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1 ABSTRACT 

The cluster consensus problem of Multileader MAS Is considered and the clustering problem of 

interconnected multileader systems is formulated as a disturbance attenuation problem. For the 

first time, it's proved that the multileader MAS can reach cluster consensus without limiting the 

communication between the clusters. The combination of Small Gain Theorem and H∞ 

optimization has been designed in the graphical differential game platform to prove the stability 

for the system. At the end, an online off-policy reinforcement learning algorithm is developed to 

find the solution to the H∞ optimal problem of multileader MAS with completely unknown 

systems.  

  

Autonomous Teaming of Multileader System- 

Robust Cluster Formation Approach 
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2 INTRODUCTION 

The` standard consensus problem has been extensively studied in finding control laws that 

enable all agents to work cooperatively to reach stability [1]- [2]. Many of today’s optimization 

problems in data science (including statistics, machine learning, and data mining) use distributed 

computation. Modern applications have access to real-life applications which cannot be handled 

by a single processor alone. This will encourage us to combine the knowledge from computer 

science, behavioral science and finance and distributing data among multiple agents and 

processing it in a decentralized manner based on the available local information. The applications 

in statistical learning along with other applications in distributed data processing where 

information is inherently distributed among many processors (i.e.  distributed sensor networks, 

coordination, and cooperation distribution control [3]) have been studied vigorously on distributed 

multiagent optimization. 

2.1 OPTIMAL H∞ LITERATURE SURVEY 

The H∞ optimal control policies have been defined to attenuate the effect of disturbances on the 

performance function. The focus of H∞ control theory has been established on designing regulators 

to drive the states of the system to zero in the presence of disturbance [4]- [5]. 

In practice, however, it is often required to force the states or outputs of the system to track a 

reference trajectory. Existing solutions to the H∞ tracking problem are composed of two steps. 

First, a feedforward control input is designed to guarantee the perfect tracking. Second, a feedback 

control input is designed by solving a Hamilton–Jacobi–Isaacs (HJI) equation to stabilize the 

tracking error dynamics. These methods are suboptimal as they ignore the cost of the feedforward 

control input in the performance function. Moreover, in these methods, procedures for computing 

the feedback and feedforward terms are based on the offline solution methods that require complete 

knowledge of the system dynamics [6]- [7]. 
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2.2 CLUSTER CONSENSUS SURVEY 

Cluster analysis have been widely studied in various fields. Papadimitriou studied computing 

equilibria in multiplayer games [8].  Olfati-Saber presented a theoretical framework for design and 

analysis of distributed flocking algorithms [9]. Delgado and Stern have studied geographical 

clustering for economic studies in different industries [10]. Hansen has done a survey of clustering 

analysis from a mathematical programming viewpoint [11].  

Clustering is considered as the first step in data analysis in computer science. Many different 

clustering methods has been developed [12]- [13] such as hierarchical agglomerative clustering, 

mixture densities, graph partitioning, and spectral clustering. Most clustering methods focus on 

finding a single optimal or near-optimal clustering according to some specific clustering criterion. 

Nguyen and Caruana addressed the problem of combining multiple clustering without access to 

the underlying features of the data called clustering consensus [14]. 

 The multiagent system consensus has been studied through multiple approaches. Movric and 

Lewis designed a distributed cooperative control protocol reach consensus in the multiagent 

system [15]. Han studied cluster consensus in continuous-time networks of multi-agents with time-

varying topologies via non-identical inter-cluster inputs [16]. Qin and Yu investigated the cluster 

consensus control for generic linear multi-agent systems under directed interaction topology with 

acyclic partition via distributed feedback controller [17].  

The consensus problems have been usually addressed by eliminating the inter-cluster couplings 

or using the zero-row sum assumption to ensure the stability [18]. K. Chen Compared the standard 

consensus to the cluster consensus featured with the inter-cluster couplings.  

Once the inter-cluster couplings are eliminated, the clustering problem is reduced to multiple 

standard consensus problems. in this paper, the goal is to determine the conditions in the dynamics 

of the agents and the communication graph that allows the agents to synchronize with their group 

without removing the inter-cluster communications.  

The cluster consensus was studied for the strong intra-cluster couplings and the lower bounds 

for the coupling strengths within clusters has been defined to ensure cluster synchronization [19]. 

The results of [19] are invalid when the couplings within each cluster are too weak. In a later year, 

Qin and Yu proved that if clusters interact with each other in an acyclic mode, the strengths of 

couplings within the same cluster will not affect the cluster consensus behavior. They have relaxed 
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the acyclic mode assumption by introducing intra-cluster balanced topologies with antisymmetric. 

However, satisfying the acyclic partition assumptions on the topology limits the communication 

structures. 

2.3 GAME THEORY ALGORITHM 

The interaction of complex interconnected systems can be studied using the mathematical 

framework of game theory [20]- [21]. The agents involved can have cooperative and conflicting 

objectives, and their decisions are based upon optimizing individual payoffs functions. Graphical 

games [22] model the interactions among players that communicate using a graph network 

topology. Multiplayer games approaches have been used, for example, to optimally allocate the 

resources of optical networks [23], design optimal motion planning for multiple robots with 

different goals [24], and to protect a network from adversaries [25].  

Strategies for team decision problems, including N-player games, are normally solved offline 

by solving the coupled Hamilton–Jacobi (HJ) equations for nonlinear systems or coupled Riccati 

equations for linear systems. These procedures usually require complete knowledge of the system 

dynamics, and the computational burden grows exponentially with the state-space dimension. 

Moreover, using offline approaches prevent the players from being able to change their objectives 

in real time [26].  

Given the nature of the interactions and the fact that the environment is highly uncertain and 

dynamic, enabling autonomous agents to gracefully adapt their decision-making strategies is of 

paramount importance. Reinforcement Learning (RL) [27] is learning technique that does not 

require a model of the agents or the environment and can be used online in real time. These 

characteristics make RL well suited for multiplayer games, where each agent knows little about 

other agents in the game. Using RL, the performance of an individual gradually improves as it 

learns from the observed responses of its behavior in its environment [28]. In this article the 

multiagent system has been modeled as multiplayer games and the games have been solved online 

by adaptive learning in real time using data measured along the trajectories of the agents. The full 

dynamics of the agents do not need to be known for these online solution techniques. Game-based 

architecture approach implicitly solve the required game architecture equations without ever 

explicitly solving them.  
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2.4 INTEGRAL REINFORCEMENT LEARNING (IRL) 

Studying uncertain dynamical systems is not only practical but a means of addressing the control 

problem for a large class of nonlinear systems based on a simplified model [29]. In [30]   design 

tools have been introduced which allow us to address the problem of stabilizing systems with 

intricate structure. it has been proven that the uncertain dynamical system can be robustly 

stabilized by means of partial-state feedback. 

Modares and Lewis [31] describes the use of principles of reinforcement learning to design 

feedback controllers for discrete- and continuous-time dynamical systems that combine features 

of adaptive control and optimal control. Adaptive control and optimal control represent different 

philosophies for designing feedback controllers. Optimal controllers are normally designed offline 

by solving Hamilton–Jacobi–Bellman (HJB) equations. Determining optimal control policies for 

nonlinear systems requires the offline solution of nonlinear HJB equations, which are often 

difficult or impossible to solve. By contrast, adaptive controllers learn online to control unknown 

systems using data measured in real time along the system trajectories. Adaptive controllers are 

not usually designed to be optimal in the sense of minimizing user-prescribed performance 

functions. Indirect adaptive controllers use system identification techniques to first identify the 

system parameters and then use the obtained model to solve optimal design equations. Adaptive 

controllers may satisfy certain inverse optimality conditions. 

2.5 CONTRIBUTION 

In this dissertation, the cluster consensus problem of Multileader has been considered. Chen has 

studied the heterogeneous MASs considering the heterogeneous dynamics and the negative 

couplings among agents [32]. Chen has restricted the communication topology between the cluster 

using zero-row sum assumption for Laplacian matrix to assure the cluster has no other Impact on 

other clusters. He designed the problem using Hamiltonian performance optimization. In this 

paper, the Chen's restrictions on the communication topology have been removed which allow the 

clusters to communicate with each other freely through the optimization. We have also used Min-

Max differential game theory to optimize the state feedback control system. An important idea in 
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this paper is to formulate the clustering problem of interconnected multileader systems as a 

disturbance attenuation problem as formulated in [5].  

There have been several studies in the past to reach consensus in multiagent system. In this 

paper, for the first time, it has been proved that the multileader MAS can reach cluster consensus 

without limiting the communication between the clusters. The combination of Small Gain 

Theorem and H∞ optimization has been designed in the graphical differential game platform to 

prove the stability for the system. 

After proving the cluster consensus for Multileader MASs, an online off-policy reinforcement 

learning algorithm is developed to find the solution to the H∞ optimal problem of multileader MAS 

with completely unknown systems. The leaders and the agents of other clusters outside each agent 

cluster will be defined as the system disturbance. It is not required that the disturbance be 

adjustable. An augmented system is constructed from the tracking error dynamics and the 

command generator dynamics for the H∞ optimal performance problem.  

