
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

Computer Science and Engineering
Dissertations Computer Science and Engineering Department

Summer 2024

ENHANCING THE EFFICIENCY AND SCALABILITY OF CLOUD ENHANCING THE EFFICIENCY AND SCALABILITY OF CLOUD

NETWORKING SYSTEMS NETWORKING SYSTEMS

JIAXIN LEI
University of Texas at Arlington

Follow this and additional works at: https://mavmatrix.uta.edu/cse_dissertations

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
LEI, JIAXIN, "ENHANCING THE EFFICIENCY AND SCALABILITY OF CLOUD NETWORKING SYSTEMS"
(2024). Computer Science and Engineering Dissertations. 258.
https://mavmatrix.uta.edu/cse_dissertations/258

This Dissertation is brought to you for free and open access by the Computer Science and Engineering Department
at MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Dissertations by an
authorized administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu,
erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse_dissertations
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_dissertations?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_dissertations/258?utm_source=mavmatrix.uta.edu%2Fcse_dissertations%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

ENHANCING THE EFFICIENCY AND SCALABILITY OF

CLOUD NETWORKING SYSTEMS

by

JIAXIN LEI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2024

Copyright © by JIAXIN LEI 2024

All Rights Reserved

To my family.

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Dr.

Hui Lu. He is a patient and supportive mentor, guiding students from broad research

ideas to detailed designs. He is also a generous and kind group leader, providing us

with state-of-the-art research facilities and a comfortable working environment. And

he is an enthusiastic researcher, staying at the forefront of our research field with

passion and curiosity. The experiences of working with Dr. Hui Lu have trained

me to be a person with independent thought and professional attitude, which will

influence my entire career.

I extend my sincere thanks to Dr. Jia Rao, who has provided guidance and

collaboration since the beginning of my Ph.D. journey. His advocacy for high-quality

research taste and insights into the academic career have greatly inspired me. I am

also honored to have Dr. Song Jiang and Dr. Jiayi Meng serve on my committee.

Their suggestions and feedback have been invaluable and deeply appreciated.

I am grateful for the collaboration with Kun Suo and Manish Munikar. The

time spent working together has been both rewarding and memorable. Additionally, I

am happy to have met many wonderful friends during my Ph.D.: Zhou Wang, Siming

Huang, Shaofei Zhao, Baozhen Wang, Xinhai Zhang, Shengfu Zhang, Xia Cheng and

Xiaoyu Zhang. I wish each of you success and happiness in your future endeavors.

I would like to express my special thanks to my parents, Xihong Yan and

Hongmin Lei. They have always strived to provide me with the best possible education

and have guided me in making pivotal decisions with their foresight. During the

COVID-19 pandemic, they traveled to America twice to take care of my kids, giving

iv

everything they could to help me. Without their support, I would not be where I

am today. I also want to thank my parents-in-law, Hongru Liu and Jianhua Ren, for

their constant support and care. Most importantly, I owe my every success to my

wife and best friend, Zepin Ren. She has sacrificed a lot to take care of our family.

She is always by my side with endless trust and unconditional love, no matter what

kind of challenges and difficulties we face. Lastly, I thank my kids, Aaron Bolin Lei

and Ava Chanyu Lei, who bring so much joy and happiness to our family.

July 23, 2024

v

ABSTRACT

ENHANCING THE EFFICIENCY AND SCALABILITY OF

CLOUD NETWORKING SYSTEMS

JIAXIN LEI, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Hui Lu

Overlay networks are the de facto network virtualization technique for provid-

ing flexible and customized connectivity among distributed containers in the cloud.

Despite their widespread adoption, overlay networks incur significant overhead due to

their complexity, resulting in notable performance degradation compared to physical

networks.

In this dissertation, I present our three-stage solutions aimed at addressing

the challenges of efficiency and scalability in cloud-based container overlay networks:

Firstly, we conduct a comprehensive empirical performance study of container over-

lay networks, identifying crucial parallelization bottlenecks within the kernel network

stack. Our observations and root cause analysis uncover that these inefficiencies

primarily arise from the increased complexity and prolonged packet processing paths

introduced by additional network devices. Secondly, we propose Falcon, a fast and bal-

anced container networking approach designed to scale the packet processing pipeline

in overlay networks. Falcon pipelines software interrupts associated with different

network devices of a single flow across multiple cores, thereby preventing the exe-

vi

cution serialization of excessive software interrupts from overloading a single core.

Additionally, Falcon supports multiple network flows by effectively multiplexing and

balancing software interrupts among available cores. Lastly, we introduce MFLOW, a

novel packet steering approach to parallelize the in-kernel data path of network flows.

MFLOW exploits fine-grained packet-level parallelism by splitting packets of the same

flow into multiple micro-flows, allowing parallel processing on multiple cores. This

approach devises new generic mechanisms for flow splitting while preserving in-order

packet delivery with minimal overhead.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

Chapter Page

1. INTRODUCTION . 1

1.1 Contributions . 2

1.1.1 Characterizing the Complex Behaviors of Container Overlay

Networks . 2

1.1.2 Accelerating Packet Processing via Device-Level Pipelining . . 3

1.1.3 Accelerating Packet Processing via Packet-Level Parallelism . 5

1.2 Dissertation Organization . 6

2. TACKLING PARALLELIZATION CHALLENGES OF KERNEL

NETWORK STACK FOR CONTAINER OVERLAY NETWORKS 8

2.1 Introduction . 8

2.2 Background . 11

2.2.1 Network Packet Processing . 11

2.2.2 Container Overlay Networks 12

2.2.3 Optimizations for Packet Processing 13

2.3 Evaluation . 14

2.3.1 Experimental Settings . 14

2.3.2 A Single Flow . 16

2.3.3 Multiple Flows . 18

viii

2.3.4 Small Packets . 19

2.4 Discussion . 22

2.5 Conclusion . 22

3. PARALLELIZING PACKET PROCESSING IN

CONTAINER OVERLAY NETWORKS 24

3.1 Introduction . 25

3.2 Background and Motivation . 28

3.2.1 Background . 28

3.2.2 Motivation . 31

3.3 Root Cause Analysis . 33

3.3.1 Prolonged Data Path . 33

3.3.2 Excessive, Expensive, and Serialized Softirqs 36

3.3.3 Lack of Single-Flow Parallelization 38

3.4 Design . 39

3.4.1 Software Interrupt Pipelining 40

3.4.2 Software Interrupt Splitting 43

3.4.3 Software Interrupt Balancing 45

3.5 Implementation . 48

3.5.1 Stage Transition Functions . 48

3.5.2 Hashing-Based Load Balancing Mechanism 49

3.6 Evaluation . 50

3.6.1 Experimental Configurations 50

3.6.2 Micro-Benchmarks . 51

3.6.3 Application Results . 58

3.6.4 Overhead Analysis . 60

3.6.5 Discussion . 61

ix

3.7 Conclusion . 62

4. ACCELERATING PACKET PROCESSING IN CONTAINER

OVERLAY NETWORKS VIA PACKET-LEVEL PARALLELISM 63

4.1 Introduction . 63

4.2 Background and Motivation . 67

4.2.1 Background . 67

4.2.2 Motivation . 71

4.3 Design . 74

4.3.1 Flow Splitting . 75

4.3.2 Flow Reassembling . 80

4.4 Implementation . 83

4.4.1 Flow-Splitting Function . 83

4.4.2 IRQ-Splitting Function . 83

4.4.3 Flow-Reassembling Function 84

4.5 Evaluation . 84

4.5.1 Experimental Configurations 85

4.5.2 Micro-Benchmarks . 86

4.5.3 Applications . 93

4.6 Conclusion . 96

5. RELATED WORK . 97

5.1 Network Stack Optimization . 97

5.2 Kernel Scalability on Multicore . 98

5.3 Container Network Acceleration . 98

6. FUTURE WORK . 100

6.1 SmartNIC-Assisted Zero-Copying . 100

6.2 Elastic Networking Offloading . 101

x

6.3 Reshaping Networking via CXL . 102

7. CONCLUSION . 104

REFERENCES . 106

BIOGRAPHICAL STATEMENT . 119

xi

LIST OF ILLUSTRATIONS

Figure Page

2.1 Illustration of data receiving path in Linux kernel. 12

2.2 Function call graph along the TCP receiving path. 15

2.3 TCP throughput with varying pairs of connections. 16

2.4 UDP throughput with varying pairs of connections. 16

2.5 CPU usage breakdown on the receiver side with varying pairs of con-

nections (TCP). 17

2.6 CPU usage breakdown on the receiver side with varying pairs of con-

nections (UDP). 17

2.7 TCP packet processing rate with varying packet sizes. 20

2.8 UDP packet processing rate with varying packet sizes. 20

2.9 CPU usage breakdown on receiver side with varying packet sizes (TCP). 20

2.10 CPU usage breakdown on receiver side with varying packet sizes (UDP). 20

2.11 Interrupt number with varying packet sizes (UDP). 21

3.1 Illustration of container overlay networks. 29

3.2 Performance comparison of container overlay networks and native phys-

ical networks. 31

3.3 Packet reception in container overlay networks. 34

3.4 Comparison of hardware and software interrupt rates in the native and

container overlay networks. 36

3.5 Serialization of softIRQs and load imbalance. 36

3.6 Flamegraphs of Sockperf and Memcached. 37

xii

3.7 Architecture of Falcon. 39

3.8 Falcon pipelines software interrupts of a single flow by leveraging stage

transition functions. 40

3.9 CPU% of the first stage packet processing. 43

3.10 Software interrupt splitting. 44

3.11 Packet rates in host network, vanilla overlay, and Falcon overlay under

a UDP stress test. 52

3.12 CPU utilization of a single UDP flow. 52

3.13 Effect of Falcon on per-packet latency. Packet size is 16 B in (a, c, d)

and 4 KB in (b). 53

3.14 Packet rates in host network, vanilla overlay, and Falcon under multi-

flow UDP and TCP tests. 54

3.15 Falcon’s benefit diminishes as utilization increases but causes no per-

formance loss when system is overloaded. 55

3.16 Effect of the average load threshold and its impact on container network

performance. 57

3.17 Falcon adapts to changing workload and re-balances softirqs dynami-

cally. 57

3.18 Falcon improves the performance of a web serving application in terms

of higher operation rate and lower response time. 58

3.19 Falcon reduces the average and tail latency under data caching using

Memcached. 59

3.20 Overhead of Falcon. 60

4.1 In-kernel packet processing. 67

4.2 Container overlay networks. 68

4.3 Parallel packet processing. 70

xiii

4.4 Throughput comparison under TCP/UDP with varying message sizes. 72

4.5 CPU utilization on separate cores (TCP with 64KB packet size). . . . 72

4.6 mFlow achieves single device scaling or full path scaling via exploiting

packet-level parallelism. 75

4.7 Flow-splitting function. 76

4.8 IRQ-splitting function. 77

4.9 Number of out-of-order packet delivery vs. batch size of micro-flows

(TCP with 64KB packet size). 79

4.10 In-order flow reassembling. 81

4.11 Performance comparisons between state-of-the-art approaches. 86

4.12 CPU utilization breakdown under TCP/UDP with 64KB packet size. . 86

4.13 Latency comparisons between state-of-the-art approaches and mFlow

with 16B message size. 88

4.14 Latency comparisons between state-of-the-art approaches and mFlow

with 4KB message size. 89

4.15 Latency comparisons between state-of-the-art approaches and mFlow

with 64KB message size. 90

4.16 Accumulated network throughput with multiple TCP flows with 16B

packet size. 91

4.17 Accumulated network throughput with multiple TCP flows with 4KB

packet size. 91

4.18 Accumulated network throughput with multiple TCP flows with 64KB

packet size. 92

4.19 mFlow uses CPU cores in a more balanced manner. 93

4.20 mFlow improves success operation of a web serving application. . . . 94

4.21 mFlow reduces average response time of a web serving application. . 94

xiv

4.22 mFlow reduces average delay time of a web serving application. . . . 95

4.23 mFlow reduces the average and tail latency of a data caching applica-

tion (Memcached). 96

xv

CHAPTER 1

INTRODUCTION

The rapid expansion of cloud services has driven a fundamental transformation

in datacenter infrastructures. Container-based virtualization, as a successor of tra-

ditional virtual machine-based methods, offers a lightweight, process-based approach

that has been widely embraced by cloud data centers for its superior portability, scal-

ability, and agility. Containers facilitate higher server consolidation density and lower

operational costs, leading to widespread industry adoption. Their underlying overlay

networks have become the de facto networking technique for providing customized,

flexible connectivity among distributed container-based services. Various container

overlay network solutions are built upon the tunneling approaches, enabling con-

tainer traffic to traverse physical networks via encapsulating container packets with

host headers. This allows containers within the same virtual network to communicate

in an isolated address space with private IP addresses, while routing packets through

tunnels using the hosts’ public IP addresses. Overlay networks are not only flexi-

ble and extensible but also support various network policies, such as isolation, rate

limiting, and quality of service.

