 40 60 80 100

10

T T T T T 1 T T T T T 1
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Test Case (#) Test Case (#)
(a) Statement Coverage (b) Edge Coverage

Figure 4.2: Statement coverage and edge coverage achieved by fuzzers over 10 runs.

searching space of several message fields with pre-defined values in the Zigbee protocol
specification, TaintBFuzz can efficiently generate test seeds with dependency inference
to explore more paths in the target program. Our primary focus is on effectively
creating test cases that conform to the Zigbee protocol specification’s message format
and exploring more normal execution paths. As a result, we cannot fully cover the
exception-handling code in the protocol implementation.

Fig 4.2 presents the variation of code coverage of fuzzing in all fuzzers. The X-
axis represents the median number of test cases. The Y-axis represents the percentage
of statement coverage and edge coverage on average. For better result presentation,
we plot the coverage trend of the first 6000 test cases generation to show in Fig 4.2.
The zoomed-in graph in the lower left corner display more details about how the
code coverage varies in the first 100 test cases. It shows that Boofuzz, Z-Fuzzer and
TaintBFuzz quickly proliferated at an early phase. Minor changes in the header can
significantly impact the code and path that is performed since the Zigbee protocol
first validates a ZCL header before processing any other fields of the message. Peach

slowly increased its code coverage because it randomly fuzzed a message field. The

57

other three fuzzers started mutation from the first message field resulting in the rapid
code coverage increment in the early phase.

Notably, the coverage increment of TaintBFuzz is the fastest due to the guidance
from the constraint-field dependency inference. Boofuzz mutated a single field at a
time based on their placement order in the format script, in which the field is reset
to the initial value after mutation completes. Therefore, it can enumerate a limited
number of ZCL header types. Though Z-Fuzzer leverages code coverage to prioritize
the favored test cases for further mutation, it is hard to consider all possible header
values by only considering the coverage feedback. For example, a test case whose
Command Identifier is 0x05 triggers a new edge and is saved as a favored test case
for further mutation. In contrast, the field Frame Control is reset to the initial value
0x00. Z-Fuzzer continues fuzzing succeeding fields of Command Identifier, which does
not explore any new codes. However, a path constraint requires a particular value of
Frame Control to trigger another branch. With the guidance from the constraint-field
dependency inference, TaintBFuzz efficiently generates such a test case to explore the
uncovered branch.

Summary. TaintBFuzz’s constraint-field dependency inference allows it to at-
tain a greater code coverage rate than Peach, Boofuzz, and Z-Fuzzer. We observed
that many ZCL functions handle the message payload value for the higher-level ap-
plication object. To run more in-depth code in those functions, they could need a
test case to meet specific branch conditions. The values of specific message fields,
which may meet such a dependence condition, are neglected throughout the fuzzing
process by Peach, Boofuzz, and Z-Fuzzer. TaintBFuzz, on the other hand, can de-
duce such a correlation from the constraint-field dependency inference. The inferred
message fields have higher priority for the further mutation to generate test cases,

which satisfy those specific requirements and covering more codes and edges.

58

Table 4.3: Unique vulnerabilities detected all fuzzers over ten fuzzing.

Vulnerability ‘ Peach Boofuzz Z-Fuzzer TaintBFuzz
CVE-2020-27890 X X 96 103
CVE-2020-27891 1 57 71 17
CVE-2020-27892 4 10 47 10
zclParseInReportCmd X X 2 3
zclParseInReadRspCmd X X 3 2
zclProcessInWriteCmd 2 X) 2
zcl_SendReadReportCfgCmd X X X 2
zcl_SendCommand X X X 2

Total 7 67 224 141

4.4.2 Vulnerability Detection

We measure the number of unique vulnerabilities discovered by all fuzzers to
answer RQ2. On each fuzzer, we performed the experiments ten times and presented
the result in Table 4.3. We present the total amount of test cases triggering the
vulnerability on average. The vulnerabilities are distinguished by comparing the call
stack and performing manual analysis.

As shown in Table 4.3, TaintBFuzz can detect the known vulnerabilities and two
new crashes. We cross-checked the vulnerabilities detected by all fuzzers. Though Z-
Fuzzer has generated more test cases for discovering CVE-2020-27891 and CVE-2020-
27892 than TaintBFuzz, only 11% of them can be manually reproduced. Instead, most
test cases generated by TaintBFuzz for the detected vulnerabilities are reproducible.
For CVE-2020-27892, TaintBFuzz has fewer test cases than Z-Fuzzer because we
reduced the input space of several message fields in the ZCL payload by customizing
the fuzzing dictionary with pre-defined values in the protocol specification. Z-Fuzzer
regards these fields as a regular byte or word variable and mutates it with a more
extensive fuzzing dictionary, in which many test cases instead have no impact on path

exploration and bug detection.

59

Table 4.4: Dependent constraints and fields for each vulnerability.

Vulnerability Constraints & Fields
CVE-2020-27890 cmdID == 0x05
CVE-2020-27891 fc == 0x08 A cmdID == 0x09
CVE-2020-27892 cmdID € [0x12, 0x14]
zclParselnReportCmd emdID == 0x0A A (attrID € [OxTHf, 0x77])
zclParseInRead RspCmd cmdID == 0x01 A attrID == 0x7f9
zclProcessInWriteCmd cmdID == 0x02
zcl_SendReadReportCfgCmd cmdID == 0x08
zcl_SendCommand cmdID == 0x08 A (hdr.fc.type == 0x00)

Moreover, TaintBFuzz has detected two new crashes in functions zcl_SendRe-
adReportCfgCmd and zcl_SendCommand, which are corner cases that have not been
tested before in previous research. The root cause is the long list of attribute identi-
fiers whose value is random. In practice, an IoT device may have a few defined features
(e.g., less than 20), each having a unique attribute identifier to perform the device
functionalities. The protocol vendor usually customized their memory management
functions rather than using functions from the standard C library, e.g., Z-Stack use
zel_mem_alloc() instead of malloc() from 1libc, due to the limited hardware resources
on [oT devices. When the attribute list is too long, the protocol stack requires more
memory space to process them, which results in memory corruption when allocating
space using the above self-implemented memory function. We have also reported
these two new crashes to the protocol vendor, which are under review when writing
this paper.

We also evaluate how the constraint-field dependency inference assists TaintB-
Fuzz in detecting the vulnerabilities. The constraints and corresponding message
fields are shown in Table 4.4, in which fc represents the field Frame Control, condID
represents the field Command Identifier, attrID represents the field Attribute Identi-

fier as shown in Fig 2.2a in Chapter 2. All vulnerabilities are triggered by messages

60

with random payload values, which also satisfy the listed constraints. We noticed
that all detected vulnerabilities are influenced by the message field Command Identi-
fier, which is reasonable since the Zigbee protocol takes different message parsers and
processors based on the Command Identifier. Moreover, for the two newly discov-
ered bugs, mainly the vulnerable function zcl_SendCommand, there is a constraint to
validate the device operation based on the ZCL message type, which returns failure
if not satisfied. TaintBFuzz can generate proper test cases satisfying the constraint
with the constraint-field dependency inference, which guides the fuzzer to mutate the
field Frame Control.

Summary. TaintBFuzz can efficiently discover vulnerabilities compared to
state-of-the-art protocol fuzzers for known vulnerabilities and new crashes in Z-Stack.
We notice that most vulnerabilities are caused by the memory allocation function de-
veloped by the Zighbee protocol vendors, which takes the place of the C library’s
standard functions. It is difficult for resource-efficient IoT devices to support all C
standard APIs because of the hardware and computing power limitation. Such cus-
tomized system APIs from protocol vendors may bring more potential security risks
during the IoT application development, which the developers may not be aware of
before releasing their applications. The mitigation of potential security risks now
depends on whether the vendors are active or not for the reported issues [69]. This
situation is what inspired us to propose this approach to help IoT application devel-

opers identify possible security issues in advance during the development phase.

4.5 Conclusion
This chapter presents TaintBFuzz, an intelligent Zighee protocol fuzzing with
constraint-field dependency inference. It first identifies the path constraint variables

and generates representative messages based on the Zigbee protocol format specifi-

61

cation. Then it leverages static taint analysis to infer which critical message field
impacts the constraint variables. Finally, with the constraint-field dependency infer-
ence, TaintBFuzz precisely mutates the critical field of constraint variables to explore
the uncovered statements. In terms of code coverage, TaintBFuzz outperforms sev-
eral state-of-the-art protocol fuzzers on a mainstream Zigbee protocol implementation
called Z-Stack developed by Texas Instruments. Particularly, TaintBFuzz can identi-

fied eight unique vulnerabilities in Z-Stack, two of them are previously unknown.