A performance HJI equation associated with the discounted performance function is derived, 

which gives both the feedforward and feedback parts of the control input simultaneously. An 

upper-bound and lower-bound is obtained for the discount factor to assure local asymptotic 

stability of the error dynamics using Ultimately Uniformly Bounded (UUB). An off-policy RL 

algorithm is then developed to find the solution to the HJI equation online using only the measured 

data and without any knowledge about the system dynamics. Convergence of this algorithm to the 

solution to the HJI equation is shown. 

The major contributions of this paper are as follows: 

Multileader MASs cluster consensus has been proved under general topology with existing 

spanning tree, with NO limiting assumption on the communication graph. The underlying 

mechanisms between the system dynamics and the communication graph to reach cluster 

consensus are presented. 

The cluster consensus problem of Multileader MASs is investigated, where all clusters are 

allowed to have different communication weights. This extends existing results in [32] for 

clustering consensus.  

an online off-policy reinforcement learning algorithm is developed to find the solution to the H

∞ optimal problem of multileader MAS with completely unknown systems. This will extend the 

off-policy RL in [30] to Multileader MAS. 
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2.6 STRUCTURE 

This article has been structured as follows:  

1. Preliminaries on graph topology and the system dynamics and all the notations are 

provided in Section II. 

2. The Multileader MAS optimal problem and the state feedback control protocol are 

defined Sections III. 

3. The Multileader MAS cluster consensus has been formulated in section IV using small 

gain theorem and Ultimately Uniformly Bounded (UUB) stability solution. 

4. An online off-policy reinforcement learning algorithm is developed to find the solution 

to the H∞ optimal problem of multileader MAS with completely unknown systems in 

section V. 

5. The proposed cluster consensus method and off-policy IRL method are both applied to 

a linear system to show that it converges to the optimal solution in section VI. 
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3 PRELIMINARIES 

In this section we present the definitions and the mathematical background used throughout the 

paper.  

3.1 GRAPH TOPOLOGY 

A graph is a pair ( ),G V E=  with  1,..., NV v v= a set of N nodes or vertices and E a set of edges or 

arcs. The elements of E are denoted as ( ),i jv v which represents an edge or arc from vi to vj and is 

depicted as an arrow with tail at 𝑣𝑖 and head at 𝑣𝑗 . The edges represent the allowed flow of 

information in the graph. We assume the graph is simple, i.e. ( ), ,i jv v E i   (no self-loops), and no 

multiple edges between the same pairs of nodes. The set of neighbors of a node vi is 

( ) : ,i j i jN v v v E=    

Let the graph G be partitioned in P disjoint clusters. The cluster to which agent i belongs is 

denoted as Ci, and C-i is the set of all other clusters that agent i does not belong to. The notation 

ij C  means that agent j belongs to the same cluster as i, and 
ik C−  accounts for the agents k that 

do not belong to the same cluster as agent i. Agents from different clusters can be neighbors of 

each other in the graph topology G . 

Associated with each edge ( ), , ,i jv v E i j   is a weight 0ije   which represents the weight of the 

link from agent i to agent j. Let 0ije   only if there is an edge from node j to node i, and 0ije =  

otherwise. The adjacency matrix is defined as ( )ij N N
e


= . Represent the weight ije as ij ija e=  when 

agent i and agent j belong to the same cluster and as ik ijb e= when agent i and agent k belong to 

different clusters.  

The in-degree matrix 
N ND   is a diagonal matrix with the ith diagonal element being the in-

degree of node i, defined as 
i

i ij

j N

d e


=  . The Laplacian matrix of G is defined as L D= − . 
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3.2 MULTI-AGENT SYSTEM DYNAMICS 

Consider a system consisting of N agents with homogeneous linear dynamics as 

, 1,...,i i ix Ax Bu i N= + =  (1) 

and a set of P leaders, regarded as the leader nodes, with dynamics   

,p px Ax p P=   (2) 

where , ,n n n m n

iA B x     is the state of agent i, and r

iu   is the control input for agent i. 

Each agent i is represented by a node in the graph G defined in the previous subsection. Each 

leader state, xp, provides the desired dynamics for the agents in cluster p, where p P set of the 

leaders. The cluster consensus problem has been described for every agent in cluster p as achieving 

synchronization with the corresponding leader state xp. 

In this document, when talking about specific agent i. we reserve the sub-index j and p for agent 

and leader inside the same cluster as i respectively, and sun-indices k and l for the agents and 

leaders outside the cluster of agent i. 

The local synchronization error δi of agent i is defined based on the defined communication of 

agent i with other agents and the leaders 

( ) ( ) ( )( )
i i i i

N P

i ij j i ip p i ik k i il l i

j C p C k C l C
p P l P

a x x g x x b x x g x x
− −   

 

= − + − + − + −      (3) 

where aij and bik are the communication link weights between the agents and gip and gil are the 

pinning gain weights from the leaders. 

 The local error δi has been expressed to represent the cluster partition of the multiagent system. 

It is formulated in four terms: (1) The communication between agent i and the agents in the same 

cluster as i , (2) the intra-cluster link between agent i and the cluster i leader, (3) the inter-cluster 

set of links between the agent i and other clusters’ leaders, and (4) the inter-cluster links between 

agent i and the agents outside its cluster.  

The dynamics of the local error in equation (3) is given by 

( ) ( ) ( )
1

( )
i i i i

N P

i ij j i ip p i il l i ik k i

j C p C l C k C
j p P l P

a x x g x x g x x b x x
− −   

=  

= − + − + − + −     (4) 
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By replacing the system dynamics (1), (2) and operating algebraically, the local error dynamics 

can be written as 

( )
i i

i i i i i ij j ik k

j C k C

A d g Bu a Bu b Bu 
− 

= − + + +   (5) 
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4 H∞ OPTIMIZATION OF MULTILEADER MULTI-AGENT SYSTEMS 

In this section, we present an H∞ optimal design for a multi-leader homogeneous MAS using 

state variable feedback control. We then determine the Hamilton-Jacobi-Issacs (HJI) equations 

that provide the optimal control policies for the agents.  

The goal of H∞ optimization is to attenuate the effect of all agents and the leaders on the 

performance of an agent and optimize its performance. 

4.1 MULTIAGENT H∞ OPTIMAL PERFORMANCE 

The H∞ control problem can be formulated as a zero-sum differential game [33]. The optimal 

control policy solutions, determined in the following subsection, provide the saddle point solution 

to the differential game [34]. 

 

Definition 1- (Bounded L2-Gain) Consider the system with output y(x(t)) and a performance 

output z(t). In the bounded L2-gain problem [33], one desires to find a feedback control policy u(x) 

such that, when x(0) =0 and for all disturbances d(t)∈ L2[0,∞) one has 
2

2

2

( )

( )

t

t

z d

d d

 


 









 (6) 

for a prescribed 0   and for all  0T  . That is, the L2-gain from the disturbance to the 

performance output is less than or equal to  . The H∞ control problem is to find, if it exists, the 

smallest value * 0   such that for any *  , the bounded L2-gain problem has a solution. In the 

linear case an explicit expression can be provided for the H∞ gain [35]. To solve the bounded L2-

gain problem, the zero-sum game just developed. In this zero-sum game, both inputs can be 

controlled, with the control input seeking to minimize a performance index and the disturbance 

input seeking to maximize it. By contrast, here d(t) is a disturbance that cannot be controlled, and 

u(t) is the control input used to offset the deleterious effects of the disturbance. 

Before defining the H∞ optimization problem, we define the consensus condition. 

 

Definition 2- (Cluster Consensus Protocol) The H∞ optimal problem is to design local control 

protocol , ,i j ku u u for all the agents in each cluster, such that all the agents in each cluster reach 

consensus with their leader. 

The main difference between definition 2 and the standard definition of consensus is that the 

problem here is defined for multi-leader condition. 

 

Definition 3- (Graphical H∞ Optimal Policy) The optimal policy in graphical game defines how 

an agent prepares its best response if its neighbors will attempt to maximize its performance index. 

As this is usually not the strategy followed by such neighbors during the game, every agent can 
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expect to achieve a better performance than its minmax value. To determine the performance 

index, we formulate a zero-sum game between agent i and its neighbors inside and outside the 

cluster.  

 

The performance index for each agent is defined as  

( )( ) 2 2

1 2
0 0

1 1
0 , ,

2 2
i i

T T T T

i i i i i i i i i i ij j j j ik k k k

j C k C

J u u Q u R u a u R u b u R u    
−

 

−

 

 
 = + + − −  

 
   (7) 

where 2

1 0   and 2

2 0   are predefined constant parameters.  

 

Remark 1- Performance index (7) represents our new approach to solve the multi-leader consensus 

problem. Here, the behavior of the neighbors of the agent i are taken as a disturbance to the system. 

As in the H∞ approach, we determine the optimal control policy against the worst-case 

disturbances, i.e., the policies uj, uk that maximize (7). 

 

Remark 2- The disturbance attenuation conditions 2

1 0   and 2

2 0   imply that the effect of the 

disturbance input to the desired performance output is attenuated by a degree at least equal to 
2

1 0   for 𝑢𝑗  and 2

2 0   for uk. The minimum value of 2

1 0   and 2

2 0   for which the disturbance 

attenuation condition is satisfied give the optimal robust control solution [36].  