However, despite their advantages, container overlay networks introduce signif-

icant overheads compared to native host networks. Studies have shown that overlay

networks achieve significantly lower throughput and suffer higher packet processing

latency. The prolonged network packet processing path in overlay networks, which

involves multiple namespaces and kernel network stacks, is a primary cause of this

performance degradation. High-speed physical network devices further exacerbate

1

these issues, as the kernel must process packets rapidly to match the network speed.

The inefficiency of existing parallelization mechanisms in the kernel network stack and

the poor scalability of overlay networks on multi-core systems add to the challenge.

This dissertation aims to improve the efficiency and scalability of container

overlay networks in cloud environments. Specifically, my research critically revis-

its established cloud infrastructures to identify overlooked system inefficiencies and

proposes the redesign and implementation of systems consistent with contemporary

cloud demands. In the following sections of this chapter, I will briefly introduce my

contributions and outline the organization of this dissertation.

1.1 Contributions

To address the above challenges, this dissertation presents three key contri-

butions focused on enhancing the efficiency and scalability of cloud-based container

overlay networks.

1.1.1 Characterizing the Complex Behaviors of Container Overlay Net-

works

We conduct a comprehensive empirical performance study of container overlay

networks [1] to uncover critical parallelization bottlenecks within the kernel network

stack. Our detailed profiling and root cause analysis reveal that the high overhead

and low efficiency of container overlay networks are complex and multifaceted:

First, high-performance, high-speed physical network devices (e.g., 40 and 100

Gbps Ethernet) require rapid packet processing by the kernel. However, the prolonged

packet path in container overlay networks, involving multiple network devices, sig-

nificantly slows down per-packet processing speed. More critically, we observe that

modern operating systems only provide parallelization at the per-flow level rather

2

than per-packet. As a result, the maximum network throughput of a single container

flow is limited by the processing capability of a single core (e.g., 6.4 Gbps for TCP

in our case). Furthermore, while multi-core CPUs and multi-queue network interface

cards (NICs) enable packets from different flows to be routed to separate CPU cores

for parallel processing, container overlay networks exhibit poor scalability. Network

throughput increases by only 4x despite a 6x increase in the number of flows. Addi-

tionally, under the same throughput conditions (e.g., 40 Gbps with 80 flows), overlay

networks consume significantly more CPU resources (e.g., 2 to 3 times more). Our

investigation identifies that this severe scalability issue is largely due to the ineffi-

cient interplay within the kernel among pipelined, asynchronous packet processing

stages – an overlay packet traverses among the contexts of one hardware interrupt,

three software interrupts, and the user-space process. With more flows, hardware

inefficiencies such as poor cache efficiency and high memory bandwidth utilization

become pronounced. Lastly, we observe that for flows with small packet sizes, these

inefficiencies become even more severe in container overlay networks, which achieve

only 50% of the packet processing rate of native hosts (e.g., for UDP packets). In

addition to the prolonged network path, the high interrupt request (IRQ) rate and

the associated high software interrupt (softirq) rate (i.e., 3x the IRQs) impair overall

system efficiency by frequently interrupting running processes, resulting in enhanced

context switch overhead.

1.1.2 Accelerating Packet Processing via Device-Level Pipelining

Overlay networks are essential in orchestrating communications among contain-

ers, yet they incur substantial performance losses when compared with host native

networks. For instance, my research [1] indicated that a single container overlay flow

experienced a 72% throughput degradation for TCP and a 58% degradation for UDP.

3

Such inefficiency primarily stems from the increased complexity introduced by over-

lay networks along the prolonged packet processing path, which includes additional

network devices and consequently triggers numerous serialized software interrupts

(e.g., container overlay networks incur 3x more software interrupts than host native

networks). These interrupts can easily saturate a single CPU core. Unfortunately,

existing in-kernel scaling methods are limited to distributing multiple flows across

different CPU cores, thus proving inadequate for accelerating a single flow. Kernel’s

inefficiency and lack of parallelization mechanisms prevent these additional interrupts

from being processed concurrently. Our in-depth investigations uncovered a previ-

ously unrecognized insight: packet processing within the context of a software inter-

rupt is, in fact, associated with per individual network device. This discovery opened

up new opportunities for scaling the execution of successive software interrupts from

a single intensive container overlay flow across multiple CPU cores.

Motivated by this discovery, we developed FALCON [2], a fast and balanced

container networking solution that parallelizes the processing of software interrupts

associated with various network devices across multiple CPU cores. To achieve this,

we implemented an innovative hashing mechanism in the kernel: It activates multiple

transition functions on network devices, which perform re-hashing based on 5-tuple

information, including IPs, ports, and network device IDs. This enables FALCON to

allocate software interrupts from a single flow across various CPUs, assigning distinct

hash values to different network devices for targeted CPU core processing. Addi-

tionally, FALCON maintains balance among multiple network flows (or processing

pipelines) by monitoring system-wide CPU utilization and employing a two-choice,

low-overhead algorithm for adaptive balancing (re-hashing only if the primary CPU

choice is occupied) without constant CPU workload comparisons. The effectiveness

of FALCON has been validated through comprehensive evaluations. Real-world ap-

4

plications demonstrated that FALCON significantly boosted throughput performance

(increasing by up to 300% for web serving) and mitigated tail latency (reducing by up

to 53% for data caching), while ensuring an even distribution of networking workloads

throughout the system.

1.1.3 Accelerating Packet Processing via Packet-Level Parallelism

Equipped with state-of-the-art solutions like FALCON [2], the processing of

a single container overlay flow can be split into multiple stages, each managed by

a dedicated CPU core. Nonetheless, one limitation of FALCON is that its device-

level pipelining approach is relatively coarse-grained. Despite the distribution of

software interrupts over multiple CPU cores, a heavily utilized network device might

still saturate a single CPU core, thus becoming a system bottleneck. A real-world

scenario is: in TCP processing, intensive functions such as per-packet socket buffer

(skb) allocation and generic receive offload (GRO) within the context of the first

software interrupt can easily exceed one CPU core’s processing capability. Although

FALCON does suggest a function-level splitting to balance these tasks across cores,

the skb allocation function alone can overload a single core. Hence, while advanced

solutions like FALCON offer a certain degree of parallelization in packet processing,

they fall short of addressing new bottlenecks.

To address the newly identified challenges, we proposed MFLOW [3], an in-

novative packet steering approach that exploits fine-grained, packet-level parallelism.

MFLOW differentiates a single flow into multiple micro-flows, each processed indepen-

dently on different CPU cores. Specifically, it routes skb allocation requests (treated

as individual packets) within the NIC driver – immediately following hardware in-

terrupts, to newly established per-core request ring buffers, subsequently initiating

software interrupts on targeted CPU cores via inter-process interrupts (IPIs). Since

5

each micro-flow only contains a small batch of packets, the entirety of its processing

stack, even though remaining on a single core, does not lead to a performance bottle-

neck. Another critical aspect of MFLOW is its flow reassembly mechanism. Given the

diverse processing capacities of CPU cores, micro-flows may suffer from the potential

sequence disorder, leading to reassembly overheads. MFLOW tackles this challenge

with two strategies: First, micro-flows can be calibrated with an optimal batch size

to substantially minimize sequence disruptions. Second, during dispatch, packets are

tagged with batch numbers. The reassembly thread of MFLOW prioritizes a batch

of packets for final-stage merging only when their sequence numbers align with the

expected order, while out-of-order batches are held in per-core buffer queues. This

batch-oriented reassembly method is markedly more efficient than Linux kernel’s de-

fault per-packet reordering. Performance evaluations demonstrated that MFLOW

significantly elevated the throughput of a single container overlay flow (e.g., by 81%

in TCP and 139% in UDP) and amplified application-level performance (e.g., by up

to 7.5x for web serving).

1.2 Dissertation Organization

This dissertation is organized into seven chapters, each detailing a different

aspect of my research.

• In chapter 1, I introduce the background and motivation of this dissertation

and provide an overview of my contributions.

• In chapter 2, I conduct a comprehensive empirical performance study of con-

tainer overlay networks and root cause analysis within the kernel network stack

to uncover critical parallelization bottlenecks.

• In chapter 3, I present Falcon, a fast and balanced container networking ap-

proach designed to scale the packet processing pipeline in overlay networks.

6

• In chapter 4, I introduce MFLOW, an innovative packet steering approach that

exploits fine-grained, packet-level parallelism.

• In chapter 5, I review the related research, developments and technologies in

the field of cloud networking systems.

• In chapter 6, I explore potential future research directions to address emerging

challenges in cloud systems.

• In chapter 7, I summarize the key findings and contributions of this dissertation.

7

CHAPTER 2

TACKLING PARALLELIZATION CHALLENGES OF KERNEL

NETWORK STACK FOR CONTAINER OVERLAY NETWORKS

Overlay networks are the de facto networking technique for providing flexible,

customized connectivity among distributed containers in the cloud. However, overlay

networks also incur non-trivial overhead due to its complexity, resulting in significant

network performance degradation of containers. In this chapter, we perform a compre-

hensive empirical performance study of container overlay networks which identifies

unrevealed, important parallelization bottlenecks of the kernel network stack that

prevent container overlay networks from scaling. Our observations and root cause

analysis cast light on optimizing the network stack of modern operating systems on

multi-core systems to more efficiently support container overlay networks in light of

high-speed network devices.

2.1 Introduction

As an alternative to virtual machine (VM) based virtualization, containers offer

a lightweight process-based virtualization method for managing, deploying and exe-

cuting cloud applications. Lightweight containers lead to higher server consolidation

density and lower operational cost in cloud data centers, making them widely adopted

by industry — Google even claims that “everything at Google runs in containers” [4].

