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ABSTRACT

POWER ALLOCATION AND MASSIVE MIMO CHANNEL MODELING FOR 5G

WIRELESS COMMUNICATIONS

ZHANGLIANG CHEN, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Qilian Liang

To meet the demand for wireless communication transmission rate to reach a thou-

sand times of the existing system in 2021, the fifth-generation (5G) mobile communication

system was developed. Compared with Long-Term Evolution (LTE), the 5G mobile com-

munication needs to be transmitted in wireless breakthrough innovation in technology to

achieve the goal of ten times increase in spectrum efficiency and power efficiency. As

a time series analysis tool based on vector autoregression, Granger causal analysis origi-

nated in the field of econometrics, and its staged generalized transfer entropy (TE) based

on conditional co-information in information theory has been widely used in recent years

in data analysis field.

Among them, further tapping the spatial multiplexing capability of multiple anten-

nas is a key way to achieve 5G. Configure large-scale antenna arrays or multiple at the

access point are interconnected by optical fibers to establish a large scale distributed Mas-

sive Multiple Input Multiple Output (MIMO) system. A significant improvement of the

spectrum efficiency can be achieved by implementing the Massive MIMO system. Also,

the Massive MIMO channel modeling is necessary both in the theoretical research phase
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of Massive MIMO as well as in the application phase of the systems. Therefore, Massive

MIMO channel modeling is an important content in the research.

This dissertation investigates the 5G channel forecasting and power allocation, as

long as channel modeling by Massive MIMO.

The first part of this dissertation focuses some analysis of 5G channel forecasting

and power allocation. Granger Causality has been derived to confirm the relationship be-

tween two random 5G channel coefficients. Transfer entropy is proposed to predict channel

coefficients, and the accuracy of the prediction is computed by using root mean square er-

ror (RMSE) and Cramer-Rao lower bound (CRLB). Furthermore, an Inverse Water Filling

(IWF) algorithm is applied to perform the power distribution based on the predicted chan-

nels.

The channel modeling for Massive MIMO communications at 28G Hz is mainly

presented in the second part. The Indoor and through-wall (TW) Massive MIMO wireless

communication scenario is used. We can consider the Line-of-sight (LOS) communication

is achieved under indoor scenario and Non-Line-of-sight (NLOS) communication under

TW scenario. The center frequency of 28G Hz is used on Transmission side and the actual

RF signal is collected. Then, a Space Alternating Generalized Expectation maximization

(SAGE) algorithm is used to extract large-scale parameters to obtain the millimeter wave

Urban Micro (UMi) scale parameters and small-scale parameters of the LOS and NLOS

of the channel on the basis of the actual channel data. Finally, the departure angle, angle

extension of the transmitted signal, arrival angle, angle extension of the received signal,

angular power spectrum, Doppler power spectrum and other parameters are used to model

the channels.

v



Third, a forecasted channel system on the basis of LSTM neural network is devised

to deal with the problem of gradient disappearance in the Recurrent Neural Network (RNN)

specialized in dealing with time series problems. Forecasting was made using 5G channels

simulated by the NYU Wireless Communications Simulator. Then, the designed arithmetic

is performed and the performances are compared with the real channel, and small RMSE

is obtained, which shows the high accuracy of the prediction. After that, based on the

channel forecasted by using the LSTM network, the power allocation based on cooperative

communication is derived, and compare the power results without cooperative communica-

tion. For the single-relay and multi-relay cooperative scenarios, a power allocation schema

under the end goal to maximize the information transmission rate (ITR) at the destination

node is proposed. The realization process of this scheme is constructing the information

transmission rate function of the destination node under the condition of setting the total

power transmitted is a fixed value by the node. The objective function can be considered

as the optimization of a convex function, which can obtain the optimal solution by the La-

grangian formula. When the ITR of the destination node is the maximum, the source node

and relay node achieved the optimal transmission power values. Therefore, system perfor-

mance is improved by optimizing power allocation method of the transmitting nodes. By

comparing with other schemes, it is verified that the power allocation scheme proposed in

this dissertation has better performance and saves system resources.
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CHAPTER 1

INTRODUCTION

5G is a new generation of mobile communication system developed for the needs

of mobile communication after 2020 [1]. According to the development law of mobile

communication, 5G will have ultra-high spectrum utilization and energy efficiency, and

increase the magnitude of LTE mobility or higher. Communicate in terms of transmission

rate and resource utilization. Power efficiency has long played an important role in mobile

communication devices. The high power efficiency of the device extends battery life and

has been an important element of the mobile communications revolution.

At the same time, during the propagation process of wireless communication signals,

from transmitter to receiver through a complex propagation environment, large-scale fading

(includes path loss (PL) and shadow fading) and small scale fading are caused by some

propagation mechanisms such as direct radiation, reflection, scattering, and diffraction [1].

Signal fading leads to distortion of the received signal, which affects the communication

quality of the wireless communication [2]. Understanding propagation characteristics of

wireless communication channels and their influence on wireless communication signals is

crucial for the programming and testing of wireless communication systems. The wireless

channel modeling is on the basis of fully understanding the propagation characteristics of

wireless signals and characterizes the factors of channels through a series of parameters,

which is an abstract simulation of the wireless propagation environment.
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1.1 Goals of the Dissertation

1.1.1 Correlation Test Based on Granger Causality

For the things that have unclear causal relationships, the Granger Causality method

can be used to perform statistical tests [3].

In this dissertation, the process of testing relationship between 5G Channels based on

Granger Causality test is discussed. First, the causality of two random and relatively inde-

pendent 5G channels was tested by Granger causality to test whether a causal relationship

existed between the two channels. If there is no causal relationship between the channels,

that is, the change of channel 1 does not affect the change of channel 2, or vice versa,

the transfer entropy theory cannot be further applied. Therefore, the channel prediction

described later is based on the causal relationship between the two channels.

1.1.2 5G Channel Forecasting Based on Transfer Entropy

In the experiment, we got a conclusion: 5G channel coefficients obey Gaussian dis-

tribution. Since Granger causality and transfer entropy are equivalent under Gaussian vari-

ables [4], we prove that transfer entropy can be used to predict 5G channels.

Transfer entropy was first proposed by Schreiber [5]. It is a time-asymmetric non-

parametric information measure based on conditional co-information. Although it is quite

different from Granger causality based on the ARMA model, it has a significant advan-

tage that transfer entropy does not require model assumptions. In fact, both of them are

essentially derived from Wiener’s causal relationship construction. The key idea is to in-

crease the weight of the new variable with respect to the historical information to reduce

the uncertainty of the forecast [6] [7]. The metric used to measure this uncertainty change

is causality.

Under the condition of Granger Causality is determined between two channels, trans-

fer entropy algorithm is derived to forecast channels.
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1.1.3 Power Allocation Based on Inverse Water-filling

The basis of the IWF algorithm is: under certain criteria, the transmit power is adap-

tively allocated according to the channel conditions. Generally, when the channel condition

is good, more power will be allocated to the sub-channel, and when the channel condition is

bad, less power will be allocated or even not allocated. The transmission rate is maximized

through such a power allocation mechanism. Therefore, in order to be able to use the IWF

algorithm for power allocation, the transmitter must know the channel state information

(CSI). The IWF algorithm can effectively increase the channel capacity.

In this dissertation, the IWF algorithm is used on forecasted channels. The chan-

nel capacity based on IWF algorithm and equal gain (EG) algorithm is compared in this

dissertation.

1.1.4 Channel Modeling for Massive MIMO at 28GHz Under Indoor and Through-Wall

Scenarios

According to Shannon’s formula C = B · log2(1+S/N), the capacity of the channel

is directly proportional to the available bandwidth, and As the available bandwidth expands,

so does the channel capacity [2]. Therefore, in the case of sufficient spectrum resources,

increasing the transmission bandwidth is the most direct and effective method to increase

the channel capacity and rate. However, the current low-frequency spectrum resources are

occupied by traditional Bluetooth, wireless LAN and other services, which cannot pro-

vide more continuous bandwidth to achieve 5G requirements. Therefore, researchers and

scholars have turned their attention to the millimeter wave band with abundant spectrum re-

sources and most of the frequency bands have not been allocated. The millimeter frequency

band (24-300GHz), as a core technical component of the 5G wireless communication sys-

tem, allows to occupy more spectrum to support the larger data steam requirements of

various multimedia services.
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Although broadband millimeter wave communication can solve the needs of 5G high

transmission rate through its high bandwidth advantages, due to the large difference be-

tween the channel characteristics of the high frequency band and the traditional band, there

will be many problems to be solved in the realization of high frequency communication

systems. And challenges. In the low- and mid-band communication system, there is usu-

ally no need to consider the influence of the atmosphere, rainfall, and the human body on

its communication quality. However, the millimeter wave frequency band is high and the

wavelength is small, not only the path loss is large, but also the additional loss caused by the

atmospheric rainfall and other factors, which causes its propagation loss to be so high that it

cannot be transmitted over a long distance. Moreover, the penetration ability of millimeter

waves is poor. Research has shown that in millimeter wave communication, the blockage

of the human body may also cause signal interruption, so millimeter waves cannot be used

in traditional indoor to outdoor or outdoor to indoor communication scenarios [8]. The

channel characteristics of millimeter wave have severely restricted the propagation range

and use scenarios of millimeter wave communication systems. Although there will be

many obstacles on the way to establish high-frequency communication systems, it will also

bring many opportunities. For example, because the antenna size increases proportionally

with the wavelength increasing, the short wavelength of the millimeter wave can be used

to effectively reduce antenna size, and it is easy to implement large-scale antenna arrays,

beamforming and other technologies to compensate for its larger propagation loss.

In order to make use of millimeter-band resources, it is first necessary to have an

in-depth understanding of the propagation characteristics of this new frequency band and

establish a channel model to determine the most suitable communication scenarios and

link types for this frequency band. Traditional commonly used channel models are mainly

divided into statistical channel models and deterministic channel models. The statistical

channel model is mainly obtained by fitting the measured data, while the deterministic

4



channel model is often obtained by using ray tracing technology [9]. Compared with the

deterministic model, the parameters of the statistical model are extracted by algorithms

based on measured data, which can better reflect the propagation characteristics of wire-

less signals in the real environment. However, the current mobile communication wireless

channel models are established through statistical measurements in the low frequency band,

and cannot be directly applied to the high frequency millimeter wave system. Different

from the traditional low frequency communication below 6GHz, millimeter wave com-

munication has the characteristics of large path loss, easy to be affected by air and rain,

poor diffraction ability, high scattering and very sensitive to dynamic environment. When

building a millimeter wave mobile communication system, it is necessary to select a suit-

able communication frequency band and establish a millimeter wave 5G wireless channel

transmission model through a large number of tests on different millimeter wave frequency

bands, scenarios and links, which has very important and far-reaching significance.

In this part, there are two goals are achieved. 1. Use the 5G high-frequency channel

mobile platform to generate and collect the 28GHz indoor LOS and through-wall NLOS

millimeter-wave signals, showing the specific channel measurement planning scenarios and

settings. At the transmitter and receiver, 64 (Uniform Rectangular Array, URA) matrix

antennas are used to collect real communication data for the LOS and NLOS paths respec-

tively, and the SAGE algorithm is used to extract large-scale parameters to obtain the UMi

scale parameters and small-scale parameters of the LOS and NLOS of the channel in the

scenario. 2. Perform path loss (PL) modeling on the measured data to obtain the millime-

terwave path loss model and the corresponding shadow fading in this scenario, and obtain

the Delay Spread (DS) and Angle Spread (AS) of the channel through large-scale parameter

modeling And other statistical characteristics. By analyzing the power delay profile (PDP)

and angular power spectrum of the LOS and NLOS paths, observe which azimuth and an-
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gles the signal has the highest received power, and judge the degree of time dispersion and

angular dispersion according to the distribution functions of DS and AS.

1.1.5 Channel Forecasting and Power Allocation Based on LSTM Network and Cooper-

ative Communication

Channel forecasting and power allocation are very important techniques for wireless

communication. If the state of the channel can be predicted, the power in the channel will

be allocated reasonably, more power will be distributed on the sub-channel with good state,

and less power will be distributed on the sub-channel with bad state, so as to realize the

high efficiency of power allocation.

Wireless signal can be considered as a time series, and Recurrent Neural Network

(RNN) is one of the most potential tools for time series modeling. The neural network

model of RNN adds the features of time series. The hidden layer of the RNN model has

feedback edges. The input of each hidden layer includes both the current sample features

and the information brought by the previous time series. It can achieve high-accuracy

predictions performance.

However, RNNs also have some drawbacks. For standard RNN networks, the time

span of information that can be used in practice is very limited. When we use information

from a relatively recent time point to solve the task of the current moment, RNN can ef-

fectively learn the information of the historical moment. However, when we need to use

historical information that differs from the current moment information for a long time,

the ability of RNN to learn information will be weakened, which is the problem of RNN’s

gradient disappearance. Long Short Term Memory (LSTM) can be considered as a special

form of RNN network, which is superimposed a long term memory function on the RNN,

the persistence of the RNN network can be maintained, which allows the long-term depen-

dence of the model on the neural network to be realized. The biggest advantage here is that
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the LSTM network itself can do the function of remembering information for a long time,

which is independent of what it learns through data training. As explained in the previous

paragraph, the vanishing gradient phenomenon is ubiquitous in traditional RNN networks.

The LSTM network was born to solve this shortcoming. A long-term memory function that

keeps information from decaying is superimposed on the traditional RNN network.

In this section, the final goal is deriving cooperative communication to achieve high

efficient power allocation based on the forecasted 5G channel by using the LSTM network.

In chapter 4, We compared the performance of power allocation based on cooperative com-

munication with equal power distribution method.

1.2 Future Work

The scenario measured in the channel modeling part in this dissertation are indoor

scenes and indoor through-wall scenes. The main propagation environment is only indoor

objects such as desks and computers. It does not consider factors such as moving people

and receiving users moving. In practice, users are basically moving, and the blockage of

the human body also affects high frequency communications. Moreover, outdoor scenes

also have some important influencing factors for high-frequency signal propagation such as

foliage, rain attenuation, etc. Because the millimeter-wave antenna array has strong spatial

directivity, before data transmission, the receiving and transmitting ends need to search

for the DOA of signal propagation, and select the optimal spatial transmission direction

to achieve the maximum gain. Therefore, in the next step, 5G ultra-dense networking and

resource allocation will be a meaningful research direction.

Besides that, recently, academia and industry have been studying non-orthogonal

multiple access (NOMA) technology to cope with the future demand for massive access

and ultra-high capacity. In the traditional OMA method, wireless signals containing in-
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formation of multiple users are allocated to mutually independent orthogonal domains for

transmission, including but not limited to time domain, frequency domain, code domain,

and the like. Since the OMA technology only allows each orthogonal resource to transmit

information of one user, this limitation results in the cell throughput and the number of

device connections not being too large. [10]. In addition, since only one user can be served

on the same time-frequency resource, and the traditional power allocation strategy assigns

power to users with strong channel conditions first, so user fairness and spectrum efficiency

are low. However, NOMA is different from these traditional solutions. The core concept of

power domain NOMA is to achieve multiple access in the power domain through different

power levels on the same time-frequency resource block, which can allocate more to users

with poor channel conditions [11]. In addition, the same resource block can also serve users

with strong channel conditions, which greatly improves the spectrum efficiency and obtains

a good balance between system throughput and user fairness. This also happens to meet the

technical requirements of large-scale device connection in Internet of Thins (IoT) applica-

tion scenarios [12]. NOMA uses Superposition Coding (SC) at the sending end to send out

the information of different users at the same time, and adopts the Successive Interference

Cancellation (SIC) at the user receiving end. For users with strong channel conditions, the

signal is first The more powerful signal is used as the useful signal, and other signals are

used as interference for demodulation, and then the useful signal obtained by demodulation

is subtracted to obtain the user’s information; while for users with weak channel conditions,

the information of other users is used as The noise is directly demodulated. In addition,

the advantages of NOMA have been verified in different wireless communication systems,

such as broadcast channel, full duplex channel and physical layer security, etc [13]. Based

on that, Massive MIMO NOMA and millimeter wave communications based on NOMA

will be some good future research topics.
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CHAPTER 2

POWER ALLOCATION FOR 5G WIRELESS COMMUNICATIONS

2.1 Granger Causality Test

Granger causality, as a method to measure the mutual influence between time series,

has been favored in the past many years. In 1969, Granger proposed a definition of causality

from the perspective of econometrics: With two time series xt, yt, consider the linear

projection of xt on the past values of x and y [14]:

xt =
∞∑
j=1

hjxt−j +
∞∑
j=1

vjyt−j + ϵt. (2.1)

Where, for any positive integer k, Eϵtxt−k = Eϵtyt−k = 0 [15], ϵt is noise.

If for a given past value of all x, the past value of y contributes to predicting x, ie.

there is at least one j0 such that vj0 ̸= 0, then the variable y is the Granger sense reason for

x [14].

According to this definition, in 1972 Sims proposed a proposition that there is no

causal relationship which is, Let (xt, yt) be a zero-mean joint covariance stationary se-

quence, then y is not a necessary and sufficient condition for the Granger’s cause of x [16].