 

4.2 DISTURBANCE ATTENUATION AND SOLUTIONS FOR THE H∞ OPTIMIZATION 

PROBLEM 

In this section, the Graphical Game Algebraic Riccati Equation (GARE) is formulated, which 

gives the solution to the H∞ optimization problem stated in section A. 

 

The Bellman equation for the performance function (7) can be defined in terms of the 

Hamiltonian as follows 

 

( )2 2

1 2

1 1
0

2 2
i i

T T T T

i i i i i i i ij j j j ik k k k i i i

j C k C

H Q u R u a u R u b u R u V     
− 

   
= + − + − + =   

   
   (8) 

 

Assuming that the value function has a quadratic form as ( ) T

i i i i iV P  = , then ( ) 2i i i iV P  = and the 

Hamiltonian can be written as 

( )

2 2

1 2

1 1

2 2
i i

i i

T T T

i i i i i i i ij j j j ik k k k

j C k C

T

i i i i i ij j ik k

j C k C

H Q u R u a u R u b u R u

P A d g Bu a Bu b Bu

   



−

−

 

 

 
 = + + − −  

 

 
+ − + + + 

 

 

 

 (9) 
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A necessary condition for optimality with respect to the control input 𝑢𝑖 is the stationary condition 

0i

i

H

u


=


. This procedure yields the optimal control policy for agent i as 

( ) 1 T

i i i i i iu d g R B P−= +  (10) 

In turn, the worst-case disturbance of our system is given by the neighbor policies uj and uk that 

maximize the performance index (7), and that are obtained by 0i

j

H

u


=


and 0i

k

H

u


=


 as 

1

2

1

1 T

j j i iR B P 


−=  (11) 

and 

1

2

2

1 T

k k i iR B P 


−=  (12) 

respectively. Notice that vj and vk are not the actual optimal policy for agent j and k, but only 

represent the worst-case policy for the performance function. 

Substituting these control policies in the Bellman equation (8) we get the HJI equation 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 1

2 2

1 2

2 1 1 1

2 2

1 2

1 1 1

2

1 1 1
0

2

i i

i i

T T T T

i i i i i i i ij i j i ik i k i i

j C k C

T T T T T

i i i i i i i i ij i j i ik i k i i

j C k C

Q d g PBR B P a PBR B P b PBR B P

PA A P d g PBR B P a PBR B P b PBR B P

 
 

 
 

−

−

− − −

 

− − −

 


 + + − − 




+ + − + + + =

 

 

 

 (13) 

 

This implies that matrix Pi in the policies (10)–(12) solves the Game  Algebraic Riccati equation 

(GARE) 

( )
2 1 1 1

2 2

1 2

1 1
0

i i

T T T T

i i i i i i ij i j i ik i k i i i

j C k C

Q d g PBR B P a PBR B P b PBR B P PA A P
 

−

− − −

 

− + + + + + =   (14) 

 

From the control policy (10) above, the control gain matrix for agent 𝑖 can be expressed by defining 

 

( ) 1 T

i i i i iK d g R B P−= +  (15) 

 

such that 
i i iu K = . 

 

 

Remark 3- Graphical game H∞ distributed control policies for the agents if there exist positive 

definite solutions Pi for the equation (14) respectively.  

In the following section, we analyze the stability properties of the closed-loop system using the 

designed H∞ policies for multileader clustering. 
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5 STABILITY OF MULTILEADER MULTI-AGENT SYSTEMS CLUSTER CONSENSUS  

 

In this section, we first prove that the cluster consensus error dynamics (16) are ultimately 

uniformly bounded (UUB) [37] when we use the control policies (10). Then, a cluster partitioning 

technique is used to guarantee the asymptotic stability of the agents to synchronize with their 

corresponding leaders. 

5.1 CLUSTER STABILITY ANALYSIS BY SMALL GAIN THEOREM  

In this section, we first introduce the small gain theorem approach for MAS and then, by using 

the small gain theorem, and then, in section B, we prove ultimately uniformly bounded (UUB) 

stability. 

 

Consider the local error dynamic defined in (17) and let all agent i=1,…, N use control policies 

of the form (10). For nominal matrices CP

iA  and B, the closed-loop system dynamic for each agent 

is  

CP

i i i iA B  = +  (18) 

where CP

iA  is the closed loop system matrix for the agent i defined as  

( )CP

i i i iA A d g BK= − +  (19) 

and the disturbance term is defined as 

 

i i

i ij j j ik k k

j C k C

a K b K  
− 

= +   (20) 

where matrices 
jK  and kK  are as in (15).  

In (18), the influence of the neighbor control policies uj and uk is taken as a disturbance.  

 

The small gain theorem [38] is employed to analyze the stability properties of the ML-MAS.  

For Multi-leader MAS defined in (18), The transfer function for agent i is  

( ) ( )
1

CP

i iT s sI A B
−

= −  (21) 
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Taking other leaders and the agents from other clusters as the disturbance to be attenuated, the 

input–output relationships of the local system is represented by (21). 

Define the matrix 
iH  

1 1 1 2 2 2( ) 0i i i ip p pH s a K a K a K   =    (22) 

 

where the ith term of the matrix Hi is zero. Matrix H is defined for inter-cluster couplings as  

( ) 1i ij ppH s H H H =    (23) 

  

The H∞-norm of the transfer function matrix for system (18) is  

( ) ( )sup
R

i iT s T j



 


−


=   

 (24) 

The small gain theorem is used to solve the H∞ optimal problem for ML-MAS system. 

 

Lemma 1- [39] Small Gain Theorem for Multi-leader MAS: Consider the ML-MAS defined in 

(1) and (2). For 
2 0   , the following are equivalent: 

1) CP

iA   is Hurwitz and ( ) 2

iT s 

  

2) There exists a 0P   such that 

2

1
0T TA P PA PBB P I


+ + +   (25) 

The closed-loop system dynamic (18) is finite-gain L2 stable if 1 or 2 holds. 

 

 

Remark 5- The ML-MAS optimal problem is solved if CP

iA is Hurwitz, and for ( ) 0iH   

( )
( )

1
i

i

T s
H

  (26) 

This only depends on the inter-cluster couplings Hi. Therefore, the gain matrices shall be selected 

to assure the H∞ norm exists, and it is smaller than 
( )
1

iH
. 

5.2 CLUSTER STABILITY ANALYSIS BY SMALL GAIN THEOREM  

In this section, optimal cluster consensus of ML-MASs is discussed in the framework of 

multiagent graphical games. It is shown how to find optimal protocols for every agent. It is also 

shown that the optimal response makes all agents synchronize to the leader and reach an ultimately 

uniformly bounded (UUB) stability. 
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Assumption 1- The predefined constant for all clusters can be defined as the largest for all
2 2 2 *

1 2   = =   Where * is as definition 1. 

 

Assumption 2- The performance index (7) is selected such that 

iQ I  (27) 

 

From Assumption 2, Ui is orthogonal and the H∞ norm of the transfer function matrix is less than 

2 0   [40]. 

 

Theorem 1 shows asymptotic stability for all agents once they select their own optimal response 

to the cluster leaders. 

 

 

Theorem 1 – ML-MAS Cluster Synchronization: Consider the ML-MAS with system dynamics 

given by (1) and (2).  

, 1,...,

,

i i i

p p

x Ax Bu i N

x Ax p P

= + =

= 
 

Assume the communication graph contains a spanning tree. The optimal control policy protocols 

( ) 1 T

i i i i i iu d g R B P−= +  (10) make the local errors (3)  

( ) ( ) ( )( )
i i i i

N P

i ij j i ip p i ik k i il l i

j C p C k C l C
p P l P

a x x g x x b x x g x x
− −   

 

= − + − + − + −     

Asymptotically stable for all agent i.  

 

 

Proof: The stability of H∞ optimal solution is reached using small gain theorem in lemma 1. 

To find the condition to assure the stability of the error dynamics, the small gain theorem must 

hold. Equation (14) can be written as 

( )
2 1 1 1

2 2

1 2

1 1
0

i i

T T

i i i i i ij j ik k i i i

j C k C

Q PB d g R a R b R B P PA A P
 

−

− − −

 

 
+ − + + + + + = 

 
   (28) 

From assumption 2, we know 
iQ I . Using the optimal control policy for agent i (10), 

( ) 1 T

i i i i iK d g R B P−= + , equation (28) will be redefined as 

( )
2 1 1 1

2 2

1 2

1 1
0

i i

T T

i i i i i i ij j ik k i

j C k C

A P PA PB d g R a R b R B P I
 

−

− − −

 

 
+ − − + + + +  

 
   (29) 
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Comparing GARE equation (14) and equation (29), and using assumption 2, For the closed loop 

system, equation (27) will hold if  

( )
2 1 1 1

2 2 2

1 2

1 1 1

i i

i i i ij j ik k

j C k C

d g R a R b R I
  

−

− − −

 

− + + +    (30) 

From assumption 1, If 
2 2 2

1 2  = = , equation (30) can be summarize as 

( )
21 1 1

2 2 2

1 1 1

i i

ij j ik k i i i

j C k C

I a R b R d g R
  

−

− − −

 

− + +  +   (31) 

For the inequality (31) to hold, the following equation should hold for the bounded L2-Gain value. 