Further, new cloud application architecture has been enabled by containers: ser-

vices of a large-scale distributed application are packaged into separate containers,

automatically and dynamically deployed across a cluster of physical or virtual ma-

8

chines with orchestration tools, such as Apache Mesos [5], Kubernetes [6], and Docker

Swarm [7].

Container overlay networks are the de facto networking technique for providing

customized connectivity among these distributed containers. Various container over-

lay network approaches are becoming available, such as Flannel [8], Weave [9], Calico

[10] and Docker Overlay [11]. They are generally built upon the tunneling approach

which enables container traffic to travel across physical networks via encapsulating

container packets with their host headers (e.g., with the VxLAN protocol [12]). With

this, containers belonging to a same virtual network can communicate in an isolated

address space with their private IP addresses, while their packets are routed through

“tunnels” using their hosts public IP addresses.

Constructing overlay networks in a container host can be simply achieved by

stacking a pipeline of in-kernel network devices. For instance, for a VxLAN overlay,

a virtual network device is created and assigned to a container’s network names-

pace, while a tunneling VxLAN network device is created for packet encapsula-

tion/decapsulation. These two network devices are further connected via a virtual

switch (e.g., Open vSwitch [13]). Such a container overlay network is also extensible:

various network policies (e.g., isolation, rate limiting, and quality of service) can be

easily added to either the virtual switch or the virtual network device of a container.

Regardless of the above-mentioned advantages, container overlay networks incur

additional, non-trivial overhead compared to the native host network (i.e., without

overlays). Recent studies report that overlay networks achieve 50% less throughput

than the native and suffer much higher packet processing latency [14, 15]. The pro-

longed network packet processing path in overlay networks can be easily identified

as the main culprit. Indeed, as an example in the above VxLAN overlay network,

a packet traverses three different namespaces (i.e., the container, overlay and host)

9

and two kernel network stacks (the container and host) in both sending and receiving

ends, leading to high per-packet processing cost and long end-to-end latency. How-

ever, our investigation reveals that the causes of high-overhead and low-efficiency of

container network overlays are much complicated and multifaceted:

First, the high-performance, high-speed physical network devices (e.g., 40 and

100 Gbps Ethernet) require the kernel to quickly process each packet (e.g., 300 ns

for a 40 Gbps network link). However, as stated above, the prolonged packet path in

container overlay networks slows down the per-packet processing speed with multiple

network devices involved. More critically, we observe that modern OSes only pro-

vide parallelization of packet processing at the per-flow level (instead of per-packet);

thus, the maximum network throughput of a single container flow is limited by the

processing capability of a single core (e.g., 6.4 Gbps for TCP in our case).

Further, the combination of multi-core CPUs and multi-queue network interface

cards (NIC) allows packets of different flows to route to separate CPU cores for parallel

processing. Unfortunately, container overlay networks are observed to produce poor

scalability — the network throughput increases by 4x with 6x number of flows. In

addition, under the same throughput (e.g., 40 Gbps with 80 flows), overlay networks

consume much more CPU resources (e.g., 2 ∼ 3 times). Our investigation finds that

this severe scalability issue is largely due to the inefficient interplay by kernel among

pipelined, asynchronous packet processing stages — an overlay packet traverses among

the contexts of one hardware interrupt, three software interrupts and the user-space

process. With more flows, the hardware also becomes inefficient with poor cache

efficiency and high memory bandwidth.

Last, research has long observed inefficiency in the kernel network stack for

flows with small packet sizes. We observe that such inefficiency becomes more severe

in container overlay networks which achieve as low as 50% packet processing rate

10

of that in the native host (e.g., for UDP packets). We find that, in addition to

prolonged network path processing path, the high interrupt request (IRQ) rate and

the associated high software interrupt (softirq) rate (i.e., 3x of IRQs) impair the

overall system efficiency by frequently interrupting running processes with enhanced

context switch overhead.

In this chapter, we perform a comprehensive empirical performance study of

container overlay networks and identify the above-stated new, critical parallelization

bottlenecks in the kernel network stack. We further deconstruct these bottlenecks to

locate their root causes. We believe our observations and root cause analysis will cast

light on optimizing the kernel network stack to well support container network stacks

on multi-core systems in light of high-speed network devices.

2.2 Background

In this section, we introduce the background of network packet processing (un-

der Linux) and the existing optimizations for network packet processing.

2.2.1 Network Packet Processing

Packet processing traverses NICs, kernel space, and user space. Taking receiving

a packet as an example (Figure 2.1): When a packet arrives at the NIC, it is copied

(via DMA) to the kernel ring buffer and triggers a hardware interrupt (IRQ). The

kernel responds to the interrupt and starts the receiving path. The receiving process

in kernel is divided into two parts: the top half and the bottom half. The top half

runs in the context of a hardware interrupt, which simply inserts the packet in the

per-CPU packet queue and triggers the bottom half. The bottom half is executed in

the form of a software interrupt (softirq), scheduled by the kernel at an appropriate

time later and is the main routine that the packet is processed through the network

11

Layer 1

Layer 2

Layer 3&4

Layer 7

NICMultiqueue

IRQ Coalescing IRQ

DMA

RX Ring
Buffer

1SoftIRQ
HandlerGRO

NAPI
Scheduler

IRQ
Handler

vBridgeVeth

Network
Stack

VxLAN

Container
Applications

RPS

1
1

2

2

3

3

3

SoftIRQ 1 2 3

Figure 2.1: Illustration of data receiving path in Linux kernel.

protocol stack. After being processed at various protocol layers, the packet is finally

copied to the user space buffer and passed to the application.

2.2.2 Container Overlay Networks

Overlay networks are a common way to virtualize container networks and pro-

vide customized connectivity among distributed containers. Container overlay net-

works are generally based on a tunneling technique (e.g., VxLAN): When sending a

container packet, it encapsulates the packet in a new packet with the (source and

destination) host headers; when receiving an encapsulated container packet, it decap-

sulates the received packet to recover the original packet and finally delivers it to the

target container application by its private IP address.

As illustrated in Figure 2.1, the overlay network is created by adding additional

devices, such as a VxLAN network device for packet encapsulation and decapsulation,

virtual Ethernet ports (veth) for network interfaces of containers, and a virtual bridge

12

to connect all these devices. Intuitively, compared to the native host network, a

container overlay network is more complex with longer data path. As an example in

Figure 2.1, receiving one container packet raises one IRQ and three softirqs (by the

host NIC, the VxLAN, the veth separately). In consequence, the container packet

traverses three network namespaces (host, overlay and container) and two network

stacks (container and host). Inevitably, it leads to high overhead of packet processing

and low efficiency of container networking.

2.2.3 Optimizations for Packet Processing

There is a large body of work targeting at optimizing the kernel for efficient

packet processing. We categorize them into two groups:

(1) Mitigating per-packet processing overhead: Packet processing cost generally

consists of two parts: per-packet cost and per-byte cost. In modern OSes, per-

packet cost dominates in packet processing. Thus, a bunch of optimizations have been

proposed to mitigate per-packet processing including interrupt coalescing and polling-

based approaches which reduce the number of interrupts [16, 17, 18]; packet coalescing

which reduces the number of packets that need to be processed by kernel network

stacks (e.g., Generic Receive Offload [19] and Large Receive Offload [20]); user-space

network stacks which bypass the OS kernel thus reducing context switches [21]; and

data path optimizations [22, 23, 24, 25].

(2) Parallelizing packet processing path: High-speed network devices can easily

saturate one CPU core even with the above optimizations. This is especially true in

virtualized overlay networks. To leverage multi-core systems, a set of hardware and

software optimizations have been proposed to parallelize packet processing. Paral-

lelism can be achieved using the hardware approach — a single physical NIC with

multi-queues, each mapping IRQs to one separate CPU core with Receive Side Scal-

13

ing (RSS) [26]. Even without the NIC support, Receive Packet Steering (RPS) [27]

can achieve the same RSS functionality in a software manner. Both RSS an RPS use

hash functions (based on packet IP addresses and protocol ports) to determine the

target CPU cores for packets of different flows. As we will show shortly, none of these

approaches work effectively in container overlay networks.

2.3 Evaluation

In this section, we perform empirical studies to illustrate parallelization bottle-

necks of the kernel network stack for container overlay networks.

2.3.1 Experimental Settings

We conducted experiments with three network configurations as follows:

• Native Case. Applications were running in the native host (i.e., no contain-

ers), and communicated with each other using the host IP addresses associated

with the physical network interface — the traditional configuration in a non-

virtualization, non-overlay environment.

• Linux Overlay Case: In this “transitional” case, we added one VxLAN soft-

ware device attached to the host interface. Applications were still running in

the native host, but communicated first through the VxLAN tunneling and

then the host interface. We configured such a VxLAN device using the iproute2

toolset [28].

• Docker Overlay Case: A Docker [29] overlay network was created to route

container packets among hosts. Applications were running in Docker containers

and communicated with each other using the containers’ private IP addresses

associated with the virtual interfaces (i.e., veth). A Linux bridge connected all

local containers’ veths and a VxLAN device (attached to the host interface).

14

The Docker overlay network requires a key-value database to store host network

information and we chose consul-0.5.2 [30] as the key-value store.

Notice that the packet processing path becomes longer from the native case to

the docker overlay case.

Testbed Configurations. All experiments were conducted on two server machines

each equipped with one Xeon E5-2630 v4 CPU (2.2 GHz and 10 physical cores with

hyper-threading enabled — 20 virtual cores) and 64 GB memory. They were directly

connected via a 40 Gb Mellanox ConnectX-3 Infiniband Network Interface Controller

with the multi-queue technique enabled (16 packet queues). We ran Docker-18.06

[29] on Linux-16.04-4.4, and used iperf3 [31] as the benchmark applications. We

have tuned the Linux network stack with all software optimizations enabled. To

mimic a real setup, the MTU (maximum transfer unit) was set to 1,500 bytes by

default. For all TCP and UDP experiments, the TCP packet size was set to 128 KB

while the UDP packet size was set to 8 KB by default, unless otherwise stated. All

experimental results were averaged over five or more runs.

Figure 2.2: Function call graph along the TCP receiving path.

15

2.3.2 A Single Flow

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native
Linux Overlay
Docker Overlay

Pair Number of Iperf Connection

Th
ro

ug
hp

ut
 (G

b/
s)

Figure 2.3: TCP throughput with varying
pairs of connections.

0

10

20

30

40

1 2 3 4 5 6 ... 10 20 40 80

Native
Linux Overlay
Docker Overlay

Th
ro

ug
hp

ut
 (G

b/
s)

Pair Number of Iperf Connection

Figure 2.4: UDP throughput with varying
pairs of connections.

First, we measure the TCP and UDP throughput using a single pair of iperf

client and server residing on two machines separately.

Figure 2.3 shows the TCP throughput, while Figure 2.4 shows the UDP through-

put. More specifically, the native case can reach around 23 Gbps for TCP and 9.3

Gbps for UDP. The Linux overlay performs a little better than the Docker overlay:

in the Linux overlay, the TCP throughput reaches 6.5 Gbps, and the UDP reaches

4.7 Gbps. In comparison, in the Docker overlay case, the TCP throughput reaches

around 6.4 Gbps, while the UDP throughput reaches only 3.9 Gbps. Compared to

the native case, the throughput of the Docker overlay drops by 72% for TCP and

58% for UDP. As the packet processing path gets longer, the single pair bandwidth

performance gets lower for both TCP and UDP cases.