There exists a vector moving average representation of the lower triangle: xt

yt

 =

 a(L) 0

b(L) h(L)


 ϵt

ut

 (2.2)

where ϵt and ut are zero-ranging sequence-independent process, and for any integer t, s, Eϵtus =

0, a(L), b(L), h(L) is the non-negative exponent of L Polynomials on the side, ie., a(L) =∑∞
j=0 ajL

j, b(L) =
∑∞

j=0 bjL
j, h(L) =

∑∞
j=0 hjL

j , in which L is a delay operator defined

by Lxt = xt − 1 [14].
9



If y is not the Granger cause of x, Eq. 2.2 holds. Rewrite Eq. 2.2:

xt = a(L)ϵb

yt = b(L)ϵb + h(L)ut

From the joint covariance stationarity of (xt, yt), the inverse polynomial a−1(L) of

a(L) exists, and it is non-negative power-universal to the delay operator L [14].

Let b(L) = b(L)a−1(L), et = h(L)ut, and then there are:

yt =b(L)a−1(L)xt + h(L)ut

=d(L)xt + et

(2.3)

This formula shows that the regression residual of yt which is et on the current and

past x (ie xt, xt−1, xt−2,) is not related to the future xt [17]. In other words, given the

current and past xt, the future xt does not affect yt, i.e., Eq. 2.3 is a representation under the

condition that y has no feedback effect on x. Observe that Granger’s Causality definition

assumes that future events cannot cause current or past events. Therefore, the real meaning

of Granger’s Causality is the ’preceding’ relationship in time, not the causality in the usual

sense [14].

According to his above proposition, Sims proved a theorem that facilitates Granger

Causality test as follows [18]. Assume that (xt, yt) is a zero-mean joint covariance station-

ary sequence, ϵt is a white noise sequence, considering the linear projection of yt over the

whole x process [14]:

yt =
∞∑

j=−∞

bjxt−j + ϵt

where, for any integer j, Eϵtxt−j = 0. Then y is not Granger’s cause of x, i.e., in (1), for

any j, vj = 0, if and only if it is an arbitrary negative integer j, bj = 0 [14].

Granger Causality can be tested using the following metrological methods. Let xt, yt

be the covariance stationary sequences, set up a regression model of xt for lags of y and

x [14]:
10



xt = c+
n∑

i=1

htyt−i +
n∑

j=1

ajxt−j + ϵt (2.4)

where, c is constant.

Among them, the choice of lag period n is relatively arbitrary.Then the judgment

that ’y is not the cause of x’ is equivalent to performing an F-test on the null statistical

hypothesis [14]:

H0 : h1 = h2 = ...hn = 0

Let SSR1(Residual Sum of Squares) and SSR0 represent the residual sum of squares

of regression model(4) and the model when the null hypothesis H0 holds [14]. Then, the

test statistic

F =
(SSR0 − SSR1)/n

SSR1/(N − 2n− 1)

follows the F-distribution with the first degree of freedom n and the second degree of

freedom N − 2n− 1 under the condition that H0 holds. Where N is the number of sample

data [14].

When the value of the above F statistic is greater than the critical Fα(n,N −2n−1)

of the F distribution below the significance level 1−α, y can be considered as the Granger

cause of x under the confidence of 1− α [14].

We perform a Granger causality test on two random and relatively independent 5G

channels in order to verify the existence of causality between the two channels. The chan-

nels are simulated from the New York University NYU WIRELESS center open source 5G

channel simulator [14].
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2.2 5G Channel Forecasting Based on Transfer Entropy

2.2.1 Introduction to Transfer Entropy

In this dissertation, we found that the 5G channel coefficient followed the Gaussian

distribution [14]. Based on the equivalence between Granger causality and transfer entropy

under Gaussian variables [4], we could use the transfer entropy to forecast the 5G channel

coefficient [14].

Transfer Entropy is a time-asymmetry non-parametric information measure based

on conditional co-information proposed by Schreiber [5]. Although it differs from Granger

causality based on the vector auto-regression model, transfer entropy does not use any

model assumptions [14]. Both are essentially derived from Wiener’s construction of causal-

ity, that is, the addition of historical information of new variables, which reduces the un-

certainty of the prediction of the target variable [6] [7]. And causality is a measure of this

change in uncertainty [14].

The definition of transfer bribery: For two discrete random variables X and Y , the

probability distribution functions are p(x) and p(y) respectively [14]. The joint probability

of events x and y occurring at the same time is p(x,y), then the Shannon entropy H(x) is

defined as [19].

H(x) = −
∑
x

p(x)logp(x) (2.5)

The conditional probability of Y with X is:

p(y|x) = p(x, y)/p(x) (2.6)

In Eq.(6) if p(y|x) = p(y) x and y are independent. Then p(x, y) = p(y|x)p(x) =

p(y)p(x) [14]
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The joint entropy of X and Y is

H(X, Y ) = −
∑
x,y

p(x, y)logp(x, y) (2.7)

The conditional entropy of X with Y is

H(X|Y ) = −
∑
x,y

p(x, y)logp(x|y) (2.8)

The Mutual Information(MI) contained between X and Y is the output of the two

systems as though they were independent as opposed to their ’actual’ relationship [14]

M(X;Y ) = H(X) +H(Y )−H(X, Y )

= −
∑
x,y

p(x, y)log(p(x)p(y)) +
∑
x,y

p(x, y)log(p(x, y))

=
∑
x,y

p(x, y)[log(p(x, y))− log(p(x)p(y))]

=
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

(2.9)

However, MI is not effective at predicting future events from current data since it is

symmetric, M(X, Y ) = M(Y,X). And it does not indicate which way the information is

flowing [14]. These shortcomings may be remedied by time shifting one of the variables

[14]. Transfer Entropy (TE) (Schreiber 2000 [5]) is based on rates of entropy change, it

captures some of the dynamics of a system.

Suppose two systems which generate events. We define an entropy rate which is the

amount of additional information required to represent the value of the next observation of

one of the systems [20]:

h1 = −
∑
xn+1

p(xn+1, xn, yn)logap(xn+1|xn, yn) (2.10)
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Suppose that value of observation xn+1 was not dependent on the current observation

yn:

h2 = −
∑
xn+1

p(xn+1, xn, yn)logap(xn+1|xn) (2.11)

The quantity h1 represents the entropy rate for the two systems, and h2 represents

the entropy rate assuming that xn+1 is independent of yn.Thus, we get transfer entropy:

h2 − h1 = −
∑

xn+1,xn,yn

p(xn+1, xn, yn)logap(xn+1|xn)

+
∑

xn+1,xn,yn

p(xn+1, xn, yn)logap(xn+1|xn, yn)

=
∑

xn+1,xn,yn

p(xn+1, xn, yn)loga(
p(xn+1|xn, yn)

p(xn+1|xn)
)

(2.12)

There are actually two equations for the transfer entropy, because it has an inherent

asymmetry in it.

TJ→I =
∑

xn+1,xn,yn

p(xn+1, xn, yn)loga(
p(xn+1|xn, yn)

p(xn+1|xn)
)

(2.13)

TI→J =
∑

yn+1,xn,yn

p(yn+1, xn, yn)loga(
p(yn+1|xn, yn)

p(yn+1|yn)
)

(2.14)

Then with substitutions [14]:

p(xn+1|xn, yn) = p(xn+1, xn, yn)/p(xn, yn)

p(xn+1|xn) = p(xn+1, xn)/p(xn)
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our equations become [20]

TJ→I =
∑

xn+1,xn,yn

p(xn+1, xn, yn) ·

log(
p(xn+1, xn, yn) · p(xn)

p(xn, yn) · p(xn+1, xn)
)

(2.15)

TI→J =
∑

yn+1,xn,yn

p(yn+1, xn, yn) ·

log(
p(yn+1, xn, yn) · p(yn)
p(xn, yn) · p(yn+1, yn)

)

(2.16)

In Eq. 2.16 and 2.16, J represents 5G channel 1, and I represents 5G channel 2 [14].

We use TE algorithm to forecast the channels based on two equations [14]. Since the row

5G channels are too long to plot, we choose part of the forecasted channel randomly [14].

2.2.2 Forecasting Accuracy Analysis - RMSE And CRLB

2.2.2.1 Root Mean Squre Error of Forecasted Channel

First we apply the RMSE metric between real 5G channel and forecasted channel.

The RMSE can be computed as [14]

RMSE =

√√√√ N∑
n=1

((xn − x′
n)

2)/N (2.17)

where xn is the observed value, which is the forecasted channel coefficient in our work [14].

x′
n is the true value, which represents the real 5G channel coefficients here. N is the total

number of channel coefficient [14]. In order to avoid specialty, we proposed 2000 pairs

of Real 5G channels as training groups and 1000 pairs of Real 5G channels as test groups

to do the forecasting based on transfer entropy and calculated the average RMSE. We will

show the RMSE performance in chapter 2.4 Simulations and Performance Analysis [14].
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2.2.2.2 Cramer-Rao Lower Bound

Cramer-Rao Lower Bound (CRLB) can be used to calculate the best estimation ac-

curacy that can be obtained in unbiased estimation, so it is often used to calculate the best

estimation accuracy that can be achieved by theoretically, and to evaluate the performance

of parameter estimation methods ( Whether it is close to the lower limit of CRLB) [21].

The 5G channel follows a Gaussian distribution with a variance γ2. Assume x =

A+ ω, ω is a Gaussian noise, ω ∼ N(0, σ2) [14].

The pdf of xm is [22]

f(xm) =
1√

2π(γ2 + σ2)
exp

[
−(xm −m)2

2(γ2 + σ2)

]
(2.18)

where xm is a random channel coefficient, σ2 is the variance of Gaussian noise ω

[14].

Let x ≜ [x1, x2, ..., xM ], then the pdf of x is [14]

f(x) =
M∏

m=1

f(xm)

=
M∏

m=1

1√
2π(γ2 + σ2)

exp

[
−(xm −m)2

2(γ2 + σ2)

]
(2.19)

let

θ ≜ γ2

then Eq. 2.19 can be expressed as [14]

f(x) =
M∏

m=1

1√
2π(θ + σ2)

exp

[
−(xm −m)2

2(θ + σ2

]
(2.20)

Then find the logarithm to get the log likelihood function [14]

logf(x) =
M∑

m=1

[
log

1√
2π(θ + σ2)

]
+

M∑
m=1

−(x−m)2

2(θ + σ2)
(2.21)
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let

∂

∂θ
logf(x)|θ=θ̂ =

M∑
m=1

[
−1

2(θ + σ2)
+

(x−m)2

2(θ + σ2)2

]
= 0 (2.22)

which has the unique solution [14]

θ̂(x) =
M∑

m=1

σ2 − (x−m)2 (2.23)

Since
∂2

∂θ2
logf(x)|θ=θ̂ =

M∑
m=1

−1

2(θ + σ2)
− (x−m)2

(θ + σ2)3
< 0 (2.24)

this solution gives the unique maximum of logf(x) [14]. The expectation of θ̂(x)

is [14]

E
[
θ̂(x)

]
=

∫ ∞

0

[
M∑

m=1

σ2 − (x−m)2]f(xm)dxm

=

∫ ∞

0

[
M∑

m=1

σ2 − (x−m)2

]
·

1√
2π(θ + σ2)

exp

[
−(xm −m)2

2(θ + σ2)

]
dxm

= θ (2.25)

Therefore it’s unbiased [14]. The Fisher’s information for our case can be expressed

as [14]

Iθ = −Eθ

[
∂2

∂θ2
logf(x)

]
= −Eθ

[
M∑

m=1

−1

2(θ + σ2)
− (x−m)2

(θ + σ2)3

]
(2.26)

So the Cramer-Rao lower bound (CRLB) is

V arθ[θ̂(x)] ≥
1

Iθ
=

1

−Eθ

[∑M
m=1

−1
2(θ+σ2)

− (x−m)2

(θ+σ2)3

] (2.27)
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We will show the CRLB performance in Chapter 2.4 Simulations and Performance

Analysis.

2.3 Power Allocation Based on forecasted channels by Inverse Water-Filling Algorithm

The Inverse Water-Filling(IWF) algorithm is based on a certain criterion, and adap-

tively allocates the transmission power according to the channel condition [14]. Usually

when the channel condition is good, then the power is allocated more, and when the chan-

nel is poor, the power is allocated less, and when the channel is poor, the power is not

allocated [14]. Thereby maximizing the transmission rate. To achieve the ’IWF’ distribu-

tion of power, the transmitter must know the Channel State Information(CSI). When the

transmitter knows the channel, the channel capacity can be increased [23].

Consider a r× 1-dimensional zero-mean cyclic symmetric complex Gaussian signal

vector s̃, where r is the rank of the transmission channel [14]. The vector is multiplied by

the matrix V (H = UΣV H) before transmission [14]. At the receiver, the received signal

vector y is multiplied by UH [24]. The effective input-output relationship for this system

is given by [14]:

ỹ =

√
Es

MT

UHHV s̃+ UHn =

√
Es

MT

UHUΣV H s̃+ UHn

=

√
Es

MT

Σs̃+ ñ (2.28)

where ỹ is the received signal vector of the r × 1 dimensional transform, and ñ is

the zero-mean cyclic symmetric complex Gaussian r × 1 transform noise vector whose

covariance matrix is ξ{ññH} = N0Ir. The vector s̃ must satisfy ξ{s̃s̃H} = MT to limit the

total transmitted energy [14].
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Then

ỹi =

√
Es

MT

√
λis̃i + ñi, i = 1, 2, ..., r (2.29)

The channel capacity is given by following [14]

C =
r∑

i=1

log2(1 +
Esγi
MTN0

λi) (2.30)

where γi = ξ{|si|2}(i = 1, 2, ..., r)) reflects the transmission energy of the i-th sub-

channel and satisfies
∑r

i=1 γi = MT , Es represents the channel gain on the sth subchannel,

λi is the Lagrange multiplier [14].

Variable energy can be allocated in the subchannel to maximize mutual information.

Now the problem of maximizing energy becomes [14]

C = max∑r
i=1

yi = MT

r∑
i=1

log2(1 +
Esγi
MTN0

λi) (2.31)

Maximizing by Lagrangian method. The Optimal energy allocation policy is [14]

γopt
i = max{(µ− MTN0

Esλi

), 0} (2.32)

where
r∑

i=1

γopt
i = MT (2.33)

We compared the channel capacity based on IWF algorithm and the equal gain al-

gorithm [14]. We will show the simulations in Chapter 2.4 Simulations and Performance

Analysis.

2.4 Simulations and Performance Analysis

2.4.1 Simulation Parameters of Simulated Channels

Table 2.1 shows the simulation parameters we used for simulated channels [14].
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Table 2.1. Simulation Parameters

Frequency (GHz) 28.0 Bandwidth (MHz) 800
TXPower (dBm) 30.0 Environment NLOS

Scenario UMi Pressure (mBar) 1013.25
Humidity 50 Temperature (Celsius) 20.0

RainRate (mm/hr) 0.0 Polarization Co-Pol
Foliage No DistFol (m) 0.0

FoliageAttenuation (dB) 0 TxArrayType ULA
RxArrayType ULA Num of TXElements 1

Num of RXElements 1 TXAziHPBW 10
TXElvHPBW 10 RXAziHPBW 10
RXElvHPBW 10

Table 2.2. Granger Causality Test Results

F-Value Critical Value Confidence Level
1 on 2 20.9127 0.229 0.95
2 on 1 97.0205 0.229 0.95

2.4.2 Granger causality Test Result

Table 2.2 shows the results of the Granger causality tests [14].

First, we did a Granger causality test of channel 1 on channel 2. In this simulation,

the value of the F statistic is 20.9127, where the critical value from the F-distribution is

0.229, confidence level α is 0.95 [14]. Since the value of the F statistic is larger than the

critical value from the F-distribution, we reject the null hypothesis that channel 2 does

not Granger Cause channel 1 [14]. So this test proves that channel 2 is Granger cause of

channel 1. Then we do the Granger causality test of channel 2 on channel 1 [14]. In this

case, the value of the F statistic is 97.0205, where the critical value from the F-distribution

is still 0.229, confidence level α is 0.95 [14]. So this test proves that channel 2 is also the

Granger cause of channel 1 [14].
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Figure 2.1. Forecasted 5G channel 1 based on transfer entropy.

So far, we verified the existence of Granger causality between the two channels.

Based on this result, we use transfer entropy to forecast the two channels [14].

2.4.3 Forecasted Wireless Channels

In Fig. 2.1 and Fig. 2.2, we compare the real 5G channel coefficient with the pre-

dicted 5G channel coefficient [14]. Observe that the channels which are forecasted using

the TE algorithm has high accuracy. But we still need a mathematical method to calculate

the specific error between the two channels and prove the accuracy [14]. Therefore, for the

comparison of real channels and prediction channels, we apply two metrics, i.e., RMSE

and CRLB [14].

2.4.4 RMSE

In Fig. 2.3, we purposed the Box Jenkin’s method and the Transfer Entropy method

to forecast the real channels and compared their RMSE, which is the average RMSE of all

1000 pairs forecasted channels and 1000 pairs real 5G channels with different SNRs [14].
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Figure 2.2. Forecasted 5G Channel 2 based on transfer entropy.