62

Chapter 5
Fuzzing Zigbee Protocol Implementation with Combinatorial Testing

5.1 Overview

In practical scenarios, exploiting vulnerabilities in the Zigbee protocol typically
necessitates following a specific execution path that involves multiple path constraints.
These path constraints are often influenced by combinations of values assigned to
various message fields. Fuzz testing [12], also known as fuzzing, is a widely used
and effective technique for detecting security vulnerabilities. It involves running the
target program with random inputs to identify potential weaknesses. Regrettably,
existing fuzzing approaches have shown limited attention to the importance of these
input parameter combinations.

Conventional protocol fuzzers [14, 15,44, 74] generally focus on sequentially or
randomly mutating individual message fields. Consequently, they may overlook crit-
ical combination values that have a high likelihood of triggering execution failures.
Coverage-guided fuzzing approaches [16,21] only leverage code coverage heuristics to
prioritize test cases that exercise new program paths, without taking inter-parameter
dependency and program structure into consideration for mutation. Taint-based
fuzzing approaches like TaintBFuzz [70] utilize taint analysis to deduce the rela-
tionship between input bytes and path constraints, then decide how to mutate those
bytes. Although this inference aids in exploring uncharted execution paths, it is un-
likely to effectively provoke failures caused by specific combinations of message field

values.

63

The use of Combinatorial Testing (CT) as a prevalent method for testing
parameter interactions that influence software behavior has been widely acknowl-
edged [55,56]. The fundamental concept behind CT is that, for any given set of ¢
parameters in a target program, it is possible to cover every combination of values
for these t parameters at least once [55]. The objective is to achieve a favorable
balance between the size of the test input space and the efficacy of failure detection.
However, when the number of input parameters is substantial, the combinatorial ex-
plosion problem can arise, posing a challenge [60]. Consequently, a more intelligent
approach is required to generate combination values for significant input parameters,
as opposed to exhaustively enumerating all possible combinations.

In this chapter, we introduce CT-BFuzz, a fuzzing platform specifically designed
for the Zigbee protocol implementation. CT-BFuzz utilizes combinatorial testing to
efficiently generate test cases that cover important combinations of message field val-
ues. The main challenge lies in identifying the significant message fields and their
corresponding values for combinatorial testing. To address this, we employ static
taint analysis to identify message fields that can impact branch conditions. Addi-
tionally, we leverage coverage-guided fuzzing to filter out less critical fields, focusing
on those that have a higher chance of exploring unvisited branches. We also consider
dependent fields defined in the message script, based on the Zigbee protocol spec-
ification used for generating the initial valid test corpus. The test seeds generated
through combinatorial testing are then prioritized for further mutation.

Furthermore, the fuzzing engine of CT-BFuzz is based on Z-Fuzzer. It generates
initial test cases with a given message format script from scratch and employs code
coverage heuristics to prioritize test cases that exercise unexplored program paths.
By integrating combinatorial testing and coverage-guided fuzzing, CT-BFuzzaims to

effectively detect vulnerabilities in Zigbee protocol implementations.
64

D 2"955399 Queue insert mutated message to queue
Generation prioritize for execution

Message | TS
Format Script } Z-Fuzzer Fuzzing

A 4
TS0 s (o} T (G)
Selected Message }

Mutated Message

| CT-BFuzz

varx

-Path Variable vary Control Field

@ Identification Identification
varz

Source Code

|

|

Combinatorial Post-generation F‘w |
Test Generation Check L o
|

|

|

Varinfo

Figure 5.1: Overall design of CT-BFuzz.

We implemented a prototype of CT-BFuzz and evaluated its effectiveness in se-
curity vulnerability detection and fuzzing performance on Z-Stack [61]. We compare
CT-BFuzz with five state-of-the-art protocol fuzzing tools, Peach [15], Boofuzz [14],
Boofuzz with CT mode, Z-Fuzzer [71] and TaintBFuzz [70]. Peach and Boofuzz are
conventional protocol fuzzers that have been widely used in existing research articals.
The latest version Boofuzz also implements a plugin of combinatorial testing. The
experiment results show that CT-BFuzz outperforms other protocol fuzzers. Espe-
cially, CT-BFuzz can detect vulnerabilities faster than other fuzzers with fewer test

cases.

5.2 Design of CT-BFuzz

The overall design of CT-BFuzz is illustrated in Figure 5.1, comprising four
major components. Initially, path variable identification and control field identifica-
tion are conducted on the Zigbee protocol stack, prior to the fuzzing process. These
components are responsible for identifying critical message fields that are essential
for combinatorial testing, as they influence the execution of the target program along
specific paths. When the fuzzer reaches a point where no new execution paths are

being explored over a certain period of time, CT-BFuzz employs CT generation to

65

create new test seeds. These seeds contain critical message fields that possess a high
probability of uncovering new paths. Simultaneously, fuzzing assists CT in identify-
ing critical fields and their representative values for dynamically constructing the CT
test model. The CT test set is subsequently prioritized for execution, with a focus on
maximizing code coverage. Only test cases that have traversed previously unexplored
program branches are added to the message queue for further mutation. To provide a
more comprehensive understanding of CT-BFuzz’s design, we utilize the ZCL (Zigbee
Cluster Library) as a case study in the subsequent sub-sections, where we delve into

the specific details.

5.2.1 Path Variable Identification
The initial challenge that CT-BFuzz tackles involves identifying the important
message fields to be used in combinatorial testing. Not all message fields have an
impact on program execution. In practical scenarios, triggering a failure in the ex-
ecution of the Zigbee protocol necessitates a test message that satisfies a specific
execution path, comprising multiple path constraints. These constraints are typically
influenced by the values assigned to specific message fields, either individually or in
combination. For the purpose of this discussion, we refer to these fields as control
fields. Selecting appropriate values for these control fields becomes critical in order
to successfully trigger an execution failure.
To construct the list of VarInfo, CT-BFuzz initially collects the program vari-
ables used in all path constraints based on code analysis of the target program. A
path constraint typically consists of one or more program variables, referred to as
path variables. These variables can be explicitly or implicitly contained within a path
constraint. Explicit variables are directly presented in regular conditional statements
such as IF, LOOP, and SWITCH. On the other hand, implicit variables appear in
66

function signatures, where the result of the function call is utilized in a branch condi-
tion. For example, in the following statement sequence: result = FunctionCall(a, b,
c)y e ;if (result == SUCCESS) , variables a, b, and ¢ are implicit variables
associated with the IF constraint. During the identification process, CT-BFuzz con-
siders both explicit and implicit variables, ensuring their inclusion in the construction

of the Varlnfo list.

5.2.2 Control Field Identification

Once the path variables have been collected, CT-BFuzz proceeds to identify
the control fields, i.e., the message fields that influence specific path variables. While
existing approaches often rely on dynamic taint analysis (DTA) to pinpoint critical
bytes within the test input, direct application of these approaches to Zighee protocol
implementations poses challenges. This is due to the utilization of general compil-
ers like LLVM and Clang, which do not adhere to vendor-specific requirements, as
depicted in Figure 1.1. To overcome this limitation, CT-BFuzz employs static taint
analysis using a vendor-specific compiler to accurately locate the control fields. By
leveraging the capabilities of the specific compiler mandated by the Zigbee proto-
col implementation, CT-BFuzz is able to perform effective static taint analysis and
successfully identify the relevant control fields.

To identify the relationship between the input values and program variables,
CT-BFuzz follows a series of steps. Firstly, a set of ZCL messages is generated as
taint sources, using a provided message format script (refer to Figure 2.2b). Instead
of generating messages with all possible values, representative messages are created
to cover each type of ZCL message. Next, each field in these messages is tainted, and
taint analysis is performed. This analysis helps determine the relationship between

the input values and program variables. By analyzing the taint propagation, CT-

67

BFuzz can establish how changes in the input values affect the values of program
variables. Based on the collected information in the VarInfo data structure, a list
of control fields is constructed, along with their corresponding impact on specific
path constraints. For example, in Table FieldInfo illustrated in Figure 5.1, it is
evident that message fields A and D influence the execution of branch 1. These
steps enable CT-BFuzz to effectively identify the control fields and their relationships
with specific path constraints, facilitating further analysis and testing of the Zighee

protocol implementation.

5.2.3 Fuzzing with Combinatorial Testing

A critical challenge in combinatorial testing lies in the selection of appropriate
control fields and their representative values. This selection is crucial for generating
new test seeds that effectively cover the desired combinations. However, when the
number of fields and their potential values is large, combinatorial testing encounters
the problem of combinatorial explosion. For instance, in the case of ZCL message
format, which encompasses 30 different fields with variable lengths, considering just
two possible values for each field would result in an exhaustive combination of 23°
test cases. This vast number of test cases often leads to redundancy, as many of them
exhibit similar behavior.