The reason why the Docker overlay achieves much lower throughput than the

native shows that: it consumes much higher CPU cycles for processing each packet.

As plotted in Figure 2.5 (CPU usage breakdown for TCP) and Figure 2.6 (CPU usage

breakdown for UDP), in the single flow case, the docker overlay consumes the same (or

16

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80 1 2 3 4 5 6 ... 10 20 40 80

User
System
SoftIRQ

 Native Linux Overlay Docker Overlay
Pair Number of Iperf Connection

To
ta

l C
PU

 U
sa

ge

Figure 2.5: CPU usage breakdown on the receiver side with varying pairs of connec-
tions (TCP).

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

User
System
SoftIRQ

 Native Linux Overlay Docker Overlay
Pair Number of Iperf Connection

To
ta

l C
PU

 U
sa

ge

Figure 2.6: CPU usage breakdown on the receiver side with varying pairs of connec-
tions (UDP).

more) CPU usage with much less throughput, compared to the native case 1. Figure

2.2 shows the function call stack along the TCP receiving path — the highlighted

areas refer to the extra time spent in the functions of the overlay networks. It clearly

demonstrates that the network processing path in the docker overlay network is much

longer than the native case leading to extra CPU usage.

A question arises after we observe that the iperf client and server in the user

space consume little CPU far away from occupying one single core: why cannot the

1Each machine has in total 20 virtual cores — 5% CPU usage means that a single core has been

exhausted.

17

throughput keep scaling by consuming more CPU resources? Upon deeper investiga-

tion, we found that existing parallelization approaches (e.g., RSS or RPS) work at the

per-flow level, as they decide the core for packet processing based on the flow-level

information (i.e., IP addresses and/or port number). Hence, packets of the same flow

are processed by the kernel on the same core — including all the softirqs triggered

by all the network devices (i.e., the host interface, VxLAN and veth). As the docker

overlay incurs longer packet processing path, it easily saturates one CPU core — as

shown in Figure 2.5 and Figure 2.6, the CPU consumed by the kernel (i.e., the sum

of the system and softirq parts) saturates one core.

2.3.3 Multiple Flows

As a single flow is far away from fully utilizing a 40 Gbps network link in the

Docker overlay case, we tried to use multiple flows to saturate the network bandwidth

by scaling the number of flows — we ran multiples pairs of iperf clients and servers

from 1 to 80; each iperf client or server was running in a separate container.

As shown in Figure 2.3, we observe that the native case quickly reaches the

peak throughput, ∼37 Gbps under TCP with only two pairs. However, the TCP

throughput in the two overlay cases grows slowly as the pair number increases — the

throughput increase by 4x (6.4 Gbps to 25 Gbps) with 6x number of pairs (1 pair to

6 pairs). Though all three cases can saturate the whole 40 Gbps network bandwidth

(with 80 flows), under the same throughput (e.g., 40 Gbps) overlay networks consume

much more CPU resources (e.g., around 2.5 times) than the native case.

This raises another question: why does the overlay network not scale well with

multiple flows given that in this situation both RSS and RPS take effect (i.e., we

did observe that packets of different flows were assigned with different CPU cores)?

Our investigation shows that such a bad scalability is largely due to the inefficient

18

interplay of many packet processing tasks — IRQs, three different softirq contexts,

and user-space processes. Too frequent context switches among these tasks greatly

hurt the CPU cache efficiency, resulting in much higher memory bandwidth. For

example, the Docker overlay case consumes 2x memory bandwidth with 50% network

throughput with 7 pairs (not depicted in the figures). Such inefficiency can also be

observed in Figure 2.5, though the total throughput does not scale, the CPU usage

keeps increasing as the number of flow pairs increases — the kernel is just busy with

juggling numerous tasks.

We observe the similar (and even worse) scalability in the UDP case 2 as il-

lustrated in Figure 2.4 with the exception that the throughput of the native case

keeps flat regardless of the flow numbers. The reason is that, in the native case, all

UDP flows share the same flow-level information (i.e., same source and destination

IP addresses); the RSS and RPS cannot distinguish them and assign all flows on the

same core which is fully occupied. In contrast, in the overlay networks, the RSS and

RPS can distinguish the packets of different flows by looking at the inner header in-

formation containing the private IP addresses of containers which are different among

flows.

2.3.4 Small Packets

It is evident that most packets in the real world have small sizes (e.g., 80% ≤ 600

bytes [32]). The inefficient packet processing will negatively impact the performance of

real-world applications. We conducted experiments to show the performance impact

of overlay networks on small packets by varying the packet sizes of a single flow from

64 bytes to 8 KB. As illustrated in Figure 2.7, the Docker overlay performs a bit worse

2We cannot collect performance data after 7 pairs for the Docker overlay case, as the system

becomes very unstable due to high packet drop rate.

19

0

75,000

150,000

225,000

300,000

64B

128B
256B
512B
1KB

2KB

4KB

8KB

Native
Linux Overlay
Docker Overlay

Packet Size of Iperf Connection

Pa
ck

et
 N

um
be

r /
s

Figure 2.7: TCP packet processing rate
with varying packet sizes.

0

60,000

120,000

180,000

240,000

64B

128B
256B
512B
1KB

2KB

4KB

8KB

Native
Linux Overlay
Docker Overlay

Pa
ck

et
 N

um
be

r /
s

Packet Size of Iperf Connection

Figure 2.8: UDP packet processing rate
with varying packet sizes.

0%

5%

10%

15%

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

User
System
SoftIRQ

To
ta

l C
PU

 U
sa

ge

 Native Linux Overlay Docker Overlay
Packet Size of Iperf Connection

Figure 2.9: CPU usage breakdown on receiver side with varying packet sizes (TCP).

0%

5%

10%

15%

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

User
System
SoftIRQ

To
ta

l C
PU

 U
sa

ge

 Native Linux Overlay Docker Overlay
Packet Size of Iperf Connection

Figure 2.10: CPU usage breakdown on receiver side with varying packet sizes (UDP).

20

with small packet sizes (64 bytes to 1 KB) than the native under TCP in terms of

packet processing rate; the gap becomes wider as the packet size increases. Further,

as shown in Figure 2.9, the Docker overlay consumes less CPU due to lower packet

processing rate 3.

 IRQ SoftIRQ
Packet Size of Iperf Connection

IR
Q

/s
 (S

of
tIR

Q
/s

)

0

100,000

200,000

300,000

400,000

64B
128B
256B
512B
1KB
2KB
4KB
8KB

64B
128B
256B
512B
1KB
2KB
4KB
8KB

Native
Linux Overlay
Docker Overlay

Figure 2.11: Interrupt number with varying packet sizes (UDP).

The more significant inefficiency is observed in the UDP case: In Figure 2.8,

we observe that the Docker overlay achieves as low as 50% packet processing rate of

that in the native case with lower CPU usage (Figure 2.10). The Linux overlay case

performs better than the Docker overlay but still worse than the native. Correspond-

ingly, we observe that the IRQ number increases dramatically in the Docker overlay

case — 10x of that in the TCP case. In addition, much more softirqs are observed

in Figure 2.11, ∼3x of the IRQs. It is because again, one IRQ can trigger (at most)

three softirqs in the Docker overlay case. Note that, multiple softirqs can“merge”

within one softirq, as long as they are processed in a timely manner (i.e., all pro-

3The Docker overlay is more CPU efficient than the Linux overlay under small packet sizes, as

(we observed that) the kernel CPU scheduler intends to put the user-space iperf processes on the

same core — that also performs kernel-level packet processing — more often in the Docker overlay

case.

21

cessed under the context of one softirq and counted once). Notice that, more softirqs

indicate that either the IRQ number is large or the process of softirqs is frequently

interrupted (multiple softirqs cannot merge) — the Docker overlay case falls in the

latter category.

2.4 Discussion

By presenting our observations in container overlay networks, we are looking

to receive feedback that can gauge the importance of these observed bottlenecks

considering real cloud containerized applications. We are aware of that there is a

large body of work addressing the inefficient network packet processing issue with

either optimizing existing operating systems (OS), or renovating OSes with a clean-

slate design, or completely bypassing the OSes with a user-space approach. However,

in our work, we aim to first have a thorough understanding about the inefficiencies

of conventional OSes particularly for container overlay networks. With this, we plan

to generate discussions about whether we should keep improving the conventional

kernel network stack following an evolutionary concept by retrofitting existing OSes

with the new technology for better adoptability and compatibility.

2.5 Conclusion

We have presented the performance study of container overlay networks on a

multi-core system with high-speed network devices, and identified three critical paral-

lelization bottlenecks in the kernel network stack which prevent overlay networks from

scaling: (1) the kernel does not provide per-packet level parallelization preventing a

single container flow from achieving high network throughput; (2) the kernel does not

efficiently handle various packet processing tasks preventing multiple container flows

22

from easily saturating a 40 Gbps network link; and (3) the above two parallelization

bottlenecks become more severe for small packets, as the kernel fails to handle a large

number of interrupts which disrupts the overall system efficiency.

These parallelization bottlenecks urge us to develop a more efficient kernel net-

work stack for overlay networks by considering the following several questions: (1) Is

it feasible to provide packet-level parallelization for a single network flow? Though

probably not necessary in the native case, it becomes imperative in the overlay net-

works as the achieved throughput of a single flow is still very low (limited by a single

CPU core). (2) How can the kernel perform a better isolation among multiple flows

especially for efficiently utilizing shared hardware resources (e.g., CPU caches and

memory bandwidth). This is particularly important as one server can host tens or

even hundreds of light-weight containers. It becomes more challenging to handle

small packets under overlay networks. (3) Can the packets be further coalesced with

optimized network path for reduced interrupts and context switches?

23

CHAPTER 3

PARALLELIZING PACKET PROCESSING IN

CONTAINER OVERLAY NETWORKS

Container networking, which provides connectivity among containers on mul-

tiple hosts, is crucial to building and scaling container-based microservices. While

overlay networks are widely adopted in production systems, they cause significant

performance degradation in both throughput and latency compared to physical net-

works. This chapter seeks to understand the bottlenecks of in-kernel networking when

running container overlay networks. Through profiling and code analysis, we find that

a prolonged data path, due to packet transformation in overlay networks, is the culprit

of performance loss. Furthermore, existing scaling techniques in the Linux network

stack are ineffective for parallelizing the prolonged data path of a single network flow.

We propose Falcon, a fast and balanced container networking approach to

scale the packet processing pipeline in overlay networks. Falcon pipelines soft-

ware interrupts associated with different network devices of a single flow on multi-

ple cores, thereby preventing execution serialization of excessive software interrupts

from overloading a single core. Falcon further supports multiple network flows by

effectively multiplexing and balancing software interrupts of different flows among

available cores. We have developed a prototype of Falcon in Linux. Our evaluation

with both micro-benchmarks and real-world applications demonstrates the effective-

ness of Falcon, with significantly improved performance (by 300% for web serving)

and reduced tail latency (by 53% for data caching).

24

3.1 Introduction

Due to its high performance [33, 34], low overhead [35, 15], and widespread

community support [36], container technology has increasingly been adopted in both

private data centers and public clouds. A recent report from Datadog [37] has re-

vealed that customers quintupled the number of containers in their first nine-month

container adoption. Google deploys containers in its cluster management and is re-

ported to launch about 7,000 containers every second in its search service [4]. With

containers, applications can be automatically and dynamically deployed across a clus-

ter of physical or virtual machines (VMs) with orchestration tools, such as Apache

Mesos [5], Kubernetes [6], and Docker Swarm [7].