Figure 2.3. The average RMSE comparison between the real 5G channel and forecasted
channel.
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Figure 2.4. Variance of forecasted channel 1 with different value of SNRs.

Figure 2.5. Variance of forecasted channel 2 with different value of SNRs.

1) We can observe from Fig. 2.1 and Fig. 2.2 that the average coefficient of the real

5G channel is about 1.5× 10−8. And in Fig. 2.3, the RMSE is really high when the SNR is

low. So we can conclude that we compare the TE method and Box Jenkin’s method when

the SNR is low, the accuracy is insufficient [14].

2) However, with the SNR is increasing, the RMSE is going to horizontally and

stable at about 1 × 10−9. So this shows that the true RMSE of the real 5G channel and

forecasted channel based on the TE algorithm is less than 6%. This result proves that TE is

feasible to forecast 5G channels [14].

3) From Figure. 2.3 we can observe that under the same SNR, the RMSE between

the forecasted channel and real channel by using the Box Jenkins method is larger than that

of the Transfer Entropy method, which means that the TE method is more accurate in the

forecasting under the same channel status [14].
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2.4.5 CRAMER-RAO LOWER BOUND

Simulations: For real and forecasted 5G channel1 and channel 2, we run Monte Carlo

simulations at each SNR value and applied θ̂ for total 4 channels respectively [14]. In Fig.

2.4 and Fig. 2.5, we plotted the variance of the estimator with different values of SNRs.

Observe the following [14].

1) The actual variance of θ̂ is almost mach with the CRLB for different SNR value

[25], which validate our result in Chapter 2.4.2: Our forecasted 5G channel is close to real

5G channel and TE is feasible to forecast 5G channels [14].

2) The actual variance of θ̂ reduces as SNR value increases, and tends to stable and

horizontally, which is as we have shown the RMSE plots in Chapter 2.4.4 [14].

2.4.6 Channel Power Allocation

Simulations: We perform power allocation based on the IWF algorithm and Equal

Gain(EG) algorithm for the forecasted 5G channel 1 and channel 2 and plot part of the

results respectively [14]. Since the row 5G channels are too long to plot, we choose part

of the forecasted channel randomly, so there are some variations in the channel coefficients

compared with transfer entropy [14]. Fig. 2.6 - Fig. 2.9 shows the simulations. For each

simulation, the total power is 1× 10−5w, which is −20dBm to be allocated in the channel.

And Fig 2.10 proposed the channel capacity comparison. Observe the following [14].

1) Fig. 2.6 and. 2.8 shows power allocation using the IWF algorithm. It can be seen

from the figures that when the subchannel state is good, the much power is allocated to the

subchannel, and when the subchannel is not good, the less power is allocated [14]. Some

subchannels are very poor, and no power is allocated to the channel. Compared with the

power allocation of the EG algorithm in Fig. 2.7 and Fig. 2.9, that is, the energy is evenly
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Figure 2.6. Forecasted 5G channel 1 power allocation based on inverse water-filling.

Figure 2.7. Forecasted 5G channel 1 power allocation based on equal gain.

25



Figure 2.8. Forecasted 5G channel 2 power allocation based on inverse water-filling.

Figure 2.9. Forecasted 5G channel 2 power allocation based on equal gain.
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Figure 2.10. Average forecasted channel capacity comparison based on inverse water-
filling and equal gain.

distributed on each subchannel regardless of the channel condition, and the IWF algorithm

can greatly improve the energy efficiency and avoid the waste of power [14].

2)From Fig. 2.10, we can observe that at the same SNR, the channel capacity of the

IWF is greater than the EG, where demonstrates the power allocation efficiency of the IWF

algorithm working on the forecasted 5G channels [14].
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CHAPTER 3

CHANNEL MODELING FOR MASSIVE MIMO AT 28GHz UNDER INDOOR AND

THROUGH-WALL SCENARIOS

3.1 Introduction to Massive MIMO System and Millimeter Wave Communication

In recent years, the volume of mobile data services has grown almost exponentially,

and it will reach the current thousand times by 2021 [26]. At the same time, with the in-

creasing proportion of energy consumption of information technology systems, reducing

the energy consumption of mobile communication network systems has gradually become

an important goal of communication development [27]. The current LTE mobile communi-

cation system will be difficult to meet the future mobile communication needs for spectrum

efficiency and energy consumption efficiency [28]. This is presenting great challenges to

the spectrum of the fifth-generation mobile communication system (Fifth-generation, 5G)

efficiency and energy efficiency.

How to further improve the spectrum efficiency and power efficiency of wireless mo-

bile communications by an order of magnitude on the basis of LTE is the core of 5G. The

development of 5G requires new changes in network system structure, networking technol-

ogy and wireless transmission technology, fundamentally solve the problem of spectrum

efficiency and power efficiency of mobile communication and achieve the dual goals of

higher spectrum efficiency and green wireless communication [29]. The use of multiple

antenna transmission and multiple antenna input (multiple-input multiple-output, MIMO)

technology is a basic way to tap wireless space dimension resources, improve spectral effi-

ciency and power efficiency, and has been one of the mainstream technologies researched

and developed in the field of mobile communications for the past 20 years [30]. MIMO
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technology can provide diversity gain, multiplexing gain and power gain. Diversity gain

can improve the reliability of the system, multiplexing gain can support single-user spa-

tial multiplexing and multi-user spatial multiplexing, and power gain can Improving the

power efficiency of the system through beamforming [31]. At present, MIMO technology

has been adopted by LTE (long term evolution, LTE), IEEE 802.11ac and other wireless

communication standards [32].

The MIMO system can fully utilize all the characteristics of the space-time-frequency

domain of the signal, and has the following advantages: (1) Utilize or reduce multipath

fading: MIMO technology can make full use of various multi-path transmission/synthesis

technologies to improve the performance of wireless communication systems. (2) Elimina-

tion of co-channel interference: MIMO systems can use adaptive beamforming technology

or multi-user detection technology to effectively suppress or delete co-channel interfer-

ence. (3) Improve the spectrum utilization rate: Because the array antenna can reduce the

effects of co-channel interference and multi-path fading, the bit error rate (BER) can be

reduced under a certain signal-to-interference and noise ratio (SINR), or the detection can

be reduced under a certain BER. The MIMO system can suppress or eliminate co-channel

interference and inter-symbol interference, and at the same time use the classification tech-

nology to improve the signal-to-noise ratio (SNR) of the received signal. Therefore, the

transmit power of the base station and mobile terminal can be reduced to a certain ex-

tent, furthermore extending mobile terminal battery life, reducing the impact on the eco-

logical environment, reducing the system’s requirements for power control accuracy and

devices [33].

Sub-6GHz and millimeter wave are two frequency band codes of the 5G network.

Sub-6GHz refers to signals in the 450MHz-6GHz frequency band, while millimeter waves

refer to waves with frequencies exceeding 24GHz. The characteristic of millimeter wave

is faster transmission speed, theoretically can reach 10Gbps high-speed transmission. An-

29



other advantage of millimeter wave is higher bandwidth, it is easier to solve the problem

of user network congestion to satisfy more throughput at the same time. This technology

has a relatively small coverage area and is more suitable for applications in densely pop-

ulated scenes such as stations, airports, and stadiums. However, compared to sub-6Ghz,

millimeter waves have poorer penetration and are easily affected by the environment. The

millimeter wave can be blocked by almost any obstacle in its propagation path. In view of

the characteristics of millimeter wave, Massive MIMO is a better communication technol-

ogy [34]. Compared with traditional MIMO technology, large-scale MIMO technology has

some unique channel propagation characteristics, such as near-field effects, non-stationary

characteristics of scattering clusters on the time axis and array axis, etc., which brings

great challenges to practical applications [35]. Studying the propagation characteristics of

massive MIMO wireless communication channels and proposing a channel model that can

accurately describe the propagation characteristics of large-scale MIMO wireless commu-

nication channels, which is essential for the design and evaluation of 5G wireless commu-

nication systems [36].

3.2 Introduction to Massive MIMO Channel Characteristics and Channel Modeling

3.2.1 Massive MIMO Channel Characteristics

Understanding the basic propagation characteristics of wireless channels is the basis

for channel modeling. However, the characteristics of high-frequency channels are differ-

ent from those of traditional channels, such as rain attenuation, atmospheric absorption,

and poor penetration performance [37]. These aspects are not suitable for direct model-

ing of high-frequency channels. This chapter analyzes the unique characteristics of high-

frequency channels and lists the current commonly used channel models in industry and

academia.
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1. Large-scale fading characteristics

The large-scale model is used to describe the change in the field strength of a signal

after a long distance (hundreds to thousands of kilometers). It is generally on the

scale of dozens or even hundreds of wavelengths. This is the long-term statistical

average in seconds. the result of. Large-scale fading includes path loss and shadow

fading, the former varies with the propagation distance, the latter is caused by the

shadow of large obstacles (such as tall buildings, mountains, etc.), so large-scale

models are divided into path loss models and shadow fading models.

Path loss is caused by the dissipation of transmitter radiated power and the effects

of propagation channels. The path loss model usually assumes that the path loss

is the same at a given transmit-receive distance. Shadows are caused by obstacles

between the transmitter and receiver. These obstacles attenuate the signal power

through absorption, reflection, scattering, and diffraction. When the attenuation is

very strong, the signal is blocked, and interruption may occur. Path loss refers to the

average value of the transmitted signal power loss with distance, and shadow fading

is a slow fluctuation around the average loss caused by obstacles [38].

Shadow fading, at a given distance of the channel, the actual road loss often shows

random changes, so only statistical models can be used to characterize this random

fading. The most used is the log-normal shadow model. The measured data proves

that the model can be accurate. To model the change in received power in indoor and

outdoor wireless propagation environments, the expression of the path loss under this

model is [39]:

PL(d)[dB] = P̂L(d0) + 10nlog(
d

d0
) +Xσ (3.1)
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Where d0 is the reference distance, Xσ is the zero-mean standard deviation of σdB

Gaussian random variable, the values of σdB and n are calculated based on the actual

channel measurement data, and the mean square error of the measured value and the

estimated value is calculated based on linear recursion.

2. Small-scale fading characteristics

Small-scale fading refers to the rapid fluctuation of radio signal amplitude, phase or

multi-path delay after short-time or short-distance propagation. The fading is caused

by the same transmission signal propagating along two or more paths and arriving

with different propagation delays. The receiver generates the signal constructive in-

terference and destructive interference. The multi-path effect is generally manifested

in the rapid change in signal strength after short distance or short time propagation.

On different multi-path signals, there is random frequency modulation caused by

time varying Doppler frequency shift and time caused by multi-path propagation de-

lay Spreading, usually using parameters such as delay spread, frequency spread and

angle spread to describe the corresponding multi-path effect.

Time dispersion, means that the multi-path signal arrives at the receiving end at dif-

ferent times, so that the received signal causes the spread of the digital signal wave-

form in the time domain. Important parameters describing the time dispersion char-

acteristics of multi-path channels are average additional delay τ , root mean square

delay extension σ, etc.

Frequency dispersion, refers to the phenomenon of signal dispersion in frequency.

The main reason is the relative movement between the mobile station and the base

station. The change in the distance between the transceiver and the receiver causes

the phase and frequency to change when the signal reaches the receiver, resulting in

a Doppler shift effect.
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3.2.2 Massive MIMO Channel Modeling

During the propagation process of wireless communication signals, from transmit-

ter to receiver through a complex propagation environment, large-scale fading (including

the path loss and shadow fading) and small-scale fading are caused by propagation mech-

anisms such as direct radiation, reflection, scattering, and diffraction [1]. Signal fading

leads to distortion of the received signal, which affects the communication performance of

the wireless communication system [2]. Understanding the propagation characteristics of

wireless communication channels and their influence on wireless communication signals is

crucial for the design and testing of wireless communication systems. The wireless channel

model is based on fully understanding the propagation characteristics of wireless signals

and characterizes the characteristics of the wireless channel through a series of parameters,

which is an abstract simulation of the wireless propagation environment [12].

Up to now, several massive MIMO wireless communication channel models have

been proposed. The classical independent and identically distributed Rayleigh fading chan-

nel is used as the channel model of massive MIMO communication system [37]. Since the

channel coefficients are independent and identically distributed, the central limit theory

and random matrix theory can be easily applied to the analysis of massive MIMO channel

matrix [40]. Following are some popular Statistical and Analytical Channel Models.

1. 3GPP and WINNER II Models

The geometry-based stochastic 3GPP and WINNER II Spatial channel model (SCM)

[41] follows a system-level approach and is suitable for link-level or system-level

simulation to estimate the actual channel (UE) between a base station (BS) and one

or more user devices, which explains the empirical correlation between large-scale

parameters. Large scale parameters represent omnidirectional RMS delay extension

(DS), azimuth extension (AS), shadow fading (SF), and Rician K factor (for LOS

channels), and show significant correlation between a given base and a cell phone
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link [42]. According to the work, in the 3GPP model, The 3GPP model also spec-

ifies a spatial autocorrelation coefficient of +0.5 for the shadow fading experienced

by the two MS, which is set to +0.5 for DS and AS, -0.6 for DS and SF, and -0.6

for AS and SF, respectively [39]. But does not specify the range of distance appli-

cable to the shadow fading correlation. In WINNER SCM, the number of spatial

interrelationships between two MS separated by distance dMS is modeled using a

decay exponential function, which is parameterized using related distance parame-

ters [42]. The correlation distance between two large-scale parameters is 0.37 (1/e),

and the typical correlation distance of UMi scenarios ranges from 9 m to 14 m. In

both SCMS, associated Gaussian random variables are used to generate large-scale

parameters to recreate the combined statistics of measurements.

2. COST 2100 Models

The COST 2100 model follows a cluster-level approach, where clusters (for exam-

ple, scattering objects) are placed in an analog environment and can interact with one

or more mobile terminals using the concept of visible regions. The visibility region

defined in the COST 2100 model is a key concept in geometric and random propaga-

tion models and represents the spatial or temporal span over which a set of traveling

multipath components appear on a universal radio terminal antenna [43] [44]. Spatial

consistency is achieved by using visible regions associated with each cluster of mul-

tipath components [44]. One or more light clusters are assigned to the visible area

and their size varies with the movement of the mobile terminal, thus allowing spatial

consistency in the simulated environment. Spatial consistency refers to smooth chan-

nel conversions between closely separated mobile terminals that experience similar

but slightly different scattering environments. Ignoring spatial consistency will over-

estimate the performance of spatial multi-antenna technology [45]. The COST 2100
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model assumes Rayleigh fading of path gain amplitude in an NLOS environment to

recreate the statistics of small fading [43].

3. Statistical Models

The establishment of statistical channel model is mainly through the statistics of

key channel parameters (such as path loss, delay, angle, etc.), because in practical

applications, the characteristics of wireless channels in the same scenario are similar

[46]. For example, the building structures and other environments of micro-cells in

different cities are similar, so their channel propagation characteristics will also have

similarities, so it is also called a stochastic modeling method.

Parametric modeling is a statistical modeling method based on channel measure-

ment. First, the scene of the measured channel is determined, and the measurement

data is collected; then the measurement results are processed, and the distribution

of related parameters such as delay and angle is extracted through an algorithm [46].

Thus, a channel model is established, which can be used in the same real propagation

environment.

Another approach to statistical modeling is the theoretical modeling approach based

on physical propagation. The modeling method describes the characteristics of the

signal and its scattering distribution by characterizing the statistical distribution of

the scatterers, and obtaining parameters such as multipath delay, wave arrival angle

and wave departure angle of the channel according to the basic propagation law of

electromagnetic waves. Often used in the study of MIMO channels

4. Deterministic Channel Modeling

The deterministic channel modeling method is to determine the geographic infor-

mation in the actual propagation environment such as (buildings, trees, terrain in-

formation, etc.) in advance based on the actual map information, and then analyze

and analyze the electromagnetic characteristics and geometric characteristics of the
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environment. Predictive wireless propagation models. This method requires very ac-

curate and detailed information about the dissemination environment. The accuracy

of the model established by this method is related to the accuracy and detail of the

environment. For example, not only the height, width and volume of the building

should be described, but also the structure and materials should be described. The

more detailed the description and the higher the accuracy, the closer the modeling

results are to the actual propagation situation. Since deterministic channel modeling

usually relies on the numerical calculation of solving Maxwell’s equations or the cal-

culation of geometric light theory [45], the computational complexity will increase

greatly with the complexity of the propagation environment. Therefore, deterministic

modeling methods are generally used for channel modeling in a smaller range such

as indoors. Common deterministic channel modeling methods include (RayTracing,

RT) and Finite-Difference Time-Domain (FDTD) methods. .

Deterministic channel modeling does not depend on the actual measurement activi-

ties, and as long as the specific information required for propagation can be obtained,

the transmission characteristics of the signal can be forecasted more simply.

