
University of Texas at Arlington University of Texas at Arlington 

MavMatrix MavMatrix 

Computer Science and Engineering 
Dissertations Computer Science and Engineering Department 

Summer 2024 

NATURAL LANGUAGE GENERATION FROM LARGE-SCALE OPEN-NATURAL LANGUAGE GENERATION FROM LARGE-SCALE OPEN-

DOMAIN KNOWLEDGE GRAPHS DOMAIN KNOWLEDGE GRAPHS 

Xiao Shi 
University of Texas at Arlington 

Follow this and additional works at: https://mavmatrix.uta.edu/cse_dissertations 

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems 

Commons, and the Data Science Commons 

Recommended Citation Recommended Citation 
Shi, Xiao, "NATURAL LANGUAGE GENERATION FROM LARGE-SCALE OPEN-DOMAIN KNOWLEDGE 
GRAPHS" (2024). Computer Science and Engineering Dissertations. 257. 
https://mavmatrix.uta.edu/cse_dissertations/257 

This Dissertation is brought to you for free and open access by the Computer Science and Engineering Department 
at MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Dissertations by an 
authorized administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, 
erica.rousseau@uta.edu, vanessa.garrett@uta.edu. 

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_dissertations?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_dissertations/257?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu


NATURAL LANGUAGE GENERATION FROM LARGE-SCALE

OPEN-DOMAIN KNOWLEDGE GRAPHS

by

XIAO SHI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

Aug 2024



Copyright © by XIAO SHI 2024

All Rights Reserved



To my family.



ACKNOWLEDGEMENTS

I express my deep gratitude to my advisor, Dr. Chengkai Li, for his invalu-

able guidance, training, and care throughout my entire Ph.D. journey. I began my

Ph.D. studies with a limited background in computer science, having earned my bach-

elor’s degree in Electronic Information Engineering without taking core computer

science courses such as Algorithms, Compilers, Computer Networks, and Operating

Systems. Despite this, Dr. Li never pushed me but allowed me to progress at my own

pace. My interest in natural language processing and machine learning research was

sparked after taking Dr. Li’s CSE5334 Data Mining course. His keen interest and

enthusiasm in teaching, along with his effective pedagogical methods, truly inspired

me. The same enthusiasm that he brought to teaching was evident in his advising,

helping to transform me into a dedicated researcher. Dr. Li has devoted a tremendous

amount of time to training me in research, writing, and delivering professional talks.

His brilliance and insight in research discussions have been invaluable. He taught me

to aim high and strive for perfection in my work. His dedication, persistence, and

sincerity in research have deeply impressed me and set high standards that I aspire

to maintain throughout my career. I also appreciate Dr. Li’s tolerance of my stub-

bornness; although we sometimes had differing opinions, I often found that he was

correct. Dr. Li’s influence extends beyond my career to my life attitude. From him, I

learned the importance of taking our work seriously and persisting in doing what we

believe is right, regardless of external pressures.

I am profoundly grateful to my committee professors, Dr. Upendranath Chakravarthy,

Dr. Gautam Das, and Dr. Won Hwa Kim, for their invaluable insights, dedicated time,

iv



and support throughout my Ph.D. journey. Their guidance during my diagnostic eval-

uation, comprehensive exam, proposal, and defense was instrumental in shaping my

research and academic growth. A special thank you to Dr. Kim for providing me with

access to his lab’s servers, which were crucial for the completion of my experiments.

His support was pivotal in enabling my research to progress smoothly. I deeply ap-

preciate the commitment and encouragement from each of my committee members,

which have significantly contributed to my development as a researcher.

I owe many thanks to my knowledgeable and caring mentors Ping Liu, Qianqi

(Kay) Shen, and Nikita Zhiltsov, and my humorous and supportive manager Jianqiang

(Jerry) Shen for the fantastic internship experiences I had at the Talent Marketplace

Data Foundation team at LinkedIn. I was fortunate to return to the same team and

start my first job, I am immensely thankful to my team members Benjamin Le, Declan

Boyd, Dean Young, Ran Zhou, Rajat Arora, Dan Liu, Sicong Kuang, Yunxiang Ren,

Michael Dong, Chengming Jiang, Lucky Wang, Yeou Chiou, Yuchin Juan, and Yuan

Yin for their invaluable help and support. Upon the submission of this dissertation,

this team was divided in the reorganization and I will move to a new team, but the

experiences and camaraderie I shared with the TMDF team will always remain a

treasured part of my life.

I want to express my heartfelt thanks to my incredible lab mates who created a

pleasant and supportive atmosphere in the lab. I am grateful to Zhengyuan Zhu, Zeyu

Zhang, Haiqi Zhang, Nasim Shirvani Mahdavi, Mohammed Samiul Saeef, Yogesh

Gurjar, Damian Jimenez, and Gensheng Zhang for their excellent collaboration and

assistance with my projects, as well as for the memorable moments and support in

life. Special thanks to Theodora Toutountzi for her invaluable help with my GHC

application, slides, presentations, and for always being supportive. Foram Pankajbhai

Patel, thank you for being a fun friend and for all the conversations we shared. I also

v



appreciate the support from Fatma Arslan and Farahnaz Akrami. I am grateful

to Jacob Daniel Devasier, Ishan Poudel, Abhishek Divakar Goudar, Sarbajit Roy,

and Prabin Lamichhan for the positive interactions. Because of them, the IDIR lab

felt like home to me. Thank you all for always supporting me and for making my

Ph.D. journey a rich and fulfilling experience.

I am grateful to my friends who made my Ph.D. journey truly memorable. I

would like to extend my heartfelt thanks to Xin Miao for motivating and helping

me with preparing my PhD application, assisting me in settling down when I first

arrived in the U.S., guiding me in research and career decisions, and encouraging

me to find an internship; Lu Zhang for being an incredible friend, for pushing and

helping me in my research, and for the enjoyable conversations and hangouts; Xin Ma

for assisting me with using GPUs in Dr. Kim’s lab and sharing valuable information

about Ph.D. milestones; Jie Han, my roommate, for taking care of me when I had

COVID; Qiaowen (Jenny) Chen and Daniel Obembe for their help in daily life and for

the funny and enjoyable chats; Chaochao Yan and Yong Zhao for their assistance in

understanding technical details and their career advice; Jessica Ren, Lu Chen, Grace

Li, Mei Liu, Tong Feng, Yan Lin, and Marshell Mu for their unwavering support

during difficult times; my neighbors Yanjin (Chrisa) Chen, Cong Chen, and Tingting

Xuan for their support in my life; Mengfei Ren, Feng Tong, Kexin Ding, Yujing Yang,

Zehao Ye, and Ce Bian for the fun times we shared together; and Chunyuan Li for

adopting Guanguan, the cat I love but couldn’t adopt in my apartment. Thank you

all for being a part of this incredible journey.

I would like to extend my gratitude to the CSE department at UTA and Dr. Li

for providing me with financial support throughout my entire Ph.D. My sincere thanks

go to Ginger Dickens, Sherri Gotcher, Samantha Oliva, and Nova Coates for their

assistance with paperwork, scheduling Ph.D. milestones, and handling financial doc-

vi



uments. I am also grateful to Skipper Harris, Bito Irie, and Edward Orcutt for their

help with server and laptop technical issues.

I would like to thank Susan Ball, my international student advisor, for her

invaluable assistance with immigration questions and the preparation of CPT and

OPT documents.

Finally, my deepest and heartfelt appreciation goes to my family for their unwa-

vering support during my Ph.D. I am grateful to my parents for their encouragement,

sacrifice, and patience, which kept me going. I also want to thank my brother and

grandparents for their immense love. I would like to thank my cat, Mimi Shi, for his

companionship and the joy he brought into my life. I hold a deep memoriam for my

grandfather and grandmother who passed away during my Ph.D. journey.

Aug 2024

vii



ABSTRACT

NATURAL LANGUAGE GENERATION FROM LARGE-SCALE

OPEN-DOMAIN KNOWLEDGE GRAPHS

XIAO SHI, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Dr. Chengkai Li

This dissertation delves into the realm of natural language generation (NLG)

from expansive open-domain knowledge graphs, aiming to bridge the gap between

existing methods primarily tested on limited datasets and the demands of real-world

large-scale, diverse graph structures. Prior works in NLG often relied on small-scale

or restricted datasets, neglecting the complexities of broader knowledge graphs. To

address this, we introduce a new dataset called GraphNarrative, designed to encompass

a wide range of graph structures and enhance the realism of NLG tasks.

The core contribution of this research lies in devising a novel approach to miti-

gating information hallucination, a common issue in NLG where generated text may

include inaccuracies or fabricated details not present in the input graph. Our method

leverages Transformer-based pre-trained language models fine-tuned on GraphNarrative.

Notably, we employ dependency parse trees to trim training sentences, ensuring they

strictly adhere to the information present in their corresponding graphs.

Through rigorous experimentation and evaluation, we demonstrate the effec-

tiveness of our approach in eliminating information hallucination while maintaining

viii



high-quality NLG output. Our findings showcase significant improvements over exist-

ing methods, particularly when applied to diverse and large-scale knowledge graphs.

Furthermore, we contribute to the research community by releasing the GraphNarrative

dataset, along with our source code and trained models, available for public access at

https://github.com/idirlab/graphnarrator.

In conclusion, this dissertation not only advances the field of NLG by address-

ing challenges posed by large-scale open-domain knowledge graphs but also provides

valuable resources and methodologies for future research in this domain.

ix

https://github.com/idirlab/graphnarrator


TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Graph-to-Text Generation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Pre-training and Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . 16

3. LIMITATIONS OF EXISTING DATASETS . . . . . . . . . . . . . . . . . 19

4. THE GraphNarrative DATASET . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Pre-processing of Text Corpus and Knowledge Graph . . . . . 22

4.1.2 Graph-Text Alignment . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Characteristics of GraphNarrative . . . . . . . . . . . . . . . . . . . . . 28

5. MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Transformer-based Pre-trained Langauge Models . . . . . . . . . . . . 34

5.2 Models Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Linearize the Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6. MITIGATION OF HALLUCINATION . . . . . . . . . . . . . . . . . . . . 40

x



6.1 Two Directions Toward Addressing Graph-to-Text Hallucination . . . 40

6.2 Sentence Trimming Algorithm . . . . . . . . . . . . . . . . . . . . . . 44

7. EXPERIMENTS & RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Human & Automatic Evaluation Metrics . . . . . . . . . . . . . . . . 53

7.2.1 Human evaluation metrics . . . . . . . . . . . . . . . . . . . . 53

7.2.2 Automatic evaluation metrics . . . . . . . . . . . . . . . . . . 55

7.3 Experiment and Evaluation Results . . . . . . . . . . . . . . . . . . . 58

7.3.1 GraphNarrative dataset quality . . . . . . . . . . . . . . . . . . 58

7.3.2 Model performance on GraphNarrative . . . . . . . . . . . . . . 60

7.3.3 GraphNarrative in enhancing generalization ability . . . . . . . . 61

7.3.4 Ablation study of sentence trimming . . . . . . . . . . . . . . 63

7.3.5 Sentence trimming in mitigating hallucination . . . . . . . . . 64

7.3.6 Limitations of star graph datasets . . . . . . . . . . . . . . . . 68

7.3.7 Comparing sentence trimming with filtering . . . . . . . . . . 69

7.3.8 Performance of GNST-T5 and GN-T5 by input size . . . . . . 71

7.3.9 Comparing two linearization methods . . . . . . . . . . . . . . 72

8. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9. LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10. Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



LIST OF ILLUSTRATIONS

Figure Page

1.1 Application scenarios of graph-to-text . . . . . . . . . . . . . . . . . . 3

2.1 A knowledge graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Presenting a graph using dictionaries . . . . . . . . . . . . . . . . . . . 10

2.3 Presenting a graph using triples . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Presenting a graph by illustration . . . . . . . . . . . . . . . . . . . . . 12

3.1 WebNLG graph shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 A small fragment of Freebase, with an intermediator node . . . . . . . 23

4.2 An example of information loss after converting n-ary relationships to

binary relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 A graph-sentence pair in GraphNarrative . . . . . . . . . . . . . . . . . 26

4.4 Distribution of GraphNarrative instances by number of triples in graphs 31

4.5 Distribution of GraphNarrative instances by number of entities in graphs 31

4.6 The 10 most frequent graph shapes in GraphNarrative, with instance counts 32

5.1 Transformer-based pre-trained language models . . . . . . . . . . . . . 34

5.2 Two linearization methods . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 An example graph-text pair obtained from graph-text alignment . . . . 41

6.2 Two directions of approaches to mitigating hallucination in graph-to-text 41

6.3 Dependency parse tree of the sentence “FlyBack is an open-source Backup

Software for Linux based on Git and modeled loosely after Apple’s Time

Machine.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xii



6.4 Tokens on the SDP between “FlyBack” and “Backup Software”, and

the corresponding subsequence in text . . . . . . . . . . . . . . . . . . 47

6.5 Tokens on the SDP between “FlyBack” and “Linux”, and the corre-

sponding subsequence in text . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Tokens on the SDP between “FlyBack” and “Git”, and the correspond-

ing subsequence in text . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.7 The graph and the final trimmed sentence . . . . . . . . . . . . . . . . 48

6.8 Workflow of GraphNarrator . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Further fine-tune on human-annotated dataset to reduce grammar errors 67

xiii



LIST OF TABLES

Table Page

3.1 WebNLG graph shapes and the corresponding number of instances . . 20

4.1 Number of GraphNarrative instances in each Freebase domain . . . . . . 29

4.2 Comparison of characteristics of the datasets used for graph-to-text gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Distribution of distinct GraphNarrative graph shapes by number of entities 30

4.4 Distribution of GraphNarrative instances by sentence length . . . . . . . 32

4.5 Average GraphNarrative sentence length by number of triples in graphs . 32

5.1 Comparison of BART, T5, and LLaMA models . . . . . . . . . . . . . 35

7.1 Human evaluation metrics used in graph-to-text studies . . . . . . . . 54

7.2 Human evaluation of GraphNarrative quality . . . . . . . . . . . . . . . . 59

7.3 Model performance on GraphNarrative . . . . . . . . . . . . . . . . . . 60

7.4 Zero-shot performance of models on WebNLG and DART test sets . . 61

7.5 Performance comparison of different graph-to-text models on WebNLG

test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.6 Fine-tuning results on DART test set . . . . . . . . . . . . . . . . . . . 63

7.7 Performance of fine-tuning BART-large and T5-large on the TEKGEN

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.8 Models’ performance on WebNLG test set, when fine-tuned with TEK-

GEN or GN and further fine-tuned with WebNLG . . . . . . . . . . . 63

7.9 Human evaluation of sentences generated by T5-large with and without

sentence trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv



7.10 Comparison of generated sentences with and without sentence trimming

for sample input graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.11 Number of star and non-star instances in GraphNarrative . . . . . . . . 69

7.12 Model performance, star vs. non-star graphs . . . . . . . . . . . . . . . 69

7.13 Number of remaining instances after filtering using different thresholds

of ROUGE-1 similarity scores . . . . . . . . . . . . . . . . . . . . . . . 70

7.14 Statistics of GraphNarrative and its filtered dataset . . . . . . . . . . . . 71

7.15 Distribution of GNST-T5 and GN-T5 model performance in BLEU

scores on GraphNarrative test set . . . . . . . . . . . . . . . . . . . . . . 71

7.16 Model performance on GraphNarrative test set when fine-tune T5-large

with two different linearization methods . . . . . . . . . . . . . . . . . 72

xv



CHAPTER 1

INTRODUCTION

Natural language generation (NLG) [Bengio et al., 2000] has emerged as a crit-

ical area in artificial intelligence, enabling machines to generate human-like text and

narratives from structured data sources. For example, in the field of journalism,

NLG systems can generate news articles and summaries from raw data, such as fi-

nancial reports and sports statistics, which allows for real-time updates and content

creation without human intervention [Leppänen et al., 2017]. In the healthcare sec-

tor, NLG is used to produce patient reports and medical summaries from electronic

health records, and this enables streamlined clinical workflows and improves patient

care [Cawsey et al., 1997]. Another application of NLG systems is in customer ser-

vice, where they create personalized responses and assistive texts by analyzing user

queries and historical interaction data. This improves the overall user experience

and operational efficiency [Golchha et al., 2019]. Additionally, NLG is employed in

creative writing, where it assists authors by generating plot suggestions, character

dialogues, and entire narrative structures from predefined datasets and templates,

showcasing its potential in augmenting human creativity [Alsharhan, 2022]. These

examples highlight the versatility of NLG in transforming structured data into coher-

ent, contextually relevant, and human-like text across various industries.

One key challenge in NLG research is the generation of coherent and informa-

tive text from large-scale open-domain knowledge graphs. Knowledge graphs repre-

sent real-world entities and their relationships, providing a rich source of information

for NLG tasks. However, existing NLG models often struggle [Agarwal et al., 2021]

1



to handle the complexity and diversity of such knowledge graphs, leading to issues

like information hallucination where generated text may include inaccurate or fabri-

cated details. This dissertation addresses this challenge by proposing novel techniques

specifically designed to mitigate information hallucination and improve the overall

reliability and informativeness of NLG systems based on large-scale open-domain

knowledge graphs.

