
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

Computer Science and Engineering
Dissertations Computer Science and Engineering Department

2023

Generative and Implicit Methods for 3D Point Cloud Processing Generative and Implicit Methods for 3D Point Cloud Processing

Mohammad Samiul Arshad

Follow this and additional works at: https://mavmatrix.uta.edu/cse_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Arshad, Mohammad Samiul, "Generative and Implicit Methods for 3D Point Cloud Processing" (2023).
Computer Science and Engineering Dissertations. 315.
https://mavmatrix.uta.edu/cse_dissertations/315

This Dissertation is brought to you for free and open access by the Computer Science and Engineering Department
at MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Dissertations by an
authorized administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu,
erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_dissertations?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_dissertations/315?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

GENERATIVE AND IMPLICIT METHODS FOR 3D POINT CLOUD PROCESSING

by

MOHAMMAD SAMIUL ARSHAD

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023

Copyright © by Mohammad Samiul Arshad 2023

All Rights Reserved

To the wellspring of my perseverance - my unwavering parents, my loving wife, and my precious

daughters. Excellentia est clavis ad successum.

ACKNOWLEDGMENTS

First and foremost, thanks to the Almighty!

I want to express my heartfelt gratitude to my supervising professor, Dr. William J. Beksi,

for his unwavering support and encouragement throughout my doctoral journey. His constant

motivation and invaluable guidance have been instrumental in shaping the success of my research.

In addition, I would like to extend my thanks to my esteemed academic advisors, Dr. Vassilis

Athitsos, Dr. Gautam Das, and Dr. Manfred Huber. Their keen interest in my research and

willingness to serve on my dissertation committee have been pivotal in enriching the quality of

my work. I am truly fortunate to have had the opportunity to work under the guidance of such

accomplished individuals, and I am sincerely grateful for their contributions to my academic and

research endeavors.

I would like to express my gratitude to the Texas Advanced Computing Center for their

invaluable support in providing computational resources for my doctoral studies. Furthermore, I

want to extend my thanks to my labmates for their collaborative spirit and engaging discussions.

Their input and feedback have been immensely valuable in shaping the direction of my research

and refining the ideas presented in my work.

I want to extend my heartfelt gratitude to the dedicated teachers, both in Bangladesh and in

the United States who have played a significant role in shaping my education and academic journey.

I am truly grateful to my friends for their inspiration and encouragement. Their unwavering support

and guidance have been a source of strength and motivation, propelling me forward in pursuit of

my educational aspirations.

Finally, I am deeply grateful to my parents, whose love, unwavering support, and invaluable

guidance have been pivotal in shaping the person I have become today. Their constant encour-

agement and unwavering belief in my abilities have been a wellspring of strength and inspiration

throughout every phase of my life. The sacrifices they have made on my behalf are immeasurable,

iv

and no amount of appreciation could truly capture the depth of my gratitude. Last but not least,

I want to express my heartfelt thanks to my wife, Umma Salma, whose unwavering love, sup-

port, and assistance have been instrumental in helping me achieve my goals along this challenging

journey. Her presence and encouragement have been a constant source of motivation, pushing me

forward even during the toughest times.

August 03, 2023

v

ABSTRACT

GENERATIVE AND IMPLICIT METHODS FOR 3D POINT CLOUD PROCESSING

Mohammad Samiul Arshad, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: William J. Beksi

3D point clouds are a popular form of data representation with many applications in com-

puter vision, computer graphics, and robotics. As the output of range sensing devices, point clouds

have gained popularity with the current interest in self-driving vehicles. More formally, point

clouds are an unordered set of irregular points collected from the surface of an object. Each point

consists of a Cartesian coordinate, along with additional information such as an RGB color value

and surface normal estimate. However, deep learning methods fall short in the processing of 3D

point clouds due to the irregular and permutation-invariant nature of the data.

In this dissertation, we design novel types of neural networks that leverage raw 3D point

clouds for data creation and reconstruction. First, we investigate dense colored point cloud gen-

eration and present an understanding of shape color correlation with a progressive conditional

generative adversarial network (PCGAN). PCGAN learns to create a 3D data distribution by pro-

ducing colored point clouds with subtle details at a range of resolutions. Next, we reconstruct

open surfaces with inner details by extracting surface points from an unsigned distance field with

an implicit point voxel network (IPVNet). In IPVNet, we show that by combining features from

different 3D representations such as point clouds and voxels, deep learning models can reduce both

inaccuracies and the number of outliers in the reconstruction. Finally, we discuss reconstructing

vi

a 3D surface from a single image by learning an implicit function through a spatial transformer

(LIST). Within the LIST framework, we introduce an innovative spatial transformer that creates

the ability to accurately retrieve intricate details from a single image without the need for any

additional rendering information.

Overall, we provide a comprehensive investigation of generative and implicit point cloud

processing techniques. We establish novel deep-learning frameworks to facilitate the 3D recon-

struction and generation tasks. Additionally, we make our source code and other resources publicly

available for the benefit of the research community.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xvi

Chapter Page

1. Introduction . 1

2. Preliminaries . 5

3. A Progressive Conditional Generative Adversarial Network for Generating Dense and

Colored 3D Point Clouds . 8

3.1 Introduction . 8

3.2 Contributions . 10

3.3 Related Work . 11

3.4 Problem Statement . 13

3.5 Background . 14

3.5.1 Wasserstein/Kantorovich-Rubinstein Distance 14

3.5.2 Generative Adversarial Networks . 14

3.5.3 Wasserstein GAN with Gradient Penalty 15

3.6 Model Architecture . 15

3.6.1 Generator . 16

3.6.2 Discriminator . 18

3.7 Experiments . 19

3.7.1 Results . 22

viii

3.8 Conclusion . 24

4. IPVNet: Learning Implicit Point-Voxel Features for Open-Surface 3D Reconstruction . . 27

4.1 Introduction . 27

4.2 Related Work . 29

4.2.1 Implicit Function Learning . 30

4.2.2 Learning from Points and Voxels . 31

4.3 Background . 32

4.4 Implicit Learning with Point-Voxel Features . 34

4.4.1 Point-Voxel Features . 34

4.4.2 Implicit Decoding . 36

4.4.3 Training . 36

4.4.4 Surface Inference . 37

4.4.5 Implementation Details . 38

4.5 Experiments . 39

4.5.1 Baselines and Metrics . 39

4.5.2 Object Reconstruction . 39

4.5.3 Real-World Scene Reconstruction . 42

4.6 Ablation Study . 44

4.6.1 Effect of Point Features on Object Reconstruction 44

4.6.2 Effect of Point Features on Scene Reconstruction 45

4.6.3 Post-Processing Outlier Removal . 45

4.7 Limitations and Future Directions . 46

4.8 Conclusion . 46

5. LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction 49

5.1 Introduction . 49

5.2 Related Work . 51

ix

5.3 Implicit Function Learning from Unaligned Pixel Features 52

5.3.1 Query Features From Coarse Predictions 53

5.3.2 Localized Query Features . 55

5.3.3 Signed Distance Function Prediction . 56

5.3.4 Loss Functions . 57

5.3.5 Training Details . 57

5.4 Experimental Evaluation . 58

5.4.1 Implementation Overview . 58

5.4.2 Training and Inference Time . 59

5.4.3 Datasets . 59

5.4.4 Baseline Models . 60

5.4.5 Metrics . 60

5.4.6 Single-View 3D Reconstruction Evaluation 61

5.4.6.1 Single-View 3D Reconstruction from Renderings of Synthetic

Objects . 62

5.4.6.2 Single-View 3D Reconstruction from Real Images 64

5.4.7 Ablation Study . 64

5.4.7.1 Setup . 64

5.4.7.2 Discussion . 65

5.4.8 Limitations and Future Directions . 66

5.5 Conclusion . 66

6. Conclusion . 75

REFERENCES . 77

BIOGRAPHICAL STATEMENT . 94

x

LIST OF ILLUSTRATIONS

Figure Page

3.1 Examples of 3D point clouds synthesized by our progressive conditional generative

adversarial network (PCGAN) for an assortment of classes. PCGAN generates both

geometry and color for point clouds, without supervision, through a coarse to fine

training process. 9

3.2 Given a random vector zin and class label c, the generator produces a colored point

cloud x̂. The real point cloud x, class label c, and the generated point cloud x̂ are

given to the discriminator, which then tries to predict the probability of the data

being real or synthetic. 16

3.3 The progressive growing of the point transformer GPT . The network starts with a

leaf output layer and branches (B1 . . . , BT), each incorporating a tree graph, and

converts a point vector z into a low-resolution point cloud. After a predefined num-

ber of iterations, the number of branches is increased through the replication R of

the last branch BT . In this figure, T was kept small for visualization purposes. The

process is continued until the generation of a point cloud at the desired resolution is

achieved. 18

3.4 The results of generated samples produced by PCGAN. Our model first learns the

basic structure of an object at low resolutions and gradually builds up towards high-

level details. The relationship between the object parts and their colors (e.g., the legs

of the chair/table are the same color while seat/top are contrasting) is also learned

by the network. Mitsuba 2 [1] was used to render the point clouds. 23

xi

4.1 An outside view of a dense 3D reconstructed scene from the Gibson Environment

[2] dataset using (a) the state of the art [3], and (b) our proposed approach. Note

that our method produces significantly less outliers. 28

4.2 A 2D representation of a closed (top row) and an open (bottom row) surface recon-

struction via occupancy, signed distance field (SDF), and unsigned distance field

(UDF). Note that the occupancy and SDF reconstructions of the open surface closes

the gap by producing an artifact while a UDF can preserve the surface opening.

The color intensity represents the distance from the surface where blue represents a

positive value, and red represents a zero (occupancy) or negative value (SDF). 33

4.3 Given a sparse point cloud x ∈ X of an object, we use a novel encoding scheme to

extract and aggregate point-voxel features from both the raw point cloud (x) and the

voxel occupancy (v). From the accumulated features, a decoder module regresses

the unsigned distance UD(p, S) from query point p to the surface S. By querying

the decoder multiple times, the inference sub-module can reconstruct the surface of

any target shape. 34

4.4 A visual depiction of the different neural architectures of IPVNet.
⊕

in (Θ) repre-

sents concatenation, and
⊗

in (Φ) indicates the fusion of point features with voxel

features. 40

4.5 Object reconstruction using NDF [3], IPVNet, and the ground truth (GT) from the

ShapeNet Cars [4] test set. IPVNet performs better on reconstructing thin structures

and preserving small gaps (inset images). 41

4.6 Reconstruction of closed surfaces from the ShapeNet [4] dataset. From left to right,

each triplet represents the input, reconstruction, and ground truth, respectively. . . . 41

xii

4.7 Scene reconstruction on the test set of the Gibson Environment [2] dataset using

NDF [3], IPVNet, and the respective ground truth (GT). Each odd row represents an

outside view of a scene while the even rows depict inside views. In contrast to the

baseline, IPVNet produces significantly less outliers (outside view) and improves

the preservation of geometric features (inset images). 43

4.8 A qualitative comparison between NDF [3], GIFS [5], and IPVNet on the Garments

[6] dataset. 44

4.9 An ablation study showing the effectiveness of point features during training. To

reconstruct a scene from the Gibson Environment [2] dataset, we used (a) the NDF

[3] baseline and (b) IPVNetwp with our inference algorithm (Algorithm 1). The

IPVNet reconstruction results are shown in (c) and the ground truth is displayed in

(d). Notice that Algorithm 1 by itself can reduce the number of outliers. However,

when point features are included during training, our reconstruction results (c) are

closer to the ground truth (d) and achieve more accurate details with far fewer outliers. 47

4.10 Reconstruction results after the NDF [3] baseline has been filtered using the input

coordinate range as the distance threshold, and IPVNet without any filtering. NDF

still includes outliers due to the surface curvature whereas the IPVNet reconstruction

consists of significantly less outliers without any filtering. 48

5.1 Five unique views of objects reconstructed by LIST from a single RGB image.

Not only does our model accurately recover occluded geometry, but also the re-

constructed surfaces are not influenced by the input-view direction. 50

5.2 To reconstruct the target object from a single RGB image, LIST first predicts the

coarse topology from the global image features. Simultaneously, local image fea-

tures are used to extract local geometry at the given query locations. Finally, an SDF

predictor (Ψ) estimates the signed distance field (σ) to reconstruct the target shape.

Note that images and colors are for visualization purposes only. 53

xiii

5.3 To evaluate the reconstruction quality of occluded surfaces, we first align the recon-

structed shape (b) with the input image (a) and cast rays onto the surface (c). Next,

we identify the (red) faces that intersect with the rays via ray-mesh intersection and

separate the reconstructed mesh into (d) visible and (e) occluded areas. 61

5.4 A qualitative comparison between LIST and the baseline models using the ShapeNet

[4] dataset. Our model recovers significantly better topological and geometric struc-

ture, and the reconstruction is not tainted by the input-view direction. GT denotes

the ground-truth objects. 62

5.5 A qualitative comparison between LIST and the baseline models using distinct

views of the same object. Not only can our model both maintain better topological

structure and geometric details, but it also provides a reconstruction that is stable

across different views of the object. 67

5.6 A qualitative comparison between LIST and the baseline models on occluded sur-

face reconstruction using the ShapeNet dataset. GT denotes the ground-truth objects. 68

5.7 Single-view reconstruction using real-world images from the Pix3D [7] test set (best

viewed zoomed in). 69

5.8 Qualitative results obtained from the ablation study using different network settings. 69

5.9 A qualitative comparison between LIST and the baseline models using the ShapeNet

dataset. Our model recovers significantly better topological and geometric structure,

and the reconstruction is not tainted by the input-view direction. GT denotes the

ground-truth objects. 70

5.10 Qualitative results of LIST reconstructions using distinct views of the same object.

Odd rows represent the input and even rows represent the reconstructions. 71

5.11 Qualitative results of LIST reconstructions using distinct views of the same object.

Odd rows represent the input and even rows represent the reconstructions. 72

xiv

5.12 Qualitative results of LIST reconstructions using distinct views of the same object.

Odd rows represent the input and even rows represent the reconstructions. 73

5.13 Examples of failed LIST reconstructions. 74

xv

LIST OF TABLES

Table Page

3.1 The class labels and the number of samples in the training data. 20

3.2 A qualitative evaluation of the Jensen-Shannon divergence (JSD), the minimum

matching distance (MMD), coverage (COV) with the Earth mover’s distance (EMD),

and the pseudo-chamfer distance (CD). The results of previous studies are from

[9, 10]. The magenta and cyan values denote the best and the second best results,

respectively. The resolution of the evaluated point clouds was 2048× 3. 25

3.3 The FDD score for point cloud samples generated by PCGAN. Notice that the scores

for real point clouds are almost zero. The point clouds were evaluated at a resolution

of 8192× 6. 26

4.1 A quantitative comparison between IPVNet and NDF [3] on the ShapeNet Cars [4]

dataset for object reconstruction from different input densities. IPVNet outperforms

NDF on all input densities. The chamfer-L2 results are of order ×10−4 and the

reconstruction results using an input density of N = 10000 were used to calculate

the F-score. 40

4.2 A quantitative comparison between NDF [3], GIFS [5], and IPVNet on the Gar-

ments [6] dataset for object reconstruction at different voxel resolutions. IPVNet

outperforms the baselines by significant margin in lower resolutions. The point

density was fixed to N = 3K for this experiment. The chamfer-L2 results are of

order ×10−4. 42

xvi

4.3 The object reconstruction accuracy for different grid resolutions on the ShapeNet

Cars [4] dataset using only voxel features (IPVNetwp) and point-voxel features (IPVNet).

The second column represents the percentage of raw points lost during the voxeliza-

tion process due to multiple points overlapping in the same grid. In low-resolution

grids, IPVNet significantly outperforms IPVNetwp. The chamfer-L2 results are of

order ×10−4. 45

5.1 Quantitative results using the ShapeNet [4] dataset for various models. The metrics

reported are the following: chamfer distance (CD), intersection over union (IoU),

and F-score. The CD values are scaled by 10−3. 61

5.2 A quantitative evaluation of the occluded surfaces of reconstructed synthetic objects

via our evaluation strategy. The metrics reported are the following: chamfer distance

(CDos), intersection over union (IoUos), and Fos-score. The CDos values are scaled

by 10−3. 63

5.3 A quantitative evaluation of the occluded surfaces of reconstructed objects via our

evaluation strategy. The metrics reported are the following: chamfer distance (CDos),

intersection over union (IoUos), and Fos-score. The CDos values are scaled by 10−3 . 64

5.4 Quantitative results obtained from the ablation study using different network settings. 64

xvii

CHAPTER 1

Introduction

The processing of 3D point clouds has witnessed a remarkable upswing in research activity

in recent years. This surge in interest can be attributed to the growing number of applications

where point clouds are valuable. For example, they are used in robot navigation and autonomous

vehicles to understand the environment, augmented reality to enhance virtual objects with real-

world context, as well as in healthcare for tasks such as medical imaging. In this context, a 3D point

cloud can be conceptualized as an unordered collection of irregularly distributed points sampled

from the surface of an object. Each point in the cloud is defined by its Cartesian coordinate and may

also contain additional information such as surface normal estimates and RGB color values. Point

clouds are typically generated by range-sensing devices such as structured light, time-of-flight, or

light detection and ranging (LiDAR).

Processing 3D point clouds presents several significant challenges compared to other data

modalities. The raw output from sensors often results in sparse points, irregular noise, and the pres-

ence of artifacts. Special attention and dedicated techniques are required to address these issues and

effectively process the raw sensor data. Computer vision algorithms, which have shown great suc-

cess in other domains, encounter difficulties when it comes to processing 3D point clouds. These

methods often rely on the assumption of spatial or temporal regularity in the data, which is not

inherently present in the irregular and unordered nature of 3D point clouds. As a result, traditional

deep learning architectures struggle to effectively capture and utilize the spatial relationships and

patterns within point cloud data. Therefore, specialized computer vision algorithms are required

to fully utilize the representational power of point clouds for 3D computer vision tasks.