5. Semi-deterministic Channel Modeling

In order to solve the computational complexity of the deterministic modeling method

and the error of the statistical modeling method, a semi-deterministic modeling could

be considered. This method absorbs the advantages of the first two methods, not

only reduces the complexity of mathematical derivation requirements, but also has

better results. accurate prediction of the actual signal. The most widely used mod-

eling method in the semi-deterministic modeling method is the stochastic geometric

modeling method. This modeling method is a simplification of RT in deterministic

modeling. It does not need to provide accurate signal environment parameters. A

fixed probability distribution is used, the locations of the scatterers are randomly se-
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lected, and then a simplified RT method is used to obtain the actual channel impulse

response.

The correlation matrix method is another commonly used modeling method in the

semi-deterministic method, which reflects the correlation between the spatial chan-

nels. This method needs to obtain the path delay, Angel of Arrival (AOA), Angle of

Departure (AOD), etc. Spatial parameters. Generally, parameters are obtained from

measured data or channel statistical information, and then the channel spatial correla-

tion matrix is directly calculated by using the geometric relationship between AOD,

AOA and antenna [47]. The models established by the correlation matrix method

include Weichselbreg model [48], VCR model 3GPPLTE channel model [49] and so

on.

A measurement-based statistical indoor radio-channel impulse response (IR) model

(SIRCIM) and outdoor mobile simulator (SMRCIM) were successfully implemented

from many thousands of collected CIRs in factories at 1.3 GHz [50] [51], and from

outdoor cellular channel PDPs [52] [53]. These CIR models were popular with in-

dustry in the early years of digital cellular and WiFi [54]. The SIRCIM and SMRCIM

models were based on statistical and geometrical models to synthesize the phases and

directions of arrival and departure in an IR model [55] [54].

Compared to the massive MIMO communication system with unified antenna ar-

ray, because the Rayleigh fading channels are independent of each other and obey the

Rayleigh distribution, this model can be better applied to the communication system of

distributed antenna massive MIMO [56]. Compared with independent and identically dis-

tributed Rayleigh fading channels, the Kronecker channel model takes into account the

correlation between antennas when it is used in massive MIMO communication systems,

but does not consider the non-uniformity of the scattering clusters of massive MIMO com-

munication channels on the antenna array axis. Kronecker’s improved channel model uses
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the Markov birth and death process to model the non-stationary characteristics of scat-

tering clusters in massive MIMO communication channels [57], which makes up for the

shortcomings of the traditional Kronecker channel model. Compared with the traditional

Kronecker modeling, the Weichselberger modeling [58] is used in the massive MIMO to

consider the mutual coupling between the transmitting and receiving antennas, but it also

does not have the non-stationary characteristics of the scattering clusters on the array axis.

Perform modeling [59]. The virtual channel characterization model uses the preset discrete

Fourier transform to replace the unilateral correlation matrix for correlation channel mod-

eling. This allows the accuracy of the channel model to increase when the TX and RX

has more antennas [60]. However, the virtual channel characterization of the model is only

applicable to massive MIMO systems equipped with one-dimensional linear antenna arrays

and cannot be applied to massive MIMO wireless communication systems equipped with

2D Uniform Planar Array (UPA) [8].

The Regular-Shaped Geometry-based Stochastic Model (RS-GBSMs) of the massive

MIMO wireless communication channel distributes the scattering clusters on the geometry

of ellipse, multi-ring, and double-multi-ring to perform an accurate calculation of channel

parameters to ensure the assumption of spherical waves [61]. For the scattering clusters

in the massive MIMO channels, Markov birth-and-death processes are used to model non-

stationary features in antenna arrays. The literature [48] proposed a massive MIMO wire-

less communication channel model based on the two-state Markov process, which uses

the parabolic wave assumption to replace the plane wave. It can not only meet the lin-

ear angular offset of the multi-path component of the massive MIMO antenna array but

also reduce the complexity of the model compared to the channel model using the spher-

ical wave hypothesis. The Dimension GBSMs (D-GBSMs) based on the WINNER series

channel model uses the spherical wave. It is assumed that the transmitter (TX) antenna

array is divided into multiple sub-arrays at the same time using the visibility of the scatter-
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ing clusters to simulate the non-stationary characteristics of the scattering clusters on the

array axis, D-GBSMs based on the COST2100 channel model also uses the spherical wave

assumption [62]. And whether the movement of the receiver (RX) enters the visible area of

TX is used to simulate the non-stationary characteristics of scattering clusters on the array

axis [63].

In addition to random channel models, deterministic channel models for massive

MIMO wireless communication channels such as the ray-launching model and graph the-

ory model [64] have also been proposed and applied to large-scale MIMO wireless com-

munication channels.

3.3 Measurement and Collection of Experimental Data

3.3.1 Measuring platform

The software and hardware equipment used at the transmitting end of this measure-

ment process are mainly a millimeter-wave vector signal generator, an arbitrary waveform

generator, an up-converter, and an electronic computer and corresponding software and

transmitting antenna. The hardware and software of the receiver mainly include down-

converter, broadband digital receiver, microwave analog signal generator, waveform gener-

ator and receiving antenna. The Keysight measurement hardware used by the measurement

platform is shown in Table 3.1 for specific models and signal information.

3.3.2 Measurement scenario

The location of this measurement is in a teaching hall. The measurement environ-

ment is 28GHz indoor scene and 28GHZ through-wall scenario. The indoor scenario is

LOS, and the wall-through scenario is NLOS measurement scene plan as shown in Fig.c3.1

and Fig. 3.2.
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Figure 3.1. Indoor scenario measuring.

Figure 3.2. Through-wall scenario measuring.

40



Table 3.1. Signal Parameters and Hardware Information

Parameters Value Hardware Information
Central frequency [GHZ] 28 E8267D PSG VSG

Bandwidth [MHZ] 800 Keysight M8190A AWG
Sample rate [GHZ] 1.28 Keysight N9040B

TX array 64 URA
RX array 64 URA

Array element space Half a wavelength
Transmit power [dBm] 30

Antenna directivity Directional

The two scenarios of this measurement are both used the TX using 64-URA (8x8)

antenna, the transmitter antenna is placed on the table, the height is 1 meter. The RX

antenna is also a 64-URA (8x8) antenna with a height of 1 meter. It is placed on an indoor

table in the indoor scenario and is about ten meters away from the TX. The RX is placed

on the table in the corridor in the wall-penetrating scenario, separated from TX by a wall.

3.4 Statistical channel modeling and parameter analysis

In this dissertation, through the obtained measured channel results, parametric mod-

eling of large-scale parameters such as channel path loss, delay spread, angle spread, and

shadow fading is derived to establish a GSCM. The GSCM modeling method separates

the antenna and the propagation channel, and researchers can use different antenna array

modes to obtain specific transmission channel models. The basic modeling steps are mainly

divided into three stages [65].

The first stage is mainly the preparation before the measurement, which needs to de-

termine the general model of the channel and the parameters to be measured. To formulate

a detailed measurement plan, including selecting the wireless channel scenario, defining

the measurement environment, planning the measurement path, and formulating the height
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of the user and the antenna [66]. After that, the measurement time, link budget and other

elements and the storage of measurement data and other specific matters must be con-

sidered. The second stage is the post-processing of the measurement data, usually using

high-resolution parameter estimation algorithms, such as Expectation Maximization (EM)

and other parameter estimation algorithms, to process and analyze the measurement data

to extract the channel delay, wave polarization gain of AOA, wave departure angle, and

Dense Multiple Components (DMC) parameters [67]. Through statistical analysis of the

data, clustering processing of multiple path components using a family algorithm, observe

the probability distribution function obeyed by different parameters and use the degree of

fitting to select the optimal distribution function, then finally get the corresponding statis-

tics parameters. The final stage is the generation of channels. Based on the statistical

parameters and probability distribution function obtained in the previous stage, cluster and

ray parameters are generated. Combined with the antenna array, the channel transmission

matrix is obtained. Finally, the time-varying channel impulse response is observed [68].

In the measurement, u(t) is the transmitted signal, the expression is

u(t) =
∞∑

i=−∞

a(t− iTa) (3.2)

Among them, a(t) is the burst signal, the expression is

a(t) =
K−1∑
k=0

akp(t− kTp) (3.3)

The burst signal consists of a detection sequence [a1, a2, . . . , aK−1] of length K, and

the duration of the shaped pulse Tp is related to Ta, Ta = KTp.

The received signal is actually composed of the superposition of multipath signals,

where the contribution of the lth path to the output signal can be expressed by the vector

signal as the following formula
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s(t; θl) = [s1(t; θl), . . . , sN(t; θl)]
T

= alexp{j2πvlt}c2(Ω2;l)c1(Ω1;l)
Tu(t− τl) (3.4)

Where θ1 is the channel parameter set, including departure angle Ω1;l, arrival angle

Ω2;l, delay τl, Doppler frequency shift vl, and complex amplitude al. The expression of the

received signal vector at the output of the antenna array is as follows

Y (t) = [Y1(t), Y2(t), ..., YM(t)]T =
L∑
i=1

s(t; θl) +

√
N0

2
N(t) (3.5)

Among them, N0 is a normal quantity, N(t) = [N1(t), N2(t), . . . , NM(t)]T is M -

dimensional complex Gaussian white noise, which can be seen from the expression (4) of

the received signal Y (t), where θl is an unknown parameter, and others are known. The

channel parameters are extracted from the measurement data, that is, the number of beams

L and their parameters θl = [Ω1,l,Ω2,l, τl, vl, al], l = 1, 2, ..., L are estimated by observing

the data Y (t) = y(t); the is usually used to estimate the above parameters. The log-

likelihood function of the parameter θ = [θ1, θ2, . . . , θL] under the given observation data

Y (t) = y(t) is

L(θ, y) =
1

N0

[
2

∫
PT

ℜ{sH(t, θl)y(t)}dt−
∫
PT

∥s(t, θl)∥2dt
]

(3.6)

Where ℜ{·} represents the real part. MLE of θ refers to the vector that makes θ →

L(θ; y) get the maximum value, which is

θML(y) ∈ argmax
θl

{L(θ; y)} (3.7)

The results of the dimension of θ is high, and the global maximum value of the

nonlinear function θ → L(θ; y) cannot be expressed in a closed form, which makes the cal-

culation of the value of θ̂ML(y) very complicated. In order to solve the complexity problem
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of MLE calculation, the EM algorithm can be used to calculate MLE through an iterative

idea, the SAGE algorithm is improved and developed on the basis of the EM algorithm,

which is widely used in TX and RX parameter estimation of channel measurement. The

process of using SAGE algorithm to estimate parameters is as follows [69].

Define an incomplete but measurable data set for the actual measurement data Y (t),

express Y (t) as a complete but unobservable data set X(t) = [X1(t), X2(t), . . . , XL(t)],

and its conversion relationship is

Y (t) =
L∑
l=1

Xl(t) =
L∑
l=1

s(t; θl) +
L∑
l=1

√
βiN0

2
Nl(t) (3.8)

Since X1(t), X2(t), . . . , XL(t) is independent of each other, the estimation of the

parameter θL of the lth path is unrelated with other paths.

Suppose the complete data set X(t) is an observable value, and the observation value

Xl(t) = xl(t) within the observation time PT . From equation (6), the log-likelihood

function of the parameter θL of the lth path corresponding to xl(t) is

L(θi;xl) =
1

βlN0

[
2

∫
PT

ℜ{sH(t; θl)xl(t)}dt−
∫
PT

∥s(t; θl∥2dt
]

(3.9)

Find the MLE of θL from the hypothetical xl(t) as

θL,ML(xl) ∈ argmax
θl

{L(θ;xl)} (3.10)

In practice, Xl(t) is unobservable. The idea of the SAGE algorithm is to calculate the

conditional expected value of Xl(t) based on when Y(t) = y(t) is not completely observed

data and the last estimated value of θ, θ̂′ , and use this value as the observation value of

Xl(t), then estimate the parameter set again by MLE [70]. This step is the E step of the

SAGE algorithm, as shown in the following formula
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xi(t; θ̂
′) = Eθ̃ [Xl(t)|Y (t) = y(t)]

= y(t)−
L∑

i=1,j ̸=l

s(t; θ̂′) (3.11)

The M step of the SAGE algorithm is

θ̄L,ML(xl) ∈ argmax
θ̄l

{z(θ̄l;xl)}

alML(xl) ∈
z(θ̄i;xi|θ̄l=θ̄lML(xl))

|c2(Ω̂2,l)ML| · |c1(Ω̂1,l)ML| · P · Tsc

(3.12)

The M step of the SAGE algorithm is improved on the basis of the EM algorithm.

The parameter matrix in each path is divided into 6 parameter subsets {τl, al}, {θ2,l, al}, {ϕ2,l, al},

{θ1,l, al}, {ϕ1,l, al}, and {vl, al}, all parameters are updated in order, and each time only

one parameter can be updated at a time, then the next guidance parameter is updated in

sequence until iteratively converges. The update equation of each parameter in θl is as

follows

τ̂l
” = argmax

τl
z(ϕ̂

′

1,l, θ̂
′

1,l, ϕ̂
′

2,l, θ̂
′

2,l, τ̂l
′
, v̂

′

1,l, x̂l)

θ̂”2,l = argmax
θ2,l

z(ϕ̂
′

1,l, θ̂
′

1,l, ϕ̂
′

2,l, θ̂
′

2,l, τ̂l
”, v̂

′

1,l, x̂l)

ϕ̂”
2,l = argmax

θ2,l
z(ϕ̂

′

1,l, θ̂
′

1,l, ϕ̂
′

2,l, θ̂
”
2,l, τ̂l

”, v̂
′

1,l, x̂l)

θ̂”1,l = argmax
θ1,l

z(ϕ̂
′

1,l, θ̂
′

1,l, ϕ̂
”
2,l, θ̂

”
2,l, τ̂l

”, v̂
′

1,l, x̂l)

ϕ̂”
1,l = argmax

θ1,l
z(ϕ̂

′

1,l, θ̂
”
1,l, ϕ̂

”
2,l, θ̂

”
2,l, τ̂l

”, v̂
′

1,l, x̂l)
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v̂”l = argmax
vl

z(ϕ̂”
1,l, θ̂

”
1,l, ϕ̂

”
2,l, θ̂

”
2,l, τ̂l

”, v̂
′

1,l, x̂l)

â”l =
[
|c2(ϕ̂”

2,l, θ̂
”
2,l)| · |(ϕ̂”

1,l, θ̂
”
1,l)|IPTsc

]−1

·z(ϕ̂′

1,l, θ̂
”
1,l, ϕ̂

”
2,l, θ̂

”
2,l, τ̂l

”, v̂
′

1,l, x̂l) (3.13)

It can be seen from Eq. 3.13 that the θl under each path is estimated, and the MLE

of θ can be obtained by bringing it into the equation, that is, the parameters of the channel

impulse response can be determined.

Channel parameter analysis is mainly to obtain the main channel statistical charac-

teristics from the parameters extracted from the channel, including the basic parameter

distribution fitting method, basic correlation analysis, as well as calculating the channel

characteristics from the delay domain and the angle domain.

3.4.1 Basic Distribution Fitting Method

The results of the channel parameter fitting are usually expressed using the prob-

ability density function (PDF) or cumulative distribution function (CDF) of the channel

parameter following the distribution function containing the parameters. According to the

measured discrete data points, certain criteria (for example, commonly used ML, Least

Square (LS), Minimum Mean Square Error (MMSE) or Uniformly Minimum Variance

Unbiased Estimation (UMVUE)) to determine the parameters of the distribution function

and describe the statistical characteristics of parameters [71]. In channel parameter esti-

mation, according to the n observations xi(in) of the random variable X , the specific form

of the PDF is generally assumed first, but the specific parameter value is unknown and the

channel parameter is estimated. The purpose is to use known measurements to estimate

unknown parameters to determine the specific expression of the PDF[25]. For example,
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assuming that the PDF of a certain parameter follows a normal distribution, through a set

of measurement data x1, x2, . . . , xn, the expression of the mean and variance of the normal

distribution can be obtained as

µ̂ ≜ E[X] =
1

n

n∑
i=1

xi, σ̂
2 ≜ V ar[X] =

1

n

n∑
i=1

(xi − µ̂)2 (3.14)

In the process of channel statistical parameter estimation, are commonly applied

include log-normal distribution function, Gaussian distribution, Rayleigh distribution, Rice

distribution, etc. Also some angular distribution functions are derived such as Uniform

distribution, Winding Normal distribution and Laplacian distribution [72].

The channel impulse response (CIR) can be obtained from the measurement data,

and the channel’s Power Delay Profile (PDP), Delay Spread (DS), root mean square delay

spread, power azimuth spectrum (PAS), angular spread (AS), and path loss (PL)can be

estimated [72].

3.4.2 Path Parameter Fitting

Establishing the relationship between path loss and distance is a very important part

of channel modeling. From the definition of path loss, we can calculate the difference under

the conditions that the transmission power, measured distance, received power, and channel

frequency are all known. The path loss PL(di) of the different distance measurement points

di is simply expressed as

PL(di) = PTx − PRx(di) +Gt −GT (3.15)

Using the actual pass loss data calculated from the measurement points at different

distances and the same distance measurement point, the slope and intercept in different

pass loss models can be calculated using linear regression analysis
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PL(d1)

PL(d2)

...

PL(dn)


=



10log10(d1)

10log10(d2)

...

