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ABSTRACT 

Sediment transport in natural streams is a complex process that can significantly affect the stream’s 

water quality, ecosystem, and morphology. Suspended sediment concentrations can adversely 

affect the health of the ecosystem and aquatic species, and the deposited sediment particles can 

change the morphology and have irreparable environmental impacts. Several numerical models 

that can be used to manage and mitigate the adverse effects of sediment released into rivers by 

natural or anthropogenic activities have been developed to estimate the sediment and pollutant 

transport in waterbodies. However, the goal of the research for this thesis was to develop a 

Lagrangian stochastic sediment transport model, based on a particle tracking model (PTM), to 

simulate sediment transport in open channels. The sediment particle displacement was simulated 

using discretized advection and dispersion; the random walk approach was used to model the 

stochastic movement of the sediment particles. In advection, the displacement of the particle is 

based on its linearly interpolated velocity in the flow domain, derived from a 2D hydrodynamic 

model. In dispersion, using the random walk method, the stochastic movement of the particles is 

generated in a three-dimensional space. A conditional empirical equation was used to consider the 

effect of vertical dispersion in the top layers, near the water’s surface. The PTM used the 

dimensionless mobility number that was developed based on the Shields diagram, to determine 

whether the particles remain suspended or are deposited onto the streambed. Using laboratory 

dataset, the ability of the PTM to calculate the sediment concentration of various classes of 

sediment (very fine, fine, and medium sand) was evaluated, and the results are presented with 

different dispersion coefficients. A comparison of the particle tracking model and the analytical 

solution of the advection-dispersion equation showed that the model was acceptably accurate. The 
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result of the sensitivity analysis and validation process showed that the model can be used to 

simulate sediment transport in open channel flows. 

The sediment regime in natural streams can be altered by anthropogenic activities such as 

agriculture, logging, mining, urbanization, bridge and dam constructions, and hydrological 

alterations. This thesis examines the performance of the PTM at Wilson Creek in McKinney, Texas 

by utilizing empirical dispersion models that simulate the excess sediment load caused by bridge 

construction activities. The required hydrodynamic parameters including flow velocity, flow 

depth, and shear stress were obtained from the Hydrologic Engineering Center’s River Analysis 

System (HEC-RAS 2 and were coupled with the PTM. A field monitoring program that included 

collecting suspended solids and surveying depositional areas in the creek, and observing the 

turbidity, bedload material, and substrate type was conducted during the bridge construction 

activities to evaluate the performance of the PTM. The PTM outputs included changes in the 

creek’s sediment regime,  suspended sediment concentration and depositional areas. A comparison 

of the field data and the PTM showed that the model accurately simulated the suspended sediment 

concentration distribution in the creek and the depositional areas correlated with the field 

investigations.  

The use of machine learning-based dispersion models to improve the performance of the PTM was 

also investigated, and data obtained from previous studies was used to develop ensemble learning-

based models to predict the longitudinal and transverse dispersion coefficients in natural streams. 

Several scenarios for developing prediction models were tested using the grid search cross-

validation technique, and the model’s optimal principal parameters (also known as 

hyperparameters) were presented, using different statistical measures. The dispersion models were 

coupled with the PTM to investigate the model’s performance, using both empirical and learning-
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based dispersion coefficients in natural streams. The field data collected at Wilson Creek was used 

to assess the performance of the model.  
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CHAPTER 1  

INTRODUCTION 

MOTIVATION 

Water is one of our most important natural resources, yet anthropogenic activities are negatively 

impacting its quality. An accurate prediction of suspended sediment concentrations and sediment 

deposition rates is essential to assessing and predicting biological and biogeochemical regimes in 

streams, as well as the health of aquatic habitats and species. Several tools and methods have been 

developed to study sediment transport in natural streams, but most of the sediment transport 

models have been developed based on an Eulerian-Eulerian framework that solves sediment 

transport equations at a fixed point in space. Such models compute sediment transport rates over 

the modeling domain as a continuous phase, consider the statistical properties of the sediment 

cloud, and assess the morphological evolution of the stream bed. Eulerian modeling tools are vital 

components of engineers' analysis toolboxes, as the models require very little grid space to provide 

reasonable solutions in environments that experience a sudden change in their sediment regime, 

such as the accidental release of sediment plume from construction sites of stream-crossing 

structures. Lagrangian sediment transport models are also proven effective methods for tracking 

sediment particles in different environments, as they consider a number of moving mass particles, 

and different evolving scenarios can increase their similarity to the natural randomness properties 

of sediment transport. 

Dispersion plays an important role in Lagrangian sediment transport models’ simulation of 

sediment movement and the effect of turbulent flow on sediment properties. Several studies have 

used a particle tracking model (PTM) as a Lagrangian stochastic sediment transport model to 
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simulate the movement of sediment particles in open channels (Oh and Tsai 2018; Fan et al., 2016; 

Tsai et al., 2014). For example, a Lagrangian stochastic model was developed to predict  50 years 

of morphologic changes caused by the effects of climate change in the Mersey Estuary, U.K. (Lane 

and Prandle 2006); a particle-based sediment transport model was used to assess non-cohesive 

sediment transport in open channels (Taghvaei 2013); and a coastal risk management system was 

developed, using PTM, to determine the dispersion coefficient of toxic substances (i.e., 

dinoflagellate bloom) in Tampa Bay (Havens et al., 2010).  

BACKGROUND 

Natural rivers have experienced an increase in pollution and contamination over the past few 

decades as a result of effluent discharge and anthropogenic activities. Rainfall, scouring, dam 

breaks, and landslides also generate a random quantity of sediment particles into waterbodies 

(streams, rivers, ponds, lakes, and estuaries) (Bennett et al., 2014), creating a need for a stochastic 

model that can consider the randomness of the sediment particles (Tsai et al., 2018). 

Sediment particles are first eroded by wind and runoff and then transported in the water by 

suspended or bed loads and deposited in streams, lakes, and reservoirs (Malmon et al., 2003). 

Because their complex behavior makes it difficult to fully understand the mechanics of sediment 

transport (Tsai et al., 2018; Safari et al., 2016; Muste et al., 2009), various experimental and field 

investigations have been conducted,  using empirical approaches (Lo´pez et al., 2014; Priya et al., 

2016). The approaches used were drastically different from each other (Pinto et al., 2006), 

however, and the models were sensitive to small variations in sediment gradation and flow 

conditions, i.e., variability of flow depth, flow velocity, dispersion terms, etc. (Camenen and 

Larroudé 2003), making it impossible to select the most accurate empirical equation for a specific 

problem (Huntley and Bowen 1989).  
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Deterministic and stochastic approaches provide more reasonable results for sediment transport 

with less uncertainty and simplification assumptions (Hantush and Kalin 2004). However, 

numerical modeling of sediment transport has uncertainties that can be the result of dimensionality 

simplification for 1D, 2D, or 3D models or stream-specific coefficients such as Shields critical 

shear stress parameter (Beckers et al., 2018). Deterministic models use conservation of mass and 

momentum principles to model sediment transport and produce exact results for a particular set of 

inputs, but they usually require a longer simulation period than stochastic approaches. In contrast, 

stochastic approaches present data and predict outcomes that account for a certain level of 

unpredictability or randomness with a shorter simulation time. The first application of stochastic 

approaches for simulating bedload transport was proposed by Einstein in 1950; later, various 

studies showed the performance of Lagrangian stochastic approaches in modeling sediment 

transport (De Baas et al., 1986; Ley 1982; Ley and Thomson 1983).  

Lagrangian stochastic sediment transport models consider a group of particles in the flow domain 

as mass transport elements to solve the advection-dispersion equation. Most of the stochastic 

models are Lagrangian models that simulate natural processes such as sediment entrainment or 

deposition (Oh 2011). Other studies have used particle tracking models (PTM) to simulate 

sediment and contaminant transport in rivers and estuaries. For instance, Lane and Prandle (2006) 

proposed a particle tracking model (PTM) to predict 50 years of morphologic changes caused by 

climate change in the Mersey Estuary, U.K.; Liu et al. (2007) studied the residence time in the 

Danshuei River estuarine system, Taiwan, using a 3D PTM coupled with a hydrodynamic model; 

Gong et al. (2008) developed a Lagrangian PTM to investigate the temporal evolution of flushing 

properties in the Xiaohai Lagoon; and Havens et al. (2010) presented a coastal risk management 

system using PTM with the dispersion coefficient of toxic substances in Tampa Bay and also 
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delineated the most probable areas affected by pollution, using probability functions. Oh (2011) 

proved the accuracy of a PTM in modeling sediment transport by using a stochastic diffusion 

particle tracking model (SD-PTM) and a stochastic jump-diffusion particle tracking model (SJD-

PTM), and the results revealed the significant effect of dispersion in the stochastic sediment 

transport approach. Taghvaei (2013) showed the accuracy of the random walk method in a PTM 

when it is coupled with the 2D-CECAD hydrodynamic model to assess suspended sediment 

particles. The temporal changes in the suspended sediment concentration due to dredging at a port 

entrance showed an acceptable performance for the proposed model by Taghvaei (2013). Tsai et 

al. (2014) used various mathematical forms of particle tracking models to describe particle 

movements under different flow conditions. In their proposed particle tracking model, a random 

term primarily caused by fluid eddy motions was modeled as a Wiener process; in 2018, they 

introduced a probabilistic function to the model. Particle deposition and resuspension criteria were 

considered in the particle tracking system, and a discrete sediment transport was presented, based 

on the ensemble statistics of sediment concentrations and transport rates. 

Dispersion plays an essential role in particle-based sediment transport models and is responsible 

for mixing the particles of open channels in longitudinal, transverse, and vertical directions. In 

rivers, the vertical mixing process usually occurs quickly at the contamination field near the 

pollutant discharge point. However, transverse and longitudinal mixing processes in streams take 

place in intermediate and distant fields, respectively, from the source of pollution (Najafzadeh et 

al., 2019). It is critical, therefore, to estimate the longitudinal and transverse dispersion coefficients 

in natural streams because these mechanisms  are more important than vertical mixing in rivers 

(Rutherford, 1994).  
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In addition to the statistical and empirical-based estimations of dispersion coefficients of natural 

streams, various studies have discussed the efficacy of machine learning methods (also known as 

soft computing techniques or data-driven models). For instance, Etemad-Shahidi and Taghipour 

(2012) and Tu et al. (2015) developed an M5 model tree and genetic programming (GP) model, 

respectively, to estimate longitudinal dispersion, and both proved that ML-based methods more 

accurately estimate longitudinal dispersion than empirical approaches. Other studies have shown 

the superiority of soft computing techniques in estimating transverse dispersion in natural streams 

(Nezaratian et al., 2021; Azamathulla and Ahmad 2012). Due to the high performance of data-

driven models, a machine learning approach can be used as an alternative method for estimating 

longitudinal and transverse dispersion in PTMs to enhance its applicability and compare it 

performance with the empirical-based dispersion equations. 

RESEARCH QUESTIONS AND OBJECTIVES  

This research aims to develop a Lagrangian model based on a particle tracking model to simulate 

suspended sediment transport and sediment deposition in natural streams. Due to the broad scope 

of this topic, the research will address three specific research questions: 

       1. Is the particle tracking model (PTM) able to simulate sediment transport in a straight 

prismatic channel using different empirical dispersion terms? 

The Lagrangian approach considers different equations and methods for modeling sediment 

transport. The performance of the PTMs in modeling sediment transport is acceptable; however, 

combining several methods to address the properties of sediment particles in waterbodies may 

change the model's performance. Advection, dispersion, the particles’ settling velocity, and 

deposition and resuspension criteria are the most critical factors for modeling sediment transport 
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in PTMs. The first part of this study aims to investigate the performance of PTMs in prismatic 

straight open channels by utilizing different empirical dispersion terms, coupled with a stochastic 

approach, such as the  random walk method, to increase the accuracy of the PTM in simulating 

sediment transport. The performance of the PTM will be evaluated using laboratory data and 

analytical solutions of the advection-dispersion model. Three widely used empirical equations 

form the basis of the longitudinal dispersion, which is the most important dispersion coefficient 

for solving the discretized transport relationship for each sediment particle. A variety of sediment 

gradations, from fine to coarse materials, will be used to evaluate the ability of the PTM to simulate 

the transport of sediment of different sizes, and the results will be compared to the laboratory 

dataset. Based on the results of this study, a PTM-based sediment transport model that utilizes 

empirical dispersion equations will be proposed for sediment transport modeling in straight 

prismatic channels. 

      2. Can the particle tracking model accurately simulate sediment transport in natural streams? 

Is PTM able to predict the effects of sediment entrainment on the distribution of the 

sediment concentration? 

Field data is essential for developing an accurate PTM model for open channels in natural streams 

that, coupled with a 2D hydrodynamic model, will be able to simulate sediment transport. Wilson 

Creek in McKinney, Texas was studied  to assess the performance of the PTM by comparing the 

results of the developed model with the field measurements, and several quantitative and 

qualitative assessments were made to evaluate the ability of the PTM to simulate the transport of 

suspended sediment and sediment deposition in natural streams. 
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       3. What is the advantage of the machine learning-based dispersion approach in the PTM 

model? 

Previous studies have not investigated the applicability of machine learning (ML) methods for 

estimating dispersion in natural streams; however, a few studies have shown the results of using 

specific ML methods to estimate the dispersion in different case studies. For instance, one of the 

widely used ML-based methods, ensemble models, has not been used to predict the transverse 

dispersion coefficient in natural streams. In the present study, a dataset of flow hydraulic 

parameters including flow depth, flow velocity, and shear velocity will be derived from several 

case studies and used to predict the longitudinal and transverse dispersion, using ensemble 

machine learning methods. Then, the ML-based dispersion models will be integrated into the PTM 

to model sediment transport in a natural stream, and the models’ performance will be evaluated 

using the sediment concentration dataset obtained from field samples taken from a section of 

Wilson Creek. 

THESIS OVERVIEW 

This thesis is presented in manuscript form, with Chapters 2, 3, and 4 corresponding to a 

manuscript written by the author. Chapter 1 consists of the motivation of the study, a background 

of previous studies conducted to develop Lagrangian particle tracking models for solving discrete 

advection and dispersion displacement equations to model sediment transport in natural streams, 

a summary of machine learning approaches used to predict the dispersion coefficient in natural 

streams, and the objective of the research. Chapter 2 discusses the general structure of a Lagrangian 

particle tracking model that was developed based on empirical dispersion equations. It also 

discusses the sensitivity of the PTM for several widely used empirical longitudinal dispersion 

coefficients and the analytical solution of an advection-dispersion equation in a prismatic open 
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channel. Chapter 3 integrates an Eulerian flow domain with the PTM discussed in Chapter 2 and 

assesses the ability of the model to simulate sediment transport in natural streams. It also describes 

the field monitoring program that was conducted to evaluate the performance of the PTM while a 

bridge was being built over Wilson Creek. Chapter 4 presents the results of an effort to develop 

machine learning-based dispersion coefficients in natural streams. The ML-based dispersion 

models were coupled with the PTM to assess the performance of the PTM with empirical and ML-

based dispersion models to simulate sediment transport in natural streams. The performance of the 

models were evaluated using the field data derived from Wilson Creek. Chapter 5 presents the 

conclusions of the thesis and provides suggestions and recommendations for future research. 

The material in these chapters is supplemented by Appendix A, which presents the dispersion 

coefficient data that was used in the machine learning methods described in Chapter 4 to build the 

ML-based dispersion coefficient prediction approaches.  
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CHAPTER 2  

DEVELOPING A LAGRANGIAN SEDIMENT TRANSPORT MODEL 

FOR OPEN CHANNEL FLOWS 

 

ABSTRACT 

A three-dimensional stochastic Lagrangian particle tracking sediment transport model was 

developed to solve the discrete advection-dispersion equation by using a combination of empirical 

dispersion equations. The performance of three widely-used longitudinal dispersion coefficient 

equations was examined for the purpose of selecting one as the primary dispersion equation in the 

model. A conditional empirical equation was used to consider the effect of vertical dispersion in 

the top layers of the water, near the surface. The ability of the PTM to calculate the sediment 

concentration was evaluated for various sediment classes (very fine sand, fine sand, and medium 

sand) using available laboratory dataset. Multiple statistical measures were calculated using the 

Taylor diagram for each dispersion equation. The results showed that the particle tracking model 

estimated the suspended sediment concentration in a rectangular open channel with a correlation 

coefficient (R) of 0.96, standard deviation (STD) of 0.262, and root mean square deviation 

(RMSD) of 0.06 for three different sediment classes, proving the acceptable accuracy of the model 

for different ranges of sediment gradations. The accuracy of the PTM was also compared to a 

recently developed particle tracking model and analytical solution of the advection-dispersion 

equation and showed that the model’s prediction of the maximum concentration of suspended 

sediment in a straight channel was 6% lower than the analytical solution’s for 30 seconds of 

simulation time  and 9.4% lower for 50 seconds of simulation. However, there was a good 

agreement between the model’s longitudinal and transverse sediment concentration distributions 



12 

 

and that of the analytical solution approach. The result of the sensitivity analysis and validation 

process showed that the model can be used to simulate sediment transport in open channels. 

Author Keywords: Sediment transport, Lagrangian Particle Tracking, Stochastic approach, 

Advection-dispersion, Random walk. 
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INTRODUCTION 

Natural sedimentation processes such as bed resuspension and longshore transport, and 

anthropogenic activities such as dredging and piling construction can cause sediment particle 

movement in streams and estuaries that may lead to a series of sediment management issues (Black 

et al., 2007). These issues have the potential to negatively affect the environment, aquatic habitats, 

and economic aspects of society (Oh 2011). Eroded materials released from anthropogenic 

activities can alter sediment regimes and geomorphological conditions of receiving streams and 

may have short- and long-term impacts on aquatic habitats. A systematic understanding of the 

sediment transport process is essential to creating effective water resources and sediment 

management plans to control or mitigate these problems.  

Previous studies have used numerical sediment transport models to assess sediment movement in 

various environments (Papanicolaou et al., 2004; Li and Duffy 2011; Meselhe et al., 2012), and 

during the past two decades, several deterministic sediment transport models have been developed 

that use conservation of mass and momentum principles. Deterministic models produce exact 

results for a set of inputs, but they require a longer simulation time than stochastic approaches and 

do not consider the randomness of the data. In contrast, stochastic approaches present data and 

predict outcomes that account for a certain level of unpredictability or randomness and can 

generate different outputs for a given set of input variables (Kalin and Hantush 2003). 

Deterministic approaches are usually used for short- (hours to days) to medium-term (days to 

months) sediment transport modeling (Amoudry and Souza 2011) and are used to model sediment 

transport in streams (Wu 2004; Fang and Rodi 2003) and coastal environments (Mengual et al., 

2021; Warner et al., 2008; Damgaard et al., 2002). Several studies have shown the application of 

stochastic models for simulating sediment transport (Tsai et al., 2020; Park and Seo, 2018; 
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Macdonald et al., 2006; Niño and García, 1998), and the majority of them are Lagrangian models 

that simulate natural processes such as sediment entrainment or deposition (Oh 2011). 

Lagrangian stochastic models are a proven method for accurately tracking sediment particles in 

turbulent flows (Ley 1982; Ley and Thomson 1983; MacDonald et al., 2006). They consider a 

group of particles as mass transport elements in the flow domain, and discrete advection and 

dispersion equations model the relationship between the flow characteristics and the movement of 

particles during the simulation period. Several studies have shown the applicability of stochastic 

methods for assessing the evolution of pollutant and sediment particles in open channels and 

estuaries. For instance, Lane and Prandle (2006) proposed a particle tracking model (PTM) based 

on the random walk approach to be coupled with the POLCOMS 3D hydrodynamic model to 

simulate the tidal dynamics of an estuary. Their model considered longitudinal and transverse 

advection in conjunction with the vertical dispersion derived from an approximation based on the 

bed friction coefficient and water depth, as proposed by Fischer et al. (1979). The model developed 

by Lane and Prandle (2006) considered simple criteria for sediment particle deposition, i.e., 

sediment particles would be deposited when the height of the particle above the bed, calculated in 

a discrete advective settlement step, was less than zero. They used the PTM to predict 50 years of 

morphologic changes due to the transport of fine sediment particles in the Mersey Estuary, U.K. 

caused by climate change. Havens et al. (2010) presented a coastal risk management system using 

PTM to simulate the transport of toxic blooms in Tampa Bay resulting from unarmored 

dinoflagellate Karenia brevis in 2005. They used a random walk stochastic approach with a fourth-

order Runge-Kutta scheme to estimate the dispersion in a Lagrangian PTM in a flow domain 

simulated by the Princeton ocean model. The flow characteristics were linearly interpolated to the 

particle position at each computation time step, and they forced the salinity data, obtained from 
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the Environmental Protection Commission (EPC), to the flow domain discrete points to assess the 

bay's salinity transport. Probability functions were used to identify the areas most likely to be 

affected by pollution. Oh (2011) showed the accuracy of the PTM for modelling sediment transport 

using a stochastic jump-diffusion particle tracking model (SJD-PTM), which revealed the 

significant effect of dispersion in the stochastic sediment transport approach. Taghvaei (2013) 

showed the accuracy of the random walk in the Lagrangian PTM, coupled with the 2D-CECAD 

hydrodynamic model, in assessing suspended sediment particles. The temporal changes of 

suspended sediment concentration, due to dredging at a port entrance, showed the acceptability of 

their proposed model. Tsai et al. (2014) used various mathematical forms of particle tracking 

models to describe particle movements under different flow conditions. In their proposed particle 

tracking model, a random term primarily caused by fluid eddy motions was modeled as a Wiener 

process. Later, Tsai et al. (2018) introduced a probabilistic function to the PTM model. The 

applicability of the proposed sediment transport model was also discussed, using the available 

dataset. They considered the mixing process of sediment particles in the vertical direction in 

transport equations but failed to consider the longitudinal dispersion. Particle deposition and 

resuspension criteria were considered in the particle tracking system, and a discrete sediment 

transport, based on ensemble statistics of sediment concentrations and transport rates, was 

presented. 

In addition to suspended sediment transport modeling using Lagrangian PTMs, some studies have 

focused on the applicability of PTMs to simulate bedload transport in waterbodies. For instance, 

Kidanemariam and Uhlmann (2014) used a direct numerical simulation (DNS) for incompressible 

fluid flow over a mobile bed with spherical shape particles. The bed particle movement in their 

study was modeled using Newton’s equation and was driven by hydrodynamic and gravity forces 
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acting on sediment particles. They modeled the particle-particle collision effect using a discrete 

element model and found that  a particle-based bedload transport model can accurately estimate 

the bedload transport rate and predict the bedform patterns in laminar and turbulent flows. Barati 

et al. (2018) developed a three-dimensional Eulerian-Lagrangian model to investigate bedload 

transport by considering hydrodynamic forces and turbulent fluctuations and to define a particle-

based saltation transport model. They evaluated the performance of the Lagrangian modeling for 

a wide range of sediment gradations and investigated how the absence of  different hydrodynamic 

forces on the model affected it. Zhao et al. (2020) developed a Eulerian hydrodynamic model, 

based on the large eddy simulation (LES) method and coupled with a Lagrangian PTM, to simulate 

a wall-shear turbulent flow over a sediment bed and calculate the forces acting on saltating 

particles. Their study  discussed the particle shape factor in the Lagrangian saltation transport 

model, which led to proposing a new bedload transport formula that considered the shape factor 

of particles. 

There is a lack of information on comprehensively assessing the impacts of different empirical 

dispersion coefficients on sediment transport by using Lagrangian PTMs. Some of the Lagrangian 

PTM studies consider longitudinal and transverse dispersion coefficients (Tsai et al., 2018), but 

some neglect the effect of dispersion and assume that particle transport is due to the advection 

coefficients (Park et al., 2018). The present study aims to fill the literature void and develop a 

novel particle tracking model, using a random walk stochastic approach to model sediment 

transport in open channels and coupling it with a two-dimensional Eulerian flow domain using 

different empirical dispersion equations. Instead of using the traditional parabolic vertical 

dispersion formula, known as the Rouse model, a few studies have used alternative theoretical 

approaches to define the vertical dispersion coefficient (Park et al., 2020; Tsai et al., 2020; 
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McDonald 2006; Oh 2011). Because the Rouse model cannot consider the dispersion coefficient 

in areas close to the water’s surface, however, a conditional vertical dispersion equation was used 

in the present study to model the particle movement more accurately by considering the vertical 

diffusivity effects on particles for the entire water depth. The effect of some commonly used 

longitudinal dispersion coefficients was also assessed to model sediment transport in the open 

channels using laboratory datasets, and the performance of the PTM was compared to previously 

developed PTMs that model dispersion for various sediment gradations. After a sensitivity analysis 

of various empirical dispersion coefficient equations was conducted, the accuracy of the  PTM 

with ideal dispersion coefficient equations was verified, using an analytical solution of the 2D 

advection-dispersion equation. Lastly, the limitations of the proposed model and recommendations 

for future research are provided. The methodology and validation processes of the  PTM are 

discussed in the following sections. 