1

Motivated by these observations, this dissertation explores new computer vision algorithms

and data representations to facilitate raw point cloud learning for 3D computer vision tasks. Specif-

ically, we investigate automated point cloud generation and reconstruction. Generation and recon-

struction are fundamental tasks in computer vision that play a crucial role in capturing and under-

standing the three-dimensional world. The importance of generation lies in the ability to create

synthetic 3D data, including point clouds or volumetric representations, which can be used for

training and evaluation purposes. Synthetic data generation allows researchers and practitioners to

overcome limitations in real-world data collection, such as scarcity, cost, or privacy concerns. By

generating diverse and realistic 3D data, it becomes possible to train and fine-tune algorithms and

models for various tasks, including object recognition, scene understanding, and pose estimation.

On the other hand, reconstruction focuses on the process of capturing and reconstructing the

3D structure and geometry of real-world objects or scenes from sensor data. This task is essential

for applications such as 3D modeling, augmented reality, robotics, and virtual reality. Accurate

and detailed reconstruction enables the creation of realistic virtual environments, precise object

recognition and tracking, and the ability to manipulate and interact with 3D objects. Reconstruc-

tion techniques also contribute to depth estimation, surface reconstruction, and motion analysis,

enabling a deeper understanding of the 3D world. Overall, generation and reconstruction in 3D

computer vision are critical for advancing the field and enabling a wide range of applications.

They provide the necessary tools and data to train and evaluate algorithms, create immersive ex-

periences, and enhance the perception and interaction capabilities of computer vision systems in

three-dimensional space.

This research introduces several significant advancements in the field of raw 3D point cloud

generation and reconstruction. First, we address the challenge of generating high-resolution point

clouds by introducing PCGAN. Next, we propose IPVNet, a method for reconstructing target

surfaces at any desired resolution using sparse scanning data. Finally, we introduce LIST, which

enables the recovery of 3D surfaces from a single 2D image.

2

All of these works provide open-source licenses, granting access to the source code, pro-

cessing scripts, training data, and experimental results. The resources are made available online

and offered to the public at no cost for their use and benefit. Below, we provide a summary of each

of these contributions.

Chapter 2: A Progressive Conditional Generative Adversarial Network for Generating Dense and

Colored 3D Point Clouds, International Conference on 3D Vision, 2020.

We introduce a novel conditional generative adversarial network that creates dense 3D point

clouds, with color, for assorted classes of objects in an unsupervised manner. To overcome the

difficulty of capturing intricate details at high resolutions, we propose a point transformer that

progressively grows the network through the use of graph convolutions. The network is composed

of a leaf output layer and an initial set of branches. Every training iteration evolves a point vector

into a point cloud of increasing resolution. After a fixed number of iterations, the number of

branches is increased by replicating the last branch. Experimental results show that our network is

capable of learning and mimicking a 3D data distribution, and produces colored point clouds with

fine details at multiple resolutions.

Chapter 3: IPVNet: Learning Implicit Point-Voxel Features for Open-Surface 3D Reconstruction,

Journal of Visual Communication and Image Representation, 2023.

Reconstruction of 3D open surfaces (e.g., non-watertight meshes) is an underexplored area

of computer vision. Recent learning-based implicit techniques have removed previous barriers by

enabling reconstruction in arbitrary resolutions. Yet, such approaches often rely on distinguishing

between the inside and outside of a surface in order to extract a zero level set when reconstructing

the target. In the case of open surfaces, this distinction often leads to artifacts such as the arti-

ficial closing of surface gaps. However, real-world data may contain intricate details defined by

salient surface gaps. Implicit functions that regress an unsigned distance field have shown promise

in reconstructing such open surfaces. Nonetheless, current unsigned implicit methods rely on a

discretized representation of the raw data. This not only bounds the learning process to the rep-

3

resentation’s resolution, but it also introduces outliers in the reconstruction. To enable accurate

reconstruction of open surfaces without introducing outliers, we propose a learning-based implicit

point-voxel model (IPVNet). IPVNet predicts the unsigned distance between a surface and a query

point in 3D space by leveraging both raw point cloud data and its discretized voxel counterpart.

Experiments on synthetic and real-world public datasets demonstrates that IPVNet outperforms

the state of the art while producing far fewer outliers in the resulting reconstruction.

Chapter 4: LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruc-

tion, International Conference on Computer Vision, 2023.

Accurate reconstruction of both the geometric and topological details of a 3D object from a

single 2D image embodies a fundamental challenge in computer vision. Existing explicit/implicit

solutions to this problem struggle to recover self-occluded geometry and/or faithfully reconstruct

topological shape structures. To resolve this dilemma, we introduce LIST, a novel neural archi-

tecture that leverages local and global image features to accurately reconstruct the geometric and

topological structure of a 3D object from a single image. We utilize global 2D features to predict

a coarse shape of the target object and then use it as a base for higher-resolution reconstruction.

By leveraging both local 2D features from the image and 3D features from the coarse prediction,

we can predict the signed distance between an arbitrary point and the target surface via an implicit

predictor with great accuracy. Furthermore, our model does not require camera estimation or pixel

alignment. It provides an uninfluenced reconstruction from the input-view direction. Through

qualitative and quantitative analysis, we show the superiority of our model in reconstructing 3D

objects from both synthetic and real-world images against the state of the art.

4

CHAPTER 2

Preliminaries

There are several common metrics used to measure the similarity between two individual

point clouds. In this chapter, we define the metrics employed to evaluate our models.

Chamfer Distance (CD): The chamfer distance (CD) between two meshes is defined as

CD(yGT, ypred) =
∑

a∈ypred

min
b∈ygt
||a− b||+

∑
b∈ygt

min
b∈ypred

||b− a||, (2.1)

where, yGT and ypred are two point clouds extracted from the surface of the ground-truth and

reconstructed object, respectively.

Intersection over Union (IoU): The volumetric intersection over union (IoU) is defined as the

quotient of the volume of the intersection of two meshes and the volume of their union,

IoU(Mpred,MGT) =
|Mpred ∩MGT|
|Mpred ∪MGT|

. (2.2)

F-score: The F-score, proposed in [11] as a comprehensive scoring metric for single-view recon-

struction, combines precision and recall to quantify the overall reconstruction quality. Concretely,

the F-score at a distance threshold d is given by

F (d) =
2 · P (d) ·R(d)

P (d) +R(d)
,

5

where P (·) and R(·) represents the precision and recall, respectively. Precision quantifies the

accuracy while recall assesses the completeness of the reconstruction. For the ground-truth ygt and

reconstructed point cloud ypred, the precision of an outcome at d can be calculated as

P (d) =
∑
i∈ypred

[min
j∈yGT

||i− j|| < d].

Similarly, the recall for a given d may be computed as

R(d) =
∑
j∈yGT

[min
i∈ypred

||j − i|| < d].

Earth Movers Distance (EMD): The earth mover’s distance (EMD) [12] is the solution of a

transportation problem which attempts to transform one set to the other. For two equally sized

subsets S1 ⊆ R3, S2 ⊆ R3, their EMD is defined by

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖2,

where φ is a bijection.

Jensen-Shannon Divergence (JSD): The Jensen-Shannon divergence (JSD) quantifies the dis-

similarity between marginal distributions defined in three-dimensional Euclidean space. Given an

axis-aligned point cloud data in a canonical voxel grid within the ambient space, one can assess

the extent to which point clouds of set A tend to occupy similar positions as those of set B. This is

achieved by tallying the points within each voxel across all point clouds of set A and similarly for

set B. The JSD between the resulting empirical distributions (PA, PB) is calculated as

JSD(PA, PB) =
1

2
D(PA‖M) +

1

2
D(PB‖M),

6

where M = 1
2
(PA + PB) and D(·) represents the Kullback-Leibler divergence [13] between the

two distributions.

Coverage: Coverage is a measure used to assess the extent to which instances (point clouds) from

set A are matched with instances from set B. It is defined as

Coverage(A,B) =
Number of matched instances in A

Total number of instances in B
,

where the number of matched instances in set A is determined by the matching process with set

B. This metric indicates the proportion of instances from set B that have corresponding matches

within set A. The distance metrics CD and EMD can be used to identify the matched instances.

Minimum Matching Distance (MMD): The minimum matching distance (MMD) is defined as

MMD(B,A) =
1

|B|
∑
b∈B

min
a∈A

dist(b, a),

where A and B are two sets of point clouds, and |B| is the cardinality of set B, and dist(b, a)

represents the distance between point clouds b and a using the chosen distance metric (e.g., CD,

EMD, etc.). Please refer to [8] for a discussion between coverage and the MMD.

7

CHAPTER 3

A Progressive Conditional Generative Adversarial Network for Generating Dense and Colored

3D Point Clouds

3.1 Introduction

In recent years, research on processing 3D point clouds has gained momentum due to an

increasing number of relevant applications. From robot navigation [14, 15] to autonomous vehicles

[16, 17, 18], augmented reality [19, 16] to health care [20, 21, 22], the challenges of working

with 3D datasets are being realized. Among miscellaneous data modalities, raw point clouds are

becoming popular as a compact homogeneous representation that has the ability to capture intricate

details of the environment. Intuitively, a 3D point cloud can be thought of as an unordered set

of irregular points collected from the surface of an object. Each point consists of a Cartesian

coordinate, along with other additional information such as a surface normal estimate and RGB

color value. Although 3D point clouds are the product of range sensing devices (e.g., structured

light, time-of-flight, light detection and ranging, etc.), the application of conventional machine

learning techniques on the direct sensor output is nontrivial. In particular, deep learning methods

fall short in the processing of 3D point clouds due to the irregular and permutation invariant nature

of the data.

Generating synthetic 3D point cloud data is an open area of research with the intention of

facilitating the learning of non-Euclidean point representations. In three dimensions, synthetic data

may take the form of meshes, voxels, or raw point clouds in order to learn a representation that

aids the solution of computer vision tasks such as classification [23, 24, 25, 26, 27], segmentation

[23, 24, 28, 29, 30, 31, 32, 33], and reconstruction [34, 35, 36, 37, 38, 39]. Currently, researchers

make use of point clouds sampled from the mesh of manually designed objects as synthetic data

8

Figure 3.1: Examples of 3D point clouds synthesized by our progressive conditional generative
adversarial network (PCGAN) for an assortment of classes. PCGAN generates both geometry and
color for point clouds, without supervision, through a coarse to fine training process.

for training deep learning models [23, 24, 9, 40]. However, the geometry and texture of these point

clouds is bounded by the resolution of the modeled objects. Moreover, due to the complexity of

the design process, the number of composed objects can fail to satisfy the enormous data needs

of deep learning research. Automatically synthesizing 3D point clouds can solve this problem by

providing a source of potentially infinite amounts of diverse data.

Although color and geometry are among the defining features of 3D objects in the physical

world, current point cloud generation methods either create the geometry [9, 41, 10, 8, 42, 43]

or the color [40] of the point cloud, but not both. We believe that 3D point cloud generators

should have the ability to synthesize dense point clouds with complex details that mimic real-world

objects in both geometry and color. To this end, we propose a progressive conditional generative

adversarial network (PCGAN) that faithfully generates dense point clouds with color using tree

9

structured graph convolutions. To the best of our knowledge, our work is the first attempt to

generate both geometry and color for point clouds in an unsupervised fashion with progressive, i.e.,

coarse to fine training. Figure 3.1 shows examples of 3D point clouds generated by our network.

Generating high-resolution data is a difficult and computationally expensive task as the num-

ber of features and the level of details increases with resolution. In traditional generative methods

[44, 45, 46], the generator tries to optimize both global structure and local features simultaneously

which can overwhelm an unsupervised network. To reduce the learning complexity, a progres-

sively growing generative adversarial network [47] may be used to learn features in a coarse to

fine manner. Progressive growing has also been shown to improve training time [47] since the

generator first optimizes low-resolution global structures which helps the optimization of local de-

tails at higher resolutions. In terms of 3D point clouds, boosting the resolution makes the dataset

denser by the expansion of the number of points. Consequently, this adds more complexity to the

generation procedure and amplifies the computational cost. This directly proportional relationship

between point cloud resolution and complexity/computational cost has inspired us to use progres-

sive growing in PCGAN for dense point cloud generation. Our network is end-to-end trainable and

it learns the distribution of the data as well as the mapping from label to data to generate samples

of numerous classes with a single network.

3.2 Contributions

The key contributions of our work are threefold.

• We introduce a progressive generative network that creates both geometry and color for 3D

point clouds in the absence of supervision.

• We include both a qualitative and quantitative analysis of the objects synthesized by our

network.

• We present the Frèchet dynamic distance metric to evaluate colored dense point clouds.

10

To allow other researchers to use our software, reproduce the results, and improve on them, we

have released PCGAN under an open-source license. The source code and detailed installation

instructions are available online [48].

The remainder of this chapter is organized as follows. We give a summary of related research

in Section 3.3. In Section 3.4, we define the problem mathematically and provide the essential

background information in Section 3.5. The details of our model are provided in Section 3.6, and

we present the experimental setup and results in Section 3.7. A conclusion of this work is given in

Section 3.8.

3.3 Related Work

In this section, we summarize pertinent work on the generation of 3D point clouds. Interested

readers are encouraged to read [49, 50, 51] for a comprehensive survey of deep learning research

on 3D point cloud datasets.

3D Point Cloud Generation. The first generative model capable of producing raw point

clouds comes from the work of Achlioptas et al. [8]. Using PointNet [23] as the backbone,

Achlioptas et al. introduced an autoencoder and two variants of a generative adversarial network

to generate point clouds. Prior to [8], Qi et al. introduced PointNet [23], the first neural network to

operate directly on point cloud data. Eckart et al. [52] used hierarchical Gaussian mixture models

(hGMMs) to process point clouds, Zaheer et al. [53] utilized deep networks to analyze point clouds

as sets, and Li et al. [54] made use of self-organizing maps and hierarchical feature extraction to

discriminate point clouds.

Following [8], Li et al. [55] used two generative networks to learn a latent distribution and

generated points based on learned features. Yang et al. [56] improved upon [8] by incorporating

graph-based enhancement on top of PointNet and 2D grid deformation. Valsesia et al. [10] used

graph convolutions and exploited pairwise distances between features to construct a generator.

Similar to [55], Yang et al. [41] generated point clouds by learning two hierarchical distributions

11

and through the use of continuous normalizing flow. Mo et al. [57] mapped part hierarchies of

an object shape as a tree and implemented an encoder-decoder network to generate new shapes

via interpolation. Gadelha et al. [58] presented a tree network for 3D shape understanding and

generation tasks by operating on 1D-ordered point lists obtained from a k-d tree space partitioning.

Ramasinghe et al. [43] generated high-resolution point clouds by operating on the spatial

domain, and Hertz et al. [42] used hGMMs to generate shapes in different resolutions. However,

both [43] and [42] fail to generate fine shape details. Xie et al. [59] proposed an energy-based

generative PointNet [23], and Sun et al. [60] implemented auto-regressive learning with self-

attention and context awareness for the generation and completion of point clouds. Cao et al.

used adversarial training to generate color for point cloud geometry in [40]. In follow up work,

they used a style transfer approach to transform the geometry and color of a candidate point cloud

according to a target point cloud or image [61].

Compared to the focus of the aforementioned works on solely generating the geometry or

color of point clouds, our model can produce both color and geometry in an unsupervised manner

while maintaining exceptional details at high resolutions. The generator of our model is inspired by

the tree structured graph convolution generator of Shu et al. [9]. However, the generator proposed

by Shu et al. does not generate point clouds in color nor does it incorporate the advantages of

progressive training. The multiclass generation model of Shu et al. is class agnostic thus making

the generation process of a specific class of objects uncontrollable. Conversely, we incorporate

conditional generation to control the creation process and use progressive training to build high-

resolution point clouds with color. Although, Tchapmi et al. [39] also introduced a tree graph-

based decoder, the focal point of their work was the completion of point cloud geometry with

supervision.

Graph Convolutions. Point clouds can be portrayed as graphs where points represent nodes

and the co-relation among neighboring points represent edges. Applying the notion of graph con-

volution operations to process point clouds is a relatively new area of research. In [28], Qi et al.

12

proposed the hierarchical application of PointNet to learn point cloud features as a graph embed-

ding. However, their work did not incorporate the co-relation of neighboring points and conse-

quently disregards local features. To account for local features, Atzmon et al. [62] used a Gaussian

kernel applied to the pairwise distances between points. Wang et al. [24] introduced DGCNN

which uses aggregated point features and pairwise distances among k points to dynamically con-

struct a graph. The discriminator of our model was motivated by DGCNN. Nevertheless, DGCNN

was designed for the classification of point cloud geometry while our discriminator aims to act as

a critic of point cloud geometry and color to distinguish between real and synthetic data given a

class label.

Progressive Training. Progressive training has been shown to improve the quality of 2D

image generation [47, 63, 64]. Our work is the first attempt to use progressive training in an

unsupervised 3D generative network. In previous research, Valsesia et al. [10] used upsampling

layers based on k neighbors of the adjacency graph to increase the feature size between each graph

convolution. However, their proposed architecture learns without progressive growing and suffers

the same computational complexity of regular generative adversarial networks. The work of Yifan

et al. [38] is the only example of coarse-to-fine generation in 3D. Yet, Yifan et al. used a supervised

patch-based approach to upsample point clouds where the overall structure of the data is provided

as a prior. In contrast, our network progressively learns the global shape of the data through the

underlying distribution of the point cloud geometry and color of a class with no supervision or

priors given.

3.4 Problem Statement

Consider a set of classes, C = {c1, . . . , cn}, each representing mixed objects as 3D colored

point clouds, x ∈ RN×6, where N is the number of points. Given a class c ∈ C, we seek to learn

the underlying features that constitute c and generate a realistic point cloud x̂ ∈ RN×6.