( )

1 1

2

2 1

1
i i

ij j ik k

j C k C

i i i

a R b R

d g R
 −

− −

 

−

+ −


+

 
 (32) 

Lemma 1 proves that for 2 0  , the system is stable and  ( ) 2

iT s 

 . Therefore, the small gain 

theorem holds and 

 
( )

2 1
0

iH



   (33) 

where Hi is the matrix of inter-cluster links. While A is Hurwitz,  

 ( )
( )

1

( )
i

i

T s
H s

  (34) 

 

Remark 6- While ML-MAS system is stable, there always exists a solution 0iP  such that the 

GARE equation (14) holds. 

 

We have proved the small gain theorem holds and there exists a bounded L2-gain value. In 

theorem 2, it is proved the ML-MAS is Ultimately Uniformly Bounded for all agents. 

 

Theorem 2- UUB Stability of ML-MAS: There exists a constant 0   and the time function T 

such that for all agent i in ML-MAS, the norm of the local error dynamic δi is uniformly bounded, 

and by applying control policies ,iu i N   to the system, ML-MAS will reach UUB (Ultimately 

Uniformly Bounded) stability. 

 



 

17 

 

Proof: For all agent i, the local synchronization error δi of agent i is defined based on the defined 

communication of agent i with other agents and the leaders in equation (1) and (2). In order to 

reach stability, the local synchronization error δi must go to zero.  

( ) ( ) ( )( ) 00 :
i i i i

N P

i i ij j i ip p i ik k i il l i

j C p C k C l C
p P l P

a x x g x x b x x g x x 
− −   

 

= − + − + − +→ − →     (35) 

 

Assume 1Px and 2Px are the state of the leaders of cluster 1 and 2. It is the state of the leader for 

different cluster cannot be the same, the following statement is accurate. 

 1 2P Px x  (36) 

Since the state of agent i in cluster P is related to the leader in its own cluster and the neighboring 

clusters, the agent i’s state 
ix will not reach its leader P state, therefore the synchronization of the 

agent i to the leader P will be bounded. 

Using containment control policy, 
ix converges to the convex hull of all the leader’s positions. 

 

( ) ( ), : 0, , , , 0i i i i i initialx C C T x t t T t−   =         =  (37) 

 

Therefore, the norm of local error dynamic is  

( ) ( ) ( )
1 1

( )
i i

i i

N P

i ij j i ip p i ik k i ik k i

j p k C k C
j C p C k i

a x x g x x g x x b x x
− −= =  

  

= − + − + − + −       (38) 

 

As a result, we conclude the local synchronization error δi of agent i is UUB. 

Since the system is UUB, there exists a constant α>0 such that  

,j ix x i N−     (39) 

 

Remark 7- Theorem 2 proved that the local error i  is UUB (Ultimately Uniformly Bounded) 

i   . It is shown in part B, the error dynamic converges to zero which results in i to be 

asymptotically stable. From the result for stability, it is proved that the global clustering error 

dynamics is UUB (Ultimately Uniformly Bounded) and ML-MAS is marginally stable which 

results in the convergence of the agent i in cluster P to the corresponding leader of the cluster. 
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Remark 8- The stability of 
i has been proven in the sequential steps: 

Theorem 1 showed ML-MAS is asymptotically stable for all agent i.  

Using Small Gain theorem in theorem 1 and UUB in theorem 2, if 
i is asymptotically stable,

i

will go to zero as time goes to infinity.  

However, the convergence of 
i to zero does not necessarily guarantees the convergence of the 

agent to its leader. 

In the following section, it will be shown how ML-MAS reaches consensus using cluster 

partitioning techniques. 
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6 CLUSTER PARTITIONING FOR MULTILEADER MULTI-AGENT SYSTEMS 

CLUSTER CONSENSUS  

In this section, the cluster partitioning techniques will be deployed to reach ML-MAS cluster 

consensus. 

In order for the agents in the same cluster to reach consensus with their leader, a new formulation 

will be added to the combination of H∞ optimal control policy along with the UUB stability of the 

dynamic system.  

It has been proven that the defined ML-MAS system is UUB (Ultimately Uniformly Bounded) 

for all agents in the clusters and their corresponding leaders. Since the system has UUB stability, 

the influence of the leader on the agents from other clusters will be minimal and the link between 

agents of different clusters can be broken. At this point, the intra-cluster links will be formed and 

if the link between the neighboring agent and the leader is bigger than a defined limit, the link will 

be broken to reach Asymptotic Stability. 

Once the links are all cut, the agent can only see the other agents in its own cluster. 

6.1 MULTILEADER MULTI-AGENT SYSTEM CLUSTER CONSENSUS 

In previous section IV, the stability of ML-MAS is proved using Small-Gain theorem and 

Ultimately Uniformly Bounded (UUB). In this part, the cluster consensus of ML-MAS is designed 

using cooperative tracking technique [41] in order to apply the partitioning. 

 

Assumption 4- The augmented graph G contains a spanning tree with at least the root node can 

get access to the leader node. If graph G is disconnected, each separated subgroup shall be either 

a single node or contains a spanning tree. 

 

Consider the UUB system designed in theorem 2. Once the agents start following their leader, 

at some point the influence of the leader to the agents of other cluster weakens, to the point that 

the leader influence on the agent j, 
ij C− becomes minimal and the link between agent j and agent 

i, 
ii C  can be broken as they do not follow the same leader for partitioning purposes. At this stage, 
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the intra-cluster links are formed and the inter-cluster links between the neighboring agent for 

other clusters and the leader of cluster P can be broken to reach asymptotic stability. 

 

Theorem 3- Cluster Partitioning and Convergence of ML-MAS: Consider the UUB system 

designed in theorem 2. There exists constant β such that  

0, : 0,k i ik ix x b k C    −    −  =  (40) 

The inter-cluster link can be broken between agent , ik k C− and , ii i C . 

 

Figure 1- Agent i inter-cluster and intra-cluster links 

 

Proof: From theorem 2, assume the system is UUB, there exists a constant α>0 such that  

,j ix x i N−     (41) 

Once the agent i from cluster C starts following the cluster C leader, the influence of the leaders 

from other clusters -C to the agent i weakens, to the point that the leader influence on the agent j, 

ij C− becomes minimal and the link between agent j and agent i, ii C  can be broken as they do 

not follow the same leader for partitioning purposes.  

 

At this point, the intra-cluster link will get stronger. If the inter-cluster link between the 

neighboring agent and cluster C leader is bigger than a certain positive indefinite numbers β and 

 , the link will be broken to reach Asymptotic Stability (A.S.). 
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For the neighboring agent outside cluster C: 

 

0, : 0,k i ik ix x b k C    −    −  =   (42) 

 

And for the leaders of other clusters -C: 

 

0, : 0,p i ip ix x g p C    −    −  =   (43) 

 

Therefore, the synchronization error (3) can be written as 

( )
1 1

( ) 0 0

i i

N P

i ij j i ip p i

j p
j C p C

a x x g x x
= =
 

= − + − + +   (44) 

 

Once all the links are cut, each agent can only see the agent in its own cluster and the cluster 

partitioning has been accomplished. 

 

Remark 9- Cluster Consensus of ML-MAS: The asymptotic stability of the system has been 

proven using optimal control theory. In theorem 2, UUB theory has been implemented to prove 

the stability of ML-MAS. And finally, in theorem 3, the cluster partitioning has been deployed to 

reach cluster consensus for each cluster with its own leader. 

 

6.2 CLUSTER CONSENSUS OF MULTILEADER MULTI-AGENT SYSTEMS USING H∞ 

OPTIMAL CONTROL POLICY 

Continuous time state feedback control policy guaranties Ultimately Uniformly Boundedness 

(UUB) for uncertain dynamic systems [37]. Assume the system is described in equation (1) and 

(2). The uncontrolled system without uncertainty is Lyapunov Stable with respect to the zero state, 

there exist a class of state feedback controls which are continuous in the state and guarantee that 

every response of the system is uniformly bounded and uniformly ultimately bounded within the 
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neighborhood of the zero state. This neighborhood of ultimate boundedness is made arbitrary small 

[42]. In order to model the minmax differential game and account for variability of the clustering 

environment, the control law is defined as state feedback control policy system. 

Cluster partitioning is deployed to eliminate the effect of the leaders outside the clusters on the 

agents of the cluster to reach synchronization within the cluster’s leader. The analytical results will 

be represented in section 0. 

In the next section, Integral Reinforcement learning will be introduced to learn H∞ optimal control 

policy solution online to eliminate the dependency of the solution to system dynamics. 
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7 INTEGRAL REINFORCEMENT LEARNING  

 

In this section, an offline RL algorithm is first given to solve the problem of H∞ optimal design 

for ML-MAS by learning the solution to the HJI equation optimization.  

The performance function is introduced for ML-MAS H∞ optimal problem which is weighted 

based on the cost of the feedback part of the control input in the performance function. A discount 

factor upper-bound limit is obtained to assure local asymptotic stability of the error dynamics.  

An off-policy IRL algorithm is then developed to learn the solution to the HJI equation online 

and without requiring any knowledge of the system dynamics [34]. Convergence of this algorithm 

to the solution to ML-MAS HJI equation is secured. 