To address this challenge, CT-BFuzz implements an adaptive strategy that dy-
namically generates CT test models for new test seed generation. This strategy takes
into account the list of identified control fields and the execution results. By em-
ploying this adaptive approach, CT-BFuzz can intelligently generate test seeds with
appropriate combinations of control field values. Furthermore, the CT test set col-
laborates with the fuzzing process to generate new test cases that explore untouched

execution paths. This synergy between combinatorial testing and fuzzing enhances

68

Algorithm 4: Fuzzing with Combinatorial Testing

[SLTET SR VR

© 0w N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Input : Message format script: S, Timeout: timeout,
Mutation threshold: threshold, Program under test: P
Output: Detected crash: crash

execPath « ()

cov <0

crash < ()

queue < MessageGeneration(S)

fieldInfo < ControlFieldIdentification(S, P)

while not timeout do
message < Select(queue)
mutated < Mutate(message)
cov, execPath, crash < ExecCheckCoverage(mutated, P)
if noCovUpdate (cov,threshold) then
script < GenerateScript(fieldInfo, mutated, execPath)
seeds <+ CTGeneration(script)
seeds <— PostCheck(seeds)
cov, crash < Execution(seeds, P)
if seeds’ < newCoverage(cov, seeds) then
| queue < queue U seeds’
end

end

else if isInteresting(cov) then
‘ queue <— queue U mutated

end

end
return crash

the overall effectiveness of test case generation and aids in exercising unexplored

program behaviors.

Algorithm 4 outlines the process of testing Zigbee protocol implementation by

leveraging both coverage-guided fuzzing and combinatorial testing. Coverage-guided

fuzzing is employed initially to cover easily reachable branches (lines 6-9 and 19-21).

If the fuzzing engine fails to explore any new execution paths within a predefined

threshold of mutation attempts (lines 10-18), the algorithm switches to combinatorial

69

testing. During combinatorial testing, the coverage-guided fuzzing component assists
in selecting suitable message fields and their representative values for constructing a
test model. This involves identifying a message field and its corresponding value from
a favored test case that triggers new code coverage.

Combinatorial testing aids the coverage-guided fuzzing component in covering
combinations of important message fields that are challenging to achieve through
random mutation. The generated combinatorial testing (CT) test seeds are prioritized
for execution based on their code coverage. It is important to note that not every
CT test case requires mutation, as some may exhibit similar execution behaviors.
Only test cases that cover new program branches are added to the message queue for
further mutation (lines 15-17). This selective approach optimizes the use of resources

by focusing on test cases that yield new program coverage.

5.2.3.1 Combinatorial Test Generation

The process of creating CT test models for each category of the ZCL message
format can be time-consuming and labor-intensive. To address this challenge, CT-
BFuzz leverages coverage-guided fuzzing to dynamically generate test models based
on the current favored test case, execution path, and the identified control fields.
By analyzing the favored test case, CT-BFuzz identifies the control fields associated
with the current execution path covered by the test case. These control fields are
then selected for combinatorial testing, as they play a crucial role in influencing the
program’s behavior. Furthermore, there are inter-field dependencies within the ZCL
message format, which can impact the execution path. The Zighee protocol specifica-
tion already defines several field dependencies for each message format category [48],

and these dependencies have been incorporated into the message format script used

70

FC Manu TranSeq CmdID AttriD AttrType AttrValue

Control Flow Graph
Favored 01| o001 01 02 0003 42 7zcltest

Test Case

Current Execution Path: ADC>E>G>X
Control Fields at Block E: [AttrType]

Combinatorial Test Set

i T S ST S ST -
1| AttrType | AttrID | CmdIDf§ FC | Manu [TranSeq | AttrValue |\
i 42 3 2 I} 0 0 0 * |
a2 0 2 1)1 1 1 * :
1
o2 0 2 ! * * *
| i 1
2 . * * *
AN v
t-way test of values populated of
control fields non-control fields

* represents arbitrary values taken of the message fields

Figure 5.2: An example of message fields used for combinatorial testing.

by CT-BFuzz. Consequently, CT-BFuzz includes the dependent fields of the current
favored test case as critical fields for combinatorial testing as well.

Figure 5.2 illustrates an example of how CT-BFuzz selects message fields for
combinatorial testing based on the current fuzzing result. Let’s consider a scenario
where the fuzzer is currently fuzzing the message field AttrValue of the current fa-
vored test case, but has not discovered any new execution paths after a certain period
of time. The favored test case exercises a specific execution path A—-C—-E—-G—X,
where each character represents a basic block and X denotes the exit block.

To explore deeper along this execution path, CT-BFuzz performs the following
steps: (1) Identifying the last uncovered block: CT-BFuzz analyzes the control flow
graph and coverage report to determine the last covered block (excluding the exit
block X) that contains an uncovered branch. In the example, Block G is the last
covered block, and it has an uncovered branch leading to Block F. (2) Searching for
control fields: CT-BFuzz searches for the control fields of the predecessor block FE

of Block F in the list of control fields. In this case, the message field AttrType is

71

identified as a control field. (3) Continuing the search: CT-BFuzz continues searching
for the control fields of the successor blocks of Block F until it reaches the exit block
X (e.g., Block J in the example). This process helps to collect a list of control fields
of potential paths rather than an individual uncovered basic blocks.

In addition to the above steps, CT-BFuzz examines the message field format of
the current favored test case. If there are any dependent fields whose current values
must be retained, such fields are also included in the combinatorial test generation.
For instance, in the example, the message field CmdID is a dependent field specified
in ZCL specification that decides the ZCL payload. Therefore it is also regarded as
control field and included in the generation of combinatorial tests.

For each identified message fields, CT-BFuzz will use one of the following strate-
gies to determine its value domains, i.e., the set of possible values that can take:

e Specification: using values described in the Zighee protocol specification.
Specifically, if a message field is associated with an enum type, the corresponding
values specified in message format script are directly used as its value domain.

e Dependent: using specified values according to current favored test case and
the execution path. This value domain could be either defined in protocol
specification (e.g., a single value or small sub-set of enumeration values), or
selected during the mutation process to generate current favored test cases.

e Random: generating four different values at random as the value domain. This
strategy will be used for message field like AttrValue in Figure 5.2 whose type
is usually string type.

e No Values: using a small range of numbers based on the defined length. This
strategy will be used if no concret values are specified in the protocol specifica-
tion. For example, AttrID is defined with word type. Rather than enumerating

216 values of this field, a small set of values including current value of the fa-
72

vored test case, the first 10 numbers and several boundary numbers, are used

as its value domain.
Once the control fields and their value domains are identified, CT-BFuzz applies t-
way combinatorial testing to these fields. The goal is to generate combinations of
values for the control fields, as combinations of these fields are more critical than
non-control fields in triggering specific program behaviors. In the example shown in
Figure 5.2, the message fields AttrType, AttrID, and CmdID are selected for 2-way
combinatorial test generation. To construct complete test seeds, CT-BFuzz adds the
representative values of the non-control fields to the combinatorial test set. These
values ensure that the generated test cases cover the complete message format. The
order of the message fields is adjusted based on the message format script to maintain

consistency and accurately reflect the structure of the message.

5.2.3.2 Post-Generation Check

The limitation of combinatorial testing (CT) in dynamically generating message
fields based on dependent fields is a significant challenge. Currently, most CT appli-
cations only support simple arithmetic-related constraints. Once the message fields
are defined in the testing script from scratch for CT, all of them are used to generate
the test set. To overcome this limitation, CT-BFuzz incorporates a post-generation
check process to ensure the validity of the generated test set. After the combinatorial
test set is generated, CT-BFuzz performs a post-generation check on each test case
to reconstruct valid ZCL messages based on the given message format script. This
check takes into account the dependencies between message fields and dynamically
includes/excludes fields as required.

For example, in Figure 2.2a, the message field Manufacturer Code is only in-

cluded in a ZCL message if a particular bit of the message field Frame Control is
73

set to 1 [48]. Otherwise, it should be omitted. The post-generation check identifies
such dependencies and ensures that the generated test cases conform to the message
format definition. By performing this post-generation check, CT-BFuzz guarantees
that the test set consists of valid ZCL messages that adhere to the message format
specifications. This ensures the accuracy and reliability of the generated test cases

for further testing and evaluation.

5.3 Implementation of CT-BFuzz

In this section, we discuss some major decisions in the implementation of CT-
BFuzz, including static taint analysis using Frama-C [76], CT test generation using
ACTS [77] and fuzzing engine using Z-Fuzzer [71]. The source code of CT-BFuzz is
avaliable at https://github.com/zigbeeprotocol/ctbfuzz.