The task of graph-to-text generation aims to automatically produce natural

language descriptions of knowledge graphs. A knowledge graph G stores factual in-

formation as subject-predicate-object triples, where each triple (s, p, o) corresponds

to an edge from the subject entity s to the object entity o. The graph-to-text gener-

ation task entails, given a subgraph G⊂G, generating a token sequence (y1, ..., yn) to

describe G. This task can be accomplished by constructing machine learning mod-

els [Clive et al., 2021, Castro Ferreira et al., 2019, Trisedya et al., 2018]. The input to

such a model is a graph itself—a small fragment of triples from a knowledge graph, as

the outcome of some upstream operation, e.g., search, query and data mining. The

output is a textual sequence that describes the fragment of triples.

Verbalizing triples from knowledge graphs is crucial in a variety of tasks and

applications, including systems created for querying knowledge graphs [Liang et al.,

2021, Jayaram et al., 2016, Li and Jagadish, 2014] as well as systems backed by

knowledge graphs for question-answering [Zhou and Small, 2019, Ma et al., 2018,

Bordes et al., 2015] and fact discovery [Xian et al., 2019, Zhang et al., 2018, Lin

et al., 2018]. In these places (illustrated in Figure 1.1), knowledge graph fragments

must be conveyed to users in various forms, such as query results and discovered facts.

Though a tiny part of a whole knowledge graph, such graph fragments can still be

complex and thus challenging to comprehend.

2



Figure 1.1: Application scenarios of graph-to-text

There are multiple ways to present graphs to users, each with its own drawbacks.

Nested dictionaries [Gouws, 2001] can represent graphs but are complex and difficult

to interpret [Lee and Lee, 1995]. Resource Description Framework (RDF) [World

Wide Web Consortium] triples offer a flattened representation but still pose chal-

lenges in understanding the connections and overall information [Chernenkiy et al.,

2017]. Visualization [Nararatwong et al., 2020] provides an intuitive way to capture

graph structures, but can be time-consuming and impractical for users to understand

given large or complex graphs, and unsuitable for systems that require natural lan-

guage results [Speretta and Gauch, 2005, Zheng, 2002], audio devices such as Alexa

([FitzGerald et al., 2022]) and Siri ([Kaplan and Haenlein, 2019]), or visually impaired

users. Instead, presenting graphs in natural language can be sufficient for some use

scenarios and help end users understand them better. More detailed discussions re-

garding this can be found in Chapter 2.

In graph-to-text generation, the preciseness and naturalness of the textual nar-

ration of graph fragments is important. Generating high-quality text can be partic-

ularly challenging for large-scale and open-domain knowledge graphs. Specifically,

benchmark datasets in this line of research either are handcrafted and monotonous,

e.g., WebNLG [Gardent et al., 2017b], or only include simple, special formations

in narrated input fragments, e.g., EventNarrative [Colas et al., 2021] and TEK-

3



GEN [Agarwal et al., 2021]. Existing graph-to-text models, being trained and evalu-

ated on these datasets, are largely not validated for more realistic large-scale, open-

domain settings. Chapter 3 presents this analysis in detail.

This dissertation’s research introduces GraphNarrative, a new dataset that fills the

aforementioned gap between graph-to-text models and real-world needs. GraphNarrative

consists of around 8.7 million (input graph, output text) pairs. The text in each pair is

a Wikipedia sentence, whereas the corresponding graph comprises Freebase [Bollacker

et al., 2008] entities and relationships described in the sentence. The large-scale of

both Wikipedia and Freebase, the linguistic variation in Wikipedia, and the complex-

ity of sentences and corresponding graph structures make this dataset more aligned

with real-world scenarios. For instance, GraphNarrative’s 8.7 million input graphs are

in 7,920 distinct topological shapes and only 22% of the 8.7 million are star graphs, in

contrast to 94% and 96% in EventNarrative and TEKGEN, respectively. Chapter 4

articulates the details of GraphNarrative’s creation.

Given the demonstrated efficacy of fine-tuning pre-trained language models

(PLMs) in producing state-of-the-art results on graph-to-text, we adopt the same

approach (more details in Chapter 5). As pointed out in [Agarwal et al., 2021]

and [Dušek et al., 2018], though, this approach may suffer from information hal-

lucination, i.e., the output texts may contain fabricated facts not present in input

graphs. For example, given a two-triple input graph {(Neff Maiava, date of birth,

01 May 1924), (Neff Maiava, date of death, 21 April 2018)}, Agarwal et al. [2021]

reported their model generates “Neff Maiava (1 May 1924 - 21 April 2018) was an

Albanian actor.” Not only the input does not mention Maiava’s profession or citizen-

ship, but also in the real-world he was an American Samoan wrestler instead.

Very few have considered how to mitigate hallucination in graph-to-text gen-

eration, except for Agarwal et al. [2021], Wang et al. [2021] and Ma et al. [2022].

4



The first two studies attempted to address hallucination by further fine-tuning PLMs

on WebNLG after fine-tuning on noisier automatically-extracted datasets. Ma et al.

[2022] adopted a different approach, by filtering out training instances when the

ROUGE-1 [Lin, 2004] scores between the input and the output fall below a cer-

tain threshold. However, these studies did not quantify the prevalence of halluci-

nation in their models’ outputs. Nor did they provide direct experiment results or

other evidence to verify the approach in reducing hallucination. We are the first

to quantitatively measure the prevalence of hallucination in graph-to-text. We also

developed a novel approach to mitigating hallucination by aiming at the problem’s

root—mismatch between graph and text in training data. Given a graph-text pair in

GraphNarrative, the approach trims the text, i.e., a Wikipedia sentence, by eliminat-

ing portions not represented in the graph. This process, named sentence trimming,

is accomplished by analyzing the shortest paths between graph entities within the

sentence’s dependency parse tree (details in Chapter 6).

We conducted comprehensive automatic and human assessments of text descrip-

tions generated by fine-tuned PLMs, specifically BART [Lewis et al., 2020], T5 [Raffel

et al., 2020], and TinyLLaMA [Zhang et al., 2024]. The automatic evaluation results

consistently demonstrated that models performed better with the use of sentence

trimming, across the datasets of GraphNarrative, TEKGEN, WebNLG, and DART [Nan

et al., 2021]. The approach led to the increment of 12 and 7 points in BLEU score [Pa-

pineni et al., 2002] for GraphNarrative and TEKGEN, respectively. A T5-large model

fine-tuned on GraphNarrative with sentence trimming achieved state-of-the-art results

on the WebNLG benchmark. Furthermore, human evaluation results showed that

sentence trimming on average reduced 1.4 entity hallucinations and 1 relationship

hallucination per text description.

5



Below we briefly summarize our contributions. In this dissertation, we focus

on advancing the state-of-the-art in graph-to-text generation by addressing the chal-

lenges posed by large-scale open-domain knowledge graphs. We begin by review-

ing prior works in graph-to-text generation, which predominantly relied on small-

scale, human-annotated datasets or datasets with limited graph structures, such as

star graphs. While these datasets were valuable for initial graph-to-text generation

research, they failed to capture the full spectrum of complexities present in real-

world knowledge graphs. This limitation motivated us to develop the new dataset,

GraphNarrative, which encompasses diverse graph structures and provides a more real-

istic testbed for graph-to-text models.

Our main contribution lies in pioneering the quantification of hallucinations

produced by graph-to-text models and proposing a novel approach to mitigating in-

formation hallucination in graph-to-text generation. We leverage Transformer-based

pre-trained language models fine-tuned on the GraphNarrative dataset, enhancing their

ability to generate accurate and informative text from knowledge graphs. Crucially,

we utilize dependency parse trees to trim training sentences which helps ensure that,

in the training set, output sentences strictly adhere to the information present in

input graphs. This approach not only improves the quality of NLG output but also

enhances the interpretability and trustworthiness of generated text.

Throughout this dissertation, we explored data, produced statistics, and con-

ducted extensive experiments and evaluations to validate the effectiveness of our

approach. We compared our method against existing NLG models trained on both

GraphNarrative and other datasets, demonstrating superior performance in terms of

reducing information hallucination while maintaining high-quality text generation.

In summary, this dissertation contributes to the advancement of NLG by ad-

dressing the challenges posed by large-scale open-domain knowledge graphs. Par-

6



ticularly, it improves the accuracy and reliability of NLG models. Additionally, we

released the GraphNarrative dataset, 1 along with our source code and trained models, 2

to contribute to the NLG research community and facilitate further advancements in

this field.

1https://zenodo.org/records/12908748
2https://github.com/idirlab/graphnarrator

7



CHAPTER 2

BACKGROUND

2.1 Knowledge Graph

A knowledge graph (KG) is a network of interconnected entities, such as ob-

jects, events, or concepts, along with the relationships between them. These entities

are represented as nodes, while the relationships are depicted as edges connecting

the nodes. Figure 2.1 illustrates a knowledge graph fragment that represents infor-

mation about strategy game Civilization as well as its designer, publisher, sub-

ject, origin, derivative, and so on. For example, for the two nodes Civilization

and Avalon Hill, the relationship between them is that Avalon Hill is the publisher

of the game Civilization.

Knowledge graphs are typically stored in the standard Resource Description

Framework (RDF) [Pan, 2009] format, which facilitates efficient querying and ma-

nipulation using SPARQL (SPARQL Protocol and RDF Query Language) [Pérez

et al., 2009]. Databases such as OpenLink Virtuoso [Erling and Mikhailov, 2009]

are optimized for storing RDF triples and executing SPARQL queries, making them

ideal for applications where RDF and SPARQL are the primary means of interaction.

Graph databases, such as Neo4j [Miller, 2013], Amazon Neptune [Bebee et al., 2018]

and Microsoft Azure Cosmos DB [Guay Paz and Guay Paz, 2018], are specifically

designed to handle graph structures. They offer efficient storage and querying capa-

bilities that are optimized for graph operations. For large-scale knowledge graphs,

distributed storage solutions such as Google Bigtable [Chang et al., 2008] and Apache

8



Figure 2.1: A knowledge graph

HBase [Vora, 2011] offer horizontal scalability that can support the management of

vast amounts of data distributed across multiple servers.

Knowledge graphs are essential in numerous applications, including search en-

gines, recommendation systems, and artificial intelligence. The primary importance

of knowledge graphs lies in their ability to integrate data from diverse sources, en-

abling better analysis and decision-making. By enhancing the representation of com-

plex relationships between data points, knowledge graphs improve search capabilities

with advanced, context-aware querying. Additionally, they facilitate interoperability

across different platforms by providing a common semantic framework. This allows

machines to process large volumes of information more efficiently, which results in

enhanced understanding, improved analytics, and the creation of more intelligent

systems and applications.

9



Knowledge graph-based systems return graphs as results. For instance, a graph

query system [Liang et al., 2021, Jayaram et al., 2016, Li and Jagadish, 2014] retrieves

a set of subgraphs from a knowledge graph that satisfy the query conditions. A

KG-based question answering (QA) system [Zhou and Small, 2019, Ma et al., 2018,

Bordes et al., 2015] searches the KG and returns one or more subgraphs as answers

to a question. Additionally, certain data mining systems [Xian et al., 2019, Zhang

et al., 2018, Lin et al., 2018] discover facts from the knowledge graph using data mining

algorithms. These diverse systems leverage the structured nature of knowledge graphs

to provide meaningful insights and answers. Consequently, the representation of these

result graphs becomes crucial for users to effectively interpret the information.

There are various ways to present result graphs to users. They can be presented

using nested dictionaries [Zhang et al., 2018], with nodes as the keys and edges as

values. Figure 2.2 shows using nested dictionaries to present the graph in Figure 2.1.

Though easy for programming language to process, nested dictionaries (typically in

JSON format) have complex hierarchical structures. It is challenging for users to

understand the structure and how the nodes and edges are connected.

Figure 2.2: Presenting a graph using dictionaries

10



A result graph can also be represented using triples, as illustrated in Figure 2.3,

which presents the knowledge graph from Figure 2.1. This method offers a flattened

view of the graph. Each triple indicates one relationship between two entities. How-

ever, as the number of triples increases, it becomes challenging to interpret how the

nodes and edges are connected and what overall information it conveys.

Figure 2.3: Presenting a graph using triples

Another approach to presenting a result graph is to visualize its nodes and edges.

For instance, Figure 2.4 illustrates this by depicting the knowledge graph shown in

Figure 2.1. However, such visualization could be time-consuming to interpret when

the graph is large or complex. Furthermore, its edge labels can be challenging to

comprehend due to their complex structure and technical terminology (e.g., archi-

tecture.building complex function.building complexes). Additionally, the direction of an

edge label, such as games.game expansion.game can lead to confusion, since it is un-

clear whether Advanced Civilization is an expansion of Civilization or Advanced

Civilization is expanded to Civilization as it may not be immediately clear how

the entities are related based on the label’s orientation and wording.

In some cases, visualization may be inapplicable or unsuitable. For example,

systems designed to produce natural language results, such as chatbots, do not ben-

11



Figure 2.4: Presenting a graph by illustration

efit from graphical displays. Similarly, visualization is not feasible for devices that

rely solely on audio output. Additionally, graphical representations pose challenges

for visually impaired users, making visualization an ineffective method in related

contexts.

For aforementioned scenarios, providing a textual description of a knowledge

graph fragment can enable users to swiftly grasp the key information. we are suddenly

switching from general discussion to specific example, without proper transition. For

instance, given the graph in Figure 2.4, a manually crafted description facilitates a

clearer and faster understanding of the information it contains: “Civilization is an

England-originated strategy game on the subject of civilization. It has a sequel Age of

Renaissance and an expansion Advanced Civilization. All three games were published

by Avalon Hill.”

12



2.2 Graph-to-Text Generation

In the aforementioned scenarios, where other graph presentation approaches

prove ineffective or inappropriate, providing text descriptions of graphs is an appeal-

ing alternative. This approach gives rise to the graph-to-text generation problem,

which entails automatically converting the information stored within a graph into a

comprehensible and accurate natural language description. This task bridges the gap

between structured data representation and human-readable content and thus facil-

itates the synthesis of informative and contextually relevant textual narratives from

graph-based data sources.

The process of graph-to-text generation involves several key challenges. First,

the system must effectively understand and navigate the graph’s structure, identifying

the most relevant and significant information to include in the text. Second, it needs

to generate text that not only accurately represents the data but also maintains

naturalness, coherence, and fluency, adhering to the conventions of human language.

This requires sophisticated linguistic and contextual understanding, as well as the

ability to generate text that aligns with the intended message and purpose.

Approaches to graph-to-text generation often involve advanced natural language

processing (NLP) methodologies, including deep learning models such as Transform-

ers [Vaswani et al., 2017], which can handle the complexity and non-linear nature of

graph data. PLM models [Raffel et al., 2020, Lewis et al., 2020, Touvron et al., 2023]

were trained on large text datasets to learn the mapping between input sequences

and output sequences, often employing attention mechanisms to focus on different

parts of the input sequences when generating corresponding text segments.

While language models enable graph-to-text generation, in turn graph-to-text

generation enriches language models. Converting knowledge graph into natural lan-

guage text facilitates its seamless integration into existing language models. This

13



transformation allows for the sophisticated blending of structured data with unstruc-

tured text, enhancing the linguistic capabilities of these models. According to Agarwal

et al. [2021], verbalizing a knowledge graph for integration with natural text corpora

can be used in language models’ pre-training, which significantly improves PLMs’

performance in open-domain question-answering systems. This enhancement under-

scores the value of incorporating structured knowledge into the broader framework of

AI language processing.

2.3 Transformer

The Transformer model [Vaswani et al., 2017] represents a groundbreaking shift

in the field of NLP. Prior to the advent of the Transformer, most state-of-the-art NLP

models back then were based on recurrent neural networks (RNNs) [Schuster and

Paliwal, 1997] and long short-term memory network (LSTMs) [Sundermeyer et al.,

2012], which process data sequentially. This sequential processing posed significant

limitations in terms of computational efficiency and the ability to handle long-range

dependencies within the input.

The Transformer model overcomes these limitations by utilizing a mechanism

known as self-attention that processes the entire input data simultaneously, which

supports parallel computation and thus leads to significantly improved efficiency.

This parallelism not only accelerates training but also enables the model to effectively

capture long-range dependencies in the data. The Transformer’s architecture, devoid

of recurrence, relies entirely on attention mechanisms to draw global dependencies

between input and output, making it uniquely suited for handling a wide range of

sequence-to-sequence tasks, such as machine translation [Wang et al., 2019], text

summarization [Liu and Lapata, 2019], and more.

14



Encoder and decoder. The Transformer’s architecture is composed of two

main parts: the encoder and the decoder. Each of these two parts contains multiple

layers that consist of self-attention mechanisms and position-wise feed-forward net-

works. The encoder maps an input sequence to a sequence of tensor representations,

which the decoder then uses to generate an output sequence. Both the encoder and

decoder are made up of a stack of identical layers, each containing two sub-layers: a

multi-head self-attention mechanism and a position-wise fully connected feed-forward

network.

Self-attention mechanism. At the heart of the Transformer is the self-

attention mechanism, which allows the model to weigh the significance of different

parts of the input sequence when processing each word. For each word in the input

sequence, the self-attention mechanism computes a score that reflects its relevance to

other words. These scores are used to compute a weighted sum of the values, which

represents the output of the attention layer. Mathematically, this is represented as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1)

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the

dimension of the key vectors.

Positional encoding. Since the Transformer does not inherently capture the

sequential nature of the data, positional encoding is added to the input embeddings

at the bottom of the encoder and decoder stacks. This encoding provides the model

with information about the position of the words in the sequence, ensuring that the

sequence order affects the computations of the model.