7.1 INTEGRAL REINFORCEMENT LEARNING FOR OPTIMAL ADAPTIVE CONTROL 

OF CONTINUOUS-TIME SYSTEMS USING POLICY ITERATION 

Reinforcement learning is considerably more complex for continuous-time systems than for 

discrete-time systems; therefore, fewer results are available on continuous-time system IRL. The 

development of an offline policy iteration method for continuous-time systems is described in [51]. 

Using a method known as Integral Reinforcement Learning (IRL) [37], [15] allows the application 

of reinforcement learning to formulate online optimal adaptive control methods for continuous-

time systems. These methods find online solutions to optimal HJI design equations and Riccati 

equations in real time without knowing the system dynamics f(x), or in the LQR case, without 

knowing the A matrix.  

Consider the continuous-time LQR dynamical system 

 

x Ax Bu= +  (45) 

( )( ) ( )
1

2

T T

i
V x t x Qx u Ru d



= +  (46) 
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A policy is called admissible if it is continuous, stabilizes the system, and has a finite associated 

cost. If the cost is smooth, then an infinitesimal equivalent to the cost function can be found by 

Leibniz’s formula. 

In section IV and V, it has been shown that the system is asymptotically stable (A.S.). In this 

section, H∞ optimal clustering problem will be reformulated to define Off-Policy Integral 

Reinforcement Learning (IRL) to learn the optimal clustering performance. Consider the system 

dynamic as defined in section II, equations (1) and (2). 

, 1,...,

, 1,...,

i i i

p p

x Ax Bu i N

x Ax p P

= + =

= =
 (47) 

 

The local error dynamics has been defined as i  in (3). The fictitious performance output to be 

controlled is defined such that it satisfies 

( )
2 T T

i i i i iz t Q u Ru = +  (48) 

 

Definition 2 – Bounded L2-Gain/Disturbance Attenuation: The system has a L2-Gain smaller 

than  where  

( )1 2min ,  =  (49) 

 

For all local error  )2 0, :i L    

( )

( )

2

2

2

i

t

i

t

z d

d

 



  










 (50) 

Where  is the amount of attenuation from ( )i t to the defined performance output variable ( )iz t

. The optimal robust control is minimum of  . 

The off-policy reinforcement learning algorithm requires some knowledge of the system 

dynamics. The method presented in this section is to solve H∞ optimal problem with completely 

unknown dynamics. 
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7.2 ONLINE ALGORITHM ON AN ACTOR-CRITIC-DISTURBANCE STRUCTURE 

In this section we discuss the implementation of the adaptive algorithm on the 

Actor/Critic/Disturbance structure. 

The structure of the system with the adaptive controller is presented as state feedback control 

model. The policy iteration technique has been adopted to a control system structure that allows 

the system to perform optimal adoptive control without knowing the internal dynamics of the 

system. This hybrid solution is constructed as a continuous-time/discrete-time adaptive control 

structure. This means that the system has continuous-time dynamics, and a discrete-time sampled 

data portion for policy evaluation.  

All algorithm’s calculations are performed at a supervisory level which operates based on 

discrete-time data measured from the system. This optimal clustering intelligent control structure 

implements the Policy Iteration algorithm and uses the Critic neural network to parameterize the 

performance of the continuous-time control system associated with a certain control policy. The 

Optimal Clustering Policy structure makes the decisions relative to the discrete-time moments at 

which the Actor, the Critic, and the disturbance parameters will be updated. The Actor neural 

network is part of the control system structure and performs continuous-time control, while its 

constant gain is updated at discrete moments in time. The same algorithm is in play for the 

disturbance neural network. 

The algorithm converges to the solution of the continuous-time optimal control problem, since 

the Critic update is based on the continuous-time cost over a finite sample interval. The net result 

is a continuous-time controller incorporated in a continuous-time/discrete-time adaptive structure, 

which includes the continuous-time dynamics of the cost function and operates based on sampled 

data, to perform the policy evaluation and policy update steps at discrete moments in time [43]. 

The cost function solution can be obtained in real time, after enough data points are collected 

along state trajectories in each cluster. The least-squares method has been adopted for finding the 

parameters of the cost function. Least-squares method can be replaced with other methods of 

parameter identification if needed. 

The iterations of updating the control policies will be stopped when the error between the system 

performance evaluated at two consecutive steps will cross below a specified system’s threshold. If 
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this error exceeds the specified threshold, it indicates a change in the system dynamics, which will 

signal the Critic to start tuning the Actor parameters. 

In this algorithm, knowledge of the system dynamics is not required for the cost function and 

the control policy updates. However, the partial knowledge of the is required for the update of the 

control policy and this makes the online algorithm partially model free.  

In the next section, it is shown how to implement Offline Reinforcement Learning Policy to 

make the complete model-free algorithm. 

7.3 OFF-POLICY IRL FOR LEARNING ML-MAS H∞ OPTIMAL PROBLEM 

In this section, an offline RL algorithm is first given to solve ML-MAS H∞ optimal clustering 

problem by learning the solution to the HJI equation. An off-policy IRL algorithm is then 

developed to learn the solution to the HJI equation online and without requiring any knowledge of 

the system dynamics. Actor–Critic–Disturbance structure with three Neural Networks (NNs) are 

utilized to implement the off-policy IRL algorithm. 

7.3.1 OFF-POLICY REINFORCEMENT LEARNING ALGORITHM 

The Bellman equation (8) is solved for the cost function V. To solve for optimal value function, 

a Policy Iteration (PI) algorithm iterates on both the control and disturbance players to solve the 

HJI equation. An offline PI algorithm for solving the H∞ optimal clustering problem is given in 

Algorithm 1. 
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Algorithm 1 Offline Reinforcement Learning Algorithm 

1. Start 

2. Given admissible policy 
0

ru  

3. For the control policy input 
iu , and disturbance policies 

ju

, and 
ku , find cost function 

iV using the following Bellman 

equation: 

( ) ( )
2 2

1 2

, , ,

0
i i

T T

i i i j k i i i i i i i i i

T T

ij j j j ik k k k

j C k C

H V u u u Q u R u V

a u R u b u R u

   

 
− 

= + +

− − = 
 (51) 

4. Update the control policy iu  using 

 ( )1 1r T

i i i iu d g R B V+ −= +   (52) 

5. Update the disturbances policies 
ju and 

ku using 

 

1 1

2

1

1 1

2

2

1

1

r

j j

r

k k

u R V

u R V





+ −

+ −

= 

= 

 (53) 

6. Go to 3 

7. End. 

 

Algorithm 1 extends the results of the simultaneous RL algorithm in [44] to the optimal clustering 

problem. The convergence of this algorithm to the minimal non-negative solution of the HJI 

equation was shown in [44]. The convergence of Algorithm 1 is shown by converging to the unique 

solution of the HJI equation. 

7.3.2 OPTIMAL CLUSTERING CONSENSUS PROBLEM 

The next step is to design an optimal control input to make the states of the agents in each cluster 

( )ix t  follow a desired leader’s trajectory of their cluster ( )jx t . 
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Algorithm 1 requires complete knowledge of the system dynamics. Therefore, the off-policy 

IRL algorithm, which was presented in [45] for solving the H2-optimal regulation problem, is 

modified to solve the H∞-optimal clustering problem for systems with completely unknown 

dynamics. The system dynamics (4) is written as 

( ) ( ) ( )
i i

i i i i

r r

i i i i i ij j ik k i i i i i i

j C k C

r r r r

ij j ij j ik k ik k

j C j C k C k C

A d g Bu a Bu b Bu d g Bu d g Bu

a Bu a Bu b Bu b Bu

 
−

− −

 

   

 
= − + + + + + − + 
 

− + − +

 

   
 (54) 

 

where r

iu , r

ju , and r

ku are the policies to be updated. The cost function ( ( ))iV t is differentiated 

using algorithm 1 method to solve the following equation 

 ( )( ) ( )TV t V t =   (55) 

by substituting ( )t from equation (54), equation (55) is written as 

 

( ) ( )

( ) ( ) ( ) ( )

( )
i i

i i

T r r r

i i i i ij j ik k

j C k C

r r r

i i i i ij j j ik k k

j C k C

V t V A d g Bu a Bu b Bu

d g B u u a B u u b B u u

 
−

−

 

 


=  − + + +




− + − + − + − 



 

 

 

(56) 

In the tracking problem [30], the control input is defined in two terms: a feedforward term that 

guarantees tracking and a feedback term that stabilizes the system. The feedforward term is 

obtained using the dynamics inversion concept and the feedback input is found by applying the 

stationarity condition that is derived from the cost function. Obtaining the feedforward part of the 

control input needs complete knowledge of the system dynamics and the reference trajectory 

dynamics. In [46] and [47], a new formulation is developed that gives both feedback and 

feedforward parts of the control input simultaneously and thus enables RL algorithms to solve the 

tracking problems without requiring the complete knowledge of the system dynamics. 