10log10(dn)


 α

β

 (2)

The model to get the path loss is

PL(d) = α10log10(d) + β (3.16)

3.4.3 Shadow Fading Variance

According to the fading characteristics of wireless channels, large-scale pass loss is

usually modeled as a linear model, and the actual pass loss exhibits random fluctuations.

Multiple measurements of shadow fading are obtained by the deviation between the N

actual measured path loss values PL(d) and the expected path loss PL(d)

SF (dn) = PL(dn)− PL(dn) (3.17)

From equation (12), the variance of shadow fading is

σSF =

√√√√ 1

N

N∑
n=1

|SF (dn)|2 (3.18)

In PL modeling, the slope and intercept are often found by minimizing shadow fading

[73].

3.4.4 PDP and DS

The multi-path delay power spectrum of the channel describes the average power

at the multi-path delay, and the impulse response obtained from the measurement data is

easily calculated
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P (t, τ) = |h(t, τ)|2 (3.19)

The root mean square delay spread is the square root of the second moment of the

PDP, which represents the spread of the additional delay around the average delay. Its

expression is

DS =

√∑L
l=1 piτ

2
i∑L

l=1 pL
− τ 20 (3.20)

Where L is the total number of paths estimated by the SAGE algorithm, and τ0 is the

average additional delay, which is the statistical average of the PDP.

3.4.5 PAS and AS

The high-resolution parameter estimation algorithm can obtain multiple path param-

eters in the actual channel, such as angle, delay, gain in each polarization direction, and so

on. The angle includes Angle of Arrival (AOA), Angel of Departure (AOD), Zenith Angles

of Arrival (ZOA), Zenith Angles of Departure (ZOD), etc., the angle field is analyzed by

PAS and AS indicators [74].

PAS mainly describes the distribution of power in the angle domain. The main calcu-

lation method is to select an observation angle and then accumulate other dimensions, such

as time delay[26]. The winding process is usually used to calculate AS, and the specific

process is explained by taking AOD as an example [48].

First introduce a small offset ∆ to all the angle information, then AODi(∆) =

AOD(i) + ∆. After that, wind the new AOD, as shown in equation (23), for the azimuth

angle in the horizontal direction, the winding range is [−π, π), and for the elevation angle,

the range is [−π/2, π/2).

AODi(∆) = mod(AODi(∆) + pi, 2π)− π (3.21)
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Then the angle distribution function is estimated by PAS as

pas(AOD′
i(∆)) =

PAS(AOD′
i(∆))∑Nx

i=1 PAS(AOD′
i(∆))

(3.22)

The PAS in equation (21) is the normalized PAS, the average value of the adjusted

angle is calculated and removed from the angle, and then the second winding process is

obtained

AOD∗
i (∆) = mod(AODi(∆)−

(
Nx∑
i=1

AOD′
i(∆)pas(AOD′

i(∆))) + π, 2π)− π (3.23)

Then calculate the second order matrix of the angle

σ(∆) =

√√√√ Nx∑
i=1

[AOD′
i(∆)]2pas(AOD′

i(∆)) (3.24)

AS is the smallest angular second-order matrix σ(∆) that can be obtained by chang-

ing ∆, which is

AS = min
∆

σ(∆) (3.25)

In the actual measurement, the mean and variance of AOD can be obtained according

to the AOD measured from multiple positions, and the same process can be applied to AOA

and other angles [64].

3.5 Simulations and Performance Analysis

In this section, the simulations of measured data and modeled channel is derived,

which includes distribution of received data, AOA, AOD, PDP, small scale PDP, PL and

distribution fitting.
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Figure 3.3. PDP of received indoor signal.

3.5.1 Indoor Scenario

Due to the direct propagation, reflection, diffraction and scattering of the signal prop-

agation process, the multi-path phenomenon of the signal is generated. PDP is usually used

to indicate the distribution of the received signal power with the multi-path arrival delay. It

can be seen intuitively that the main path can be distinguished. Arrival delay is the main

power distribution of multi-path. Fig. 3.3 and 3.4 shows the PDP and PDP with strongest

power of indoor scenario.

It can be seen from the Fig. 3.3 and 3.4 that the power of PDP with strongest power

is significantly higher than that of PDP, and the arrival delay is also smaller than that of

PDP. This result is consistent with the LOS propagation characteristics. The smaller the

arrival delay, the stronger the received signal power. However, the path loss is also higher

than PDP, due to the high energy, it is easily affected by fading.

The RMSEs for Indoor and Through-wall scenario signals are listed in Table II. It

demonstrates that Log-normal is the distribution that fits the channel coefficient data best.
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Figure 3.4. PDP with strongest power of received indoor signal.

Table 3.2. RMSE Comparison among Different Distribution Fittings

Scenario Log-normal Log-logistic Weibull Rayleigh
Indoor 3.351 4.756 6.881 7.285

Through-wall 3.183 4.336 6.706 7.564

Figure 3.5. Histogram of received indoor signal.
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Figure 3.6. Log-normal fitting of received indoor signal.

The histogram of received indoor signal is shown in Fig.3.5 and 3.6, displays the

log-normal curve fitting of received signal. The Root Mean Square Error (RMSE) of fitting

is 3.351, which is smaller than other distribution fitting we have tried when processing the

data. The RMSEs for Indoor and Through-wall scenario signals are listed in Table II. It

demonstrates that Log-normal is the distribution that fits the channel coefficient data best.

The power delay spectrum is used to describe the relationship between power and

delay, and from the angle power spectrum, we can see the strength of the received signal

at each angle. Fig. 3.7 and 3.8 shows the AOA and AOD power spectrum of the received

signal in the indoor scene. Because it is indoor LOS propagation, and we are using URA

TX antenna and RX antenna, the propagation distance is close, it can be observed that the

angle of AOA and AOD tends to be directional.

Fig. 3.9 proposes the small-scale PDP of received signal under indoor scenario. If

we look it as a 2-D figure, it is close to the PDP of the signal. The PL of received signal is
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Figure 3.7. AOA power spectrum of received indoor signal.

Figure 3.8. AOD power spectrum of received indoor signal.
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Figure 3.9. Small scale PDP of received indoor signal.

shown in Fig. 3.10, it is very clear to observe that the PL of strongest signal is less than the

average. This is also consistent with the propagation characteristics of LOS.

3.5.2 Through-wall Scenario

The simulations of through-wall signal are displayed as following. From the figures

we can observe the power of received signal is lower than indoor scenario due to multi

times reflection.

The characteristics of NLOS propagation and LOS propagation are different. NLOS

transmission has no direct path, and its propagation distance, main multipath and LOS

are different. Compared with PDP in LOS scenes, the number of resolvable multipaths in

NLOS scenes is smaller and the signal strength is weaker. Followed as Fig. 3.11 and 3.12

shown.

The histogram of received signal and fitting curve is displayed in Fig. 3.13 and

3.14. If we compare them with indoor received signal, we can observe they are roughly
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Figure 3.10. Path loss of received indoor signal.

Figure 3.11. PDP of received through-wall signal.
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Figure 3.12. PDP with strongest power of received through-wall signal.

Table 3.3. Estimated parameters for log-normal

Central frequency Parameter Scenario Indoor Through-wall
5*28 GHz µ 17.39 18.58

σ 0.615 0.628
ϵµ 0.075 0.279
ϵσ 0.059 0.164

RMSE 3.351 3.183

similar, only the parameters are different. The RMSE of log-normal fitting for through-

wall received signal is 3.183.

Table. 3.3 shows the comparison of parameters of log-normal fittings for indoor

scenario and through wall scenario.

Compared Fig. 3.15 with Fig. 3.7 and Fig. 3.16 with Fig. 3.8, due to there is almost

no direct received signal in through-wall scenario, the AOA of it is closer to omnidirec-

tional. And the angle spread of AOD is also larger than indoor scenario.

57



Figure 3.13. Histogram of received through-wall signal.

Figure 3.14. Log-normal fitting of received through-wall signal.
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Figure 3.15. AOA power spectrum of received through-wall signal.

Figure 3.16. AOD power spectrum of received through-wall signal.
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Figure 3.17. Small scale PDP of received through-wall signal.

Figure 3.18. Path loss of received through-wall signal.
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Figure 3.19. RMSE-SNR comparison of MUSIC and SAGE method.

Fig. 3.17 and 3.18 is the small-scale PDP and PL under through-wall scenario. It is

easy to observe that both shows the fading and PL of through-wall is stronger than indoor

scenario.

Fig. 3.19 presents the RMSE-SNR comparison of a common subspace-based esti-

mation method, MUSIC, and the SAGE method which is derived in this dissertation. From

the figure we can observe that when the SNR is the same, the RMSE of SAGE is smaller

than the MUSIC method, which illustrates the better performance of SAGE method.
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CHAPTER 4

Channel Forecasting and Power Allocation Based on LSTM Network and Cooperative

Communication

4.1 Channel Forecasting Based on LSTM Network

4.1.1 Introduction to Recurrent Neural Networks

Time series is a series of data points obtained by a certain element according to the

time sequence index, which reflects the law of the change of this element over time [75].

Time series analysis is precisely through the learning of these changing laws to predict pos-

sible future trends. Time series data exists in various fields such as meteorology, economy,

medicine, electric power, and transportation, and of course, the field of wireless commu-

nication is also included. Time series is to collect and record observed things in the order

of time. The data usually has the three characteristics of large data scale, high dimension-

ality, and constant updating [76]. These data are usually viewed as a whole, rather than

looking at individual values one-sidedly. We can briefly understand the time series from

different angles. First of all, from the perspective of predicting the step size, there are

long, medium and short points. Of course, there is no difference between the better and

the worse for the prediction step length, and it can be selected according to actual needs.

From the point of view of statistical characteristics, time series data includes stationary

series and non-stationary series [77]. In practical applications, time series data are mostly

non-stationary series. Therefore, research on time series forecasting is also mainly focused

on non-stationary series [78]. From the perspective of the composition of the sequence,

the time series can be divided into the following parts: the trend part, which usually deter-

mines the trend of the sequence: seasonal changes, that is, some cyclical changes: cyclical
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changes, often manifested as oscillating phenomena: random changes, that is, random fac-

tor interference [79].

Traditional linear time series models mainly include exponential smoothing, ARMA

and so on. These methods can achieve ideal results under the premise that the sequence

is stationary, but if these prediction methods for stationary sequences are used in the anal-

ysis of non-stationary time series, wrong conclusions will often be obtained. With the

advancement and improvement of various machine learning algorithms, many nonlinear

time series prediction models based on machine learning algorithms have emerged. For

time series forecasting of some data, neural networks can achieve better results than tra-

ditional statistical-based methods. This benefits from the neural network’s strong fitting

ability and good generalization ability for nonlinear functions. It is also during this period

of rapid development of neural networks that a large number of time series prediction stud-

ies based on artificial neural networks have emerged [80]. In these studies, neural networks

have indeed demonstrated excellent processing capabilities for nonlinear sequences.

With the improvement of computing power, deep neural networks began to appear in

time series forecasting. The main characteristics of deep learning are deep levels and many

neurons, which guarantees the ability to express nonlinearity. As known, Convolutional

Neural Network (CNN) is the most general and useful neural network, which is the most

popular method for image processing in recent years. There are also Recurrent Neural

Network (RNN), along with the evolved Long Short-Term Memory (LSTM) network, had

been proven that the processing of time series achieves remarkable results. [81].

Facts have proved that the RNN networks in deep learning can predict the future

state of time series very well. It can acquire multi-level features through learning like a

universal neural network model, and on this basis, it can also evolve into high-level features

through the learned basic features, and finally discover the distributed characteristics of

the data , The bigger feature is that its neurons have added memory function [82]. The
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Figure 4.1. Structure diagram of RNN.

hidden neurons of the RNN increase the interconnection, which realizes the memory of

information, and is not easy to lose in the prediction, so that some influencing factors can

be used, and the model can avoid over-fitting the training data [83].

4.1.2 The Recurrent Neural Network

4.1.2.1 The Structure of RNN

The structure of the RNN is shown in Fig. 4.1, it also consists of input layer, hidden

layer and output layer. But what it is more perfect than the general neural network is that

for the nodes of each hidden layer, their input is not only from the input layer, but also from

the output of the node of the previous hidden layer.

The detailed structure of RNN model is shown in Fig. 4.2. Among them, the initial

input from the input layer at time t is expressed by xt, st is the output of the hidden layer,

and yt is the output of the output layer. According to Fig. 4.2, the value of st not only

depends on xt, but also is related to st−1, this is the structural factor of the RNN model.

Based on this, we will forecast yt , by using both the data of xt and the signal of xt−1 . The

structure of one RNN neuron and the training model process are shown in Fig. 4.3:
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Figure 4.2. Expanded structure of RNN.

Figure 4.3. Structure of one RNN Unit.

4.1.2.2 The Training Principle of RNN

The difference between the training method of RNN network and the traditional neu-

ral network training method is that the training parameters (W,U, V ) in RNN are shared.

And in the gradient descent method used by RNN, the output of each step is not only re-

lated to the current output, but also related to the memory state of the previous steps [84].

The backpropagation training algorithm used in RNNs unrolls the neural network in time,

redefining the connections in the network.
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After expanding the RNN network, it can be seen that each layer has the same weight

matrix (W,U, V ), and the update process of the weight matrix is as follows:

Suppose x(t) is the input time series, u(t) is the intermediate calculation result, the

final output result is ŷ(t), and the true value of the training sample is represented by y(t),

where

x(t) = (x1(t), x2(t), ...xk(t))
′

y(t) = (y1(t), y2(t), ...yk(t))
′

t = 1, 2, ...T (4.1)

The final output error of the model can be expressed as:

E =
T∑
t=1

||y(t)− y(̂t)||2 =
T∑
t=1

E(t) (4.2)

The output of the model can be obtained through the forward propagation algorithm,

and then the error is back propagated along the time series. The error term at each time

point can be expressed as:

δj = (yj(T )− ŷj(T ))
∂f(u)

∂u

∣∣∣∣
u=Sj(T )

(4.3)

δi(T ) =

[
L∑

j=1

δj(T )

]
∂f(u)

∂u

∣∣∣∣
u=Si(T )

(4.4)

where δj(T ) is the error of the output unit at time T , δi(T ) is the error of the inter-

mediate state ui(T ) at time T , the errors of δj(T ) and δi(T ) are calculated as follows:

δj(t) =

(
yj(T )− ŷj(T ) +

N∑
i=1

δi(t+ 1)V ′
ij

)
∂f(u)

∂u

∣∣∣∣
u=Sj(t)

(4.5)

δi(t) =

(
N∑
i=1

δi(t+ 1)Wij +
L∑

j=1

δj(t)Vij

)
∂f(u)

∂u

∣∣∣∣
u=Si(t)

(4.6)
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By using the backpropagation algorithm, the update process of the weight matrix is

as follows:

Wij = Wij − η

T∑
t=1

δi(t)µj(t− 1), µj(t− 1) = 0, t = 1 (4.7)

Uij = Uij − η

T∑
t=1

δi(t)xj(t) (4.8)

Vij = Vij − η

T∑
t=1

δi(t)uj(t) (4.9)

V ′
ij = V ′

ij − η
T∑
t=1

δi(t)ŷj(t− 1), ŷj(t− 1) = 0, t = 1 (4.10)

Among them, Wij is the weight matrix between neurons in the hidden layer, Uij is

the weight matrix between the input layer and the hidden layer, Vij is the weight matrix

between the hidden layer and the output layer, V ′
ij is the weight matrix of output layer to

the hidden layer.

But at the same time, the standard RNN also has its own shortcomings. If the input

sample spans a long time, the gradient will disappear. This phenomenon will cause the loss

of information at a time far away from the current time. That is, the standard RNN can only

remember for a short period of time. The long-term sample information has a low utiliza-

tion rate. Therefore, people proposed a special RNN model - LSTM model, proposed by

Hochreiter and Schmidhuber, and was revised and carried forward by many later scholars.

Through the learning of nonlinear network, it can not only obtain approximate solutions

of complex functions, but also extract input samples to grasp the essential characteristics.

Furthermore, the gradient vanishing problem common to traditional RNNs is also solved by

LSTM through the long-term memory function, in addition to achieve long-term memory

of information [85].
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4.1.3 The Long Short-Term Memory Network

4.1.3.1 Introduction and Structure of LSTM Network Model

Long short-term memory network is a variant of recurrent neural network [86], which

is mainly used to solve long-term time-dependent problems. For example, in image descrip-

tion, speech recognition, and natural language processing, the LSTM model has performed

well and is widely used in academic and industry fields.

Fig. 4.4 shows the structure of a neuron in an LSTM network. The LSTM network

is essentially a unidirectional chain structure, and the internal structure of each neuron

on the chain is the same, which is the same as the structure of RNN. But the difference

of LSTM is that three new structures and special memory units are added to solve the

gradient vanishing. The three gate structures are input gate, forget gate and output gate

[87]. The gate structure contains the Sigmoid function layer, which can compress the

value between 0-1, which helps to remember useful information for a long time or forget

redundant information. When the previous data is needed, the activation function will

be multiplied by 0 to get 0 output, and this part of the information will not be passed to

the next neuron as input. Similarly, when encountering information data that needs to be

memorized, it will be multiplied by 1 and still save itself, and then passed to the next neuron

as input information. It is through this selective memory or forgetting of information that

the LSTM network can save a part of useful information for a long time, and the basis

for this phenomenon is the newly added three gate structures and memory units, and the

problem of gradient vanishing can be solved.