15



2.4 Pre-training and Fine-tuning

Pre-training and fine-tuning are two crucial stages in the development of ma-

chine learning models, particularly in the field of natural language processing.

Pre-training involves training a model on a large, diverse dataset before it is

used for a specific task. This stage is designed to help the model learn a broad

understanding of language or other input features from extensive, generalized data

sources. The objective is to capture a wide range of linguistic patterns, relation-

ships, and structures that are common across various texts or scenarios. Models such

as BERT (Bidirectional Encoder Representations from Transformers) [Devlin et al.,

2019], GPT (Generative Pre-trained Transformer) [Radford et al., 2018], and other

Transformer-based architectures typically undergo pre-training on vast corpora like

books, websites, and other text-rich materials. Pre-training techniques leverage var-

ious strategies to enable models to learn general patterns from large datasets before

being fine-tuned for specific tasks. Some of the most common pre-training techniques

are as follows.

• Masked language modeling (MLM) [Salazar et al., 2020]. Used in

models such as BERT, this technique randomly masks words in the input sentences

and trains the model to predict the masked words based only on their context. This

encourages the model to develop a deep understanding of language context and rela-

tionships between words.

• Autoregressive language modeling [Yang et al., 2019]. This ap-

proach, used in models such as GPT, trains the model to predict the next word

in a sentence given the words that precede it. This sequential prediction task helps

the model to learn both syntax and long-range dependencies within text.

• Autoencoding [Kingma and Welling, 2014]. Autoencoding is an unsu-

pervised learning technique to learn a compressed, distributed representation (encod-

16



ing) of input data, and then reconstruct the data from this encoding with minimal

loss. The aforementioned MLM objective can be seen as a form of autoencoding where

parts of the input are masked (treated as noise) and the model learns to reconstruct

the original text.

• Next sentence prediction [Devlin et al., 2019]. This technique, orig-

inally used in the pre-training of BERT, involves presenting the model with two

sentences and training it to predict whether the second sentence is a logical follow-up

to the first. This helps in understanding relationships between sentences and is useful

for tasks that involve reasoning over multiple sentences.

• Contrastive learning [Chuang et al., 2020]. This approach is used to

train models to distinguish between similar and dissimilar items. In NLP, this might

involve contrasting sentences or documents to enhance the model’s understanding of

nuanced differences in text.

• Permutation language modeling [Yang et al., 2019]. Utilized by

models such as XLNet [Yang et al., 2019], this technique permutes the order of words

in the input data and trains the model to predict the original order of words. It

combines the strengths of both autoregressive and autoencoding techniques.

• Electra-style training [Clark et al., 2020]. Instead of only predicting

masked words, this method trains a discriminator model to distinguish between “real”

and “fake” input tokens generated by a separate generator model. This can be more

efficient than traditional MLM because the model learns from every token in the input

rather than just from masked ones.

• Multi-task learning [Sener and Koltun, 2018]. In this approach, the

model is simultaneously trained on multiple different tasks during pre-training. This

can include a mix of different types of language tasks (e.g., sentiment analysis, named

entity recognition, syntactic parsing) to foster a broader understanding of language.

17



These techniques leverage large-scale datasets and computational power to cre-

ate models that have a deep, generalized understanding of language patterns, which

can then be adapted to specific tasks through fine-tuning [Howard and Ruder, 2018].

Fine-tuning follows pre-training and is a more targeted training process. In this stage,

the pre-trained model is adapted to a specific task or dataset. Fine-tuning adjusts the

weights and parameters of the pre-trained model so it can perform well on particular

tasks such as sentiment analysis [Zhang et al., 2020], question answering [Su et al.,

2019], or document classification [Pappagari et al., 2019]. This step is crucial because

it allows the model to specialize its broadly acquired knowledge to the nuances and

specific requirements of the task at hand. The fine-tuning process usually requires a

smaller, task-specific dataset and fewer training cycles compared to pre-training, due

to the foundational knowledge the model has already acquired.

Together, pre-training and fine-tuning enable the development of highly effec-

tive and adaptable models that combine the strengths of extensive learning with

specialized task performance. Fine-tuning PLMs have achieved state-of-the-art per-

formance on most NLP tasks [Min et al., 2023], including graph-to-text tasks [Ribeiro

et al., 2021].

18



CHAPTER 3

LIMITATIONS OF EXISTING DATASETS

First, most previous models were trained on small handcrafted datasets that

contain limited entity types and relations. For instance, WebNLG includes 2,730 dis-

tinct entities and 354 distinct relations. In contrast, real-world knowledge graphs can

be much larger. For example, according to Heist et al. [2020], Wikidata [Vrandečić

and Krötzsch, 2014] has 52,252,549 entities, 2,356,259 classes, 6,236 relations, and

732,420,508 triples. The handcrafted approach cannot scale to such as massive knowl-

edge graphs, as it is impossible to manually write training graph-text pairs for so many

different entity types, relations, and topic domains.

Second, the text descriptions in handcrafted datasets such as WebNLG tend

to follow monotonous templates, plausibly because the examples were written by a

small number of human contributors. This limits the capability of trained models to

use diverse expressions in narrating graph fragments. This lack of linguistic variation

can hamper the usability of a text generation system.

Third, the graph fragments in existing datasets are largely limited to simple star

graphs (each graph consisting of a center entity and some of its one-hop neighbors) or

more general acyclic graphs (i.e., one or more trees). Figure 3.1 displays the distinct

graph shapes in the WebNLG dataset, in descending order by number of instances,

and Table 3.1 shows the corresponding instances numbers. The graphs in WebNLG

have 41 distinct topological shapes, out of which 32 are acyclic graphs. The cycles

are all 2-edge loops or self-loops. In DART, 83% of the graphs are star graphs. In

automatically-generated datasets EventNarrative and TEKGEN, 94% and 96% of

19



the graphs are star graphs, respectively. Another automatically-collected dataset,

AGENDA [Koncel-Kedziorski et al., 2019], has 30% acyclic instances and only 2%

star graphs. However it only contains 7 distinct relations in the special domain of

scientific research. On the contrary, in practical scenarios, the input fragments can be

of complex, general rather than simple, special formations. While direct measurement

is lacking, we used the graphs described in Wikipedia sentences as a proxy for gauging

the shape diversity of graphs that need to be narrated. We manually analyzed the

formations of graphs presented in 100 random Wikipedia sentences, and we found

only 39 of the 100 graphs are star graphs. Similar but automatic analysis of the

complete Wikipedia corpus (more details in Chapter 4, Figure 4.6) show that only 2

of the 10 most frequent graph formations 1 are star graphs, and 3 are cyclic graphs.

rank #instances rank #instances rank #instances rank #instances
1 5965 11 276 21 28 31 12
2 4759 12 231 22 27 32 11
3 3799 13 231 23 25 33 9
4 2648 14 228 24 23 34 8
5 1421 15 154 25 19 35 6
6 1365 16 139 26 17 36 6
7 1332 17 127 27 14 37 6
8 832 18 87 28 14 38 5
9 695 19 76 29 13 39 3
10 625 20 46 30 12 40 3

41 1

Table 3.1: WebNLG graph shapes and the corresponding number of instances

1Or 3 out of the 10, depending on whether considering a 3-node path as a star or not.

20



Figure 3.1: WebNLG graph shapes

21



CHAPTER 4

THE GraphNarrative DATASET

This chapter explains how we generated our new dataset GraphNarrative by align-

ing Wikipedia texts with Freebase. Note that the methodology could be applicable to

text corpora beyond Wikipedia and knowledge graphs beyond Freebase. This section

also contrasts GraphNarrative with existing benchmark datasets to demonstrate how it

addresses current datasets’ limitations.

4.1 Dataset Creation

4.1.1 Pre-processing of Text Corpus and Knowledge Graph

We used the Wikipedia dump released on Sep. 1st 2019 as our text corpus. 1

The raw dump was in the form of wikitext source and metadata embedded in XML.

To preprocess the raw dump, we utilized WikiExtractor, an existing tool. 2 The tool

transformed the compressed XML file into numerous plain text files containing bodies

of Wikipedia articles without tables, infoboxes, table of contents, categories, and so

on.3

Our Freebase knowledge graph is from [Shirvani-Mahdavi et al., 2023] which

used the most recent Freebase dump 4 as the data source. Most relations in the

graph form semantically-redundant reverse pairs. If the input graph triples to a

graph-to-text model containing such reverse edges, we only need to simply retain one

1https://dumps.wikimedia.org
2https://github.com/attardi/wikiextractor
3https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout
4https://developers.google.com/freebase

22

https://dumps.wikimedia.org
https://github.com/attardi/wikiextractor
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout
https://developers.google.com/freebase


edge out of each redundant pair. Hence, we did exactly that in pre-processing the

whole Freebase dump so that our input graphs have no reverse edges. Furthermore,

our pre-processing also removed the mediator (CVT) nodes [Bollacker et al., 2008]

by concatenating edges connected through mediator nodes. Below we explain these

pre-processing steps in more detail, which was also discussed in [Shirvani-Mahdavi

et al., 2023].

Figure 4.1: A small fragment of Freebase, with an intermediator node

Reverse triples. When a new fact was added to Freebase, it was repre-

sented as a pair of reverse triples (s, p, o) and (s, p−1, o), where p−1 is the in-

verse of p. Freebase explicitly denotes reverse relations using a special relation

/type/property/reverse property [Pellissier Tanon et al., 2016, Färber, 2017]. For exam-

ple, /film/film/directed by and /film/director/film are reverse relations, as indicated by

triple (/film/film/directed by, /type/property/reverse property, /film/director/film).

Consequently, (A Room With A View, /film/film/directed by, James Ivory) and (James

Ivory, film/director/film, A Room With A View) form reverse triples, depicted as two

edges in opposite directions in Figure 4.1. A triple (r1, /type/property/reverse property,

r2) signifies that relations r1 and r2 are inverses of each other. These reverse rela-

23



Bachelor's
degree

CVT
degree

Newcastle
University 

instit
ution 

Rowan
Atkinson

CVT

Master's
degree

student

student

The Queen's
College,
Oxford

degree
institution 

(a) Before transformation: n-ary relationships modeled via CVT nodes

Bachelor's
degreeinstitution-

degree 

Newcastle
University 

student-

institution

Rowan
Atkinson

stu
de

nt-
de

gre
e

Master's
degree

The Queen's
College,
Oxford

student-

degreestu
de

nt-
ins

tit
uti

on

institution-
degree 

(b) After transformation: binary relationships without CVT nodes

Figure 4.2: An example of information loss after converting n-ary relationships to
binary relationships

tionships are semantically redundant; hence, we eliminate the triples involving one

relationship of the reverse pair. When removing reverse triples, i.e., triples that belong

to reverse relations, we discard all triples associated with relation r2.

Intermediate nodes. Intermediate nodes, also known as mediator nodes and

CVT nodes, are utilized in Freebase to represent n-ary relationships [Pellissier Tanon

et al., 2016]. For instance, Figure 4.1 illustrates a CVT node connected to an award,

24



a nominee, and a work. This or a similar approach is necessary for accurate modeling

of real-world data. However, this modeling complexity poses a significant challenge

for tasks such as graph-to-text conversion. We acknowledge that the creation of our

dataset does not account for multiary relationships in knowledge graphs. Specifically,

the Freebase version used in our work has multiary relationships converted into binary

relationships [Shirvani-Mahdavi et al., 2023]. Generally, there is a lack of research

into multiary relationships in graph-to-text models. To the best of our knowledge, the

only work in this area that addresses multiary relationships is [Agarwal et al., 2021],

and they also converted multiary relationships into binary ones. We also acknowledge

this limitation in Chapter 9.

For better clarity, we use Figure 4.2 to further illustrate the conversion from mul-

tiary relationships into binary relationships. The edge (relationship) labels in Free-

base are structured as /[domain]/[type]/[label]. The /[domain]/[type] prefix identifies

the subject entity’s type that an edge belongs to, while [label] provides an intuitive

meaning of the relationship. For simplicity of presentation, we use [label] instead

of /[domain]/[type]/[label] to denote edge labels. In the post-transformation graph,

the label of a concatenated edge is the concatenation of the two original edge labels.

Figure 4.2a depicts two ternary relationships about Rowan Atkinson’s educational in-

stitutions and his degrees. Figure 4.2b is after transforming the ternary relationships

into binary relationships. Note that, one may convert an n-ary relationship centered

at a CVT node into
(
n
2

)
binary relationships between every pair of entities, by con-

catenating the edges that connect the entities through the CVT node. Note that

the transformation could lead to loss of information [Wen et al., 2016] and is irre-

versible [Rossi et al., 2021]. More details regarding the information loss can be found

in [Shirvani-Mahdavi et al., 2023].

25



4.1.2 Graph-Text Alignment

It is impractical to rely on manual efforts to write sentences describing sub-

graphs and form a dataset of proper size because of the large volume and diversity of

entities and relationships in large-scale open knowledge graphs. Our approach is to

automatically generate training examples by aligning Wikipedia sentences with corre-

sponding Freebase subgraphs. For each applicable Wikipedia sentence W , we create

the corresponding subgraph G in Freebase, to form a graph-sentence pair (G,W ) as

one example instance in the dataset. See Figure 4.3 for an example. This is achieved

by an entity linking step followed by an edge detection step.

Figure 4.3: A graph-sentence pair in GraphNarrative

Entity linking. It maps a span of tokens in the Wikipedia sentence W to an

entity e in Freebase. Our customized entity linking solution consists of coreference

resolution [McCarthy and Lehnert, 1995], wikification [Csomai and Mihalcea, 2008],

and Wikipedia-to-Freebase entity mapping.

For coreference resolution, we applied the implementation [Lee et al., 2017] in

AllenNLP [Gardner et al., 2018] with default settings on Wikipedia articles to replace

26



the token spans of pronouns and aliases with the corresponding entities they refer to.

This helps produce more graph-text pairs for GraphNarrative. We conducted human

evaluation to assess the quality of the coreference resolution results on 20 randomly

selected Wikipedia articles. The assessment yielded a precision of 91.4% (630 of

the 689 resolved entity coreferences were correct) and a recall of 98.3% (11 entity

coreferences were missed).

For wikification, our simple approach maps a span of tokens in a Wikipedia

article D to a Wikipedia entity, if the tokens exactly match either the entity’s full

title or any of the entity’s wikilink anchor text in the same article D.

The Wikipedia-to-Freebase entity mapping created 4,408,115 one-to-one map-

pings between English Wikipedia entities (i.e., articles) and their corresponding Free-

base entities, through a combination of three engineering methods—by using existing

mapping in Freebase, by using Wikidata as the midpoint connecting Wikipedia and

Freebase entities, and similarly by using DBpedia [Auer et al., 2007] as the mid-

point. More specifically, the mapping was created by employing the following three

methods. 1) Parsing the Freebase data dump to obtain a Wikipedia-to-Freebase

entity mapping using https://github.com/saleiro/Freebase-to-Wikipedia. 2)

Inferring from a Wikipedia-to-Wikidata mapping in wikimapper [Klie, 2022] and a

Wikidata-to-Freebase mapping at https://developers.google.com/freebase. 3)

Inferring from the Wikipedia-to-DBpedia and the DBpedia-to-Freebase mappings at

http://downloads.dbpedia.org/2016-10/core-i18n/en/. The overall Wikipedia-

to-Freebase entity mapping is obtained by combining all three methods and elimi-

nating conflicting entity mappings. The mapping file link can be found at https:

//github.com/idirlab/graphnarrator.

The results of aforementioned processes were put together—a Wikipedia entity

appearance in a Wikipedia sentence, either originally as a wikilink or detected through

27

https://github.com/saleiro/Freebase-to-Wikipedia
https://developers.google.com/freebase
http://downloads.dbpedia.org/2016-10/core-i18n/en/
https://github.com/idirlab/graphnarrator
https://github.com/idirlab/graphnarrator


wikification upon coreference resolution, leads to the detection of the corresponding

Freebase entity via the mapping results.

Edge detection. Given the Freebase entities detected from a Wikipedia sen-

tence W , it identifies Freebase edges between the entities such that the corresponding

relations are described in W . Given a pair of such entities, if Freebase contains only

one edge between them, our simple method assumes the corresponding relationship

is described in W . If Freebase has multiple edges between them, we include the edge

whose label tokens overlap with W . If there are still multiple such edges, we include

the edge that is most frequent in Freebase. All these detected edges form the graph

G that pairs with W as an instance (G, W ) in the dataset. Note that the simple

assumptions in this approach may lead to both false positives and false negatives. In

practice, the resulting dataset has solid quality (detailed assessment in Section 7.2).

Nevertheless, our workflow of dataset creation allows for more advanced and accurate

methods in each component.

4.2 Characteristics of GraphNarrative

This section qualitatively and quantitatively analyzes how GraphNarrative bridges

the gap between graph-to-text models and real-world settings.

Scale and variety of entities and relations. GraphNarrative contains 8,769,634

graph-sentence pairs, 1,853,752 entities, 15,472,249 triples, and 1,724 relations from

84 Freebase domains. Table 4.1 shows the number of instances in GraphNarrative

in each Freebase domain. Table 4.2 compares five datasets: WebNLG, AGENDA,

EventNarrative, TEKGEN, and GraphNarrative. The datasets differ in terms of their

knowledge graph source, text corpus, domain coverage, number of instances, number

of entities, number of triples, number of relations, and percentage of star graphs.