Container networks provide connectivity to distributed applications and are

critical to building large-scale, container-based services. Overlay networks, e.g., Flan-

nel [8], Weave [9], Calico [10] and Docker overlay [11], are widely adopted in container

orchestrators [5, 6, 7]. Compared to other communication modes, overlay networks

allow each container to have its own network namespace and private IP address in-

dependent from the host network. In overlay networks, packets must be transformed

from private IP address to public (host) IP address before transmission, and vice versa

during reception. While network virtualization offers flexibility to configure private

networks without increasing the complexity of host network management, packet

transformation imposes significant performance overhead. Compared to a physical

network, container overlay networks can incur drastic throughput loss and suffer an

order of magnitude longer tail latency [15, 38, 39, 14, 1].

The overhead of container overlay networks is largely due to a prolonged data

path in packet processing. Overlay packets have to traverse the private overlay net-

work stack and the host stack [14] for both packet transmission and reception. For

instance, in a virtual extensible LAN (VXLAN) overlay, packets must go through a

25

VXLAN device for IP transformation, i.e., adding or removing host network headers

during transmission or reception, a virtual bridge for packet forwarding between pri-

vate and host stacks, and a virtual network device (veth) for gating a container’s

private network. The inclusion of multiple stages (devices) in the packet process-

ing pipeline prolongs the critical path of a single network flow, which can only be

processed on a single core.

The existing mechanisms for parallelizing packet processing, such as Receive

Packet Steering (RPS) [27], focus on distributing multiple flows (packets with differ-

ent IPs or ports) onto separate cores, thereby not effective for accelerating a single

flow. The prolonged data path inevitably adds delay to packet processing and causes

spikes in latency and significant throughput drop if computation overloads a core. To

shorten the data path, the state-of-the-art seeks to either eliminate packet transfor-

mation from the network stack [14] or offload the entire virtual switches and packet

transformation to the NIC hardware[40]. Though the performance of such software-

bypassing or hardware-offloading network is improved (close to the native), these ap-

proaches undermine the flexibility in cloud management with limited support and/or

accessibility. For example, Slim [14] does not apply to connection-less protocols, while

advanced hardware offloading is only available in high-end hardware [40].

This chapter investigates how and to what extent the conventional network

stack can be optimized for overlay networks. We seek to preserve the current design of

overlay networks, i.e., constructing the overlay using the existing building blocks, such

as virtual switches and virtual network devices, and realizing network virtualization

through packet transformation. This helps to retain and support the existing network

and security policies, and IT tools. Through comprehensive profiling and analysis, we

identify previously unexploited parallelism within a single flow in overlay networks:

Overlay packets travel multiple devices across the network stack and the processing at

26

each device is handled by a separate software interrupt (softirq); while the overhead of

container overlay networks is due to excessive softirqs of one flow overloading a single

core, the softirqs are asynchronously executed and their invocations can be interleaved.

This discovery opens up new opportunities for parallelizing softirq execution in a

single flow with multiple cores.

We design and develop Falcon (fast and balanced container networking) —

a novel approach to parallelize the data path of a single flow and balance network

processing pipelines of multiple flows in overlay networks. Falcon leverages multi-

ple cores to process packets of a single flow at different network devices via a new

hashing mechanism: It takes not only flow but also network device information into

consideration, thus being able to distinguish packet processing stages associated with

distinct network devices. Falcon uses in-kernel stage transition functions to move

packets of a flow among multiple cores in sequence as they traverse overlay network

devices, preserving the dependencies in the packet processing pipeline (i.e., no out-of-

order delivery). Furthermore, to exploit parallelism within a heavy-weight network

device that overloads a single core, Falcon enables a softirq splitting mechanism

that splits the processing of a heavy-weight network device (at the function level),

into multiple smaller tasks that can be executed on separate cores. Last, Falcon

devises a dynamic balancing mechanism to effectively multiplex softirqs of multiple

flows in a multi-core system for efficient interrupt processing.

Though Falcon piplelines the processing stages of a packet on multiple cores,

it does not require packet copying between these cores. Our experimental results

show that the performance gain due to parallelization significantly outweighs the cost

of loss of locality. To summarize, this chapter has made the following contributions:

27

• We perform a comprehensive study of the performance of container overlay

networks and identify the main bottleneck to be the serialization of a large

number of softirqs on a single core.

• We design and implement Falcon that parallelizes the prolonged data path

for a single flow in overlay networks. Unlike existing approaches that only

parallelize softirqs at packet reception, Falcon allows softirqs to be parallelized

at any stage of the processing pipeline.

• We evaluate the effectiveness of Falcon with both micro and real-world appli-

cations. Our results show that Falcon can significantly improve throughput

(e.g., up to 300% for web serving) and reduce latency (e.g., up to 53% for data

caching).

3.2 Background and Motivation

In this section, we first describe the process of packet processing in the OS

kernel. Then, we examine the performance bottleneck of container overlay networks.

Without loss of generality, we focus on packet reception in the Linux kernel because

reception is in general harder than transmission and incurs greater overhead in over-

lay networks. Furthermore, packet reception presents the parallelism that can be

exploited to accelerate overlay networks.

3.2.1 Background

In-kernel packet processing. Packet processing in commodity OSes is a pipeline

traversing the network interface controller (NIC), the kernel space and the user space,

as shown in Figure 3.1. Take packet reception for example, when a packet arrives at

the NIC, it is first copied (e.g., via DMA) to the device buffer and triggers a hardware

interrupt. Then the OS responds to the interrupt and transfers the packet through

28

pNIC
softIRQ VXLAN

Container
bridge

Container
vNIC

Container
B (receiver)

Layer 2 Layer 3 & 4 Layer 7

Packet
decapsulation

Container
A (sender)

Container
bridge

Container
vNIC

VXLANpNIC

Packet
encapsulation

Host2

Host1

Kernel Space User Space

IRQ
Hardware

Figure 3.1: Illustration of container overlay networks.

the receiving path in the kernel. Packet processing is divided into the top half and

bottom half. The top half runs in the hardware interrupt context. It simply marks

that the packet arrives at the kernel buffer and invokes the bottom half, which is

typically in the form of a software interrupt, softirq. The softirq handler — the main

routine to transfer packets along the protocol stack — is later scheduled by the kernel

at an appropriate time. After being processed by various protocol layers, the packet

is finally copied to a user-space buffer and delivered to the applications listening on

the socket.

Container overlay network. In the pursuit of management flexibility, virtualized

networks are widely adopted in virtualized servers to present logical network views to

end applications. Overlay network is a common way to virtualize container networks.

As an example in Figure 3.1, in a container overlay network (e.g., VXLAN), when a

packet is sent from container A to container B, the overlay layer (layer 4) of container

A first looks up the IP address of the destination host where container B resides —

from a distributed key-value store which maintains the mapping between private IP

29

addresses of containers and the public IP addresses of their hosts. The overlay network

then encapsulates the packet in a new packet with the destination host IP address and

places the original packet as the payload. This process is called packet encapsulation.

Once the encapsulated packet arrives at the destination host, the overlay layer of

container B decapsulates the received packet to recover the original packet and finally

delivers it to container B identified by its private IP address. This process is called

packet decapsulation. In addition to the overlay networks, the container network

also involves additional virtualized network devices, such as bridges, virtual Ethernet

ports (vNIC), routers, etc., to support the connectivity of containers across multiple

hosts. Compared to the native network, container overlay network is more complex

with a longer data path.

Interrupts on multi-core machines. The above network packet processing is

underpinned by two types of interrupts: hardware interrupts (hardirqs) and software

interrupts (softirqs). On the one hand, like any I/O devices, a physical NIC interacts

with the OS mainly through hardirqs. A physical NIC with one traffic queue is

assigned with an IRQ number during the OS boot time; hardirqs triggered by this

NIC traffic queue can only be processed on one CPU core at a time in an IRQ

context of the kernel (i.e., the IRQ handler). To leverage multi-core architecture,

a modern NIC can have multiple traffic queues each with a different IRQ number

and thus interacting with a separate CPU core. On the other hand, an OS defines

various types of softirqs, which can be processed on any CPU cores. Softirqs are

usually raised when an IRQ handler exits and processed on the same core (as the

IRQ handler) by the softirq handler either immediately (right after the IRQ handler)

or asynchronously (at an appropriate time later). Typically, the hardirq handler is

designed to be simple and small, and runs with hardware interrupts on the same core

30

disabled (cannot be preempted), while the softirq handler processes most of the work

in the network protocol stack and can be preempted.

Packet steering is a technique that leverages multiple cores to accelerate packet

processing. Receive side scaling (RSS) [26] steers packets from different flows to a

separate receive queue on a multi-queue NIC, which later can be processed by separate

CPUs. While RSS scales packet processing by mapping hardirqs to separate CPUs,

receive packet steering (RPS) [27] is a software implementation of RSS and balances

softirqs. Both RSS and RPS calculate a flow hash based on the packet’s IP address

and port and use the hash to determine the CPU on which to dispatch the interrupts.

UDP
(10G)

UDP
(100G)

TCP
(10G)

TCP
(100G)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput
Host
Con

16B 4KB 64KB 16B 4KB 64KB0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IO

PS

10G 100G

(b) IOPS (UDP)

1:1
(TCP)

4:1
(TCP)

1:1
(UDP)

4:1
(UDP)

Flows-to-core ratio

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
IO

PS
(c) Multi-flow (100G)

50% 90% 99% 99.99%0

1

2

3

4

La
te

nc
y

(m
s)

(d) Latency (100G)
Native (TCP)
Overlay (TCP)
Native (UDP)
Overlay (UDP)

Figure 3.2: Performance comparison of container overlay networks and native physical
networks.

3.2.2 Motivation

Experimental settings. We evaluated the throughput and latency of the VXLAN

overlay network between a pair of client and server machines and studied how its per-

formance is different from the native host network. The machines were connected with

two types of NICs over direct links: Intel X550T 10-Gigabit and Mellanox ConnectX-

5 EN 100-Gigabit Ethernet adapters. Both the client and server had abundant CPU

and memory resources.

31

Single-flow throughput. Figure 3.2 depicts the performance loss due to the overlay

network in various settings. Figure 3.2 (a) shows the comparison between overlay and

host networks in a throughput stress test. We used sockperf [41] with large packets

(64 KB for both TCP and UDP) using a single flow. To determine the maximum

achievable throughput, we kept increasing the sending rate until received packet rate

plateaued and packet drop occurred. While the overlay network achieved near-native

throughput in the slower 10 Gbps network, which is similar to the findings in Slim [14],

it incurred a large performance penalty in the faster 100 Gbps network for both UDP

and TCP workloads by 53% and 47%, respectively. The results suggest that overlay

networks impose significant per-packet overhead that contributes to throughput loss

but the issue is often overlooked when link bandwidth is the bottleneck and limits

packet rate.

Single-flow packet rate. Figure 3.2 (b) shows packet rates (IOs per second) under

different packet sizes for UDP traffic. When the packet size was small, the network

stack’s ability to handle a large number of packets limited the packet rate and led to

the largest performance gap between overlay and host networks while link bandwidth

was no longer the bottleneck. As packet size increased, the gap narrowed. But for

the faster 100 Gbps Ethernet, the performance degradation due to overlay networks

had always been significant. Tests on TCP workloads showed a similar trend.