 METHODOLOGY 

A Lagrangian particle tracking model (PTM), the architecture of which is illustrated in Figure 2.1, 

was developed to simulate sediment transport in open channels. As shown, the flow parameters, 

location of the sediment source, and the number of particles injected at the sediment source are 

first introduced to the PTM. Streamwise and transverse flow velocities (Vx, Vy), shear stress (𝜏), 

and flow depth (H) are the required spatial hydrodynamic parameters and may be produced by any 

2D hydrodynamic model, such as the HEC-RAS 2D, CCHE2D, that is capable of generating 

spatial geodata for natural streams. Each of the spatial flow parameters is discretized to a fixed 

Eulerian mesh domain that is used to solve Lagrangian particle transport equations, using a 

stochastic approach. Once the flow domain has been generated, using the appropriate 2D 

hydrodynamic model, the preprocessed flow data and sediment properties are introduced to the 
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PTM, and it will track each particle in streamwise, transverse, and vertical directions. Advection 

and dispersion motion are updated for each computational time step after checking the 

deposition/resuspension criteria. The possibility of deposition/resuspension of particles is 

determined using a conditional mobility factor that measures the ratio of the applied shear stress 

parameter from the hydrodynamic model to the critical shear stress of particles at the particle’s 

location. The model’s architecture depicted in Figure 2.1 was programmed in Python 3.9.0, an 

interpreted high-level, general-purpose programming language (Rossum 1995). Several Python-

based packages such as "NumPy", "SciPy", "Pandas", "Matplotlib", and "statistics" can be used to 

build the general structure of the model. 

 
Figure 2.1 Structure and input parameters of particle tracking sediment transport model  

The performance of the particle tracking-based sediment transport model was investigated using 

available laboratory data and analytical solution of the advection-dispersion equation. The 

governing equations, interpolation techniques, and flow discretization process are discussed in the 

following section. 
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2.1.1 Particle Tracking Model 

The Lagrangian approach considers the mass transport of particles in open channels, based on their 

specific physical features; therefore, there is no need for a direct solution of the advection-

dispersion equation to track sediment movement in the flow domain. Each sediment particle can 

move in three directions simultaneously, and the movement of each is computed at each 

computational time step. Therefore, three separate mass transport equations considering the 

longitudinal, transverse, and vertical movement address the particles' potential movement path for 

each computational time step; however, the particles’ transport equations neglect the vertical 

advection term. Figure 2.2 shows the forces acting on a suspended sediment particle, i.e., drag 

force (FD), gravity force (FG), and lift force (FL), and the directions that a single particle can move 

in the discretized flow domain. As can be seen, the displacement caused by advection and 

dispersion in x, y, and z directions is shown with ∆xt, ∆yt, and ∆zt vectors, respectively, in which 

subscript t represents the computational time step. Advection and dispersion, as the fundamental 

basis of particle transport in each direction, are discussed in the following. 

 
(a) (b) 
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Figure 2.2 Schematic view of a) forces acting on a suspended sediment particle, and b) a hypothetical 

single sediment particle pathway in the flow column in x-z direction 

2.1.1.1 Advection-Dispersion Equation 

The advection-dispersion equation describes the transfer of a physical quantity through advection 

and dispersion motion. Equation 2.1 shows the advection-dispersion equation in a three-

dimensional space (Van Rijn, 1993). 
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) = 0                     (2.1) 

where c is sediment concentration; u, v, w are flow velocity in x, y, and z directions; Dx, Dy, and 

Dz are dispersion coefficients in the longitudinal, transverse, and vertical directions, respectively; 

𝑤𝑠 is particle settling velocity; and t is simulation time. The sediment dispersion reflects the 

amount of particle motion caused by turbulence and particle-particle interactions. Analytical, semi-

analytical, and numerical methods are used to solve the advection-dispersion equation by 

considering initial and boundary conditions; however, the analytical solution of such an equation 

is very complicated. Therefore, numerical models are used to solve the advection-dispersion 

equation. In the present study, the two-dimensional flow domain was coupled with the Lagrangian 

PTM, and the vertical velocity component was neglected in the computation (w = 0). 

In the Lagrangian particle tracking model, instead of solving Equation 2.1 directly, the 

displacement of sediment particles is modeled using discrete advection and dispersion to calculate 

the particles’ location for the next computational time step. Equation 2.2 shows the sediment 

particle Lagrangian transport equation in the streamwise direction. 
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𝑋𝑡+1 = 𝑋𝑡 + ∆𝑋𝑎 + ∆𝑋𝑑                                                                                                         (2.2) 

where Xt+1 refers to the location of a particle in a streamwise direction after one computational 

time step (t+1), Xt is the current location of the particle, 𝛥𝑋𝑎 is the streamwise displacement of the 

particle due to advection term, and ∆𝑋𝑑 refers to the streamwise displacement of the particle caused 

by the dispersion term. It should be noted that similar transport equations are used to model particle 

movements in transverse and vertical directions. 

According to Equation 2.2, the total displacement of a single particle depends on a linear 

combination of movement caused by advection and dispersion for a specific period. A random 

seed generator is used to produce spatially random particles at the sediment source for 

instantaneous and continuous sediment source conditions, and transport equations are applied to 

each cell of the discretized flow domain. Discretization of the flow domain depends on the spatial 

resolution of the data imported from the hydrodynamic model. After the flow domain 

discretization, the particle's new location is calculated using Equation 2.2. Therefore, the 

hydrodynamic parameters should be interpolated at the particle's location for the simulation time.  

Velocity, shear stress, and flow depth are the main hydrodynamic characteristics that should be 

interpolated to where the particles end up for each computational time step. Pollock (1998), Goode 

(1990), Schafer-Perini and Wilson (1991), and Lane and Prandle (2006) used a simplified approach 

to show the accuracy of linear interpolation in sediment transport modeling. In the present study, 

hydrodynamic parameters are interpolated using the linear approach proposed by LaBolle and 

Fogg (1996). 
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2.1.1.2 Advection Displacement 

The advection displacement of sediment particles depends on the average interpolated velocity in 

the longitudinal and transverse directions, fall velocity of particles, simulation time, and the 

distribution of the logarithmic velocity in the vertical direction. Table 2.1 shows the equations that 

were used to calculate the advection displacement of particles in the PTM. The average 

displacement caused by the advection term was computed using Equation 2.3, which expresses the 

mean drift motion and addresses the movement of a single particle in the streamwise direction (x-

direction). Equation 2.4 by Van Rijn (1993) was used to estimate the logarithmic velocity 

distribution in the vertical direction; the zero-velocity level (𝑧0) was computed using the 

conditional approach indicated in Equation 2.5 (Van Rijn, 1993). Similarly, the transverse 

advection displacement was estimated using the dominant transverse velocity component on the 

particle’s location. As mentioned, the PTM uses 2D flow velocity components as the advection 

velocity in longitudinal and transverse directions, and the vertical displacement of the particle is 

due to the gravitational forces acting on the sediment particles. Therefore, the vertical advection 

velocity of the particles was computed using the settling velocity (ws) proposed by Van Rijn (1993) 

(Equation 2.6). 
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Table 2.1 Advection Displacement Equations Used in the PTM 

Description                    Equation 
Equation 

No. 

Longitudinal advection 

displacement  
∆𝐿𝑎−𝑥 = 𝑢(𝑡, 𝑥𝑡) × ∆𝑡 (2.3) 

Depth-averaged velocity 

logarithmic distribution 
𝑢(𝑧) = [

�̅�

𝑧0
ℎ
+ 𝑙𝑛 (

ℎ
𝑧0
) − 1

] 𝑙𝑛 (
𝑧

𝑧0
) 2.4) 

Zero-velocity level 𝑧0 =

{
 
 

 
 0.11

𝜈

𝑢∗
                                   𝛽 ≤ 5    

0.033 𝑘𝑠                                  𝛽 ≥ 70 

0.11
𝜈

𝑢∗
+ 0.033 𝑘𝑠         5 < 𝛽 < 70

 2.5) 

Sediment particles settling 

velocity 
𝑤𝑠 =

{
  
 

  
 

   

 
(𝑆 − 1)𝑔𝑑2

18𝜈
                                           1 < 𝑑 ≤ 100 𝜇𝑚 

10𝜈

𝑑
[(1 +

(𝑆 − 1)𝑔𝑑3

100𝜈2
)

1
2

− 1]        100 < 𝑑 ≤ 1000 𝜇𝑚 

 1.1[(𝑆 − 1)𝑔𝑑]
1
2                                           𝑑 ≥ 100 𝜇𝑚

  2.6) 

   

In the equations listed in Table 2.1, 𝑢(𝑡, 𝑥𝑡) is the average interpolated velocity of the particle in 

the streamwise direction at time t, ∆𝐿𝑎−𝑥 is the particle movement distance due to the advection 

term, Δ𝑡 is the computational time step, Z is the vertical position of the particle in the water column, 

h is the average flow depth, �̅� represents the mean streamwise velocity, 𝜈 is the kinematic viscosity 

of water, ks is bed roughness height, u* is shear velocity, 𝛽 is boundary Reynolds number (=
𝑢∗𝑘𝑠

𝜈
), 

ws is particle fall velocity, S is ratio of particle density to fluid density, and d is the particle diameter. 

In addition to the advection and settling displacement effect on the particle movement, the 

dispersion coefficient significantly affects the accuracy of the PTM. There are several empirical 

equations that can be used for estimating the dispersion term, but not the advection. Widely used 

dispersion coefficient equations are discussed in the following section. 
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2.1.1.3 Dispersion Displacement 

Various experimental and field studies have reported different values for three-dimensional 

dispersion coefficients (Dx, Dy, Dz). Table 2.2 shows the dispersion coefficient equations used to 

generate turbulent fluctuation effects on sediment transport. In the present study, the performance 

of three widely used longitudinal dispersion equations was investigated (Equations 2.7 to 2.9), and 

the PTM used empirical equations proposed by Gualtieri and Mucherino (2008) to estimate the 

transverse dispersion coefficient (Equations 2.10).  

Tsai et al. (2020) used a theoretical approach developed by Absi et al. (2011) to estimate the 

vertical dispersion in their PTM. They showed less accuracy of the Rouse model, i.e., 𝐷𝑧 =

 𝜅 𝑢∗𝑧 (1 −
𝑧

𝐻
), in estimating the vertical dispersion coefficient because this model does not 

accurately consider the vertical dispersion coefficient values in layers close to the water surface. 

In the present study, a conditional vertical dispersion coefficient equation proposed by Van Rijn 

(1987) was used to compute the vertical dispersion coefficient, even in the top layers adjacent to 

the water surface (Equations 2.11). 

Table 2.2 Empirical Dispersion Equations Used in the Development of PTM 

Dispersion term Equation    Reference 
Equation 

No. 

Longitudinal 𝐷𝑥 = 5.93 𝐻𝑢∗ Elder (1959) 
2.7) 

Longitudinal 𝐷𝑥 = 10.612 𝐻𝑢 (
𝑢

𝑢∗
) 

Kashefipour and 

Falconer (2002) 
2.8) 

Longitudinal 𝐷𝑥 = 2 (𝐻𝑢∗) (
𝑢

𝑢∗
)
1.25

(
𝐵

𝐻
)
0.96

 
Sahay and Dutta 

(2009) 
2.9) 

Transverse 𝐷𝑦 = 0.166 𝐻𝑢∗ 
Gualtieri and 

Mucherino (2008) 
2.10) 

Vertical 𝐷𝑧 = {
 𝐷𝑧𝑚 − 𝐷𝑧𝑚 (1 −

2𝑧

𝐻
)
2

        
𝑧

𝐻
< 0.5

𝐷𝑧𝑚                                             
𝑧

𝐻
≥ 0.5

 Van Rijn (1987) 2.11) 
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In the equations listed in Table 2.2, water depth (H), depth-average velocity (u), shear velocity 

(𝑢∗), and stream width (B) are the effective parameters in dispersion. Equation 2.11 uses the 

maximum vertical dispersion coefficient (𝐷𝑧𝑚 =
𝜅 𝑢∗ 𝐻

4
, κ refers to the von Kármán constant κ = 

0.4) and relative particle depth in the water column (z/H) to calculate the vertical dispersion 

coefficient. Several methods consider the stochastic motion of particles resulting from dispersion; 

the random walk method is used in this study. 

2.1.1.4 Random Walk Method 

Radom walk, a stochastic or random process, generates random steps in computational space. The 

method has been employed in several studies for computing the random motion of sediment 

particles in turbulent flows (Lane and Prandle 2006; Salamon et al., 2006; Taghvayi  2013; Shi 

and Yu 2015). Equation 2.12 represents the movement distance associated with the stochastic 

displacement parameter (𝜎). 

∆𝐿𝑑 = 𝑁(0,1) ×  𝜎 (2.12) 

where N(0,1) is a random number with normal distribution, a mean of 0, and a standard deviation 

of 1. σ refers to the stochastic displacement computed from Equation 2.13. 

𝜎 =  √2𝐷∆𝑡 (2.13) 

where D represents the general sediment dispersion coefficient, which is calculated in x, y, and z 

directions based on the empirical dispersion equations mentioned in Table 2.2. 

2.1.1.5 Particle Deposition Process 

According to the Shields diagram, if the critical shear stress (𝜏𝑐𝑟) of a particle is greater than the 

applied shear stress (𝜏𝑎𝑝𝑝), the particle deposits; otherwise, it stays in suspension. Macdonald et 

al. (2006) used the Shields diagram to determine the initiation of motion of bed material in a 
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stochastic sediment transport model. Equation 2.14 describes the dimensionless mobility number 

(M), indicating the deposition or resuspension of sediment particles. 

𝑀 =
𝜏𝑐𝑟
𝜏𝑎𝑝𝑝

  (2.14) 

M >1 indicates that the particle will deposit on the streambed. If M < 1, a vertical resuspension 

movement using pure dispersion will be applied to the particles' centroid elevation to keep them 

in suspension mode. In the present model, the mobility number of each particle was calculated 

once the particle reached the zero velocity level. Figure 2.3 depicts the schematics of the potential 

movement path of a single particle from the suspension mode towards either the deposition or 

resuspension mode. 

 
Figure 2.3 Illustration of sediment deposition and resuspension processes in the water column 

The model was designed for a specified range of sediment particle sizes; the sediment gradation 

and corresponding critical shear stress that were incorporated were obtained from a study by 

Berenbrock and Tranmer (2008). The critical shear stress of the desired sediment gradation was 

interpolated based on the third-degree polynomial interpolation approach known as the cubic 

interpolation technique. 
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2.1.2 Calculation of Sediment Concentration 

Suspended sediment concentration was used to validate the model in the present study. To generate 

the suspended sediment concentration distribution, the nearest mesh grid was selected for each 

individual sediment particle in the flow domain, then the accumulated sediment particles on each 

grid generated the sediment concentration values. Figure 2.4 illustrates the preprocess of 

generating the suspended sediment concentration distribution in the flow domain by the PTM. 

 
    (a)                                                                               (b) 

Figure 2.4 A schematic plan view of: a) mesh domain, suspended particles, and particle group closest to 

each node, and b) value of accumulated sediment particles generated at each node by the PTM 

 

Equation 2.15 was used to calculate suspended sediment concentration (SSC) at each grid. 

𝐶 =
𝑉𝑝 𝜌𝑠𝑁𝑝(𝑥,𝑦,𝑡)

∆𝑥  ∆𝑦  ∆𝑧
                                                                                                                         (2.15) 

where C is the sediment concentration at each cubic mesh cell (kg/m3), Vp is the total sediment 

particle volume within the corresponding mesh cell (m3), and 𝜌𝑠 is sediment density (kg/m3). 

∆𝑥, ∆𝑦, and ∆𝑧 are the dimensions of the mesh cell in horizontal, transverse, and vertical directions, 
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respectively. 𝑁𝑝(𝑥, 𝑦, 𝑡) represents the number of particles assigned to the mesh grid node with 

coordination of (x, y) at time t. 

MODEL VALIDATION 

The performance of the Lagrangian stochastic sediment transport model was assessed using both 

experimental data and analytical solutions of the advection-dispersion equation. 

2.1.3 Validation of PTM Using Laboratory Data 

Coleman (1986) investigated the effect of variations in the suspended sediment concentration on 

the characteristics of the velocity profile. Three sediment classes with diameters of 0.105 mm, 0.21 

mm, and 0.42 mm were used in the experiments to explore  a wide range of particles, from very 

fine sand to medium sand. The properties of each sediment class are shown in Table 2.3. The 

experiments were conducted in a 0.356 m wide and 15 m long rectangular flume. The discharge 

was fixed at 0.064 m3/s, the average velocity was 1.04 m/s, the shear velocity was 0.041 m/s, the 

shear stress was 1.68 N/m2, and the average water depth was 0.169 m. The flume and hydraulic 

conditions in the Coleman's 1986 experiments were simulated. Three sediment classes, each with 

a total mass of 0.91 kg,  were introduced at the water’s surface, upstream of the flume, at the source 

of the sediment (Table 2.3). 

Table 2.3 Properties of Sediment Classes Used for Model Validation 

Class no. Sediment type Diameter (mm) Total mass (kg) 

1 Very fine sand 0.105 0.91 

2 Fine sand 0.21 0.91 

3 Medium sand 0.42 0.91 
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Each sediment class was applied to the sediment source located upstream of the flume. The 

sediment concentrations derived from the PTM 12 m downstream of the channel entrance were 

compared with Coleman's 1986 laboratory data to assess the accuracy of each dispersion model in 

generating concentration values.  

2.1.3.1 Sediments’ Particle Relaxation Time 

The particle’s relaxation time indicates the lag time for a particle to respond to changes in flow 

velocity, especially in extreme events. The inertia effect is the main factor in estimating the 

relaxation time for different sizes of sediment. Generally, if the size of a sediment particle is greater 

than that of the fluid particles, a lag in time should be considered in the sediment transport 

modeling. For high relaxation time (especially for large particles), particles follow the streamlines 

with a velocity lag. Some studies propose using theoretical and experimental analysis to calculate 

the velocity lag caused by inertia forces (Shamskhany et al., 2021; Cheng 2004); however, in most 

sediment transport models, the sediment particle velocity is assumed to be the same as the flow 

velocity (Oh, 2011). 

In the present study, the Stokes number (Stk), a measure of the particle's inertia, was used to 

investigate the behavior of the suspended particles in the flow domain and evaluate the response 

time of the particles that could generate a lag between the flow velocity and the particle velocity. 

The Stokes number is the ratio of characteristic relaxation time (tp) of the particle to the 

characteristic flow time (tf). The relaxation time was estimated for all the sediment classes listed 

in Table 2.3 using Equation 2.16. 

𝑡𝑝 = 
𝜌𝑝𝑑𝑝

2

18𝜇
                                                                                                 (2.16) 
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where 𝜌𝑝 is particle’s density (kg/m3), dp refers to the particle diameter (m), and 𝜇 is the dynamic 

viscosity of water (kg/s.m). Equation 2.17 was used to calculate the Stokes number for sediment 

classes from 1 to 3 (Table 2.3).  

𝑆𝑡𝑘 = 𝑡𝑝/𝑡𝑓                                                                                                 (2.17) 

In this equation tf =H/U, where U is the average velocity in the flume (m/s), and H refers to the 

characteristic length of the flow (m). 

Generally, a Stokes number less than one (Stk <1) implies that a particle adopts the fluid 

velocity immediately. If the Stokes number is less than 0.1 (Stk < 0.1), the particle follows the flow 

velocity with an average error of less than 1% (Teropea et al., 2007). The variations in the 

relaxation time and Stokes numbers with particle diameters are shown in Figure 2.5. The values 

of these parameters for different sediment classes in the present study are also indicated in the 

figure. 

  
              (a)           (b) 

Figure 2.5 a) Relaxation time, and b) Stokes number variations for particle’s diameter in the range of 0 to 

0.43 mm 



31 

 

As shown in Figure 2.5a, the relaxation time for Class 3 sediment with a diameter of 0.42 mm is 

about tp = 0.26 s, and for Classes 1 and 2, the relaxation times are less than 0.01 s. The small 

relaxation times for all three sediment classes demonstrate the negligible effects of particle size 

and density on the particles’ response time. A Stokes number of less than one (Stk < 1) for all 

sediment classes confirms the insignificant effect of inertia on the particles’ movement (Figure 

2.5b). Therefore, it can be assumed that the sediments of all three classes followed the flow 

velocity with acceptable accuracy. The linearly interpolated velocity components were used as the 

dominant advection velocity component for each sediment particle. 

2.1.3.2 Evaluation of Longitudinal Dispersion Equations 

A dimensionless concentration ratio (C/Cmax) was used to compare the distribution of the SSC 

through the water column, using the relative depth (z/H) at the measuring station (x = 12 m). 

Equations 2.7 to 2.9 were used to calculate the longitudinal dispersion of each sediment class listed 

in Table 2.3. 

In the present study, the Taylor diagram (Taylor, 2001) was used to investigate the performance 

of the PTM, using the longitudinal dispersion models listed in Table 2.2 that summarize multiple 

aspects of the prediction model performance. Equations 2.18 to 2.20 indicate the statistical 

measures, including correlation coefficient (R), standard deviation (STD), and root mean square 

deviation (RMSD), that were used to generate the Taylor diagram. In addition to the Taylor 

diagram, the percentage errors (PE) between the observed and estimated concentration ratios for 

different sediment classes were calculated using Equation 2.21. 

𝑅 =
𝐶𝑜𝑣(�̂�𝑖, 𝑥𝑖)

𝑆𝑇𝐷�̂�𝑖
 𝑆𝑇𝐷𝑥𝑖

  (2.18) 
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𝑆𝑇𝐷 = √
∑(𝑥𝑖−�̅�)

𝑁
  

(2.19) 

𝑅𝑀𝑆𝐷 = √∑
(�̂�𝑖−𝑥𝑖)

2

𝑁
𝑁
𝑖=1   

(2.20) 

𝑃𝐸 = (
|�̂�𝑖 − 𝑥𝑖|

𝑥𝑖
 ) × 100 (2.21) 

In the  above equations, �̂�𝑖 is the predicted value, 𝑥𝑖 represents the observed value, N is the total 

number of variables, and �̅� is the average value of the entire dataset. 

Figure 2.6 illustrates the distribution of the observed and estimated concentration ratios for Class 

1 sediment. As can be seen, the estimated C/Cmax distribution follows an increasing trend from the 

water surface to the bottom of the water column for all three dispersion models. The concentration 

ratios calculated based on Equations 2.7 and 2.8 underestimated C/Cmax from z/H = 0.65 to z/H = 

0.12; however, the results based on Equation 2.8 showed more deviation from the observed C/Cmax 

distribution. The concentration ratio from Equation 2.9 shows an overestimation in the mid-depth 

zone (z/H = 0.60 – 0.47) near the channel bed (z/H = 0.16 – 0.05).  

 

Figure 2.6 Observed vs. estimated concentration ratios (C/Cmax) for Class 1 sediment in PTMs 
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Figure 2.7 shows the Taylor diagram of the PTM results for Class 1 sediment and illustrates that 

the correlation coefficients of the three models were between contours 0.95 and 0.99, indicating 

high performance of all three dispersion equations in estimating the distribution of sediment 

concentration. Equation 2.8 shows the lowest performance, with a correlation coefficient of R = 

0.95; estimations based on Equation 2.7 have the highest accuracy (R = 0.98). The maximum 

deviation of the estimated C/Cmax from the observed values occurred at z/H = 0.165 for Equations 

2.8 and 2.9, with PE = 39% and 25%, respectively. 

The root mean square deviation (RMSD) contours in Figure 2.7 demonstrate the superiority of the 

PTM, based on Equation 2.7, in estimating C/Cmax with RMSD = 0.06. Furthermore, the standard 

deviation (STD) of the PTM, using Equation 2.9, shows that this model is less reliable than the 

results from Equations 2.7 and 2.8. The STDs for the results of these equations are located between 

contours 0.2 and 0.4. 

 

Figure 2.7 Taylor diagram of the estimated concentration ratios for Class 1 sediment  

Figure 2.8 demonstrates the distribution of observed and estimated concentration ratios for Class 

2 sediment. The maximum deviation of the estimated C/Cmax from the observed values occurred at 
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z/H = 0.168, with PE = 38% for all three PTM models. Equation 2.7 overestimates C/Cmax for z/H 

> 0.42 and shows less deviation from the observed values than the other two models. 

 

Figure 2.8 Observed vs. estimated concentration ratios (C/Cmax) for Class 2 sediment in PTMs 

The Taylor diagram of the PTM models for Class 2 sediment shown in Figure 2.9 depicts a better 

performance of Equation 2.7 in estimating C/Cmax than Equations 2.8 and 2.9. The performance 

measures of Equation 2.7 are R = 0.97, RMSD = 0.07 and STD = 0.289.  

 
Figure 2.9 Taylor diagram of estimated concentration ratios for Class 2 sediment  
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Figure 2.10 shows the distribution of the observed and estimated concentration ratios for Class 3 

sediment. A comparison of Figure 2.10 with Figures 2.8 and 2.6 indicates that the PTM can 

estimate the concentration of coarser sand materials with a lower deviation from the laboratory 

values than finer sand. According to the Taylor diagram for Class 3 sediment shown in Figure 

2.11, the correlation coefficient of the PTM, using Equation 2.7, is 0.96. The performance of 

Equations 2.8 and 2.9 are similar, with a correlation coefficient of 0.96 and 0.95, respectively. The 

results from Equation 2.9 are more widely spread around the mean of the concentration ratios, 

representing a higher standard deviation (0.29) than those generated by Equations 2.7 (0.26) and 

2.8 (0.27). The maximum deviation of the estimated C/Cmax from the observed values occurred at 

z/H = 0.136, with PE = 17% for all three PTM models. 