13

3.5 Background

In the following subsections we lay out the necessary background knowledge upon which

our work is grounded.

3.5.1 Wasserstein/Kantorovich-Rubinstein Distance

Given two distributions Pr and Pg in a metric space M, the Wasserstein/Kantorovich-

Rubinstein distance calculates the minimal cost to transform Pr into Pg or vice-versa [65]. A

distance of order p can be expressed as

Wp(Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ
[
‖x− y‖

]
,

where Π(Pr, Pg) is the set of all joint distributions γ(x, y) with marginals Pr and Pg.

3.5.2 Generative Adversarial Networks

Introduced by Goodfellow et al. [44], a generative adversarial network (GAN) is a special

type of neural network that focuses on learning the underlying distribution, Pr, of a dataset to

generate new samples. A GAN consists of a generator G and a discriminator D that compete

against each other in a minimax game. The generator tries to manipulate a random vector z, drawn

from a fixed distribution Pg, into synthetic samples x̂ that are indistinguishable from the real data

x. The discriminator seeks to differentiate between x̂ and x. More formally, the objective of a

GAN can be written as

min
G

max
D

(G,D) = Ex∼Pr [logD(x)]

+ Ez∼Pg [log(1−D(G(z)))].

14

3.5.3 Wasserstein GAN with Gradient Penalty

To optimize the convergence of a GAN, Arjovsky et al. [45] introduced the Wasserstein

GAN (WGAN) whose goal is to minimize the distance between the real data distribution Pr and the

generated data distribution Pg using the Wasserstein metric. To make the goal of inter-distribution

distance minimization tractable, Arjovsky et al. used the dual form of the Wasserstein distance,

i.e., the Wasserstein-1 [65] with the GAN objective

min
G

max
D∈D

(G,D) = Ex∼Pr [D(x)]− Ez∼Pg [D(G(z))],

where D is the set of 1-Lipschitz functions. To ensure continuity in space, the discriminator of the

WGAN must be 1-Lipschitz which is achieved through weight clipping. However, since weight

clipping penalizes the norm of the gradient the stability of network can be compromised.

Gulrajani et al. [46] improved the WGAN by using a gradient penalty (WGAN-GP) instead

of weight clipping. To enforce the 1-Lipschitz condition, the WGAN-GP constrains the norm of

the gradient to be at most 1. This is achieved by a penalty term applied to the gradient of the

discriminator,

min
G

max
D∈D

(G,D) = Ex∼Pr [D(x)]− Ez∼Pg [D(G(z))]

+ λEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
,

where x̃ ∼ Px̃ are the points uniformly sampled along the straight line between pairs of points

from the real data distribution Pr and generated data distribution Pg.

3.6 Model Architecture

Our model has the following two main components: a generator G and a discriminator D.

Unless stated otherwise, we refer to a point cloud x as a 6-dimensional matrix with N points, i.e.,

15

Figure 3.2: Given a random vector zin and class label c, the generator produces a colored point
cloud x̂. The real point cloud x, class label c, and the generated point cloud x̂ are given to the
discriminator, which then tries to predict the probability of the data being real or synthetic.

x ∈ RN×6 where each point represents a Cartesian coordinate and RGB color. For multiclass

generation, both the generator and the discriminator are conditioned on a class label, c ∈ C, which

is randomly chosen from a set of n classes C = {c1, . . . , cn}. To optimize the generator and the

discriminator we make use of the WGAN-GP techniques discussed in Section 3.5.3. Figure 3.2

shows the overall architecture of PCGAN.

3.6.1 Generator

The generator G takes as input a random vector, zin ∈ N (0, 1), along with a class label

c ∈ C represented as one hot vector. The class label controls the generation of colored point

clouds of a desired class. The generator is comprised of two sub-networks: a label transformer

GLT and a point transformer GPT .

The class label goes through GLT , a shallow two-layer perceptron, and a class vector gc ∈

R64 is constructed. The input vector zin is then concatenated with gc to produce a point vector z

which is given to GPT as input, i.e.,

z = (zin, gc).

16

Following [9], the point transformer incorporates tree structured graph convolutions (TreeGCN).

As the name suggests, information in TreeGCN is passed from the root node to a leaf node instead

of all neighbors, i.e., the i-th node at layer l is generated by aggregating information from its

ancestors A = {al−1
i , al−2

i , . . . , a1
i , a

0
i }. However, we have empirically found that the information

from up to three immediate ancestors A = {al−1
i , al−2

i , al−3
i } is sufficient for realistic point cloud

generation. This observation improves the overall computational cost of our network as GPT is

not bounded by the entire depth of the tree as in [9] (additional details and an analysis are included

in Section 4.5). Therefore, the output of (l + 1)-layer of GPT is a first order approximation of the

Chebyshev expansion

pl+1
i = σ

(
Flm(pli) +

∑
qj∈A(pli)

W l
jq
l
j + bl

)
,

where

Flm(pli) =
m∑
j=1

Sjp
l
i + rj,

σ(·) is an activation function, pli is the i-th node of the graph at the l-layer, and qlj is the j-th

ancestor of pli from the set of three immediate ancestors of pli. W, b, S, r are learnable parameters

and Fm is a sub-network with m support.

Figure 3.3 presents an overview of the progressive growing of PCGAN. We have sub-divided

the point transformer GPT into two parts, a branch B and a leaf L, where a leaf acts as the output

layer of GPT for increasing replications R. Each branch incorporates a tree graph of expanding

depth, H = (h1, . . . , hT), where T is the total number of branches. The leaf also incorporates a

tree graph of depth hL. First, we optimize the generator to produce a point cloud x̂ at a predefined

base resolution (NR1 × 6) where R1 = hLΠT
i=1hi. After a fixed number of iterations, we introduce

a new branch BT+1 through the replication of the branch BT and we increase the depth H =

(h1, . . . , hT+1) of the incorporated tree graph. The replication of an already optimized branch

facilitates the generation of higher resolution point clouds without starting the learning process

17

z

x

Replication

B
1

B
2

B
3

z B
1

B
2

B
3

z B
1

B
2

B
3

z B
1

B
2

B
3

B
4

B
4

B
5

B
4

B
5

B
6

Le
af

x

x

x
R

1
R

2
R

3
R

4

Tr
ai

ni
ng

 It
er

at
io

n

8192 x 6

4096 x 6

2048 x 6

1024 x 6

Point Vector Branch

Figure 3.3: The progressive growing of the point transformer GPT . The network starts with a
leaf output layer and branches (B1 . . . , BT), each incorporating a tree graph, and converts a point
vector z into a low-resolution point cloud. After a predefined number of iterations, the number of
branches is increased through the replication R of the last branch BT . In this figure, T was kept
small for visualization purposes. The process is continued until the generation of a point cloud at
the desired resolution is achieved.

from scratch. We continue this procedure until the desired resolution of the point cloud is realized,

i.e., Rd = hLΠT+d
i=1 hi.

3.6.2 Discriminator

Given a point cloud x, the discriminator D tries to predict the probability of x being real

or synthesized. The discriminator is comprised of the following three sub-networks: a feature

transformer DFT , a label transformer DLT , and a critic DCR. The feature transformer network

was inspired by [24] to collect local and global features through a dynamic graph construction.

Nonetheless, we expand the feature size in every layer to account for the color of the point clouds.

Given an input point vector, each layer of the point transformer network constructs a dynamic

k-NN graph, Gl = (V l, E l), with self loops. Each point of the point cloud represents a vertex in the

18

graph and the vertex of each subsequent layer depends on the output of the preceding layers. For

a graph Gl at layer l, the edges eli between a vertex vli and its k nearest neighbors are defined as a

nonlinear function Θ = [θ1, . . . , θm] with learnable parameter θ,

eli,(1,...,k) = Θj∈(1,...,k)(v
l
i, v

l
j).

Although there are three choices available for Θ, we use the function defined in [24] to capture

both local and global features. Concretely, for two vertices vi and vj we have

Θ(vi, vj) = θ(vi, vi − vj).

Lastly, the output of the feature transform network is a feature vector fc collected from the channel-

wise maximum operation on the edge features from all the edges of each vertex,

fc = max
(i,j)∈E

Θ(vi, vj).

The label transformer of the discriminator functions in an analogous way to the label trans-

former of the generator and it provides a label vector dc. Note that even though DLT and GLT

are similar in architecture, their objectives are distinct. Hence, we use two different networks for

this reason. The feature vector fc together with the label vector dc are fed to the critic, a fully-

connected three layer sub-network that aspires to predict the probability of its input vector being

real or synthetic given that it was collected from object class c, i.e.,

DCR(fc, dc) = [P (real | c), P (generated | c)].

3.7 Experiments

In this section, we describe our experimental setup and provide an analysis of the results.

19

Class Label Number of Samples
Airplane 4029
Chair 4064
Table 8474
Sofa 3149
Motorcycle 333

Table 3.1: The class labels and the number of samples in the training data.

Dataset. We used the synthetic dataset ShapeNetCore [4] to conduct our experiments.

ShapeNetCore is a collection of CAD models of various object classes among which we chose

Chair, Table, Sofa, Airplane, and Motorcycle for our experiments. We have selected these classes

for the diversity of their shapes and we keep the number of classes to five to reduce the training

time. In addition, we have eliminated any CAD model that does not have material/color infor-

mation. The training data was prepared by collecting point clouds of desired resolution from the

surface of the CAD models. We normalized each point cloud such that the object is centralized

in a unit cube and the RGB colors are in the range [−0.5,+0.5]. Table 3.1 shows the number of

sample objects in each class.

Implementation Details. The generator of PCGAN learns to produce colored point clouds

from low to high resolutions. We start the generation process with NR1 = 1024 points and double

the number of points progressively. To save memory and reduce computation time, we fix NRd
=

8192 points as the highest resolution for the point clouds. The input to the generator is a vector,

zin ∈ R64, sampled from a normal distribution zin ∈ N (0, 1), and the labels of the chosen classes

c ∈ C.

For the point transformer, the number of branches was set to T = 5 with depth increments

H = [1, 2, 2, 2, 2]. The leaf increments were set to hL = 64. The depth increment hyperparameter

for the branches and the leaves is similar to the branching of [9]. The feature dimension for the

layers ofGPT was set to [128, 128, 256, 256, 128, 128, 6]. We used the Xavier initialization [66] for

GPT and the support q for each branch was set to 10 as in [9].

20

The feature dimension for the layers of the feature transform sub-network were set to

[6, 64, 128, 256, 512, 1024]. To comply with the constraints of WGAN-GP, we did not use any

batch normalization or dropout in DFT . For DFT , k = 20 was used to construct the k-NN graph

and k was increased by 10 with each increment in resolution.

For both the generator and the discriminator, LeakyReLU nonlinearity with a negative slope

of 0.2 was employed. The learning rate α was set to 10−4 and the Adam optimizer [67] with

coefficients β1 = 0.0 and β2 = 0.95 were used. The gradient penalty coefficient λ for WGAN-GP

was set to 10.

Metrics. To quantitatively evaluate generated samples in 2D, the Frèchet inception distance

[68] is the most commonly used metric. We propose a similar metric called the Frèchet dynamic

distance (FDD) to evaluate the generated point clouds where DGCNN [24] is used as a feature

extractor. Although similar metrics exist [9, 60] where PointNet is used to extract features, the

color of the point clouds is not considered and they suffer from the limitations of PointNet.

We use DGCNN because it collects both local and global information over the feature space

and it also performs better than PointNet in point cloud classification [24]. To implement FDD,

we trained DGCNN until a 98% test accuracy per class was achieved on the task of classification.

Then, we extracted a 512-dimensional feature vector from the average pooling layer of DGCNN

to calculate the mean vector and covariance matrix. For real point clouds x and synthetic point

clouds x̂, the FDD calculates the 2-Wasserstein distance,

FDD(x, x̂) = ‖µx − µx̂‖+ tr(Σx + Σx̂ − 2(ΣxΣx̂)
1/2),

where µ and Σ represent the mean vector and the covariance matrix, respectively. The matrix trace

is denoted by tr(). Additionally, we have used the matrices from Achlioptas et al. [8] for point

cloud evaluation and we have compared the results with [8, 10, 9].

21

3.7.1 Results

A set of synthesized objects along with their real counterparts is shown in Figure 3.4. As is

evident from the samples, our model first learns the basic structure of an object in low resolutions

and gradually builds up to higher resolutions. PCGAN also learns the relationship between object

parts and color. For example, the legs of the chair have equal colors while the seat/arms are a

different color, the legs of the table have matching colors while the top is a contrasting color, and

the airplane wings/engine have the same color while the body/tail has a dissimilar color.

Quantitative Analysis. We generated 5000 random samples for each class and performed an

evaluation using the matrices from [8]. Table 3.2 presents our findings along with comparisons to

previous studies [8, 9, 10]. Note that although our model is capable of generating higher resolutions

and colors, we only used point clouds with N = 2048 points in order to be comparable with other

methods. Also, separate models were trained in [8, 9, 10] to generate point clouds of different

classes while we have used the same model to generate point clouds for all five classes. Even

though we have achieved comparable results in Table 3.2, the main focus of our work is dense

colored point cloud generation and point clouds with a resolution of N = 2048 is an intermediate

result of our network. We have also evaluated colored dense point clouds (N = 8192) using the

proposed FDD metric with the results presented in Table 3.3.

Computational Complexity. Tree structured graph convolutions are used in each layer of

the point transformer sub-network. Since every subsequent node in the tree is originally dependent

upon all of its ancestors, the time complexity of the graph convolutions is
∑L

l=1B×nli×Ali× V l
i ,

where B is the batch size of the training data, L is the total number of layers, nli is the height of the

tree graph at the i-th node, Ai is the induced number of ancestors preceding i-th node, and V l
i is

the induced vertex number of the i-th node [9]. However, we restrictGPT to aggregate information

from at most three levels of ancestors in each layer. Thus, nli ≤ 3 and the effective time complexity

is
∑L

l=1B × 3× Ali × V l
i .

22

Figure 3.4: The results of generated samples produced by PCGAN. Our model first learns the basic
structure of an object at low resolutions and gradually builds up towards high-level details. The
relationship between the object parts and their colors (e.g., the legs of the chair/table are the same
color while seat/top are contrasting) is also learned by the network. Mitsuba 2 [1] was used to
render the point clouds.

23

Progressive Experiments. We have experimented with different strategies of progressive

growing such as branching H = [2, 4, 4, 4], [1, 2, 4, 8], [1, 2, 4, 2] and leaf hL = [4, 16, 64] incre-

ments. Although branching and leaf combinations may generate more discernible point cloud

geometries and colors for individual classes, we have found that H = [1, 2, 2, 2] and hL = 64 work

best in our experiments. Additionally, instead of creating new branches we have experimented with

introducing new leaves for progressive growing. However, this seems to destabilize the network

and results in the generation of inferior samples.

Limitations and Future Work. The main drawback of our model is the computational

complexity. With ≈ 20000 point clouds from five classes, our model takes roughly 15 minutes per

iteration (MPI) on four Nvidia GTX 1080 GPUs to generate point clouds x̂ ∈ R1024×6. The MPI

rises with every increase in resolution. For future work, we will attempt to reduce the computa-

tional complexity of our network. Our model also struggles with generating objects that have fewer

examples in the training data. The generated point clouds of the Motorcycle class in Figure 3.4 is

an example of this (ShapeNetCore has only 333 CAD models of the Motorcycle). In the future,

we will try to improve the generalization ability of our model and we will work on the addition of

surface normal estimates.

3.8 Conclusion

This chapter introduces PCGAN, the first conditional generative adversarial network to gen-

erate dense colored point clouds in an unsupervised mode. To reduce the complexity of the gen-

eration process, we train our network in a coarse to fine way with progressive growing and we

condition our network on class labels for multiclass point cloud creation. We evaluate both point

cloud geometry and color using our new FDD metric. In addition, we provide comparisons on

point cloud geometry with recent generation techniques using available metrics. The evaluation

results show that our model is capable of synthesizing high-quality point clouds for a disparate

array of object classes.

24

Class Model JSD ↓ MMD-CD ↓ MMD-EMD ↓ COV-CD ↑ COV-EMD ↑

Airplane

r-GAN
(dense)

0.182 0.0009 0.094 31 9

r-GAN
(conv)

0.350 0.0008 0.101 26 7

Valsesia et
al. (no up.)

0.164 0.0010 0.102 24 13

Valsesia et
al. (up.)

0.083 0.0008 0.071 31 14

tree-GAN 0.097 0.0004 0.068 61 20
PCGAN
(ours)

0.085 0.0010 0.070 37 29

Chair

r-GAN
(dense)

0.238 0.0029 0.136 33 13

r-GAN
(conv)

0.517 0.0030 0.223 23 4

Valsesia et
al. (no up.)

0.119 0.0033 0.104 26 20

Valsesia et
al. (up.)

0.100 0.0029 0.097 30 26

tree-GAN 0.119 0.0016 0.101 58 30
PCGAN
(ours)

0.089 0.0027 0.093 30 33

Sofa

r-GAN
(dense)

0.221 0.0020 0.146 32 12

r-
GAN(conv)

0.293 0.0025 0.110 21 12

Valsesia et
al. (no up.)

0.095 0.0024 0.094 25 19

Valsesia et
al. (up.)

0.063 0.0020 0.083 39 24

PCGAN
(ours)

0.16 0.0027 0.093 24 27

Motorcycle PCGAN
(ours)

0.25 0.0016 0.097 10 9

Table PCGAN
(ours)

0.093 0.0035 0.089 45 43

Table 3.2: A qualitative evaluation of the Jensen-Shannon divergence (JSD), the minimum match-
ing distance (MMD), coverage (COV) with the Earth mover’s distance (EMD), and the pseudo-
chamfer distance (CD). The results of previous studies are from [9, 10]. The magenta and cyan
values denote the best and the second best results, respectively. The resolution of the evaluated
point clouds was 2048× 3.