Multi-flow packet rate. Next, we show that the prolonged data path in a sin-

gle flow may have a greater impact on multi-flow performance. Both the host and

overlay network had packet steering technique receive packet steering (RPS) enabled.

Figure 3.2 (c) shows multi-flow packet rate with two flow-to-core ratios. A 1:1 ratio

indicates that there are sufficient cores and each flow (e.g., a TCP connection) can

be processed by a dedicated core. Otherwise, with a higher ratio, e.g., 4:1, multiple

flows are mapped to the same core. The latter resembles a more realistic scenario

32

wherein a server may serve hundreds, if not thousands, of connections or flows. The

packet size was 4 KB.

A notable finding is that overlay networks incurred greater throughput loss in

multi-flow tests compared to that in single-flow tests, even in tests with a 1 : 1 flow-

to-core ratio. Packet steering techniques use consistent hashing to map packets to

different cores. When collisions occur, multiple flows may be placed on the same core

even idle cores are available, causing imbalance in flow distribution. Since individual

flows become more expensive in overlay networks, multi-flow workloads could suffer

a greater performance degradation in the presence of load imbalance. Furthermore,

as flow-to-core ratio increased, throughput loss further exacerbated.

Latency. As shown in Figure 3.2 (d), it is expected that given the prolonged data

path, overlay networks incur higher latency than the native host network in both

UDP and TCP workloads. The figure suggests up to 2x and 5x latency hike for UDP

and TCP, respectively.

Summary. Container overlay networks incur significant performance loss in both

throughput and latency. The performance penalty rises with the speed of the un-

derlying network and packet rate. In what follows, we analyze the root causes of

overlay-induced performance degradation.

3.3 Root Cause Analysis

3.3.1 Prolonged Data Path

We draw the call graph of packet reception in the Linux kernel using perf

and flamegraph [42] and analyze the control and data paths in the host and overlay

networks. As Figure 3.3 illustrates, packet reception in an overlay network involves

33

NICPhysical

NAPI
scheduler

mlx5e_n
api_poll

br_handle
_frame

process_
backlog

Native/Containerized applications

pNIC
_interrupt

hardIRQ
handler

softIRQ
handler

netif_receive
_skb veth_xmit

udp_rcvvxlan_rcv tcp_v4_rcv

ip_rcv

ꌢ

ꌢ

ꌣ

ꌣ ꌤ

ꌤ

Control path Data path

gro_cell
_poll

Data Link

Network

Transport

Application

rx_ring

Figure 3.3: Packet reception in container overlay networks.

multiple stages. The numbered steps are the invocation of hardware or software

interrupts on different network devices (➊: physical NIC, ➋: VXLAN, ➌: veth).

In host network, upon packet arrival, the physical NIC raises a hardirq and

copies the packet into a receiving ring buffer (rx ring) in the kernel. In response

to the hardirq, the IRQ handler (pNIC interrupt) is immediately executed (➊),

during which it raises softirqs on the same CPU it is running. Later, the softirq

handler (net rx action) is invoked by the Linux NAPI scheduler; it traverses the

polling list and calls the polling function provided by each network device to pro-

cess these softirqs. In the native network, only one polling function – physical NIC

(mlx5e napi poll) (➊) is needed. It polls packets from the ring buffer and passes

them to the entry function of the kernel network stack (netif receive skb). After

34

processed by each kernel stack, packets are finally copied to the socket buffer and re-

ceived by userspace applications. Note that the entire packet processing is completed

in one single softirq.

In comparison, packet processing in an overlay network is more complex, requir-

ing to traverse multiple network devices. The initial processing in an overlay shares

step ➊ with the physical network until packets reach the transport layer. The UDP

layer receive function udp rcv invokes the VXLAN receive routine vxlan rcv if a

packet is found to contain an inner packet with a private IP. vxlan rcv decapsulates

the packet by removing the outer VXLAN header, inserts it at the tail of the receive

queue of the VXLAN device, and raises another NET RX SOFTIRQ softirq (step ➋).

The softirq uses the VXLAN device’s polling function gro cell poll to pass packets

to the upper network stack.

Furthermore, containers are usually connected to the host network via a bridge

device (e.g., Linux bridge or Open vSwitch [13]) and a pair of virtual Ethernet ports

on device veth. One veth port attaches to the network bridge while the other attaches

to the container, as a gateway to the container’s private network stack. Thus, the

packets (passed by gro cell poll) need to be further processed by the bridge process-

ing function (br handle frame) and the veth processing function (veth xmit). More

specifically, the veth device on the bridge side inserts the packets to a per-CPU receiv-

ing queue (input pkt queue) and meanwhile raises a third softirq (NET RX SOFTIRQ)

(step ➌). Since veth is not a NAPI device, the default poll function process backlog

is used to pass packets to the upper protocol stack. Therefore, packet processing in a

container overlay network involves three network devices with the execution of three

softirqs.

35

IO-APIC

PCI-MSI

LOC
RES

HI TIMER
NET_TX

NET_RX

BLOCK
IRQ_POLL

TASKLET

SCHED
HRTIMER

RCU
0

1

2

3

4

No
rm

al
ize

d
in

te
rru

pt
 ra

te

Host
Contianer

Figure 3.4: Comparison of hardware and software interrupt rates in the native and
container overlay networks.

3.3.2 Excessive, Expensive, and Serialized Softirqs

Call graph analysis suggests that overlay networks invoke more softirqs than

the native network does. Figure 3.4 confirms that the overlay network triggers an

excessive number of the RES and NET RX interrupts. NET RX is the softirq that handles

packet reception. The number of NET RX in the overlay network was 3.6x that of the

native network. The results confirm our call graph analysis that overlay networks

invoke three times of softirqs than the native network.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 40
20
40
60
80

100

CP
U

Ut
iliz

at
io

n
%

Single-flow
Native

(500 Kpps)

Single-flow
Overlay

(500 Kpps)

Multi-flow
Native

(1 Mpps)

Multi-flow
Overlay
(1 Mpps)

User System Softirq Idle

Figure 3.5: Serialization of softIRQs and load imbalance.

36

Our investigation on RES – the rescheduling interrupt, further reveals that there

exists significant load imbalance among multiple cores when processing overlay pack-

ets. RES is an inter-processor interrupt (IPI) raised by the CPU scheduler attempting

to spread load across multiple cores. Figure 3.5 shows the CPU utilization in host and

overlay networks for single-flow and multi-flow tests in the 100 Gbps Ethernet. The

workloads were sockperf UDP tests with fixed sending rates. Note that the sending

rates were carefully set to keep the server reasonably busy without overloading it.

This allows for a fair comparison of their CPU utilization facing the same workload.

The figure shows that overlay network incurred much higher CPU utilization com-

pared to the native network, mostly on softirqs. Moreover, most softirq processing

was stacked on a single core. (e.g., core 1 in the single-flow overlay test). The se-

rialization of softirq execution can quickly become the bottleneck as traffic intensity

ramps up. The multi-flow tests confirmed softirq serialization — the OS was unable

to use more than 5 cores, i.e., the number of flows, for packet processing. The overlay

network also exhibited considerable imbalance in core utilization due to possible hash

collisions in RPS, which explains the high number of RES interrupts trying to perform

load balancing.

gro_cell_poll
process_backlog
mlx5e_napi_poll

30.61%

20.54%
35.97%

1.59%

27.63%

4.75%

Sockperf Memcached

Figure 3.6: Flamegraphs of Sockperf and Memcached.

37

Not only are there more softirqs in overlay networks, some of them become

more expensive than that in the native network. Figure 3.6 shows the flamegraphs of

function invocation in sockperf and memcached. The former is a micro-benchmark

that has only one type of packets with uniform sizes while the latter is a realistic ap-

plication that includes a mixture of TCP and UDP packets with different sizes. The

flamegraphs demonstrate that for workloads with simple packet types the overhead of

overlay networks is manifested by additional, relatively equally weighted softirqs. In

contrast, certain softirqs become particularly expensive and dominate overlay over-

head in realistic workloads.

3.3.3 Lack of Single-Flow Parallelization

Packet steering techniques seek to reduce the data-plane overhead via inter-

flow parallelization. However, these mechanisms are not effective for parallelizing a

single flow as all packets from the same flow would have the same hash value and

thus are directed to the same CPU. As shown in Figure 3.5 (left, single-flow tests),

although packet steering (i.e., RSS and RPS) does help spread softirqs from a single

flow to two cores, which agrees with the results showing packet steering improves

TCP throughput for a single connection in Slim [14], most of softirq processing is

still stacked on one core. The reason is that packet steering takes effect early in

the packet processing pipeline and does help separate softirq processing from the

rest of data path, such as hardirqs, copying packets to the user space, and application

threads. Unfortunately, there is a lack of mechanisms to further parallelize the softirq

processing from the same flow.

There are two challenges in scaling a single flow: 1) Simply dispatching packets

of the same flow to multiple CPUs for processing may cause out-of-order delivery as

different CPUs may not have a uniform processing speed. 2) For a single flow involving

38

multiple stages, as is in the overlay network, different stages have little parallelism to

exploit due to inter-stage dependency. Hence, performance improvement can only be

attained by exploiting packet-level parallelism.

Overlay

networks

Flows

Network dev1

(NIC)

Network dev2

(VXLAN)

Network dev3

(veth)

Network

packet

❷ Software Interrupt Splitting (Hashing)

❸ Software Interrupt Balancing

Hash Value1 Hash Value2 Hash Value3

FALCON

Device ID1

Flow Key

Device ID2

Flow Key

Device ID3

Flow Key

Hash Value1.1 Hash Value1.2 Hash Value2 Hash Value3

CPU1 CPU5 CPU6CPU3 CPU7 CPU8CPU4CPU2

Network

Packet

Network

Packet

❶ Software Interrupt Pipelining (Hashing)

HIGH LOW MID LOW HIGH MID MID LOW

Figure 3.7: Architecture of Falcon.

3.4 Design

The previous section suggests that, due to the lack of single-flow paralleliza-

tion, the execution of excessive softirqs from multiple network devices in container

overlay networks can easily overload a single CPU core, preventing a single flow from

achieving high bandwidth and resulting in long tail latency. To address this issue, we

design and develop Falcon with the key idea as follows: Instead of processing all

39

softirqs of a flow on a single core, Falcon pipelines softirqs associated with different

devices on separate cores, while still preserving packet processing dependencies among

these devices and in-order processing on each device. To realize this idea, Falcon

incorporates three key components, software interrupt pipelining, software interrupt

splitting, and dynamic load balancing (in Figure 3.7), as detailed as follows.