Our dataset, which uses Freebase as the knowledge graph and Wikipedia as the text

28



Domain Count Domain Count Domain Count Domain Count
location 2,291,039 people 1,557,482 sports 633,854 music 631,159
government 432,881 organization 420,824 education 405,418 film 386,237
tv 264,398 book 218,885 award 166,832 military 146,581
soccer 122,931 time 88,337 geography 87,935 business 85,587
olympics 80,622 transport-

ation
60,669 broadcast 56,669 baseball 56,343

fictional
universe

37,185 biology 37,121 influence 36,370 language 32,796

computer 31,059 cvg 30,873 aviation 29,992 architect-
ure

29,092

protected
sites

27,720 religion 27,158 symbols 26,881 travel 25,526

visual art 19,358 basketball 19,259 royalty 17,960 astronomy 17,847
american
football

15,067 metropoli-
tan transit

14,585 comic
books

11,312 law 10,095

media
common

9,538 spaceflight 7,441 tennis 6,553 boats 6,550

medicine 5,317 meteorology 5,084 automotive 4,857 theater 4,816
internet 3,478 amusement

parks
3,027 event 2,562 comic

strips
2,532

games 1,978 food 1,613 martial
arts

1,448 measure-
ment
unit

1,289

ice hockey 1,195 finance 1,184 rail 1,175 opera 1,157
cricket 1,027 dining 706 projects 600 zoos 402
venture
capital

389 digicams 220 distilled
spirits

213 skiing 197

conferences 178 exhibitions 139 comedy 137 boxing 124
geology 87 engineering 78 chemistry 74 library 70
chess 65 fashion 59 interests 45 celebrities 42
wine 22 radio 13 bicycles 13 physics 1

Table 4.1: Number of GraphNarrative instances in each Freebase domain

corpus, stands out by covering the open domain with a large number of instances,

entities, triples, and relations. Most other datasets are significantly smaller in these

aspects.

Linguistic variation. Using Wikipedia as the corpus, the graph-text pairs

in GraphNarrative allow a model to learn from many Wikipedia authors’ diverse nar-

29



WebNLG DART AGENDA Event
Narrative

TEKGEN GraphNarrative

Knowledge
Graph

DBpedia N/A N/A Wikidata Wikidata Freebase

Text Corpus Handcraft Handcraft Scientific
abstract

Wikipedia Wikipedia Wikipedia

Domain 15 DBpedia
categories

N/A Scientific
research

Events Open domain Open domain

Instances 25,298 38,391 40,720 224,428 7,895,789 8,769,634
Entities 2,730 27,000 159,691 305,685 4,856,439 1,853,752
Triples 3,221 32,139 177,568 649,337 11,373,838 15,472,249
Relations 354 3,834 7 672 663 1,724
Star Graphs 57% 83% 2% 94% 96% 22%

Table 4.2: Comparison of characteristics of the datasets used for graph-to-text gen-
eration

rations. On the contrary, text in handcrafted datasets such as WebNLG and DART

tend to follow monotonous templates from a small number of human contributors.

Graph structure complexity. The graphs in GraphNarrative contain 1–15

triples and 2–20 entities, in 7,920 distinct topological shapes based on graph isomor-

phism. The distributions of graphs in GraphNarrative by numbers of triples and enti-

ties are shown in base-10 logarithmic scale in Figure 4.4 and Figure 4.5, respectively.

Furthermore, the distribution of distinct GraphNarrative graph shapes by number of

entities is in Table 4.3. Figure 4.6 displays the 10 most frequent shapes along with

their instance counts. It is not limited to star graphs, but also includes triangles,

paths, etc. In fact, only 22% of the instance graphs are star graphs. On the contrary,

EventNarrative and TEKGEN are dominated by star graphs, as Table 4.2 shows.

#entities 2 3 4 5 6 7 8 9 10 11
#shapes 1 2 7 23 122 705 1690 1705 1267 830
#entities 12 13 14 15 16 17 18 19 20 all
#shapes 542 378 222 176 106 58 52 22 12 7920

Table 4.3: Distribution of distinct GraphNarrative graph shapes by number of entities

30



Figure 4.4: Distribution of GraphNarrative instances by number of triples in graphs

Figure 4.5: Distribution of GraphNarrative instances by number of entities in graphs

Text distribution. The dataset exhibits an average sentence length of 34.68

tokens for original sentences and 20.66 tokens for trimmed sentences (sentences ob-

tained by applying trimming (Chapter 6) on the original sentence). Table 4.4 provides

detailed distribution of sentence lengths. Table 4.5 presents the average sentence to-

ken counts by number of triples in the graphs. It underscores that our model was

trained using a diverse set of examples, including those with lengthy sentences and a

substantial number of triples.

31



Figure 4.6: The 10 most frequent graph shapes in GraphNarrative, with instance counts

#Tokens Original Sentence Trimmed Sentence
0-10 64,861 (0.74%) 1,734,759 (19.78%)
10-20 1,442,582 (16.45%) 3,369,747 (38.43%)
20-30 2,592,651 (29.56%) 1,944,225 (22.17%)
30-40 2,048,174 (23.36%) 919,554 (10.49%)
40-50 1,215,928 (13.87%) 416,187 (4.75%)
50-60 649,403 (7.41%) 190,363 (2.17%)
60-70 339,671 (3.87%) 91,289 (1.04%)
70-80 181,699 (2.07%) 45,38 (0.52%)
80-90 97,618 (1.11%) 23,823 (0.27%)
90-100 53,981 (0.62%) 13,299 (0.15%)
100-110 83,066 (0.95%) 21,008 (0.24%)

Table 4.4: Distribution of GraphNarrative instances by sentence length

#Triples #Tokens #Triples #Tokens #Triples #Tokens
1 14.15 2 20.32 3 23.12
4 26.29 5 28.21 6 29.74
7 31.12 8 33.41 9 30.39
10 35.90 11 39.53 12 42.49
13 43.60 14 49.71 15 50.21

Table 4.5: Average GraphNarrative sentence length by number of triples in graphs

32



CHAPTER 5

MODELS

A knowledge graph, denoted as G, is composed of a set of triples (s, p, o), where

the subject s and object o are entities from the entity space E, and predicate p are

from the relation space R. The task of generating text from a subgraph G ⊂ G can

be formulated as, given G, modeling the probability distribution of n-token sequences

Y = (y1, ..., yn) that describe G.

Existing graph-to-text models often use a decoder-only [Brown et al., 2020]

or encoder-decoder structure [Sutskever et al., 2014], where the encoder learns rep-

resentations of input graphs and the decoder subsequently translates the represen-

tations into token sequences. In decoder-only models, e.g., GPT-2 [Radford et al.,

2019], GPT-3 [Brown et al., 2020], ChatGPT (i.e., GPT-3.5) [OpenAI, 2022], and

GPT-4 [Achiam et al., 2023] in the GPT family, the decoder uses text sequence

embedding as the representation of input graphs. Encoder-decoder models fall into

two main categories based on graph representations—1) sequence-to-sequence models

that encode linearized graphs’ token sequences with LSTMs [Trisedya et al., 2018,

Gardent et al., 2017a] or Transformers [Castro Ferreira et al., 2019], and 2) models

that use a dedicated graph encoder to capture the structural information of knowledge

graphs [Schmitt et al., 2021, Ribeiro et al., 2020, Marcheggiani and Perez-Beltrachini,

2018].

33



Figure 5.1: Transformer-based pre-trained language models

5.1 Transformer-based Pre-trained Langauge Models

Figure 5.1 illustrates the basic steps of how Transformer-based pre-trained lan-

guage models operate. The model takes a sentence as input and tokenizes it into

word tokens. For each token, a vocabulary lookup maps it to a vector. These vec-

tors are then input to the encoder, which learns a hidden representation using the

self-attention mechanism and positional embeddings. The hidden representation is

subsequently fed into the decoder layer. The decoder predicts the probability of each

token in the vocabulary as the next token, based on the current input, and outputs

34



the one with the highest probability. This process continues until a special end to-

ken is predicted or the maximum sequence length is reached. The aforementioned

decoder-only models do not have an encoder layer and use the embedding lookup

table directly as the representation of the input sequences.

Model BART (Bidirectional
Auto-Regressive
Transformers)

T5 (Text-to-Text
Transfer Transformer)

LLaMA (Large
Language Model
Meta AI)

Structure Transformer (encoder +
decoder)

Transformer (encoder +
decoder)

Transformer (decoder
only)

Pre-training
Corpus

Wikipedia, news articles,
books, and subsets of
Common Crawl dataset
(160GB text)

Books, Wikipedia, and the
Common Crawl dataset
(750 GB text)

CommonCrawl, C4,
Github, Wikipedia,
Books, ArXiv,
StackExchange

Pre-training
Strategy

Self-supervised: recover
corrupted sentences

Self-supervised: recover
corrupted sentences,
Supervised: frame many
tasks as
sequence-to-sequence ones

Self-supervised:
recover corrupted
sentences

Number of
Model
Parameters

base(140M), large(400M),
...

small(60M), base(220M),
large(770M), ...

TinyLLaMA(1.1B),
LLaMA-2(7–70B),
LLaMA-3(8–70B), ...

Table 5.1: Comparison of BART, T5, and LLaMA models

Table 5.1 provides a brief comparative summary of three advanced language

models—BART, T5, and LLaMA [Touvron et al., 2023]. Each model utilizes the

Transformer architecture, with BART and T5 incorporating both an encoder and a

decoder, while LLaMA uses only a decoder.

In terms of the pre-training corpus, BART uses a combination of Wikipedia, 1

news articles, books, and parts of the Common Crawl dataset, 2 totaling 160GB of

text. T5, on the other hand, has been trained on a larger corpus including books,

Wikipedia, and the full Common Crawl dataset, amounting to 750GB. LLaMA has

1https://www.wikipedia.org/
2https://commoncrawl.org/

35

https://www.wikipedia.org/
https://commoncrawl.org/


been trained on an even more extensive range of sources, including Common Crawl,

C4, 3 GitHub, 4 Wikipedia, books, ArXiv, 5 and StackExchange. 6

For pre-training strategies, BART and LLaMA employ a self-supervised ap-

proach that focuses on recovering corrupted sentences. T5 also uses a self-supervised

approach but adds a supervised component, treating many tasks as sequence-to-

sequence problems.

The models differ significantly in terms of number of parameters: BART has

versions ranging from 140M to 400M parameters; T5 has models from 60M up to

770M parameters; and LLaMA starts with the TinyLLaMA at 1.1 billion parameters,

with other larger versions scaling between 7 billion and 70 billion parameters.

• T5. The T5, or Text-to-Text Transfer Transformer, simplifies the NLP

pipeline by treating both input and output as text strings, allowing for consistent

application across diverse tasks such as translation, summarization, question answer-

ing, and classification. Built on the original Transformer architecture, T5 introduces

several innovations, notably in its pre-training process. It uses a “span-corruption”

objective, where random spans of text are masked and the model is trained to predict

these spans, enhancing context understanding and text generation. T5 also employs

a relative position encoding scheme, which replaces absolute position encodings, to

better capture word relationships and improve handling of long-range dependencies.

• BART. The BART (Bidirectional and Auto-Regressive Transformer) model

merges the strengths of bidirectional Transformers (e.g., BERT) and auto-regressive

Transformers (e.g., GPT). BART’s architecture includes a standard Transformer

setup with an encoder and a decoder. The encoder is similar to BERT’s, while

3https://www.tensorflow.org/datasets/catalog/c4
4https://github.com/
5https://arxiv.org/
6https://stackexchange.com/

36

https://www.tensorflow.org/datasets/catalog/c4
https://github.com/
https://arxiv.org/
https://stackexchange.com/


the decoder is akin to GPT’s. This makes BART versatile and proficient in handling

both generation and understanding tasks. A key feature of BART is its pre-training

method, which uses a noise-aware denoising autoencoder framework. The model is

trained on systematically corrupted text and learns to reconstruct the original text.

• LLaMA. The LLaMA (Large Language Model from Meta AI) delivers

state-of-the-art performance across various NLP tasks. Designed to be more ac-

cessible and efficient than predecessors such as GPT-3, as well as larger BART and

T5 models, LLaMA stands out due to its innovative approaches to model training

and scaling. Key features include model and data parallelism, and the use of efficient

training methodologies such as mixed-precision training and gradient checkpointing.

These techniques not only enhance its power and size but also make it highly cost-

effective [Touvron et al., 2023].

5.2 Models Used

Fine-tuning Transformer-based, sequence-to-sequence encoder-decoder PLMs

(e.g., T5 and BART) achieved state-of-the-art performance on WebNLG [Ribeiro

et al., 2021, Wang et al., 2021, Clive et al., 2021] and DART [Aghajanyan et al.,

2021]. Yuan and Färber [2023] reported that fine-tuning T5 and BART on WebNLG

and AGENDA datasets yielded better results than zero-shot learning using GPT-3

and GPT-3.5. They also reported factual hallucinations from GPT-3 and GPT-3.5.

While the reported results from fine-tuning GPT-2 on WebNLG [Harkous et al., 2020]

are worse than the current state-of-the-art, no results have been reported based on

fine-tuning GPT-3, GPT-3.5, or GPT-4.

Following the state-of-the-art approach, we also fine-tuned T5 (small, base,

large), BART (base, large), and TinyLLaMA on GraphNarrative and other datasets in

comparison.

37



5.3 Linearize the Graphs

PLMs are sequence-to-sequence models. We linearize graphs to convert them

to token sequences which become input to PLMs. We explored two linearization

methods, basic linearization and structured linearization. Figure 5.2 illustrates and

contrasts these two methods. In both methods the token sequences incorporate special

tokens to mark different positions within each triple—<H>, <R> and <T>, denoting

subjects, relations and objects, respectively.

Figure 5.2: Two linearization methods

Basic Linearization. Basic linearization transforms a graph into a sequence

of tokens by concatenating individual triples. Following the method in [Ribeiro et al.,

2021], the graph in Figure 4.3 would be linearized as “<H> John Douglas <R> place of

birth <T> Morgantown, West Virginia <H> John Douglas <R> education institution <T> Tates

Creek High School <H> Tates Creek High School <R> location <T> Lexington, Kentucky”.

Structured Linearization. The hierarchical and structural relationships

between nodes (entities) in a graph, such as parent-child or ancestor-descendant re-

38



lationships, can be obscured when translated into a flat sequence. To maintain more

structural integrity, we attempted structured linearization. Instead of simply con-

catenating triples in an unordered manner, we organized triples by grouping them

based on common subjects. More specifically, the triples with the same subject are

concatenated together, sharing one special token <H>. For instance, with structured

linearization, the graph in Figure 4.3 is linearized as “<H> John Douglas <R> place of birth

<T> Morgantown, West Virginia <R> education institution <T> Tates Creek High School <H>

Tates Creek High School <R> location <T> Lexington, Kentucky”. Triples (John Douglas,

place of birth, Morgantown, West Virginia) and (John Douglas, education institution,

Tates Creek High School) share the same subject John Douglas and they are con-

catenated together.

39



CHAPTER 6

MITIGATION OF HALLUCINATION

The culprit of the hallucination problem discussed in Chapter 1 is fabrication in

training data—textual descriptions containing information not found in input graphs.

This is evidenced by that, while graph-to-text models frequently produce hallucina-

tion when trained on TEKGEN, it rarely happens on WebNLG. Hallucinated facts

are seldom found in the clean, manually-crafted WebNLG but are present in auto-

matically extracted graph-text pairs in TEKGEN due to extraction errors.

6.1 Two Directions Toward Addressing Graph-to-Text Hallucination

There could be two plausible directions in tackling graph-to-text hallucina-

tion. One is to improve our graph-text alignment method (Section 4.1). The graph

extracted from a piece of text during alignment may miss certain entities or relation-

ships due to either extraction errors or disparities between the text corpus and the

knowledge graph. The resulting graph-text pair may misguide the trained model to

hallucinate facts. A more accurate alignment method can reduce such erroneous pairs

and thereby reduce hallucination. However, this method has an inherent limitation—

since a knowledge graph in real-world is often far from complete, there will be facts

in text that cannot be mapped to the knowledge graph.

The other direction is to force the graph-text pairs to be consistent by trimming

the sentences in graph-text pairs so as to keep only subsequences of the original

sentences that correspond to the entities and relations depicted in the graphs.

40



Figure 6.1: An example graph-text pair obtained from graph-text alignment

(a) Direction 1: develop more accurate graph-text alignment

(b) Direction 2: trim the sentences

Figure 6.2: Two directions of approaches to mitigating hallucination in graph-to-text

Figure 6.1 shows a graph-text pair obtained through the graph-text alignment

method introduced in Section 4.1.2. Using this example, Figure 6.2 illustrates the two

approaches to mitigating graph-to-text hallucination. In Figure 6.2, each subfigure is

a Venn diagram. The oval labeled “Graph” represents the set of entities present in

the graph, while the oval labeled “Text” represents the set of entities mentioned in

the text. The intersection (T ∩G) thus contains the entities that appear in both the

41



text and the graph, e.g., FlyBack, Backup Software, Git, and Linux for the graph-

text pair in Figure 6.1. The text includes two extraneous entities, Apple and Time

Machine, which are not aligned with the graph, i.e., the entities are in T −G. Given

this graph-text pair, the first approach aims to develop better alignment techniques to

find the corresponding entities Apple and Time Machine in the graph. This would lead

to adding these entities to the graph, thereby enriching the graph with the additional

entities present in the text. The second approach seeks to trim the sentence to exclude

these extraneous entities. More specifically, it removes the token sequences related to

Apple and Time Machine from the sentence.