 

Figure 2.10 Observed vs. estimated concentration ratios (C/Cmax) for Class 3 sediment in PTMs 
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Figure 2.11 Taylor diagram of the estimated concentration ratios for Class 3 sediment  

A comparison between the PTM results with different dispersion approaches shows that the 

stochastic sediment transport model produced a more reliable sediment concentration, using 

Elder's (1959) dispersion equation (Equation 2.7). This equation was, therefore, selected as the 

longitudinal dispersion equation for the model.  

2.1.4 Validation of PTM Using Analytical Solution 

The advection-diffusion relationship (Equation 2.1) may be solved using analytical solutions with 

some assumptions. The instantaneous pollutant concentration in a straight rectangular channel with 

a uniform flow condition can be calculated using Equation 2.22 (Park et al., 2020; Park and Seo 

2018). 

𝐶(𝑥, 𝑦, 𝑡) =
𝑀𝑡/ℎ

4𝜋𝑡√𝐷𝑥𝐷𝑦
[exp {−

(𝑥−𝑥0−𝑢𝑡)
2

4𝐷𝑥𝑡
−
(𝑦−𝑦0)

2

4𝐷𝑦𝑡
}]                                                             (2.22) 

where Mt is the total mass of pollutant (kg), (x0, y0) is the coordinate of the sediment point source 

in a 2D system, and  �̅� is the depth-averaged velocity (m/s). Equations 2.7 and 2.10 are used to 

estimate Dx and Dy, respectively. 
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A 4 m-wide, 100 m-long straight rectangular channel was used to assess the PTM’s performance, 

using the analytical solution (Figure 2.12). The depth-averaged velocity was assumed 1 m/s and 

the water depth = 0.3 m. A total of 1500 particles were injected instantaneously into the flow at 

the sediment source  (x0 = 0 m, y0 = 2 m). The concentration of the suspended sediments was 

calculated by counting the number of particles on each computational node, using Equation 2.15 

with ∆z = H (x, y, t), in which H represents the water depth.  

Figure 2.12a shows the temporal 3D visualization of solute mixing at t = 10, 30, 50, and 80 seconds 

from the time that the sediment was injected. 

 
Figure 2.12 Comparison between the analytical solution and the PTM results: a) Distribution of sediment 

concentration using the analytical solution at different simulation times (3D view), b) Concentration 

distribution contours using analytical solution (background color map contours), and distribution of 

sediment particles from PTM (black dots) at t = 30 seconds (plan view) 
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Figure 2.12 shows that the maximum concentration at the centroid of the sediment plumes spread 

in the longitudinal and transverse directions due to the dispersion effect. Computational time steps 

of 30 and 50 seconds were selected to compare sediment concentrations from the solute mixing 

model and the PTM in the longitudinal and transverse directions. Figure 2.12b shows the particle 

distribution resulting from the PTM with the corresponding analytical concentration contours at t 

= 30 seconds. Both models showed a high density of sediment particles at the centroid of the 

plume. 

The longitudinal and transverse concentration distributions from both methods at t = 30 and 50 

seconds were used to assess the accuracy of the PTM in estimating sediment concentration in a 

straight channel. As presented in Figure 2.13a, there was an acceptable agreement between the 

PTM results and the analytical solution in estimating longitudinal concentration at both time steps; 

however, a small shift was detectable in the PTM results at t = 30 seconds. At t = 50 seconds, the 

PTM result showed a larger shift of the maximum concentration than at t = 30 seconds. 

The concentration distribution in the transverse direction is shown in Figure 2.13b. Unlike the 

longitudinal concentration distribution, no shift in the maximum concentration was observed in 

the transverse direction. The PTM results at t = 50 seconds showed more deviation from the 

analytical solution in the areas outside the central part of the channel (x < 1 m and x > 3 m) than 

the results at t = 30 seconds. 
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       (a)          (b) 

Figure 2.13 Comparison between concentration distributions estimated using the analytical solution and 

the PTM: (a) Longitudinal concentration, and (b) Transverse concentration 

The maximum concentrations for the two time steps are summarized in Table 2.4. The PTM 

underestimated the maximum concentration with an error of 6.3% and 9.4% at t = 30 and t = 50 

seconds, respectively. 

Table 2.4 Maximum Concentration (in ppm) Estimated by the PTM and Analytical Solution at Different 

Simulation Times 

Model t = 30 s t = 50 s 

PTM 298 173 

Analytical Solution 318 191 

Error (%) 6.3 9.4 

 

2.1.5 Comparison of PTM with Previous Models 

2.1.5.1 Two-particle Stochastic Diffusion PTM by Tsai et al. (2020) 

Tsai et al. (2020) developed a two-particle stochastic diffusion particle tracking model (SD-PTM) 

that uses the distance between particles to address the interparticle correlation in a two-dimensional 
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flow domain and utilized the Class 1 sediment data from Coleman’s 1986 experiments to evaluate 

its performance. A comparison of the results of their model and the one developed in this study, 

using Elder's 1959 dispersion equation, is depicted in Figure 2.14 for Class 1 sediment. 

According to Figure 2.14a, the two-particle SD-PTM showed less deviation from the observed 

concentration values for Class 1 sediment than the PTM model, especially for depth ratios less 

than 0.2. Also, the coefficient of determination of the Tsai et al. (2020) model is R2 = 0.99, which 

is slightly higher than the coefficient of determination of the PTM model (R2 = 0.97). 

 
Figure 2.14 a) Estimated sediment concentration ratios (C/Cmax) at different depth ratios (z/H), and b) 

observed and predicted sediment concentrations using the PTM with Elder (1959) dispersion equation 

(Equation 2.7) vs. SD-PTM (Tsai et al., 2020) for Class 1 sediment 

The two-particle SD-PTM overestimated the concentration ratios for z/H < 0.44 with a maximum 

percentage error of 12% at z/H = 0.13. The PTM developed in this study underestimated the 

concentration ratios with a maximum percentage ratio of 21% at z/H = 0.17 for the same range of 

depth ratios (i.e., z/H < 0.44). It should be noted that the PTM underestimated the concentrations 

for most depth ratios higher than 0.44 except for those in the top layers that could be affected by 

the sediment entrainment at the sediment source. The model developed by Tsai et al. 
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underestimated the concentration for 0.44 < z/H < 0.7 and overestimated the concentration for z/H 

> 0.7; however, both models predicted the concentration ratios at different depths with an 

acceptable percentage of error. 

2.1.5.2 Stochastic Jump Diffusion PTM by Oh (2011) 

Oh (2011) developed a stochastic diffusion PTM (SJD-PTM) by adding a stochastic jump to the 

particles’ transport equation and evaluated its performance using Class 2 sediment of the Coleman 

experiments conducted in 1986. Figure 2.15a shows the variations in the concentration at different 

depth ratios for Oh’s PTM and the one developed for this study, using dispersion Equation 2.7 for 

the Class 2 sediment. The observed and predicted concentrations for both models illustrated in 

Figure 2.15b show a slight difference in predicting the sediment concentration values of Class 2 

sediment: the coefficient of determination R2 for Oh’s PTM is 0.96 and for the PTM in this study 

is 0.95.  

The PTM with dispersion (Equation 2.7) overestimated the concentration in most of the depth 

ratios except at z/H = 0.17; the SJD-PTM overestimated the concentrations in lower depth ratios 

from the bottom of the channel to z/H = 0.28 and underestimated the sediment concentrations for 

depth ratios larger than 0.38. Both models showed the highest accuracy for depth ratios between 

0.3 to 0.36 with a PE of less than 5%.  
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Figure 2.15 a) Estimated concentration ratios (C/Cmax) for different depth ratios (z/H), and b) observed 

and predicted sediment concentrations, using PTM with Elder (1959) dispersion equation (Equation 2.7) 

and SJD-PTM (Oh 2011) for Class 2 sediment 

CONCLUSION 

A three-dimensional Lagrangian stochastic particle tracking model was developed to simulate 

sediment transport in open channels when coupled with any 2D hydrodynamic model able to 

generate the geospatial flow parameters of depth, velocity, and shear stress. The model simulates 

the movement of sediment particles in suspension, deposition, and resuspension. The 

performances of three longitudinal dispersion equations (Elder (1959), Kashefipour and Falconer 

(2002), and Sahay and Dutta (2009)) were examined with the aim of selecting one to be employed 

in the PTM. Unlike the majority of Lagrangian PTMs (McDonald 2006; Oh 2011), a conditional 

vertical dispersion coefficient equation was used as an alternative approach for defining the 

vertical dispersion coefficient. In previous studies, the Rouse model, a parabolic vertical dispersion 

formula, was used to address the dispersion effect on particles in the top layers of the water column, 

close to the surface of the water. The Rouse model estimates the dispersion coefficient as 



43 

 

approximately zero (Dz ≈ 0) in the top layers, which might affect the suspended sediment 

concentration calculated by the PTM. 

The dimensionless sediment concentration data (C/Cmax) from Coleman's 1986 laboratory 

experiments were used to assess the performance of each equation in predicting the suspended 

sediment concentration for a variety of sediment gradations. In most of the Lagrangian PTMs (e.g., 

Lane and Prandle 2006; Tsai et al., 2020), fine particles are used to evaluate the performance of 

the models in simulating sediment transport; only a few studies use coarse particles to evaluate the 

PTMs (e.g., Shi et al. 2015). Therefore, the ability of the PTM to simulate sediment transport of 

different sizes (very fine sand, fine sand, medium sand) was considered in the present study. The 

Pearson correlation coefficient, standard deviation, and root mean square deviation parameters 

were plotted using the Taylor diagram for each dispersion equation to identify the best dispersion 

model to be utilized in the developed PTM. According to the result of the Taylor diagram and 

concentration distribution trends, Elder's equation distributed the suspended sediment 

concentration more accurately with a mean statistical value of R = 0.96, STD = 0.262, and RMSD 

= 0.06 for the three different sediment classes. Therefore, this equation was selected as the 

longitudinal dispersion coefficient for the PTM developed in this study. A comparison of the PTM-

estimated C/Cmax with the Coleman's (1986) laboratory data showed less deviation from the 

observed values for coarser materials (medium sand) than for finer sediment. 

In addition to the validation with laboratory data, the PTM results were compared to the analytical 

solution of the advection-dispersion model for a straight rectangular channel with an instantaneous 

sediment source. The longitudinal and transverse sediment concentrations from the analytical 

solution and the PTM showed an acceptable level of agreement, which confirms the ability of the 

PTM to predict the SSC variation in a straight rectangular channel. A comparison of the SSC from 
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the PTM and the analytical solution showed that the PTM estimated the maximum sediment 

concentration with 6.3% error and the analytical solution estimated the maximum sediment with 

9.4% error for time steps of t = 30 s and 50 seconds, respectively. 

The ability of the PTM developed with Elder's (1959) longitudinal dispersion coefficient to predict 

suspended sediment concentrations in open channels was compared to the stochastic jump-

diffusion PTM developed by Oh in 2011 and the two-particle stochastic diffusion PTM developed 

by Tsai et al., in 2020. Despite the fact that the model developed for this study is slightly less 

accurate than the other two PTMs with more complex displacement computations, its simplicity 

makes it an acceptable alternative PTM for modeling sediment transport in open channels. 

Although the PTM showed an acceptable level of accuracy, some of the assumptions made in 

developing the model may limit its use in different environments. These limitations are described 

in the following, and recommendations are made for future research.  

• The sediment particles were assumed to be spherical, and the interactions of the were not 

considered in the particle transport calculations. 

• The lag velocity of the particle sizes used for modeling was negligible; however, the effect 

of inertia on the velocity of sediment particles for larger sediment sizes should be 

investigated to determine the appropriate criteria for addressing it. 

• The proposed model fails to consider bedload transport and the geomorphologic evolution 

of the channel bed; therefore, it is suggested that a bedload transport model be coupled 

with the PTM developed for this study to provide a full range of sediment transport in open 

channels, including suspended and bedload transport. 
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This study showed that the PTM can accurately simulate sediment transport in open channels and 

can be used by hydro-environmental agencies and researchers to estimate changes in SSC, identify 

potential depositional areas, and provide best management practices to control and mitigate the 

possible impacts on water quality. Future research is needed to evaluate the performance of the 

model in simulating sediment transport in natural streams. Lastly, with recent developments in 

artificial intelligence approaches, the dispersion term in each flow direction could be modeled 

using soft computing techniques instead of the empirical equations used in the present study. 
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List of symbols 

Symbol Description Symbol Description 

u, v, w Flow velocity in x, y, z directions  z 
Vertical elevation of the particle in 

the water column  

H Flow depth   𝑣𝑥 
Interpolated velocity of the particle 

in the streamwise direction 

ks Bed roughness height   M Mobility coefficient  

u* Shear velocity Dx Longitudinal dispersion coefficient 

𝛽 Boundary Reynolds number (=
𝑢∗𝑘𝑠

𝜈
) Dy Transverse dispersion coefficient 

𝑧0 Zero-velocity level Dz Vertical dispersion coefficient 

𝜌𝑠 Sediment density (kg/m3) C Sediment concentration  

𝜈 Kinematic viscosity of water  ∆𝐿𝑡 
Total displacement of a particle in 

each time step in PTM 

�̅� Depth-averaged velocity  ∆𝐿𝑎 
Total displacement caused by the 

advection term 

B Stream width  ∆𝐿𝑑 
Total displacement caused by the 

dispersion term 

𝜏𝑎𝑝𝑝 Applied shear stress  ∆𝐿𝑓 Particle’s vertical movement 

t Total simulation time  𝜎 Stochastic displacement = √2𝐷𝑑𝑡 

∆𝑡 Computational time step  S Ratio of particle density 

ws Sediment particle settling velocity  𝑉𝑥𝑝 Streamwise interpolated velocity 

component of particle 

x0, y0 Coordinates of the sediment source  𝑉𝑦𝑝 
Transverse interpolated velocity 

component of particle 

𝑥𝑝
𝑡 , 𝑦𝑝

𝑡 ,  𝑧𝑝
𝑡  Particle’s 3D location at time t  Vp 

Total sediment particle volume in 

3D mesh cell  

𝜏𝑐𝑟  Critical shear stress of particle  ∆𝑥, ∆𝑦, ∆𝑧 Dimensions of the mesh cell 

𝑆𝑡𝑘 Stokes number tp Relaxation time 
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CHAPTER 3  

MODELING NON-COHESIVE SEDIMENT TRANSPORT IN NATURAL 

STREAMS USING A LAGRANGIAN APPROACH 

CASE STUDY: WILSON CREEK, MCKINNEY, TEXAS, USA 

 

ABSTRACT 

The present study aims to develop and assess the performance of a Lagrangian particle tracking 

model (PTM) in simulating sediment transport in natural streams. To achieve this goal, a field 

monitoring program was conducted while a bridge was being built over Wilson Creek, in 

McKinney, Texas. The field monitoring included collecting total suspended solids (TSS), bedload 

material, and substrate; assessing the turbidity (Tu); and surveying depositional areas in the creek. 

The PTM outputs included changes in the creek’s sediment regime, i.e., suspended sediment 

concentration and depositional areas. A comparison between the model results and field data 

showed that the PTM predicted suspended sediment concentrations during high and low flow 

scenarios with acceptable accuracy and predicted the depositional areas as well as the field 

observation and measurements. Overall, the PTM showed an acceptable performance in simulating 

sediment transport in a natural stream. It also showed that the eroded particles that entered the 

creek from the construction site elevated the sediment concentrations in the creek and changed the 

bed morphology, which could have short- and long-term effects on aquatic habitats.  

Author Keywords: Sediment transport, Suspended sediment concentrations Particle tracking 

model, Stochastic approach, Natural streams 
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INTRODUCTION 

Effluent discharge and anthropogenic activities have increasingly polluted and contaminated 

natural rivers over the past few decades, while rainfall, channel scouring, dam breaks, and 

landslides have generated a random quantity of sediment (Bennett et al., 2014). In addition to these 

events that have the potential to produce a significant amount of sediment yield, most construction 

activities near waterbodies increase overland erosion and add additional sediment load to streams 

(Ahmari et al., 2021; Sulaiman et al., 2021). Sediment particles are first eroded and then 

transported by water in the form of suspended loads, bedloads, or both, and are eventually 

deposited in streams, lakes, and reservoirs (Malmon et al., 2003), where they may impact aquatic 

habitats and water quality (Bilotta and Brazier 2008; Hall et al., 2019; Tao et al., 2019). Due to the 

significant role of sedimentation in the health of a river system, empirical and numerical 

approaches are used to assess the sediment transport in waterbodies, and numerical and empirical 

models are used to evaluate changes in sediment regime, i.e., suspended sediment transport, 

bedload transport, or deposition/resuspension of sediment particles (Pinto et al., 2006) and to 

predict the effect of added sediment particles on water quality and aquatic habitats (Bilotta and 

Brazier 2008; Hall et al., 2019). 

The complex behavior of sediment particles in waterways makes it challenging to fully understand 

the mechanics of sediment transport (Tsai et al., 2018; Safari et al., 2016; Muste et al., 2009), but 

several researchers have developed empirical approaches and formulas that can be used to predict 

it in natural streams (Sulaiman et al., 2021; Priya et al., 2016; Lopez et al., 2014). These formulas 

are drastically different from one another (Pinto et al., 2006), however, which means that there is 

no way to select the most accurate empirical equation for a specific problem (Huntley and Bowen 

1989). The source of the inaccuracy of empirical models has been studied by various researchers, 
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such as  Camenen and Larroudé (2003), who showed that empirical models are sensitive to small 

variations in sediment gradations and flow conditions and that the different variables entered into 

empirical sediment transport models can result in inaccuracy. Empirical models are only viable 

within the geographical area from which their relationships are derived (Hajigholizadeh et al., 

2018). Empirical sediment transport modeling can be performed using deterministic or stochastic 

approaches. Deterministic sediment transport models treat the sediment as a continuum, and 

suspended particles are represented by solving the concentration equation (Kiat et al., 2008; 

Amoudry and Souza 2011). Stochastic sediment transport models consider the randomness of the 

data and generate a stochastic result for a given input parameter set, which can increase the 

reliability of the model since it mimics the random behavior of sediment particles in natural 

streams. The majority of stochastic sediment transport models are based on Lagrangian approaches 

(Oh 2011) and model sediment particles as a dispersed phase (Ji et al., 2013; Shi and Yu 2015).  

It should be noted that numerical modeling of sediment transport, using either a deterministic or 

stochastic approach, has some uncertainties that could be due to dimensionality simplification for 

1D, 2D, or 3D models or stream-specific coefficients such as Shields’ critical shear stress and 

bedload/suspended load parameters, among others (Beckers et al., 2018). Hantush and Kalin 

(2004) mentioned that deterministic and stochastic approaches (numerical models) can result in 

less uncertainty than empirical approaches. 

Sediment transport deterministic models use conservation of mass and momentum principles and 

produce the exact results for a particular set of inputs. They usually require a longer simulation 

period than stochastic approaches. Deterministic approaches have been employed in various 

studies to model sediment transport in rivers (Wu 2004; Fang and Rodi 2003; Liu et al., 2002) and 

coastal areas (Mengual et al., 2021; Warner et al., 2008). Wu (2004) developed a coupled 
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deterministic model based on a finite volume approach for solving equations for 2D depth-

averaged, unsteady, open channel flow and sediment transport. Sediment transport equations were 

solved using an iteration approach that accounted for a coupling procedure among sediment 

transport, bed change, and bed material. Periáñez et al. (2013) assessed sediment transport in Cádiz 

Bay, Spain, using an explicit finite difference method to solve a transport equation on a spatial 

flow domain with a 200 m mesh grid size and developed suspended sediment concentration 

contour maps for the inner bay area. 

Einstein (1950) pioneered using stochastic approaches to simulate bedload transport, as they 

present data and predict outcomes that account for a certain level of unpredictability or randomness 

within a short period of simulation. Lagrangian stochastic sediment transport models consider a 

group of particles as mass transport elements in the flow domain to solve transport equations, using 

advection and dispersion. Several researchers have shown the performance of Lagrangian 

stochastic approaches in modeling sediment transport (Baharvand et al., 2022; Ahmari et al., 2021; 

Allison et al., 2017; Dunn et al., 2015; Liu et al., 2007; De Baas et al., 1986; Ley 1982). Lackey 

and Smith (2008) used a PTM to predict the fate of dredged sediment in the Willamette River, near 

the confluence of the Willamette and Columbia Rivers in Oregon. They coupled the EFDC 

(Estuarine Fluid Dynamics Code) with a particle tracking model and showed that sediment 

particles settled quickly in two areas where dredging operations were taking place. Oh (2011) 

investigated the performance of a particle-based sediment transport model using the stochastic 

diffusion particle tracking model (SD-PTM) and the stochastic jump-diffusion particle tracking 

model (SJD-PTM). The SJD-PTM was developed to reflect the effect of extreme flows on particle 

movement, using a jump term added to the stochastic dispersion term. Tsai et al. (2014) used 

various mathematical forms of particle tracking models, such as the gambler ruin problem and the 
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multi-state discrete-time Markov chain. Zhao et al. (2018) developed a Lagrangian particle 

tracking model to simulate contaminant transport in Tangdao Bay, in China and found that the 

pollution was mainly caused by the low water exchange capability and long residence time. Hache 

et al. (2021) used a PTM to investigate accumulated sediment in an inundated anthropogenic 

marshland in the southeastern North Sea and the impact of coastal protection measures on sediment 

transport. Baharvand et al. (2022) developed a Lagrangian particle tracking model to simulate 

sediment transport in prismatic open channels. They assessed the accuracy of different empirical 

dispersion terms with a random walk stochastic approach in the PTM, using laboratory data and 

analytical solution of the advection-dispersion equation. 

Lagrangian particle tracking models have not been used to simulate the effects of road and bridge 

construction on sediment transport in natural streams. However, in some studies PTMs have been 

used to assess the effect of dredging operations on sediment regions in rivers (e.g., Lackey and 

Smith 2008; Lackey et al., 2020). In the present study, the PTM developed by Baharvand (2022) 

was adopted to simulate sediment transport in natural streams and to study the potential of the 

model to simulate sediment transport in a creek downstream of a bridge construction site. The 

model uses empirical dispersion equations and the random walk approach to simulate sediment 

transport. Unlike most the PTMs coupled with internal deterministic hydrodynamic solvers that 

may not be applicable to different flow and sediment environment, the PTM used in this study was 

coupled with the HEC-RAS 2D (version 5.0.7) and used Python-based packages as an external 

hydrodynamic model. This widely used hydraulic model can be employed in different study areas, 

using limited geographical and hydrological information. The model output includes heat maps of 

suspended sediment distribution and depositional areas in the river channel. The model’s 
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performance was assessed using field data. The methodology and validation processes of the PTM 

are discussed in the following sections. 

METHODOLOGY  

3.1.1 Case Study 

The field study took place from December 2020 to December 2021 in Wilson Creek near Highway 

FM 2478 in McKinney, Texas (Figure 3.1). Wilson Creek was selected because of a road and 

bridge expansion project that was likely to cause increased sedimentation to the creek during the 

construction period, and the PTM was used to predict changes in suspended sediment 

concentrations and sediment depositions. The bridge construction site was located downstream of 

the existing bridge on the north and south sides of the creek. The bridge location and footprints of 

the construction site are shown in Figure 3.1. 

 

Figure 3.1 Wilson Creek study area near Highway FM 2478, McKinney, Texas 

The 196.8 km2Wilson Creek watershed originates in Collin County, approximately 3.2 km east of 

Celina, Texas. The creek is 46.6 km long and discharges into Lavon Lake, which is located on the 
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east fork of the Trinity River. The bedrock in the Wilson Creek watershed consists of Austin chalk 

(Ferring 1994). The creek lies within the Blackland Prairie, which expands through North Texas 

to an area southwest of San Antonio (Moring 2009) and is dominated by swelling clay soils that 

are prone to widescale surficial erosion (Harmel et al., 2006). Adjacent land use in the basin is 

primarily residential and undeveloped agricultural areas. Flow in the upper part of the basin is 

intermittent but becomes more perennial in its lower reaches, due in part to runoff from municipal 

water (Maier and Dunkin, 1988). 