 

Remark 10 – Discounted Performance Function: Since the reference trajectory does not go to zero 

in the case of most real applications. The control input contains a feedforward part that depends 

on the reference trajectory and thus T

i i iu R u  does not go to zero as time goes to infinity. Therefore, 

it is essential to use a discounted performance function for the proposed formulation. 
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( ) ( ) ( ) ( )

( )

( )

1

2
11

2

1

2
12

2

2

( )

i i

i i

T r T r

i i i i i i i i i i

T r T r

ij j ij j j j j

j C j C

T r T T r

ik k ik k k k k

k C k C

V t V A d g Bu V d g BR R u u

V a Bu a VBR R u u

V b Bu V b VR R B u u

 








− −

−

−

 

−

 

 =  − + − + − 

+ +  −

+ +   −

 

 

 (57) 

 

The off-policy learning algorithm for the synchronization of ML-MAS that does not require any 

knowledge of the dynamics is structured as follow: 

a. Off-policy Bellman equations are first derived. 

b. An actor-critic-disturbance neural network (NN) structure is used to evaluate the value 

function and find an improved control policy for each agent. 

c. An iterative off-policy RL algorithm is given to learn approximate optimal control policies 

that make the ML-MAS reach consensus and meanwhile guarantee the synchronization of 

all agents to their leaders. 

d. In off-policy RL, a behavior policy is applied to the system to generate the data for learning 

and a different policy, called the target policy, and is evaluated and updated using measured 

data. 

Using algorithm 1, the cost function (57) is written as 

 

( ) ( )

( ) ( ) ( )1, 2 1, 2 1,

1 2

( )
i i

i i

T r T r T r

i i i i ij j ik k

j C k C

r T r r T r r T r

i i i i ij j j j j ik k k k k

j C k C

V t V A d g Bu V a Bu V b Bu

u R u u a u R u u b u R u u

 

 

−

−

 

+ + +

 

 =  − + + + 

− − + − + −

 

 
 (58) 

 

Since Bellman equation is linear in the cost function V, solving Bellman equation for V is more 

efficient than solving HJI for V*.  

 

( )2 2

1 2 0
i i

rT r rT r rT r T

i i i i i i ij j j j ik k k k i i i

j C k C

Q u R u a u R u b u R u V     
− 

+ − − + =   (59) 

 

where 2

1 0  and 2

2 0  . The term ( )T

i i iV    is extracted from Bellman equation (59) as below 

 

( ) 2 2

1 2

i i

T rT r rT r rT r

i i i i i i i i i ij j j j ik k k k

j C k C

V Q u R u a u R u b u R u     
− 

 = − − + +   (60) 

 

Substituting (60) in discounted performance function ( )( )V t (57) yields 
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( )

( ) ( ) ( )

2 2

1 2

1, 2 1, 2 1,

1 2

( )
i i

i i

rT r rT r rT r

i i i i i i ij j j j ik k k k

j C k C

r T r r T r r T r

i i i i ij j j j j ik k k k k

j C k C

V t Q u R u a u R u b u R u

u R u u a u R u u b u R u u

    

 

−

−

 

+ + +

 

= − − + +

− − + − + −

 

 
 (61) 

 

Integrating both sides of (61) results in the following off-policy IRL Bellman equation: 

( ) ( )

( )( ) ( ) ( )

2 2

1 2

1, 2 1, 2 1,

1 2

( ) ( )
i i

i i

t T

r r rT r rT r rT r

i i i i i i i i ij j j j ik k k k

j C k Ct

t T t T

r T r r T r r T r

i i i i ij j j j j ik k k k k

j C k Ct t

V t T V t Q u R u a u R u b u R u d

u R u u d a u R u u b u R u u d

      

   

−

−

+

 

+ +

+ + +

 

 
+ − = − − + + 

 

 
+ − − + − + − 

 

 

  

 (62) 

 

The off-policy IRL Bellman equation (62) can be solved for the performance function ( )( )iV t  

and the updated control and disturbance policies 1r

iu + , 1r

ju + , and 1r

ku + simultaneously for a fixed 

control policy u (the policy that is applied to the system) and a given disturbance 
ju , and ku (the 

actual disturbances are based on the neighbor’s policies). 

 

Lemma 2 – (Off-Policy IRL Bellman Solution) the solution for performance function solution 

using the off-policy IRL equation (62) shall be the same the Bellman equation (51), and the 

updated control and disturbances are the same as (52)-(53). 

Proof – The off-policy IRL equation (62) gives the same solution for the performance function 

as the Bellman equation. By dividing both sides of the off-policy IRL Bellman equation (62) by 

T, and taking limit results in 

  

( ) ( )

( )( ) ( ) ( )

2 2

1 2

0 0

2 1, 2 1,1,
1 2

0 0

( ) ( )
lim lim

lim lim

i i

i i

t T

rT r rT r rT r

i i i i i i ij j j j ik k k kr r
j C k Cti i

T T

t T
r T r r T rr T r

ij j j j j ik k k k ki i i i
j C k Ct

T T

Q u R u a u R u b u R u d
V t T V t

T T

a u R u u b u R u uu R u u d

T

    
 

 

−

−

+

 

→ →

+
+ ++

 

→ →

 
+ − − 

+ −  +

 
− − − −− 
+ +

 

 
0

t T

t

d

T


+


 =



  (63) 

The limits in (63) are the same as the derivative of each limit. Therefore, the terms in (63) are 

written as follows 

( ) ( )
( )

0

( ) ( )
lim ( ) 

r r

i i

i
T

V t T V t
V t

T

 


→

+ −
=  (64) 
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2 2

1 2

0

2 2

1 2

lim
i i

i i

t T

rT r rT r rT r

i i i i i i ij j j j ik k k k

j C k Ct

T

rT r rT r rT r

i i i i i i ij j j j ik k k k

j C k C

Q u R u a u R u b u R u d

T

Q u R u a u R u b u R u

    

   

−

−

+

 

→

 

 
+ − − 

 

= + − −

 

 

 (65) 

( )( )
( )

1,

1,

0
lim

t T

r T r

i i i i

r T rt
i i i i

T

u R u u d

u R u u
T


+

+

+

→

−

= −


 (66)

( ) ( )

( ) ( )

2 1, 2 1,

1 2

0

2 1, 2 1,

1 2

lim
i i

i i

t T

r T r r T r

ij j j j j ik k k k k

j C k Ct

T

r T r r T r

ij j j j j ik k k k k

j C k C

a u R u u b u R u u d

T

a u R u u b u R u u

  

 

−

−

+

+ +

 

→

+ +

 

 
− − − − 
 

= − − − −

 

 

 (67) 

 

Substituting (64)-(67) in (63) yields 

 

( )

( ) ( ) ( )

2 2

1 2

1, 2 1, 2 1,

1 2

( )

0

i i

i i

rT r rT r rT r

i i i i i i i ij j j j ik k k k

j C k C

r T r r T r r T r

i i i i ij j j j j ik k k k k

j C k C

V t Q u R u a u R u b u R u

u R u u a u R u u b u R u u

    

 

−

−

 

+ + +

 

+ + − −

+ − − − − − =

 

 
 (68) 

 

Substituting the updated policies 1r

iu + , 1r

ju + , and 1r

ku + from (52)-(53) into (68) gives the Bellman 

equation (51). This completes the proof. 

 

Remark 11 - In the off-policy IRL Bellman equation (62), the control input u, which is applied 

to the system, can be different from the control policy iu , which is evaluated and updated. The 

fixed control policy u should be a stable control policy. However, disturbance 
ju , and ku are the 

disturbances that are evaluated and updated. 

Remark 12 - Algorithm 2 has two separate phases based on the off-policy algorithm described 

in [30].  

Phase 1 – A fixed initial control policy u is applied, and the system data is recorded. The data is 

gathered over the time interval T.  
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Phase 2 – In this phase, the data collected in phase 1 is repeatedly used to find a sequence of 

updated policy 
iu  and disturbances 

ju , and 
ku  converging to *

iu , *

ju , and *

ku , without requiring 

any knowledge of the system dynamics. Equation xx is solved using the least-square of collected 

data samples from the system. It has been shown how to solve the equation (69) for ( )( )iV t , and 

the updated control and disturbance policies 1r

iu + , 1r

ju + , and 1r

ku + simultaneously. After the 

learning is done and the optimal control policy *u is found, it can then be applied to the system. 

Algorithm 2 Online Off-Policy RL Algorithm for Solving Optimal 

Clustering HJI Equation 

1. Start 

2. Given admissible policy 
0

ru  

3. For N different sampling interval T 

4. For the control policy input iu , and disturbance policies 
ju , 

and ku  collect required system data: 

5. Phase 1 (Data collection of the targeted variables using a 

fixed control policy): Collect System state, control input and 

disturbance  

6. Phase 2 (Data regression of collected data sequentially to 

find an optimal policy iteratively): Use collected data in phase 

1 to solve the following Bellman equation for ( )( )iV t , and the 

updated control and disturbance policies 1r

iu + , 1r

ju + , and 1r

ku +

simultaneously: 

( ) ( )

( )( )

( ) ( )

2 2

1 2

1,

2 1, 2 1,

1 2

( ) ( )

i i

i i

r r

i i

t T

rT r rT r rT r

i i i i i i ij j j j ik k k k

j C k Ct

t T

r T r

i i i i

t

t T

r T r r T r

ij j j j j ik k k k k

j C k Ct

V t T V t

Q u R u a u R u b u R u d

u R u u d

a u R u u b u R u u d

 

    



  

−

−

+

 

+

+

+

+ +

 

+ − =

 
− − + +  
 

+ − −

 
+ − + −  

 

 



 

 (69) 

7. Stop if a stopping criterion is met, otherwise set i = i +1 and 

go to 6. 