We use Frama-C, an open-source platform designed for source-code analysis of
C software to analyze the source code of target Zigbee protocol stack. To identify the
path variables, we first preprocess the protocol stack’s source code using IAR compiler,
which is a commercial compiler of TAR Embedded Workbench [62] and used by many
Zighee protocol vendors. We also customize Frama-C by implementing a new plugin
script using Ocaml for AST analysis and path variable collection. Particularly, the
new plugin script can handle TAR-specific and architecture-specific syntax that are
not recoginzed by existing analysis tools.

Frama-C is also used for static taint analysis to distinguish the control fields.
We first generate a set of ZCL messages in which each message represents a unique
type of ZCL messages using the given message format script. The script is manually
constructed with block-based protocol representation used by many protocol fuzzers
like Boofuzz [14]. Then every message field of generated test messages is labled as

a taint source for static taint analysis. Based on the path variable result and taint
74

https://github.com/zigbeeprotocol/ctbfuzz

analysis result, we finally identify the control fields that could influence the program
execution.

We utilize ACTS (Automated Combinatorial Testing for Software) [77], a pop-
ular testing tool to generate t-way combinatorial test sets. ACTS offers efficient algo-
rithms and techniques to handle the combinatorial explosion problem. By leveraging
ACTS, CT-BFuzz can intelligently select appropriate control fields and their repre-
sentative values for combinatorial testing, ensuring coverage of important field combi-
nations. When generating the combinatorial test sets, the default strength of control
fields is set to 2 that has been applied by many existing CT applications [55, 56, 59].

The fuzzing engine is implemented based on Z-Fuzzer’s fuzzing engine that lever-
ages grammar-based fuzzing with code coverage heuristics to generate high-quality
test cases. It is also a device-agnostic fuzzing platform that satisfies underlying hard-
ware requirements from most Zigbee protocol vendors to simulate the protocol stack
execution by using TAR simulator [62]. We modify its fuzzing process to launch com-
binatorial testing when the fuzzer cannot explore any new execution path after a
period of time. Here we define a threshold of 50 mutation times to represent this

timeout.

5.4 Evaluation of CT-BFuzz
In this section, we evaluate CT-BFuzz through multiple experiments. The ex-
periments are designed to answer the following research questions:
e RQ1: Can CT-BFuzz achieve better fuzzing performance compared to state-
of-the-art protocol fuzzers?
e RQ2: How efficient is CT-BFuzz at detecting vulnerabilities compared to state-

of-the-art protocol fuzzers?

5

We illustrate the efficiency of CT-BFuzz in compariosn with five basedline pro-
tocol fuzzers, Peach [15], Boofuzz [14], Boofuzz with CT mode, Z-Fuzzer [71] and
TaintBFuzz [70]. Boofuzz is the successor of Sulley [44], an industry-standard proto-
col fuzzer more actively maintained than Sulley. The latest version of Boofuzz also
implements a plugin of combinatorial testing [78]. According existing CT applica-
tions [55,56,59], we set the default strength of CT in Boofuzz and CT-BFuzz to 2.
Boofuzz and Peach do not initially work with the Zigbee protocol. Hence, we incor-
porated them with our proxy server and simulation platform to send test inputs for
Zighee protocol execution.

All of our experiments were performed on a machine with eight cores (Intel®
Core™ i7-6700 CPU @ 3.40GHz) and 32 GB memory running the Windows 10 Pro
operating system and IAR Embedded Workbench for ARM 8.3. We use a widespread
Zighee protocol implementation Z-Stack [61] as the target program, developed by
Texas Instruments with various sample project codebases, and its source code is
available. From the user’s point of view, the ZCL is a protocol that runs at the
application layer and serves as the core library for the Zigbee protocol stack. We
employ ZCL as a case study in our evaluation. We ran each fuzzer on Z-Stack over
24 hours. All experiments were repeated ten times. We also set a threshold as 50 of
mutation times to represent the period of time for calling CT when the fuzzer cannot

explore any new execution path.

5.4.1 Fuzzing Performance

To answer RQ1, we performed a set of fuzzing experiments on each fuzzer
to examine their generated test cases, statement coverage, and edge coverage. The
fuzzers produce test cases with the same message format script constructed based on

ZCL specification. Table 5.1 provides the results of the fuzzing experiments comparing

76

Table 5.1: Fuzzing performance of all fuzzers on Z-stack in 10 runs.

Fuzzer ‘ Unique Test Cases \ Statement Coverage \ Edge Coverage

‘ total % ‘ total %
CT-BFuzz 10,584 1147 71.13% 816 75.91%
TaintBFuzz 12,493 1111 68.88% 800 74.42%
Z-Fuzzer 61,386 971 63.18% 769 71.53%
Boofuzz-CT 111 761 49.51% 511 47.53%
Boofuzz 16,756 912 59.33% 680 63.26%
Peach 18,271 850 55.30% 628 58.42%

CT-BFuzz with other state-of-the-art protocol fuzzers. It is observed that CT-BFuzz
outperforms the other state-of-the-art protocol fuzzers in terms of effectiveness.

Test Case Generation. We examine the uniqueness of the test cases produced
by all fuzzers. CT-BFuzz can achieve higher code coverage than other fuzzers with
fewer test cases, especially with five times fewer test cases than Z-Fuzzer. With com-
binatorial testing, it efficiently generates test cases to covering important combination
values of message fields rather than enumerating all possible comibinations.

In addition, to differentiate between different fuzzers on test case creation, we
classify test cases according to the Zighee protocol standard using the field Command
Identification in the ZCL header. CT-BFuzz generated 13 new types of test cases
that are not covered by other fuzzers. Particularly, half of the new types are new
combinations of the message fields Attribute Identifier and Attribute Type, which
exercises new execution paths.

The superior performance of CT-BFuzz can be attributed to the combination
of combinatorial testing and fuzzing techniques. By leveraging combinatorial testing,
CT-BFuzz intelligently selects critical message fields and their representative values,

allowing for effective exploration of the input space. The integration of coverage-

7

80

70

= Peach
Boofuzz
= Z-Fuzzer
TaintBFuzz
== Boofuzz-CT
= CT-BFuzz

70

60

50 - ,_f_z—F—"—’_r/_’_J

Edge Coverage (%)

= Peach
Boofuzz
= Z-Fuzzer
TaintBFuzz
= Boofuzz-CT
~—— CT-BFuzz

Statement Coverage (%)

T T T T T 1 T T T T T 1
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Test Case (#) Test Case (#)
(a) Statement Coverage (b) Edge Coverage

Figure 5.3: Statement coverage and edge coverage achieved by fuzzers over 10 runs.

guided fuzzing further enhances the test case generation process by prioritizing inputs
that are likely to uncover new execution paths.

Code Coverage. We measure the code coverage on all fuzzers. Peach and
Boofuzz cannot directly work with Z-Stack execution, so we integrated them with
our protocol simulation platform via the proxy server. The code coverage results
in Table 5.1 indicate that CT-BFuzz achieves higher statement coverage and edge
coverage compared to the other fuzzers, even with fewer test cases.

Figure 5.3 provides a visual representation of the code coverage trends for each
fuzzer. The X-axis represents the median number of test cases generated, while the
Y-axis represents the percentage of statement coverage and edge coverage on average.
For better result presentation, we plot the coverage trend of the first 6000 test cases
generation to show in Fig 5.3. The zoomed-in graph in the lower left corner display
more details about how the code coverage varies in the first 100 test cases. It shows
that Boofuzz, Z-Fuzzer TaintBFuzz and CT-BFuzz quickly proliferated at an early
phase. Minor changes in ZCL header can significantly impact the execution path that

is performed since the Zigbhee protocol first validates a ZCL header before processing

78

any other fields of the message. Peach slowly increased its code coverage because it
randomly fuzzed a message field, . The other four fuzzers started mutation from the
first message field resulting in the rapid code coverage increment in the early phase.

Peach focuses on generating test cases that conform to the message format def-
inition specified in the protocol specification. However, its random mutation strategy
and lack of consideration for program execution heuristics result in lower code cover-
age compared to CT-BFuzz. Similarly, Boofuzz, in its original version, also exhibits
lower code coverage due to its sequential mutation of a single message field. Moreover,
in theory, the CT mode in Boofuzz should provide better code coverage by incorpo-
rating combinatorial testing. However, the CT mode of Boofuzz has limitations in
considering inter-field dependencies defined in the message format script. As a result,
it generates duplicate and invalid test cases that are rejected by the protocol stack
at an earlier execution stage. We have report this issue to Boofuzz’s developers for
review.