The Wilson Creek streamflow is recorded at the USGS 08059590 gauge station, 11.2 km 

downstream of the bridge (Figure 3.1). Historical data shows that the average daily minimum, 

mean, and maximum discharges at the site are 0.18, 2.2, and 149.5 m3/s, respectively. The 2-year 

and 10-year peak discharges at the bridge site are estimated as 98.4 and 210.7 m3/s (JMT 2019), 

respectively, representing the average and high flow conditions at this location. The minimum, 

mean, and maximum daily discharges recorded at this station from December 2020 to December 

2021 are shown in Figure 3.2. In 2021, the minimum and maximum daily discharges were 0 and 

74.5 m3/s, respectively. The mean daily flow varied between 0 and 37.4 m3/s with an average of 

1.98 m3/s. 
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Figure 3.2 Wilson Creek minimum, mean, and maximum daily streamflow recorded from December 

2020 to December 2021 at the USGS gauge station in McKinny, Texas 

3.1.2 Developing a Lagrangian Particle Tracking Model for Natural Streams 

A Lagrangian-based particle tracking model (PTM) developed by Baharvand (2022) was coupled 

with the HEC-RAS 2D and adopted and modified by this research to simulate sediment transport 

in natural streams. A continuous sediment source was considered in the model to simulate the 

particles’ pathways along the stream. Advection and dispersion displacement equations were 

solved in the PTM for each sediment particle in the flow domain. For advection, the displacement 

of the particle was based on the interpolated velocity estimated by the HEC-RAS 2D model 

developed for Wilson Creek, at the position of the particle in the flow domain. However, the 

dispersion term generates the stochastic movement of the particles in a three-dimensional space, 

using the random walk method. The model structure and governing equations of the PTM  were 

based on a particle-based sediment transport model that was developed for prismatic open channels 

(Baharvand et al., 2022). Equation 3.1 shows the three-dimensional Lagrangian transport equation 

used in the PTM to estimate the displacement of the particles on each mesh cell in the flow domain. 
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where (xp
t, yp

t, zp
t) and (xp

t+1, yp
t+1, zp

t+1) are the particle locations before and after one 

computational time step (dt) in the flow domain. 𝑉𝑥𝑝 and 𝑉𝑦𝑝  are the linearly interpolated velocity 

components in streamwise and transverse directions at the particle location, respectively. N (0,1) 

represents the stochastic term with normal distribution, mean of 0, and standard deviation of 1. 

Equation 3.2 is used to estimate the fall velocity of sediment particles (Van Rijn, 1993). 

Ws=

{
 
 

 
  

(S-1) gd
 2

18ν
                                                                               1 < d ≤ 100 μm      

10 ν

d
[(1 +

(𝑆−1)𝑔𝑑 3

100 𝜈2
)
0.5

-1]                                             100 < d ≤1000 μm  

1.1[(S-1)gd]0.5                                                                            d ≥100 μm     

         (3.2) 

where 𝑤𝑠 is the particle fall velocity, 𝜈 is the kinematic viscosity of water, d is the particle diameter, 

and S refers to the particle specific gravity.  

The dispersion term (𝜎) was computed using Equation 3.3. In this equation, D represents the 

dispersion coefficient. Baharvand et al. (2022) showed the superiority of the Elder (1959) equation 

over other widely used longitudinal dispersion equations to simulate longitudinal dispersion; 

therefore, Equation 3.4 was used to calculate the longitudinal dispersion term in the present model. 

Equation 3.5, proposed by Gualtieri and Mucherino (2008), was used to estimate the transverse 

dispersion coefficient, and the vertical dispersion coefficient was estimated using Equation 3.6 

proposed by Van Rijn (1987). 

𝜎 = √2Ddt                                                                                                                                                                               (3.3) 
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Dx = 5.93Hu*                                                                                                                                                (3.4) 

Dy = 0.166Hu*                                                                                                                                               (3.5) 

Dz ={
 Dzm– Dzm (1–

2 z

H
)

2

          ;             
z

H
< 0.5

Dzm                                  ;             
z

H
≥ 0.5

                                                                                  (3.6) 

In these equations, H represents flow depth, z is the vertical elevation of particle, and Dzm is the 

maximum vertical dispersion coefficient. As can be seen in Equation 3.6, the vertical dispersion 

for z/H < 0.5 is described with a parabolic distribution over the flow depth, and for z/H > 0.5, it is 

considered equal to the maximum vertical dispersion. Equation 3.7 was used to calculate the 

maximum vertical dispersion term. 

Dzm =
𝜅𝑢∗𝐻

4
                                                                                                                                         (3.7) 

where κ refers to the von Kármán constant (κ = 0.4), and u*  is the shear velocity. 

According to Shields diagram, if the critical shear stress (𝜏𝑐𝑟) of a particle is greater than the shear 

stress (𝜏𝑎𝑝𝑝), the particle will deposit; otherwise, it stays in suspension. Previous studies used the 

Shields criterion to determine the initiation of motion of bed materials in stochastic sediment 

transport models (e.g., MacDonald et al., 2006). The PTM uses the dimensionless mobility number 

M, expressed by Equation 3.8 to determine whether the particle stays in suspension or gets 

deposited on the streambed. 

M =
τcr

τapp
                                                                                                                                          (3.8)                   

If M >1, the particle will deposit on the streambed. When M <1, a vertical resuspension movement 

using the pure dispersion term will be applied to the particle centroid elevation to keep it in 

suspension mode. The critical shear stress for different sediment classes (e.g., fine stilt, fine sand, 
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etc.) obtained from Berenbrock and Tranmer (2008) is used to produce the critical shear stress for 

sediment particles with a certain diameter, using the cubic interpolation technique (Baharvand et 

al., 2022). The PTM calculates the mobility number for each particle reaching the zero-velocity 

layer (Figure 3.3). Equation 3.9 was used to calculate the elevation of the zero-velocity layer for 

each sediment particle (Van Rijn, 1993).  

𝑧0 =

{
 

 
0.11

𝜈

𝑢∗
                                           𝛽 ≤ 5                 

0.033 𝑘𝑠                                        𝛽 ≥ 70               

0.11
𝜈

𝑢∗
+ 0.033 𝑘𝑠             5 < 𝛽 < 70               

                                                                (3.9) 

where ks is bed roughness height, and  𝛽 is the boundary Reynolds number (𝛽 =
𝑢∗𝑘𝑠

𝜈
). 

 

Figure 3.3 Sediment particle movement in a discretized flow domain 

3.1.3 Developing HEC-RAS 2D Model for Wilson Creek 

Geo-spatial velocity, shear stress, and flow depth are the required hydrodynamic inputs to the 

developed PTM to model sediment transport in natural streams. These parameters were obtained 

from the HEC-RAS 2D model developed for Wilson Creek. HEC-RAS 2D is a more highly 
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developed version of the HEC-RAS 1D, with a 2D structured and unstructured mesh grid and an 

implicit finite volume solver, combined with computational cells involving a digital terrain map 

(Brunner 2016). The computational mesh grid assessment, boundary conditions, and model 

validation are discussed in the following section. 

3.1.3.1 Hydrodynamic Model Preparation and Validation Processes 

The digital elevation model (DEM) with 10-meter resolution, exported from the USGS National 

Dataset, was used as a three-dimensional terrain model of Wilson Creek in the present study, but 

was modified, based on the cross sections used in a calibrated HEC-RAS 1D model developed by 

JMT (2019) for Wilson Creek at the bridge site. Figure 3.4 depicts the extent of the structured 

mesh plain of Wilson Creek and the boundary conditions used for the hydrodynamic modeling. A 

steady-state flow condition was used at the upstream section, and the downstream boundary 

condition was set to normal depth. 

 

Figure 3.4 Mesh plain and boundary condition used in the Wilson Creek HEC-RAS 2D model 

The accuracy of 2D hydrodynamic models may be affected directly by the generation of 

computational grids and the selected boundary conditions (Kim et al., 2014). Very fine mesh grids 
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increase the simulation time; however, coarse mesh grids can reduce the accuracy of the 

hydrodynamic solver in detecting the features of the terrain geometry. Coarse mesh grid 

dimensions up to 10 m do not impact the geomorphologic indices such as flow patterns and basin 

hydrologic responses (Zhang and Montgomery 1994). 

A structured rectangular mesh domain with different mesh grid sizes was developed to determine 

the optimal mesh grid dimensions and assess the impact of the mesh size on flow characteristics. 

The 2-year and 10-year flows were used as the steady-state flow conditions in the HEC-RAS 2D 

model. The average flow velocity for the 2-year and 10-year discharges at a section 28 m 

downstream of the bridge location (cross section A in Figure 3.4) was estimated by the HEC-RAS 

1D model as 1.01 and 1.73 m/s, respectively (JMT 2019). The average flow velocity calculated by 

the HEC-RAS 2D model at this section of the creek was used to determine the optimal mesh size. 

Table 3.1 shows the number and sizes of mesh cells used in this study, as well as the corresponding 

average flow velocity at cross section A, for comparison of the average flow velocity estimated by 

the HEC-RAS 1D and HEC-RAS 2D models. 

Table 3.1 Mesh Grid Size and Corresponding Average Velocity in Wilson Creek at Cross Section A  

No. Discharge (m3/s) 
Mesh cell size 

(m) 

Number of 

mesh cells 

Calculated average 

velocity (m/s) 

1 98.4 2 132587 1.18 

2 98.4 5 21482 1.19 

3 98.4 10 5492 1.12 

4 210.7 2 132587 1.24 

5 210.7 5 21482 1.23 

6 210.7 10 5492 1.16 

 

As shown in Table 3.1, the average velocity for both flow scenarios changed marginally when the 

mesh cell size decreased from 5 m to 2 m; however, the simulation time increased notably. Figures 
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3.5a and 3.5b show the velocity distribution across Wilson Creek at cross section A for the 2-year 

and 10-year flow scenarios, respectively. According to these figures, it can be argued that the 10 

m mesh resolution did not detect the creek geometry effectively, especially near the banks. For the 

2-year flood scenario (Figure 3.5a), the model with 10 m mesh grids overestimated the maximum 

velocity compared to the models with mesh grids of 2 m and 5 m. The variations in the velocity 

from the center to the north side of the channel were underestimated by the model with coarser 

mesh. For the 10-year flood scenario (Figure 3.5b), however, the model with 10 m mesh estimated 

the velocity relatively close to the result of the models with finer mesh cells. As a result, a mesh 

resolution of 5 m with a total number of 21,482 mesh cells was considered for the HEC-RAS 2D 

model. For the 2-year and 10-year flow scenarios, the flow depth at cross section A was estimated 

as 3.65 m and 5.78 m by the HEC-RAS 1D and 3.32 m and 5.48 m by the HEC-RAS 2D.  

 
   (a) 

 
     (b) 

Figure 3.5 Velocity distribution across Wilson Creek at cross section A downstream of the bridge (shown 

in Figure 3.4) for different mesh grid sizes: a) 2-year flow with Q = 98.4 m3/s, and b) 10-year flow with Q 

= 210.7 m3/s 

3.1.4 Developing A PTM For Wilson Creek 

A particle tracking model (PTM) was developed to assess changes in the sediment regime in 

Wilson Creek caused by overland erosion at the bridge construction site. The PTM requires the 
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creek flow parameters and information on the overland erosion, including daily sediment yield and 

gradation of eroded materials entering the creek. The flow parameters were extracted from the 

HEC-RAS 2D model developed for Wilson Creek, and the daily sediment load entering the creek 

and its gradation were obtained from an overland erosion model developed by Ahmari et al. (2022).  

The PTM performance was evaluated for storm events that occurred on April 29 and November 3, 

2021. The daily rainfall in these two days was recorded as 70.1 mm (the highest recorded 

precipitation in 2021) and 35.6 mm at the Frisco Station, located 7 km southwest of the study area. 

The storm on April 29 was selected since it produced the highest sediment yield during the study 

period due to overland erosion (Section 3.2.4.2). The storm on November 3 was selected since  it 

was the only day that the TSS concentration was concurrently measured upstream and downstream 

of the bridge.  

Two 12.8 m long line sources were considered: one along the north water’s edge and one along 

the south water’s edge, to replicate sediment entering the creek from construction areas. Using line 

sources instead of point sources simulated the sediment release to the creek more realistically. 

Once the diameters and percentages of the sediment particles were determined, the model 

simulation time was set to 1800 seconds to ensure that the PTM considered the entire study area 

for sediment transport modeling. Sediment discharge at the sediment sources was set to 100 

particles per second for three different sediment classes (Section 3.2.5.3). 

3.1.4.1 Hydrodynamic Flow Parameters 

After validating the hydrodynamic model, the recorded mean daily flows at the USGS gauge in 

McKinney on April 29, 2021 (Q = 37.4 m3/s) and November 3, 2021 (Q = 7.4 m3/s) were used for 

hydrodynamic modeling of Wilson Creek. The raster-based hydrodynamic parameters, including 

water depth (d) and shear stress (𝜏), were exported from the creek’s HEC-RAS 2D model to the 
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PTM. The 2D velocity outputs (vx, vy) were also introduced to the PTM from a binary file written 

in an HDF-5 file format from the HEC-RAS 2D model. Figure 3.6 shows the spatial distribution 

of the depth-averaged flow velocity, flow depth, and shear stress for the April 29, 2021 storm. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6 Hydrodynamic parameters of Wilson Creek produced by the HEC-RAS 2D model for the 

April 29, 2021 storm: a) depth-averaged flow velocity, b) flow depth, and c) shear stress 
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3.1.4.2 Overland Erosion and Sediment Yield 

In addition to hydrodynamic flow parameters, the PTM requires sediment data from the sediment 

source to simulate sediment transport in Wilson Creek. Ahmari et al. (2022) developed a predictive 

overland erosion model based on the SCS curve number method and modified universal soil 

erosion loss equation (MUSLE) to determine overland erosion and sediment yield for the study 

area. The MUSLE model relates soil erosivity to both runoff volume (Q) and peak flow qp and is 

produced by the SCS curve number method. The development of the overland erosion model is 

discussed in detail by Ahmari et al. (2022). Equation 3.10 shows the MUSLE model that was used 

to estimate the sediment yield in the study area. 

Q
s
 = 11.6 (Q × q

p
)
0.56

K × LS × C × P                                                                                                       (3.10) 

where Q
s
 represents sediment yield (tonnes), Q is the runoff volume (m3),  qp refers to the runoff 

peak flow rate (m3/s), K is soil erosivity, LS  is slope length factor, C is management practice 

factor, and P shows the erosion control factor. 

Total runoff volume and peak flow rate were estimated using the SCS method. Equations 3.11 to 

3.12 (in imperial system of units) were used to calculate the runoff depth Pe (in) and peak flow 

rate q
𝑝
 (ft3/s) (Mays 2010). 

Pe =
(P − 0.2S)

2

(P + 0.8S)
                                                                                                                    (3.11) 

q
𝑝
=

484 A Pe

0.67 tc
                                                                                                (3.12) 

where P is total rainfall (in), S is potential maximum retention (in), A is the watershed area (mi2), 

and tc represents the time of concentration (hr). S and tc are calculated using Equations 3.13 and 

3.14.  
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S =
1000

CN
− 10                                                                                                                                   (3.13)  

tc=
L0.8(Y +1)0.7

1140 Y 0.5

                                                                                                                                                                                                  (3.14) 

In these equations CN is the curve number, L is flow length (ft), and Y is average slope along the 

flow path (%). The runoff volume is calculated as Q = Pe A. 

The performance of the overland erosion model for Wilson Creek was evaluated using field data 

collected from the erosion plots that were installed during bridge construction activities. Four 3 m 

× 3 m erosion plots were constructed on slopes with different soil conditions and surface covers, 

based on the available space near the bridge construction site, and were installed on the north and 

south sides of the creek downstream of the bridge to collect eroded sediment particles during storm 

events. Sediment deposited in the storage tank of each plot was collected after each storm, from 

March to December 2021, and was sent to the lab to be weighed, to provide an estimate of the 

amount of soil lost from the bounded area of each plot during each storm and for the particle sizes 

to be analyzed. (Ahmari et al. 2022). Figure 3.7 illustrates the location of the erosion plots. 

 
       (a)                                                                           (b) 

Figure 3.7 a) Location of erosion plots on the north and south sides of Wilson Creek downstream of the 

bridge location, and b) Erosion Plot No.1 (Ahmari et al. (2022) 
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The outputs of the overland erosion model were used as the sediment load for the PTM to evaluate 

its performance in natural streams with local sediment sources. Figure 3.8 shows the daily 

sediment yield produced by the predictive overland erosion model at the Wilson Creek bridge site 

during construction activities in 2021. The activities that exacerbated overland erosion included 

site clearing, grading, temporary access roads, drilled shafts, construction and installation of 

foundations and abutments, backfilling, slope formation, and superstructure construction. 

 

Figure 3.8 Sediment yield at the Wilson Creek bridge site due to overland erosion in the north and south 

construction areas, and daily rainfall records at the Frisco station, Frisco, Texas (Ahmari et al. 2022) 

3.1.5 Field Measurements 

In 2021, the sediment characteristics were monitored at the Wilson Creek bridge site for one year. 

The bridge construction site was visited an average of two to four times per month after each storm 

event, depending upon the rainfall and streamflow conditions. The field monitoring included 

collecting total suspended solids (TSS) and bedload material, monitoring the turbidity (Tu), typing 

the substrate, and surveying depositional areas. Bridge construction activities and best 

management practices (BMPs) were also documented throughout the monitoring program. It 
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should be noted that the monitoring program was conducted only during the construction of Phase 

I of the Wilson Creek bridge replacement project (northbound bridge) in 2021. 

3.1.5.1 Total Suspended Sediment Solids (TSS) and Turbidity (Tu) 

The present study aims to model sediment transport in Wilson Creek using sediment yield from 

local sediment sources, i.e., overland erosion in the north and south construction areas (Figure 

3.9a). Nevertheless, sediment particles could be also added to the creek from the upstream 

watershed area. Therefore, two automated water sampler units (ISCO 6712, Teledyne) were 

installed upstream and downstream of the bridge location to collect water samples during storm-

based events for lab analysis of the concentration of the suspended sediment. Figure 3.9a illustrates 

the location of the automated water samplers upstream (Section 1) and downstream of the bridge 

(Section 3). Figure 3.9b shows the downstream water sampler unit and the solar panel installed on 

the north bank, with its sampling line placed in the middle of the creek. The upstream sampler 

collected water samples upstream of the bridges where the sediment load in the creek was not 

impacted by the local overland erosion in the construction areas. The water samples collected by 

the downstream sampler represented the cumulative effect of sediment inflow from upstream and 

the sediment load entering the creek from the north and south sides of the bridge due to overland 

erosion. Comparing the TSS data from the upstream and downstream units made it possible to 

estimate the elevated TSS in the creek due to overland erosion. 

Streamflow sampling was triggered both upstream and downstream when the flow reached 30 cm 

above the sampler’s inlet. Sampling took place at 10-minute intervals during storm events and 

stopped when the flow was reduced to below the trigger threshold. Discrete TSS and turbidity (Tu) 

samples (Figure 3.9c) were also obtained at the location of the automated water samplers, as well 

as the area between the bridge and the downstream water sampler unit (Section 2 in Figure 3.9a). 
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The TSS and turbidity discrete data were collected mainly during low flow conditions to 

complement sediment data collected by the automated water samplers during storms.  

The turbidity of the samples was measured in NTU units, using a Hach 2100Q portable 

turbidimeter. The discrete data collected in Section 2 represents the area subject to local overland 

erosion, where the sediment plume was not fully mixed with the creek flow. Water samples 

collected by the automated samplers and grab samples were sent to the lab for TSS analysis using 

EPA method 160.2 (U.S. Environmental Protection Agency 2017). 

 

Figure 3.9 Total suspended solids (TSS) and turbidity (Tu) sampling in Wilson Creek: a) Location of 

automated water sampler units installed upstream and downstream of the bridge and discrete sampling 
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areas, b) Automated water sampler installed downstream of the bridge, and c) Discrete TSS and Tu 

sampling  

Over the study period, between March 24 and November 8, 2021, 27 water samples were collected 

from Sections 1 and 3. Six were collected by automated water samplers during periods of high 

flows; 21 were grab samples. The TSS measured downstream and upstream of the bridge site and 

average daily discharge recorded at the USGS stream gauge in McKinney, Texas are depicted in 

Figure 3.10. 

 

Figure 3.10 TSS variations in Wilson Creek upstream of the bridge (Section 1), in the construction zone 

(Section 2), and downstream of the construction area (Section 3), and average daily discharge at the 

USGS stream gauge in McKinney (Sections 1 to 3) are shown in Figure 3.9a. 

All samples collected in Section 1 before June 9, 2021, were associated with high flow events and 

captured by the upstream water sampler. For the downstream water sampler, mechanical issues 

prevented sampling, except on November 3, 2021. Therefore, the downstream samples were 

generally collected by hand during baseflows and following storm events. Based on these 

collections, the TSS increased with storm events, peaking at 684 ± 301 mg/L (mean ± SE) on April 

29, 2021 for the upstream site and at 174 ± 83 mg/L (mean ± SE) on November 3, 2021 for the 

downstream site. Finally, a storm event that occurred both upstream and downstream was captured 
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by water samplers on November 3, 2021 which allowed comparing the TSS at the two sites. The 

TSS at the downstream location was 174 mg/L and at the upstream location was 35 mg/L, which 

indicates that the TSS levels downstream of the construction site were significantly higher than 

the TSS levels upstream during the storm event. 

During low flow events, the TSS concentration was also higher downstream of the construction 

site except on October 15, 2021, when the average TSS at the upstream and downstream sites were 

17 and 20 mg/L, respectively. This shows the effect of construction activities on local overland 

erosion that increases the TSS in the creek. 

A limited number of water samples was also collected in the vicinity of the construction site 

(Section 2), and a comparison of the TSS concentration in this zone with the TSS values collected 

upstream and downstream of the construction site shows higher sediment concentration in the 

construction site area due to local overland erosion (Figure 3.10). This issue is also evident in 

Figure 3.11, which shows turbidity measurements in this area, along with the upstream and 

downstream Tu values. Similar to the variation of the TSS concentration from upstream to 

downstream (Figure 3.10), the turbidity values were always higher downstream of the construction 

site, except on August 11, 2021. From July 15 to December 4, 2021, the average Tu upstream and 

downstream of the site was 13 and 17 NTU, respectively. The Tu values were much higher in the 

construction zone (Section 2), with a maximum value of 85 NTU. The average Tu in this area was 

38 NTU. Since sediment plumes from construction activities became diluted as they moved further 

downstream, smaller values of TSS and Tu were measured in Section 3. 
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Figure 3.11 Comparison of Tu in Wilson Creek upstream of the bridge (Section 1), in the construction 

zone (Section 2), and downstream of the construction site (Section 3) from July 15 to December 4, 2021 

3.1.5.2 TSS -Tu Relationship 

Available data from water samplers and discrete sampling were used to develop relationships 

between total suspended solids (TSS) and turbidity (Tu) for Wilson Creek, upstream of the bridge 

(Section 1 in Figure 3.9a) and downstream of the construction site (Section 3 in Figure 3.9a). These 

relationships are expressed by Equations 3.15 and 3.16 and are shown in Figure 3.12. Both 

relationships have a relatively high correlation coefficient (R2
 = 0.70 and 0.78), considering the 

dependency of TSS and Tu on many factors, including flow and environmental effects. Due to 

technical problems with the water sampler units, and therefore lack of TSS measurements for some 

days of the study period, Equation 3.16 was used to estimate the TSS downstream of the bridge 

location and validate the performance of the PTM in predicting the suspended sediment load in 

Wilson Creek. 