Note that Figure 6.2 captures only the entities, but graph-text alignment also

involves relationships (edges) between entities. If we use the first approach, we not

only add missing entities from T −G to the graph but also need to add corresponding

edges to accurately reflect the relationships. For example, if “Apple” and “Time

Machine” are added to the graph, we need to ensure that their relationships with

other entities in the graph are also captured. If we use the trimming approach, we

need to remove more than just the entities from T − G. We also need to remove

other words associated with these entities to maintain grammatical correctness and

coherence in the sentence. Besides, although not shown in this specific example, it is

possible to have entities in the graph that do not appear in the text, i.e., G− T may

not be empty. This situation is much rarer as we are extracting a graph based on the

text but it could happen nevertheless when wrong Freebase entities and relationships

are aligned to the text.

42



Algorithm 1: Sentence Trimming

Input: W : A co-reference resolved Wikipedia sentence; G: The graph for

W based on graph-text alignment

Output: Wtrim: The trimmed text sequence

1 M ← {}

2 foreach (s, p, o) ∈ G do

3 s′ ← s.remove(special tokens)

4 o′ ← o.remove(special tokens)

5 W ← W.replace((s, o), (s′, o′))

6 M [s′],M [o′],M ′[s],M ′[o]← s, o, s′, o′

7 Wtree ← W.dependency parsing()

8 min pos,max pos← W.length, 0

9 foreach (s, p, o) ∈ G do

10 sdp← shortest path(Wtree,M
′[s],M ′[o])

11 foreach node ∈ sdp do

12 min pos← min(min pos, node.start)

13 max pos← max(max pos, node.end)

14 Wtrim ← W [min pos : max pos]

15 foreach k ∈M.keys() do

16 Wtrim ← Wtrim.replace(k,M [k])

17 return Wtrim

43



6.2 Sentence Trimming Algorithm

This study explores the second aforementioned direction in mitigating halluci-

nation. Nevertheless, in principle, a way to combine the two approaches is open for

investigation.

Given a (Freebase subgraph G, Wikipedia sentence W ) pair produced by align-

ment, we introduce a sentence trimming algorithm (pseudocode in Algorithm 1) to

turn W into a trimmed sentence Wtrim by eliminating portions that are not present

in G while preserving the sentence’s main idea.

First, the algorithm parses W and generates its dependency parse tree (DPT)

Wtree, using spaCy [Honnibal et al., 2020]. Then, for each triple ti = (si, pi, oi) ∈ G,

it identifies the shortest dependency path (SDP) between si and oi, i.e., the shortest

path between the two entities’ tokens in Wtree.
1 It then finds the leftmost position

index min pos in sentence W among all tokens on all triples’ SDPs, and similarly

the rightmost position index max pos. This process results in the trimmed sentence

Wtrim, a sub-sequence of W spanning from min pos to max pos.

In Algorithm 1, Lines 1–6 are to ensure that an entity consisting of multiple

tokens is tokenized into one single token, the mapping M is for recovering the entity’s

tokens from W in producing Wtrim (Lines 15–16), and the mapping M ′ is for finding

the processed s′, o′ given triple (s, p, o). Lines 9–14 find the leftmost position min pos

and the rightmost position max pos from W by scanning each triple (s, p, o) in G and

finding the tokens on the corresponding SDPs. The variable node denotes a token on

the SDP in Wtree between entities s and o. node.start and node.end denote node’s

starting position index and ending position index in W , respectively. node.start,

node.end, min pos, and max pos are on character level. Suppose s or o appear

1We used NetworkX [Hagberg et al., 2008] to find the shortest path between two tokens in a

sentence.

44



multiple times in the original sentence as s1, s2, . . . , sm and o1, o2, . . . , on, where s1 =

s2 = . . . = sm = s and o1 = o2 = . . . = on = o, and sq and oj (1 ≤ q ≤ m, 1 ≤ j ≤ n)

are in ascending order by their positions in the original sentence. When finding the

SDP tokens between s and o (Line 10), we find the SDP tokens between s1 and on if

s1 appears before o1, or the SDP tokens between o1 and sm if o1 appears before s1.

Figure 6.3: Dependency parse tree of the sentence “FlyBack is an open-source Backup
Software for Linux based on Git and modeled loosely after Apple’s Time Machine.”

An example is in Figure 6.3 which illustrates the DPT of the sentence W

in its caption. The corresponding graph G from the graph-text alignment process

is {(FlyBack, software genre, Backup Software), (FlyBack, operating system, Linux),

(FlyBack, basis, Git)}. Note that entities Apple and Time Machine in W are missing

from G. The SDPs for the three triples are (①, ②), (①, ②, ③, ④), and (①, ②, ⑤, ⑥,

45



⑦), respectively. The circled numbers identify edges on the paths between subjects

and objects. Given the SDPs, min pos is attained by FlyBack and max pos is at-

tained by Git. Hence, Wtrim is “FlyBack is an open-source Backup Software for Linux

based on Git”. The sequence “and modeled loosely after Apple’s Time Machine.”,

related to the missing entities Apple and Time Machine, is trimmed from W .

Figures 6.4, 6.5, 6.6, and 6.7 illustrate the process of obtaining a trimmed

sentence from a graph-text pair. The index numbers in square brackets following the

tokens indicate their positions in the original sentence, which have different meanings

than the circled numbers on the dependency parse tree in Figure 6.3. By iterating

through each triple in the graph, the final trimmed sentence is produced. Given the

example, the process is as follows. For the triple (FlyBack, software genre, Backup

Software) in the graph, the SDP tokens on the DPT of the sentence are “FlyBack”,

“is” and “Backup Software”. Their corresponding indices in the sentence are [1],

[2] and [7], respectively. For the triple (FlyBack, operating system, Linux), the SDP

tokens on the DPT of the sentence are “FlyBack”, “is”, “Backup Software”, “for”,

and “Linux”. And their corresponding indices in the sentence are [1], [2], [7], [8], and

[9], respectively. For the triple (FlyBack, basis, Git), the SDP tokens on the DPT

of the sentence are “FlyBack”, “is”, “Backup Software”, “based”, “on”, and “Git”.

And their corresponding indices in the sentence are [1], [2], [7], [10], [11], and [12],

respectively. The smallest index among these SDP tokens is [1], and the largest index

is [12]. Hence the trimmed sentence is the subsequence from index [1] to index [12],

i.e., “FlyBack is an open-source Backup Software for Linux based on Git”, as shown

in Figure 6.7.

Note that, a regular DPT will break up entities such as Backup Software into

individual tokens, each for a node in the DPT. To avoid that, we used a modified

concept of DPT—we preprocessed entity names and tokenized each entity’s name

46



Figure 6.4: Tokens on the SDP between “FlyBack” and “Backup Software”, and the
corresponding subsequence in text

Figure 6.5: Tokens on the SDP between “FlyBack” and “Linux”, and the correspond-
ing subsequence in text

into a single token. Speficially, the two tokens Backup and Software were combined

into token BackupSoftware.

47



Figure 6.6: Tokens on the SDP between “FlyBack” and “Git”, and the corresponding
subsequence in text

Figure 6.7: The graph and the final trimmed sentence

Figure 6.8 illustrates the whole workflow of building our graph-to-text model,

which we call GraphNarrator. It covers the steps of dataset generation, sentence trim-

ming for mitigating hallucination, and model fine-tuning. More specifically, the work-

48



flow comprises four groups of components, as shown in Figure 6.8: the entity aligner

and the edge detector, which construct Freebase subgraphs from Wikipedia sentences;

the sentence trimmer as a measure to mitigate hallucination; and the fine-tuning of

a PLM. Within the entity aligner, the coreference resolution module replaces pro-

nouns or aliases with the corresponding entities. For example, as Figure 6.8 shows,

“the band” and “this release” are replaced with “Australian heavy metal band Lord”

and “Return of the Tyrant”, respectively. The Wikification module is applied to

identify Wikipedia entities in sentences. These entities are then mapped to Freebase

entities. Given the entities from a sentence, the edge detector further assembles a

Freebase subgraph containing these entities. The triples of the subgraph are used to

trim the coreference-resolved sentence. The resulting pairs of trimmed sentences and

subgraphs are fed into the PLM for fine-tuning, creating a graph-to-text model. In

the inference stage, the model takes a user-specified subgraph as input and outputs

a generated sentence that describes it.

49



Figure 6.8: Workflow of GraphNarrator

50



CHAPTER 7

EXPERIMENTS & RESULTS

7.1 Datasets

We performed experiments on four datasets: GraphNarrative, TEKGEN (the

large-scale, open-domain graph-to-text dataset that resembles ours the most), and

WebNLG and DART (two human-annotated datasets). Detailed statistics about

these and other datasets can be found in Table 4.2.

• GraphNarrative is partitioned into training, development and test sets in accor-

dance with the process elaborated below. Each edge in Freebase belongs to a topic

domain. Every instance in GraphNarrative, i.e., a (graph, sentence) pair, is assigned a

domain, using the most frequent domain among the graph’s edges. We then divided

GraphNarrative into seen and unseen partitions according to the numbers of instance

pairs in different domains. Domains with very few (less than 2,000) pairs were desig-

nated as unseen domains, while the remaining domains are seen. A full list of the seen

and unseen domains is provided below. All instances in unseen domains go to the test

set, thereby making them “unseen” from the training and development sets. In the

seen partition, 90%, 5% and 5% of the instances are allocated for training, develop-

ment and test, respectively. This resulted in 7,880,214 instances in the training set,

437,514 in the development set, and 451,906 in the test set, including 13,453 instances

from unseen domains. Having unseen instances in the test set and having them only

come from rare domains help us evaluate models’ generalization ability. Unseen do-

mains have limited presence in Wikipedia, as reflected in the aforementioned very

few pairs from such domains in GraphNarrative. Given that Wikipedia is an important

51



corpus for PLMs in their pre-training process [Raffel et al., 2020, Lewis et al., 2020,

Touvron et al., 2023], this helps ensure that the model has encountered only a small

number of unseen instances during the pre-training stage of the PLMs. These unseen

instances provide a more rigorous test of the model’s ability to generalize to new and

unfamiliar data.

Seen domains. american football, amusement parks, architecture, astronomy,

award, aviation, automotive, baseball, basketball, biology, boats, book, broadcast,

business, comic books, comic strips, computer, cvg, education, event, fiction, film,

finance, geography, government, influence, internet, language, law, location, me-

dia common, measurement unit, medicine, meteorology, metropolitan transit, mili-

tary, music, olympics, organization, people, physics, protected sites, radio, religion,

royalty, soccer, spaceflight, sports, symbols, tennis, theater, time, transportation,

travel, tv, visual art

Unseen domains . bicycles, boxing, celebrities, chemistry, chess, comedy, con-

ferences, cricket, digicams, dining, distilled spirits, engineering, exhibitions, fashion,

food, games, geology, ice hockey, interests, library, martial arts, opera, projects, rail,

skiing, venture capital, wine, zoos

• In TEKGEN, each instance pair contains a Wikipedia sentence and a Wiki-

data subgraph extracted from the sentence. We used the original training, develop-

ment and test set partitions from [Agarwal et al., 2021]. To evaluate the effective-

ness of the sentence trimming method on TEKGEN—another automatically collected

dataset where fine-tuned PLMs also exhibit hallucination issues—we did not use all

instances. This limitation arose due to the lack of mappings between entity names and

their surface texts, as it is impossible to apply sentence trimming without such infor-

mation. To maximize the utility of available instances, we used entity aliases sourced

from TEKGEN, and we also leveraged regular expressions to identify time and peo-

52



ple’s names. Consequently, we obtained 3,811,288 instances for training, 476,439 for

development, and 484,958 for test, out of the original 6,310,061, 788,746, and 796,982

instances, respectively.

• In the standard WebNLG 2017 challenge dataset, each instance is composed

of a graph from DBpedia and one or multiple sentences written by human annotations

to describe the graph’s content. The graph is generated from DBpedia using a content

selection algorithm [Perez-Beltrachini et al., 2016]. Given an entity from a category,

the algorithm selects the subgraph with the highest probability of being typical of

that category and supporting the generation of a coherent text. Its test set is divided

into the seen partition, which contains 10 DBpedia categories present in the training

and development sets, and the unseen partition, which covers 5 categories absent

from the training and development sets. We used the same partitioning as in the

dataset.

• DART is a data-to-text dataset that consists of pairs of (triple-set, sentence)

gathered from various sources, including WebNLG and E2E [Novikova et al., 2017].

It also includes (triple-set, sentence) pairs where the triple-sets are converted from

the tables of WikiSQL [Zhong et al., 2017] and WikiTableQuestions [Pasupat and

Liang, 2015], with sentences collected through crowdsourcing. We used the original

partitioning of training, development and test sets in DART.

7.2 Human & Automatic Evaluation Metrics

7.2.1 Human evaluation metrics

Existing human evaluation metrics for graph-to-text generation primarily assess

the linguistic quality of generated sentences, often neglecting to quantitatively address

the issue of hallucination between the given graph and the generated text. Table 7.1

53



lists the human evaluation metrics used in both earlier and state-of-the-art studies.

The commonly used metrics include Semantics (Does the text correctly represent the

meaning of the data?), Grammar (Is the text free of spelling or grammatical errors?),

Fluency (Does the text sound fluent and natural?), Adequacy (Does the text clearly

express the data?), and Correctness (Is the output sentence semantically accurate?).

These descriptions of the metrics are derived from the corresponding publications

that utilize them, as in Table 7.1. Typically, each study employs two or three of these

five metrics.

Paper Semantics Grammar Fluency Adequacy Correctness

[Agarwal et al., 2021] on a scale of 1-5 ✗ on a scale of 1-5 ✗ ✗

[Gardent et al., 2017a] on a scale of 1-3 on a scale of 1-3 on a scale of 1-3 ✗ ✗

[Colas et al., 2021] ✗ ✗ ✗ ✗ ✗

[Ribeiro et al., 2021] on a scale of 1-7 ✗ on a scale of 1-7 ✗ ✗

[Ribeiro et al., 2020] ✗ ✗ on a scale of 1-5 on a scale of 1-5 ✗

[Marcheggiani and Perez-
Beltrachini, 2018]

✗ ✗ ✗ ✗ ✗

[Song et al., 2020] ✗ ✗ ✗ ✗ ✗

[Trisedya et al., 2018] ✗ on a scale of 1-3 on a scale of 1-3 ✗ on a scale of 1-3

[Wang et al., 2021] ✗ ✗ ✗ ✗ ✗

Table 7.1: Human evaluation metrics used in graph-to-text studies

We evaluated the quality of both the GraphNarrative dataset and the sentences

generated by models, focusing on whether sentences in the dataset or produced by

models fabricate facts that are not in the corresponding graphs narrated by the sen-

tences. To the best of our knowledge, no prior study has quantitatively evaluated the

quality of graph-to-text datasets or models with regard to hallucination. Specifically,

we define the following four metrics: numbers of hallucinated entities (entities not

present in the graph but mentioned in the sentence), missed entities (entities present

in the graph but not mentioned in the sentence), hallucinated relations (relations not

present in the graph but mentioned in the sentence), and missed relations (relations

present in the graph but not mentioned in the sentence).

54



In addition, we also evaluated the linguistic quality of the sentences using a

score averaged over the sentences, on a scale of 1-5 for each sentence: 5 (no errors),

4 (one error), 3 (two to three errors), 2 (four to five errors), and 1 (more than five

errors). The “errors” in our evaluation refers to both grammatical errors and when a

sentence is not fluent or uses awkward expressions. Thus, our linguistic quality score

can be viewed as a combination of the metrics of grammar and fluency in Table 7.1.

7.2.2 Automatic evaluation metrics

For model-generated sentences, we also report automatic evaluation results us-

ing standard natural language generation metrics BLEU [Papineni et al., 2002], ME-

TEOR [Banerjee and Lavie, 2005] and chrF++ [Popović, 2015].

7.2.2.1 BLEU (Bilingual Evaluation Understudy)

The BLEU score, primarily used in machine translation, measures the similarity

between a candidate (i.e., generated) sentence and one or more reference sentences.

In our case, the reference sentences are the text of graph-text pairs in GraphNarrative,

and the generated sentences are the model-inferred sentences given the graphs in

GraphNarrative. The BLEU score is calculated as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
where BP (brevity penalty) penalizes short generated sentences (defined below), pn is

the modified n-gram precision (also defined below), N is the highest order of n-grams

considered, and wn is the weight assigned to each modified n-gram precision and is

often set as wn = 1
N

.

In the BLEU score definition, the modified n-gram precision is defined as:

pn =

∑
C∈Candidates

∑
g∈NG(C) min(Count(g),Countref(g))∑

C∈Candidates

∑
g∈NG(C) Count(g)

55



where n denotes the length of the n-grams being considered, such as unigrams (n=1),

bigrams (n=2), trigrams (n=3), and so forth. Count(g) is the count of an n-gram

g in the generated sentence, Countref(g) is the count of the n-gram in the reference

sentences, and NG(C) denotes the set of all n-grams in candidate sentence C. The

modified n-gram precision measures the accuracy of n-grams (up to 4-grams [Popović,

2011]) in generated sentences by comparing them to those in reference sentences [Kon-

drak, 2005]. This metric accounts for the fact that the same n-gram may appear

multiple times in a generated sentence but less in the reference sentences. To avoid

over-penalizing repeated n-grams, the modified precision counts the minimum occur-

rence of an n-gram between each generated sentence and reference sentences.