25

Class Real Data Generated Samples
Airplane 1.12× 10−5 4.58
Chair 2.07× 10−9 3.07
Motorcycle 1.04× 10−4 13.25
Sofa 5.88× 10−6 3.14
Table 4.37× 10−7 2.02

Table 3.3: The FDD score for point cloud samples generated by PCGAN. Notice that the scores
for real point clouds are almost zero. The point clouds were evaluated at a resolution of 8192× 6.

26

CHAPTER 4

IPVNet: Learning Implicit Point-Voxel Features for Open-Surface 3D Reconstruction

4.1 Introduction

3D computer vision for generating (e.g., [69, 70]) and reconstructing (e.g., [71, 72]) point

clouds has gained momentum due to applications such as robotics, autonomous driving, and virtual

reality. Capturing detailed point cloud data from the real world is a difficult and expensive task.

Moreover, due to the limitations of 3D sensor technologies (e.g., LiDAR, RGBD, etc.), data can

be sparse (i.e., missing details) and incomplete (i.e., noisy with holes and outliers). The 3D recon-

struction of missing parts and reintroduction of details is not a trivial task. Researchers have looked

into a myriad of ways to complete 3D data. Learning-based implicit functions have become popu-

lar among 3D reconstruction techniques due to their demonstrated superiority in capturing details

and the ability to generate data in arbitrary resolutions.

Implicit functions operate by first converting raw data into an occupancy grid and then learn-

ing a voxel occupancy or a distance field that classifies a query point as either inside or outside of

the surface. In low resolutions, occupancy grids lose information during voxelization since multi-

ple points within the boundary of a grid are merged together. To preserve fine details in the input

data, a high-resolution representation is required. However, the computational costs and memory

requirements increase cubically with voxel resolution. For example, Chibane et al. [3] require 8.86

GB of memory to train with a single input (batch size 1) at a resolution of 2563. This large memory

footprint makes it impractical to scale beyond the aforesaid resolution.

Instead of relying on the voxels, researchers have also tried to use raw point clouds with a

learned signed distance field (SDF) on the surface. Nevertheless, implicit functions that learn an

SDF via extraction of a zero level set must distinguish between the inside/outside of the surface.

27

(a) (b)

Figure 4.1: An outside view of a dense 3D reconstructed scene from the Gibson Environment [2]
dataset using (a) the state of the art [3], and (b) our proposed approach. Note that our method
produces significantly less outliers.

As a result, the reconstruction is produced as a closed surface even if the target shape includes

surface gaps. However, real-world data may consist of salient open surfaces. Closing the surface

of such data often leads to the introduction of outliers and lost details.

To reconstruct accurate geometry without introducing outliers, we propose IPVNet, an im-

plicit model that learns an unsigned distance field (UDF) by jointly accumulating features from raw

point clouds and voxel grids to reconstruct open surfaces. As shown in Figure 4.1, our approach

produces significantly less outliers compared to the state of art [3]. Note that by reconstructing a

surface, we refer to the construction of dense point clouds that lie on the surface, which is a key

part of the reconstruction process. Although one could extract and render the surface mesh from

such point clouds, we present our results in the form of raw point clouds. For completeness, we

record additional results as rendered meshes in our experimental evaluation.

The technique of learning features from both point clouds and voxels has been shown to

achieve superior performance in classification and segmentation, detection, and generation. How-

ever, to the best of our knowledge, our work is the first approach to combine point-voxel features

to learn a UDF for open-surface reconstruction. Such improved features allow our model to recon-

28

struct richer detail even with low-resolution voxel grids. Moreover, the involvement of raw point

features allows us to use a more sophisticated inference module that produces significantly fewer

outliers in the reconstructed output. Our key contributions are summarized as follows.

• We introduce IPVNet, a novel approach for implicitly learning from raw point cloud and

voxel features to 3D reconstruct complex open surfaces.

• We develop an inference module that extracts a zero level set from a UDF and drastically

lowers the amount of outliers in the reconstruction.

• We show that IPVNet outperforms the state of the art on both synthetic and real-world public

datasets, and we provide an ablation analysis to understand the importance of point-voxel

fusion.

To reproduce and improve upon our results, the project source code is publicly available to the

research community [73].

The remainder of this chapter is organized as follows. We provide an overview of related

research in Section 4.2. In Section 4.3, a concise summary of implicit functions is provided. The

details of IPVNet are presented in Section 4.4, and the experimental evaluation and results are

described in Section 4.5. We discuss limitations and future directions of our work in Section 4.7

and a conclusion is given in Section 4.8.

4.2 Related Work

3D reconstruction is a well researched area with a number of different approaches and algo-

rithms. In this section, we review and compare our work with learning-based implicit approaches.

For a more comprehensive review, we refer the reader to a contemporary survey on 3D reconstruc-

tion [74].

29

4.2.1 Implicit Function Learning

Instead of explicitly predicting a surface, implicit feature learning methods try to either

predict if a particular point in 3D space is inside or outside of a target surface (occupancy), or

determine how far the point is from the target surface (distance). To reconstruct 3D data in arbi-

trary resolutions and learn a continuous 3D mapping, Mescheder et al. [75] presented a network

that predicts voxel occupancy. Peng et al. [76] improved the occupancy network by incorporating

2D and 3D convolutions. An encoder-decoder architecture was used by Chen et al. [77] to learn

voxel occupancy. Michalkiewicz et al. [78] estimated an oriented level set to extract a 3D surface.

Littwin and Wolf [79] used encoded feature vectors as the network weights to predict voxel occu-

pancy. Park et al. [80] introduced DeepSDF, an encoder-decoder architecture that predicts a signed

distance to the surface instead of voxel occupancy. Genova et al. [81] divided an object’s surface

into a set of shape elements and utilized an encoder-decoder to learn occupancy. Sitzmann et al.

[82] introduced SIREN to implicitly learn complex signals for various downstream tasks including

3D shape representations via a signed distance function.

Bhatnagar et al. [83] combined implicit functions with parametric modeling to jointly re-

construct body shape under clothing by predicting occupancy. To retain richer details in the re-

construction, Chibane et al. [84] used 3D feature tensors to predict voxel occupancy. Rather

than transforming point clouds into a occupancy grid, Atzmon and Lipman made use of raw point

clouds to learn and predict an SDF to the target surface [85], and later incorporated derivatives in a

regression loss to further improve the reconstruction accuracy [86]. Gropp et al. [87] used geomet-

ric regularization to learn directly from raw point clouds. To make the reconstruction process more

scalable, Mi et al. [88] introduced SSRNet to construct local geometry-aware features for octree

vertices. By leveraging gradient-based meta-learning algorithms, Sitzmann et al. [89] developed

MetaSDF to improve the generalization ability of implicit learning.

30

With a similar aim of improving generalization, Tretschk et al. [90] created a patch-based

representation to learn an SDF. A local implicit grid to learn an SDF and reconstruct 3D data was

used by Jiang et al. [91]. Liu et al. [92] implemented deep implicit least squares to regress an

SDF for 3D reconstruction. Deep implicit fusion to estimate an SDF for online 3D reconstruction

was presented by Huang et al. [93]. Duggal et al. [94] used signed distance regression via neural

implicit modeling for 3D vehicle reconstruction from partial/noisy data. Sign agnostic learning to

estimate a signed implicit field of a local surface for 3D reconstruction was proposed by Zhao et

al. [95].

All of the aforementioned works either predict a voxel occupancy or a signed distance value

for a given query point, which is inadequate to reconstruct open surfaces. To alleviate this inade-

quacy, Chibane et al. [3] predicted a UDF from an input voxel occupancy. A similar technique to

learn a UDF for single-view garment reconstruction was used by Zhao et al. [96]. Venkatesh et al.

[97] proposed a closest surface point representation to reconstruct both open and closed surfaces.

A new NULL sign combined with conventional in and out labels to reconstruct a non-watertight

arbitrary topology was proposed by Chen et al. [98]. Ye et al. [5] leveraged the relationship be-

tween every two points, instead of points and surfaces, to improve the reconstruction quality of

non-watertight 3D shapes. The aforementioned works only utilize the discretized voxel represen-

tation while we make use of raw point clouds jointly with voxel occupancy. This enables us to

accumulate improved features and reconstruct finer details with less outliers.

4.2.2 Learning from Points and Voxels

Due to the convenience of using volumetric convolutions, many works have explored voxel-

based representations (e.g., [99, 100, 101]). However, voxel grids grow cubically with resolution

and their memory intensiveness imposes an upper bound to the highest resolution possible. Point

clouds are memory efficient, yet it is non-trivial to extract features from them due to their sparsity

31

and permutation invariant nature. Recently, researchers started combining these two representa-

tions to get the best out of them both.

Liu et al. [102] introduced PVCNN to perform classification and segmentation by extract-

ing features from both point clouds and voxel grids via voxelization and de-voxelization. Fusion

between voxel and point features for 3D classification was used by Li et al. [103]. Shi et al. [104]

gathered multi-scale voxel features and combined them with point cloud keypoint features for ob-

ject detection. They further improved their results by incorporating local vector pooling [105].

Point-voxel fusion to detect 3D objects was used by Cui et al. [106] and Tang et al. [107] learned

a 3D model via sparse point-voxel convolution.

Noh et al. [108] accumulated point-voxel features in a single representation for 3D object

detection. PVT, a transformer-based architecture that learns from point-voxel features for point

cloud segmentation was introduced by Zhang et al. [109]. Wei et al. [110] used point-voxel corre-

lation for scene flow estimation and Li et al. [111] utilized point-voxel convolution for 3D object

detection. Xu et al. [112] introduced RPVNet for point cloud segmentation via point-voxel fusion.

Cherenkova et al. [113] utilized point-voxel deconvolution for point cloud encoding/decoding. In

contrast to the preceding works, we use a point-voxel representation to learn an implicit function

for open-surface reconstruction. To restore lost details during voxelization, we propose a novel

aggregation strategy that accumulates features from both point clouds and voxel grids.

4.3 Background

Implicit functions rely on one of three output choices for surface reconstruction. Concretely,

given a latent representation z ∈ Z of a point cloud object x ∈ X ⊂ RN×3 and a random query

point p ∈ R3, an implicit function f aims to predict the following.

(i) Occupancy, i.e., if p lies inside or outside the object,

f(z, p) : Z × R3 → [0, 1]. (4.1)

32

Target Occupancy SDF UDF

Figure 4.2: A 2D representation of a closed (top row) and an open (bottom row) surface recon-
struction via occupancy, signed distance field (SDF), and unsigned distance field (UDF). Note that
the occupancy and SDF reconstructions of the open surface closes the gap by producing an artifact
while a UDF can preserve the surface opening. The color intensity represents the distance from the
surface where blue represents a positive value, and red represents a zero (occupancy) or negative
value (SDF).

(ii) Signed distance, i.e., the distance from p to the inside or outside surface of the object,

f(z, p) : Z × R3 → R. (4.2)

(iii) Unsigned distance, i.e., the absolute distance from p to any surface on the object,

f(z, p) : Z × R3 → R+. (4.3)

In (4.1) - (4.3),X denotes the input space,Z is the latent space, andN ∈ N is the density/resolution

of the point cloud. After learning the implicit function f , it may be queried multiple times to

find the decision boundary (occupancy) or the zero level set (signed and unsigned distance) thus

implicitly reconstructing the surface of the desired object. Figure 4.2 provides an overview of

open/closed surface reconstruction via different implicit techniques in 2D.

33

x

v

p UD

INFERENCE

Input Output Point Encoder Voxel Encoder FC 3D ConvDecoderLatent Point-Voxel

y

Figure 4.3: Given a sparse point cloud x ∈ X of an object, we use a novel encoding scheme to ex-
tract and aggregate point-voxel features from both the raw point cloud (x) and the voxel occupancy
(v). From the accumulated features, a decoder module regresses the unsigned distance UD(p, S)
from query point p to the surface S. By querying the decoder multiple times, the inference sub-
module can reconstruct the surface of any target shape.

4.4 Implicit Learning with Point-Voxel Features

An overview of our network is presented in Figure 4.3. We have chosen unsigned distances

as the output representation of IPVNet due to their precedence in representing different surfaces.

Given a sparse point cloud x ∈ X ⊂ RN×3 of an object, we use a novel encoding scheme to extract

and aggregate point-voxel features from both the raw point cloud (x) and the voxel occupancy (v).

From the accumulated features, a decoder module regresses the unsigned distance UD(p, S) via

any query point p to the surface S. In the following subsections we describe the elements of our

approach.

4.4.1 Point-Voxel Features

To extract a set of multi-level features from a point cloud x, we define a neural function

Θ(x) := (z1
x, . . . , z

j
x) |Θ: R3 → Z, (4.4)

34

where zx ∈ Z ⊂ R corresponds to the extracted feature vector from the raw point cloud x, and j

is the total number of layers in Θ. During the early stages (i.e., when j = 1) the encoder is more

focused on local details, whereas at the later stages the focus is shifted towards the global structure.

ReLu [114] nonlinearity is used for all layers except the output layer of the point encoder.

Instead of limiting the encoded features to a single dimensional vector, a voxel representa-

tion allows for the construction of a multi-dimensional latent matrix. However, such an encoding

scheme requires the input point cloud x to be discretized into a voxel grid v, i.e., x ≈ v : RN×3 →

RM×M×M where M ∈ N is the grid resolution. Due to the discretization process, voxel grids lose

information since multiple points may lie within the same voxel. To reintroduce lost details, we

combine voxel features with point features zx. Although, a different fusion strategy can be applied

to combine these features, we empirically found that a simple concatenation strategy works best.

Let Φ: RM×M×M → ZM×M×M be a neural function that encodes the combined point-voxel

features into a set of multi-dimensional feature grids zxv of monotonically decreasing dimension.

Then,

Φ(v �Θ(x)) := (zk×k×kxv , . . . , zl×l×lxv), (4.5)

where k, l ∈ N represents the dimensional upper and lower bound of the feature grid (M > k �

l > 1). The subscript xv denotes the dependency on both points and voxels. Similar to its point

counterpart, the voxel encoder is more directed towards local details at the early stages. However,

as the dimensionality is reduced and the receptive field grows larger, the aim shifts to the global

structure. ReLu is utilized to ensure nonlinearity and batch normalization [115] provides stability

while training. The latent point (zjx) from the point encoder, along with multi-dimensional features

(zxv) from the point-voxel encoder and the discretized voxel grid (v), are then used to construct the

latent point-voxel:

z = {zjx,Φ(v �Θ(x)), v}. (4.6)

35

4.4.2 Implicit Decoding

Given a query point p ∈ R3, a set of deep features Fp is sampled from the latent point-voxel

features z via a sampling function Ω [116]. Specifically,

Ω(z, p) := (F 1
p × · · · × F n

p), (4.7)

where n = |z|. We extract features from a neighborhood of distance d ∈ R along the Cartesian

axes centered at p to obtain rich features. More formally,

p := {p+ q · ci · d} ∈ R3 | q ∈ {1, 0,−1}, i ∈ {1, 2, 3}, (4.8)

where ci ∈ R3 is the ith Cartesian axis unit vector. We define a neural function Ψ that regresses

the unsigned distance to the surface S of x from the deep features (Fp). Concretely,

Ψ(F 1
p , . . . , F

n
p) u UD(p, S) | Ψ: Z → R+, (4.9)

where UD(·) is a function that returns the unsigned distance from p to the ground-truth surface S

for any p ∈ R3. Hence, the implicit decoder to regress the unsigned distance at a given query point

p is defined as

fx(z, p) := (Ω ◦Ψ)(p) | fx : Z × R3 → R+. (4.10)

4.4.3 Training

IPVNet requires a pair {Xi, Si}Ti=1 associated with input Xi and corresponding ground-truth

surface Si for implicit learning. Parameterized by the neural parameter w, the point-encoder,

voxel-encoder, and decoder are jointly trained with a mini-batch loss,

LB := Σx∈BΣp∈P |min(fwx (p), δ)−min(UD(p, Sx), δ)|, (4.11)

36

where B is a mini-batch of input and P ∈ R3 is a set of query points within distance δ of Si. We

use a clamped distance 0 < δ < 10 (cm) to improve the capacity of the model to represent the

vicinity of the surface accurately.

4.4.4 Surface Inference

We use an iterative strategy to extract surface points from fx. More specifically, given a

perfect approximator fx(p) of the true unsigned distance UD(p, Si), the projection of p onto the

surface Si can be obtained by

q := p− fx(p) · ∇pfx(p), q ∈ Si ⊂ Rd,∀p ∈ Rd/C. (4.12)

In (4.12), C is the cut locus [117], i.e., a set of points that are equidistant to at least two surface

points. The negative gradient indicates the direction of the fastest decrease in distance. In addition,

we can move a distance of fx(p) to reach q if the norm of the gradient is one. By projecting a point

multiple times via (4.12), the inaccuracies due to fx(p) being an imperfect approximator can be re-

duced. Furthermore, filtering the projected points to a maximum distance threshold (max thresh)

and re-projecting them onto the surface after displacement by d ∼ N (0, δ/3) can ensure higher

point density within a maximum distance (δ).

Instead of uniformly sampling query points within the bounding box of Si, we use the input

points Xi ∈ R3 as guidance for the query points. In particular, we apply a random uniform jitter

J b
a ∈ R3 within bounds a and b to displace the input points Xi. Due to the inclusion of point

features in learning, this procedure allows our model to infer more accurate surface points while

restricting the number of outliers. Note that without the use of point features, this perturbation of

the input points fails to restrict the number of outliers (see Section 4.6). The details of the inference

procedure are provided in Algorithm 1.