TSS (mg/L)= 0.88 Tu (NTU)                                   (Section 1)                                                      (3.15) 

TSS (mg/L)= 2.66 Tu (NTU)                                (Section 3)                                                     (3.16) 
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Figure 3.12 Relationship between total suspended solids (TSS) and turbidity (Tu) in Wilson Creek 

upstream and downstream of the construction site 

3.1.5.3 Substrate Sampling and Delineation of Depositional Areas 

The changes in the Wilson Creek substrate were monitored downstream of the bridge site by visual 

inspection and the grab sampling method. The delineation of depositional areas and grab sampling 

were conducted in the vicinity of the bridge construction site, as well as the downstream areas, for 

both pre-construction and construction periods (Figure 3.13a). Before the bridge construction 

activities started, the creek bed was bedrock in most parts with a few patches of depositional areas 

(Figure 3.13b). During the construction period, more sediment was deposited along the creek. The 

depositional areas were delineated during each site visit, and a minimum of 500 grams of samples 

were collected from each area. Figure 3.13c shows grab sampling activities from the depositional 

areas marked in Figure 3.13a. An example of delineation of depositional areas downstream of the 

bridge location is shown in Figure 3.13d. Grab samples were sent to the lab, and the content of the 

gravel, sand, silt, and clay in the samples was measured by sieve analysis and hydrometry tests 

after removing debris and other objects. 
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Figure 3.13 Wilson Creek substrate monitoring program: a) Area of visual inspection and delineation and 

sampling locations, b) Wilson creek substrate (bedrock) downstream of the bridge before construction, c) 

Wilson creek depositional area downstream of the bridge during construction, and d) Delineating 

depositional areas 

A gradation analysis of the sediment samples from the depositional areas and eroded materials 

from the construction sites on the north and south sides of the creek allowed estimation of the 

percentage of clay/silt, sand, and gravel contributing to the total sediment load entering Wilson 

Creek, which was used in the PTM model. The fraction and average diameter of soil particles are 

presented in Table 3.2. Figure 3.14 illustrates the location of the sediment sources on the south and 

north sides of the creek. 
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Table 3.2 Fraction and Average Diameter of Sediment Particles Used in the PTM for the North and South 

Sediment Sources Downstream of the Bridge Location at Wilson Creek 

Sediment Class Ave. Diameter (mm) 
Fraction (%) 

North South 

Gravel 4 15 15 

Sand 0.32 75 75 

Silt/Clay 0.032 10 10 

 

 

Figure 3.14 North and south sediment sources downstream of the Wilson Creek bridge 

 RESULTS AND DISCUSSION 

The performance of the PTM was assessed under two flow conditions with the mean daily 

discharge of 37.4 m3/s and 7.4 m3/s corresponding to the April 29 and November 3, 2021 storm 

events. The outputs of the PTM that show changes in the sediment regime in Wilson Creek, 

including suspended sediment concentration and depositional areas for two storm events, are 

presented in the following. The sediment concentrations predicted by the PTM were compared 

with the historical TSS data and the results from discrete and automated water sampling during 

the study period. The predicted depositional areas were also compared with the field observations 

and measurements.  
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3.1.6 Suspended Sediment Concentration 

3.1.6.1 Increase in Suspended Sediment Concentration in Fully Mixed Areas 

The eroded soil from the bridge construction areas on the north and south sides (Figure 3.9a) 

contributed to the sediment load in Wilson Creek, and the fine particles (clay and silt) increased 

the TSS concentration. The increase in TSS was estimated for each day of construction using 

sediment yields from the north and south sides (Figure 3.8), percentage of silt/clay (Table 3.2), 

and mean daily discharge measured by the USGG gauge in McKinney (Figure 3.3). The added 

total suspended solids from the construction areas to Wilson Creek were computed and are 

presented in Figure 3.15. The largest daily sediment yield from both sides of the creek was 

estimated as 12.8 tonnes/day (April 29, 2021; Figure 3.8), which would elevate the TSS by 0.4 

mg/L in the fully mixed area in the creek. The mean discharge on this day was 37.4 m3/s. The 

second-largest sediment yields were calculated for February 26 and May 11, 2021, with a total of 

9.5 and 9.8 tonnes/day, respectively. The mean streamflow during these two days was 37.4 and 9 

m3/s. The elevated TSS concentrations in Wilson Creek during the storm events were estimated as 

0.3 and 1.3 mg/L, respectively (Figure 3.15). Despite the smaller sediment load entering the creek, 

the smaller streamflow on May 11, 2021 resulted in a higher TSS than that of the sediment load 

on April 29, 2021. 
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Figure 3.15 Elevated suspended sediment concentrations in Wilson Creek due to overland erosion in 

north and south construction areas (Figure 3.9a), and mean daily discharge at the USGS gauge in 

McKinney 

The estimated increase in TSS in Wilson Creek, due to local overland erosion in the construction 

site and the measured TSS upstream of the bridge from January 1 to December 22, 2021, is shown 

in Figure 3.16. During high flow events on March 25 and April 29, 2021 that had mean daily 

discharges of 34.5 and 37.4 m3/s, the TSS in Wilson Creek upstream of the bridge was measured 

as 381 mg/L and 683 mg/L and was estimated to be elevated downstream of the construction area 

in fully mixed areas by 0.2 mg/L and 0.4 mg/L, respectively. The small contribution to Wilson 

Creek’s suspended sediment load from the overland erosion in construction areas is justifiable, 

considering that the surface area of the construction site (3884 m2) is only 0.012% of the Wilson 

Creek watershed area at the bridge site (32.3 km2) (JMT 2019). The suspended sediment 

concentration was locally elevated during low-to-medium flows at the bridge site, even in smaller 

amounts (up to 0.1 mg/L). This increase is insignificant compared to the ambient TSS. 
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Figure 3.16 Estimated increase in TSS in the fully mixed zone downstream of the Wilson Creek bridge 

due to overland erosion in construction areas, and measured TSS upstream of the bridge for the period of 

January 1 to December 22, 2021 

The TSS in Wilson Creek was also measured sporadically between 1988 and 2019 and varied 

between 2 and 140 mg/L at the TCEQMAIN-10777 station, located approximately 4 km 

downstream of the bridge site. The streamflow for the same period varied between 0 and 3.8 m3/s. 

The estimated increase in TSS due to local overland erosion for the period of January to December 

2021 is insignificant compared to the range of TSS recorded between 1988 and 2019.  

3.1.6.2 Increase in Suspended Sediment Concentration Predicted by PTM 

In the following sections, the results of the PTM are presented for two flow scenarios (Q = 37.4 

m3/s on April 29, 2021, and Q = 7.4 m3/s on November 3, 2021). 

Suspended Sediment Concentration Resulting from April 29, 2021 Storm  

The increase in the suspended sediment concentration in Wilson Creek estimated by the PTM for 

the April 29, 2021 storm is presented in Figure 3.17. The total sediment yield from the north and 

south sides for this day was 12.8 tonnes, larger than usual; the increase was due to the overland 

erosion in construction areas downstream of the bridge location (Figure 3.8). Five cross sections 
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(CS-1 to CS-5) were used to assess the distribution of the suspended sediment along and across 

the creek. As can be seen in Figure 3.9a, CS-1 and CS-2 are located in the TSS measuring areas 

(Sections 2 and 3 in Figure 3.9a). The TSS measurements from these two areas were used to assess 

the performance of the PTM in estimating the distribution of suspended sediment in Wilson Creek. 

Figure 3.17 shows that the increase in the suspended sediment concentration was larger along the 

north and south banks, where the sediment entered the creek; the maximum values were estimated 

as 161 and 192 mg/L, respectively. High sediment concentrations at the toes of banks are not 

expected, as the concentration of suspended sediment in surface runoff can be high.  

 
Figure 3.17 Estimated elevated suspended sediment concentration in Wilson Creek due to overland 

erosion corresponding to the April 29, 2021 storm (Q = 37.4 m3/s and sediment yield = 12.8 tonnes/day) 

The elevated suspended sediment concentrations across CS-1 and CS-2 varied across CS-1 with 

two peak values of 121 and 130 mg/L corresponding to the sediment loads entering the creek from 

the north and south sides (Figure 3.18a). The maximum elevated sediment concentration across 

CS-2 was 146 mg/L near the south bank (Figure 3.18b). The high concentration values in the 

construction zone, where the sediment was not fully mixed with ambient, were expected. Due to 
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the lack of direct measurement of TSS on April 29, 2021, the suspended sediment concentration 

was estimated using the TSS-Tu relationship (Equation 3.16). Using this relationship and the 

turbidity measurements in the construction zone on 8/11, 8/20, 9/16, and 10/11/2021 revealed TSS 

values ranging between 120 and 226 mg/L. Considering the estimated values of TSS in Wilson 

Creek, the PTM predicted the suspended sediment concentrations in CS-1 and CS-2 within an 

acceptable range. 

 
(a) 

 
(b) 

Figure 3.18 Elevated suspended sediment concentration across Wilson Creek due to overland erosion 

from north and south sides corresponding to April 29, 2021, storm (Q = 37.4 m3/s and sediment yield = 

12.8 tonnes/day): a) Cross section CS-1, b) Cross section CS-2. Cross sections are shown in Figure 3.17. 

Elevated suspended sediment concentrations across Wilson Creek at cross sections CS-3 to CS-5 

are depicted in Figure 3.19. As the sediment plumes originating from the north and south banks 

traveled downstream, they became diluted. The maximum elevated sediment concentrations across 
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CS-3, CS-4, and CS-5 (152, 335, and 503 m downstream of the bridge site) were estimated as 25, 

3, and 0.27 mg/L, respectively. This shows that the sediment concentration decreased by 99% from 

CS-3 to CS-5. The cross-sectional average of elevated sediment concentration in the cross sections 

was estimated as 10.25, 1.2, and 0.1 mg/L. 

The sediment plume was fully mixed downstream of CS-5 with negligible changes across and 

along the creek. The maximum elevated suspended sediment load of 0.27 mg/L in the fully mixed 

area (CS-5) is comparable to the result presented in Figure 3.16 that shows an elevated TSS of 0.4 

mg/L on April 29, 2021.  

 

Figure 3.19 Elevated suspended sediment concentration across Wilson Creek due to overland erosion in 

constructing areas corresponding to April 29, 2021 storm (Q = 37.4 m3/s and sediment yield = 12.8 

tonnes/day) across CS-3 to CS-5. Cross sections are shown in Figure 3.17. 

Suspended Sediment Concentration - November 3, 2021 Storm 

The estimated increase in the suspended sediment concentration in Wilson Creek on November 3, 

2021 was due to the overland erosion from the north and south construction areas downstream of 

the bridge location (Figure 3.2). The total sediment yield from the north and south sides on 

November 3, 2021 was 2.4 tonnes (Figure 3.8). The same cross sections (CS-1 to CS-5) were used 

to present the distribution of suspended sediment along and across the creek. As shown in Figure 

3.20, the suspended sediment concentration increased in larger magnitudes between the bridge site 
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and upstream of cross section CS-4. The maximum values of elevated suspended sediment 

concentration in the vicinity of the north and south sides, where the sediment yield from the local 

areas enter the creek, were 327 and 374 mg/L, respectively.  

  
Figure 3.20 Estimated elevated suspended sediment concentration in Wilson Creek due to overland 

erosion corresponding to November 3, 2021 storm (Q = 7.4 m3/s and sediment yield = 2.4 tonnes/day)  

The variations of suspended sediment concentration along the five cross sections shown in Figure 

3.20 were used to assess changes in sediment concentration as the sediment particles moved 

downstream of the bridge. The changes across CS-1 and CS-2 are depicted in Figure 3.21. The 

location of CS-2 coincides with the location of the downstream automated water sampler installed 

in Wilson Creek. Figure 3.21a shows the suspended sediment concentration across CS-1 with a 

maximum of 415 mg/L; the corresponding value at CS-2 was 325 mg/L. The TSS was measured 

on November 3, 2021 at Sections 1 and 3 upstream and downstream of the bridge with two 

automated water samplers (Figure 3.9a). The average TSS was elevated by 139 mg/L from Section 

1, located upstream of the bridge (35 mg/L), to Section 3, located downstream of the bridge (174 

mg/L). The samples were taken from the center of the channel, and the  PTM estimated the average 

elevated suspended sediment concentration as 201 mg/L (Figure 3.21b). Comparing the elevated 
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suspended sediment concentration estimated by PTM with the average elevated TSS recorded by 

the water samplers (139 mg/L) shows that the PTM overestimated the sediment concentration. 

However, considering the many uncertainties in modeling sediment transport and measuring it in 

the field, the PTM predicted the impact of the local overland erosion on the suspended sediment 

load in Wilson Creek with acceptable accuracy. 

 
(a) 

 
Figure 3.21 Elevated suspended sediment concentration across Wilson Creek due to overland erosion 

corresponding to November 3, 2021 storm (Q = 7.4 m3/s and sediment yield = 2.4 tonnes/day): a) Cross 

section CS-1, and b) Cross section CS-2. Cross sections are shown in Figure 3.20 

The sediment concentration values changed slightly across CS-3, CS-4, and CS-5 (Figure 3.22), 

but as the sediment plumes passed CS-3, the elevated concentration values dropped rapidly, 

reducing the cross-sectional average sediment concentration from 145 mg/L at CS-3 to almost zero 

at CS-4 and CS-5. The sediment plume was fully mixed at CS-3, with negligible changes across 

the creek. 
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Figure 3.22 Elevated suspended sediment concentration across Wilson Creek due to overland erosion 

corresponding to November 3, 2021 storm (Q = 7.4 m3/s and sediment yield = 2.4 tonnes/day. Cross 

sections are shown in Figure 3.20 

3.1.7 Depositional Areas 

Predicted depositional areas along Wilson Creek downstream of the bridge site corresponding to 

April 29, 2021 (Q = 37.4 m3/s) and November 3, 2021 (Q = 7.4 m3/s) storm events are shown in 

Figure 3.23. As can be seen, the gravel particles that entered the creek from the north and south 

banks deposited very quickly on the edge of the water on both sides downstream of the bridge 

location (S1 and S2). During the high flow condition (April 29, 2021), most of the sand particles 

moved along the north and south sides of the channel and were deposited further downstream in 

an area that started 216 m downstream of the bridge and extended 542 m along the length of the 

creek (Figure 3.23a). During the low flow on November 3, most of the sand materials were moved 

by the flow and deposited in a limited area 300 m downstream of the bridge (Figure 3.23b). Silt 

and clay particles were deposited during both flow scenarios; however, the silt and clay 

depositional areas for Q = 7.4 m3/s (Figure 3.23b) were significantly larger than those of the flow 

with Q = 37.4 m3/s (Figure 3.23a). These results show that larger flows potentially transport sand 

and silt/clay particles further downstream in Wilson Creek.  
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Predicted depositional areas S1 to S4  match with the field observations. Figures 3.24a and b show 

two gravel depositional areas downstream of the bridge along the north and south banks that were 

delineated on June 2021, after the creek experienced several high flow events, including the April 

29, 2021 storm. Samples taken from these areas were mainly composed of gravel and coarse 

materials. Sand and depositional areas were also found at S3 and S4 during the field visits (Figures 

3.24c and d); no sediment was deposited in the area between S1-S2 and S3-S4, as predicted by the 

PTM and observed in the field (Figure 3.24e). 

 
(a) 

 
(b) 

Figure 3.23 Depositional areas in Wilson Creek predicted by the PTM, due to overland erosion materials 

entering the creek from north and south construction areas corresponding to: a) April 29, 2021 storm (Q = 

37.4 m3/s), and b) November 3, 2021 storm (Q = 7.4 m3/s) 
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(a) (b) 

  
(c) (d) 

 

 
(e) 

Figure 3.24 Delineated depositional and non-depositional areas in Wilson Creek: a) to d) S1 to S4 

depositional areas, and e) non-depositional area 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The particle tracking model developed by Baharvand et al. (2022) for open channel flows was 

adopted and modified for this study to simulate sediment transport in natural streams. It considers 

advection and dispersion transport equations for sediment particles in a two-dimensional flow 

domain simulated by the HEC-RAS 2D model developed for the study area. The geospatial 

information, including velocity, shear stress, and flow depth, were extracted from the HEC-RAS 

model and introduced to the PTM.  

The performance of the PTM was evaluated using field data. A section of Wilson Creek near 

Highway FM 2478 in McKinney, Texas was selected as the study area, as the road and bridge 

expansion project were expected to introduce additional sediment loads to the creek during the 

construction period. The PTM was used to simulate sediment transport in the creek during 

construction activities. The sediment yield from local sediment sources, i.e., overland erosion in 

the construction area, was obtained from previous studies. The field monitoring program 

conducted during the construction period included collecting data on TSS, Tu, bedload material, 

substrate type, and depositional areas.  

The performance of the PTM was assessed under two flow conditions, with the mean daily 

discharge of 37.4 m3/s and 7.4 m3/s corresponding to the April 29 and November 3, 2021 storm 

events, respectively. The outputs of the PTM showed changes in the Wilson Creek sediment 

regime in the vicinity of the bridge, including an increase in the suspended sediment concentration 

and sediment deposition. In both flow scenarios, the PTM predicted the depositional areas in 

locations similar to those where the sediment deposition had been observed. The predicted increase 

in suspended sediment concentration in Wilson Creek was comparable to the expected values and 

field data.  
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Since the model’s performance was promising, it is recommended that it be used by river 

authorities and other agencies to simulate sediment transport in natural streams for project planning 

and management purposes. It may also be utilized to assess the effect of construction activities in 

or near waterbodies on water quality and stream geomorphology, the information that is required 

for predicting the short- and long-term impacts of construction activities on stream health.  

The present model simulates suspended sediment loads under a steady-state flow condition. 

Further research is needed to determine whether adding the unsteady flow condition and bedload 

transport would enhance the capabilities of the PTM. Due to the important role of dispersion 

coefficients in sediment transport modeling, it is also suggested that the impact of different 

dispersion modeling techniques on sediment transport be evaluated, using the PTM in natural 

streams. 
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CHAPTER 4  

APPLICATION OF MACHINE LEARNING APPROACHES TO 

PARTICLE TRACKING MODEL TO ESTIMATE SEDIMENT 

TRANSPORT IN NATURAL STREAMS 

 

ABSTRACT 

Longitudinal and transverse dispersion coefficients are important parameters for modeling 

sediment transport in natural streams. Several empirical equations and machine learning 

approaches have been developed to predict these two dispersion coefficients in open channels; 

however, the ability of some learning-based models to predict dispersion coefficients has not yet 

been evaluated and the direct application of machine learning-based dispersion coefficients to 

Lagrangian sediment transport models has not yet been studied. In this research, data from 

previous studies is used to evaluate the ability of two ensemble machine learning models, random 

forest regression and gradient boosting regression, to predict longitudinal and transverse dispersion 

in natural streams. The optimal principal parameters of ensemble models were adjusted using the 

grid-search cross-validation (GridsearchCV) technique, and the ML-based dispersion models were 

integrated with a Lagrangian particle tracking model (PTM) to simulate suspended sediment 

concentration in natural streams. The resulting suspended sediment concentration distribution was 

compared with water samples from different hydraulic scenarios that were collected from a field 

monitoring program during construction activities at Wilson Creek in McKinney, Texas. The study 

showed that the GBR model, with a coefficient of determination (R2) of 0.95, performed better 

than the RFR model, with a coefficient of determination of 0.9, in predicting the longitudinal 
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dispersion coefficients in a natural stream in both the training and testing stages. However, the 

RFR model (R2 = 0.94) performed better than the GBR in predicting the transverse dispersion in 

testing stage. Both models underestimated the dispersion coefficients in the training and testing 

stages. Comparison between the PTM with ensemble dispersion coefficients and empirical-based 

dispersion relationships revealed the better performance of the GBR model compared to the other 

two methods. However, all the models showed acceptable accuracy in predicting the suspended 

sediment concentration distribution in natural streams. 

Author Keywords: sediment transport, natural streams, particle tracking model, ensemble 

models, machine learning. 
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INTRODUCTION 

The sediment regime in natural streams can be altered by anthropogenic activities such as 

agriculture (Peacock et al., 2005), logging (Beschta 1978), mining (Seakem Group et al., 1992), 

urbanization (Guy and Ferguson 1963), bridge and dam constructions (Ahmari et al., 2021; Ahmari 

et al., 2013a and 2013b), and hydrological alteration (Black 1995; Hastie et al., 2001), as the eroded 

material from these activities adds to the sediment load, which can significantly impact water 

quality and threaten the lives and abodes of aquatic species (Tao et al., 2019; Ahmari et al., 2021; 

Sulaiman et al., 2021). Numerical models have been utilized to assess sediment transport in natural 

streams (Wu 2004; Fang and Rodi 2003) and estuaries (Tu et al., 2019; Ouda and Toorman 2019); 

however, the mechanisms of sediment movements in a flow domain are not well understood (Shi 

and Yu 2015). In recent decades, advancements in computer technology have significantly 

improved hydraulic and sediment transport numerical models that use computational techniques 

to solve mathematical equations governing flow and sediment movements in open channels. The 

choice of a model for each specific problem depends on the project’s requirements, availability of 

data, and knowledge about the physical processes that determine the system's behavior.  

There are two approaches to modelling sediment transport in streams: Eulerian-Eulerian and 

Eulerian-Lagrangian (Shi and Yu 2015). Eulerian-Eulerian models simulate sediment movement 

as a continuous phase and consider the statistical properties of the sediment cloud, while Eulerian-

Lagrangian models consider sediment particles as a dispersed phase and the movement of 

individual sediment particles is tracked in the flow domain. 

Eulerian-Eulerian sediment transport models determine sediment concentrations within a control 

volume, using deterministic differential equations to solve flow and sediment transport equations 

(Oh 2011). The models require very small grid spacing to provide reasonable solutions in 
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environments with a sudden change in suspended solids concentration, such as sediment plumes 

downstream of a construction site or accidental spills. This method requires significantly less 

computational effort than is needed for the Eulerian-Lagrangian models (Shi and Yu 2015), but 

the computation time and modeling cost  is usually greater (MacDonald et al., 2006). Several 

studies have shown the applicability of stochastic models that consider random movements of 

particles for modelling sediment motion behavior (Tsai et al., 2020; Park and Seo, 2018; Oh and 

Tsai 2018; Fan et al., 2016; Tsai et al., 2014; Macdonald et al., 2006; Niño and García 1998). The 

majority of stochastic models are Lagrangian models that simulate natural processes such as 

sediment entrainment or deposition (Oh 2011). Lagrangian stochastic models have proven to be 

accurate methods for tracking sediment particles in turbulent flows (Ley and Thomson 1983; De 

Baas et al., 1986). In this method, a particle tracking model (PTM) tracks individual sediment 

particles in the flow domain, using discretized advection and dispersion terms. Therefore, any 

changes in advection and dispersion terms have the potential to directly affect the movement of 

sediment particles. 

Advection shows the effect of flow velocity on the movement of particles, and the dispersion 

coefficient shows the diffusivity effect. The longitudinal and transverse dispersion coefficients 

address variations of suspended sediment concentration along and across a stream channel. Figure 

4.1 shows the results of sediment transport modeling in a prismatic open channel and the temporal 

and spatial distribution of suspended sediment concentration in the longitudinal and transverse 

directions (Baharvand et al., 2022a).  
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Figure 4.1 Temporal and spatial evolution of suspended sediment concentration in longitudinal and 

transverse directions of a prismatic rectangular open channel (Baharvand et al., 2022a) 

Despite studies on modeling sediment transport in waterbodies, the effects of several parameters 

of sediment transport are not well understood (Lick 2009). The dispersion coefficient is one of the 

essential parameters in modeling sediment transport in natural streams, and several empirical 

equations, shown in Table 4.1, have been developed to estimate longitudinal (Dx) and transverse 

(Dy) dispersion coefficients. In these equations, H is water depth, u is depth-average velocity, u* is 

shear velocity, W is stream width, and Sn is stream sinuosity coefficient. 

Table 4.1 Commonly Used Longitudinal and Transverse Dispersion Empirical Equations 

Dispersion term Equation    Reference Equation No. 

Longitudinal 𝐷𝑥 = 5.93 𝐻𝑢∗ Elder (1959) (4.1) 

Longitudinal 𝐷𝑥 = 5.92 𝐻𝑢∗ (
𝑢

𝑢∗
)
1.43

(
𝑊

𝐻
)
0.62

 
Seo and Cheong 

(1998) 
(4.2) 

Longitudinal 𝐷𝑥 = 10.612 𝐻𝑢 (
𝑢

𝑢∗
) 

Kashefipour and 

Falconer (2002) 
(4.3) 

Longitudinal 𝐷𝑥 = 2 (𝐻𝑢∗) (
𝑢

𝑢∗
)
1.25

(
𝑊

𝐻
)
0.96

 
Sahay and Dutta 

(2009) 
(4.4) 

Transverse 𝐷𝑦 = 0.23 𝐻𝑢∗ 
Fischer and Park 

(1967) 
(4.5) 

Transverse 𝐷𝑦 = 0.291 𝐻𝑢∗(
𝑊

𝐻
)0.463 (

𝑢

𝑢∗
)
0.299

(𝑆𝑛)
0.733 Jeon et al. (2007) (4.6) 

Transverse 𝐷𝑦 = 0.15 𝐻𝑢∗ Ahmad (2007) (4.7) 

Transverse 𝐷𝑦 = 0.166 𝐻𝑢∗ 
Gualtieri and 

Mucherino (2008) 
(4.8) 
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In recent years, machine learning (ML) approaches have been used in several studies as an 

alternative to empirical equations to predict the dispersion coefficient in natural streams. The main 

advantage of using ML models (also known as soft computing techniques) is their independency 

from the physics of the problem (Baharvand et al., 2021; Salazar and Crookston 2019). Several 

studies have examined the ability of these approaches to predict longitudinal dispersion 

coefficients. For example, Toprak and Savci (2007) compared the performance of a learning-based 

model, fuzzy logic, with different empirical equations (e.g., an equation proposed by Kashefipour 

and Falconer 2002), and showed the superiority of fuzzy logic models. Toprak and Cigizoglu 

(2008) also compared the accuracy of several ML models (i.e., feed-forward back propagation, 

radial basis function-based neural networks, and generalized regression neural networks) with 

different widely used empirical longitudinal dispersion coefficient equations and concluded that 

ML-based models are more reliable and more accurate than empirical equations in predicting 

longitudinal dispersion coefficients in natural streams. Riahi-Madvar et al. (2009) developed an 

adaptive neuro-fuzzy inference system (ANFIS) that could predict the longitudinal dispersion 

coefficient in a natural stream with higher accuracy than empirical-based dispersion model. 

Azamathulla and Ahmad (2012) used laboratory data in conjunction with a dataset from previous 

studies to develop functional relations for estimating transverse mixing coefficients in natural 

streams using a gene expression programming (GEP) model. They compared the accuracy of their 

model with some commonly used empirical equations, such as Equation 4.5 (Fischer 1967) and 

Equation 4.7 (Ahmad 2007) and showed the superiority of the GEP model in predicting the 

transverse dispersion coefficient in natural streams. Antonopoulos et al. (2015) developed an 

artificial neural network (ANN) and proposed an empirical model to estimate the dispersion 

coefficient in a section of the Axios River in Greece, under different hydrological and 
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hydrodynamic scenarios. They compared the accuracy of ANN and their empirical model with 

Fischer's (1975) empirical equation and found that the ANN model was superior. In addition to 

these studies, several others, over the past two decades, have shown the advantages of various soft 

computing models in estimating dispersion coefficients over empirical approaches (Toprak et al., 

2004; Toprak and Cigizoglu 2008; Azamathulla and Ghani 2011; Piotrowski et al., 2012; Parsaie 

and Haghiabi 2015a,b; Zahiri and Nezaratian 2020; Najafzadeh et al., (2021); Nezaratian et al., 

2021).  