8. End. 
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Theorem 4- (Convergence of ML-MAS and Cluster Consensus): The off-policy Algorithm 2 

converges to the optimal control and disturbance solutions given by (52)-(53),  

( )1 1r T

i i i iu d g R B V+ −= +   

1 1

2

1

1 1

2

2

1

1

r

j j

r

k k

u R V

u R V





+ −

+ −

= 

= 

 

where the value function satisfies the Optimal Clustering HJI equation. 

 

Proof: It was shown in Lemma 2 that the off-policy optimal clustering Bellman equation (69) 

gives the same value function as the Bellman equation (51) and the same updated policies as  (52)

-(53). Therefore, both Algorithms 1 and 2 have the same convergence properties. Convergence of 

Algorithm 1 is proved in [44]. This confirms that Algorithm 2 converges to the optimal solution.  

 

Remark 12 – It is important to mention that although both Algorithms 1 and 2 have the same 

convergence properties, Algorithm 2 finds an optimal control policy without requiring any 

knowledge of the system dynamics. This contrasts with algorithm 1 that requires full knowledge 

of the system dynamics. Moreover, Algorithm 1 is an on-policy RL algorithm, which requires the 

disturbance input to be specified and adjustable. On the other hand, Algorithm 2 is an off-policy 

RL algorithm, which eliminates this requirement. 

7.4 ML-MAS OFF-POLICY IRL USING NEURAL NETWORKS 

In this section, the ML-MAS off-policy RL Algorithm 2 is implemented by utilizing the 

collected data found by applying a fixed control policy u to the system to solve (69) for ( )( )i iV t

, and the updated control and disturbance policies 1r

iu + , 1r

ju + , and 1r

ku +  iteratively. Three NNs, 

i.e., the actor NN, the critic NN, and the disturber NN, are used here to approximate the value 

function and the updated control and disturbance policies in the Bellman equation (69). The 

solution ( )( )iV t , and the updated control and disturbance policies 1r

iu + , 1r

ju + , and 1r

ku +  of the 

Bellman equation (69) are approximated by three NNs as 
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( ) ( )1
ˆ ˆ( ) ( )T

i i iV t W t  =  (70) 

( ) ( )1

2
ˆˆ ( ) ( )r T

i i iu t W t  + =  (71) 

( ) ( )1

3
ˆˆ ( ) ( )r T

j i iu t W t  + =  (72) 

( ) ( )1

4
ˆˆ ( ) ( )r T

k i iu t W t  + =  (73) 

 

where 1

11,...,
l

l   =   , 2

21,...,
l

l   =   , 3

31,...,
l

l   =   , and 4

41,...,
l

l   =    

provide appropriate basis function vectors, 1

1
ˆ lTW  , 2

2
ˆ m lTW


 , 3

3
ˆ q lTW


 , and 4

4
ˆ s lTW


 . 

1l

, 
2l , 

3l , and 
4l  are the number of neurons.  

Define 1 1 1

1 ,..., m iu u   = = −  , 2 2 2

1 ,..., q ju u   = = −  , 3 3 3

1 ,..., s ku u   = = −  and assume 

( ),1 ,,...,i i i mR Diag r r= , ( ),1 ,,...,j j j qR Diag r r= , and ( ),1 ,,...,k k k sR Diag r r= . 

 

Using the above assumptions and definitions and substituting (70)-(73) in the Bellman equation 

(69), the Bellman Approximation Error ( )e t  is derived as 

 

( ) ( ) ( )

( )( )( ) ( )( ) ( )( )

1

2 2

1 2

1 2 2 2 3

2, 1 3, 2 4,

ˆ ( ) ( )

ˆ ˆ ˆ

i i

i i

T

i i

t T

rT r rT r rT r

i i i i i i ij j j j ik k k k

j C k Ct

t T t T

T T T

l i i m ij k i j q ik p i k s

j C k Ct t

e t W t T t

Q u R u a u R u b u R u d

W t R d a W t R b W t R d

   

    

            

−

−

+

 

+ +

 

= + −  

 
+ + − − 

 

 
+ − + 

 

 

  

 (74) 

 

where 2,
ˆ

lW  is the lth column of 2Ŵ , 3,
ˆ

kW  is the kth column of 3Ŵ , and 4,
ˆ

pW  is the lth column of 4Ŵ

. The Bellman approximation error is the continuous-time counterpart of the Temporal Difference 

(TD) [48]. The least-squares method is used to minimize the value of the temporal difference. The 

Bellman Approximation Error (74) is rewritten as  

 

( ) ( ) ( )ˆ Ty t e t W h t+ =  (75) 

 

where Ŵ , ( )h t , and ( )y t are 
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1 2 3 4

1 2, 2, 3, 3, 4, 4,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,..., , ,..., , ,...,

ˆ

T T T T T T T

l m l q l s

l m l q l s l

W W W W W W W W

W
+  +  + 

 =
 



 (76) 

 

( )

( ) ( )

( )( )( )

( )( )( )

( )( )

( )( )

( )( )

1

,1 2, 1

1

, 2,

2 2

1 3, 1

2 2

1 3,

2 3

2 4, 1

2

2 4

( ) ( )

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

i

i

i

i i

t T

T

i l i

t

t T

T

i m l i m

t

t T

T

ij k i j

j Ct

t T

T

ij k i j q

j Ct

t T

T

ik p i k

k Ct

ik

t T t

r W t d

r W t d

a W t R d

h t

a W t R d

b W t R d

b W

   
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−
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 

 
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 
    (78) 

 

The parameter vector Ŵ , which gives the approximated value function, actor, critic, and 

disturbances (70)-(73) is found by minimizing the Bellman approximation error (75) using the 

least-square method. Assume that the systems state, input, and disturbances data are collected at 

1 2 3 4N l m l q l s l +  +  +   (the number of independent elements in vector Ŵ ) points t1 to tN in 

the state space, over the same time interval T in phase 1. Then, for a given control policy iu  and 

disturbance 
ju , and ku , (76) and (77) is evaluated at N points to form 
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( ) ( )1 , , NH h t h t=     (79) 

( ) ( )1 , ,
T

NY y t y t=     (80) 

 

The least-square solution to (75) is  

 

( )
1

ˆ TW HH HY
−

=  (81) 

 

Which results in the solutions for ( )( )iV t , and the updated control and disturbance policies 1r

iu +

, 1r

ju + , and 1r

ku + . 

 

Remark 13: Although ( )i t T + appears in the Bellman approximation error (74), this equation is 

solved using least-square method after observing N samples ( ), ( ), , ( )i i it t T t NT  + + . 

Therefore, the knowledge of the system dynamic is not required to predict the future state ( )i t T +

at time t to solve (74). 
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8 SIMULATION 

In this section, first, the proposed cluster partitioning techniques will be deployed to reach ML-

MAS cluster consensus. Then, the proposed off-policy IRL method is applied to the same system 

to show that it converges to the optimal solution without the knowledge of system dynamics. 

 

8.1 CLUSTER PARTITIONING OF MULTILEADER MULTI-AGENT SYSTEMS WITH (9) 

AGENTS AND (3) LEADERS 

 

Consider an ML-MAS of N = 9 agents and  P = 3 leaders with the system dynamics as described 

in equation (1) and (2). The graph topology is shown in Figure 2. The agents are partitioned into 

three clusters: 

 

 

 

1

2

3

  1,  2,  3 ,  

  4,  5,  6 ,  

  7,  8,  9 .

C

C

C

=

=

=

 

System matrices of these agents are 

0 1
, 1, ,9

1 0

2 1
, 1, ,9

1 2

i

i

A A i

B B i

− 
= = = 

 

+ 
= = = 

 

 (82) 
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Figure 2- ML-MAS Graph Topology 

 

And the graph topology matrix G is defined as  

 

, 1,...,9, 1,...,9ijG G i j = = =   (83) 

 

where ijG are defined as follow 

11 22 33

12 23 31

13 21 32

0 0 0 0 1 0 0 0 3

 = 1 0 0 ,  = 1 0 0 ,  = 1 0 0

1 0 3 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1
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0 0 0 1 1 0 0 0 0

0 0 0

= 0 0 0  

0 0 0

G G G

G G G

G G G

     
     
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          

     
     
     
          

 
 

= =
 
  

 (84) 

 

The results for the theorem 1 are shown in Figure 3 - ML-MAS Synchronization – No UUB - 

Output trajectories of agents in each cluster - All Agents Synchronization - No cluster partitioning 
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Figure 4. 

 

Theorem 1 results show ML-MAS is asymptotically stable for all agent i. The agents in each 

cluster synchronize with their leader. However, the convergence of 
i to zero does not necessarily 

guarantees the convergence of the agent to its leader and cluster consensus. 