In Fig. 4.4, xt indicates the input at time t, or we can call it the CSI at time t.

σ is the Sigmoid function, it is an activation function. ⊗ represents the calculation of

element multiplication, and the forget gate, input gate and output gate is established by

the combination of σ and ⊗ together, which are respectively shown from left to right. The
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Figure 4.4. Structure diagram of LSTM.

information passing through the forget gate will be decided whether it needs to be forgotten,

the signal passing through the input gate will be retained and added to the memory unit as

a component, and the output of the next hidden state will be determined by the output gate.

4.1.3.2 The Training Principle of LSTM

The training method of the LSTM model covers the calculation process of forward

calculation and back propagation. The specific calculation process is as follows:

1. Forward calculation process:

(a) Forget gate: The input vector at time t and the output vector of the output layer

at time t − 1 jointly determine the output state of the forgetting gate at time t.

The calculation method is shown in equation (4.11).

ft = σ (Wf · (yt−1, xt) + bf ) (4.11)

where: ft is the output vector at time t, σ is the activation function, Wf is the

weight matrix, concated by matrix Wfy and matrix Wfx, yt−1, xt are the output

vector of the output layer at time t− 1 and the input vector of the input layer at

time t, respectively. bf is the bias term.
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Among them, Wf can be presented as:

(Wf )

 yt−1

xt

 = (WfyWfx)

 yt−1

xt


= Wfyyt−1 +Wfxxt (4.12)

(b) Input gate: The input gate can be represented by the equation (4.13), and the

meanings represented by the symbols in the formula are similar to those of the

forget gate, which will not be repeated here.

it = σ (Wi · (yt−1, xt) + bi) (4.13)

(c) Memory unit: The state of the memory unit at the current moment can be cal-

culated in two steps. First, the output at time t − 1 and the input at time t are

used to calculate the state ĉt of the current input unit. Its calculation expression

can be expressed as:

ĉt = tanh (Wc · (yt−1, xt) + bc) (4.14)

Then calculate the memory cell state ct at the current moment:

ct = f ∗ ct−1 + it ∗ ĉt (4.15)

The ∗ symbol in the formula is the multiplication operation between each el-

ement. The unit state ĉt input by the LSTM at the current moment and the

long-term memory ct−1 are combined through the memory unit.

(d) Output gate:

ot = σ (Wo · (yt−1, xt) + bo) (4.16)

yt = ot ∗ tanh(ct) (4.17)
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Table 4.1. Learning Parameters

Module Weight Matrix Bias Item
Output gate Wo bo
Forget gate Wf bf
Input gate Wi bi

Memory unit Wc bc

yt represents the final output of the LSTM model at the current time, that is, the

spectral prediction value at time t. It can be seen from equation (4.17) that the

output of the output gate and the state of the memory unit at the current moment

jointly determine the value of yt.

2. Back propagation process of error:

Similar to the RNN model, the calculation of the error back propagation of the LSTM

model also uses the value of the error term σ, and according to the calculated error

term, the gradient descent method is used to update the weights. In the training

process of the LSTM model, there are 4 groups of weights that the model needs to

learn, and the specific learning parameters are shown in Table 4.1:

The weight matrix plays a different role in the derivation process of backpropagation,

so it is divided as follows:

Wo = [Woy,Wox]

Wf = [Wfy,Wfx]

Wi = [Wiy,Wix]

Wc = [Wcy,Wcx] (4.18)

71



Assuming that the error (loss function) is E, and the output at time t is yt, then the

error term δt of the output layer at time t is:

δt =
∂E

∂yt
(4.19)

For the above four weight matrices, there are four weighted inputs, which correspond

to ft, it, ct and ot at time t, respectively. Let their corresponding error terms be δft,

δit, δct and δot, respectively, then:

δTot =
∂E

∂(Wo · (yt−1, xt) + bo)

=
∂E

∂yt
· ∂yt
∂ot

· ∂ot
∂(Wo · (yt−1, xt) + bo)

= δTt ∗ tanh(ct) ∗ ot ∗ (1− ot) (4.20)

In the same way, it can be known from the chain rule:

δTft =
∂E

∂(Wf · (yt−1, xt) + bf )

= δTt ∗ ot ∗ (1− tanh(ct)
2) ∗ ct−1 ∗ ft ∗ (1− ft) (4.21)

δTit =
∂E

∂(Wi · (yt−1, xt) + bi)

= δTt ∗ ot ∗ (1− tanh(ct)
2) ∗ ĉt ∗ it ∗ (1− it) (4.22)

δTĉt =
∂E

∂(Wc · (yt−1, xt) + bc)

= δTt ∗ ot ∗ (1− tanh(ct)
2) ∗ it ∗ (1− ĉ2t ) (4.23)

The error propagation along the time direction is to calculate the error term δt−1 at

time t1, and the expression of δt−1 is:

δt−1 = δTotWoy + δTftWfy + δTitWiy + δTĉtWcy (4.24)
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The calculation formula for the propagation of the error term to the upper layer can

be expressed as:

δlt−1 =
∂E

∂(W · (yt, xt) + b)

= (δTotWox + δTftWfx + δTitWix + δTĉtWcx) ∗ f ′(W · (yt, xt) + b) (4.25)

where W · (yt, xt) + b) represents the weighted input of layer l − 1, and f is the

activation function of layer l − 1.

Taking the output gate as an example, the calculated error term is used to calculate

the gradient of each weighting matrix and the gradient of the bias term at time t. The

calculation can be expressed as:

∂E

∂Woy,t

=
∂E

∂(Wo · (yt−1, xt) + bo)
· ∂(Wo · (yt−1, xt) + bo)

∂Woy,t

= δoty
T
t−1 (4.26)

∂E

∂Wox,t

=
∂E

∂(Wo · (yt−1, xt) + bo)
· ∂(Wo · (yt−1, xt) + bo)

∂Wox,t

= δotx
T
t−1 (4.27)

∂E

∂bo,t
=

∂E

∂(Wo · (yt−1, xt) + bo)
· ∂(Wo · (yt−1, xt) + bo)

∂bo,t
= δot (4.28)

The final gradient is the sum of the gradients at each time:

∂E

∂Woy

=
t∑

j=1

δojy
T
j−1 (4.29)

∂E

∂Wox

=
t∑

j=1

δojx
T
j (4.30)

∂E

∂bo
=

t∑
j=1

δoj (4.31)

In the same way, the weight matrix and the gradient of the bias term of the forget

gate, input gate and memory unit can be obtained.

73



4.2 Power Allocation Based on Cooperative Communication

In cooperative communication, nodes cooperate with each other, which can not only

expand the communication range, but also improve the information transmission rate of the

system. The research on resource allocation in cooperative communication mainly focuses

on power allocation. By rationally allocating the power of nodes, the system performance

can be improved while the power consumption can be reduced [88].

When a relay node cooperates with other nodes to transmit information, it should

not only consider improving the system performance, but also consider when to cooperate,

with whom and how to cooperate. Compared with the straight forward communication

link, cooperative communication has better transmission quality and channel capacity, but

the structure of cooperative communication is complex and the amount of calculation is

large. The direct transmission link has a simple structure and low complexity. Due to the

limited wireless communication resources, the main goal of cooperative communication is

to improve the performance of the communication network and allocate power reasonably

under the premise that the total power of the wireless communication system is constrained.

The main structure of this section is arranged as follows. The first part expounds

the system model of the cooperative communication network; the second part mainly in-

troduces several typical power allocation algorithms; the third and fourth parts study the

objective function of maximizing the information transmission rate and optimize the node

power allocation in the single relay scenario; Section V studies the channel capacity of AF

and DF transport protocol systems

4.2.1 System Model of Cooperative Communication Network

In cooperative communication, system model is the most basic research content.

According to different classification standards, the following simple cooperative commu-

nication network system models are introduced respectively.
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Figure 4.5. Single-relay two-hop system model.

1. Single-relay two-hop system model

In the system model of Fig. 4.5, the number of source nodes, relay nodes and desti-

nation nodes are all 1. The signal sent by the source node S is forwarded by the relay

node R, and finally transmitted to the destination node D. The single-relay two-hop

network model has a simple structure and is relatively easy to implement [89].

2. Multi-hop relay system model

As shown in Fig. 4.6, R is the relay node which processes the signals sent by the

source node S in order, and then forwards them to the destination node D. The relay

node forwards once, and the network model is a single relay network model, as shown

in Fig. 4.5. The relay node forwards two or more times, and the model is a multi-hop

relay network model, as shown in Fig. 4.6. When the distance between the source

node and the destination node is relatively far, the model reduces the impact of path

loss on transmission performance, and expands the coverage radius of the system.

3. One-way multi-relay system model

As shown in Fig.4.7, the source node S forwards the signal through multiple cooper-

ative relay nodes R, and finally transmits the signal to the destination node D. Single-

relay cooperative transmission and multi-relay cooperative transmission depend on

the number of relay nodes. When there is only one relay in the links, the model is
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Figure 4.6. Multi-hop relay system model.

Figure 4.7. One-way multi-relay system model.

called single-relay cooperative communication; and the model is called multi-relay

cooperative communication when there are multiple relays exist. The cooperative

transmission of multiple relay nodes can improve the system performance and also

obtain diversity gain.

4. Multi-source and multi-relay system model

The commonly used cooperative communication network model consists of a sin-

gle source node, multiple relay nodes and a single destination node, but the system

in the actual scenario is dominated by the multi-source and multi-relay model. In

actual communication, multiple source nodes may transmit information at the same

time, and multiple access schemes need to be adopted, such as time division multiple

access, frequency division multiple access, code division multiple access, and space
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Figure 4.8. Multi-source and multi-relay system model.

division multiple access. Single-source node transmission and multi-source node

transmission depend on the number of source nodes. When the number of source

nodes is 1, the model is called a single-source communication model; when the num-

ber of source nodes is multiple, the model is called a multi-source communication

model. As shown in Fig. 4.8, compared with the single-source relay network, the

multi-source relay network is more in line with the actual communication scenario.

Multiple source nodes jointly use the same set of cooperative relay nodes to complete

communication transmission, and make the relay nodes reasonably allocate resources

to the source nodes.

4.2.2 Power Allocation Algorithm

1. Equal Power Allocation Algorithm In the wireless cooperative communication sys-

tem, in the first transmission link, the node S transmits information to node R and D

directly. In the second transmission link, the cooperative node R processes the re-

ceived information according to a certain protocol, and then transmits the processed
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information to node D. PS is the transmit power of the source node, PRi is the trans-

mit power of the ith relay node, P0 is the total power constraint between the source

node and the relay node, and the power constraint condition is PS +
∑N

i PRi ≤ P0.

The equal power distribution is expressed by the following formula:

PS = PR1 = PR2 = PRi =
1

N + 1
P0 (4.32)

The equal power distribution algorithm is to distribute the total power equally to

all nodes, and the algorithm complexity is low. But when the link state between

the node S and the node R is better, the overall performance of the algorithm is

not high. For the single relay cooperative communication system to be proposed in

this dissertation, the transmission power of the source node and the relay node is

PS = PR = 1
2
P0

2. Power Allocation Algorithm Based on Minimum Outage Probability

With the in-depth study of cooperative communication, power allocation has gradu-

ally become the main research part of cooperative communication technology, and

the system outage probability is an important evaluation factor for an relatively op-

timised power allocation scheme. The power distribution method with the minimum

outage probability refers to the calculation of the optimal allocation factor of the

power of the node S and the node R under the premise of constraining the total

power of the system, so as to minimize the outage probability of the system.

3. Power Allocation Algorithm Based on Maximizing Channel Capacity

By analyzing the three-node two-hop model, it is verified that the relay channel can

improve the channel capacity from information theory, which provides a foundation

for the implementation of cooperative diversity technology. The allocation algorithm

based on maximizing channel capacity is based on the premise of constraining the to-
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Figure 4.9. Cooperative Communication System Model.

tal power of nodes, and establishing the objective function according to the optimiza-

tion objective of the maximum channel capacity C. The power distribution method

obtains the optimal distribution factor between nodes by calculating the objective

function of the maximum channel capacity, reasonably allocates the total power of

the system, and optimizes the performance of the system

4.2.3 Modeling of Power Allocation Algorithm for Cooperative Communication

4.2.3.1 Cooperative Communication System Model

1. System Model

As shown in Fig. 4.9, the model includes three nodes, which is source node S, relay

node R and destination node D. There are two transmission links in the communica-

tion with different transmission time: the first link at time one, node S sends signals

to the node R and the node D directly; at the second link at time two, the node R trans-

mits the signal to the node D through DF transmission [90]. The node D cooperates

and decodes the signals received from the node S and node R to obtain diversity gain.

In the system model, the channel coefficients of the three links are hS,D, hS,R, and

Hr,d, respectively. The channel gains of the three links are expressed as:
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HS,D = |hS,D|2, HS,R = |hS,R|2, HR,D = |hR,D|2 (4.33)

The noises of the three links are independent of each other and are Gaussian white

noise with 0 mean and variance σ2. The noise of the three links is expressed as:

σ2
S,D = σ2

S,R = σ2
R,D = σ2 (4.34)

2. Channel Model

In the first transmission link, the signals yS,R and Ys,d received by the node R and

node D are:

yS,D =
√
pShS,Dx1 + Z1

yS,R =
√
pShS,Rx1 + Z2 (4.35)

Among them, pS is the transmission power from the node S, x1 is the signal sent by

the node S, Z1 and Z2 are Gaussian white noise with 0 mean and variance as σ2.

In the second transmission link, the signal yR,D received by the node D is expressed

as:

yR,D =
√
pRhR,Dx2 + Z1 + Z2 (4.36)

Among them, pR is the transmission power from node R, and x2 is the signal after

the node R processes the received signal.

3. Information Rate of Cooperative Communication System

In the first time slot, the information transmission rates RS,D and RR,D obtained by

the node R and node D are expressed as:

RS,D =
1

2
log2(1 + γS,D)

RS,R =
1

2
log2(1 + γS,R) (4.37)
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Among them, 1
2

in the equation is because the whole transmission process includes

two transmission time slots. The S-D link has a SNR of γS,D =
pSHS,D

σ2 , and the S-R

link has a SNR of γS,R =
pSHS,R

σ2 .

In the second time slot, the information transmission rate RR,D obtained by the des-

tination node is expressed as:

RR,D =
1

2
log2(1 + γR,D) (4.38)

Where the SNR of R-D link is γR,D =
pRHR,D

σ2 .

4.2.3.2 Power Allocation

Power distribution is to calculate the optimal power allocation factor with the goal of

maximizing the QoS performance at the destination node under the condition of constrain-

ing the total power of the node. In the problem of power allocation, this dissertation takes

the information transmission rate as the optimization goal to reduce power consumption

when the system performance is optimal.

1. Define Variables

The node power allocation vector is expressed as:

P = [pS, pR] (4.39)

Compare the information transmission rate of the relay node and the destination

node, and express the minimum value f(pS, pR) as

f(pS, pR) = min(RS,D +RR,D, RS,D) (4.40)

2. Target Optimization

In the system model, the proposed power allocation scheme should not only ensure
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the maximum information transmission rate of the destination node, but also mini-

mize the power consumption of the entire transmission process and reduce the power

consumption overhead. The optimization objective function is represented by the

following equation:

max
pS ,pR

f(pS, pR) (4.41)

The constraints are expressed as:

pS + pR ≤ ptot (4.42)

log2(1 + pSHS,D) + log2(1 + pRHR,D) ≥ log2(1 + pSHS,R) (4.43)

pS ≥ 0, pR ≥ 0 (4.44)

Among them, σ2 = 1, equation (4.41) is the optimization objective function, equa-

tion (4.42) is the constraint condition of the transmission power from node S and

node R, equation (4.43) is the maximum value reached by the destination node rate,

equation (4.44) is the transmission power values of node S and node R are greater

than 0.

On the foundation of above three constraints, the optimization state is described as,

under the premise of ensuring that the power of the node is positive and constraining

the total transmit power of the node, the goal is to maximize the information trans-

mission rate of the destination node, so as to obtain the optimal relationship between

the node S and node R.
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4.2.4 The Power Allocation Algorithm for Cooperative Communication

In order to decline the squander of resources and improve the system performance, a

power allocation scheme is proposed in the single-relay cooperative communication model.

The power allocation scheme is to establish a convex optimization function of the maxi-

mum information transmission rate of the destination node under the constraint of ensuring

the total transmit power, and use the Lagrangian function to optimize the transmission

power of node S and node R.

The steps of the algorithm are as follows:

Step1: The Lagrange equations for optimizing objective equation (4.40) to (4.42) are

expressed as:

L(pS, pR) =f(pS, pR) + λ[log2(1 + pSHS,D) + log2((1 + pRHR,D)

− log2(1 + pSHS,R)] + µ(pS + pR − ptot)

(4.45)

where λ ≥ 0 is the Lagrange multiplier under power constraints.