Despite numerous studies that have used ML-based models to predict dispersion coefficients in 

natural streams, the precision level can vary significantly, even when the MLMs are fed by the 

same input parameters (Noori et al., 2016). In other words, because the ML-based approaches are 

data-driven models, a change in the model feed dataset can significantly influence its performance. 

Therefore, each machine learning method can produce a specific level of accuracy due to the fed 

dataset.  

Although several studies have been conducted on the application and sensitivity analysis of 

machine learning approaches to predict the dispersion coefficient in natural streams, they have not 

been used in Lagrangian-based sediment transport models. In addition, the ability of some  

learning-based models, such as random forest and gradient boosting regression, to predict 

dispersion coefficients has not been evaluated. In this study, we used data from previous studies 

to  examine the performance of ensemble machine learning models in predicting longitudinal and 

transverse dispersion in natural streams. The ML-based dispersion models were integrated with a 

Lagrangian particle-based sediment transport model, and the performance of the PTM–ML-based 

dispersion models was compared with the result of the PTM–empirical dispersion relationships. 
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METHODOLOGY 

The two main steps of this study were  the development and evaluation of dispersion models for 

natural streams using soft computing techniques and combining learning-based dispersion models 

with a particle tracking model developed by Baharvand et al. (2022a). In the first step, field data 

from previous studies were used to develop machine learning models that could predict 

longitudinal and transverse dispersion in natural streams, and the dispersion coefficients were 

coupled with the PTM to simulate sediment transport. Empirical dispersion equations were used 

in the PTM to evaluate the performance of each technique in generating suspended sediment 

concentration distribution in a natural stream, using field data collected downstream of a bridge 

construction site in Wilson Creek in McKinney, Texas. Figure 4.2 illustrates the flowchart of the 

dispersion models coupled with the PTM.  

The model architecture was programmed in Python 3.9.0, a high-level, general-purpose 

programming language (Rossum 1995) , using several Python-based packages such as NumPy, 

SciPy, Pandas, Matplotlib, Arcpy, Seaborn (Waskom 2021), and Scikit-learn. The following 

presents a summary of the PTM development process, case study area, field data collection, and 

development of the dispersion models. 
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Figure 4.2 Flowchart of the in-stream sediment transport model with learning-based and empirical 

dispersion coefficients 

4.1.1 Particle Tracking Model 

The present study utilized a particle tracking model with a continuous sediment source to simulate 

the added sediment load caused by bridge construction activities in a natural creek. The 

architecture and governing equations of the PTM are discussed by Baharvand et al. (2022a), and 



103 

 

details of the integration of the PTM with HEC-RAS 2D are presented in Baharvand et al. (2022b). 

The advection and dispersion terms were considered as displacement equations for individual 

particles in the flow domain in the PTM. The hydrodynamic parameters were exported from an 

HEC-RAS 2D model and calculated using a linear interpolation technique in the flow domain to 

estimate total displacement of the particles caused by the advection term. 

The model was developed, based on two-dimensional advection coefficients in longitudinal and 

transverse directions, to estimate the sediment particles' advection displacement using streamwise 

(u) and transverse (v) velocity components. The dispersion coefficients were estimated in three 

dimensions to address the diffusivity effect on particles in x, y, and z directions. Different 

experimental and field studies have reported various values for three-dimensional dispersion 

coefficients (Dx , Dy , Dz). Some of the widely used longitudinal and transverse dispersion 

coefficients are listed in Table 4.1. In this study, discretized advection and dispersion coefficients 

were estimated by using the hydrodynamic parameters (flow depth, shear velocity, etc.) at the 

position of the sediment particle. 

The dispersion coefficients in longitudinal and transverse directions were estimated using two 

methods: 1) empirical equations and 2) ML-based approaches. The performance of the longitudinal 

dispersion coefficient equation by Elder (1959) (Equation 4.1) and transverse dispersion 

coefficient by Gualtieri and Mucherino (2008) (Equation 4.8) in a PTM was assessed by 

Baharvand et al. (2022a). In the present study, these empirical equations were used in the PTM to 

simulate sediment transport in a natural stream and the results were compared with the PTM 

coupled with ML-based dispersion coefficients. More information on the development of the PTM 

with empirical equations may be found in Baharvand et al. (2022a). The following sections discuss 



104 

 

the development of the ensemble ML-based dispersion prediction models, vertical displacement, 

stochastic term development, and general discretized Lagrangian transport equations. 

4.1.1.1 Ensemble Dispersion Prediction Models 

The dispersion coefficients in longitudinal and transverse directions can be predicted using 

empirical and ML-based models, and several ML approaches have been used to estimate 

dispersion coefficients in natural streams. For instance, Azamathulla and Wu (2011) used a kernel-

based ML support vector regression (SVR) model, Kargar et al. (2020) used random forest 

regression (RFR), and Tayfur et al. (2005) and Noori et al. (2016) used different types of artificial 

neural network (ANN) algorithms to predict the longitudinal dispersion coefficient. Nezaratian et 

al. (2021) and Ahmad et al. (2011) utilized SVR and ANFIS models, respectively, to evaluate the 

performance of kernel-based and artificial neural network models to predict transverse dispersion 

coefficients in natural streams. 

After initial assessment of different machine learning models, the ensemble ML models in this 

study were used to predict longitudinal and transverse dispersion coefficients. The advantage of 

ensemble approaches is that they build a powerful model, using the collection of weak prediction 

models (Hastie et al., 2009; Shao and Deng 2018). Several types of ensemble approaches (i.e., 

bagging, stacking, and boosting), RFR (classified as a bagging ensemble model), and gradient 

boosting regression (GBR) (classified as a boosting ensemble model) were selected as the 

ensemble tree-based models. The two main reasons for this selection were that both models had 

demonstrated a high level of accuracy in generating longitudinal dispersion coefficients in 

previous studies with different input datasets, and the literature lacks adequate information on the 

use of these two approaches for predicting transverse dispersion coefficients in natural streams. 
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The RFR and GBR ensemble models were developed using the scikit-learn package (Pedregosa et 

al., 2011) in Spyder IDE, a widely used open-source scientific environment written in Python.  

Natural Stream Dispersion Dataset  

The parameters used to estimate longitudinal and transverse dispersion coefficients in natural 

streams obtained from previous studies include flow velocity (u), flow depth (H), and shear 

velocity (u*). In some of the studies, stream width is also considered an effective parameter for 

predicting dispersion coefficients (Toprak and Savci 2007; Zeng and Huai 2014; Kargar et al., 

2020; Nezaratian et al. 2021). Since the variations in the channel width in the present case study  

are insignificant (Section 2.2.1), they are not considered an effective parameter. Other parameters, 

such as longitudinal slope, Froude number, and Reynolds number, were also not included as 

effective parameters because of their lesser importance (Najafzadeh et al., 2021). 

Effective parameters for estimating longitudinal dispersion coefficients were extracted from 

studies by Fischer (1968), Yotsukura et al. (1970), McQuivey and Keffer (1974), Nordin and Sabol 

(1974), Rutherford (1994), Graf (1995), and Toprak and Cigizoglu (2008) (Table A-1 in Appendix 

A). The transverse dispersion coefficient dataset was obtained from Nezaratian et al. (2021) (Table 

A-2 in Appendix A), which contains data from various studies, including Fischer (1967), 

Yotsukura et al. (1970), Holley and Abraham (1973), Krishnappan and Lau (1977), Beltaos (1979), 

Rutherford (1994), Jeon et al. (2007), Baek and Seo (2008), Lee and Seo (2013). 

The effective parameters for estimating dispersion coefficients, hereinafter called feature dataset 

(H, u, u*), were plotted against the dispersion coefficients with the frequency of each feature 

dataset in Figures A-1 and A-2 in Appendix A, for longitudinal and transverse directions, 

respectively. The histogram of dispersion coefficients is shown in Figure A-3 in Appendix A. 
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Table 4.2 shows descriptive statistics of the longitudinal and transverse dispersion database used 

to develop the dispersion coefficients ensemble prediction models. 

Table 4.2 Descriptive Statistics of the Longitudinal and Transverse Dispersion Database 

Parameter 
Dispersion 

coefficient 

Flow depth 

(m) 

Flow velocity 

(m/s) 

Shear velocity 

(m/s) 

Dispersion 

(m2/s) 

Min 
Longitudinal 0.22 0.13 0.02 1.9 

Transverse 0.013 0.04 0.005 0.00003 

Max 
Longitudinal 8.9 1.74 0.17 1486.45 

Transverse 5.25 1.75 0.16 0.215 

Mean 
Longitudinal 1.4 0.53 0.071 132.14 

Transverse 0.304 0.308 0.027 0.007 

STD* 
Longitudinal 1.39 0.37 0.032 240.83 

Transverse 0.71 0.27 0.023 0.025 
* STD: Standard Deviation 

Development of Ensemble Machine Learning Models  

Each machine learning model has specific hyperparameters (parameters that control the 

learning process) whose value is highly correlated with the performance of the learning-based 

model. There is not a way to determine the optimal set of the hyperparameters values in advance, 

but various methods, such as optimization techniques (genetic algorithm, particle swarm 

optimization), trial and error, and grid-search cross-validation (GridsearchCV) can be used to find 

them. None of them are without problems, however. Optimization techniques are usually complex 

processes with high computation costs that increase the prediction time significantly. 

GridsearchCV is a method that tunes each hyperparameter in an ML model by performing an 

exhaustive search of optimal parameters in a grid-wise manner (Alwated and El-Amin 2021). The 

GridSearchCV technique can perform pairwise computations of the hyperparameters. Pairwise 

computations are not performed in the trial and error technique, and it could be argued that this 

method just provides a scenario of the GridSearchCV hyperparameters’ tuning technique in each 

trial. The present study used the GridsearchCV technique’s Scikit-learn package to assess the 
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performance of the hyperparameters for the RFR and GBE ensemble models and relied on 

randomly selected 80% of the collected dataset for each dispersion coefficient. 

The tree specific (max feature, min sample leaf, min sample split) and boosting (number of 

estimators) hyperparameters are considered in the GridsearchCV method to find the optimal 

combination for both ensemble models. In this technique, 5-fold cross-validation is employed, 

which splits the dataset into five random subsets (Figure 4.2). 

In tree specific hyperparameters, the max feature hyperparameter represents the number of features 

that will be considered for the best randomly splitting scenario. In most cases, the higher values of 

the max feature result in an over-fitting problem. Min sample leaf determines the minimum 

required data in a leaf that controls the model overfitting. Min sample split refers to the minimum 

number of observation data needed for splitting in the tree-based model. The number of estimators 

is a boosting hyperparameter that controls the number of trees in the modeling. Once the optimal 

hyperparameter combination is defined, the model’s accuracy in both training (with randomly 

selected 80% of the dataset) and testing stages (remaining 20% of dataset) will be tested, using 

different statistical measures. After ensuring the performance of the models, the tuned ensemble 

models will be used as ML-based dispersion estimators in the PTM to calculate the longitudinal 

and transverse dispersion coefficients in natural stream. 

Random Forest Regression 

Random forests (RF) are bagging ensemble machine learning algorithms developed by Breiman 

(2001). This approach is a meta estimator that fits many prediction decision trees created by the 

bootstrapping technique on various sub-samples of the dataset (Pedregosa et al., 2011). The 

random forest classification and prediction problems are comparable to the learning-based 
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approaches such as boosting methods (Breiman 2001) and support vector machines (Zhu 2007). 

This method controls the overfitting of the model and increases the prediction performance by 

using an averaging method (Pedregosa et al., 2011). 

 The RF method uses the measure of importance to rank the input variables and increase the 

prediction’s accuracy. The importance of the variables is estimated by comparing the prediction’s 

error metrics of out-of-bag (OOB) samples, which provides an opportunity to estimate the 

unbiased prediction error in the training stage’s random forest construction phase, with in-bag-

samples (IBS). The RF model’s flowchart is illustrated in Figure 4.3, and detailed information on 

random forest governing equations may be found in Breiman (2001). 

 

Figure 4.3 Random forest regression model flowchart (Baharvand et al., 2022c) 

Gradient Boosting Regression (GBR) 

Some boosting ensemble models can predict target values using weak classifiers generated by 

feature data samples. Gradient boosting is a popular algorithm that, unlike the random forest 

algorithms that use independent regression trees, builds an ensemble of regression trees in 

sequence, with each tree using the previous tree to learn and improve the prediction accuracy. In 

essence, the boosting attacks the bias-variance tradeoff, using weak decision tree models, and 
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boosts the model accuracy using sequential trees. New weak models concentrate on the training 

rows of the weighted datasets with less prediction accuracy in the previous step. Figure 4.4 shows 

the gradient boosting regression flowchart. 

 

Figure 4.4 Flow chart of gradient boosting regression model 

As shown in Figure 4.4, the GBR is trained using N regression trees (weak models). In the first 

step, the weak model is trained using the feature matrix X (a matrix of H, u, u*); the target value is 

y (dispersion terms Dx and Dy). The prediction residual error is estimated for the first step (R1) 

using the observed (y1) and predicted (�̂�1) target values. Once the residual of the first step has been 

determined, the second weak model is trained using the feature matrix X, and the residual 

errors that are calculated from step 1 (R1) are considered the target values for the second step. The 

step 2 prediction residual error (𝑅 − �̂�1) is used as the target value for the next step, and this 
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sequential prediction process is repeated until the ensemble tree-based gradient boosting model is 

trained. 

The shrinkage factor is an essential variable in GBR that describes the portion of each weak model 

in the prediction method after multiplying the prediction residual of each tree in the ensemble 

model. The shrinkage factor (also known as learning rate) ranges from 0 to 1. After all the weak 

models are trained in the GBR, the prediction is obtained by using Equation 4.9. 

𝑌 = 𝑦1 +  𝜈𝑅1 +  𝜈𝑅2 +  𝜈𝑅3 +⋯+  𝜈𝑅𝑁                                                                                (4.9) 

where Y is the prediction of the GBR, y1 is the observed target values from the first step of the 

model (observed dispersion coefficients), 𝜈 is the shrinkage factor, and R refers to the prediction 

residuals that come from each weak model. After using different values for the shrinkage factor in 

the trial-and-error process in this study, it was set at 0.1 to develop the GBR model.  

Performance Standards 

Three statistical measures were utilized to assess the accuracy of predicted values: coefficient of 

determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The total 

discrepancy ratio (DRs) was also used to evaluate the performance of ensemble models adopted in 

the present study. The DRs is a statistical measure that was used in several studies to assess the 

accuracy of ML-based models in predicting the dispersion coefficient in natural streams (e.g., 

Kashefipour and Falconer, 2002; Zeng and Huai 2014; Nezaratian et al., 2021). Equations 4.10 to 

4.13 show R2, RMSE, MAE, and DRs relationships, respectively. 

R2 =
∑ (xi− x̅)(x̂i− x̅)
N
i=1

√∑ (xi− x̅)
2N

i=1  × ∑ (x̂i− x̅)
2N

i=1

                                                                                                                   (4.10) 
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RMSE = √∑
(x̂i−xi)

2

N
N
i=1                                                                                                                                         (4.11) 

MAE =   
1

N
∑ (x̂i − xi)
N
i=1                                                                                                                                       (4.12) 

DRs =
∑ log(

x̂i
xi
)N

i=1

N
                                                                                                                                            (4.13) 

where xi is ith observed dispersion coefficient, x̂i is ith predicted dispersion coefficient, x̅ refers to 

the mean dispersion coefficient, and N refers to the amount of data. 

4.1.1.2 Particles Vertical Displacement Computation 

The PTM does not consider the effects of the vertical advection term, and vertical displacement of 

particles is calculated by considering the vertical dispersion coefficient and settling velocity that 

are due to gravitational forces acting on suspended particles. Therefore, the Van Rijn (1993) 

particle settling velocity equation was used to compute the temporal vertical displacement of each 

particle. Equation 4.14 shows the settling velocity of sediment particles.  

𝑤𝑠 =

{
 
 

 
 

   

 
(𝑆−1)𝑔𝑑2

18𝜈
                                                    1 < 𝑑 ≤ 100 𝜇𝑚    

10𝜈

𝑑
[(1 +

(𝑆−1)𝑔𝑑3

100𝜈2
)

1

2
− 1]                 100 < 𝑑 ≤ 1000 𝜇𝑚  

 1.1[(𝑆 − 1)𝑔𝑑]
1

2                                             𝑑 ≥ 100 𝜇𝑚      

                                                                                (4.14) 

where ws is particle settling velocity, 𝜈 is the kinematic viscosity of water, S is ratio of particle 

density to fluid density, and d is the particle diameter. 

Unlike longitudinal and transverse dispersion coefficients, which are computed based on both 

empirical and ML-based approaches discussed in previous sections, the vertical dispersion 

coefficient is computed using Equation 4.15 proposed by Von Rijn (1987).  
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Dz ={
 Dzm – Dzm (1–

2 z

H
)

2

                        
z

H
< 0.5

Dzm                                                
z

H
≥ 0.5

                                                                                  (4.15) 

where H represents flow depth, z is the vertical elevation of particles, and Dzm is the maximum 

vertical dispersion coefficient. Dzm is maximum vertical dispersion term (Dzm=
𝜅𝑢∗𝐻

4
) in which u* 

is shear velocity, and κ refers to the von Kármán constant (κ = 0.4).  

4.1.1.3 Stochastic Random Walk Method 

Random behavior of sediment particles in natural streams can be modeled using different 

stochastic approaches, such as the stochastic jump diffusion model (Oh 2011) and the random walk 

method. Due to the acceptable performance of the random walk method, various studies have used 

this method to calculate the random motion of sediment particles in turbulent flows (Lane and 

Prandle 2006; Taghvayi 2013; Shi and Yu 2015). In the present study, the random walk method 

was used to generate the stochastic term, i.e., 𝑁(𝜇, 𝜎), using a normal distribution probability 

function (Equation 4.16) with a mean of 𝜇 = 0, and a standard deviation of 𝜎 = 1. 

𝑓(𝑥) =
1

𝜎√2𝜋
 e−0.5(

𝑥−𝜇

𝜎
 )2

                                                                                                              (4.16) 

4.1.1.4 Discretized Particle Tracking Equations 

Once the dispersion coefficients are estimated based on an empirical equation and machine 

learning approaches, advection and dispersion displacement equations are solved for each particle 

in the flow domain. Equations 4.17 to 4.19 show the displacement of a particle in a three-

dimensional space of the flow domain. 

∆𝑥𝑝 = 𝑢𝑝 ∆𝑡 +  𝑁(𝜇, 𝜎)√2𝐷𝑥∆𝑡                                                                                                 (4.17) 

∆𝑦𝑝 = 𝑣p ∆𝑡 +  𝑁(𝜇, 𝜎)√2𝐷𝑦∆𝑡                                                                                                 (4.18) 
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∆𝑧𝑝 = −𝑤𝑠 ∆𝑡 +  𝑁(𝜇, 𝜎)√2𝐷𝑧∆𝑡                                                                                                 (4.19) 

where ∆𝑥𝑝, ∆𝑦𝑝, and ∆𝑧𝑝 are the total particle displacement in streamwise, transverse, and vertical 

directions after one computational time step (∆𝑡). 𝑢𝑝 and 𝑣p are the linearly interpolated velocity 

components in streamwise and transverse directions at the particle location, respectively. 

4.1.2 Case Study 

4.1.2.1 Study Area 

A section of Wilson Creek near Highway FM 2478 in McKinney, Texas was selected as the study 

area (Figure 4.5), as road expansion and bridge replacement projects were expected to add 

sediment load to the creek. The bridge location and construction site footprints on the south and 

north sides of the Wilson Creek are shown in Figure 4.5. The sediment regime in the creek was 

monitored during the construction period in 2021. According to the historical flow data at the 

USGS 08059590 gauge station (11.2 km downstream of the bridge location), the mean daily flow 

varied between 0 and 37.4 m3/s, with an average of 1.98 m3/s. Two storm events, on April 29 and 

November 3, 2022, with an average daily discharge of 37.4 m3/s and 7.4 m3/s, were considered, 

and it was estimated that during these events a total of 12.8 and 2.4 tonnes/day of sediment entered 

the creek from the construction sites, respectively. The daily overland erosion from the 

construction sites was predicted using a predictive overland erosion GIS-based toolkit developed 

by Ahmari et al. (2022). 
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Figure 4.5 Wilson Creek study area near Highway FM 2478, McKinney, Texas 

4.1.2.2 Field Measurements 

Flow and sediment characteristics were monitored at the Wilson Creek bridge site from December 

2020 to December 2021. The monitoring site was extended from upstream of the bridge to 

downstream of the impacted area by construction activities and was visited after each storm event, 

with an average of 2 to 4 visits per month, depending upon the rainfall and streamflow conditions. 

The field program included monitoring total suspended solids (TSS), turbidity (Tu), bedload 

material, substrate type, and depositional areas. Two ISCO 6712 Teledyne water sampler units 

were installed upstream and downstream of the bridge location to collect samples during storm-

based events for lab analysis of the concentration of the suspended sediment (Figure 4.5). The 

upstream unit collected water samples before the bridges, where the sediment load in the creek 

was not impacted by the local overland erosion in the construction areas. The samples collected 

by the downstream sampler represented the cumulative effect of the sediment load from upstream 

and the sediment load entering the creek from the bridge construction areas. The TSS data from 

the upstream and downstream units were compared to estimate the elevated suspended sediment 

in the creek due to the overland erosion.  
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Discrete TSS and turbidity (Tu) samples were collected at the location of the automated water 

samplers, as well as from the area between the bridge location and the downstream water sampler 

unit, where the sediment regime in the creek was impacted by the construction activities (Section 

2 in Figure 4.5). The turbidity of the samples was measured in the NTU unit, using a Hach 2100Q 

portable turbidimeter. The TSS and turbidity discrete data were collected mainly during low flow 

conditions to complement the sediment data collected by the automated water samplers during 

storms. Water samples collected by the automated samplers and grab samples were sent to the lab 

for TSS analysis, using EPA method 160.2 (United States Environmental Protection Agency, 

2017). More information on the field monitoring program can be found by researching in 

Baharvand et al. (2022b).  

Due to the lack of direct measurement of TSS on April 29, 2021, the suspended sediment 

concentration was estimated using the TSS-Tu relationships (Equation 4.20) that was developed 

based on the data collected by water samplers and discrete data collected upstream and downstream 

of the bridge.  

𝑇𝑆𝑆 =  0,88 𝑇𝑢                              Upstream of the bridge                                                      (4.20a) 

𝑇𝑆𝑆 =  2,66 𝑇𝑢                           Downstream of the bridge                                                 (4.20b) 

Grab samples were collected from the eroded materials at the construction site and depositional 

areas in the creek to determine the sediment gradations contributing to the total sediment load. A 

minimum of 500 grams of samples were collected from each area and sent to the lab for gradations 

tests. The content of gravel, sand, silt, and clay in the samples was measured by sieve analysis and 

hydrometry tests after debris and other objects were removed. Based on this analysis, the average 

fraction of the clay/silt, sand, and gravel was estimated as 10%, 75%, and 15%, respectively 
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(Baharvand et al., 2022b). These values were used in the PTM as the gradation of the sediment 

load entering the creek from the north and south construction areas. 

4.1.2.3 Wilson Creek Particle Tracking Model 

A particle tracking model developed by Baharvand et al. (2022a) to simulate sediment transport in 

natural streams and estimate dispersion coefficients by employing empirical equations was 

adopted for this study. A calibrated HEC-RAS 2D model for the study area was coupled with the 

PTM to provide hydrodynamic parameters. Two storm events, on April 29 and November 3, 2022, 

with an average daily discharge of 37.4 m3/s and 7.4 m3/s, respectively, were considered. The PTM 

was used to predict the suspended sediment concentration variations in different sections of the 

creek downstream of the bridge location, and its performance was evaluated by using field data 

collected from the bridge construction site in Wilson Creek (Baharvand et al., 2022b). The 

dispersion coefficients that were estimated using ML methods were used in the Wilson Creek 

PTM. The distributions of the suspended sediment in the creek were estimated by the PTM, using 

empirical and ML-based methods, and the results were compared with the field data. 

RESULTS AND DISCUSSION 

4.1.3 Prediction of Longitudinal Dispersion Coefficient  

This section presents the longitudinal dispersion coefficient prediction that was obtained by using 

random forest (RFR) and gradient boosting regression (GBR) models. The accuracy of each model 

is discussed in the following for several hyperparameter tuning scenarios, using GridsearchCV. 

4.1.3.1 RFR and GBR Ensemble Prediction Models 

Comparisons of the observed and estimated longitudinal dispersion coefficients, using the RFR 

and GBR models in the training and testing stages, are shown in Figures 4.6 and 4.7. As can be 
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seen, the RFR model predicted the longitudinal dispersion coefficient with R2 = 0.93 in the training 

stage (Figure 4.6a); however, the GBR model showed more accuracy with a coefficient of 

determination of R2 = 0.95 (Figure 4.6b). RMSE and MAE of the GBR model were smaller than 

that of the RFR model for the training stage (Table 4.3), which means that the GBR model 

estimated Dx  more accurately. The total discrepancy ratios of the RFR and GBR models for the 

training stage were estimated as DRs = -0.16 and -0.07, respectively. The negative DRs values 

show the underestimation of both ensemble models in predicting Dx although the total discrepancy 

ratio of the GBR was closer to zero, indicating that the GBR model predicted Dx more precisely 

than the RFR. The confidence intervals shown in Figures 4.6a and b represent the upper and lower 

bounds of the estimates with a 90% confidence level for the training stage, using RFR and GBR, 

respectively. 