By applying theorem 2 and theorem 3, It is shown ML-MAS reaches consensus using cluster 

partitioning techniques. Once the agent i from cluster C starts following the cluster C leader, the 

influence of the leaders from other clusters -C to the agent i weakens, to the point that the leader 

influence on the agent j, 
ij C− becomes minimal and the link between agent j and agent i, 

ii C  

can be broken as they do not follow the same leader for partitioning purposes.  

The graph topology matrix G is modified once the links are broken as follow 

 

11 22 33

0 0 0 0 1 0 0 0 3

  1 0 0 ,   1 0 0 ,   1 0 0

1 0 3 0 1 0 1 1 0

0 0 0

   0 0 0  ,  ,  

0 0 0

ij

G G G

G i j i j

     
     

= = =
     
          

 
 

=   
 
  

 (85) 

 

The results are shown in The ML-MAS off-policy IRL Algorithm 2 is implemented by utilizing 

the collected data found by applying a fixed control policy u to the system to solve the Bellman 

equation for Vi(δi(t)), and the updated control and disturbance policies ui
r+1 , uj

r+1 , and uk
r+1  

iteratively. Three NNs, i.e., the actor NN, the critic NN, and the disturber NN, is used to 

approximate the cost function and the updated control and disturbance policies in the Bellman 
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equation. The solution Vi(δi(t)) , and the updated control and disturbance policies is approximated 

by three NNs. 

 

 

Figure 11. The asymptotic stability of the system has been reached using optimal control theory. 

By implementing theorem 2, UUB theory has been implemented and the stability of ML-MAS has 

been reached. And finally, using theorem 3, the cluster partitioning has been deployed and cluster 

consensus is reached for each cluster with its own leader. 
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Figure 3 - ML-MAS Synchronization – No UUB - Output trajectories of agents in each 

cluster - All Agents Synchronization - No cluster partitioning 
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Figure 4 – ML-MAS Synchronization – No UUB - Output trajectories of agents in each 

cluster - Cluster 1 Synchronization - No cluster partitioning 
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Figure 5 – ML-MAS Synchronization – No UUB - Output trajectories of agents in each 

cluster - Cluster 2 Synchronization - No cluster partitioning 
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Figure 6 – ML-MAS Synchronization – No UUB - Output trajectories of agents in each 

cluster - Cluster 3 Synchronization - No cluster partitioning 
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8.2 CLUSTER PARTITIONING OF MULTILEADER MULTI-AGENT SYSTEMS WITH 

UUB STABILITY AND CLUSTER PARTITIONING 

By applying theorem 2 and theorem 3, 

Theorem 2- UUB Stability of ML-MAS  

Theorem 3- Cluster Partitioning and Convergence of ML-MAS, 

It is shown ML-MAS reaches consensus using cluster partitioning techniques. Once the agent i 

from cluster C starts following the cluster C leader, the influence of the leaders from other clusters 

-C to the agent i weakens, to the point that the leader influence on the agent j, j ⸦ C-i becomes 

minimal and the link between agent j and agent i, i ⸦ Ci  can be broken as they do not follow the 

same leader for partitioning purposes. The graph topology matrix G is modified once the links are 

broken. 

11 22 33

0 0 0 0 1 0 0 0 3

  1 0 0 ,   1 0 0 ,   1 0 0

1 0 3 0 1 0 1 1 0

0 0 0

   0 0 0  ,  ,  

0 0 0
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     
     

= = =
     
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 
 
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 
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Figure 7 – ML-MAS Synchronization –UUB + Small Gain - Output trajectories of 

agents in each cluster – All Agents Consensus 
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Figure 8 – ML-MAS Synchronization –UUB + Small Gain - Output trajectories of 

agents in each cluster – Cluster 1 Consensus  
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Figure 9 – ML-MAS Synchronization –UUB + Small Gain - Output trajectories of 

agents in each cluster – Cluster 2 Consensus  
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Figure 10 – ML-MAS Synchronization –UUB + Small Gain - Output trajectories of 

agents in each cluster – Cluster 3 Consensus  
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The asymptotic stability of the system has been reached using optimal control theory. By 

implementing theorem 2, UUB theory has been implemented and the stability of ML-MAS has 

been reached.  

And finally, using theorem 3, the cluster partitioning has been deployed and cluster consensus is 

reached for each cluster with its own leader. 

While ML-MAS system is stable, there always exists a solution Pi>0 such that the GARE equation 

holds. The results for a random initial are as follows. 

 

While ML-MAS system is stable, there always exists a solution 0iP  such that the GARE 

equation (14) holds. The 0iP  results for a random initial are as follows. 

 

1 2 3

4 5 6

0.4828 0.2264 0.4823 0.2263 0.4756 0.2246
, ,

0.2264 0.7028 0.2263 0.7020 0.2246 0.6896

0.8170 0.2457 0.4756 0.2246 0.4823 0.2263
, ,

0.2457 1.2785 0.2246 0.6896 0.22

P P P

P P P

− − −     
= = =     

− − −     

− − −   
= = =   
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7 8 9

63 0.7020

1.5667 0.1827 0.4756 0.2246 0.8167 0.2457
, ,
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 
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 (87) 
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8.3 ML-MAS OFF-POLICY IRL USING NEURAL NETWORKS 

The ML-MAS off-policy IRL Algorithm 2 is implemented by utilizing the collected data found 

by applying a fixed control policy u to the system to solve the Bellman equation for Vi(δi(t)), and 

the updated control and disturbance policies ui
r+1 , uj

r+1 , and uk
r+1  iteratively. Three NNs, i.e., the 

actor NN, the critic NN, and the disturber NN, is used to approximate the cost function and the 

updated control and disturbance policies in the Bellman equation. The solution Vi(δi(t)) , and the 

updated control and disturbance policies is approximated by three NNs. 

 

 

Figure 11 – ML-MAS Cluster Consensus – Convergence of the control gain to its 

optimal value 
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Figure 12 – ML-MAS Cluster Consensus – Convergence of the kernel matrix P to its 

optimal value 
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9 CONCLUSION 

Multileader MASs cluster consensus has been proved under general topology with existing 

spanning tree, with NO limiting assumption on the communication graph. The underlying 

mechanisms between the system dynamics and the communication graph to reach cluster 

consensus are presented. The cluster consensus problem of Multileader MASs is investigated, 

where all clusters are allowed to have different communication weights. This extends existing 

results for clustering consensus from previous works.   

An online off-policy reinforcement learning algorithm is developed to find the solution to the 

H∞ optimal problem of multileader MAS with completely unknown systems. This will extend the 

off-policy RL to Multileader MAS. 

It is shown that, using off-policy RL, the disturbance input does not require to be specified and 

adjusted. Simulation results confirmed the suitability of the proposed method. 

In this dissertation, the cluster consensus problem of Multileader has been considered. Chen has 

studied the heterogeneous MASs considering the heterogeneous dynamics and the negative 

couplings among agents [32]. Chen has restricted the communication topology between the cluster 

using zero-row sum assumption for Laplacian matrix to assure the cluster has no other Impact on 

other clusters. He designed the problem using Hamiltonian performance optimization. In this 

paper, the Chen's restrictions on the communication topology have been removed which allow the 

clusters to communicate with each other freely through the optimization. We have also used Min-

Max differential game theory to optimize the state feedback control system. An important idea in 

this paper is to formulate the clustering problem of interconnected multileader systems as a 

disturbance attenuation problem as formulated in [5].  

There have been several studies in the past to reach consensus in multiagent system. In this 

paper, for the first time, it has been proved that the multileader MAS can reach cluster consensus 

without limiting the communication between the clusters. The combination of Small Gain 

Theorem and H∞ optimization has been designed in the graphical differential game platform to 

prove the stability for the system. 

After proving the cluster consensus for Multileader MASs, an online off-policy reinforcement 

learning algorithm is developed to find the solution to the H∞ optimal problem of multileader MAS 

with completely unknown systems. The leaders and the agents of other clusters outside each agent 
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cluster will be defined as the system disturbance. It is not required that the disturbance be 

adjustable. An augmented system is constructed from the tracking error dynamics and the 

command generator dynamics for the H∞ optimal performance problem.  

A performance HJI equation associated with the discounted performance function is derived, 

which gives both the feedforward and feedback parts of the control input simultaneously. An 

upper-bound and lower-bound is obtained for the discount factor to assure local asymptotic 

stability of the error dynamics using Ultimately Uniformly Bounded (UUB). An off-policy RL 

algorithm is then developed to find the solution to the HJI equation online using only the measured 

data and without any knowledge about the system dynamics. Convergence of this algorithm to the 

solution to the HJI equation is shown. 

The major contributions of this dissertation are as follows: 

1. Multileader MASs cluster consensus has been proved under general topology with 

existing spanning tree, with NO limiting assumption on the communication graph. The 

underlying mechanisms between the system dynamics and the communication graph to 

reach cluster consensus are presented. 

2. The cluster consensus problem of Multileader MASs is investigated, where all clusters 

are allowed to have different communication weights. This extends existing results in 

[32] for clustering consensus.  

3. an online off-policy reinforcement learning algorithm is developed to find the solution 

to the H∞ optimal problem of multileader MAS with completely unknown systems. This 

will extend the off-policy RL in [30] to Multileader MAS. 
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