While Z-Fuzzer prioritizes test cases that explore new execution paths, it lacks
consideration for the target program structure. This may result in a less system-
atic exploration of the execution paths and potentially limit its code coverage. On
the other hand, TaintBFuzz utilizes taint analysis to infer the relationship between
message fields and path constraints, allowing it to guide fuzzing towards unexplored
execution paths. However, similar to Z-Fuzzer, it focuses on mutating a single mes-
sage field at a time and may not fully explore the combinations of multiple message
fields.

In contrast, CT-BFuzz places a strong emphasis on the combinations of control
fields through combinatorial testing. By considering the interdependencies of message
fields and applying combinatorial testing techniques, CT-BFuzz generates diversified

test cases that can explore a greater number of unexplored execution paths. This
79

Table 5.2: Number of messages generated by all fuzzers for triggering vulnerabilities.

Vulnerability ‘ Peach Boofuzz Boofuzz-CT Z-Fuzzer TaintBFuzz CT-BFuzz
CVE-2020-27890 X X X 96 103 97
CVE-2020-27891 1 57 X 71 17 33
CVE-2020-27892 4 10 1 47 10 21
zclParselnReportCmd X X X 2 3 6
zclParseInRead RspCmd X X X 3 2 3
zclProcessInWriteCmd 2 X X 5 2 2
zcl_SendReadReportCfgCmd X X X X 2 5
zcl_SendCommand X X X X 2 4
Total T 67 1 224 141 171

approach leads to higher code coverage even with fewer test cases compared to Z-

Fuzzer and TaintBFuzz.

5.4.2 Vulnerability Detection

We measure the number of unique vulnerabilities discovered and time consump-
tion by all fuzzers to answer RQ2. On each fuzzer, we performed the experiments
ten times and presented the result in Table 5.2. We present the total amount of test
cases triggering the vulnerability on average. The vulnerabilities are distinguished by
comparing the call stack and performing manual analysis.

Detected Vulnerability. As shown in Table 5.2, CT-BFuzz has shown effec-
tiveness in detecting existing vulnerabilities with a higher number of test cases com-
pared to other fuzzers. We cross-checked the vulnerabilities detected by all fuzzers.
Though Z-Fuzzer has generated more test cases for discovering CVE-2020-27891 and
CVE-2020-27892 than CT-BFuzz, only 11% of them can be manually reproduced,
indicating a higher false positive rate. On the other hand, a significant portion of the
test cases generated by CT-BFuzz for the detected vulnerabilities are reproducible,
demonstrating the reliability of the generated test cases. In the case of CVE-2020-
27892, CT-BFuzz generated fewer test cases compared to Z-Fuzzer because it focuses

on generating combinations of important message fields, while Z-Fuzzer uses a more

80

Table 5.3: Time consumption (mins) of triggering vulnerabilities by all fuzzers.

Vulnerability ‘ Peach Boofuzz Boofuzz-CT Z-Fuzzer TaintBFuzz CT-BFuzz
CVE-2020-27890 - - - 102 93 85
CVE-2020-27891 69 259 - 713 91 100
CVE-2020-27892 74 352 2 1044 309 300
zclParseInReportCmd - - - 141 127 98
zclParseInRead RspCmd - - - 259 274 169
zclProcessInWriteCmd 673 - - 64 78 81
zcl_SendReadReportCfgCmd - - - - 235 120
zcl_SendCommand - - - - 234 123

extensive fuzzing dictionary to mutate the fields, resulting in many irrelevant test
cases that do not contribute to path exploration and bug detection. We also observe
that CT-BFuzz exhibits the capability to generate a wider variety of test cases than
other protocol fuzzers, particularly when categorizing them based on the message
fields Command Identifier. For example, for the vulnerability in function zclPar-
seInReportCmd, CT-BFuzz generate two unique combinations of the message fields
Attribute Identifier and Attribute Data Type that are not generated by Z-Fuzzer and
TaintBFuzz.

Time Consumption. Additionally, we evaluate the time consumption of all
fuzzers for triggering each vulnerability. The result is presented in Table 5.3. We
report the minium spending time of every fuzzer for detecting the vulnerabilities over
ten fuzzing runs. As the execution engine needs to be restarted for each test case
to generate the coverage report, this execution time is also included in the spending
time.

Peach and Boofuzz-CT outperform other fuzzers in terms of time consumption
for CVE-2020-27892, which can be triggered when the field Command Identifier field
is set to 0x12 or 0x14. Specifically, Boofuzz-CT detects this vulnerability in just 2
minutes. This exceptional performance is attributed to the specific mutation strat-

egy employed by Boofuzz-CT, where it retains the Frame Control field and mutates

81

only the Command Identifier field when the CT strength is set to 2. This strategy
targets the specific conditions required to trigger the vulnerability and leads to faster
detection.

Apart from CVE-2020-27892, CT-BFuzz demonstrates superior efficiency in
detecting most vulnerabilities compared to other protocol fuzzers. Instead of mutating
every CT test case, CT-BFuzz executes all CT test cases together and evaluates their
code coverage. Only the test cases that cover new program branches are selected for
further mutation and insertion into the message queue. This approach saves time by
focusing on generating new and impactful test cases. Differently, Boofuzz, Z-Fuzzer,
and TaintBFuzz evaluate every test case individually in terms of code coverage and
decide how to mutate them. This process can be more time-consuming compared
to CT-BFuzz’s approach of selectively mutating test cases that contribute to new
code coverage. Consequently, CT-BFuzz achieves faster detection of vulnerabilities
compared to Z-Fuzzer and TaintBFuzz due to its efficient test case selection and

mutation strategy.

5.5 Conclusion

In summary, this chapter introduces the CT-BFuzz approach, which combines
combinatorial testing and fuzzing to effectively test Zigbee protocol implementations.
By leveraging static taint analysis and fuzzing techniques, CT-BFuzz identifies impor-
tant message fields and their representative values, which are then used to generate
CT test models. These models are further utilized to generate diversified test cases,
with a focus on exploring the combination values of control fields that have a higher
likelihood of uncovering unexplored execution paths.

The evaluation of CT-BFuzz on the widely used Zigbhee protocol implementa-

tion, Z-Stack, showcases its effectiveness and efficiency compared to state-of-the-art

82

protocol fuzzing tools. The experimental results demonstrate that CT-BFuzz out-
performs other fuzzers in terms of code coverage, vulnerability detection, and time
consumption. By systematically generating diversified test cases and focusing on com-
bination values of important message fields, CT-BFuzz improves the overall testing
quality and efficiency for Zighee protocol implementations.

Overall, the CT-BFuzz approach presents a valuable contribution to the field of
protocol testing, specifically for Zigbee protocols, and showcases the benefits of inte-
grating combinatorial testing and fuzzing techniques to enhance testing effectiveness

and efficiency.

83

Chapter 6
Conclusion

In this dissertation, the main objective was to tackle the challenges in security
analysis of Zigbee protocol by applying fuzz testing to Zigbee protocol implemen-
tations. Three different approaches were presented to address this goal: Z-Fuzzer,
TaintBFuzz, and CT-BFuzz.

The first approach, Z-Fuzzer, introduced a device-agnostic fuzzing platform
specifically designed for Zigbee protocol implementations. It utilized grammar-based
fuzzing techniques along with code coverage heuristics to effectively discover vul-
nerabilities. Experimental results demonstrated the effectiveness and efficiency of
Z-Fuzzer compared to existing protocol fuzzing tools. Notably, six unique vulnera-
bilities were discovered in a mainstream Zigbee protocol stack, with three of them
assigned CVE IDs and evaluated as high severity.

The second approach, TaintBFuzz, presented an intelligent fuzzing solution that
focused on inferring the relationship between message fields and path constraints. By
understanding the constraint-field dependency, TaintBFuzz could precisely mutate
critical message fields and explore unexplored program branches. Experimental re-
sults showed that TaintBFuzz outperformed state-of-the-art protocol fuzzers in terms
of code coverage and vulnerability detection. Additionally, it identified two new
crashes in a mainstream Zighee protocol stack.

The third approach, CT-BFuzz, introduced a fuzzing approach that systemati-
cally generated diversified test cases to cover important combination values of message

fields. This approach utilized static taint analysis and fuzzing techniques to identify

84

significant message fields and their representative values, enabling the dynamic gen-
eration of Combinatorial Testing (CT) test models. The CT test set enhanced the
diversity of the fuzzing process, particularly targeting combination values of control
fields to explore unexplored execution paths. Evaluations conducted on a widely
used Zigbee protocol implementation demonstrated the superiority of CT-BFuzz over
existing protocol fuzzing tools.