37

Algorithm 1 Surface Point Inference
1: procedure INFERENCE(X)
2: J ← m points from U(a, b)
3: Pinit ← {x+ j},∀x ∈ X ,∀j ∈ J
4: for i = 1 to num projections do
5: p← p− fx(p) · ∇pfx(p)

||∇pfx(p)|| , ∀p ∈ Pinit
6: end for
7: Pfiltered ← {p ∈ Pinit | fx(p) < max thresh}
8: Pfiltered: draw out res number of points with replacement
9: Pfiltered ← {p+ d} | p ∈ Pfiltered, d ∼ N (0, δ/3)

10: for i = 1 to num projections do
11: p← p− fx(p) · ∇pfx(p)

||∇pfx(p)|| , ∀p ∈ Pfiltered
12: end for
13: return {p ∈ Pfiltered | fx(p) < max dist}
14: end procedure

4.4.5 Implementation Details

IPVNet was implemented using PyTorch. To extract point cloud and voxel features, we

utilize multilayer perceptrons (MLPs) and 3D convolutional neural networks (CNNs), respectively.

Specifically, we employ a 7-layer fully-connected MLP as the point encoder and 6-layer CNN

blocks as the voxel encoder. Point features are obtained from each of the hidden layers of the point

encoder and are combined with voxel features derived from the initial layer of each convolution

block. We use max pooling with the fully-connected layers to make them permutation invariant.

Figure 4.4 shows the details of the different neural modules of IPVNet. To train the model,

we used a learning rate of 10−6 and the Adam [67] optimizer. With a voxel resolution of 2563 and a

batch size of 4, it takes around 3.2 seconds to perform a forward pass using 4 Nvidia GeForce GTX

1080 Ti GPUs. To infer a single target surface with a dense point cloud consisting of 1 million

points, IPVNet takes approximately 120 seconds.

38

4.5 Experiments

In this section, we validate the performance of IPVNet on the task of 3D object and scene

reconstruction from sparse point clouds.

4.5.1 Baselines and Metrics

To compare the reconstruction quality of IPVNet, we utilized the open-source implemen-

tations of NDF [3] and GIFS [5] as baseline methods. For an unbiased comparison, we trained

an NDF following the directions from [3] on our train-test split until a minimum validation accu-

racy was achieved. To quantitatively measure the reconstruction quality, we used the chamfer-L2

distance (CD) and F-score to measure the accuracy and completeness of the surface.

4.5.2 Object Reconstruction

Due to the abundance of surface openings, we chose the “Cars” subset of the ShapeNet [4]

dataset for our object reconstruction experiment. We used a random split of 70%-10%-20% for

training, validation, and testing, respectively. To prepare the ground truth and input points we

followed the data preparation procedure outlined in [3]. Additionally, we fixed the output point

density to O = 1 million to extract a smooth mesh from the point cloud using a naive algorithm

(e.g., [118]).

To understand the effects of sparse input on the reconstruction quality, we evaluated IPVNet

and the baseline using an input density of N ∼ {300, 3000, 10000} points while fixing the voxel

resolution toM = 256. In contrast to the baseline, IPVNet can reconstruct thin structures more ac-

curately and preserve small gaps (Figure 4.5 inset images) while quantitatively outperforming the

reconstruction with different input densities (Table 4.1). Furthermore, we investigated IPVNet’s

ability to perform closed-surface reconstruction on preprocessed watertight meshes using 13 sub-

sets of ShapeNet for training. The reconstruction results are shown in Figure 4.6.

39

(Θ)
x
:

N
 x

 3

Li
n
e
a
r(

2
8
,
2

7
)

R
e
Lu

m
a
x
p
o
o
l

FC4

+
Li

n
e
a
r(

2
4
,
2

5
)

R
e
Lu

m
a
x
p
o
o
l

FC1

+

Li
n
e
a
r(

2
6
,
2

6
)

R
e
Lu

m
a
x
p
o
o
l

FC2

+

Li
n
e
a
r(

2
7
,
2

7
)

R
e
Lu

m
a
x
p
o
o
l

FC3

+

Li
n
e
a
r(

2
8
,
2

7
)

R
e
Lu

m
a
x
p
o
o
l

FC5

+

Li
n
e
a
r(

2
8
,
2

9
)

R
e
Lu

m
a
x
p
o
o
l

FC6

Li
n
e
a
r(

3
,

2
4
)

R
e
Lu

FC0

(Φ)

v:
 M

x
M

x
M

x
1

C
o
n
v
3

D
(1

,
2

4
)

R
e
Lu

L0

B
N

,
m

a
x
p

o
o
l

C
o
n
v
3

D
(2

4
,

2
5
)

R
e
Lu

C
o
n
v
3

D
(2

5
,

2
5
)

B
N

,
m

a
x
p

o
o
l

R
e
Lu

C
o
n
v
3

D
(2

5
,

2
6
)

R
e
Lu

C
o
n
v
3

D
(2

6
,

2
6
)

B
N

,
m

a
x
p

o
o
l

R
e
Lu

L2

C
o
n
v
3

D
(2

6
,

2
7
)

R
e
Lu

C
o
n
v
3

D
(2

7
,

2
7
)

B
N

,
m

a
x
p

o
o
l

R
e
Lu

L3

C
o
n
v
3

D
(2

7
,

2
7
)

R
e
Lu

C
o
n
v
3

D
(2

7
,

2
7
)

B
N

,
m

a
x
p

o
o
l

R
e
Lu

L4

C
o
n
v
3

D
(2

7
,

2
7
)

R
e
Lu

C
o
n
v
3

D
(2

7
,

2
7
)

B
N

,
m

a
x
p

o
o
l

R
e
Lu

L5L1

X X X X X

(Ψ)

p
:

P
 x

 3

F1
p

Fn
p

x
..
.

x

Li
n
e
a
r(

||
F

p
||

,
2

9
)

R
e
Lu

FC0

Li
n
e
a
r(

2
8
,
1

)
R

e
Lu
FC3

Li
n
e
a
r(

2
9
,
2

8
)

R
e
Lu

FC1

Li
n
e
a
r(

2
8
 2

8
)

R
e
Lu

FC2
Ω

Figure 4.4: A visual depiction of the different neural architectures of IPVNet.
⊕

in (Θ) represents
concatenation, and

⊗
in (Φ) indicates the fusion of point features with voxel features.

Chamfer-L2 ↓ F -score ↑
N = 300 N = 3000 N = 10000 d = 0.1% d = 0.05%

NDF 1.550 0.324 0.092 0.711 0.460
IPVNet 1.217 0.119 0.068 0.785 0.542

Table 4.1: A quantitative comparison between IPVNet and NDF [3] on the ShapeNet Cars [4]
dataset for object reconstruction from different input densities. IPVNet outperforms NDF on all
input densities. The chamfer-L2 results are of order ×10−4 and the reconstruction results using an
input density of N = 10000 were used to calculate the F-score.

40

Input NDF IPVNet
IPVNet (Inner

View) GT

Figure 4.5: Object reconstruction using NDF [3], IPVNet, and the ground truth (GT) from the
ShapeNet Cars [4] test set. IPVNet performs better on reconstructing thin structures and preserving
small gaps (inset images).

Figure 4.6: Reconstruction of closed surfaces from the ShapeNet [4] dataset. From left to right,
each triplet represents the input, reconstruction, and ground truth, respectively.

41

Chamfer-L2 ↓ F -score0.05 ↑
643 1283 2563 643 1283 2563

NDF 1.549 0.266 0.029 0.289 0.591 0.994
GIFS 5.245 1.210 0.141 0.240 0.510 0.891

IPVNet 1.441 0.162 0.023 0.335 0.803 0.995

Table 4.2: A quantitative comparison between NDF [3], GIFS [5], and IPVNet on the Garments [6]
dataset for object reconstruction at different voxel resolutions. IPVNet outperforms the baselines
by significant margin in lower resolutions. The point density was fixed to N = 3K for this
experiment. The chamfer-L2 results are of order ×10−4.

4.5.3 Real-World Scene Reconstruction

We evaluated the reconstruction of complex real-world scenes through the use of the Gibson

Environment dataset [2]. The dataset consists of RGBD scans of indoor spaces. A subset of 35 and

100 scenes were prepared following the procedure from [3] for training and testing, respectively.

We utilized a sliding window scheme and reconstructed the surface bounded by each window.

Since the sliding window may frequently consist of a very small area of the scene with only few

points, we used an output density five times as large the input density (i.e., O = 5 × N) to save

time. The grid resolutions were kept fixed at M = 256 for both IPVNet and the baseline. The

reconstruction results are highlighted in Figure 4.7. In addition to improving the preservation of

structural details, IPVNet produces significantly fewer outliers than the baseline due to the use of

point features during training and inference.

Lastly, we tested IPVNet on the challenging complex surfaces of the Garments [6] dataset.

Figure 4.8 and Table 4.2 show the qualitative and quantitative results, respectively. It can be

observed from Table 4.2 that IPVNet exhibits superior performance compared to the baselines,

particularly at low grid resolutions. The point-voxel fusion technique utilized by our model is able

to effectively recover lost details from the resulting discretization.

42

Input NDF IPVNet IPVNetmesh GT

Figure 4.7: Scene reconstruction on the test set of the Gibson Environment [2] dataset using NDF
[3], IPVNet, and the respective ground truth (GT). Each odd row represents an outside view of
a scene while the even rows depict inside views. In contrast to the baseline, IPVNet produces
significantly less outliers (outside view) and improves the preservation of geometric features (inset
images).

43

Input NDF GIFS IPVNet GT

Figure 4.8: A qualitative comparison between NDF [3], GIFS [5], and IPVNet on the Garments
[6] dataset.

4.6 Ablation Study

In this section, we study the effect of different design choices and how they influence the

performance of IPVNet on the task of 3D reconstruction.

4.6.1 Effect of Point Features on Object Reconstruction

Since multiple points within the boundary of a grid are merged together in low resolu-

tions, we test the effect of this information loss on object reconstruction. To understand if the

point features are helpful in recovering missing information, we trained a version of IPVNet

named IPVNetwp, which has the same neural functions except for the point encoder and point-

feature aggregation. Both IPVNet and IPVNetwp were trained with differing grid resolutions,

M ∼ {32, 64, 128, 256}, while using a fixed input point density of N = 10000. Our findings on

the reconstruction of the ShapeNet Cars dataset are illustrated in Table 4.3. At lower resolutions,

44

Grid
Resolution

% of
Lost Points

Chamfer-L2 ↓
IPVNetwp IPVNet

32 82% 9.587 4.307
64 45% 0.961 0.543

128 16% 0.395 0.257
256 4% 0.092 0.068

Table 4.3: The object reconstruction accuracy for different grid resolutions on the ShapeNet Cars
[4] dataset using only voxel features (IPVNetwp) and point-voxel features (IPVNet). The second
column represents the percentage of raw points lost during the voxelization process due to multiple
points overlapping in the same grid. In low-resolution grids, IPVNet significantly outperforms
IPVNetwp. The chamfer-L2 results are of order ×10−4.

where a significant percentage of the raw points are lost due to voxelization, IPVNet outperforms

IPVNetwp by a notable margin thus indicating the usefulness of point features.

4.6.2 Effect of Point Features on Scene Reconstruction

To test the effectiveness of point features on scene reconstruction, we used Algorithm 1

to infer the surface for both IPVNet and IPVNetwp. The reconstruction results are displayed in

Figure 4.9. Compared to the baseline, Algorithm 1 by itself can reduce the number of outliers

without point features (Figure 4.9b). However, when point features are included during training

the reconstruction results (Figure 4.9c) are closer to the ground truth (Figure 4.9d), and therefore

more accurate details with less outliers are realized.

4.6.3 Post-Processing Outlier Removal

To provide a comparison of IPVNet against a naive post-processing step, we filter the base-

line reconstruction using the coordinate range of the input point cloud as the distance threshold.

The qualitative results of this experiment are recorded in Figure 4.10. It is critical to note that

naive post-processing cannot remove all the outliers due to their existence near areas of surface

curvature.

45

4.7 Limitations and Future Directions

Despite the fact that the UDF function is capable of reconstructing multiple complex sur-

faces, the requirement of projecting the query points several times makes the surface inference

time long. Our point-voxel formulation may also be beneficial for other implicit techniques such

as occupancy and signed distance prediction. We aim to investigate these directions in future work.

4.8 Conclusion

In this chapter we introduced IPVNet, a novel approach that implicitly learns from raw point

and voxel features to reconstruct complex open surfaces. To improve the reconstruction quality, we

make use of raw point cloud data jointly with voxels to learn local and global features. Not only

have we showed that IPVNet outperforms the state of the art on both synthetic and real-world data,

but we also demonstrated the effectiveness of point features on 3D reconstruction through ablation

studies. Furthermore, we developed an inference module that extracts a zero level set from a

UDF and drastically reduces the amount of outliers in the reconstruction. We believe IPVNet

is an important step towards reconstructing open surfaces without losing details and introducing

outliers, and we hope that our work will inspire more research in this area.

46

(a) (b)

(c) (d)

Figure 4.9: An ablation study showing the effectiveness of point features during training. To
reconstruct a scene from the Gibson Environment [2] dataset, we used (a) the NDF [3] baseline
and (b) IPVNetwp with our inference algorithm (Algorithm 1). The IPVNet reconstruction results
are shown in (c) and the ground truth is displayed in (d). Notice that Algorithm 1 by itself can
reduce the number of outliers. However, when point features are included during training, our
reconstruction results (c) are closer to the ground truth (d) and achieve more accurate details with
far fewer outliers.

47

NDF IPVNet

Figure 4.10: Reconstruction results after the NDF [3] baseline has been filtered using the input
coordinate range as the distance threshold, and IPVNet without any filtering. NDF still includes
outliers due to the surface curvature whereas the IPVNet reconstruction consists of significantly
less outliers without any filtering.

48

CHAPTER 5

LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction

5.1 Introduction

Constructing a truthful portrayal of the 3D world from a single 2D image is a basic prob-

lem for many applications including robot manipulation and navigation, scene understanding, view

synthesis, virtual reality, and more. Following the work of Erwin Kruppa [119] in camera motion

estimation and the recovery of 3D points, researchers have attempted to solve the 3D reconstruc-

tion issue using structure from motion [120, 121, 122], and visual simultaneous localization and

mapping [123, 124]. However, the main limitation of such approaches is that they require multiple

observations of the desired object or scene from distinct viewpoints with shared features. Such a

multi-view formulation allows for integrating information from numerous images to compensate

for occluded geometry.

Reconstructing a 3D object from a single image is a more difficult task since a sole im-

age does not contain the whole topology of the target shape due to self-occlusions. Researchers

have tried both explicit and implicit techniques to reconstruct a target object with self-occluded

parts. Explicit methods attempt to infer the target shape directly from the input image. Never-

theless, a major drawback of such approaches is that the output resolution needs to be defined in

advance, which constrains these techniques from achieving high-quality results. Recent advances

in implicit learning offer a solution to reconstruct the target shape in an arbitrary resolution by

indirectly inferring the desired surface through a distance/occupancy field. Then, the target surface

is reconstructed by extracting a zero level set from the distance/occupancy field.

Implicit 3D reconstruction from a single view is an active area of research where one faction

of techniques [75, 77] encode global image features into a latent representation and learn an im-

49

Figure 5.1: Five unique views of objects reconstructed by LIST from a single RGB image. Not
only does our model accurately recover occluded geometry, but also the reconstructed surfaces are
not influenced by the input-view direction.

plicit function to reconstruct the target. Yet, these approaches can be easily outperformed by simple

retrieval baselines [11]. Therefore, global features alone are not sufficient for a faithful reconstruc-

tion. Another faction leverages both local and global features to learn the target implicit field from

pixel-aligned query points. However, such methods rely on ground-truth/estimated camera param-

eters for training/inference [125, 126], or they assume weak perspective projection [127, 128].

To address these shortcomings we propose LIST, a novel deep learning framework that can

reliably reconstruct the topological and geometric structure of a 3D object from a single RGB

image. Our method does not depend on weak perspective projection, nor does it require any

50

camera parameters during training or inference. Moreover, we leverage both local and global

image features to generate highly-accurate topological and geometric details. To recover self-

occluded geometry and aid the implicit learning process, we first predict a coarse shape of the

target object from the global image features. Then, we utilize the local image features and the

predicted coarse shape to learn a signed distance function (SDF).

Due to the scarcity of real-world 2D-3D pairs, we train our model on synthetic data. How-

ever, we use both synthetic and-real world images to test the reconstruction ability of LIST.

Through qualitative analysis we highlight our model’s superiority in reconstructing high-fidelity

geometric and topological structure. Via a quantitative analysis using traditional evaluation met-

rics, we show that the reconstruction quality of LIST surpasses existing works. Furthermore, we

design a new metric to investigate the reconstruction quality of self-occluded geometry. Finally,

we provide an ablation study to validate the design choices of LIST in achieving high-quality

single-view 3D reconstruction. Our source code is publicly available to the research community

[129].

The remainder of this chapter is organized as follows. We give a summary of related re-

search in Section 5.2. The details of our 3D reconstruction model are described in Section 5.3.

Our experimental evaluation, a discussion of the results, and an ablation study are presented in

Section 5.4. We conclude in Section 5.5.

5.2 Related Work

In this section we summarize pertinent work on the reconstruction of 3D objects from a

single RGB image via implicit learning. Interested readers are encouraged to consult [130] for a

comprehensive survey on 3D reconstruction from 2D images. Contrary to explicit representations,

implicit ones allow for the recovery of the target shape at an arbitrary resolution. This benefit

has attracted interest among researchers to develop novel implicit techniques for different applica-

tions. Dai et al. [131] used a voxel-based implicit representation for shape completion. DeepSDF,

51

introduced by Park et al. [80], is an auto-decoder that learns to estimate signed distance fields.

However, DeepSDF requires test-time optimization, which limits its efficiency and capability.