Step2: According to the Karush–Kuhn–Tucker condition, set the partial derivatives

of L(pS, pR) to pS and pR to 0 respectively. The optimal solutions p∗S and p∗R should satisfy

the following equations:

∂L

∂p∗S
=

1

2ln2

[
HS,D + 2λHS,D

(1 + pSHS,D)
− 2λHS,R

(1 + pSHS,R

)

]
+ µ (4.46)

∂L

∂p∗R
=

HR,D(1 + 2λ)

2ln2(1 + pRHR,D)
+ µ (4.47)

Step3: In the optimization equation (4.41), under the condition that the total power

of the node is constrained, when the information transmission rate of the destination node
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reaches the maximum, the optimal power p∗S and p∗R of the source node and the relay node

are respectively:

p∗S = min

(
1 + 2λ

2µln2
− 1

HR,D, ptot

)
(4.48)

p∗R = max

(
HR,D(1 + 2λ)

2ln2(1 + pRHr,d)
+ µ

)+

(4.49)

Where, (·)+ = max(·, 0)

Equations (4.46) to (4.49) are the optimal solutions of the optimization problem

(4.41), and the proof process is as follows:

In order to reduce the computational complexity of the optimization objective equa-

tion (4.41), I adopts the Lagrange dual method, which is expressed by the following for-

mula:

g(λ, µ) = max
pS ,pR

L(pS, pR) (4.50)

The dual function of equation (4.44) is expressed as:

min
λ,µ

g(λ, µ) (4.51)

The convex dual function of L(pS, pR) obtained from equation (4.50) is g(λ, µ).

Then, the convex dual function of equation (4.51) is solved by the sub-gradient method,

and its formula is:

∆λ = log2(1 + pSHS,D + log2(1 + pRHR,D)− log2(1 + pSHS,R) (4.52)

Therefore, the optimization objective equation (4.41) ensures that the information

transmission rate of the destination node reaches the maximum value under the condition

of constraining the total power value of the node. The optimal power distribution between

the source node and the relay node obtained by the equation (4.48) and equation (4.49) is

the optimal solution of the optimization equation (4.41), and the proof is completed.
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∆µ = pS + pR − ptot (4.53)

4.3 Simulations and Performance Analysis

4.3.1 5G Channel Forecasting Based on LSTM Network

In this section, the simulation of Massive MIMO channel forecasting based on LSTM

network is derived. The parameters of simulated channels are the same as in Table 2.1,

except for the number of TX and RX antenna is 64. We selected 10000 channels data,

and performed average value of 10000 times forecasting. Each data set contains more

than six thousand observations. During the forecasting, first 90 % of observations is used

to train the model, and last 10 % data is used to test. Through experiments, we selected

the optimal LSTM network parameters, used a two-layer neural network with 330 hidden

units, and performed 2000 iterations of training, specifying an initial learning rate of 0.005,

and multiplying it by a factor of 0.2 after 1000 iterations of training to reduce the learning

rate. At the same time, to prevent the gradient exploding, the gradient threshold is set to 1.

Before plug data into training, we did standardization for all data, and de-standardization

for comparing with the actual data after forecasting. Fig. 4.10 presents the RMSE and loss

of training model.

From the figure we can observe that the loss function of model is closing to 0 with

the iteration increasing, so we can consider the model to have converged.

Then, we forecasted values for multiple time steps in the future, one time step each

time slot, and updated the network with each forecasting. After each step of forecasting,

use the previous forecasted value as the input to the function. Again, the testing data set

was standardized by using training model’s data parameters. Afterwards, the RMSE was

calculated based on the standardized data. Fig. 4.11 presents the concatenation of actual
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Figure 4.10. RMSE and loss of training model.

channel and forecasted channel. The comparison of forecasting accuracy and RMSE is

performed in Fig. 4.12. So far, the RMSE is about 0.16.

However, because the CSI has been obtained, the actual value of the time step be-

tween each forecasting can be obtained, so if the actual value is used to replace the fore-

casted value to update the network state, the following forecating of the test data set will

be more accurate. Likewise, we make forecasting for each time step. The difference is that

for each forecasting, the actual values at the previous time step are used to forecast the next

time step, not the forecasted values. By this optimization, RMSE decresed to about 0.05,

a better forecasting performance can be obtained. The updated comparison and RMSE is

revealed in Fig. 4.13.

We can conclude that our optimized model parameters for LSTM network can achieve

a relatively high forecasting accuracy, and forecastings are more accurate when the network

state is updated with observations rather than predictions.
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Figure 4.11. Concatenation of actual channel and forecasted channel.

Figure 4.12. Comparison and RMSE of forecasting.
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Figure 4.13. Comparison and RMSE of forecasting by using actual observation.

4.3.2 Power Allocation Based on Cooperative Communication

In this dissertation, in the half-duplex single-relay cooperative system, a node power

allocation scheme is proposed: when the information transmission rate of the destination

node reaches the maximum value, the power of the source node and the relay node is

obtained. Under the constraints of the total power of the nodes, after solving the objective

function of maximizing the information rate of the destination node, the power values of the

source node and the relay node are obtained, that is, the optimal power value. We present

the Monte Carlo simulation results in this chapter, and evaluate the impact of the proposed

scheme on the system performance by comparing the equal power allocation scheme, the

non-cooperative scheme [85] and the power allocation scheme proposed in this dissertation.

Among them, in the non-cooperative scheme, there is only one link between node S and

node D, and the gain cannot be obtained through the cooperative relay node. The equal

power scheme is to set the transmission power of the source node and the relay node to be

equal and remain unchanged, which can be regarded as a special case of this scheme.
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Table 4.2. Simulation Parameters

Parameter Value
Minimum distance of S-D link 20m

Variance of noise (σ2) 1
Maximum transmitted power of source node 20dBm
Maximum transmitted power of relay node 20dBm

Transmission time 1s

In this dissertation, the MATLAB simulation is used to test the performance, and the

three links do not affect each other, and the Rayleigh fading link with the mean value of

1 is set. The lower limit of the link distance between the source node and the destination

node is set as 20 meters, the noise variance is sigma, the maximum power of the source

node and the relay node is both 20dBm, and the transmission time is 1 second. Table 4.2

shows the simulation parameters.

4.3.2.1 Information Transmission Rate of Destination Node vs Power of Source Node

The initial value of the power of the source node is set to 10dBm, which is linearly

increased to 20dBm according to the step size of about 1dBm. The influence of the transmit

power of the source node on the information rate of the destination node under different

power schemes is analyzed as shown in Fig. 4.14.

Fig. 4.14 describes the change of the information rate of the destination node when

the power of the source node changes. Comparing several power allocation schemes under

the same conditions, it can be concluded that when the transmission power of the source

node is low, the information transmission rate of the destination node can be well improved,

which shows that the information transmission rate of the destination node increases with

the increase as the transmit power increases. Secondly, the simulation results show that

comparing the non-cooperative scheme and the equally power distribution algorithm with
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Figure 4.14. Information transmission rate of destination node vs power of source node.

the power distribution algorithm performed in this dissertation, the power distribution al-

gorithm achieved in this dissertation has higher information rate changes of destination

nodes, the equal power allocation scheme is second, and the non-cooperative scheme is the

worst . The scheme in this dissertation can maximize the information rate of the destination

node under the premise of constraining the total transmit power of the node, and effectively

reduce the transmit power of the source node. Compared with the other two schemes, this

scheme can improve the information transmission rate of the destination node, especially

when the transmit power is small.

4.3.2.2 Information Transmission Rate of Destination Node vs Power of Relay Node

The initial value of the relay node power is set to 10dBm, and it is linearly increased

to 20dBm in steps of about 1dBm. Compare the power allocation scheme proposed in this

dissertation with the equal power distribution, and study the influence of the relay node

power on the information rate of the destination node as shown in the Fig. 4.15 shown.
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Figure 4.15. Information transmission rate of destination node vs power of relay node.

Fig. 4.15 describes the change of the information rate of the destination node when

the power of the relay node changes. First of all, the figure shows that in the process

of linear increase of relay node transmit power, the change of destination node informa-

tion rate shows an upward trend, this is because with the increase of relay node transmit

power, the power used for information transmission becomes larger, Therefore, the infor-

mation transmission rate at the destination node is improved. Secondly, compared with the

equal power scheme, the proposed scheme obtains better information rate of the destination

node, because cooperative diversity helps to improve the information transmission rate at

the destination node. In addition, Fig. 4.15 presents that when the relay node power is low,

both power allocation schemes improve the information transmission rate of the destination

node. However, the scheme proposed in this dissertation has a higher information trans-

mission rate of the destination node when the transmit power of the relay node changes,

reflecting the constraints on the total power of the node. The power allocation scheme pro-

posed in this dissertation can maximize the information rate of the destination node. The
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Figure 4.16. Information transmission rate of destination node vs total power of nodes.

scheme not only improves the information transmission rate of the destination node, but

also reduces the power consumption of the relay node.

4.3.2.3 Information Transmission Rate of Destination Node vs Total Power of Nodes

The initial value of the total node power is set to 13dBm, which is linearly increased

to 23dBm in steps of about 1dBm. The influence of the total node transmit power on the

information rate of the destination node in the three schemes is analyzed as shown in Fig.

4.16.

Fig. 4.16 describes the change of the information rate of the corresponding destina-

tion node when the total power of the node changes. As can be seen from the figure, the

scheme proposed in this dissertation has the following two phenomena compared with the

other two: first, when the total power of the node is very small, the information transmis-

sion rate of the destination node increases rapidly; When the power is large, the interference

limitation exists, so that the information transmission rate of the destination node tends to
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a stable value. Secondly, the change of destination node information rate corresponding to

the proposed scheme is better than the other two schemes, especially when the total node

power is small, the performance of this scheme is better.

It can be seen in Fig. 4.16 that under the same conditions, when the total transmit

power of the node is low, the information transmission rate of the destination node can be

better improved, which shows that the information transmission rate of the destination node

increases with the increase of the total transmit power of the node. The simulation results

show that the proposed scheme can maximize the information rate of the destination node

under the constraint of the total node power. Compared with the other three schemes, this

scheme not only improves the information transmission rate of the destination node, but

also reduces the node transmit power.

4.3.2.4 SNR vs Power of Relay Node

The initial value of the relay node power is set to 20dBm, and it is linearly increased

to 20dBm in about 1dBm steps. The influence of the relay node transmit power correspond-

ing to the two schemes on the SNR is shown in Figure 4.17.

Fig. 4.17 describes the change of the corresponding SNR when the power of the

relay node changes. The following phenomenon exists: when the power of the relay node

increases, the SNR increases with the increase of the power of the relay node. Under the

same conditions, when the transmit power of the relay node is increased, the signal-to-noise

ratio can be better improved, which shows that the signal-to-noise ratio increases with the

increase of the transmit power of the relay node. Therefore, the scheme proposed in this

dissertation can better improve the system performance.
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Figure 4.17. SNR vs power of relay node.

4.3.2.5 Information Transmission Rate of Destination Node vs Distance of Relay Node

The initial value of the relay node position is set to 20m, and linearly increases to

110m in steps of 10m. Comparing the power allocation scheme proposed in this disserta-

tion with the equal power allocation scheme, the difference between the information trans-

mission rate of the destination node and the position of the relay node The relationship is

shown in Figure 4.18.

Figure 4.18 depicts the change in the information rate of the destination node when

the position of the relay node changes. As can be seen from the figure, compared with the

equal power allocation scheme, the proposed scheme in this dissertation has the following

two phenomena: first, when the relay node is located closer, the information rate of the des-

tination node decreases rapidly with its increase; When the position of the successor node is

very large, the existence of interference limitation makes the information transmission rate

of the destination node tend to a stable value. The whole curve shows a downward trend,

indicating that the information rate of the destination node decreases with the increase of
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Figure 4.18. Information transmission rate of destination node vs distance of relay node.

the distance of the relay node. System performance can be improved by reducing the dis-

tance between relay nodes. Secondly, the proposed scheme is better than the equal power

allocation scheme in response to the change of the information rate of the destination node.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

In the first part of this dissertation, we have proposed the channel forecasting in

5G Wireless Communication Based on Granger Causality and Transfer Entropy, and the

power allocation based on Inverse Water-filling algorithm. Our work consists of four main

parts: Firstly, we performed the Granger causality test on two independent, random and

real 5G channels of the simulation, ensuring the correlation between the two channels [14].

Secondly, we used the transfer entropy method to forecast the above two 5G channels

and obtain two forecasted 5G channels. Third, we calculated the RMSE of the original

channel and the forecasted channel to ensure the high accuracy of the forecasting [14]. At

the same time, we computed the CRLB of the forecasted 5G channel and showed that the

variance of the forecasted parameters is close to the CRLB. Finally, for the two forecasted

5G channels, we performed power allocation and comparison based on the Equal Gain

algorithm and the Inverse Water-filling algorithm. Simulations in Chapter 2 validate these

theoretical results [14].

In the second part, the corresponding channel model is obtained based on 28GHz

indoor and through-wall wireless channel measurement. The main work content can be

divided into the following chapters.

Chapter 3.1 introduces the background and current status of 5G Massive MIMO

today, and introduces the basic knowledge required for wireless channel modeling. Chap-

ter 3.2 illustrates the concept of MIMO channel characteristics and modeling methods,

which includes the MIMO channel characteristics and some popular statistical and analyt-
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ical channel models. The measurement and collection of experimental data scenarios of

this dissertation is discussed in chapter 3.3. In this dissertation, we used 8 x 8 URA mas-

sive MIMO antennas at TX side and RX side, the TX signal is with central frequency of

28GHz and 800MHz bandwidth. The two scenarios are indoor OLS and through-wall re-

spectively. Chapter 3.4 is the statistical channel modeling and parameter analysis based on

received measurement signal. The GSCM method is used. Simulations and performance

are proposed in chapter 3.5.

For the last part, the 5G channel is forecasted by using LSTM network. Based on

that, cooperative communication is proposed to improve the performance of wireless com-

munication. Chapter 4.1 introduces the background and methodologies of RNN and LSTM

networks demonstrates their possibility for 5G channel forecasting. A proposed power allo-

cation algorithm based on cooperative communication is illustrated in chapter 4.2. Chapter

4.3 is the simulation and performance analysis of above two sections. In the chapter, the op-

timal LSTM model parameters are obtained to achieve the RMSE about 0.05 of testing data

set. In addition, the comparisons of proposed cooperative communication power allocation

scheme with non-cooperative system and equal power allocation scheme discussed.

5.2 Future Research

5.2.1 5G Ultra-dense Networking and Resource Allocation

In higher frequency bands such as millimeter waves, there are more abundant spec-

trum resources. But as the frequency increases, the signal penetration will be worse, re-

sulting in more severe attenuation. In future work, we should focus on wireless communi-

cation (millimeter wave) in higher frequency bands and obtain better wireless communica-

tion quality through more optimized channel information extraction methods and modeling

methods. Also, the scenario measured in this dissertation are indoor scenes and indoor
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through-wall scenes. The main propagation environment is only indoor objects such as

desks and computers. It does not consider factors such as moving people and receiving

users moving. In practice, users are basically moving, and the blockage of the human body

also affects high frequency communications. Moreover, outdoor scenes also have some

important influencing factors for high-frequency signal propagation such as foliage, rain

attenuation, etc. Therefore, in the future, 5G ultra-dense networking and resource alloca-

tion will be a meaningful research direction.

5.2.1.1 Ultra-dense Networking Architecture

In the development process of the wireless communication architecture, the core net-

work and the access network are developing in the direction of simplicity, flatness, and

intelligence. 5G ultra-dense networking simplifies the association between the core net-

work and the access network by separating the control plane and the data plane, making

network service functions more intelligent and 5G network functions more open. There

are two main types of ultra-dense networking architectures: macro-micro and micro-micro

base station deployment scenarios [91].

1. Macro-micro base station deployment scenarios

The 5G ultra-dense networking realizes the separation of the user plane and the con-

trol plane through the way that the micro base station is responsible for the capacity

and the macro base station is responsible for the coverage. According to the charac-

teristics of flexible deployment of micro base stations, the collaborative management

of resources between micro base stations is adopted to meet the needs of the de-

velopment of access network services. At the same time, as a centralized control

module in the access network, the macro base station can coordinate interference

between micro base stations and allocate system resources. The macro base station

is mainly responsible for maintaining the control plane of the terminal equipment
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to carry the wireless resource control connection service. The terminal equipment

selects the specific bearer base station according to the service requirements. The

macro base station carries the delay-sensitive, low bandwidth demand voice, remote

driving and other services, and the micro base station is responsible Video trans-

mission and download services that are not sensitive to time delay and require large

bandwidth. Generally speaking, the macro base station is responsible for the con-

trol plane, and the micro base station is mainly responsible for improving the system

capacity.

The location of the micro base station is fixed, always within the coverage of the

macro base station, and only provides a user plane connection for the terminal. The

macro base station is always connected with the micro base stations within range

to control wireless resources. At this time, it can simplify the operation of the user

equipment to switch at the micro base station, reducing the pressure on the core net-

work. The macro base station can maintain radio resource control services and some

low-rate services, and improve the user experience of terminal equipment during fre-

quent handovers. The macro base station can also use the access resource optimiza-

tion algorithm to optimize the terminal user’s micro base station selection strategy,

inter-micro base station interference and load balancing and other issues, reasonably

allocate micro base station channels and computing resources, and improve terminal

user experience.