The brevity penalty (BP) is defined as:

BP =


1 if c > r

e(1−
r
c
) if c ≤ r

where c is the length of the generated sentence and r is the length of the reference

sentence.

7.2.2.2 METEOR (Metric for Evaluation of Translation with Explicit ORdering)

The METEOR score is also commonly used in machine translation. Unlike

BLEU, which relies solely on precision, METEOR incorporates both precision and

recall, and it also applies stemming and synonymy matching. It is calculated by

aggregating the scores across multiple pairs of generated-reference sentences, and the

score for each pair is defined as:

METEOR = Fmean · (1− Pen)

where Pen is fragmentation penalty (defined below), and Fmean = P ·R
α·P+(1−α)·R is the

harmonic mean of precision (P = m
wt

) and recall (R = m
wr

), in which the parameter α

56



is typically set to 0.9 to weigh recall higher than precision, wt is the number of words

in the generated sentence, wr is the number of words in the reference sentence, and

m is the number of matches (which can be exact, stemmed, synonym, or paraphrase

matches) between words in the generated and reference sentences.

The harmonic mean only accounts for congruity with respect to single words

but not with respect to larger segments that appear in both reference and generated

sentences. To address this, longer n-gram matches are used to compute a penalty

p which gets higher values when more mappings between generated and reference

sentences are not adjacent. To compute this penalty, unigrams are grouped into the

fewest possible chunks, defined as sets of adjacent unigrams in both the generated

sentence and the reference sentence. The longer the adjacent mappings between the

candidate and the reference, the fewer chunks there will be. A generated sentence

identical to the reference will result in just one chunk. The fragmentation penalty,

Pen, is defined as:

Pen = γ ·
(
ch

m

)β

where ch is the number of chunks (contiguous matches) in the generated sentence,

and the parameters γ and β are often set to 0.5 and 3.0, respectively [Banerjee and

Lavie, 2005].

7.2.2.3 chrF++

The chrF++ score is particularly useful for languages with rich morphology and

for translations where word boundaries are not well-defined. Similar to METEOR, it

is aggregated over the scores for multiple pairs of generated-reference sentences, and

the score for each pair is defined as:

57



Fγ =
(1 + γ2) · P ·R
γ2 · P + R

where γ is a parameter that balances the importance between precision (R) and recall

(R). If γ = 1, they are equally important. Previous work [Popović, 2015] reported

that the best γ parameter is 2 in terms of Kendall’s τ segment-level correlation with

human relative rankings.

The precision and recall in chrF++ are defined by combining character n-gram

precision and recall (Pchr and Rchr) and word n-gram precision and recall (Pword and

Rword), as follows:

P = (1− β) · Pchr + β · Pword

R = (1− β) ·Rchr + β ·Rword

where the parameter β is often set to 0.5. Given a generated sentence and a sen-

tence, the character n-gram precision (typically up to 6-grams [Popović, 2015]) is the

percentage of n-grams in the generated sentence that have a match in the reference

sentence on the character level. The character n-gram recall is the percentage of n-

grams in the reference sentence that are also present in the generated sentence on the

character level. The word n-gram precision and recall are similar to their character

level counterparts, except that the matches are assessed on the word level instead of

character level.

7.3 Experiment and Evaluation Results

7.3.1 GraphNarrative dataset quality

Three human annotators evaluated the quality of the graph-sentence pairs in

GraphNarrative. We randomly chose 100 pairs, where each sentence has the original

version and the trimmed version using the algorithm in Chapter 6. The total 200

58



pairs were then shuffled so that annotators cannot tell whether a sentence is original

or not. Each human annotator scored all 200 pairs using the metrics in Section 7.2,

and their scores were averaged.

ST Hallucinated Missed Hallucinated Missed Linguistic Quality
Entities Entities Relations Relations

w/o 1.163 0.003 1.340 0.040 4.793
w/ 0.306 0.003 0.453 0.083 4.613

Table 7.2: Human evaluation of GraphNarrative quality

Table 7.2 presents the results. In this and subsequent tables, sentence trimming

is denoted ST. The average hallucinated entities and relations 1 per graph-sentence

pair are 1.163 and 1.340, respectively. This reflects the challenges in graph-to-text

alignment and the source of hallucination, as explained in Chapter 4. Applying sen-

tence trimming reduced these numbers to 0.306 entities and 0.453 relations, clearly

showing its effectiveness in enhancing graph-text alignment. On the other hand, when

graphs were extracted from corresponding sentences to form GraphNarrative, informa-

tion not present in the sentences was seldom introduced into the graphs, as reflected

in the small missed entities and relations, both less than 0.1. Sentence trimming

only slightly increased missed relations from 0.040 to 0.083, showing insignificant side

effects of removing from sentences information covered in corresponding extracted

graphs. With regard to linguistic quality, while sentence trimming led to a slight

decline in the score, the difference (4.793 vs. 4.613) is not substantial.

1We used the metrics defined in Section 7.2 for evaluating both dataset quality and model output.

This may cause confusions in understanding the measures in the context of dataset quality—a

hallucinated entity refers to an entity from the original sentence that is missed in the corresponding

extracted graph! We decided to tolerate this potential confusion for the sake of consistent metric

definition.

59



Model ST BLEU METEOR chrF++

all seen unseen all seen unseen all seen unseen

TinyLLaMA w/o 10.61 - - 23.37 - - 30.34 - -

TinyLLaMA w/ 14.13 - - 34.86 - - 42.46 - -

BART-base w/o 33.18 33.33 27.52 17.18 17.26 14.63 36.56 36.74 30.75

BART-base w/ 46.49 46.77 36.67 24.43 24.53 21.30 49.92 50.12 43.29

BART-large w/o 32.35 32.48 27.56 17.45 17.53 15.07 37.12 37.29 31.58

BART-large w/ 46.04 46.18 40.98 24.35 24.41 22.17 49.69 49.85 44.72

T5-small w/o 19.48 19.53 17.34 15.78 15.85 13.79 33.92 34.08 28.90

T5-small w/ 43.72 43.87 38.11 23.40 23.48 21.10 48.15 48.31 42.65

T5-base w/o 16.89 16.95 14.63 16.23 16.30 14.10 35.37 35.54 29.84

T5-base w/ 42.18 42.29 37.85 24.20 24.27 21.94 49.63 49.80 44.18

T5-large w/o 22.22 22.26 20.41 17.16 17.23 15.02 36.78 36.95 31.40

T5-large w/ 45.12 45.16 43.40 24.77 24.84 22.54 50.44 50.60 45.21

Table 7.3: Model performance on GraphNarrative

7.3.2 Model performance on GraphNarrative

We fine-tuned TinyLLaMA (1.1B parameters) and various T5 (small: 60M

parameters, base: 220M parameters, and large: 770M parameters) and BART (base:

140M parameters, large: 400M parameters) models on GraphNarrative for 106 steps

with a batch size of 8 using the Adam optimizer [Kingma and Ba, 2014] and an

initial learning rate of 3 × 10−5. We employed a linearly decreasing learning rate

schedule without warm-up and set the maximum target text length to 384 tokens.

Our implementation of BART and T5 models was based on the work by Ribeiro

et al. [2021], which adapted PLMs from Hugging Face [Wolf et al., 2019] for graph-to-

text. Since [Ribeiro et al., 2021] did not include the TinyLLaMA model, we adapted

TinyLlama-1.1B-Chat-v1.0 from Hugging Face [Wolf et al., 2019] and implemented

the same preprocessing steps as described in [Ribeiro et al., 2021]. The automatic

evaluation results of different models on GraphNarrative are in Table 7.3. BART and T5

exhibited similar performance patterns. TinyLLaMA performed significantly lower in

BLEU and chrF++ compared to other models. However, it achieved the highest ME-

TEOR scores. This suggests that TinyLLaMA may handle sentence structure and

60



semantic interpretation differently than BART and T5, warranting further investi-

gation. Overall, fine-tuning the T5-large model yielded the best performance across

most metrics, consistent with findings on WebNLG in [Ribeiro et al., 2021, Wang

et al., 2021].

7.3.3 GraphNarrative in enhancing generalization ability

To assess if GraphNarrative may enhance PLMs’ generalization ability, we con-

ducted both zero-shot learning and fine-tuning experiments employing GN-T5 and

GNST-T5 on WebNLG and DART, where GNST-T5 denotes the fine-tuned T5-large

model on GraphNarrative with sentence trimming, and GN-T5 denotes the counterpart

without sentence trimming. They are also compared with the original T5-large model

as a point of reference.

Zero-shot results. For zero-shot learning, we directly applied the above-mentioned

three models on the test sets of WebNLG and DART. The results are in Table 7.4.

The results reveal that fine-tuning PLM on GraphNarrative substantially improves its

generalization capabilities.

Model WebNLG DART

BLEU METEOR chrF++ BLEU METEOR chrF++

T5-large 4.01 9.54 24.64 3.44 7.93 23.17

Filter-T5 19.81 30.36 54.01 16.15 27.53 48.69

GN-T5 21.38 31.82 56.83 19.35 27.35 50.41

GNST-T5 27.60 32.27 56.81 19.42 28.07 50.96

Table 7.4: Zero-shot performance of models on WebNLG and DART test sets

Fine-tuning results. We subjected the three models to further fine-tuning on

WebNLG and DART for 100 epochs with an early stopping patience of 20 epochs,

while keeping other hyperparameters consistent with those in 7.3.2, Section 7.3. No

trimming was performed on WebNLG and DART, as their sentences were authored

61



Model BLEU METEOR chrF++

all seen unseen all seen unseen all seen unseen

[Gardent et al., 2017a] 33.24 52.39 6.13 23.00 37.00 7.00 - - -

[Marcheggiani and Perez-
Beltrachini, 2018]

55.90 - - 39.00 - - - - -

[Ferreira et al., 2019] 51.68 56.35 38.92 32.00 41.00 21.00 - - -

[Ribeiro et al., 2020] - 63.69 - - 44.47 - - 76.66 -

[Ribeiro et al., 2021] 59.70 64.71 53.67 44.18 45.85 42.26 75.40 78.29 72.25

[Wang et al., 2021] 60.56 66.07 53.87 44.00 46.00 42.00 - - -

[Aghajanyan et al., 2021] 56.30 64.80 46.10 42.00 46.00 38.00 - - -

GNST-T5 (ours) 61.46 66.49 55.35 44.30 46.23 42.08 76.20 79.35 72.76

Table 7.5: Performance comparison of different graph-to-text models on WebNLG
test set

by human annotators, with very few hallucinated or missed entities and relations.

Table 7.5 compares the performance of different graph-to-text models on WebNLG

test set, including the reprint of the results from seven prior studies. Gardent et al.

[2017a] proposed the WebNLG 2017 challenge and provided a baseline model based on

LSTM; Marcheggiani and Perez-Beltrachini [2018] developed a graph convolutional

encoder for graph-to-text generation; Ferreira et al. [2019] compared various pipeline

and end-to-end architectures and demonstrating that Transformer-based models per-

form effectively; Ribeiro et al. [2020] proposed a graph neural network (GNN)-based

encoder to enhance the capture of local and global node contexts for text generation

from knowledge graphs; Aghajanyan et al. [2021] integrated hyper-text into PLMs and

reported improved performance; Ribeiro et al. [2021] was the first to investigate fine-

tuning PLMs for graph-to-text generation; Wang et al. [2021] further enhanced the

performance of PLMs by initially fine-tuning them on Wikipedia before fine-tuning

on the WebNLG dataset. GNST-T5 fine-tuned on WebNLG outperformed others on

most metrics, particularly in the unseen category. This improvement suggests that

GraphNarrative enhances the generalization ability of PLMs. Table 7.6 shows the fine-

tuning results on DART test set. The model performance improvement by sentence

trimming is not obvious. This is further discussed in Section 7.3.4.

62



Model BLEU METEOR chrF++

T5-large 50.38 39.98 68.06

GN-T5 50.53 39.99 68.15

GNST-T5 50.51 40.07 68.23

Table 7.6: Fine-tuning results on DART test set

Model ST BLEU METEOR chrF++

BART-large w/o 41.51 23.62 47.13

BART-large w/ 48.32 29.90 57.50

T5-large w/o 43.03 24.21 48.05

T5-large w/ 49.83 30.52 58.25

Table 7.7: Performance of fine-tuning BART-large and T5-large on the TEKGEN
dataset

Dataset ST BLEU METEOR chrF++
all seen unseen all seen unseen all seen unseen

TEKGEN w/o 60.43 65.49 54.32 44.06 46.04 41.90 75.73 78.83 70.13

TEKGEN w/ 60.82 65.42 55.12 44.25 46.13 42.18 76.16 79.11 72.35

GraphNarrative w/o (GN-T5) 60.26 65.44 54.06 44.08 45.90 41.98 75.83 79.02 72.35

GraphNarrative w/ (GNST-T5) 61.46 66.49 55.35 44.30 46.23 42.08 76.20 79.35 72.76

Table 7.8: Models’ performance on WebNLG test set, when fine-tuned with TEKGEN
or GN and further fine-tuned with WebNLG

7.3.4 Ablation study of sentence trimming

We demonstrate the effectiveness of sentence trimming in improving model

performance on GraphNarrative, TEKGEN, WebNLG, and DART by fine-tuning PLMs

with and without sentence trimming, respectively. (1) For GraphNarrative, we fine-

tuned T5, BART, and TinyLLaMA models using the setup described in 7.3.2, Sec-

tion 7.3. (2) For TEKGEN, we fine-tuned the T5-large and BART-large models using

the serialized triples from [Agarwal et al., 2021], with the same hyperparameters as

in 7.3.2, Section 7.3. (3) For WebNLG and DART, we conducted zero-shot learning

and fine-tuning experiments as described in 7.3.3, Section 7.3. (4) Additionally, on the

WebNLG dataset, we carried out further fine-tuning of the T5-large model fine-tuned

on TEKGEN in (2), applying the same hyperparameters as in 7.3.3, Section 7.3.

63



The results of (1) and (2) are in Tables 7.3 and 7.7. The metrics (BLEU,

METEOR, chrF++) consistently improve with sentence trimming, further verifying

the efficacy of sentence trimming. The results of (3) are in Tables 7.4, 7.8 and 7.6,

and Table 7.8 also shows the results of (4). In these results, the fine-tuned PLMs on

GraphNarrative and TEKGEN with sentence trimming consistently outperformed their

non-trimming counterparts. These findings underscore the effectiveness of sentence

trimming in enhancing PLM performance. It is worth noting that, as Tables 7.8

and 7.6 show, on human-annotated WebNLG and DART the models did not gain

much from sentence trimming after they are fine-tuned on these datasets. The main

reason is that human-annotated datasets generally have well-aligned graph-text pairs

and thus cannot be substantially improved by trimming.

7.3.5 Sentence trimming in mitigating hallucination

We randomly sampled 100 graphs from GraphNarrative test set, along with

the corresponding sentences generated by GNST-T5 and GN-T5. We shuffled the

200 pairs and used three human evaluators to score the pairs, in the same fashion

as in 7.3.1, Section 7.3. The results are in Table 7.9, which shows a reduction of

1.4 hallucinated entities and 1.0 hallucinated relations per instance from GN-T5 to

GNST-T5, suggesting that sentence trimming effectively mitigates hallucinations.

Furthermore, sentences generated by both models exhibit on average less than 0.07

missed entities and 0.38 missed relations per instance.

Table 7.10 illustrates the sentences generated by GNST-T5 and GN-T5 for a

few input graphs. GN-T5 tends to fabricate facts that are incorrect or non-existent

in the real world (e.g., Arthur Morry’s age of death, the renaming of the US Naval

Academy, and Goldie Gets Along’s year of release) or not present in input graphs

(e.g., Goldie Gets Along’s genre). In contrast, in the illustrated examples, GNST-T5

64



generated fluent sentences without fabricating facts, barring a phrase instead of a

complete sentence for the second example.

ST Hallucinated Missed Hallucinated Missed Linguistic Quality
Entities Entities Relations Relations

w/o 1.643 0.063 1.363 0.240 4.613
w/ 0.260 0.056 0.300 0.370 4.356

Table 7.9: Human evaluation of sentences generated by T5-large with and without
sentence trimming

Regarding linguistic quality, sentences generated by GNST-T5 received slightly

lower scores than GN-T5. Nevertheless, these scores remain acceptable, with on

average less than one error per instance.

To further understand the errors introduced by sentence trimming, we analyzed

the human evaluation results of the generated sentences by GN-T5 and GNST-T5 and

focused on the cases where the linguistic quality score became lower with sentence

trimming. We found that 51.9% of such cases involve location-related relationships

such as location contains, born place, death place, and so on.

We analyzed how we may mitigate such errors, particularly grammar errors,

and we found it will be challenging to modify the trimming algorithm to reduce

grammar errors since oftentimes the sentence itself does not have a verb between the

entities we extracted to the graph. For instance, consider the following sentence from

Wikipedia: “The Dallas Mavericks (often referred to as the Mavs) are an American

professional basketball team based in Dallas, Texas.” The corresponding graph aligned

with Freebase is (Texas, location contains, Dallas). 2 The tokens between Dallas and

2“Dallas Mavericks” is not mapped to Freebase since the corresponding entity is not present in

Freebase. In more general cases, except for the incompleteness of a knowledge graph, this missing

mapping could also be caused by errors in the graph-text alignment algorithm.