To further improve 3D object reconstruction quality, Littwin and Wolf [79] utilized encoded

image features as the network weights of a multilayer perceptron. Wu et al. [132] explored se-

quential part assembly by predicting the SDFs for structural parts separately and then combining

them together. For self-supervised learning, Liu et al. [133] proposed a ray-based field probing

technique to render the implicit surfaces as 2D silhouettes. Niemeyer et al. [134] used supervision

from RGB, depth, and normal images to reconstruct rich geometry and texture. Chen and Zhang

[77] proposed generative models for implicit representations and leveraged global image features

for single-view reconstruction. For multiple 3D vision tasks, Mescheder et al. [75] developed

OccNet, a network that learns to predict the probability of a volumetric grid cell being occupied.

Pixel-aligned approaches [127, 135, 128, 136] have employed local query feature extraction

from image pixels to improve 3D human reconstruction. Xu et al. [125] incorporated similar ideas

for 3D object reconstruction. To enhance the reconstruction quality of surface details, Li and

Zhang [126] utilized normal images and a Laplacian loss in addition to aligned features. Zhao

et al. [96] exploited coarse prediction and unsigned distance fields to reconstruct garments from

a single view. Duggal and Pathak [137] proposed category specific reconstruction by learning a

topology aware deformation field. Mittal et al. introduced AutoSDF [138], a model that encodes

local shape regions separately via patch-wise encoding. However, these prior works rely on weak

perspective projection and the rendering of metadata to align query points to image pixels. In

contrast, LIST does not require any alignment or rendering data, and it recovers more accurate

topological structure and geometric details.

5.3 Implicit Function Learning from Unaligned Pixel Features

Given a single RGB image of an object, our goal is to reconstruct the object in 3D with

highly-accurate topological structure and self-occluded geometry. We model the target shape as

52

Localized
Query
Points

B

I

+ x

In
pu

t

Coarse Points

θπ

Ξ

σ

Conv2D TreeGCN Conv3D FC Local Feature Global Feature

Ω

Ψ

Γ

Voxel Grid

Marching
Cubes

LV

LSDF

LCD

Κ

Figure 5.2: To reconstruct the target object from a single RGB image, LIST first predicts the coarse
topology from the global image features. Simultaneously, local image features are used to extract
local geometry at the given query locations. Finally, an SDF predictor (Ψ) estimates the signed
distance field (σ) to reconstruct the target shape. Note that images and colors are for visualization
purposes only.

an SDF and extract the underlying surface from the zero level set of the SDF during inference.

To train our model we employ an image and query point pair (xi, Qi), where Qi is a set of 3D

coordinates (query points) in close vicinity to the surface of the object with a measured signed

distance and xi is a rendering of the object from a random viewpoint. An overview of the our

framework is presented in Figure 5.2. The details of each component are provided in the following

subsections.

5.3.1 Query Features From Coarse Predictions

Consider an RGB image xi ⊂ X ∈ RH×W×3 of height H and width W . We propose a

convolutional neural encoder-decoder Ωω, parameterized by weights ω, to extract latent features

from the image and predict a coarse estimation ẏxii of the target object. Concretely,

Ωω(xi) := ẏxii | RH×W×3 → RN×3, (5.1)

53

where ẏxii is a point cloud representation of the target and N is the resolution of the point cloud.

Note that the subscript i indicates i-th sample and the superscript xi designates the source vari-

able. For high-performance point cloud generation, we utilize tree structured graph convolutions

(TreeGCN) [9] to decode the image features.

We use the coarse prediction ẏi as a guideline for the topological structure of the target shape

in a canonical space. To extract query features from this coarse prediction, first we discretize the

point cloud in an occupancy grid u̇ẏii ∈ 1M×M×M of resolution M . However, the coarse prediction

may contain gaps and noisy points that may impair the reconstruction quality. To resolve this, we

employ a shallow convolutional network Γö parameterized by weights ö to generate a probabilistic

occupancy grid from u̇ẏii ,

v̇u̇ii := Γö(u̇
ẏi
i) : 1M×M×M → [0, 1]M×M×M . (5.2)

Specifically, our aim is to find the neighboring points of ẏi with a high chance of being a surface

point of the target shape.

Although it is possible to regress the voxel representation directly from the global image

features [139, 140, 128], learning a high-resolution voxel occupancy prediction requires a signif-

icant amount of computational resources [128]. Moreover, we empirically found that point cloud

prediction followed by voxel discretization achieves better accuracy on diverse shapes rather than

predicting the voxels directly.

Next, a neural network Ξξ, parameterized by weights ξ, maps the probabilistic occupancy

grid (5.2) to a high-dimensional latent matrix through convolutional operations. Then, our multi-

scale trilinear interpolation scheme I extracts relevant query features fC at each query location qi

from the mapped features. More formally,

fC := I (Ξξ(v̇
u̇i
i), Qi). (5.3)

54

In addition to qi, we also consider the neighboring points at a distance d from qi along the Cartesian

axes to capture rich 3D features, i.e.,

qj = qj + k · n̂j · d, (5.4)

where k ∈ {1, 0,−1}, j ∈ {1, 2, 3}, and n̂j ∈ R3 is the j-th Cartesian axis unit vector.

5.3.2 Localized Query Features

The coarse prediction and query features fC can aid the recovery of the topological structure

of the target shape. Nevertheless, relevant local features are also required to recover fine geometric

details. To achieve this, prior arts assume weak perspective projection [127, 128] or align the

query points to the image pixel locations through the ground-truth/estimated camera parameters

[125, 126]. Predicting the camera parameters is analogous to predicting the object pose from a

single image, which is itself a hard problem in computer vision. It involves a high chance of error

and a computationally expensive training procedure. Furthermore, the error in the pose/camera

estimation may lead to the loss of geometric details in the reconstruction.

To overcome these limitations, we obtain insight from spatial transformers [116] and lever-

age the spatial relationship between the input image and the coarse prediction. Via the coarse

prediction, which portrays an object from a standard viewpoint and the query points that delineate

the coarse predictions, it is possible to localize the query points to the local image features. This

is done by predicting a spatial transformation with the aid of global features from the input image

and the coarse prediction as follows.

First, we define a convolutional neural encoder Ππ, parameterized by weights π, to encode

the input image into local (lxiπ) and global (zxiπ) features. Concretely,

Ππ(xi) := {lxiπ , zxiπ }. (5.5)

55

Concurrently, a neural module Kκ encodes the coarse prediction ẏxii into global point features.

Using global features from both the image and the coarse prediction, the spatial transformer Θ

estimates a transformation to localize the query points in the image feature space. Then, localized

query points Q̃i are generated by applying the predicted transformation to Qi,

Θθ(z
xi
π , Kκ(ẏ

xi
i), Qi) := Q̃i | RN×3 → RN×2. (5.6)

Finally, a bi-linear interpolation scheme B extracts the local query features fL from the local image

features lxiπ ,

fL := B(lxiπ , Q̃i). (5.7)

Note that the point encoder Kκ and the localization network Θ are designated to ensure an

accurate SDF prediction. Therefore, we do not use any camera parameters during training and we

optimize these neural modules directly with the SDF prediction objective. This has the following

benefits:

(i) additional modules or training to predict the projection matrix and object pose from a single

image are not required;

(ii) reconstructions are free from any pose estimation error, which boosts reconstruction accu-

racy.

5.3.3 Signed Distance Function Prediction

To estimate the final signed distance ∆i, we combine the coarse features fC with the local-

ized query features fL and utilize a multilayer neural function defined as

Ψψ(fC , fL) :=

R−, if qi is inside the target surface

R+, otherwise.
(5.8)

56

5.3.4 Loss Functions

We incorporate the chamfer distance (CD) loss and optimize the weights ω to accurately

estimate the coarse shape of the target. More specifically,

LCD(yi, ẏi) =
∑
a∈ẏi

min
b∈yi
||a− b||2 +

∑
b∈yi

min
b∈ẏi
||b− a||2, (5.9)

where yi ∈ RN×3 is a set of 3D coordinates collected from the surface of the object and ẏi ∈

RN×3 is the estimated coarse shape. To supervise the probabilistic occupancy grid prediction, we

discretize yi to generate the ground-truth occupancy vyii ∈ 1M×M×M . The neural weight ö is then

optimized by the binary cross-entropy loss,

LV (vi, v̇i) = − 1

|vi|
Σ(γvi log v̇i + (1− γ)(1− vi) log(1− v̇i)), (5.10)

where γ is a hyperparameter to control the influence of the occupied/non-occupied grid points. To

optimize the SDF prediction, we collect a set of query points Qi within distance δ of the target

surface and measure their signed distance σi. The estimated signed distance is then guided by

optimizing the neural weights ξ, π, θ, and ψ through

LSDF =
1

|Qi|
Σ(σi −∆i)

2. (5.11)

5.3.5 Training Details

We incorporate a two-stage procedure to train LIST. In the first stage, we only focus on the

coarse prediction from the input image xi and optimize the weights ω through LCD. Then, we

freeze ω after convergence to a minimum validation accuracy and start the second stage for the

SDF prediction. During the second stage, we jointly optimize ö, ξ, π, κ, θ, and ψ through the

combined loss L = LV + LSDF. LIST can also be trained end-to-end by jointly minimizing LCD

57

with LV and LSDF. However, we found the two-stage training procedure easier to evaluate and

quicker to converge during experimental evaluation. To reconstruct an object at test time, we first

densely sample a fixed 3D grid of query points and predict the signed distance for each point.

Then, we use the marching cubes [141] algorithm to extract the target surface from the grid.

5.4 Experimental Evaluation

In this section, we describe the details of our experimental setup and results.

5.4.1 Implementation Overview

LIST was implemented using the PyTorch [142] library. To optimize the model, the Adam

[67] optimizer was used with coefficients (0.9, 0.99), learning rate 10−4, and weight decay 10−5. A

pretrained ResNet [143] was employed as the image encoder in Ω and Π. We closely followed the

generator in [9] to implement the coarse predictor in Ω with tree-structured convolutions. However,

we empirically found that the degree values (2, 2, 2, 2, 2, 2, 64) provided a better coarse estimation

in our settings. We set the coarse point cloud density to N = 4000, and the occupancy grid

resolution to M = 128. To generate a probabilistic occupancy with the same grid, we utilized a

shallow convolutional network Γ.

We define Ξ as a convolutional neural network to map the probabilistic occupancy grid

into a high-dimensional latent space. To extract the global query features and localize the query

points, we used a fully-connected neural network Θ. The global image features are fused with the

global query features on the 3rd layer of Θ. During training, we augment the images with random

color jitter, and normalize the values to [0, 1]. To improve the estimation accuracy, we scale the

ground-truth and predicted SDF values by 10.0. Following [77], we disentangled the query points

by scaling with 2.0 and swapping the 1st and 3rd axis to extract query features from the coarse

prediction. At test time, we extract the query points from a grid in the range [−0.5, 0.5] with

resolution 1283.

58

5.4.2 Training and Inference Time

To train LIST it takes ≈ 1 second to make a forward pass on an Intel i7 machine with an

NVIDIA GeForce GTX 1080Ti GPU. To fully pass through the Pix3D and ShapeNet datasets,

it takes approximately 35 and 50 minutes, respectively. Our training process involved using 4

1080Ti GPUs for 100 epochs with a batch size of 8. To reconstruct the mesh of a single object

from a corresponding RGB image, it takes ≈ 7s on average at a grid resolution of 1283.

5.4.3 Datasets

Similar to [126] and [138], we utilized the 13-class subset of the ShapeNet [4] dataset to

train LIST. The renderings and processed meshes from [125] were used as the input view and

target shape. We trained a single model on all 13 categories. Additionally, we employed the

Pix3D [7] dataset to test LIST on real-world scenarios. The train/test split from [144] was used to

evaluate on all 9 categories of Pix3D. Following [144], we preprocessed the Pix3D target shapes

to be watertight for training.

To prepare the ground truth, first the target shape was normalized into a unit cube and 50k

points were sampled from the surface of the object. The query points were prepared by adding

random Gaussian noise (n) to the surface points. Specifically,

Qj = QS + n | n ∈ N (0, P), (5.12)

where QS are the sampled points and P ∈ R3×3 is a diagonal covariance matrix with entries

Pi,i = ρ. We empirically found that 45% of the points at ρ = 0.003, 44% of the points at ρ = 0.01,

and 10% of the points at ρ = 0.07 achieved the best results. To supervise the coarse prediction and

probabilistic occupancy grid estimation, we sub-sampled 4k points from the surface via farthest

point sampling.

59

5.4.4 Baseline Models

For single-view reconstruction via synthetic images, we compared against the following

prior arts: IMNET [77], and D2IM-Net [126]. IMNET does not require pose estimation. However,

the reconstruction only unitizes global features from an image. D2IM-Net extracts local features by

aligning the query points to image pixels through rendering metadata and it uses a pose estimation

module during inference.

For single-view reconstruction from real-world images, we evaluated against TMN [145],

MGN [146], and IM3D [144]. TMN deforms a template mesh to reconstruct the target object.

MGN and IM3D perform reconstruction through the following steps: (i) identify objects in a

scene, (ii) estimate their poses, and (iii) reconstruct each object separately.

5.4.5 Metrics

We computed commonly used metrics (e.g., CD, intersection over union (IoU), and F-score),

to evaluate the performance of LIST. To evaluate the reconstructions between LIST and the base-

lines we used d = 1%.

These traditional metrics do not differentiate between visible/occluded surfaces since they

evaluate the reconstruction as a whole. To investigate the reconstruction quality of occluded sur-

faces, we propose to isolate visible/occluded surfaces based on the viewpoint of the camera and

evaluate them separately using the traditional metrics. A visual depiction of this new strategy is

presented in Figure 5.3.

To measure the reconstruction quality of occluded surfaces, we first align the predicted/ground-

truth meshes to their projection in the input image using the rendering metadata. Then, we assume

the camera location as a single source of light and cast rays onto the mesh surface by ray casting

[147]. Next, we identify the visible/occluded faces through the ray-mesh intersection and subdi-

vide the identified faces to separate them. Note that the rendering metadata is only used to evaluate

60

Figure 5.3: To evaluate the reconstruction quality of occluded surfaces, we first align the recon-
structed shape (b) with the input image (a) and cast rays onto the surface (c). Next, we identify
the (red) faces that intersect with the rays via ray-mesh intersection and separate the reconstructed
mesh into (d) visible and (e) occluded areas.

the predictions. Finally, we sample 100k points from the separated occluded faces to compute the

CDos, and voxelize the sampled points to compute the IoUos and F-Scoreos.

In our implementation, we set the canvas resolution to 4096×4096 pixels and generated one

ray per pixel from the camera location. It is important to note that ray casting and computing ray-

mesh intersections are computationally demanding tasks. Therefore, to manage time and resources,

we chose five sub-classes (chair, car, plane, sofa, table) to evaluate occluded surface reconstruction.

5.4.6 Single-View 3D Reconstruction Evaluation

plane bench cabinet car chair display lamp speaker rifle sofa table phone boat Mean

CD↓

IMNET 18.95 17.34 15.17 10.86 14.72 16.77 83.64 33.41 10.33 13.35 19.32 9.16 15.24 21.40
D2IM-Net 13.25 12.51 9.47 7.83 11.31 15.33 34.08 17.62 8.55 12.34 14.26 8.11 15.73 13.87

LIST 12.13 13.49 7.45 1.04 9.20 13.65 47.31 16.75 7.32 9.92 11.14 7.91 15.78 13.31

IoU↑

IMNET 39.43 44.65 49.25 55.75 51.22 53.34 29.26 50.66 46.43 51.12 41.63 52.79 49.61 47.31
D2IM-Net 45.44 48.45 48.60 53.58 53.13 52.72 32.45 51.75 50.76 53.35 45.17 53.06 52.89 49.33

LIST 49.03 47.57 56.29 65.57 52.70 57.34 24.80 55.34 52.42 56.79 47.90 58.98 54.35 52.23

F-score↑

IMNET 48.87 31.78 44.34 48.78 41.45 48.32 21.23 48.29 52.92 44.12 45.21 51.52 52.31 44.54
D2IM-Net 51.37 36.76 43.49 51.77 45.56 50.82 29.57 51.93 56.25 48.34 47.23 54.84 52.73 47.74

LIST 52.46 36.39 42.51 53.12 46.62 51.78 22.88 52.67 58.24 50.52 49.62 56.89 53.58 48.25

Table 5.1: Quantitative results using the ShapeNet [4] dataset for various models. The metrics
reported are the following: chamfer distance (CD), intersection over union (IoU), and F-score.
The CD values are scaled by 10−3.

61

Input IMNET D2IM-Net LIST GT

Figure 5.4: A qualitative comparison between LIST and the baseline models using the ShapeNet
[4] dataset. Our model recovers significantly better topological and geometric structure, and the
reconstruction is not tainted by the input-view direction. GT denotes the ground-truth objects.