 

  
          (a)          (b) 

Figure 4.6 Comparison between the observed and predicted longitudinal dispersion coefficient (Dx) by a) 

RFR, and b) GBR in the training stage 
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Figure 4.7 compares the Dx  that was observed and predicted by the RFR and GBR in the 

testing stage. As shown, the GBR model more accurately predicted the longitudinal dispersion 

coefficient in the testing stage (R2 = 0.9) than the RFR model (R2 = 0.86). The RMSE of the RFR 

model was determined as 79.1 m2/s in the testing stage, which is higher than the RMSE of the 

GBR model (66.1 m2/s). Considering the negative DRs of both models in the testing stage, it could 

be argued that both models underestimated Dx in the testing stage, as they did in the training stage. 

Figures 4.8 and 9 illustrate the overestimations and underestimations of the RFR and GBR for each 

observation in the dataset in the training and testing stages. 

 

   
(a) (b) 

Figure 4.7 Comparison between the observed and predicted longitudinal dispersion coefficient (Dx) by a) 

RFR and b) GBR in the testing stage 
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(a) 

 
(b) 

Figure 4.8 Observed and predicted longitudinal dispersion coefficient (Dx) for each data sample by a) 

RFR and b) GBR in the training stage 

 

 
(a) 

 
(b) 

Figure 4.9 Observed and predicted longitudinal dispersion coefficient (Dx) for each data sample by a) 

RFR and b) GBR in the testing stage 
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The RFR and GBR models’ predictions of the longitudinal dispersion show that the GBR model 

has advantages over the RFR in both the training and testing stages. As discussed in Section 

4.2.1.1, the hyperparameter values for both stages of both models were determined through the 

GridsearchCV approach. Table 4.3 summarizes the values and shows that by performing the 

GridsearchCV technique, the optimal values for the RFR hyperparameters (max feature, min 

sample leaf, min sample split, and number of estimators) to predict longitudinal dispersion were 

estimated as 3, 3, 2, and 200, respectively. The optimal max feature, min sample leaf, min sample 

split, and number of estimators hyperparameters of the GBR model were estimated as 3, 5, 4, and 

250, respectively.  

Table 4.3 Hyperparameter Tuning Scenarios of Longitudinal Dispersion Coefficients (Dx) 

(The ideal parameters are shown in bold type.) 

Emulator Hyperparameter 
Interrogated 

Values 
Stage 

Statistical Measures 

R2 
RMSE 

(m2/s) 

MAE 

(m2/s) 
DRs 

RFR 

Max feature 2, 3, 5,10 
Training 0.93 62.4 32.4 -0.16 

Min sample leaf 3, 5, 8, 10, 20 

Min sample split 
2, 4, 6, 8,10, 

20 
Testing 0.86 79.1 49.4 -0.12 

Number of estimators 
100, 150, 

200, 250, 300 

GBR 

Max feature 2, 3, 5,10 
Training 0.95 53.9 24.4 -0.07 

Min sample leaf 3, 5, 8, 10, 20 

Min sample split 
2, 4, 6, 8,10, 

20 
Testing 0.9 66.1 45.6 -0.1 

Number of estimators 
100, 150, 

200, 250, 300 

 

Prediction of Transverse Dispersion Coefficient 

The results of estimating the transverse dispersion coefficient (Dy) using the random forest and 

gradient boosting regression approaches are discussed in this section. Figure 4.10 shows a 

comparison of the observed and predicted transverse dispersion coefficients, using the RFR and 
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GBR in the training stage. The coefficient of determination of the RFR model for the training stage 

was calculated as R2 = 0.92, and the RMSE was determined as 0.007 m2/s. The discrepancy ratio 

in the RFR in the training stage was DRs = -0.071 and reveals that the RFR underestimated the 

transverse dispersion coefficient. Comparing the statistical measure of the GBR model shown in 

Figure 4.10b (R2 = 0.94, RMSE = 0.006) with that of the RFR model confirms the higher accuracy 

of the GBR model in predicting Dy in the training stage; however, the GBR model’s discrepancy 

ratio was estimated as -0.27, indicating that it also underestimated the transverse dispersion 

coefficient. 

  
(a) (b) 

Figure 4.10 Comparison between the observed and predicted transverse dispersion coefficients (Dy) by a) 

RFR, and b) GBR in the training stage 

The results of the RFR and GBR models in predicting the transverse dispersion coefficient were 

compared with the observed values shown in Figure 4.11 for the testing stage. The RFR model 

showed a higher coefficient of determination (R2 = 0.94) than the GBR model (R2 = 0.91) in the 

testing stage. The RSME and MAE of the RFR and GBR models were similar. Moreover, 

according to the estimated total discrepancy ratio of the RFR (DRs = -0.118), it more accurately 
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predicted Dy in the testing stage. The discrepancy ratio of the GBR model was determined as DRs 

= -0.282.  

  
(a) (b) 

Figure 4.11 Comparison between observed and predicted transverse dispersion coefficients (Dy) by a) 

RFR, and b) GBR in the testing stage 

Figures 4.12 and 4.13 were used to assess the RFR and GBR models’ underestimation and 

overestimation of each observation value in the dataset in the training and testing stages, 

respectively. Due to the negative DRs for both models, an underestimation was expected for most 

of the data samples in both models. 

Table 4.4 summarizes the statistical measures for the optimal hyperparameter interrogated values 

for the RFR and GBR models in the training and testing stages. The optimal values for the RFR 

hyperparameters, i.e., max feature, min sample leaf, min sample split, and number of estimators, 

for predicting the transverse dispersion coefficient are estimated as 3, 5, 2, and 250, respectively. 

However, the optimal max feature, min sample leaf, min sample split, and number of estimators 

hyperparameters of the GBR model are estimated as 3, 10, 2, and 250, respectively.  
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(a) 

 
(b) 

Figure 4.12 Observed and predicted transverse dispersion coefficient (Dy) for each data sample by a) 

RFR, and b) GBR in training stage 

 

 
(a) 

 
(b) 

Figure 4.13 Observed and predicted transverse dispersion coefficient (Dy) for each data sample by a) 

RFR, and b) GBR in testing stage 
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Table 4.4 Hyperparameter Tuning Scenarios of Longitudinal Dispersion Coefficients (Dy). 

(The ideal hyperparameters are shown in bold type.) 

Emulator Hyperparameter 
Interrogated 

Values 
Stage 

Statistical Measures 

R2 
RMSE 

(m2/s) 

MAE 

(m2/s) 
DRs 

RFR 

Max feature 2, 3, 5,10 
Training 0.92 0.007 0.0018 -0.071 

Min sample leaf 3, 5, 8, 10, 20 

Min sample split 
2, 4, 6, 8,10, 

20 
Testing 0.94 0.007 0.002 -0.118 

Number of estimators 
100, 150, 

200, 250, 300 

GBR 

Max feature 2, 3, 5,10 
Training 0.94 0.006 0.0018 -0.268 

Min sample leaf 3, 5, 8, 10, 20 

Min sample split 
2, 4, 6, 8,10, 

20 
Testing 0.91 0.008 0.0019 -0.282 

Number of estimators 
100, 150, 

200, 250, 300 

 

The results of the statistical measures for the RFR and GBR models with optimized 

hyperparameters using the GridsearchCV technique showed that the GBR model more accurately 

predicted the transverse dispersion coefficient in the training stage. Both models underestimated 

Dy during the training and testing stages; however, the accuracy of both in predicting the transverse 

and longitudinal dispersion coefficients was acceptable. 

 

4.1.4 Simulating Suspended Sediment Concentration in Wilson Creek 

The following sections present the machine learning and empirical dispersion models’ results for 

two flow scenarios, Q = 37.4 m3/s on April 29, 2021 and Q = 7.4 m3/s on November 3, 2021. The 

simulation time was determined based on each dispersion model to ensure that all the particles 

injected at the sediment sources exited the downstream boundary of the model.  
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Suspended Sediment Concentration - April 29, 2021 Storm 

The increase in suspended sediment concentration in Wilson Creek due to the overland erosion in 

the construction site was estimated using ensemble learning-based and empirical dispersion 

models and is presented in Figure 4.14. As mentioned in Section 4.2.2.1, the construction activities 

produced 12.8 tonnes/day of sediment yield on April 29, 2021, which elevated the sediment 

concentration downstream of the bridge location. The suspended sediment concentrations 

estimated by the PTM with the RFR and GBR models were compared at four cross sections 

downstream of the bridge location. The suspended sediment concentration cross section CS-1 (27 

m downstream of the bridge site) was compared with the TSS values estimated from Equation 

4.20b downstream of the bridge. 

The maximum increase in suspended sediment concentrations (SSC) on the north side of the 

creek were estimated as 146, 105, and 153 mg/L by the PTM with the empirical dispersion 

equation, RFR, and GBR (Figures 4.14 a-c). The values for the south side of the creek were 201, 

216, and 287 mg/L, respectively. The PTM with the RFR dispersion model predicted the maximum 

SSC on the north and south sides 24% lower than the GBR and 7% higher than the estimated 

values by the empirical dispersion model. The maximum SSC predicted by the PTM with the GBR 

was 40% higher for the south side and 5% higher for the north side compared to the estimates by 

the PTM using the empirical dispersion equation. 
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(a) 

 
(b) 

 
(c)  

Figure 4.14 Increase in suspended sediment concentration in Wilson Creek due to overland erosion 

corresponding to the April 29, 2021 storm estimated by the PTM with using different dispersion 

coefficients: a) Empirical equation, b) RFR model, and c) GBR model 

The elevated suspended sediment concentration across CS-1 to CS-4 is depicted in Figure 4.15. 

The maximum elevated SSC across CS-1 was estimated as 160, 198, and 229 mg/L by the PTM 

with the empirical equation, RFR, and GBR, respectively (Figure 4.15a). The estimated TSS using 
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the TSS-Tu relationship (Equation 4.20b) and the turbidity measurements in the construction zone 

for different days of field measurement showed the TSS values ranging from 120 to 226 mg/L 

(Baharvand et al., 2022b). As shown in Figure 4.15a, the PTM models with the empirical equation 

and the RFR model estimated the maximum suspended sediment concentrations in section CS-1 

within an acceptable range, showing the applicability of these PTMs. The PTM with the empirical 

equation and the RFR model underestimated the SSC, compared to the maximum measured TSS 

during field measurement, by about 29% and 12%, respectively; however, the difference in the 

maximum dispersion estimated by the PTM with the GBR dispersion model and the TSS range 

predicted using Equation 4.20b was negligible. 

The elevated suspended sediment concentrations across Wilson Creek at cross sections CS-2, CS-

3, and CS-4, located 67, 163, and 335 m downstream of the bridge site are shown in Figures 4.15b-

d. The maximum elevated sediment concentrations across CS-3 were estimated as 28, 19, and 23 

mg/L for the PTMs with the empirical equation, RFR, and GBR, respectively. As the sediment 

plume traveled downstream, it became diluted, and the suspended sediment concentration 

decreased. Unlike the suspended sediment concentration distribution in CS-2 (Figure 4.15b), the 

maximum sediment concentration estimated by the PTM with ensemble dispersion models was 

higher than the results from the PTM with an empirical dispersion model (Figures 4.15c and d). 

According to these figures, the PTM with the empirical dispersion model overestimated the 

sediment concentration compared to the other two dispersion models in CS-3 and CS-4, especially 

from the center towards the south side of the creek. 

The RFR and GBR models in CS-1 and CS-2 showed higher SSC on the south side of the creek 

(Figures 4.15a and b). However, in downstream sections (CS-3 and CS-4), the sediment 

concentration estimated by the PTM with the empirical model was higher than that of the ensemble 
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models, especially from the center to the south side of the creek. These differences could be due 

to the underestimation of the empirical dispersion coefficients that results in less displacement of 

particles and an increase in sediment concentrations. 

  
(a) (b) 

  
(c) (d) 

Figure 4.15 Elevated suspended sediment concentration across Wilson Creek due to overland erosion 

corresponding to April 29, 2021 storm: a) Cross section CS-1, b) Cross section CS-2, c) Cross section 

CS-3, and d) Cross section CS-4. Cross sections are shown in Figure 4.14 

Three longitudinal cross sections illustrate the variations of SSC estimated by different dispersion 

models along the creek . Figure 4.14a shows the longitudinal cross sections that were on the south 

side (L-1), center line (L-2), and north side (L-3) of the creek. The changes in elevated SSC along  

sections L-1 to L-3 are shown in Figure 4.16 for the PTM with the empirical equation, RFR, and 

GBR. According to Figure 4.16a, along the south longitudinal section (L-1), the maximum 

elevated SSC varied between 193 mg/L (PTM with empirical dispersion model) and 261 mg/L 
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(PTM with the GBR dispersion model). The high concentration values predicted for the area 

between 10 m and 30 m downstream of the bridge location were expected because of the proximity 

of this area to the sediment sources on both sides of the creek. Downstream of this high 

concentration area, the sediment concentration decreased gradually for all three dispersion models 

to approximately 47 mg/L 70 m downstream of the bridge on the south side. As shown in Figure 

4.16a, the GBR estimated a higher concentration along L-1 up to 70 m downstream of the bridge 

than the PTM with the RFR and empirical dispersion model; from 70 m to the downstream 

sections, it estimated a lower sediment concentration than the other two PTM models. The PTM 

with the RFR and the empirical-based dispersion models showed similar SSC values in the 

downstream areas (100 m and further from the bridge), where the sediment plume became diluted 

with the creek flow. 

The distribution of the suspended sediment concentration along the center line of the creek (line 

L-2) was estimated as 5 to 53 mg/L by three dispersion models in an area between 5 m to 51 m 

downstream of the bridge location (Figure 4.16b). The PTM with the GBR dispersion model 

resulted in higher concentration than the RFR and empirical dispersion models in an area from 5 

m to almost 51 m downstream of the bridge location (Figure 4.16b). For areas beyond  50 m 

downstream of the bridge location along the center line, the PTM with the GBR estimated that the 

SSC was lower than the RFR prediction. The empirical model estimated a higher SSC 170 m 

downstream of the channel than the GBR model. Overall, the PTM with the empirical based 

dispersion model estimated the SSC in a range between the RFR and GBR estimates along the 

center line of creek for high flow conditions (Q = 37.4 m3/s on April 29, 2021), except for a 

distance 37 m to 87 m downstream of the bridge, where the flow experiences the first meander of 

the channel. 
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Along the north side of the creek (line L-3), the PTM/ empirical dispersion model estimated that 

the sediment concentration was 40% higher than the PTM/ RFR dispersion model predicted and 

less than 6% than the PTM/GBR dispersion model for an area up to 16 m downstream of the bridge 

location (Figure 4.16c). More than 38 m downstream of the bridge location, the SSC from the PTM 

with the empirical dispersion model showed smaller values than those estimated by the PTM with 

the RFR and GBR dispersion models. The SSC from the PTM with the GBR was slightly higher 

than the result of the RFR dispersion models from 32 to 165 m downstream of the bridge. All three 

PTM models showed similar trends in the fully mixed area between 190 m to 350 m downstream 

of the bridge. 

Figure 4.16 shows that the PTM with the GBR dispersion model predicted higher concentration 

values along the creek than the RFR and empirical model from the bridge location to 

approximately 50 m downstream, along the south, center, and north sides of the creek. In the 

downstream sections, the PTM with the empirical and RFR dispersion models showed similar 

concentration distributions. Unlike the south and center line of the channel, the PTM with the 

empirical dispersion model estimated higher sediment concentrations in areas near the bridge 

location, along the creek's north bank, than the RFR dispersion model. However, the PTM with 

the empirical dispersion model showed smaller concentrations than the RFR and GBR dispersion 

models in downstream sections on the north side of the creek. 
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(a) 

 
(b) 

 
(c) 

Figure 4.16 Variation of suspended sediment concentration along  a) south side (L-1), b) center line (L-

2), and c) north side (L-3) of Wilson creek (April 29, 2021 storm) 

Suspended Sediment Concentration - November 3, 2021 Storm 

The increase in the suspended sediment concentration in Wilson creek was estimated using the 

PTM with different dispersion models for the low flow scenario (November 3, 2021). The results 

are presented in Figure 4.17. 
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(a) 

 
(b) 

 
(c)  

Figure 4.17 Increase in suspended sediment concentration in Wilson Creek due to overland erosion 

corresponding to the November 3, 2021 storm estimated by the PTM using different dispersion 

coefficients:  a) Empirical equation, b) RFR model, and c) GBR model 

The increase in sediment concentration was due to the overland erosion in the north and south 

construction areas downstream of the bridge location. The same cross sections (CS-1 to CS-4) 

were used to compare the results of the PTM across the creek, using different dispersion models. 

The longitudinal profiles, L-1 to L-3 shown in Figure 4.17a, were used to investigate the 
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distribution of the sediment concentration along the creek. The elevated suspended sediment 

concentration across CS-1 to CS-4 on November 3, 2021 is depicted in Figure 4.18. The maximum 

elevated SSC across CS-1 was estimated as 421, 514, and 506 mg/L by the PTM with empirical 

equation, RFR, and GBR dispersion models, respectively (Figure 4.18a). The TSS was collected 

by the water sampler units on November 3, 2021 along the center line of the creek upstream of the 

bridge and at section CS-2 (Figure 4.5). The average TSS upstream of the bridge and at section 

CS-2 was measured as 35 mg/L and 174 mg/L, respectively. This means that the average TSS was 

elevated due to the local overland erosion by 139 mg/L along the center line of the creek from 

upstream to downstream of the bridge at CS-2 (Baharvand 2022b). The PTM estimated the 

elevated suspended sediment concentration at the creek’s center line (sampling point 3 in Figure 

4.18b) as 156, 146, and 143 mg/L, using the empirical equation, RFR, and GBR, respectively. 

Therefore, the PTM with the empirical equation, RFR, and GBR overestimated the elevated 

sediment concentration at the center line by 12, 5, and 2.8%. 

According to Figure 4.18c, the PTM with the empirical equation, RFR, and GBR estimated the 

average elevated SSC in section CS-3 as 127, 113, and 114 mg/L, respectively. These values show 

that the PTM with the RFR and GBR models predicted similar sediment concentrations 

downstream of the creek, where the sediment was almost fully mixed across the channel. All three 

models predicted very small sediment concentration values at section CS-4 (< 0.1 mg/L). These 

values were negligible compared to the sediment concentrations estimated at sections CS-1 and 

CS-2 and their variations were less significant. 
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(a) (b) 

  
(c) (d) 

Figure 4.18 Elevated suspended sediment concentration across Wilson Creek due to overland erosion 

corresponding to November 3, 2021 storm: a) Cross section CS-1, b) Cross section CS-2, c) Cross section 

CS-3, and d) Cross section CS-4. Cross sections are shown in Figure 4.17. 

Three longitudinal profiles were used to extract the suspended sediment concentration distributions 

estimated by the PTM, using three dispersion models for the low flow scenario. The extent of each 

profile (L-1 to L-3) is depicted in Figure 4.17a. The increases in the SSC along L-1 to L-3 are 

shown in Figure 4.19 for different dispersion models. 
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(a) 

 
(b) 

 
(c) 

Figure 4.19 Variation of  suspended sediment concentration along  a) south side (L-1), b) center line (L-

2), and c) north side (L-3) of Wilson creek (November 3, 2021 storm) 

Comparing Figure 4.19 with Figure 4.16 shows that the sediment concentration values of all the 

PTMs were significantly higher than those estimated for the high flow scenario. It could be argued 

that the smaller flow area and depth during the low flow resulted in locally higher SSC in the creek, 

even though the sediment load entering the creek during high flow (12.8 tonnes/day) was much 

higher than the sediment load entering the during the low flow condition (2.4 tonnes/day). The 
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average width of the creek 350 m downstream of the bridge was approximately 16 and 34 m during 

low and high flow scenarios, respectively. The average flow depth during the high flow scenario 

was approximately 2.5 times higher than during the low flow scenario. (The flow depth at the 

center line of CS-1 and CS-4 for the low scenario was 0.89 m and 2.3 m, respectively, while the 

flow depth at similar locations during the high flow scenario was 2.9 m and 5.5 m, respectively.) 

Most of the sediment particles entering the creek from the construction site were deposited before 

section CS-3 during the low flow scenario; fewer particles were transported to downstream 

sections during the high flow scenario (Baharvand et al., 2022b). Therefore, a higher concentration 

of suspended particles was expected between the bridge location and section CS-3 during the high 

flow scenario 

The PTM with the empirical dispersion model predicted smaller values of sediment concentration 

along the north, south, and center line profiles in an area that extended between the bridge and 40 

m downstream, as shown in Figure 4.19; the PTM with the RFR and GBR predicted similar 

sediment concentrations. On the south side of the creek (Figure 4.19a), 209 m downstream of the 

bridge, the suspended sediment concentration decreased from 452 mg/L to 63 mg/L for the PTM 

with RFR and GBR models. The maximum concentration estimated for the south side, using the 

PTM with the empirical dispersion model, was 341 mg/L 7 m downstream of the bridge and 

decreased to 36 mg/L 209 m. A sharp increase of more than 200 mg/L was detected in the area 

from 244 m to 254 m downstream of the bridge location on the south side, which is detectable in 

Figures 4.17b and c. The sharp increase in the SSC could be due to the shallower flow depth at 

this location (0.98 m) compared to adjacent areas. From here on, the creek bed elevation decreases, 

and the flow depth increases to 2.3 m in a distance of 18 m. The applied shear stress at this location 

was less than the particles’ critical shear stress, and no deposition occurred at this point (Baharvand 
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et al., 2022b). Therefore, a large number of resuspended particles was expected at this location, 

which increases the sediment concentration significantly. 

The maximum concentration estimated for the central part of the channel was 585 mg/L according 

to the PTM with RFR and GBR dispersion models; the PTM with an empirical dispersion model 

estimated a maximum concentration of 459 mg/L at this location (Figure 4.19b). On the north side 

of the creek (Figure 4.19c), the PTM with an empirical dispersion model predicted lower sediment 

concentration values in most areas along the longitudinal section than the PTM with the RFR and 

GBR dispersion models. The SSC was negligible along the north, south, and central profiles 285 

m downstream of the bridge and, based on field observations and the results of numerical modeling 

of sediment deposition in Wilson Creek, was due to a high rate of sediment deposition after this 

segment of the creek (Baharvand et al., 2022b). 

CONCLUSION 

Several empirical equations have been used by researchers in previous studies to estimate the 

longitudinal and transverse dispersion coefficients and model the evolution of pollution and 

sediment transport in natural streams. They evaluated the performance of some machine learning-

based approaches in predicting dispersion coefficients in streams, but some approaches, such as 

bagging and boosting ensemble models, were not included in their studies. Although there are 

several studies on the application and sensitivity analysis of machine learning approaches to 

predict dispersion coefficients in natural streams, the methods they touted have not been used in 

Lagrangian-based sediment transport models.  

The present study used data derived from previous studies to investigate the performance of two 

ensemble machine learning models, random forest regression and gradient boosting regression, in 
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predicting longitudinal and transverse dispersion coefficients in natural streams. The resulting 

data-driven dispersion models were integrated with a Lagrangian particle tracking model (PTM) 

to simulate suspended sediment concentration in natural streams.  

Random forest regression (RFR) and gradient boosting regression (GBR) models were selected as 

two powerful ensemble learning-based approaches that can be used to accurately predict 

longitudinal and transverse dispersion coefficients, using the dataset from previous studies. The 

natural stream dispersion datasets were split into two stages, training (80%) and testing (20%), and 

the optimal principal parameters (hyperparameters) were identified for each ensemble model, 

using a grid-search cross-validation (GridsearchCV) technique.  Various statistical measures were 

used to assess the performance of the RFR and GBR models in predicting the longitudinal and 

dispersion coefficients in streams. The results showed that the GBR model predicted the 

longitudinal dispersion coefficient more accurately, with a coefficient of determination of R2 = 

0.95 and total discrepancy ratio of DRs = -0.07 in the training stage and a coefficient of 

determination of R2 = 0.9 and total discrepancy ratio of DRs = -0.1 in the testing stage. The GBR 

and RFR models predicted the transverse dispersion coefficient in the training stage as R2 = 0.94 

and 0.92, respectively. The RFR model was more accurate in predicting the transverse dispersion 

than the GBR in the testing stage, with R2 = 0.94 and DRs = -0.118. According to these results, 

both the RFR and GBR models accurately predicted the longitudinal and transverse dispersion 

coefficients; however, the total discrepancy ratios showed that both models underestimated the 

dispersion coefficients for the hyperparameters of the study in longitudinal and transverse 

directions. 

Since both ensemble models showed acceptable performance in predicting dispersion coefficients 

in natural streams, they were integrated with the Lagrangian particle tracking model developed by 
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Baharvand et al. (2022a) to simulate sediment transport in natural streams. The performance of the 

PTMs were evaluated using field data collected from a section of Wilson Creek near Highway FM 

2478 in McKinney, Texas, where road and bridge expansion projects were expected to introduce 

additional sediment load to the creek during the construction period. The required hydrodynamic 

parameters were obtained from a HEC-RAS 2D model for two flow conditions with mean daily 

discharges of 37.4 m3/s and 7.4 m3/s, corresponding to the April 29 and November 3, 2021 storm 

events.  