65



Input Graph Sentence Generated by GN-
T5

Sentence Generated by
GNST-T5

(Arthur Morry, place of death, Brisbane) Arthur Morry died in Brisbane,
Queensland, aged 79.

Arthur Morry died in Brisbane.

(Annapolis Maryland, location contains, US
Naval Academy)

During World War II, the US
Naval Academy in Annapolis,
Maryland was renamed the US
Naval Academy in Annapolis,
Maryland, and the US Naval
Academy in Annapolis, Mary-
land was renamed the US Naval
Academy in Annapolis, Mary-
land.

US Naval Academy in Annapolis,
Maryland.

(Goldie Gets Along, film directed by, Mal-
colm St. Clair filmmaker) (Goldie Gets
Along, film performance actor, Lili Damita)
(Goldie Gets Along, film performance actor,
Charles Morton actor)

Goldie Gets Along is a 1951
American comedy film directed
by Malcolm St. Clair (film-
maker) and starring Lili Damita
and Charles Morton (actor).

Goldie Gets Along was directed
by Malcolm St. Clair (film-
maker) and starred Lili Damita
and Charles Morton (actor).

(Huangpu River, cities, Shanghai) The Huangpu River Bridge () is a
bridge over the Huangpu River in
Shanghai, China.

Huangpu River in Shanghai

(Los Angeles Rams, team player, Jerome
Bettis) (Pittsburgh Steelers, team player,
Jerome Bettis)

Jerome Bettis was drafted by the
Los Angeles Rams in the third
round of the 2009 NFL Draft, and
signed by the Pittsburgh Steelers
in the fourth round of the 2009
NFL Draft.

Jerome Bettis signed with the
Los Angeles Rams and Pitts-
burgh Steelers

(Hertha BSC, team player, Marc Arnold)
(Hertha BSC, team league, Bundesliga)

Hertha BSC in a 3–0 win against
SV Werder Bremen.

Marc Arnold signed a one-year
contract with Bundesliga club
Hertha BSC.

(Trances/Drones, genre, Ambient mu-
sic) (Trances/Drones, artist, Robert
Rich(musician)) (Robert Rich (musician),
genre, Ambient music)

Trances/Drones is the second stu-
dio album by Ambient music pro-
ducer Robert Rich (musician).

Trances/Drones is an Ambient
music album by Robert Rich (mu-
sician).

(Canadian Pacific Railway, headquarters
country, Canada) (British Columbia, con-
tains, Penticton) (Canada, contains, British
Columbia) (Canada, country citytown, Pen-
ticton)

The Canadian Pacific Railway
(CPR) is a Canadian railway
company based in Penticton,
British Columbia, Canada.

Canadian Pacific Railway (CPR)
is a Canadian railway com-
pany headquartered in Penticton,
British Columbia, Canada.

(Georgina Cassar, nationality, United King-
dom) (2010 Commonwealth Games, coun-
try, India) (India, contains, Delhi) (2012
Summer Olympics, olympics country, India)
(2012 Summer Olympics, olympics athlete,
Georgina Cassa) (2012 Summer Olympics,
locations, London) (2012 Summer Olympics,
olympics country, United Kingdom) (United
Kingdom, contains, London) (Gibraltar Cas-
sar, country, United Kingdom)

Georgina Cassar competed at the
2010 Commonwealth Games in
Delhi, India and the 2012 Sum-
mer Olympics in London, United
Kingdom.

Georgina Casar competed at the
2010 Commonwealth Games in
Delhi, India and the 2012 Sum-
mer Olympics in London, United
Kingdom.

Table 7.10: Comparison of generated sentences with and without sentence trimming
for sample input graphs

66



Texas on the shortest dependency path (SDP) of the sentence are “Dallas”, “,” and

“Texas”, resulting in the verb-absent trimmed sentence “Dallas, Texas” for the graph

(Texas, location contains, Dallas). This issue is not unique; we found that 50% (23

out of 46) of location-related trimmed sentences with grammar errors are caused by

the absence of verbs.

One plausible direction in addressing this grammar issue is to utilize human-

annotated sentences containing location-related relations from the WebNLG dataset.

We further fine-tuned the GNST-T5 model, using these instances. The enhanced

model demonstrates improved performance, producing grammatically correct sen-

tences when tested on the same graphs. Figure 7.1 shows this process. For the

same graph (Annapolis Maryland, location contains, US Naval Academy), the further

fine-tuned GNST-T5 on WebNLG dataset produced grammarly correct sentence “US

Naval Academy is located in Annapolis Maryland.” Although this idea shows promises

in this example, we need more systematic human evaluation in the future.

Figure 7.1: Further fine-tune on human-annotated dataset to reduce grammar errors

67



7.3.6 Limitations of star graph datasets

As explained in Chapter 1, existing large-scale datasets such as TEKGEN con-

tain predominantly star graphs. We used GraphNarrative to investigate the limitations

of star graph datasets.

More specifically, we separated the graph-sentence pairs in GraphNarrative into

star instances (with star graphs) and non-star instances (without star graphs). We

excluded instances with two or three entities, as they could be considered as both

paths and stars. Table 7.11 provides the distributions of these two types of instances.

The number of non-star instances in all three sets is approximately 3.5 times as many

as the star instances. To help ensure a fair comparison, we randomly selected an

equal number of non-star instances as the star instances for each of the three sets,

e.g., there are 290,047 star graphs and the same number of non-star graphs in the

training set of our prepared dataset.

Using the dataset prepared this way, we fine-tuned T5-large model with and

without sentence trimming for 10 epochs under early stopping patience 5, using the

same other hyperparameters as in 7.3.2, Section 7.3. The results are in Table 7.12.

Across the board, models trained using star instances exhibited the highest perfor-

mance when tested using star instances too, and similarly regarding non-star in-

stances. Furthermore, models trained on non-star instances and tested on star in-

stances tended to outperform models trained on star instances and tested on non-star

instances. These results indicate that which are commonly encountered in real-world

applications. Fine-tuning PLMs on diverse graph shapes enhances their generaliza-

tion capability.

68



Set Star Non-star All
train 290,047 1,022,303 1,312,350
dev 16,192 56,612 72,804
test 16,425 58,517 74,942
all 322,664 1,137,432 1,460,096

Table 7.11: Number of star and non-star instances in GraphNarrative

ST Train Test BLUE METEOR chrF++
star 36.57 22.75 46.70

star non-star 30.64 21.89 45.48
both 33.54 22.32 46.09
star 34.02 21.67 44.54

w/o non-star non-star 37.18 23.99 50.02
both 35.71 22.99 47.57
star 36.23 22.94 47.06

both non-star 36.86 24.32 50.61
both 36.56 23.63 48.83
star 47.70 26.62 52.08

star non-star 37.75 25.17 50.20
both 42.48 25.88 51.14
star 45.83 25.72 50.33

w/ non-star non-star 47.30 27.73 55.21
both 46.61 26.73 52.77
star 47.60 26.87 52.52

both non-star 46.83 27.89 55.45
both 47.20 27.38 53.99

Table 7.12: Model performance, star vs. non-star graphs

7.3.7 Comparing sentence trimming with filtering

We compared sentence trimming with a similar but different filtering method

proposed in [Ma et al., 2022]. Their method also aimed to reduce disparities in

datasets as a way of mitigating hallucination. However, different from our approach

which aligns sentences better with input graphs by trimming away portions of sen-

tences, the filtering method removes graph-text pairs from the DART dataset where

the ROUGE-1 similarity score between the graph and the text is below 0.8.

We applied the same filtering method on GraphNarrative. Table 7.13 provides a

breakdown of the remaining instances after filtering using different thresholds. A rel-

69



atively low threshold of 0.3 removed 43.32% of the instances in GraphNarrative. When

we raised the threshold to 0.8, almost all instances were eliminated. In comparison,

the threshold of 0.8 applied on DART allowed for retaining 88% of its instances. This

is because the human-annotated DART has well-aligned graph-text pairs.

Threshold ST No filter 0.8 0.5 0.3
Dev w/o 437514 74 (0.0169%) 14952 (3.416%) 142974 (32.678%)
Dev w/ 437514 791 (0.1806%) 71565 (15.357%) 256357 (58.593%)
Test w/o 451906 65 (0.0144%) 15843 (3.507%) 148666 (32.892%)
Test w/ 451906 931 (0.206%) 75445 (16.689%) 266094 (58.886%)
Train w/o 7880214 1328 (0.0168%) 269541 (3.418%) 2579921 (32.740%)
Train w/ 7880214 14787 (0.1877%) 1293864 (16.405%) 4621448 (58.659%)
Total w/o 8769634 1467 (0.017%) 300336 (3.43%) 4970561 (56.68%)
Total w/ 8769634 16509 (0.1883%) 1382074 (15.76%) 7445899 (84.88%)

Table 7.13: Number of remaining instances after filtering using different thresholds
of ROUGE-1 similarity scores

We compared sentence trimming with filtering using the 269,541 instances left

in the training set and 71,565 in the development set, under threshold 0.5. We fine-

tuned the T5-large model for 10 epochs with early stopping patience 5, using the

same other hyperparameters as on the full dataset. The number of training steps

is different from the full dataset because this subset is about 30 times smaller. We

used early stopping to avoid overfitting. Then we used the resulting model, which we

call Filter-T5, for zero-shot prediction on WebNLG and DART test sets. The results

are shown in Table 7.4. GNST-T5 slightly outperformed Filter-T5. To understand

this, we compared the statistics of the filtered dataset and the full dataset (and thus

the dataset after sentence trimming since trimming does not alter the graphs in the

dataset), as in Table 7.14. The filtered dataset exhibits a significant reduction in size

and diversity in terms of number of distinct entities, relations, triples and shapes. We

70



conjecture that this contributes to its performance degeneration in comparison with

GNST-T5.

Dataset Entities Triples Relations Star Graphs Shapes
Filtered 307,590 437,519 974 47% 597
GraphNarrative 1,853,752 15,472,249 1,724 22% 7,920

Table 7.14: Statistics of GraphNarrative and its filtered dataset

7.3.8 Performance of GNST-T5 and GN-T5 by input size

#Triples BLEU (GN-T5) BLEU (GNST-T5)

1 13.60 25.97

2 19.90 27.53

3 24.07 29.73

4 30.51 32.62

5 32.95 35.22

6 38.81 39.73

7 42.74 41.55

8 42.23 42.10

9 55.73 51.83

10 45.84 48.08

11 41.72 42.71

12 38.09 39.33

13 41.77 43.27

14 33.47 36.95

15 34.04 38.44

Table 7.15: Distribution of GNST-T5 and GN-T5 model performance in BLEU scores
on GraphNarrative test set

Table 7.15 shows the performance of GNST-T5 and GN-T5 in BLEU scores on

graphs of varying sizes, i.e., number of triples. The results help gauge whether the

models generalize well for long inputs. Notably, the performance of both models on

extended inputs is better than or on par with their performance on shorter inputs.

71



7.3.9 Comparing two linearization methods

Table 7.16 compares the performance of the fine-tuned T5-large model using

two different linearization methods (base linearization and structured linearization,

introduced in Section 5.3) with the same experiment setting in Section 7.3.2. The

differences between basic and structured linearizations are minor in terms of perfor-

mance metrics. In understanding the observed small influence of the linearization

method on model performance in graph-to-text, we hypothesize a couple of possible

explanations, as follows.

ST Linearization BLEU METEOR chrF++
all seen unseen all seen unseen all seen unseen

w/o Basic 22.22 22.26 20.41 17.16 17.23 15.02 36.78 36.95 31.40
w/o Structured 22.40 22.40 22.08 17.21 17.28 15.09 36.86 37.02 31.44
w/ Basic 45.12 45.16 43.40 24.77 24.84 22.54 50.44 50.60 45.21
w/ Structured 44.98 45.05 42.00 24.74 24.81 22.44 50.41 50.57 45.15

Table 7.16: Model performance on GraphNarrative test set when fine-tune T5-large
with two different linearization methods

Robustness of the model architecture: Advanced models such as T5-large are

highly capable of handling complex and varied input structures. Their architecture

and training methods are designed to extract and utilize essential information effec-

tively, regardless of slight variations in how input data is presented. This may mean

that differences in linearization methods do not necessarily have significant impact

on the model’s ability to understand and generate text from graph representations.

Limitations of metric sensitivity: The metrics used (BLEU, METEOR, chrF++)

may not be sufficiently sensitive to capture the subtle nuances introduced by different

linearization methods. These metrics primarily measure token and character n-gram

overlap between generated sentences and reference sentences. Given this limitation,

although the generated sentences produced by models with different linearization

72



methods may differ, it is possible the differences are not effectively captured by these

metrics.

73



CHAPTER 8

CONCLUSION

The contributions of the work are as follows.

• A new dataset, GraphNarrative, that fills the gap between existing datasets

and large-scale real-world settings. This dataset is specifically designed to address

the limitations of current datasets by incorporating more diverse and complex data,

thereby providing a more realistic and challenging benchmark for graph-to-text gen-

eration models. By doing so, it facilitates the development and evaluation of models

in environments that closely resemble real-world applications.

• We are the first to quantify hallucinations produced by graph-to-text models.

Hallucinations refer to the generation of content that is not present in the input

data. Our work pioneers to measure these hallucinations within text generated from

graphs. By developing a set of quantitative metrics, we can objectively assess the

extent and frequency of hallucinations, providing a clear framework for comparison

across different models and approaches.

• A novel approach, sentence trimming, to hallucination mitigation. This ap-

proach is both innovative and practical, offering a new method for research aimed at

enhancing the fidelity and reliability of graph-to-text generation systems. By elimi-

nating parts of sentences that contribute to hallucinations, sentence trimming effec-

tively reduces the occurrence of unsupported content while maintaining the overall

coherence and informativeness of the generated text.

• Comprehensive experiments and evaluations that verify the quality and utility

of GraphNarrative, as well as the effectiveness of sentence trimming. Our extensive

74



experimental setup includes a variety of evaluation metrics and scenarios, ensuring

that our findings are robust and widely applicable. The results demonstrate not

only the high quality of the GraphNarrative dataset but also the improvements in

model performance achieved through sentence trimming. These experiments include

comparisons with existing datasets and models, highlighting the advantages of our

proposed dataset and approach in various contexts and applications.

75



CHAPTER 9

LIMITATIONS

• The creation of GraphNarrative and the sentence trimming method leverage

an existing mapping between the knowledge graph entities and Wikipedia entities.

Given other text corpora and knowledge graphs, creating such a mapping is a non-

trivial undertaking that often requires named entity recognition and disambiguation

techniques.

• The sentence trimming approach may introduce grammatical errors into gen-

erated sentences.

• The method focuses on describing the content of an input graph only, without

considering context information such as neighboring entities in the knowledge graph.

Such extra information may be preferred by a user given certain application contexts

or may make the input graph’s narration more natural.

• The creation of GraphNarrative does not consider multiary relationships in

knowledge graphs. More specifically, the Freebase used in our work is a version

in which multiary relationships were converted into binary relationships [Shirvani-

Mahdavi et al., 2023]. In general, there is a lack of inquiry into multiary relationships

in graph-to-text models. To the best of our knowledge, the only work in this area that

discusses such multiary relationships is [Agarwal et al., 2021] and they also converted

multiary relationships into binary ones.

• A couple of studies [Agarwal et al., 2021, Wang et al., 2021] attempted to

address hallucination by further fine-tuning PLMs on WebNLG after fine-tuning on

noisier automatically-extracted datasets. It will be informative to conduct a human

76



evaluation comparison between their approaches and the sentence trimming method

proposed in our work. Similarly, our future work includes a human evaluation compar-

ison with the filtering-based method [Ma et al., 2022] which we empirically compared

with in Section 7.3.7.

• The sentence trimming algorithm only removes irrelevant portions from the

beginning and the end of a sentence, leaving the token sequence in the middle intact.

It is possible the middle portion also contains tokens irrelevant to the input graph.

77



CHAPTER 10

Ethics Statement

In the course of conducting our research, we have striven to remain aware and

attentive to potential ethical implications and challenges. Our work was informed by

the following ethical considerations.

Given that our research focuses on producing natural language descriptions of

knowledge graphs, we are particularly aware of the potential misuse of our method

for the generation of false, deceptive, biased or unfair contents. Particularly, our sen-

tence trimming method aims to minimize such potential misuse by aiding in reducing

hallucinations.

We also recognize that natural language descriptions generated using our dataset

and algorithm can be repurposed in various ways. We firmly urge users and develop-

ers to use this content responsibly, particularly with respect to intellectual property

rights. Furthermore, we recommend users clearly label AI-generated content, pro-

moting transparency and trust.

Our GraphNarrative dataset uses publicly available data, particularly Freebase

and Wikipedia, which do not contain information that violates anyone’s privacy to

the best of our knowledge.

Our reliance on Wikipedia may inadvertently introduce bias, as Wikipedia con-

tent can reflect the views of its contributors. We are also aware this potential bias

could be more intense in less commonly spoken languages, where the number of con-

tributors might be limited if one applies our approach to such languages.

78



Bibliography

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. Knowledge graph

based synthetic corpus generation for knowledge-enhanced language model pre-

training. In Proceedings of the 2021 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 3554–3565, 2021.

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi

Ghosh, and Luke Zettlemoyer. HTLM: Hyper-text pre-training and prompting of

language models. In International Conference on Learning Representations, volume

abs/2107.06955, 2021.