5.4.6.1 Single-View 3D Reconstruction from Renderings of Synthetic Objects

In this experiment we performed single-view 3D reconstruction on the test set of the ShapeNet

dataset. The qualitative and quantitative results are displayed in Figure. 5.4 and Table 5.1, respec-

tively. In comparison to the baselines, the topological structure and occluded geometry recovered

by LIST are considerably better. For example, in row 3 all of the baselines struggle to reconstruct

the tail of the airplane and they fail to estimate the full length of the wings. In row 5, none of the

baselines were able to recover the occluded part of the table. In contrast, LIST not only recovers

the structure, but it also maintains the gap in between. Moreover, notice that in row 2 D2IM-Net

fails to resolve the directional view ambiguity and imprints an arm shaped silhouette on the seat

62

plane car chair sofa table Mean

CDos ↓

IMNET 24.11 13.34 15.47 24.34 26.86 20.82
D2IM-Net 26.23 13.44 13.59 20.45 23.45 19.43

LIST 18.93 6.57 12.66 18.44 21.76 15.67

IoUos ↑

IMNET 45.63 46.87 38.32 45.87 39.02 43.14
D2IM-Net 48.44 50.33 49.43 50.32 42.22 48.14

LIST 53.15 55.37 51.25 55.22 43.17 51.63

Fos-score↑

IMNET 40.93 46.94 44.43 46.84 45.64 44.95
D2IM-Net 47.21 50.73 48.89 49.15 47.72 48.73

LIST 50.33 52.55 49.34 51.02 48.11 50.27

Table 5.2: A quantitative evaluation of the occluded surfaces of reconstructed synthetic objects
via our evaluation strategy. The metrics reported are the following: chamfer distance (CDos),
intersection over union (IoUos), and Fos-score. The CDos values are scaled by 10−3.

rather than reconstructing the arm. This indicates a strong influence of the input-view direction in

the reconstructed surface. Conversely, LIST can resolve view-directional ambiguity and provide a

reconstruction that is uninfluenced by the input-view direction. As shown in Table 5.1, LIST out-

performs all the other baseline models. Additional qualitative comparison between LIST and the

baselines can be found in Figure 5.9. Moreover, we have compared LIST against the baselines

on reconstructing from distinct views of the same object. The qualitative results are displayed in

Figure 5.10, 5.11, and 5.12.

We also evaluated LIST against the baselines on occluded surface recovery by partitioning

the reconstructions using our proposed metric. The results are recorded in Table 5.2 and Figure 5.6

respectively. LIST outperformed all the baselines hence showcasing the superiority of our ap-

proach in reconstructing occluded geometry. Furthermore, LIST provides a stable reconstruction

across different views of the same object as shown in Figure 5.5. However, the use of ground-truth

rendering data instead of the estimated data improved the reconstruction quality. This indicates the

source of the problem to be the sub-optimal prediction of the camera pose. Nonetheless, LIST is

free from any such complication as our framework does not require any explicit pose estimation.

63

bed bookcase chair desk sofa table tool wardrobe misc Mean

CD↓

TMN 7.78 5.93 6.86 7.08 4.25 17.42 4.13 4.09 23.68 9.03
MGN 5.99 6.56 5.32 5.93 3.36 14.19 3.12 3.83 26.93 8.36
IM3D 4.11 3.96 5.45 7.85 5.61 11.73 2.39 4.31 24.65 6.72
LIST 5.81 1.74 6.11 3.87 2.08 1.68 1.99 0.80 5.16 4.36

IoU↑ LIST 45.61 39.54 41.15 59.68 67.34 49.12 27.82 43.87 34.72 46.77
F-score↑ LIST 58.18 67.22 60.01 78.34 70.14 69.19 46.48 75.70 39.14 65.66

Table 5.3: A quantitative evaluation of the occluded surfaces of reconstructed objects via our
evaluation strategy. The metrics reported are the following: chamfer distance (CDos), intersection
over union (IoUos), and Fos-score. The CDos values are scaled by 10−3

Base OL 1E 2D EC Final
CD↓ 11.35 9.64 10.72 8.48 7.89 7.32
IoU↑ 51.34 53.95 51.40 55.23 55.10 56.83

F-score↑ 43.11 48.06 45.92 51.37 51.33 52.75

Table 5.4: Quantitative results obtained from the ablation study using different network settings.

5.4.6.2 Single-View 3D Reconstruction from Real Images

In this experiment we evaluated single-view 3D reconstruction on the test set of the Pix3D

dataset. The qualitative and quantitative results are provided in Figure 5.7 and Table 5.3, respec-

tively. The baseline results were obtained from the respective papers. Compared to other methods

our approach generates the most precise 3D shapes, which results in the lowest average CD and

F-score. Notice that in Figure 5.7, rows 3 and 4, only LIST can accurately recover the back and

legs of the chair. Additionally, LIST reconstructions provide a smooth surface, precise topology,

and fine geometric details.

5.4.7 Ablation Study

5.4.7.1 Setup

To investigate the impact of each individual component in our single-view 3D reconstruction

model, we performed an ablation study with the following network options.

64

• Base: A version of LIST that predicts the signed distance utilizing only global image features

and coarse predictions.

• OL: An improved Base version that uses the probabilistic occupancy from the coarse predic-

tion and occupancy loss.

• 1E: A version of LIST where local and global image features from the same encoder are

used for both coarse prediction and localized query feature extraction.

• 2D: LIST with two separate decoders to estimate the signed distance from local and global

query features. The final prediction is obtained by adding both estimations.

• EC: We train LIST without the localization module and use a separate pose estimation mod-

ule similar to [126] to predict the camera parameters. The estimated camera parameters were

used to transform the query points during inference.

To maximize limited computational resources, we focused on the most diverse five sub-classes

(chair, car, plane, sofa, table) of the ShapeNet dataset for this ablation study. The qualitative and

quantitative results of the experiments are recorded in Figure 5.8 and Table 5.4 respectively.

5.4.7.2 Discussion

In the ablation experiments the Base version was able to recover global topology, but it

lacked local geometry. As shown in Fig 5.8, the probabilistic occupancy and optimization loss

helped recover some details in the OL version. Conversely, the performance decreased slightly after

the inclusion of local details in the single-encoder version (1E). We hypothesize that the task of

query point localization, while estimating the coarse prediction, overloads the encoder and hinders

meaningful feature extraction for the signed distance prediction. To overcome this issue, we used a

separate encoder for the coarse prediction and query point localization. The dual-decoder version

(2D), performed similar to the final model. Nonetheless, we found that the geometric details had

a thicker reconstruction than the target during qualitative evaluation. This motivated the fusion of

features rather than predictions in the final version.

65

We also ablated the localization module using estimated camera parameters during training

and inference. As shown in Table 5.4, the final version of LIST outscores the version employ-

ing estimated camera (EC) parameters. This indicates that our localization module with an SDF

prediction objective is more suitable for single-view reconstruction compared to a camera pose

estimation sub-module. More importantly, this removes the requirement for pixel-wise alignment

through camera parameters for local feature extraction. Note that the EC reconstruction appears

qualitatively similar to the others and was therefore omitted in Figure 5.8.

5.4.8 Limitations and Future Directions

Although LIST achieves state-of-the-art performance on single-view 3D reconstruction, there

are some limitations. For example, the model may struggle with very small structures. We specu-

late that this is due to the coarse predictor failing to provide a good estimation of such structures.

Please see the 5.13 for examples of failed reconstruction results. Another shortcoming is the need

for a clear image background. LIST can reconstruct targets from real-world images, yet it requires

an uncluttered background to do this. In the future, we will work towards resolving these issues.

5.5 Conclusion

In this chapter, we introduced LIST, a network that implicitly learns how to reconstruct a

3D object from a single image. Our approach does not assume weak perspective projection, nor

does it require pose estimation or rendering data. We achieved state-of-the-art performance on

single-view reconstruction from renderings of synthetic objects. Furthermore, we demonstrated

domain transferability of our model by recovering 3D surfaces from images of real-world objects.

We believe our approach could be beneficial for other problems such as object pose estimation and

novel view synthesis.

66

Input IMNET D2IM-Net LIST

Figure 5.5: A qualitative comparison between LIST and the baseline models using distinct views of
the same object. Not only can our model both maintain better topological structure and geometric
details, but it also provides a reconstruction that is stable across different views of the object.

67

Input D2IM-Net LIST GT

Figure 5.6: A qualitative comparison between LIST and the baseline models on occluded surface
reconstruction using the ShapeNet dataset. GT denotes the ground-truth objects.

68

Input MGN IM3D LIST GT

Figure 5.7: Single-view reconstruction using real-world images from the Pix3D [7] test set (best
viewed zoomed in).

Input Base OL 1E 2D Final

Figure 5.8: Qualitative results obtained from the ablation study using different network settings.

69

Input IMNET D2IM-Net LIST GT

Figure 5.9: A qualitative comparison between LIST and the baseline models using the ShapeNet
dataset. Our model recovers significantly better topological and geometric structure, and the re-
construction is not tainted by the input-view direction. GT denotes the ground-truth objects.

70

Figure 5.10: Qualitative results of LIST reconstructions using distinct views of the same object.
Odd rows represent the input and even rows represent the reconstructions.

71

Figure 5.11: Qualitative results of LIST reconstructions using distinct views of the same object.
Odd rows represent the input and even rows represent the reconstructions.

72

Figure 5.12: Qualitative results of LIST reconstructions using distinct views of the same object.
Odd rows represent the input and even rows represent the reconstructions.

73

Figure 5.13: Examples of failed LIST reconstructions.

74

CHAPTER 6

Conclusion

In summary, this research represents a significant step forward in the field of raw 3D point

cloud generation and reconstruction by introducing novel contributions that address various chal-

lenges. The first major advancement is the introduction of PCGAN, a progressive conditional

generative adversarial network designed to generate dense and colored 3D point clouds for dif-

ferent object classes without the need for supervision. The key innovation of PCGAN lies in its

point transformer, which allows the network to progressively grow in resolution using graph con-

volutions. This approach enables the capture of intricate details at high resolutions, resulting in

colored point clouds with fine details at multiple scales. The experimental results demonstrate the

network’s capability to learn and replicate a 3D data distribution effectively.

The second contribution is IPVNet, a learning-based implicit point-voxel model specifically

tailored for reconstructing 3D open surfaces, such as non-watertight meshes. Previous techniques

struggle with surface gaps, leading to artifacts such as the artificial closing of gaps. IPVNet over-

comes this challenge by predicting the unsigned distance between a surface and a query point

in 3D space, leveraging both raw point cloud data and its discretized voxel representation. This

method outperforms state-of-the-art techniques, delivering more accurate reconstructions while

significantly reducing the number of outliers in the results. The utilization of both raw data and

voxel representation allows for a more precise and robust reconstruction process.

The third major contribution of this research is the introduction of LIST, a novel neural archi-

tecture aimed at accurately reconstructing both the geometric and topological details of 3D objects

from a single 2D image. Existing explicit and implicit methods grapple with self-occluded ge-

ometry and fail to provide faithful topological shape reconstruction. LIST resolves this challenge

75

by leveraging both global and local image features. It predicts a coarse shape of the target object

using global 2D features and then refines the reconstruction at higher resolutions by incorporating

local 2D features and 3D features from the coarse prediction. One key advantage of LIST is that it

does not require camera estimation or pixel alignment, thus providing uninfluenced reconstructions

from the input-view direction. The qualitative and quantitative analysis demonstrates the superi-

ority of LIST compared to state-of-the-art approaches in reconstructing 3D objects from synthetic

and real-world images.

Lastly, we provide open-source licenses for our source code and make them freely avail-

able to facilitate further research and development in this field. In conclusion, this research not

only pushes the boundaries of 3D point cloud generation and reconstruction, but it also enriches

the broader research community by providing valuable resources to fuel future exploration and

innovation.

76

REFERENCES

[1] Realistic Graphics Lab, EPFL, “Mitsuba 2 renderer,” 2020, http://www.mitsuba-

renderer.org.

[2] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: Real-world

perception for embodied agents,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2018, pp. 9068–9079.

[3] J. Chibane, A. Mir, and G. Pons-Moll, “Neural unsigned distance fields for implicit function

learning,” arXiv preprint arXiv:2010.13938, 2020.

[4] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,

M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “Shapenet: An information-rich 3d

model repository,” arXiv preprint arXiv:1512.03012, 2015.

[5] J. Ye, Y. Chen, N. Wang, and X. Wang, “Gifs: Neural implicit function for general shape

representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2022, pp. 12 829–12 839.

[6] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll, “Multi-garment net: Learning

to dress 3d people from images,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 5420–5430.

[7] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman,

“Pix3d: Dataset and methods for single-image 3d shape modeling,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2974–2983.

[8] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning representations and

generative models for 3d point clouds,” in Proceedings of the International Conference on

Machine Learning, 2018, pp. 40–49.

77

[9] D. W. Shu, S. W. Park, and J. Kwon, “3d point cloud generative adversarial network based

on tree structured graph convolutions,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 3859–3868.

[10] D. Valsesia, G. Fracastoro, and E. Magli, “Learning localized generative models for 3d point

clouds via graph convolution,” in Proceedings of the International Conference on Learning

Representations, 2018.

[11] M. Tatarchenko, S. R. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox, “What do single-

view 3d reconstruction networks learn?” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 3405–3414.

[12] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image

retrieval,” International Journal of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000.

[13] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathemati-

cal statistics, vol. 22, no. 1, pp. 79–86, 1951.

[14] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot localization and navi-

gation,” in Proceedings of the IEEE International Conference on Robotics and Automation,

2012, pp. 1697–1702.

[15] R. C. Luo, V. W. Ee, and C.-K. Hsieh, “3d point cloud based indoor mobile robot in 6-dof

pose localization using fast scene recognition and alignment approach,” in Proceedings of

the International Conference on Multisensor Fusion and Integration for Intelligent Systems.

IEEE, 2016, pp. 470–475.

[16] A. Pfrunder, P. V. Borges, A. R. Romero, G. Catt, and A. Elfes, “Real-time autonomous

ground vehicle navigation in heterogeneous environments using a 3d lidar,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp.

2601–2608.

78

[17] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya, “Autonomous navigation

using a real-time 3d point cloud,” in Proceedings of the Australasian Conference on Robotics

and Automation, 2010, pp. 1–3.

[18] Q. Zhu, L. Chen, Q. Li, M. Li, A. Nüchter, and J. Wang, “3d lidar point cloud based inter-

section recognition for autonomous driving,” in Proceedings of the IEEE Intelligent Vehicles

Symposium, 2012, pp. 456–461.

[19] Y. Wang, S. Zhang, B. Wan, W. He, and X. Bai, “Point cloud and visual feature-based track-

ing method for an augmented reality-aided mechanical assembly system,” The International

Journal of Advanced Manufacturing Technology, vol. 99, no. 9-12, pp. 2341–2352, 2018.

[20] B. Liu, M. Guo, E. Chou, R. Mehra, S. Yeung, N. L. Downing, F. Salipur, J. Jopling,

B. Campbell, K. Deru, W. Beninati, A. Milstein, and F.-F. Li, “3d point cloud-based vi-

sual prediction of icu mobility care activities,” in Proceedings of the Machine Learning for

Healthcare Conference, 2018, pp. 17–29.

[21] R. Bostelman, P. Russo, J. Albus, T. Hong, and R. Madhavan, “Applications of a 3d range

camera towards healthcare mobility aids,” in Proceedings of the IEEE International Confer-

ence on Networking, Sensing and Control, 2006, pp. 416–421.

[22] S. T. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of kinect 3d

sensor for healthcare imaging,” Journal of Medical and Biological Engineering, vol. 36,

no. 6, pp. 857–870, 2016.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d

classification and segmentation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2017, pp. 652–660.

[24] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph

cnn for learning on point clouds,” ACM Transactions On Graphics, vol. 38, no. 5, pp. 1–12,

2019.

79

[25] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time

object recognition,” in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2015, pp. 922–928.

[26] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object

detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018, pp. 4490–4499.

[27] Z. Cao, Q. Huang, and R. Karthik, “3d object classification via spherical projections,” in

Proceedings of the International Conference on 3D Vision. IEEE, 2017, pp. 566–574.

[28] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning

on point sets in a metric space,” in Proceedings of the Advances in Neural Information

Processing Systems, 2017, pp. 5099–5108.

[29] L. Yi, H. Su, X. Guo, and L. J. Guibas, “Syncspeccnn: Synchronized spectral cnn for 3d

shape segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2017, pp. 2282–2290.

[30] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmentation of rgb-d scans,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 4421–4430.

[31] L. Yi, W. Zhao, H. Wang, M. Sung, and L. J. Guibas, “Gspn: Generative shape proposal

network for 3d instance segmentation in point cloud,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 3947–3956.

[32] G. Sharma, E. Kalogerakis, and S. Maji, “Learning point embeddings from shape repos-

itories for few-shot segmentation,” in Proceedings of the International Conference on 3D

Vision. IEEE, 2019, pp. 67–75.

[33] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 9621–9630.

80

[34] J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. T. Freeman, and J. B. Tenenbaum, “Learning shape

priors for single-view 3d completion and reconstruction,” in Proceedings of the European

Conference on Computer Vision, 2018, pp. 646–662.

[35] Y. Wang, D. J. Tan, N. Navab, and F. Tombari, “Forknet: Multi-branch volumetric semantic

completion from a single depth image,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 8608–8617.

[36] X. Wen, T. Li, Z. Han, and Y.-S. Liu, “Point cloud completion by skip-attention network

with hierarchical folding,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 1939–1948.

[37] M. Sarmad, H. J. Lee, and Y. M. Kim, “Rl-gan-net: A reinforcement learning agent con-

trolled gan network for real-time point cloud shape completion,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5898–5907.

[38] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point completion network,” in

Proceedings of the International Conference on 3D Vision. IEEE, 2018, pp. 728–737.

[39] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Topnet: Structural

point cloud decoder,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 383–392.

[40] X. Cao and K. Nagao, “Point cloud colorization based on densely annotated 3d shape

dataset,” in Proceedings of the International Conference on Multimedia Modeling.

Springer, 2019, pp. 436–446.

[41] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan, “Pointflow: 3d

point cloud generation with continuous normalizing flows,” in Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 4541–4550.

[42] A. Hertz, R. Hanocka, R. Giryes, and D. Cohen-Or, “Pointgmm: a neural gmm network for

point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 12 054–12 063.

81

[43] S. Ramasinghe, S. Khan, N. Barnes, and S. Gould, “Spectral-gans for high-resolution 3d

point-cloud generation,” arXiv preprint arXiv:1912.01800, 2019.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Proceedings of the Advances in Neural

Information Processing Systems, 2014, pp. 2672–2680.

[45] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017.

[46] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training

of wasserstein gans,” in Proceedings of the Advances in Neural Information Processing

Systems, 2017, pp. 5767–5777.