2. Macro-micro base station deployment scenarios

The micro-micro base station deployment method of 5G ultra-dense networking is to

use dynamic clustering to divide 5G micro base stations into multiple virtual macro

cells, and share the signals, channels, computing power and other resources of multi-

ple base stations in the same cell. In this way, network functions virtualization (NFV)

macro base stations are constructed, and the micro base stations in the same cell im-
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plement functions similar to the control plane transmission of the macro base station

on these resources. The NFV macro base station carries the functions of the control

plane and is responsible for coordinating and managing the channel and computing

power resources in the cell, while the micro base station has the same function and

is responsible for transmitting user data. The ultra-dense networking of micro-micro

base station architecture can flexibly construct NFV macro base stations according

to business changes, optimize the system’s interference management between micro

base stations, wireless resource allocation and other issues, and improve network ca-

pacity while adapting to task requirements for end users. Provide a better business

experience.

5.2.1.2 The Key Technology of Ultra-dense Networking

Ultra-dense networking reduces the path loss between base stations and user ter-

minals through dense deployment of micro base stations, and increases network capacity.

At the same time, the dense distribution of base stations also increases the interference

to the system. While improving network capacity, effective interference management and

resource allocation have become the research focus of ultra-dense networking. The key

technologies to increase system capacity and enhance system performance in ultra-dense

networking include non-orthogonal multiple access (NOMA) technology and unmanned

aerial vehicle (UAV) technology.

1. NOMA technology in ultra-dense networking

From 1G to 4G, wireless communication systems have adopted Frequency Division

Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Divi-

sion Multiple Access (CDMA) and Orthogonal Frequency Division Multiple Ac-

cess (OFDMA) are key technologies. These multiple access schemes all belong to

Orthogonal Multiple Access (OMA) technology, and wireless resources in the time
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domain, frequency domain, and code domain are orthogonally allocated to multiple

users according to the user’s combination. In a communication system using the

OMA technology, a relatively simple and low-cost receiver is used [92]. When the

complexity of the signal carried by the user is low, it can be easily separated at the re-

ceiving end. The number of users that OMA technology can serve is also limited by

the number of orthogonal resources available in the system. In the process of channel

transmission, the orthogonality of the signal is also affected by time or frequency.

As an alternative to OMA, NOMA technology is mainly characterized by supporting

more users to access the communication system with the help of non-orthogonal re-

source allocation. In addition, complex inter-user interference cancellation technol-

ogy is used to solve the problem of exponential increase in receiver complexity. Ac-

cording to the difference of multiplexing domain, NOMA technology can be divided

into two types: power domain NOMA and coding domain NOMA. In the power do-

main, power is allocated to users according to the channel quality of different users,

and multiple users share the same time-frequency resources at the same time. On the

receiver side, the power domain NOMA uses the difference of user power and uses

SIC technology to process user signals and eliminate interference [93]. The coding

domain NOMA is similar to CDMA or multi-carrier CDMA, and it is more inclined

to use non-orthogonal sequences with low density sequences or low correlation, and

the implementation is more complicated.

2. UAV technology in ultra-dense networking

UAVs have the characteristics of multiple functions and strong maneuverability. Ac-

cording to different application methods and purposes, low-altitude UAVs are widely

used in the public domain. In the process of wireless communication, drones can

assist the ground communication network, by installing communication equipment

as a flight base station or flight buffer, to provide ground users with enhanced or
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emergency wireless communication when the traffic demand is large and the system

capacity is insufficient. business. In addition, UAVs can also be used as air nodes for

various applications such as task scheduling, offloading, and energy transmission.

Most of the existing work is mainly about drones assisting ground network com-

munications, realizing millimeter wave communications, beamforming, emergency

communications, and wireless charging [94].

As an alternative or supplementary technology to the ground 5G communication

network, UAVs are flying in the air, with a high probability of signal transmission

through the line-of-sight link, which is conducive to improving the reliability of

long-distance signal transmission. In addition, the flying height of the UAV can be

adjusted to change the coverage of the UAV and the communication quality of ground

users. Compared with fixed ground communication infrastructure equipment, UAVs

can dynamically plan flight trajectories and adapt to real-time business needs. In

addition, as an aerial base station, UAVs have no site lease costs, and require less

ground infrastructure and power supply from the power grid, and are easy to manage

and maintain. Utilizing a large number of UAVs can form an ultra-dense UAV net-

work to provide targeted instant messaging services to ground users. The ultra-dense

UAV network can be flexibly and quickly deployed to areas with insufficient net-

work capacity or interrupted communication services according to business needs,

so as to achieve rapid and effective auxiliary communication and emergency com-

munication [95].

5.2.2 Millimeter Wave Communication Based on NOMA Technology

In recent years, the development of new spectrum resources to meet the ever-increasing

speed requirements of the 5G era has become a hot research direction. Millimeter wave is

considered to be a promising technology in the fifth-generation mobile communication net-

102



work due to its large bandwidth in the high-frequency region [10]. The severe propagation

path loss and low penetration capability of millimeter wave signals require the help of new

multiple access technologies, especially when it is necessary to support large-scale connec-

tions in dense networks [11]. NOMA is regarded as an important technology to realize the

ultra-high capacity and large-scale access requirements of 5G networks [11]. Therefore,

one of the best ways to further improve the spectrum efficiency of the upcoming 5G era is

to introduce NOMA into millimeter wave communications [11] [96] [97] [98] [99].

Faced with the explosive development of future network requirements, the 5G com-

munication process must focus on mobile communication methods that can further explore

the ability to improve frequency efficiency. In the next decade of wireless communication,

NOMA can be regarded as an important technology to meet the ultra-high capacity and

large connection requirements of 5G systems [13] [100] [101]. Driven by the unprece-

dented growth of new network-based smart devices and innovative applications, emerging

complex service requirements have accelerated the development of new multiple-access

technologies for 5G networks. NOMA technology can be mainly divided into two cate-

gories, namely code domain NOMA and power domain NOMA [102]. Compared with

OMA, NOMA can further enhance user links and support more system functions.

The key idea of NOMA is to use the power domain for multiple access, while previ-

ous generations of mobile networks have always relied on the time/frequency/code domain.

Take the traditional OFDMA used by 3GPP-LTE as an example. The main problem of this

orthogonal multiple access technology is that when certain bandwidth resources (such as

sub-carrier channels) are allocated to users with poor channel conditions, its spectrum ef-

ficiency is very low. In addition, by using NOMA, each user can access all sub-carrier

channels. Therefore, users with poor channel conditions can still access the bandwidth

resources allocated to users with poor channel conditions, thereby greatly improving chan-

nel quality and spectrum efficiency. In addition, compared with regular opportunistic user
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scheduling that only serves users under strong channel conditions, NOMA has achieved a

good balance between system throughput and user fairness. In other words, NOMA can

provide services to users with different channel conditions in time, which provides the pos-

sibility to meet the 5G requirements of ultra-low latency and ultra-high connectivity [103].

With the continuous research of 5G and the continuous enhancement of chip processing

technology, the processing capability of the receiver has been greatly improved. There-

fore, inevitably, NOMA has become a popular area for industry and academia. The main

research in academia is the power domain NOMA [103] [104].

NOMA proposes a new power domain dimension, which uses the principle of su-

perposition coding to send information. So that the same frequency resources, such as fre-

quency, time, and code domain, can be shared by users with different channel conditions.

The main principle of power multiplexing is to allocate different powers to different users

according to the differences in the channel conditions of different users. In order to ensure

the equality of users, more power should be allocated to users with weak channel condi-

tions. Therefore, while ensuring the quality of service for weak users, the overall quality

of the system can be improved. At the receiving port, the serial interference cancellation

(SIC) method can be used to eliminate the interference between each user [105] [106]. The

main concept of SIC is to gradually eliminate interference between different users accord-

ing to different user channel conditions. For example, the user with the strongest signal

can be detected first. Then, the strongest user encodes and modulates its signal again, and

then removes its signal from the composite signal. The second strongest signal follows the

same process, in fact it has become the strongest signal. When only one signal is detected,

the weakest user decodes its information without any interference.

By performing high SNR analysis, it is easy to illustrate the performance gain of

NOMA compared to conventional OMA. Under the implementation of OMA, the received

data rates of the two users are 1/2log2(1 + ρ|hA|)2 and 1/2log2(1 + ρ|hB|)2 respectively.
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The 1/2 here is because the two users divide the bandwidth resources, ρ represents the

transmission SNR, and hA and hB are user A and user B’s channel gain, respectively. We

assume that |hA|2 < |hB|2, under high SNR, ρ tends to ∞, the total rate of OMA can be

calculated as 1/2log2(1+ρ|hA|)2+1/2log2(1+ρ|hB|)2 . In the case of NOMA, the received

data rates of the two users are log2(1+
ραA|hA|2

1+ραB |hA|2 and log2(1+ ραB|hB|2) respectively, αA

and αB are power allocation factors. Therefore, the high SNR estimate for the total NOMA

rate is log2(ραB|hB|2). This is much greater than in the case of OMA, especially when the

channel gain of user B is much greater than that of user A. In other words, the main reason

for the performance improvement of the NOMA technology after use is that the factor 1/2

outside the logarithm of the OMA rate caused by the allocation of bandwidth resources

between users has a greater impact than the internal factor. The logarithm of the NOMA

rate, used for power allocation.

Downlink and uplink NOMA can be regarded as a special case of multiple access

channels (MACs) and broadcast channels (BCs). Therefore, the NOMA rate area is limited

by the capacity area of the corresponding MACs and BCs. Compared with the existing

information theory work focusing on maximizing system throughput, the main function of

NOMA is to achieve a balanced trade-off between system throughput and user fairness.

Take the two-user downlink situation as an example again. If the system throughput is the

only goal, all power will be allocated to users with stronger channel conditions, which will

result in the maximum throughput, but will not be able to serve user A at all. The function

of NOMA is to generate greater throughput than OMA, and to ensure fair service to users.

This feature is especially important for 5G, because it is foreseeable that 5G will support

the functions of the Internet of Things (IoT) to connect trillions of devices. With OMA,

connecting thousands of IoT devices (such as vehicles in an in-vehicle ad hoc network for

smart transportation) requires thousands of bandwidth channels; however, NOMA can use

these devices in a single channel. An important phenomenon in NOMA networks is that
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some users with poor channel conditions will experience low data rates. The reason is that

these users cannot completely delete the messages of their partners from their observations,

which means that they will be subject to strong co-channel interference, so their data rate

will be small. In the context of the Internet of Things, because many Internet of Things

devices require only a small data rate to provide services, this problem can be avoided.

Question [107].

NOMA has following advantages:

1. High bandwidth efficiency: Since NOMA can enable various users to use each re-

source block (for example, frequency/time) [104], NOMA has high bandwidth effi-

ciency, thereby improving the throughput of the system.

2. Fairness: One of the main functions of NOMA is to provide more power to weak

users. By doing so, NOMA can ensure the fairness of users in terms of performance

[108].

3. Ultra-high connectivity: It is expected that billions of devices will be connected

to 5G systems in the 5G Internet of Things [109]. The existence of NOMA ef-

fectively solves this difficult task by using its non-orthogonal features, providing a

promising design choice. In contrast to traditional OMA (which requires the same

time/frequency resource blocks as the number of devices), NOMA can provide users

with a way to reduce the demand for resource blocks.

4. Compatibility: From a theoretical point of view, for any current OMA technology

(such as CDMA / FDMA / TDMA / OFDMA), NOMA can be combined again as an

”add-on” method because it utilizes the power domain. Due to the gradual maturity

of the SIC method in theory and reality, NOMA can be used in combination with the

current MA method.

106



Therefore, channel modeling for combining millimeter wave and NOMA technology,

the user grouping and power allocation scheme under the millimeter wave NOMA and

Massive MIMO - NOMA system will be one of the focus of the next work.
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“Metis research advances towards the 5g mobile and wireless system definition,”

EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1,

pp. 1–16, 2015.

[41] N. Khan and C. Oestges, “Impact of transmit antenna beamwidth for fixed relay links

using ray-tracing and winner ii channel models,” in Proceedings of the 5th European

Conference on Antennas and Propagation (EUCAP). IEEE, 2011, pp. 2938–2941.

[42] A. Algans, K. I. Pedersen, and P. E. Mogensen, “Experimental analysis of the joint

statistical properties of azimuth spread, delay spread, and shadow fading,” IEEE

Journal on selected areas in communications, vol. 20, no. 3, pp. 523–531, 2002.

[43] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin, F. Tufvesson,

and P. De Doncker, “The cost 2100 mimo channel model,” IEEE Wireless Commu-

nications, vol. 19, no. 6, pp. 92–99, 2012.

[44] R. Verdone and A. Zanella, Pervasive mobile and ambient wireless communications:

COST action 2100. Springer Science & Business Media, 2012.

112



[45] V. Nurmela, A. Karttunen, A. Roivainen, L. Raschkowski, V. Hovinen, J. Y. EB,

N. Omaki, K. Kusume, A. Hekkala, R. Weiler, et al., “Deliverable d1. 4 metis chan-

nel models,” Proc. Mobile Wireless Commun. Enablers Inf. Soc.(METIS), p. 1, 2015.

[46] N. A. Haq and M. Sarvagya, “Analysis on channel parameters and signal processing

methods at mm-wave for 5g networks,” in 2018 Second International Conference on

Advances in Electronics, Computers and Communications (ICAECC). IEEE, 2018,

pp. 1–6.

[47] C. Masouros, M. Sellathurai, and T. Ratnarajah, “Large-scale mimo transmitters in

fixed physical spaces: The effect of transmit correlation and mutual coupling,” IEEE

Transactions on Communications, vol. 61, no. 7, pp. 2794–2804, 2013.

[48] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A stochastic mimo chan-

nel model with joint correlation of both link ends,” IEEE Transactions on wireless

Communications, vol. 5, no. 1, pp. 90–100, 2006.

[49] A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Transactions

on Signal processing, vol. 50, no. 10, pp. 2563–2579, 2002.

[50] T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical channel impulse re-

sponse models for factory and open plan building radio communicate system de-

sign,” IEEE transactions on communications, vol. 39, no. 5, pp. 794–807, 1991.

[51] T. S. Rappaport, W. Huang, and M. J. Feuerstein, “Performance of decision feedback

equalizers in simulated urban and indoor radio channels,” IEICE Transactions on

Communications, vol. 76, no. 2, pp. 78–89, 1993.

[52] T. S. Rappaport, S. Y. Seidel, and R. Singh, “900-mhz multipath propagation mea-

surements for us digital cellular radiotelephone,” IEEE Transactions on Vehicular

Technology, vol. 39, no. 2, pp. 132–139, 1990.

[53] S. Y. Seidel, T. S. Rappaport, S. Jain, M. L. Lord, and R. Singh, “Path loss, scat-

tering and multipath delay statistics in four european cities for digital cellular and

113



microcellular radiotelephone,” IEEE Transactions on Vehicular Technology, vol. 40,

no. 4, pp. 721–730, 1991.

[54] T. S. Rappaport et al., Wireless communications: principles and practice. prentice

hall PTR New Jersey, 1996, vol. 2.

[55] J. E. Nuckols, “Implementation of geometrically based single-bounce models for

simulation of angle-of-arrival of multipath delay components in the wireless channel

simulation tools, smrcim and sircim,” Ph.D. dissertation, Virginia Tech, 1999.
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[61] A. H. Jafari, D. López-Pérez, M. Ding, and J. Zhang, “Performance analysis of

dense small cell networks with practical antenna heights under rician fading,” IEEE

Access, vol. 6, pp. 9960–9974, 2017.

[62] J. Meredith, “Study on channel model for frequency spectrum above 6 ghz,” 3GPP

TR 38.900, Jun, Tech. Rep., 2016.

[63] A. I. Sulyman, A. Alwarafy, G. R. MacCartney, T. S. Rappaport, and A. Alsanie,

“Directional radio propagation path loss models for millimeter-wave wireless net-

works in the 28-, 60-, and 73-ghz bands,” IEEE Transactions on Wireless Communi-

cations, vol. 15, no. 10, pp. 6939–6947, 2016.

[64] J.-P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen,

“A stochastic mimo radio channel model with experimental validation,” IEEE Jour-

nal on selected areas in Communications, vol. 20, no. 6, pp. 1211–1226, 2002.

[65] S. Sun, T. S. Rappaport, T. A. Thomas, and A. Ghosh, “A preliminary 3d mm wave

indoor office channel model,” in 2015 International Conference on Computing, Net-

working and Communications (ICNC). IEEE, 2015, pp. 26–31.

[66] G. R. Maccartney, T. S. Rappaport, S. Sun, and S. Deng, “Indoor office wideband

millimeter-wave propagation measurements and channel models at 28 and 73 ghz

for ultra-dense 5g wireless networks,” IEEE access, vol. 3, pp. 2388–2424, 2015.

[67] S. Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovács,
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