3.4.1 Software Interrupt Pipelining

Inspired by RPS [27], which dispatches different network flows onto multiple

cores via a hashing mechanism, Falcon aims to dispatch the different packet pro-

cessing stages (associated with different network devices) of a single flow onto sepa-

rate cores. This way, Falcon exploits the parallelism of a flow’s multiple processing

stages by leveraging multiple cores, while still preserving its processing dependencies

— packets are processed by network devices sequentially as they traverse overlay net-

work stacks. Furthermore, as for each stage, packets of the same flow are processed

on one dedicated core, Falcon avoids “out-of-order” delivery.

process_backlog

_netif_receive_skb

to_application

FALCON (get_falcon_cpu)

enqueue_to_backlog

process_backlog

_netif_receive_skb

br_forward

veth_xmit

netif_rx

RPS (get_rps_cpu)

mlx5e_napi_poll
napi_gro_receive

RPS (get_rps_cpu)
process_backlog

vxlan_rcv

netif_rx

FALCON (get_falcon_cpu)

enqueue_to_backlog

RPS (get_rps_cpu)

Per-CPU packet queue Per-CPU packet queuePer-CPU packet queue

CPUi CPUj CPUk

VXLAN virtual NIC (veth)

Packet processing stages

Code snippets

Linux Kernel 4.19

_netif_receive_skb
…

physical NIC Bridge

Raise a softirq Raise a softirq

Figure 3.8: Falcon pipelines software interrupts of a single flow by leveraging stage
transition functions.

40

Unfortunately, we find that the existing hashing mechanism used by RPS cannot

distinguish packet processing stages associated with different network devices (e.g.,

NIC, VXLAN, bridge, and veth in Figure 3.3), as it simply takes packet information

as input without considering device information. Specifically, the existing hash mech-

anism in RPS performs the hash calculation upon a network flow key (flow keys) —

a data structure composed of a packet’s source and destination IP addresses, protocol,

ports, tags, and other metadata needed to identify a network flow. The calculated

hash value is used to determine the core on which the packet will be processed. Yet,

since the hash calculation does not include device information, all stages of the pack-

ets of a single flow are executed on the same core. As illustrated in Figure 3.8, though

the RPS function is invoked multiple times along the network path, only the first RPS

(on CPUi) takes effect (i.e., selecting a new CPU core based on the hash value), while

the following RPS (e.g., on CPUi and on CPUj) generate the same hash value for the

packets of the same flow.

A natural way to distinguish different processing stages of a single flow is to

involve additional device information for the hash calculation: We notice that, when

a packet is sent or received by a new network device, the device pointer (dev) in the

packet’s data structure (sk buff) will be updated and pointed to that device. There-

fore, we could involve the index information of network devices (e.g., dev→ifindex)

in the hash calculation, which would generate distinct hash values for different net-

work devices. However, simply reusing RPS functions that are statically located

along the existing network processing path may unnecessarily (and inappropriately)

split the processing of one network device into fragmented pieces distributed on sep-

arate cores — as we can see in Figure 3.8, two RPS functions are involved along the

processing path of the first network device (i.e., pNIC).

41

Instead, Falcon develops a new approach to separate distinct network pro-

cessing stages via stage transition functions. We find that certain functions in the

kernel network stack act as stage transition functions — instead of continuing the

processing of a packet, they enqueue the packet into a device queue that will be pro-

cessed later. The netif rx function is such an example as shown in Figure 3.8, which

by default enqueues a packet to a device queue. The packet will be retrieved from

the queue and processed later on the same core. These stage transition functions

are originally designed to multiplex processings of multiple packets (from multiple

flows) on the same core, while Falcon re-purposes them for a multi-core usage: At

the end of each device processing 1, Falcon reuses (or inserts) a stage transition

function (e.g., netif rx) to enqueue the packet into a target CPU’s per-CPU packet

queue. To select the target CPU, Falcon employs a CPU-selection function, which

returns a CPU based on the hash value calculated upon both the flow information

(e.g., flow keys) and device information (e.g., ifindex) — i.e., distinct hash values

for different network devices given the same flow. Finally, Falcon raises a softirq on

the target CPU for processing the packet at an appropriate time.

With stage transition functions, Falcon can leverage a multi-core system to

freely pipeline a flow’s multiple processing stages on separate CPU cores — the packets

of a single flow can be associated with nonidentical cores for processing when they

enter distinct network devices. Falcon’s design has the following advantages: 1) It

does not require modifications of existing network stack data structures (e.g., sk buff

and flow keys) for hash calculation, making Falcon portable to different kernel

versions (e.g., we have implemented Falcon in kernel 4.19 and easily ported it to

kernel 5.4); 2) Since Falcon uses stage transition functions (instead of reusing RPS)

1Falcon can also stack multiple devices in one processing stage, aiming to evenly split the

network processing load on multiple cores.

42

for separation of network processing, it can coexist with existing scaling techniques

like RPS/RSS.

3.4.2 Software Interrupt Splitting

Though it makes intuitive sense to separate network processing stages at per-

device granularity, our analysis of the Linux kernel (from version 4.19 to 5.4) and the

performance of TCP and UDP with various packet sizes reveal that, a finer-grained

approach to split network processing stages is needed under certain circumstances.

UDP
(1 KB)

UDP
(4 KB)

TCP
(1 KB)

TCP
(4 KB)

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
%

SKB allocation
GRO
Other

Figure 3.9: CPU% of the first stage packet processing.

As plotted in Figure 3.9, under the TCP case with a large packet size (e.g., 4

KB), the first stage of Falcon (associated with the physical NIC) easily takes up

100% of a single CPU core and becomes the new bottleneck. Upon deep investigation,

we identify that two functions (skb allocation and napi gro receive) are the cul-

prits, with each contributing around 45% of CPU usage. However, such a case does

not exist under UDP or TCP with small packets (e.g., 1 KB), where the first stage

43

napi_gro_receive

skb_allocation

CPUi CPUj

Software interrupt

splitting

pNIC (1) pNIC (2)

Packet

processing

stages

CPU cores

napi_gro_receive

Figure 3.10: Software interrupt splitting.

does not saturate a single core. It is because, the GRO 2 function (napi gro receive)

is heavily involved in processing TCP flows with a large packet size, while it merely

takes effect for UDP flows or TCP flows with a small packet size. This issue – the

processing of one network device overloads a single CPU core – could commonly ex-

ist, as the Linux network stack is designed to be flexible enough that allows arbitrary

network devices or modules to be “hooked” on demand along the network path, such

as container’s overlay device (VXLAN), traffic encryption [43], profiling [44], in-kernel

software switches [13], and many network functions [45, 46, 47].

To further exploit parallelism within a “heavy-weight” network device that over-

loads a single core, Falcon enables a softirq splitting mechanism: It separates the

processing functions associated with the network device onto multiple cores by in-

serting stage transition functions right before the function(s) to be offloaded. In the

example of Figure 3.10, to offload the CPU-intensive GRO function (e.g., under TCP

with 4 KB packet size), Falcon inserts a transition function (i.e., netif rx) before

2The generic receive offload (GRO) function reassembles small packets into larger ones to reduce

per-packet processing overheads.

44

the GRO function. Meanwhile, a softirq is raised on the target core, where the GRO

function is offloaded. By doing this, Falcon splits the original one softirq into two,

with each for a half processing of the associated network device (e.g., pNIC1 and

pNIC2 in Figure 3.10).

Note that, Falcon’s softirq splitting mechanism is general in that Falcon

can arbitrarily split the processing of any network device, at the function level, into

multiple smaller tasks, which can be parallelized on multiple cores. However, it

should be applied with discretion, as splitting does incur additional overhead, such as

queuing delays, and it could offset the performance benefit from the parallelism. In

practice, Falcon only applies software interrupt splitting to a network device that

fully overloads a CPU core 3.

3.4.3 Software Interrupt Balancing

The use of stage transition functions is a generic approach to resolve the bot-

tleneck of overlay networks by parallelizing softirq processing of a single flow as well

as breaking expensive softirqs into multiple smaller softirqs. Challenges remain in

how to effectively and efficiently balance the softriqs to exploit hardware parallelism

and avoid creating new bottlenecks. First, the kernel network stack may coalesce the

processing of packets from different flows in the same softirq to amortize the overhead

of softirq invocation. Thus, softirq balancing must be performed on a per-packet basis

as downstream softirqs from different flows should be sent to different cores. Since

packet latency is in the range of tens of to a few hundreds of microseconds, the cost

to evenly distribute softirqs should not add much delay to the latency. Second, load

balancing relies critically on load measurements to determine where softirqs should

3Falcon statically splits functions of a heavy-weight network device, via offline profiling. Yet,

we note that a dynamic method is more desired, which is the subject of our ongoing investigations.

45

be migrated from and to. However, per-packet softirq balancing on individual cores

lacks timely and accurate information on system-wide load, thereby likely to create

new bottlenecks. A previous lightly loaded core may become a hotspot if many flows

dispatch their softirqs to this core and CPU load may not be updated until the burst

of softirqs has been processed on this core.

The fundamental challenge is the gap between fine-grained, distributed, per-

packet balancing and the complexity of achieving global load balance. To overcome

it, Falcon devises a dynamic softirq balancing algorithm that 1) prevents overload-

ing any core and 2) maintains a reasonably good balance across cores 3) at a low cost.

As shown in Algorithm 1, the dynamic balancing algorithm centers on two designs.

First, Falcon is enabled only when there are sufficient CPU resources to parallelize

individual network flows otherwise all softirqs stay on the original core (line 6–9).

Falcon monitors system-wide CPU utilization and switches softirq pipelining and

splitting on and off according to FALCON LOAD THRESHOLD. Second, Falcon employs a

two-choice algorithm for balancing softirqs: 1) it first computes a hash on the device

ID and the flow key to uniquely select a CPU for processing a softirq (line 19–20).

Given the nature of hashing, the first choice is essentially a uniformly random CPU in

the Falcon CPU set. This helps evenly spread softirqs across CPUs without quan-

titatively comparing their loads. If the first selected CPU is busy, Falcon performs

double hashing to pick up another CPU (second choice, line 25–26). Regardless if the

second CPU is busy or not, Falcon uses it for balancing softirqs.

The fundamental challenge is the gap between fine-grained, distributed, per-

packet balancing and the complexity of achieving global load balance. To overcome

it, Falcon devises a dynamic softirq balancing algorithm that 1) prevents overload-

ing any core and 2) maintains a reasonably good balance across cores 3) at a low cost.

As shown in Algorithm 1, the dynamic balancing algorithm centers on two designs.

46

Algorithm 1 Dynamic Softirq Balancing

1: Variables: socket buffer skb; current average load of the system Lavg; network flow

hash skb.hash and device ID ifindex ; Falcon CPU set falcon cpus.

2: // Stage transition function

3: function netif rx(skb)

4: // Enable Falcon only if there is room for parallelization

5: if Lavg ¡ falcon load threshold then

6: cpu := get falcon cpu(skb)

7: // Enqueue skb to cpu’s packet queue and raise softirq

8: enqueue to backlog(skb, cpu)

9: else

10: // Original execution path (RPS or current CPU)

11: . . .

12: end if

13: end function

14: // Determine where to place the next softirq

15: function get falcon cpu(skb)

16: // First choice based on device hash

17: hash := hash 32(skb.hash + ifindex)

18: cpu := falcon cpus[hash % nr falcon cpus]

19: if cpu.load ¡ falcon load threshold then

20: return cpu

21: end if

22: // Second choice if the first one is overloaded

23: hash := hash 32(hash)

24: return falcon cpus[hash % nr falcon cpus]

25: end function

47

First, Falcon is enabled only when there are sufficient CPU resources to parallelize

individual network flows otherwise all softirqs stay on the original core (line 6–9).

Falcon monitors system-wide CPU utilization and switches softirq pipelining and

splitting on and off according to FALCON LOAD THRESHOLD. Second, Falcon employs a

two-choice algorithm for balancing softirqs: 1) it first computes a hash on the device

ID and the flow key to uniquely select a CPU for processing a softirq (line 19–20).