[47] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved

quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

[48] https://github.com/robotic-vision-lab/Progressive-Conditional-Generative-Adversarial-Network.

[49] S. Chaudhuri, D. Ritchie, K. Xu, and H. Zhang, “Learning generative models of 3d struc-

tures,” Eurographics Tutorial, 2019.

[50] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gusev, D. Aouada,

and B. Ottersten, “A survey on deep learning advances on different 3d data representations,”

arXiv preprint arXiv:1808.01462, 2018.

[51] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep learning advances

in computer vision with 3d data: A survey,” ACM Computing Surveys, vol. 50, no. 2, pp.

1–38, 2017.

[52] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz, “Accelerated generative models for

3d point cloud data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2016, pp. 5497–5505.

82

https://github.com/robotic-vision-lab/Progressive-Conditional-Generative-Adversarial-Network

[53] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola,

“Deep sets,” in Proceedings of the Advances in Neural Information Processing Systems,

2017, pp. 3391–3401.

[54] J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network for point cloud analy-

sis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 9397–9406.

[55] C.-L. Li, M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhutdinov, “Point cloud gan,” arXiv

preprint arXiv:1810.05795, 2018.

[56] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud auto-encoder via deep

grid deformation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2018, pp. 206–215.

[57] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. Mitra, and L. J. Guibas, “Structurenet:

Hierarchical graph networks for 3d shape generation,” arXiv preprint arXiv:1908.00575,

2019.

[58] M. Gadelha, R. Wang, and S. Maji, “Multiresolution tree networks for 3d point cloud pro-

cessing,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 103–

118.

[59] J. Xie, Y. Xu, Z. Zheng, S.-C. Zhu, and Y. Nian Wu, “Generative pointnet: Energy-based

learning on unordered point sets for 3d generation, reconstruction and classification,” arXiv,

pp. arXiv–2004, 2020.

[60] Y. Sun, Y. Wang, Z. Liu, J. Siegel, and S. Sarma, “Pointgrow: Autoregressively learned point

cloud generation with self-attention,” in Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, 2020, pp. 61–70.

[61] X. Cao, W. Wang, K. Nagao, and R. Nakamura, “Psnet: A style transfer network for point

cloud stylization on geometry and color,” in Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision, 2020, pp. 3337–3345.

83

[62] M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural networks by extension

operators,” arXiv preprint arXiv:1803.10091, 2018.

[63] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative ad-

versarial networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 4401–4410.

[64] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and im-

proving the image quality of stylegan,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 8110–8119.

[65] C. Villani, Optimal transport: old and new. Springer Science & Business Media, 2008,

vol. 338.

[66] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the International Conference on Artificial Intelligence and

Statistics, 2010, pp. 249–256.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[68] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by

a two time-scale update rule converge to a local nash equilibrium,” in Proceedings of the

Advances in Neural Information Processing Systems, 2017, pp. 6626–6637.

[69] M. S. Arshad and W. J. Beksi, “A progressive conditional generative adversarial network for

generating dense and colored 3d point clouds,” in Proceedings of the International Confer-

ence on 3D Vision. IEEE, 2020, pp. 712–722.

[70] H. Son and Y. M. Kim, “Progressive growing of points with tree-structured generators,” in

Proceedings of the British Machine Vision Conference, 2021, pp. 1–13.

[71] M. Pepe, V. S. Alfio, D. Costantino, and D. Scaringi, “Data for 3d reconstruction and point

cloud classification using machine learning in cultural heritage environment,” Data in Brief,

vol. 42, p. 108250, 2022.

84

[72] J. Kim, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Pointinverter: Point cloud reconstruction

and editing via a generative model with shape priors,” in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, 2023, pp. 592–601.

[73] https://github.com/robotic-vision-lab/Implicit-Point-Voxel-Features-Network.

[74] C. C. You, S. P. Lim, S. C. Lim, J. San Tan, C. K. Lee, and Y. M. J. Khaw, “A survey on

surface reconstruction techniques for structured and unstructured data,” in Proceedings of

the IEEE Conference on Open Systems, 2020, pp. 37–42.

[75] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy net-

works: Learning 3d reconstruction in function space,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 4460–4470.

[76] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional oc-

cupancy networks,” in Proceedings of the European Conference on Computer Vision.

Springer, 2020, pp. 523–540.

[77] Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,

pp. 5939–5948.

[78] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktashmotlagh, and A. Eriksson, “Deep

level sets: Implicit surface representations for 3d shape inference,” arXiv preprint

arXiv:1901.06802, 2019.

[79] G. Littwin and L. Wolf, “Deep meta functionals for shape representation,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1824–1833.

[80] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning con-

tinuous signed distance functions for shape representation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.

85

https://github.com/robotic-vision-lab/Implicit-Point-Voxel-Features-Network

[81] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser, “Local deep implicit functions

for 3d shape,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 4857–4866.

[82] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural rep-

resentations with periodic activation functions,” in Proceedings of the Advances in Neural

Information Processing Systems, vol. 33, 2020, pp. 7462–7473.

[83] B. L. Bhatnagar, C. Sminchisescu, C. Theobalt, and G. Pons-Moll, “Combining implicit

function learning and parametric models for 3d human reconstruction,” in Proceedings of

the European Conference on Computer Vision. Springer, 2020, pp. 311–329.

[84] J. Chibane, T. Alldieck, and G. Pons-Moll, “Implicit functions in feature space for 3d shape

reconstruction and completion,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 6970–6981.

[85] M. Atzmon and Y. Lipman, “Sal: Sign agnostic learning of shapes from raw data,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,

pp. 2565–2574.

[86] ——, “Sald: Sign agnostic learning with derivatives,” arXiv preprint arXiv:2006.05400,

2020.

[87] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit geometric regularization

for learning shapes,” arXiv preprint arXiv:2002.10099, 2020.

[88] Z. Mi, Y. Luo, and W. Tao, “Ssrnet: scalable 3d surface reconstruction network,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,

pp. 970–979.

[89] V. Sitzmann, E. R. Chan, R. Tucker, N. Snavely, and G. Wetzstein, “Metasdf: Meta-learning

signed distance functions,” arXiv preprint arXiv:2006.09662, 2020.

86

[90] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Stoll, and C. Theobalt, “Patchnets:

Patch-based generalizable deep implicit 3d shape representations,” in Proceedings of the

European Conference on Computer Vision. Springer, 2020, pp. 293–309.

[91] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, and T. Funkhouser, “Local implicit grid

representations for 3d scenes,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 6001–6010.

[92] S.-L. Liu, H.-X. Guo, H. Pan, P.-S. Wang, X. Tong, and Y. Liu, “Deep implicit moving

least-squares functions for 3d reconstruction,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 1788–1797.

[93] J. Huang, S.-S. Huang, H. Song, and S.-M. Hu, “Di-fusion: Online implicit 3d reconstruc-

tion with deep priors,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2021, pp. 8932–8941.

[94] S. Duggal, Z. Wang, W.-C. Ma, S. Manivasagam, J. Liang, S. Wang, and R. Urta-

sun, “Secrets of 3d implicit object shape reconstruction in the wild,” arXiv preprint

arXiv:2101.06860, 2021.

[95] W. Zhao, J. Lei, Y. Wen, J. Zhang, and K. Jia, “Sign-agnostic implicit learning of surface

self-similarities for shape modeling and reconstruction from raw point clouds,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.

10 256–10 265.

[96] F. Zhao, W. Wang, S. Liao, and L. Shao, “Learning anchored unsigned distance functions

with gradient direction alignment for single-view garment reconstruction,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12 674–12 683.

[97] R. Venkatesh, T. Karmali, S. Sharma, A. Ghosh, R. V. Babu, L. A. Jeni, and M. Singh, “Deep

implicit surface point prediction networks,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 12 653–12 662.

87

[98] W. Chen, C. Lin, W. Li, and B. Yang, “3psdf: Three-pole signed distance function for

learning surfaces with arbitrary topologies,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2022, pp. 18 522–18 531.

[99] J. Xie, Z. Zheng, R. Gao, W. Wang, S.-C. Zhu, and Y. N. Wu, “Learning descriptor net-

works for 3d shape synthesis and analysis,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2018, pp. 8629–8638.

[100] T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape understanding,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 9204–

9214.

[101] W. Huang, B. Lai, W. Xu, and Z. Tu, “3d volumetric modeling with introspective neural

networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 8481–8488.

[102] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient 3d deep learning,” arXiv

preprint arXiv:1907.03739, 2019.

[103] Y. Li, G. Tong, X. Li, L. Zhang, and H. Peng, “Mvf-cnn: Fusion of multilevel features for

large-scale point cloud classification,” IEEE Access, vol. 7, pp. 46 522–46 537, 2019.

[104] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn: Point-voxel feature

set abstraction for 3d object detection,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 10 529–10 538.

[105] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li, “Pv-rcnn++: Point-

voxel feature set abstraction with local vector representation for 3d object detection,” arXiv

preprint arXiv:2102.00463, 2021.

[106] Z. Cui and Z. Zhang, “Pvf-net: Point & voxel fusion 3d object detection framework for point

cloud,” in Proceedings of the Conference on Computer and Robot Vision. IEEE, 2020, pp.

125–133.

88

[107] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Searching efficient 3d archi-

tectures with sparse point-voxel convolution,” in Proceedings of the European Conference

on Computer Vision. Springer, 2020, pp. 685–702.

[108] J. Noh, S. Lee, and B. Ham, “Hvpr: Hybrid voxel-point representation for single-stage 3d

object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 14 605–14 614.

[109] C. Zhang, H. Wan, S. Liu, X. Shen, and Z. Wu, “Pvt: Point-voxel transformer for 3d deep

learning,” arXiv preprint arXiv:2108.06076, 2021.

[110] Y. Wei, Z. Wang, Y. Rao, J. Lu, and J. Zhou, “Pv-raft: point-voxel correlation fields for scene

flow estimation of point clouds,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2021, pp. 6954–6963.

[111] Y. Li, S. Yang, Y. Zheng, and H. Lu, “Improved point-voxel region convolutional neural

network: 3d object detectors for autonomous driving,” IEEE Transactions on Intelligent

Transportation Systems, 2021.

[112] J. Xu, R. Zhang, J. Dou, Y. Zhu, J. Sun, and S. Pu, “Rpvnet: A deep and efficient

range-point-voxel fusion network for lidar point cloud segmentation,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2021, pp. 16 024–16 033.

[113] K. Cherenkova, D. Aouada, and G. Gusev, “Pvdeconv: Point-voxel deconvolution for au-

toencoding cad construction in 3d,” in Proceedings of the IEEE International Conference

on Image Processing, 2020, pp. 2741–2745.

[114] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the International Conference on Machine Learning, 2010.

[115] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift,” in Proceedings of the International Conference on Machine

Learning, 2015, pp. 448–456.

89

[116] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer net-

works,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 28,

2015.

[117] F.-E. Wolter, “Cut locus and medial axis in global shape interrogation and representation,

design laboratory memorandum 92-2,” 1993.

[118] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting

algorithm for surface reconstruction,” IEEE Transactions on Visualization and Computer

Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[119] E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung.

Hölder, 1913.

[120] S. Ullman, “The interpretation of structure from motion,” Proceedings of the Royal Society

of London. Series B. Biological Sciences, vol. 203, no. 1153, pp. 405–426, 1979.

[121] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projec-

tions,” Nature, vol. 293, no. 5828, pp. 133–135, 1981.

[122] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 4104–4113.

[123] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous

localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 55–

81, 2015.

[124] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual slam and structure from motion in

dynamic environments: A survey,” ACM Computing Surveys, vol. 51, no. 2, pp. 1–36, 2018.

[125] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann, “Disn: Deep implicit surface

network for high-quality single-view 3d reconstruction,” in Proceedings of the Advances in

Neural Information Processing Systems, vol. 32, 2019.

90

[126] M. Li and H. Zhang, “D2im-net: Learning detail disentangled implicit fields from single im-

ages,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2021, pp. 10 246–10 255.

[127] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li, “Pifu: Pixel-

aligned implicit function for high-resolution clothed human digitization,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2304–2314.

[128] T. He, J. Collomosse, H. Jin, and S. Soatto, “Geo-pifu: Geometry and pixel aligned implicit

functions for single-view human reconstruction,” in Proceedings of the Advances in Neural

Information Processing Systems, vol. 33, 2020, pp. 9276–9287.

[129] https://github.com/robotic-vision-lab/Learning-Implicitly-From-Spatial-Transformers-Network.

[130] K. Fu, J. Peng, Q. He, and H. Zhang, “Single image 3d object reconstruction based on deep

learning: A review,” Multimedia Tools and Applications, vol. 80, no. 1, pp. 463–498, 2021.

[131] A. Dai, C. Ruizhongtai Qi, and M. Nießner, “Shape completion using 3d-encoder-predictor

cnns and shape synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2017, pp. 5868–5877.

[132] R. Wu, Y. Zhuang, K. Xu, H. Zhang, and B. Chen, “Pq-net: A generative part seq2seq

network for 3d shapes,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 829–838.

[133] S. Liu, S. Saito, W. Chen, and H. Li, “Learning to infer implicit surfaces without 3d super-

vision,” in Proceedings of the Advances in Neural Information Processing Systems, vol. 32,

2019.

[134] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Differentiable volumetric ren-

dering: Learning implicit 3d representations without 3d supervision,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3504–3515.

91

https://github.com/robotic-vision-lab/Learning-Implicitly-From-Spatial-Transformers-Network

[135] S. Saito, T. Simon, J. Saragih, and H. Joo, “Pifuhd: Multi-level pixel-aligned implicit func-

tion for high-resolution 3d human digitization,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 84–93.

[136] Y. Cao, G. Chen, K. Han, W. Yang, and K.-Y. K. Wong, “Jiff: Jointly-aligned implicit face

function for high quality single view clothed human reconstruction,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2729–2739.

[137] S. Duggal and D. Pathak, “Topologically-aware deformation fields for single-view 3d re-

construction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022, pp. 1536–1546.

[138] P. Mittal, Y.-C. Cheng, M. Singh, and S. Tulsiani, “Autosdf: Shape priors for 3d completion,

reconstruction and generation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2022, pp. 306–315.

[139] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction,” in Proceedings of the European Conference

on Computer Vision. Springer, 2016, pp. 628–644.

[140] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer, “Deepvoxels:

Learning persistent 3d feature embeddings,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 2437–2446.

[141] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction

algorithm,” ACM Siggraph Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.

[142] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-

jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative

style, high-performance deep learning library,” in Proceedings of the Advances in Neural

Information Processing Systems, vol. 32, 2019, pp. 8024–8035.

92

[143] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.

[144] C. Zhang, Z. Cui, Y. Zhang, B. Zeng, M. Pollefeys, and S. Liu, “Holistic 3d scene under-

standing from a single image with implicit representation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 8833–8842.

[145] J. Pan, X. Han, W. Chen, J. Tang, and K. Jia, “Deep mesh reconstruction from single rgb

images via topology modification networks,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 9964–9973.

[146] Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang, “Total3dunderstanding: Joint

layout, object pose and mesh reconstruction for indoor scenes from a single image,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 55–64.

[147] S. D. Roth, “Ray casting for modeling solids,” Computer Graphics and Image Processing,

vol. 18, no. 2, pp. 109–144, 1982.

93

BIOGRAPHICAL STATEMENT

Mohammad Samiul Arshad was born in Barisal, Bangladesh, in 1991. He received his B.S.

degree in 2014 from Sylhet Engineering College, affiliated with Shahjalal University of Science

and Technology, Sylhet, Bangladesh. He earned his Ph.D. degree from The University of Texas at

Arlington, 2023, in Computer Science and Engineering. From 2014 to 2016, he worked as a senior

software engineer with TwinBit Ltd. During his Ph.D. studies, he worked in the Robotic Vision

Laboratory on 3D point cloud generation and reconstruction. His current research interests are in

the area of 3D vision and artificial intelligence. He is a member of several IEEE societies.

94

	Generative and Implicit Methods for 3D Point Cloud Processing
	Recommended Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	Preliminaries
	A Progressive Conditional Generative Adversarial Network for Generating Dense and Colored 3D Point Clouds
	Introduction
	Contributions
	Related Work
	Problem Statement
	Background
	Wasserstein/Kantorovich-Rubinstein Distance
	Generative Adversarial Networks
	Wasserstein GAN with Gradient Penalty

	Model Architecture
	Generator
	Discriminator

	Experiments
	Results

	Conclusion

	IPVNet: Learning Implicit Point-Voxel Features for Open-Surface 3D Reconstruction
	Introduction
	Related Work
	Implicit Function Learning
	Learning from Points and Voxels

	Background
	Implicit Learning with Point-Voxel Features
	Point-Voxel Features
	Implicit Decoding
	Training
	Surface Inference
	Implementation Details

	Experiments
	Baselines and Metrics
	Object Reconstruction
	Real-World Scene Reconstruction

	Ablation Study
	Effect of Point Features on Object Reconstruction
	Effect of Point Features on Scene Reconstruction
	Post-Processing Outlier Removal

	Limitations and Future Directions
	Conclusion

	LIST: Learning Implicitly from Spatial Transformers for Single-View 3D Reconstruction
	Introduction
	Related Work
	Implicit Function Learning from Unaligned Pixel Features
	Query Features From Coarse Predictions
	Localized Query Features
	Signed Distance Function Prediction
	Loss Functions
	Training Details

	Experimental Evaluation
	Implementation Overview
	Training and Inference Time
	Datasets
	Baseline Models
	Metrics
	Single-View 3D Reconstruction Evaluation
	Single-View 3D Reconstruction from Renderings of Synthetic Objects
	Single-View 3D Reconstruction from Real Images

	Ablation Study
	Setup
	Discussion

	Limitations and Future Directions

	Conclusion

	Conclusion
	REFERENCES
	BIOGRAPHICAL STATEMENT