Abdulla Alsharhan. Natural language generation and creative writing a systematic

review. Journal of International Journal of Advances in Applied Computational

Intelligence, 1(1):69–90, 2022.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings

of the 6th International Semantic Web Conference and 2nd Asian Semantic Web

Conference, pages 722–735, 2007.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for mt evalua-

tion with improved correlation with human judgments. In Proceedings of the ACL

79



Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation

and/or Summarization, pages 65–72, 2005.

Bradley R Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal,

Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Mike Personick, Karthik Rajan,

et al. Amazon neptune: Graph data management in the cloud. In International

Semantic Web Conference (P&D/Industry/BlueSky), 2018.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic lan-

guage model. Advances in Neural Information Processing Systems, 13, 2000.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-

base: A collaboratively created graph database for structuring human knowledge.

In Proceedings of the 2008 ACM SIGMOD International Conference on Manage-

ment of Data, pages 1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale sim-

ple question answering with memory networks. arXiv preprint arXiv:1506.02075,

2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in Neural Information Processing

Systems, 33:1877–1901, 2020.

Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer.

Neural data-to-text generation: A comparison between pipeline and end-to-end

architectures. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing, pages 552–562, 2019.

80



Alison J Cawsey, Bonnie L Webber, and Ray B Jones. Natural language generation

in health care. Journal of the American Medical Informatics Association, 4(6):

473–482, 1997.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:

A distributed storage system for structured data. ACM Transactions on Computer

Systems, 26(2):1–26, 2008.

Valeriy Chernenkiy, Yuriy Gapanyuk, Anatoly Nardid, Maria Skvortsova, Anton

Gushcha, Yuriy Fedorenko, and Richard Picking. Using the metagraph approach

for addressing RDF knowledge representation limitations. In 2017 Internet Tech-

nologies and Applications, pages 47–52. IEEE, 2017.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie

Jegelka. Debiased contrastive learning. Advances in Neural Information Processing

Systems, 33:8765–8775, 2020.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:

Pre-training text encoders as discriminators rather than generators. In Interna-

tional Conference on Learning Representations, 2020.

Jordan Clive, Kris Cao, and Marek Rei. Control prefixes for text generation. arXiv

preprint arXiv:2110.08329, 2021.

Anthony Colas, Ali Sadeghian, Yue Wang, and Daisy Zhe Wang. EventNarrative: A

large-scale event-centric dataset for knowledge graph-to-text generation. In Pro-

ceedings of the 35th Conference on Neural Information Processing Systems Datasets

and Benchmarks Track, 2021.

81



Andras Csomai and Rada Mihalcea. Linking documents to encyclopedic knowledge.

IEEE Intelligent Systems, 23(5):34–41, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 4171–4186,

2019.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. Findings of the E2E NLG

challenge. In Proceedings of the 11th International Conference on Natural Language

Generation, pages 322–328, 2018.

Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Net-

worked Knowledge-Networked Media: Integrating Knowledge Management, New

Media Technologies and Semantic Systems, pages 7–24. Springer, 2009.

Michael Färber. Semantic Search for Novel Information. IOS Press, 2017.

Thiago Castro Ferreira, Chris van der Lee, Emiel Van Miltenburg, and Emiel Krah-

mer. Neural data-to-text generation: A comparison between pipeline and end-to-

end architectures. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing, pages 552–562, 2019.

Jack FitzGerald, Shankar Ananthakrishnan, Konstantine Arkoudas, Davide Bernardi,

Abhishek Bhagia, Claudio Delli Bovi, Jin Cao, Rakesh Chada, Amit Chauhan,

Luoxin Chen, et al. Alexa teacher model: Pretraining and distilling multi-billion-

parameter encoders for natural language understanding systems. In Proceedings

82



of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,

pages 2893–2902, 2022.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini.

The WebNLG challenge: Generating text from RDF data. In Proceedings of the

10th International Conference on Natural Language Generation, pages 124–133,

2017a.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini.

Creating training corpora for NLG micro-planning. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics, pages 179–188,

2017b.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F

Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP: A deep

semantic natural language processing platform. In Proceedings of Workshop for

NLP Open Source Software, pages 1–6. Association for Computational Linguistics,

2018.

Hitesh Golchha, Mauajama Firdaus, Asif Ekbal, and Pushpak Bhattacharyya. Cour-

teously yours: Inducing courteous behavior in customer care responses using re-

inforced pointer generator network. In Jill Burstein, Christy Doran, and Thamar

Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 851–860. Association for Computational Linguistics, 2019.

Rufus H Gouws. The use of an improved access structure in dictionaries. Lexikos, 11,

2001.

83



José Rolando Guay Paz and José Rolando Guay Paz. Introduction to Azure COSMOS

DB. Microsoft Azure Cosmos DB Revealed: A Multi-Model Database Designed for

the Cloud, pages 1–23, 2018.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dy-

namics, and function using NetworkX. In Proceedings of the 7th Python in Science

Conference (SciPy), 2008.

Hamza Harkous, Isabel Groves, and Amir Saffari. Have your text and use it too!

end-to-end neural data-to-text generation with semantic fidelity. In Proceedings of

the 28th International Conference on Computational Linguistics, pages 2410–2424,

2020.

Nicolas Heist, Sven Hertling, Daniel Ringler, and Heiko Paulheim. Knowledge graphs

on the web–an overview. Knowledge Graphs for Explainable Artificial Intelligence:

Foundations, Applications and Challenges, pages 3–22, 2020.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.

Industrial-strength natural language processing in python. spaCy, 2020.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text

classification. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics, pages 328–339, 2018.

Nandish Jayaram, Rohit Bhoopalam, Chengkai Li, and Vassilis Athitsos. Orion:

Enabling suggestions in a visual query builder for ultra-heterogeneous graphs. arXiv

preprint arXiv:1605.06856, 2016.

84



Andreas Kaplan and Michael Haenlein. Siri, Siri, in my hand: Who’s the fairest

in the land? On the interpretations, illustrations, and implications of artificial

intelligence. Business Horizons, 62(1):15–25, 2019.

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In

International Conference on Learning Representations, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. International

Conference on Learning Representations, 2014.

Jan-Christoph Klie. wikimapper. https://github.com/jcklie/wikimapper, 2022.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Ha-

jishirzi. Text generation from knowledge graphs with graph transformers. In Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 2284–2293,

2019.

Grzegorz Kondrak. N-gram similarity and distance. In International Symposium on

String Processing and Information Retrieval, pages 115–126. Springer, 2005.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural

coreference resolution. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 188–197, 2017.

Wang-Chien Lee and Dik Lun Lee. Combining indexing technique with path dictio-

nary for nested object queries. In Proceedings of the 4th International Conference

on Database Systems for Advanced Applications, pages 107–114, 1995.

Leo Leppänen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen.

Data-driven news generation for automated journalism. In Proceedings of the 10th

85

https://github.com/jcklie/wikimapper


International Conference on Natural Language Generation, pages 188–197. Associ-

ation for Computational Linguistics, 2017.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and

comprehension. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 7871–7880, 2020.

Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language inter-

face for relational databases. Proceedings of the Very Large Data Base Endowment,

8(1):73–84, 2014.

Shiqi Liang, Kurt Stockinger, Tarcisio Mendes de Farias, Maria Anisimova, and

Manuel Gil. Querying knowledge graphs in natural language. Journal of Big Data,

8(1):1–23, 2021.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text

Summarization Branches Out, pages 74–81. Association for Computational Lin-

guistics, 2004.

Peng Lin, Qi Song, Jialiang Shen, and Yinghui Wu. Discovering graph patterns

for fact checking in knowledge graphs. In International Conference on Database

Systems for Advanced Applications, pages 783–801, 2018.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing, pages 3730–3740, 2019.

86



Chao Ma, Chunhua Shen, Anthony Dick, Qi Wu, Peng Wang, Anton van den Hengel,

and Ian Reid. Visual question answering with memory-augmented networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 6975–6984, 2018.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Open domain

question answering with a unified knowledge interface. In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics, pages 1605–1620,

2022.

Diego Marcheggiani and Laura Perez-Beltrachini. Deep graph convolutional encoders

for structured data to text generation. In Proceedings of the 11th International

Conference on Natural Language Generation, pages 1–9, 2018.

Joseph F McCarthy and Wendy G Lehnert. Using decision trees for conference res-

olution. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence, pages 1050–1055, 1995.

Justin J Miller. Graph database applications and concepts with Neo4j. In Proceedings

of the Southern Association for Information Systems Conference, volume 2324,

pages 141–147, 2013.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen,

Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in nat-

ural language processing via large pre-trained language models: A survey. ACM

Computing Surveys, 56(2):1–40, 2023.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chi-

achun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.

87



DART: Open-domain structured data record to text generation. In Proceedings of

the 2021 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, pages 432–447, 2021.

Rungsiman Nararatwong, Natthawut Kertkeidkachorn, and Ryutaro Ichise. Knowl-

edge graph visualization: Challenges, framework, and implementation. In 2020

IEEE Third International Conference on Artificial Intelligence and Knowledge En-

gineering, pages 174–178. IEEE, 2020.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E dataset: New

challenges for end-to-end generation. In Proceedings of the 18th Annual SIGdial

Meeting on Discourse and Dialogue, pages 201–206, 2017.

OpenAI. ChatGPT [large language model]. https://openai.com/chatgpt, 2022.

Jeff Z Pan. Resource description framework. In Handbook on ontologies, pages 71–90.

Springer, 2009.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim

Dehak. Hierarchical transformers for long document classification. In 2019 IEEE

Automatic Speech Recognition and Understanding Workshop, pages 838–844. IEEE,

2019.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-

structured tables. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

88

https://openai.com/chatgpt


Language Processing, pages 1470–1480. Association for Computational Linguistics,

2015.

Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner, and

Lydia Pintscher. From Freebase to Wikidata: The great migration. In Proceed-

ings of the 25th International Conference on World Wide Web, pages 1419–1428.

Association for Computing Machinery, 2016.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of

SPARQL. ACM Transactions on Database Systems, 34(3):1–45, 2009.

Laura Perez-Beltrachini, Rania Sayed, and Claire Gardent. Building RDF content

for data-to-text generation. In Proceedings of the 26th International Conference on

Computational Linguistics, pages 1493–1502, 2016.

Maja Popović. Morphemes and POS tags for n-gram based evaluation metrics. In

Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 104–

107. Association for Computational Linguistics, 2011.

Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In

Proceedings of the 10th Workshop on Statistical Machine Translation, pages 392–

395. Association for Computational Linguistics, 2015.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training. OpenAI, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

Language models are unsupervised multitask learners. Open AI blog, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer

89



learning with a unified text-to-text transformer. Journal of Machine Learning

Research, 21(140):1–67, 2020.

Leonardo FR Ribeiro, Yue Zhang, Claire Gardent, and Iryna Gurevych. Modeling

global and local node contexts for text generation from knowledge graphs. Trans-

actions of the Association for Computational Linguistics, 8:589–604, 2020.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schütze, and Iryna Gurevych. Inves-

tigating pretrained language models for graph-to-text generation. In Proceedings

of the 3rd Workshop on Natural Language Processing for Conversational AI, pages

211–227, 2021.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo

Merialdo. Knowledge graph embedding for link prediction: A comparative analysis.

ACM Transactions on Knowledge Discovery from Data, 15(2):1–49, 2021.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language

model scoring. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 2699–2712, 2020.

Martin Schmitt, Leonardo FR Ribeiro, Philipp Dufter, Iryna Gurevych, and Hinrich

Schütze. Modeling graph structure via relative position for text generation from

knowledge graphs. In Proceedings of the 15th Workshop on Graph-Based Methods

for Natural Language Processing, pages 10–21, 2021.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

transactions on Signal Processing, 45(11):2673–2681, 1997.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization.

Advances in neural information processing systems, 31, 2018.

90



Nasim Shirvani-Mahdavi, Farahnaz Akrami, Mohammed Samiul Saeef, Xiao Shi, and

Chengkai Li. Comprehensive analysis of Freebase and dataset creation for robust

evaluation of knowledge graph link prediction models. In International Semantic

Web Conference, pages 113–133. Springer, 2023.

Linfeng Song, Ante Wang, Jinsong Su, Yue Zhang, Kun Xu, Yubin Ge, and Dong Yu.

Structural information preserving for graph-to-text generation. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

7987–7998, 2020.

Mirco Speretta and Susan Gauch. Personalized search based on user search histories.

In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pages

622–628. IEEE, 2005.

Dan Su, Yan Xu, Genta Indra Winata, Peng Xu, Hyeondey Kim, Zihan Liu, and

Pascale Fung. Generalizing question answering system with pre-trained language

model fine-tuning. In Proceedings of the 2nd Workshop on Machine Reading for

Question Answering, pages 203–211, 2019.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for

language modeling. In Interspeech, pages 194–197, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Advances in Neural Information Processing Systems, 27, 2014.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. LLaMA: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971, 2023.

91



Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang, and Wei Wang. GTR-LSTM: A

triple encoder for sentence generation from RDF data. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics, pages 1627–1637,

2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances

in Neural Information Processing Systems, 30, 2017.

Mehul Nalin Vora. Hadoop-HBase for large-scale data. In Proceedings of 2011 Inter-

national Conference on Computer Science and Network Technology, pages 601–605.

IEEE, 2011.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge

base. Communications of the ACM, 57(10):78–85, 2014.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and

Lidia S Chao. Learning deep transformer models for machine translation. In Pro-

ceedings of the 57th Annual Meeting of the Association for Computational Linguis-

tics, pages 1810–1822, 2019.

Qingyun Wang, Semih Yavuz, Xi Victoria Lin, Heng Ji, and Nazneen Rajani. Stage-

wise fine-tuning for graph-to-text generation. In Proceedings of the The Joint Con-

ference of the 59th Annual Meeting of the Association for Computational Linguis-

tics and the 11th International Joint Conference on Natural Language Processing

Student Research Workshop, pages 16–22, 2021.

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. On the

representation and embedding of knowledge bases beyond binary relations. In

92



Proceedings of the International Joint Conference on Artificial Intelligence, page

1300–1307, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.

Huggingface’s transformers: State-of-the-art natural language processing. arXiv

preprint arXiv:1910.03771, 2019.

World Wide Web Consortium. Resource Description Framework (RDF): Concepts

and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/. Accessed:

2024-07-14.

Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng Zhang.

Reinforcement knowledge graph reasoning for explainable recommendation. In Pro-

ceedings of the 42nd International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, pages 285–294, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. XLNet: Generalized autoregressive pretraining for language under-

standing. Advances in Neural Information Processing Systems, 32, 2019.

Shuzhou Yuan and Michael Färber. Evaluating generative models for graph-to-text

generation. arXiv preprint arXiv:2307.14712, 2023.

Gensheng Zhang, Damian Jimenez, and Chengkai Li. Maverick: Discovering excep-

tional facts from knowledge graphs. In Proceedings of the 2018 ACM SIGMOD

International Conference on Management of Data, pages 1317–1332, 2018.

93

https://www.w3.org/TR/rdf11-concepts/


Huibing Zhang, Junchao Dong, Liang Min, and Peng Bi. A BERT fine-tuning model

for targeted sentiment analysis of chinese online course reviews. International Jour-

nal on Artificial Intelligence Tools, 29, 2020.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. TinyLLaMA: An open-

source small language model. arXiv preprint arXiv:2401.02385, 2024.

Zhiping Zheng. Answerbus question answering system. In Proceedings of the second

international conference on Human Language Technology Research, pages 399–404,

2002.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating struc-

tured queries from natural language using reinforcement learning. arXiv preprint

arXiv:1709.00103, 2017.

Li Zhou and Kevin Small. Multi-domain dialogue state tracking as dynamic knowledge

graph enhanced question answering. arXiv preprint arXiv:1911.06192, 2019.

94



BIOGRAPHICAL STATEMENT

Xiao Shi was born in Gaoyi, Shijiazhuang, Hebei, China in 1994. She received

her B.E. degree in Electronic Information Engineering from Xidian University, China,

in 2017, and her Ph.D. degree in Computer Science from The University of Texas

at Arlington in Computer Science in 2024. Her research interests include natural

language processing, deep learning, and knowledge graphs.

95


	NATURAL LANGUAGE GENERATION FROM LARGE-SCALE OPEN-DOMAIN KNOWLEDGE GRAPHS
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	BACKGROUND
	Knowledge Graph
	Graph-to-Text Generation
	Transformer
	Pre-training and Fine-tuning

	LIMITATIONS OF EXISTING DATASETS
	THE GraphNarrative DATASET
	Dataset Creation
	Pre-processing of Text Corpus and Knowledge Graph
	Graph-Text Alignment

	Characteristics of GraphNarrative

	MODELS
	Transformer-based Pre-trained Langauge Models
	Models Used
	Linearize the Graphs

	MITIGATION OF HALLUCINATION
	Two Directions Toward Addressing Graph-to-Text Hallucination
	Sentence Trimming Algorithm

	EXPERIMENTS & RESULTS
	Datasets
	Human & Automatic Evaluation Metrics
	Human evaluation metrics
	Automatic evaluation metrics

	Experiment and Evaluation Results
	GraphNarrative dataset quality
	Model performance on GraphNarrative
	GraphNarrative in enhancing generalization ability
	Ablation study of sentence trimming
	Sentence trimming in mitigating hallucination
	Limitations of star graph datasets
	Comparing sentence trimming with filtering
	Performance of GNST-T5 and GN-T5 by input size
	Comparing two linearization methods


	CONCLUSION
	LIMITATIONS
	Ethics Statement
	Bibliography
	BIOGRAPHICAL STATEMENT