The work presented in this dissertation could be extended along in several
directions. (1) Dynamic Combinatorial Testing on IoT Wireless Protocols:
The existing combinatorial testing applications are hard to generate test cases, in
which some input parameters are dynamically constructed depending on another
input parameter’s value. It requires further studies to generate adoptive method
including such dynamic insertation or deletion constraints for efficiently construct CT
test models. (2) Fuzzing on Other IoT Wireless Protocols: Besides the Zighee
protocol, the proposed fuzzing solutions would be applicable to other IoT wireless
protocols used for resource constrained devices. It would be interesting to investigate
the technical challenges to fuzzing those protocol implementations, such as Z-Wave,
NB-IoT, and LoRa. In addition, many IoT devices have extended multi-protocols
wireless MCUs, like BLE with Zigbee, WiFi with Zigbee, and BLE with Thread. It
would be another possible research area to detect security problems in mult-protocols
using fuzz testing.

Overall, the dissertation presented three novel approaches that addressed the
challenges in security analysis of Zigbee protocol through fuzz testing. These ap-
proaches showcased the effectiveness, efficiency, and superior performance of the pro-
posed solutions compared to existing state-of-the-art protocol fuzzing tools. The
discoveries of multiple vulnerabilities and crashes in mainstream Zighee protocol im-

plementations further validated the importance and impact of the research.

85

1]

References

A. M. Research, “IoT Device Market Expected to Reach $413.7 Billion By
2031,” https://www.globenewswire.com/news-release/2022/08/08 /2493893 /
0/en/IoT-Device-Market- Expected-to- Reach-413-7-Billion-By-2031- Allied-
Market-Research.html, 2022.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou,
“Understanding the Mirai Botnet,” in Proceedings of the 26th USENIX Security
Symposium (USENIX Security’17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 1093-1110. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 17 /technical-sessions/presentation /antonakakis

C. Cimpanu, “Over 65,000 Home Routers Are Proxying Bad Traffic for Bot-
nets, APTs,” https://www.bleepingcomputer.com /news/security /over-65-000-
home-routers-are-proxying-bad-traffic-for-botnets-apts/, April 12, 2018.

D. Lodge, “Steal your Wi-Fi key from your doorbell? IoT WTEF!
https://www.pentestpartners.com /security-blog/steal-your-wi-fi-key-from-
your-doorbell-iot-wtf/, 2016.

E. Turjeman, “Threat Spotlight: IoT application vulnerabilities leave 10T
devices open to attack,” https://blog.barracuda.com/2019/01/24 /threat-
spotlight-iot-application-vulnerabilities/, January 24, 2019.

T. Ricker, “ZIGBEE ON MARS!” https://www.theverge.com/2021/5/20/

22445330/ zigbee-on-mars-ingenuity-helicopter-perseverance-rover, 2021.

86

https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.bleepingcomputer.com/news/security/over-65-000-home-routers-are-proxying-bad-traffic-for-botnets-apts/
https://www.bleepingcomputer.com/news/security/over-65-000-home-routers-are-proxying-bad-traffic-for-botnets-apts/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://blog.barracuda.com/2019/01/24/threat-spotlight-iot-application-vulnerabilities/
https://blog.barracuda.com/2019/01/24/threat-spotlight-iot-application-vulnerabilities/
https://www.theverge.com/2021/5/20/22445330/zigbee-on-mars-ingenuity-helicopter-perseverance-rover
https://www.theverge.com/2021/5/20/22445330/zigbee-on-mars-ingenuity-helicopter-perseverance-rover

[7]

[10]

[11]

[12]

[13]

[14]

BusinessWire, “Analysts Confirm Half a Billion Zigbee Chipsets Sold,
Igniting IoT Innovation; Figures to Reach 3.8 Billion by 2023,"
https://www.businesswire.com /news/home/20180807005170/en/Analysts-
Confirm-Half-a-Billion-Zighee- Chipsets-Sold-Igniting-IoT-Innovation- Figures-
to-Reach-3.8-Billion-by-2023, 2018.

E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten, “IoT Goes Nuclear:
Creating a ZigBee Chain Reaction,” in Proceedings ot the 38th IEEE Symposium
on Security and Privacy (S€P °17). Piscataway, NJ, USA: IEEE, 2017, pp. 195—
212.

P. Morgner, S. Mattejat, Z. Benenson, C. Miiller, and F. Armknecht, “Insecure to
the Touch: Attacking ZigBee 3.0 via Touchlink Commissioning,” in Proceedings
of the 10th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec ’17). New York, NY, USA: Association for Computing Ma-
chinery, 2017, p. 230-240.

J. Wang, Z. Li, M. Sun, and J. C. Lui, “Zigbee’sNetwork Rejoin Procedure for
IoT Systems: Vulnerabilities and Implications,” in Proceedings of the 25th In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID
'22). New York, NY, USA: Association for Computing Machinery, 2022.

C. Vulnerabilities and Exposures, “Zighee CVE Records,” https://
cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee, 2022.

M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability Discov-
ery. London, UK: Pearson Education, 2007.

D. Aitel, “An Introduction to SPIKE, the Fuzzer Creation Kit,” BlackHat USA,
2002.

J. Pereyda, “Boofuzz: Network Protocol Fuzzing for Humans,” https://

boofuzz.readthedocs.io/en/latest /, 2020.
87

https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee
https://boofuzz.readthedocs.io/en/latest/
https://boofuzz.readthedocs.io/en/latest/

[15]

[16]
[17]

[18]

[20]

[21]

[22]

P. Tech, “Peach Fuzzer: Discover unknown vulnerabilities,” https://
www.peach.tech/, [online].

M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl, 2015.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-AFL: High-
throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emula-
tion,” in Proceedings of the 28th USENIX Security Symposium (USENIX Security
’19). Santa Clara, CA, USA: USENIX Association, Aug. 2019, pp. 1099-1114.
J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Advanced Wire-
less Fuzzing to Exploit New Bluetooth Escalation Targets,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security '20). Berkeley, CA, USA:
USENIX Association, Aug. 2020, pp. 19-36.

D. Maier, L. Seidel, and S. Park, “BaseSAFE: Baseband Sanitized Fuzzing
through Emulation,” in Proceedings of the 15th ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec ’20). New York,
NY, USA: Association for Computing Machinery, 2020, p. 122-132. [Online].
Available: https://doi.org/10.1145/3395351.3399360

F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in USENIX An-
nual Technical Conference, FREENIX Track, vol. 41. Vancouver, BC: USENIX
Association, 2005, p. 46.

A. Fioraldi, D. Maier, H. Eififeldt, and M. Heuse, “AFL++: Combining
Incremental Steps of Fuzzing Research,” in Proceedings of the 14th
USENIX Workshop on Offensive Technologies (WOOT’20). Berkeley, CA,
USA: USENIX Association, Aug. 2020. [Online]. Available: https:
//www .usenix.org/conference/woot20/presentation /fioraldi

V.-T. Pham, M. Bohme, and A. Roychoudhury, “AFLNet: A Greybox Fuzzer for

Network Protocols,” in Proceedings of the IEEE 13th International Conference
88

https://www.peach.tech/
https://www.peach.tech/
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1145/3395351.3399360
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi

[23]

[24]

[25]

[20]

[27]

on Software Testing, Validation and Verification (ICST’20). Piscataway, NJ,
USA: IEEE, 2020, pp. 460-465.
P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,” in
Proceedings of the 39th IEEE Symposium on Security and Privacy (SE&P ’18).
Piscataway, NJ, USA: IEEE, 2018, pp. 711-725.
B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-independent
Firmware Testing via Automatic Peripheral Interface Modeling,” in Proceedings
of the 29th USENIX Security Symposium (USENIX Security’20). Berkeley,
CA, USA: USENIX Association, Aug. 2020, pp. 1237-1254. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What You
Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices,”
in Proceedings of the 25th Annual Network and Distributed Systems Security
Symposium (NDSS’18). San Diego, CA, USA: Network and Distributed Systems
Security Symposium, 2018.
J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti, et al., “AVATAR: A Frame-
work to Support Dynamic Security Analysis of Embedded Systems’ Firmwares.”
in Proceedings of the 21st Network and Distributed Systems Security Symposium
(NDSS’1/). San Diego, CA, USA: Network and Distributed Systems Security
Symposium, 2014.
S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “VUzzer:
Application-aware Evolutionary Fuzzing,” in Proceedings of the 24th Network
and Distributed Systems Security Symposium (NDSS ’17), vol. 17. San Diego,
CA, USA: Network and Distributed Systems Security Symposium, 2017, pp.

1-14.