The outputs of the PTMs showed that the increase in suspended sediment concentration in Wilson 

Creek was due to the excess sediment load caused by construction activities in the vicinity of the 

creek and were used to developed the suspended sediment concentration distributions across and 

along the channel. A comparison between the cross-sectional sediment concentrations and the field 

data showed acceptable accuracy of all three models in predicting suspended sediment 

concentration distributions in the creek. The average sediment concentrations from the PTM with 

the GBR model correlated better with the results of the field investigations for high and low flow 

scenarios, however, and the 2D sediment concentration maps showed that the mixing process of 

the GBR was faster than that of the PTM with RFR and empirical models. 

The present model simulated suspended sediment load, using empirical and machine learning-

based longitudinal and transverse dispersion models under a steady-state flow condition, and 

estimated the vertical dispersion coefficient using empirical relationships. In future research, the 

unsteady flow condition and bedload transport could be added to the PTM to enhance its 

capabilities, and the vertical dispersion coefficient could be modeled using the machine learning 

approaches. A limitation of this study is that the dataset that was used to predict the dispersion 

coefficient may not be applicable for different streams. Therefore, it is suggested that future 
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research enhance the model's reliability by increasing the number of dispersion coefficient datasets 

from different natural streams. 
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CHAPTER 5  

GENERAL CONCLUSIONS AND FUTURE RESEARCH 

RECOMMENDATIONS 

Sediment erosion and transport processes are critical processes that impact the health of the 

ecosystem and threaten aquatic species in natural streams; however, sediment transport models 

can help control and manage the nutrient and sediment loading. Lagrangian models were 

developed during the course of this research to effectively assess the advection and dispersion of 

sediment in open channels and evaluate the ability of various types of empirical relationships and 

machine learning-based approaches to predict the dispersion coefficient. The following section 

presents the findings and achievements of this research and offers suggestions and 

recommendations for future work. 

CONCLUSIONS 

The following findings correspond to the objectives of this study: 

• A Lagrangian stochastic particle tracking model was developed to simulate sediment 

transport in open channel flows. Two-dimensional discretized advection and three-

dimensional dispersion terms were used to simulate sediment particles in an Eulerian flow 

domain. The model simulates the movement of sediment particles in suspension, and 

sediment deposition and resuspension were considered in the PTM, using a mobility factor 

based on the Shield criteria. 

• The performances of three longitudinal dispersion equations (Elder 1959, Kashefipour and 

Falconer 2002, and Sahay and Dutta 2009) were examined to select the one best suited for 
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a PTM of a prismatic open channel, and it was determined that the longitudinal dispersion 

coefficient proposed by Elder (1959) was more accurate than the others for this purpose.  

• The PTM’s ability to generate vertical distribution of dimensionless sediment 

concentration (C/Cmax) in prismatic open channels was assessed for a variety of sediment 

gradations, from very fine sand to medium sand, obtained from a laboratory study by 

Coleman (1986). The PTM that was developed using the longitudinal dispersion coefficient 

proposed by Elder (1959) more accurately predicted the sediment concentration for coarser 

material, with a correlation coefficient of 0.96 and standard deviation of 0.26; however, it 

was less accurate in estimating sediment concentrations in depths (z/H) ranging between 

0.15 and 0.21 for all sediment gradations. 

• The PTM results were compared to the analytical solution of the advection-dispersion 

model for a straight rectangular channel with an instantaneous sediment source. The 

longitudinal and transverse sediment concentrations from the analytical solution and the 

PTM showed an acceptable agreement, confirming the ability of the PTM to predict the 

SSC variation in a straight rectangular channel. However, the PTM model underestimated 

the maximum sediment concentration with 6.3% and 9.4% error from the analytical 

solution for time steps of t = 30 s and 50 seconds, respectively. 

• The PTM was used to simulate sediment transport in a section of Wilson Creek in 

McKinney, Texas, during bridge and roadway construction activities to evaluate the 

model’s ability to predict the suspended sediment concentration and depositional areas in 

a natural stream. The predicted increase in suspended sediment concentration was 

comparable to the expected values and the field data. The accuracy of the PTM in 

determining the potential depositional areas was acceptable and comparable to those 
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predicted by field measurements for different local sediment gradations that contributed to 

sediment loads from construction sites. 

• Random forest regression (RFR) and gradient boosting regression (GBR) models were the 

two powerful ensemble learning-based approaches that were selected for predicting 

longitudinal and transverse dispersion coefficients, using the dataset from previous studies. 

A sensitivity analysis was conducted on the hyperparameters of each model, using a grid-

search cross-validation (GridsearchCV) technique, and revealed the optimal principal 

parameters for modeling the longitudinal and transverse dispersion coefficients in streams. 

Both models showed an acceptable level of accuracy for predicting the dispersion 

coefficients in the training and testing stages, after splitting dataset with a fraction of 80% 

and 20%, respectively, and both underestimated the dispersion coefficients and had a 

coefficient of determination above 0.9 for the testing stage. 

• The RFR and GBR models were integrated into the Lagrangian particle tracking model to 

investigate the performance of learning-based dispersion coefficients and empirical 

dispersion relationships, using the field data obtained downstream of a construction site at 

Wilson Creek for high (Q =37.4 m3/s) and low flow (Q =7.4 m3/s) scenarios. It was revealed 

that all three PTMs can accurately predict the sediment concentration distribution 

downstream of the bridge, but a comparison of the PTM with ensemble dispersion 

coefficients and empirical-based dispersion relationships revealed the superior 

performance of the GBR model. All of the models demonstrated an acceptable level of 

accuracy in predicting the suspended sediment concentration distribution in natural 

streams. 
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• The PTM with the GBR model showed a relatively higher maximum concentration in the 

upstream sections close to the construction site than the PTM with RFR and empirical-

based dispersion models. It also showed lower cross-sectional concentration values in the 

downstream sections than the RFR model, which means that its mixing process could be 

faster. 

The overall accuracy of the Lagrangian PTMs with different dispersion coefficient models was 

assessed using laboratory dataset, analytical solution, and field measurements, and it was 

concluded that the model has the ability to effectively simulate sediment transport in natural 

streams.   

RECOMMENDATION FOR FUTURE RESEARCH  

• The present study modelled sediment transport using the Lagrangian approach, 

considering longitudinal and transverse advection with three-dimensional dispersion 

coefficients. It is suggested that future studies consider the vertical velocity component in 

conjunction with the settling velocity of particles to better simulate the vertical motion of 

particles, using both advection and dispersion coefficients. 

• The proposed model does not consider bedload transport or the geomorphologic evolution 

of channel beds. Therefore, it is suggested that a bedload transport model be coupled with 

the PTM developed in this study to provide a full range of sediment transport in open 

channels, including suspended and bedload transport. 

• The PTM performance was evaluated for a range of particle gradations and may not be 

applicable for smaller or larger sediment particles. Therefore, it is recommended that 

future studies consider the applicability of PTMs for a wider range of sediment particle 
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sizes and modify the model based on the potential correction factors to address the motion 

of different particle sizes in natural streams.  

•  The present model simulates the suspended sediment load using empirical and machine 

learning-based longitudinal and transverse dispersion models under a steady state flow 

condition. Adding the unsteady flow condition and bedload transport to the PTM to 

enhance its capabilities could broaden the impact of this research. 

The limited dataset used to predict the dispersion coefficient, using machine learning 

approaches, may not be applicable for natural streams with different ranges of 

hydrodynamic parameters that are not included in this study. Therefore, it is suggested that 

future researchers enhance the reliability of the model by increasing the number of 

dispersion coefficients by using other available datasets or conducting field measurements. 

• In the present study, the vertical dispersion coefficient was estimated using empirical 

relationships. In future research, it could be modelled, using machine learning approaches. 
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APPENDIX  A 

DISPERSION COEFFICIENT DATASET FOR NATURAL STREAMS 

This section discusses the correlation between feature and target data of the dataset for dispersion 

coefficients in natural streams. Figure A-1 shows the correlation of the feature dataset with the 

longitudinal dispersion coefficient, as well as the count of each feature parameter. The coefficient 

of determination (R2) between longitudinal dispersion coefficient (Dx) with H, u, and u* is 0.33, 

0.48, and 0.01, respectively.  

 

Figure A. 1 Longitudinal dispersion coefficient against the feature datasets, and frequency of each feature 

dataset: (a) and (b) flow depth (H); (c), (d) flow velocity; (e), (f) shear velocity 
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Figure A.2 shows a similar plot for the transverse dispersion coefficient and shows that the 

transverse dispersion coefficient is more correlated with the flow depth, with a coefficient of 

determination of 0.81. The coefficient for flow velocity and shear velocity was estimated at 0.53 

and 0.26, respectively.  

 

Figure A. 2 Transverse dispersion coefficient against the feature datasets, and frequency of each feature 

dataset: (a) and (b) flow depth (H); (c), (d) flow velocity; (e), (f) shear velocity 

The number of the longitudinal and transverse dispersion coefficients are shown as histograms in 

Figure A-3. 
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      (a)                                                                  (b) 

Figure A. 3 Frequency of target parameters: a) longitudinal dispersion coefficient (Dx), and               

b) transverse dispersion coefficient (Dy) 

 

 The datasets used in this study for longitudinal and transverse dispersion coefficients are 

shown in Tables A-1 and A-2, respectively. The longitudinal dispersion data was obtained from 

Fischer (1968), Yotsukura et al. (1970), McQuivey and Keffer (1974), Nordin and Sabol (1974), 

Rutherford (1994), Graf (1995), and Toprak and Cigizoglu (2008). The transvers dispersion data 

was from different sources collected by Nezaratian et al (2021). 
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Table A. 1 Longitudinal Dispersion Datasets Used in this Study 

 

 

  

No.     H     u u*  Dx       No.    H      U u*        Dx 

1 0.49 0.21 0.079 19.52 40 0.55 0.35 0.044 30.19 

2 0.84 0.52 0.1 21.4 41 1.13 0.39 0.075 32.52 

3 0.49 0.25 0.079 9.5 42 1.35 0.39 0.065 92.9 

4 0.86 0.28 0.067 13.93 43 0.98 0.59 0.098 101.5 

5 2.13 0.86 0.104 53.88 44 0.66 0.43 0.085 20.9 

6 2.09 0.79 0.107 46.45 45 0.71 0.16 0.046 41.4 

7 0.39 0.14 0.116 9.85 46 0.65 0.62 0.044 29.6 

8 0.85 0.16 0.055 9.5 47 1.15 0.32 0.058 119.8 

9 0.58 0.3 0.049 8.08 48 0.41 0.23 0.04 66.5 

10 1.56 0.67 0.043 9.57 49 0.69 0.23 0.064 40.8 

11 0.94 0.34 0.067 32.52 50 0.41 0.15 0.081 29.3 

12 0.91 0.4 0.067 39.48 51 1.13 0.63 0.081 53.3 

13 0.41 0.29 0.044 13.94 52 1.95 0.74 0.138 88.9 

14 0.39 0.32 0.06 9.29 53 2.44 0.52 0.094 166.9 

15 0.52 0.43 0.069 16.26 54 0.5 0.24 0.038 52.2 

16 0.71 0.52 0.081 25.55 55 0.31 0.25 0.062 1.9 

17 0.32 0.21 0.043 4.65 56 0.22 0.39 0.053 7.1 

18 0.45 0.32 0.051 13.94 57 0.45 0.32 0.024 5.8 

19 0.87 0.44 0.07 37.16 58 1.4 0.2 0.031 54.7 

20 2.23 0.93 0.065 464.52 59 0.52 0.54 0.027 501.4 

21 3.56 1.27 0.082 836.13 60 0.59 0.27 0.08 10.3 

22 3.11 1.53 0.077 891.87 61 0.81 0.48 0.072 45.1 

23 0.98 0.88 0.11 41.81 62 0.4 0.34 0.02 44 

24 2.16 1.55 0.161 162.58 63 1.62 0.61 0.032 143.8 

25 0.3 0.43 0.046 9.29 64 3.96 0.29 0.06 130.5 

26 0.42 0.46 0.046 20.9 65 3.66 0.45 0.057 227.6 

27 0.56 1.01 0.137 13.94 66 1.74 0.47 0.036 177.7 

28 2.46 0.82 0.169 65.03 67 1.65 0.58 0.054 131.3 

29 0.26 0.31 0.043 6.97 68 2.32 1.06 0.054 308.9 

30 0.41 0.37 0.055 13.94 69 0.5 0.13 0.037 12.8 

31 0.81 0.29 0.068 23.23 70 0.51 0.23 0.03 14.7 

32 0.8 0.42 0.068 30.19 71 0.93 0.36 0.035 24.2 

33 2.04 0.56 0.054 315.87 72 4.94 1.05 0.069 457.7 

34 4.75 0.64 0.081 668.9 73 8.9 1.51 0.097 341.1 

35 2.35 0.43 0.101 111.48 74 1.37 0.99 0.142 184.6 

36 3.84 0.76 0.128 260.13 75 2.38 1.74 0.153 464.6 

37 0.81 0.37 0.077 13.94 76 1.16 0.21 0.069 14.76 

38 1.2 0.45 0.093 32.52 77 3.28 1.62 0.078 1486.45 

39 0.98 0.21 0.041 39.48  
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Table A. 2 Transverse Dispersion Datasets Used in this Study  

     No.     H      u     u* Dy     No. H U u* Dy 

1 1.9 0.49 0.052 0.041 40 0.0396 0.328 0.015084 0.0001 

2 0.04 0.465 0.027 0.000189 41 0.04 0.243 0.013311 7.89E-05 

3 0.33 0.247 0.0221 0.001065 42 0.174 0.5 0.0351 0.0015 

4 0.36 0.2487 0.0215 0.001117 43 0.09 0.142 0.0151 0.000155 

5 0.111 0.46 0.0199 0.000356 44 0.04 0.27 0.014377 0.000104 

6 0.22 0.31 0.0141 0.000326 45 0.018 0.2 0.0239 0.000085 

7 0.44 0.18 0.04 0.0047 46 0.06 0.126 0.0153 0.000122 

8 0.4 0.18 0.0402 0.004663 47 0.171 0.35 0.0364 0.000674 

9 0.027 0.5 0.0264 0.000119 48 0.06 0.1 0.0059 0.000063 

10 0.015 0.31 0.0212 0.000064 49 0.148 0.235 0.0381 0.00133 

11 0.04 0.056 0.0077 0.00004 50 0.09 0.129 0.0073 0.000116 

12 2 0.37 0.043 0.0105 51 0.04 0.092 0.0125 0.000066 

13 0.37 0.24 0.04 0.014 52 0.371 0.371 0.0604 0.00369 

14 0.7 1.25 0.062 0.01302 53 0.06 0.1 0.0059 0.000063 

15 0.158 0.945 0.0518 0.000665 54 0.028 0.3 0.0164 0.000079 

16 0.28 0.24 0.0162 0.000249 55 0.09 0.1667 0.0115 0.000165 

17 0.371 0.475 0.0604 0.00592 56 0.013 0.2 0.0269 0.000088 

18 0.173 0.35 0.0166 0.000325 57 0.07 0.3913 0.019513 0.000153 

19 0.04 0.081 0.0077 0.000044 58 0.025 0.2 0.0208 0.000092 

20 0.09 0.167 0.0115 0.000165 59 0.09 0.171 0.0188 0.000225 

21 0.09 0.129 0.0073 0.000116 60 0.064 0.299 0.0335 0.000418 

22 0.041 0.35 0.019 0.000106 61 0.03 0.27 0.0157 0.000079 

23 0.248 0.244 0.049 0.00234 62 0.04 0.27 0.014623 9.19E-05 

24 0.016 0.2 0.0239 0.000074 63 0.09 0.129 0.0073 0.000116 

25 0.04 0.072 0.0099 0.000052 64 0.05 0.23 0.014 0.000092 

26 0.104 0.43 0.0506 0.000748 65 0.28 0.246 0.0274 0.000979 

27 0.09 0.105 0.0115 0.000138 66 0.126 0.53 0.116 0.00238 

28 0.053 0.43 0.0218 0.000143 67 0.034 0.2 0.0191 0.000088 

29 0.066 0.45 0.0214 0.000204 68 0.032 0.2 0.0209 0.000116 

30 0.053 0.43 0.0209 0.000133 69 0.06 0.108 0.0094 0.000082 

31 0.125 0.31 0.0541 0.000938 70 0.67 0.66 0.061 0.010218 

32 0.07 0.3387 0.017203 0.000123 71 0.04 0.056 0.0077 0.00004 

33 0.028 0.2 0.0176 0.000067 72 0.017 0.33 0.0198 0.000079 

34 0.033 0.19 0.0203 0.000088 73 0.065 0.33 0.016769 0.000113 

35 0.06 0.126 0.0153 0.000122 74 0.06 0.1 0.0121 0.000096 

36 0.079 0.312 0.016543 0.000129 75 0.053 0.43 0.0223 0.000133 

37 0.04 0.081 0.0077 0.000044 76 0.073 0.23 0.012 0.000118 

38 0.065 0.28 0.0155 0.000124 77 0.065 0.299 0.01563 0.000152 

39 0.68 0.63 0.063 0.010282  
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Table A-2 (Continued) 

No. H u u* Dy No. H U u* Dy 

78 0.04 0.075 0.0049 0.000034 117 0.06 0.128 0.0094 0.000087 

79 0.04 0.098 0.0077 0.000047 118 0.039 0.2 0.0188 0.000111 

80 0.09 0.14 0.0188 0.000222 119 0.05 0.31 0.016074 8.82E-05 

81 0.06553 0.3764 0.018954 0.000146 120 0.064 0.46 0.0401 0.000352 

82 0.04 0.098 0.0077 0.000047 121 0.07 0.359 0.017931 0.000218 

83 0.06 0.108 0.0094 0.000082 122 0.07 0.311 0.015979 0.000133 

84 0.132 0.77 0.111 0.00227 123 0.04 0.075 0.0049 0.000034 

85 0.09 0.105 0.0115 0.000138 124 0.09 0.171 0.0188 0.000225 

86 0.05 0.256 0.014377 0.000103 125 0.126 0.53 0.0814 0.00155 

87 0.0519 0.3275 0.017075 0.000133 126 0.097 0.112 0.006 0.000092 

88 0.06753 0.3831 0.019207 0.00024 127 0.053 0.42 0.0214 0.000121 

89 0.09 0.19 0.0099 0.000097 128 0.065 0.345 0.017441 0.00015 

90 0.127 0.3 0.0301 0.000372 129 0.04 0.092 0.0125 0.000066 

91 0.023 0.2 0.0178 0.00005 130 0.06 0.1 0.0121 0.000096 

92 0.04 0.098 0.0077 0.000047 131 0.04 0.082 0.0077 0.000044 

93 0.04 0.2 0.0158 0.000088 132 0.04 0.069 0.0125 0.000065 

94 0.09 0.171 0.0188 0.000225 133 0.055 0.3 0.036 0.0004 

95 0.108 0.39 0.0186 0.000278 134 0.0665 0.306 0.0325 0.000346 

96 0.173 0.31 0.016 0.00065 135 0.039 0.37 0.0373 0.000198 

97 0.05 0.302 0.015749 0.000155 136 0.07903 0.4198 0.020571 0.000304 

98 0.068 0.36 0.0501 0.000481 137 0.127 0.31 0.0646 0.00148 

99 0.148 0.235 0.0381 0.000958 138 0.4 0.15 0.0105 0.002604 

100 0.05 0.3 0.0172 0.000141 139 0.3 0.1 0.0068 0.000898 

101 0.053 0.42 0.0212 0.000145 140 1.17 0.28 0.03108 0.012 

102 0.09 0.167 0.0115 0.000165 141 0.96 0.4 0.037202 0.01 

103 0.06 0.1 0.0153 0.000121 142 0.54 0.16 0.078 0.027799 

104 0.017 0.2 0.0239 0.000059 143 0.67 0.17 0.055 0.019899 

105 0.07 0.371 0.018415 0.000114 144 2.74 1.74 0.0729 0.10187 

106 0.039 0.31 0.0182 0.000114 145 0.42 0.2 0.007 0.002499 

107 0.031 0.2 0.0154 0.000062 146 0.48 0.04 0.01 0.003984 

108 0.042 0.18 0.011 0.000074 147 0.3 0.1 0.0054 0.000275 

109 0.05 0.2888 0.015249 0.0001 148 0.0372 0.268 0.0213 0.00103 

110 0.04 0.075 0.0049 0.000034 149 0.0302 0.317 0.0266 0.001125 

111 0.09 0.135 0.0149 0.000178 150 0.68 0.31 0.0462 0.009425 

112 0.06 0.128 0.0094 0.000087 151 5.25 1.06 0.0738 0.139482 

113 0.09 0.135 0.0149 0.000178 152 0.022 0.197 0.0168 0.000185 

114 0.06 0.128 0.0094 0.000087 153 0.0203 0.19 0.0137 0.000195 

115 0.67 0.67 0.062 0.009139 154 0.3 0.1 0.0054 0.000194 

116 0.09 0.142 0.0151 0.000155 155 0.21 0.43 0.024 0.000857 

 

  



158 

 

Table A-2 (Continued) 

No. H u u* Dy No. H U u* Dy 

156 0.61 0.28 0.024526 0.019 195 0.173 0.37 0.0175 0.000286 

157 0.0528 0.27 0.017 0.002154 196 0.245 0.344 0.049 0.00202 

158 0.69 0.34 0.0465 0.014759 197 0.06 0.077 0.0094 0.000074 

159 0.15 0.2 0.0117 0.000456 198 0.09 0.139 0.0188 0.000222 

160 2.25 1.4 0.0594 0.066825 199 0.06 0.076 0.0094 0.000074 

161 2.78 1.74 0.0729 0.121597 200 0.04 0.072 0.0099 0.000052 

162 0.15 0.2 0.0133 0.000738 201 0.054 0.44 0.0218 0.000162 

163 0.3 0.3 0.0204 0.002203 202 0.28 0.2448 0.02 0.000796 

164 1.1 0.21 0.0569 0.014396 203 0.06 0.1 0.0121 0.000096 

165 0.2 0.15 0.0084 0.000437 204 0.049 0.15 0.0093 0.000091 

166 0.55 0.54 0.0402 0.01415 205 0.04 0.069 0.0125 0.000065 

167 0.21 0.429 0.0286 0.001441 206 0.09 0.139 0.0188 0.000222 

168 0.96 0.5 0.044348 0.043 207 0.042 0.34 0.0196 0.000134 

169 0.48 0.34 0.0633 0.007292 208 0.131 0.77 0.163 0.00362 

170 0.15 0.4 0.0233 0.001643 209 0.079 0.4 0.019294 0.000191 

171 1.58 0.56 0.053222 0.037 210 0.06 0.1 0.0153 0.000121 

172 0.3 0.2 0.0108 0.002851 211 0.173 0.306 0.016 0.00065 

173 3.9 1.3 0.0799 0.215011 212 0.04 0.256 0.013994 7.13E-05 

174 0.04 0.072 0.0099 0.000052 213 0.06 0.1 0.0059 0.000063 

175 0.014 0.2 0.028 0.00006 214 0.087 0.41 0.0513 0.000603 

176 0.079 0.382 0.018739 0.0002 215 0.06 0.077 0.0094 0.000074 

177 0.107 0.42 0.0193 0.000209 216 0.06 0.108 0.0094 0.000082 

178 0.018 0.2 0.0187 0.000036 217 0.079 0.342 0.017913 0.000137 

179 0.055 0.42 0.022 0.000165 218 0.09 0.105 0.0115 0.000138 

180 0.06 0.126 0.0153 0.000122 219 0.055 0.3 0.036 0.0004 

181 0.04 0.056 0.0077 0.00004 220 4 0.97 0.0759 0.154836 

182 0.065 0.356 0.017886 0.000181 221 0.21 0.14 0.0095 0.000379 

183 0.102 0.15 0.0082 0.000091 222 2.05 0.86 0.078525 0.066 

184 0.06 0.1 0.0153 0.000121 223 2.74 1.75 0.074 0.121656 

185 0.127 0.53 0.053 0.000827 224 0.44 0.23 0.051 0.014137 

186 0.035 0.32 0.0175 0.000087 225 0.97 0.2 0.0534 0.016575 

187 0.04 0.092 0.0125 0.000066 226 0.41 0.4 0.07 0.006888 

188 0.0485 0.363 0.02 0.00017 227 4.7 0.82 0.0568 0.077418 

189 0.09 0.142 0.0151 0.000155 228 0.3 0.3 0.0161 0.001014 

190 0.04 0.069 0.0125 0.000065 229 0.3 0.34 0.043 0.002967 

191 0.038 0.19 0.0182 0.000093 230 0.55 0.26 0.037 0.009972 

192 0.09 0.135 0.0149 0.000178 231 0.21 0.143 0.0095 0.000998 

193 0.014 0.2 0.0209 0.000034 232 1 1.05 0.1389 0.084729 

194 0.125 0.81 0.0786 0.00189 - - - - - 
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