89

https://www.usenix.org/conference/usenixsecurity20/presentation/feng

[28]

[29]

[30]

[31]

[32]

[33]

S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen, “GREY-
ONE: Data flow sensitive fuzzing,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security '20). Berkeley, CA, USA: USENIX Association,
Aug. 2020, pp. 2577-2594.

C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with Input-to-State Correspondence.” in Proceedings
of the 26th Network and Distributed Systems Security Symposium (NDSS ’19),
vol. 19. San Diego, CA, USA: Network and Distributed Systems Security Sym-
posium, 2019, pp. 1-15.

J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun,
“PATA: Fuzzing with Path Aware Taint Analysis,” in Proceediings of the 43rd
IEEE Symposium on Security and Privacy (SE&P '22). Piscataway, NJ, USA:
IEEE, 2022, pp. 154-170.

D. Gislason, Zigbee Wireless Networking, 1st Edition. London, UK: Newnes,
2008.

QEMU, “QEMU ARM Guest Support,” https://wiki.qemu.org/
Documentation/Platforms/ARM#Supported_in_gemu-system-arm, 2018.

A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel,
G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware Re-hosting
Through Abstraction Layer Emulation,” in Proceedings of the 29th USENIX
Security Symposium (USENIX Security’20). Berkeley, CA, USA: USENIX As-
sociation, Aug. 2020, pp. 1201-1218.

7. Alliance, “Zigbee Specification,” https://zigbeealliance.org/wp-content /
uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf, ~ August 5,
2015.

90

https://wiki.qemu.org/Documentation/Platforms/ARM#Supported_in_qemu-system-arm
https://wiki.qemu.org/Documentation/Platforms/ARM#Supported_in_qemu-system-arm
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf

[35]

[36]

[37]

[38]

[40]

T. Instruments, “Z-Stack 3.0 Developer’s Guide,” https://software-
dl.ti.com/simplelink /esd /plugins/simplelink zighee_sdk_plugin/1.60.00.14/
docs/zighee_user_guide/html/zigbee/developing_ zigbee_applications/
z_stack_developers_guide/z-stack-overview.html, 2006.

J. Mikulskis, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Snout - An
Extensible IoT Pen-Testing Tool,” Poster presented at: the 26th ACM SIGSAC

Conference on Computer and Communications Security (CCS ’19), 2019.

[oTcube, “Blackbox-testing zfuzz,” https://iotcube.net/userguide/manual/
ztuzz, 2021.
B. Security, “Dynamic, Black Box Testing on the ZigBee,” https://

beyondsecurity.com /dynamic-fuzzing-testing-zighee.html?cn-reloaded=1, 2021.
D.-G. Akestoridis, M. Harishankar, M. Weber, and P. Tague, “Zigator:
Analyzing the Security of Zigbee-enabled Smart Homes,” in Proceedings of the
18th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec’20). New York, NY, USA: Association for Computing Machinery, 2020,
pp. 77-88. [Online]. Available: https://doi.org/10.1145/3395351.3399363

X. Ma, Q. Zeng, H. Chi, and L. Luo, “No More Companion Apps Hacking but
One Dongle: Hub-Based Blackbox Fuzzing of IoT Firmware,” in Proceedings
of the 21st Annual International Conference on Mobile Systems, Applications
and Services (MobiSys ’23), ser. MobiSys '23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 205-218. [Online]. Available:
https://doi.org/10.1145/3581791.3596857

B. Cui, S. Liang, S. Chen, B. Zhao, and X. Liang, “A Novel Fuzzing Method
for Zigbee based on Finite State Machine,” International Journal of Distributed

Sensor Networks, vol. 10, no. 1, p. 762891, 2014.

91

https://software-dl.ti.com/simplelink/esd/plugins/simplelink_zigbee_sdk_plugin/1.60.00.14/docs/zigbee_user_guide/html/zigbee/developing_zigbee_applications/z_stack_developers_guide/z-stack-overview.html
https://software-dl.ti.com/simplelink/esd/plugins/simplelink_zigbee_sdk_plugin/1.60.00.14/docs/zigbee_user_guide/html/zigbee/developing_zigbee_applications/z_stack_developers_guide/z-stack-overview.html
https://software-dl.ti.com/simplelink/esd/plugins/simplelink_zigbee_sdk_plugin/1.60.00.14/docs/zigbee_user_guide/html/zigbee/developing_zigbee_applications/z_stack_developers_guide/z-stack-overview.html
https://software-dl.ti.com/simplelink/esd/plugins/simplelink_zigbee_sdk_plugin/1.60.00.14/docs/zigbee_user_guide/html/zigbee/developing_zigbee_applications/z_stack_developers_guide/z-stack-overview.html
https://iotcube.net/userguide/manual/zfuzz
https://iotcube.net/userguide/manual/zfuzz
https://beyondsecurity.com/dynamic-fuzzing-testing-zigbee.html?cn-reloaded=1
https://beyondsecurity.com/dynamic-fuzzing-testing-zigbee.html?cn-reloaded=1
https://doi.org/10.1145/3395351.3399363
https://doi.org/10.1145/3581791.3596857
https://doi.org/10.1145/3581791.3596857

[42]

[43]

[44]

[45]

[46]

[47]

B. Cui, Z. Wang, B. Zhao, and X. Liang, “CG-Fuzzing: A Comprehensive Fuzzy
Algorithm for ZigBee,” International Journal of Ad Hoc and Ubiquitous Com-
puting, vol. 23, no. 3-4, pp. 203-215, 2016.

X. Wang and S. Hao, “Don’t kick over the beehive: Attacks and security
analysis on zigbee,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS '22). New York, NY, USA:
Association for Computing Machinery, 2022, p. 2857-2870. [Online]. Available:

https://doi.org/10.1145/3548606.3560703

G. Devarajan, “Unraveling SCADA Protocols: Using Sulley Fuzzer,” Defon 15
Hacking Conference, 2007.

S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated Network Protocol
Fuzzing Framework,” International Journal of Computer Science and Network
Security (IJCSNS), vol. 10, no. 8, p. 239, 2010.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vi-
gna, “SNOOZE: Toward A Stateful Network Protocol Fuzzer,” in Proceedings
of the 9th International Conference on Information Security (ISC’06). Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 343—-358.

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based Whitebox
Fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’08). New York,
NY, USA: Association for Computing Machinery, 2008, p. 206-215. [Online].
Available: https://doi.org/10.1145/1375581.1375607

Z. Alliance, “Zigbee Cluster Library Specification,” https://
zigbeealliance.org/wp-content /uploads/2019/12/07-5123-06-zigbee-cluster-

library-specification.pdf, Jan 14, 2016.

92

https://doi.org/10.1145/3548606.3560703
https://doi.org/10.1145/3548606.3560703
https://doi.org/10.1145/1375581.1375607
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

D. Aitel, “The advantages of block-based protocol analysis for security testing,”
Immunity Inc., February, vol. 105, p. 106, 2002.

M. Zalewski, “Technical whitepaper for afl-fuzz,” https://
lcamtuf.coredump.cx/afl /technical details.txt, 2015.

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting Fuzzing through Se-
lective Symbolic Execution,” in Proceedings of the 23rd Network and Distributed
Systems Security Symposium (NDSS ’16), no. 2016. San Diego, CA, USA:
Network and Distributed Systems Security Symposium, 2016, pp. 1-16.

I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A Practical Con-
colic Execution Engine Tailored for Hybrid Fuzzing,” in Proceedings of the 27th
USENIX Security Symposium (USENIX Security ’18). Berkeley, CA, USA:
USENIX Association, 2018, pp. 745-761.

P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing Deeply Nested Branches,”
in Proceedings of the 26th ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’'19). New York, NY, USA: Association for Computing
Machinery, 2019, pp. 499-513.

K. Zhang, X. Xiao, X. Zhu, R. Sun, M. Xue, and S. Wen, “Path Transitions Tell
More: Optimizing Fuzzing Schedules via Runtime Program States,” Proceedings
of the 44th International COnference on Software Engineering (ICSE '22), 2022.
D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial Testing.
CRC press, 2013.

C. Nie and H. Leung, “A Survey of Combinatorial Testing,” ACM Computing
Surveys (CSUR), vol. 43, no. 2, pp. 1-29, 2011.

W. Wang, Y. Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R. Kacker, and

R. Kuhn, “A Combinatorial Approach to Detecting Buffer Overflow Vulnerabili-
93

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

[58]

[59]

[61]

[62]

[63]

[64]

[65]

ties,” in 2011 IEEE/IFIP 41st International Conference on Dependable Systems
€9 Networks (DSN ’11). TEEE, 2011, pp. 269-278.

J. Chandrasekaran, Y. Lei, R. Kacker, and D. Richard Kuhn, “A Combinatorial
Approach to Testing Deep Neural Network-based Autonomous Driving Systems,”
in 2021 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW ’21), 2021, pp. 57-66.

H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial Testing of
RESTful APIs,” in Proceedings of the 44th International Conference on
Software Engineering (ICSE 22), ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 426-437. [Online]. Available:
https://doi.org/10.1145/3510003.3510151

H. Feng, X. Ren, Q. Wei, Y. Lei, R. Kacker, and D. S. Kuhn, “MagicMirror:
Towards High-Coverage Fuzzing of Smart Contracts,” in Proceeding of the 16th
IEEFE International Conference on Software Testing, Verification and Validation
(ICST '23). 1EEE, 2023, pp. 141-152.

T. Instruments, “A fully compliant ZigBee 3.x solution: Z-Stack,” http://
www.ti.com/tool/Z-STACK, 2018.

I. System, “IAR Embedded Workbench,” https://www.iar.com/products/
architectures/arm /iar-embedded-workbench-for-arm/, [online].

I. Systems, “C-SPY Debugging Guide for Amr cores,” https://
wwwfiles.iar.com/arm/webic/doc/EWARM_DebuggingGuide. ENU.pdf, [2015].
M. Ren, X. Ren, H. Feng, J. Ming, and Y. Lei, “Security Analysis of Zigbee
Protocol Implementation via Device-Agnostic Fuzzing,” Digital Threats, vol. 4,
no. 1, mar 2023. [Online|. Available: https://doi.org/10.1145/3551894

B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing IoT Firmware via

Multi-stage Message Generation,” in Proceedings of the 26th ACM SIGSAC
94

https://doi.org/10.1145/3510003.3510151
https://doi.org/10.1145/3510003.3510151
http://www.ti.com/tool/Z-STACK
http://www.ti.com/tool/Z-STACK
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DebuggingGuide.ENU.pdf
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DebuggingGuide.ENU.pdf
https://doi.org/10.1145/3551894

[66]

[68]
[69]

[71]

Conference on Computer and Communications Security (CCS’19). New York,
NY, USA: Association for Computing Machinery, 2019, p. 2525-2527. [Online].
Available: https://doi.org/10.1145/3319535.3363247

Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang, D. Sun, C. Zhang,
and B. Liu, “SRFuzzer: An Automatic Fuzzing Framework for Physical SOHO
Router Devices to Discover Multi-Type Vulnerabilities,” in Proceedings of the
35th Annual Computer Security Applications Conference (ACSAC’19). New
York, NY, USA: Association for Computing Machinery, 2019, p. 544-556.
[Online]. Available: https://doi.org/10.1145/3359789.3359826

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in Proceedings of the 25th ACM SIGSAC Conference on Computer
and Communications Security (CCS’18). New York, NY, USA: Association
for Computing Machinery, 2018, pp. 2123-2138. [Online]. Available:
https://doi.org/10.1145/3243734.3243804

T. Instruments, “CC2538,” http://www.ti.com/product/CC2538, [online].

O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: Security Evaluation
of Home-Based Iot Deployments,” in Proceedings of the 40th IEEE Symposium
on Security and Privacy (S€/P’19). Piscataway, NJ, USA: IEEE, 2019, pp.
1362-1380.

M. Ren, H. Zhang, X. Ren, J. Ming, and Y. Lei, “Intelligent Zigbee Protocol
Fuzzing via Constraint-Field Dependency Inference,” in Proceeding of the 28th
European Symposium on Research in Computer Security (ESORICS ’23). Lon-
don, United Kingdom: Springer Nature, 2023 (Just Accepted).

M. Ren, X. Ren, H. Feng, J. Ming, and Y. Lei, “Z-fuzzer: Device-agnostic
fuzzing of zigbee protocol implementation,” in Proceedings of the 14th ACM

Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
95

https://doi.org/10.1145/3319535.3363247
https://doi.org/10.1145/3359789.3359826
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
http://www.ti.com/product/CC2538

[72]

[73]

[74]

[77]

78]

'21). New York, NY, USA: Association for Computing Machinery, 2021, p.
347-358. [Online]. Available: https://doi.org/10.1145/3448300.3468296
Boofuzz, “Boofuzz Protocol Definition,” https://boofuzz.readthedocs.io/en/
stable /user /protocol-definition.html, 2020.

F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-

b

C: A Software Analysis Perspective,” Formal Aspects of Computing, vol. 27,
no. 3, pp. 573-609, 2015.

Z. Luo, F. Zuo, Y. Shen, X. Jiao, W. Chang, and Y. Jiang, “ICS Proto-
col Fuzzing: Coverage Guided Packet Crack and Generation,” in the 57th
ACM/IEEE Design Automation Conference (DAC '20). New York, NY, USA:
ACM/IEEE, 2020, pp. 1-6.

B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing IoT Firmware via
Multi-Stage Message Generation,” in Proceedings of the 21st ACM SIGSAC
Conference on Computer and Communications Security (CCS ’'19), ser. CCS
'19. New York, NY, USA: Association for Computing Machinery, 2019, p.
2525-2527. [Online|. Available: https://doi.org/10.1145/3319535.3363247

D. Biihler, P. Cuoq, B. Yakobowski, M. Lemerre, A. Maroneze, V. Perrelle,
and V. Prevosto, Fva - The Evolved Value Analysis plug-in, 24th ed., CEA-
List, Université Paris-Saclay Software Safety and Security Lab, Gif-sur-Yvette,
France, 2021.

L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A Combinatorial Test
Generation Tool,” in Proceedidng to the 6th IEEE International Conference on
Software Testing, Verification and Validation (ICST’13). Piscataway, NJ, USA:
IEEE, 2013.

J. Pereyda, “Boofuzz with combinatorial testing (v0.4.0),” https://

boofuzz.readthedocs.io/en/stable/user /changelog.html, [online].
96

https://doi.org/10.1145/3448300.3468296
https://boofuzz.readthedocs.io/en/stable/user/protocol-definition.html
https://boofuzz.readthedocs.io/en/stable/user/protocol-definition.html
https://doi.org/10.1145/3319535.3363247
https://boofuzz.readthedocs.io/en/stable/user/changelog.html
https://boofuzz.readthedocs.io/en/stable/user/changelog.html

Biographical Statement

Mengfei Ren was born in China in 1989. She received her Bachelor of Computer
Science and Technology from China University of Petroleum in 2011. She then joined
the University of Texas at Arlington for graduate studies in Computer Science and
earned her Master’s degree in 2013. After working in the industry for three years,
she went back to UT Arlington in 2017 for further study and earned her Ph.D.
in Computer Science in 2023. She serverd as Graduate Teaching Assistant in the
Department of Computer Science and Engineering at UT Arlington from 2018 - 2023.
She is a recipient of STEM fellowhsip from 2017 - 2023 and a Dissertation Fellowship
recipient in 2023. Her research interests lie at the intersection of cybersecurity and
software engineering. Her PhD thesis focuses on combining practical software testing
techniques to detect security vulnerabilities in IoT wireless protocols. Her work has
detected several critical vulnerabilities in a mainstream Zighee protocol stack. She
hopes to continue working on security analysis of IoT wireless protocols with advanced

software testing techniques after the completion of her doctoral program.

97

	Fuzz Testing of Zigbee Protocol Implementations
	Recommended Citation

	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Related Work
	Zigbee Protocol
	Security Analysis on Zigbee Protocol
	Fuzz Testing
	Conventional Protocol Fuzzing
	Coverage-guided Fuzzing
	Taint Inference Based Fuzzing

	Combinatorial Testing

	Device-Agnostic Fuzzing of Zigbee Protocol Implementation
	Overview
	Protocol Fuzzing Algorithm
	Implementation Details
	Test Case Generation and Mutation
	Execution Engine
	Coverage Report Analysis

	Evaluation of Z-Fuzzer
	Vulnerability Detection Capability
	Code Coverage

	Conclusion

	Intelligent Zigbee Protocol Fuzzing via Constraint-Field Dependency Inference
	Overview
	Design of TaintBFuzz
	Constraint Variable Identification
	Constraint-Field Dependency Inference
	Inference-guided Mutation

	Implementation of TaintBFuzz
	Evaluation of TaintBFuzz
	Fuzzing Performance
	Vulnerability Detection

	Conclusion

	Fuzzing Zigbee Protocol Implementation with Combinatorial Testing
	Overview
	Design of CT-BFuzz
	Path Variable Identification
	Control Field Identification
	Fuzzing with Combinatorial Testing

	Implementation of CT-BFuzz
	Evaluation of CT-BFuzz
	Fuzzing Performance
	Vulnerability Detection

	Conclusion

	Conclusion
	References
	Biographical Statement