Given the nature of hashing, the first choice is essentially a uniformly random CPU in

the Falcon CPU set. This helps evenly spread softirqs across CPUs without quan-

titatively comparing their loads. If the first selected CPU is busy, Falcon performs

double hashing to pick up another CPU (second choice, line 25–26). Regardless if the

second CPU is busy or not, Falcon uses it for balancing softirqs.

3.5 Implementation

We have implemented Falcon upon Linux network stack in two generations of

Linux kernel, 4.19 and 5.4. Underpinning Falcon’s implementation, there are two

specific techniques:

3.5.1 Stage Transition Functions

To realize softirq pipelining and splitting, Falcon re-purposes a state transition

function, netif rx (line 4–14 of Algorithm 1), and explicitly inserts it at the end of

each network device’s processing path. Therefore, once a packet finishes its processing

on one network device, it could be steered by netif rx to a different CPU core for the

subsequent processing. The netif rx function relies on the CPU-selection function

get falcon cpu (line 17–27) to choose a target CPU (line 7), enqueues the packet to

the target CPU’s packet processing queue (line 8), and raises a softirq to signal the

target CPU (also line 8).

48

Furthermore, in the current implementation of softirq splitting, Falcon splits

two heavy processing functions of the first network device (i.e., physical NIC) —

skb allocation and napi gro receive — onto two separate cores by inserting

netif rx right before the napi gro receive function. We call this approach “GRO-

splitting”. Note that, to apply such a splitting approach, we need to identify that the

two split functions are “stateless” — the processing of one function does not depend

on the other function.

3.5.2 Hashing-Based Load Balancing Mechanism

Falcon employs a two-choice dynamic load balancing algorithm (line 17–27),

which relies on a new hashing mechanism to pick up the target CPU. Specifically, the

first CPU choice is determined by the hash value (line 19) calculated upon both the

flow information skb.hash and device information ifindex — skb.hash represents

the flow hash, calculated only once when a packet enters the first network device and

based on the flow key (flow keys); ifindex represents the unique device index of a

network device. With this hash value, Falcon ensures that 1) given the same flow but

different network devices, hash values are distinct — a flow’s multiple process stages of

devices can be distinguished; 2) given the same network device, all packets of the same

flow will always be processed on the same core — preserving processing dependencies

and avoiding “out-of-order” delivery; 3) Falcon does not need to store the “core-to-

device” mapping information; instead, such mapping information is captured by the

hash value, inherently. Furthermore, if the first CPU choice fails (i.e., the selected

CPU is busy), Falcon simply generates a new hash value for the second choice (line

25).

Falcon is enabled when the average system load (i.e., CPU usage) is lower

than FALCON LOAD THRESHOLD (line 6); otherwise, it is disabled (line 11) indicating no

49

sufficient CPU resources for packet parallelization. Falcon maintains the average

system load in a global variable Lavg and updates it every N timer interrupts within

the global timer interrupt handler (i.e., do timer), via reading the system state in-

formation (i.e., /proc/stat) to detect each core’s load.

3.6 Evaluation

We evaluate both the effectiveness of Falcon in improving the performance of

container overlay networks. Results with micro-benchmarks demonstrate that 1) Fal-

con improves throughput up to within 87% of the native performance in UDP stress

tests with a single flow, 2) significantly improves latency for both UDP and TCP,

and 3) achieves even higher than native throughput in multi-flow TCP tests. Ex-

periments with two generations of Linux kernels that have undergone major changes

in the network stack prove Falcon’s effectiveness and generality. Results with real

applications show similar performance benefits. Nevertheless, overhead analysis re-

veals that Falcon exploits fine-grained intra-flow parallelism at a cost of increased

CPU usage due to queue operations and loss of locality, which in certain cases could

diminish the performance gain.

3.6.1 Experimental Configurations

The experiments were performed on two DELL PowerEdge R640 servers equipped

with dual 10-core Intel Xeon Silver 4114 processors (2.2 GHz) and 128 GB memory.

Hyperthreading and turbo boost were enabled, and the CPU frequency was set to the

maximum. The two machines were connected directly by two physical links: Intel

X550T 10-Gigabit Ethernet (denoted as 10G), and Mellanox ConnectX-5 EN 100-

Gigabit Ethernet (denoted as 100G). We used Ubuntu 18.04 with Linux kernel 4.19

and 5.4 as the host OSes. We used the Docker overlay network mode in Docker version

50

19.03.6 as the container overlay network. Docker overlay network uses Linux’s builtin

VXLAN to encapsulate container network packets. Network optimizations (e.g., TSO,

GRO, GSO, RPS) and interrupt mitigation (e.g., adaptive interrupt coalescing) were

enabled for all tests.

For comparisons, we evaluated the following three cases:

• Native host: running tests on the physical host network without containers

(denoted as Host).

• Vanilla overlay: running tests on containers with default docker overlay network

(denoted as Con).

• Falcon overlay: running tests on containers with Falcon-enabled overlay network

(denoted as Falcon).

3.6.2 Micro-Benchmarks

Single-flow stress test. As shown in Figure 3.2, UDP workloads suffer higher

performance degradation in overlay networks compared to TCP. Unlike TCP, which

is a connection-oriented protocol that has congestion (traffic) control, UDP allows

multiple clients to send packets to an open port, being able to press the network stack

to its limit on handling a single flow. Since Falcon addresses softirq serialization, the

UDP stress test evaluates its maximum potential in accelerating single flows. If not

otherwise stated, we used 3 sockperf clients to overload a UDP server. Experiments

were performed in Linux version 4.19 and 5.4. The new Linux kernel had major

changes in sk buff allocation, a data structure used throughout the network stack.

Our study revealed that the new kernel achieves performance improvements as well

as causing regressions.

Figure 3.11 shows that Falcon achieved significant throughput improvements

over Docker overlay, especially with large packet sizes. It delivered near-native

51

16B 1KB 4KB 64KB
Packet size

0

500

1000

1500

2000
IO

PS
 (K

pp
s)

181717

(a) Linux 4.19 (10G)
Host
Con
Falcon

16B 1KB 4KB 64KB
Packet size

421830

(b) Linux 4.19 (100G)
Host
Con
Falcon

16B 1KB 4KB 64KB
Packet size

401832

(c) Linux 5.4 (100G)
Host
Con
Falcon

Figure 3.11: Packet rates in host network, vanilla overlay, and Falcon overlay under
a UDP stress test.

throughput in the 10 Gbps Ethernet while bringing packet rate up to 87% of the

host network in the 100 Gbps Ethernet. However, there still existed a considerable

gap between Falcon and the host network for packets smaller than the maximum

transmission unit (MTU) in Ethernet (i.e., 1500 bytes).

0 1 2 3 4 0 1 2 3 4 0 1 2 3 40
25
50
75

100

CP
U

Ut
iliz

at
io

n
%

Core
(Host)

Core
(Container)

Core
(Falcon)

User System Softirq Idle

Figure 3.12: CPU utilization of a single UDP flow.

Figure 3.12 shows the breakdown of CPU usage on multiple cores for the 16B

single-flow UDP test in the 100 Gbps network. With the help of packet steering,

network processing in the vanilla Linux can utilize at most three cores – core-0 for

hardirqs and the first softirq responsible for packet steering, core-1 for the rest of

softirqs, and core-2 for copying received packets to user space and running application

52

threads. It can be clearly seen that core-1 in the vanilla overlay was overloaded by the

prolonged data path with three softirqs. In comparison, Falcon is able to utilize two

additional cores to process the two extra softirqs. The CPU usage also reveals that

both the host network and Falcon were bottlenecked by user space packet receiving

on core-2. Since Falcon involves packet processing on multiple cores, it is inevitably

more expensive for applications to access packets due to loss of locality. This explains

the remaining gap between Falcon and the host network. To further narrow the gap,

the user space applications need to be parallelized, which we leave for future work.

50% 90% 99% 99.99%
Percentile

200

300

400

500

La
te

nc
y

(
s)

(a) UDP (400 Kpps)
Host
Overlay
Falcon

50% 90% 99% 99.99%
Percentile

500

1000

1500

2000
(b) TCP (1 Mpps)

50% 90% 99% 99.99%
Percentile

1000

1500

2000

(c) UDP (Overloaded)

50% 90% 99% 99.99%
Percentile

1000

2000

3000

4000

(d) TCP (Overloaded)

Figure 3.13: Effect of Falcon on per-packet latency. Packet size is 16 B in (a, c, d)
and 4 KB in (b).

Single-flow latency. Figure 3.13 depicts per-packet latency in single-flow UDP

and TCP tests. We are interested in latency in both 1) underloaded tests, wherein

client sending rate is fixed in all three cases to avoid overloading any cores on the

receiving side, and 2) overloaded tests, in which each case is driven to its respective

maximum throughput before packet drop occurs. In the underloaded UDP test in

Figure 3.13 (a), Falcon had modest improvements on the average and 90th percentile

latency and more pronounced improvements towards the tail. Note that fine-grained

softirq splitting, such as GRO splitting, did not take effect in UDP since GRO was

not the bottleneck. In contrast, Figure 3.13 (c) suggests that softirq pipelining helped

53

tremendously in the overloaded UDP test wherein packets processed on multiple cores

experienced less queuing delay than that on a single core.

Figure 3.13 (b) and (d) shows the effect of Falcon on TCP latency. Our ex-

periments found that in the overloaded TCP test (Figure 3.13 (d)), latency is largely

dominated by queuing delays at each network device and hence the improvement is

mainly due to softirq pipelining while softirq splitting may also have helped. It is

worth noting that Falcon was able to achieve near-native latency across the spec-

trum of average and tail latency. For underloaded TCP test with packets less than 4

KB (not listed in the figures), neither softirq splitting nor pipelining had much effect

on latency. For 4 KB underloaded TCP test (Figure 3.13 (b)), GRO splitting helped

to attain near-native average and the 90th percentile latency but failed to contained

the long tail latency. We believe this is due to the possible delays in inter-processor

interrupts needed for raising softirqs on multiple cores. It is worth noting that despite

the gap from the host network Falcon consistently outperformed the vanilla overlay

in all cases.

1 5 10 20
Number of flows

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

IO
PS

 (M
pp

s)

(a) 100G Ethernet, UDP
Linux 4.19

Host
Con
Falcon

1 5 10 20
Number of flows

(b) 100G Ethernet, UDP
Linux 5.4

1 5 10 20
Number of flows

(c) 100G Ethernet, TCP
Linux 4.19

Host
Host+

Con
Falcon

1 5 10 20
Number of flows

(d) 100G Ethernet, TCP
Linux 5.4

Figure 3.14: Packet rates in host network, vanilla overlay, and Falcon under multi-
flow UDP and TCP tests.

Multi-flow throughput. This sections compares Falcon with existing packet

steering techniques (i.e., RSS/RPS) in multi-flow tests — multiple flows were hosted

54

within one container. In all tests, both RSS and RPS were enabled and we used

dedicated cores in FALCON CPUS. This ensures that Falcon always has access to idle

cores for flow parallelization. As previously discussed, GRO-splitting is only effective

for TCP workloads and hence does not take effect in UDP tests. The packet sizes were

set to 16 B and 4 KB for UDP and TCP, respectively. Unlike the UDP stress test,

which used multiple clients to press a single flow, the multi-flow test used one client

per flow. Figure 3.14 (a) and (b) show that Falcon can consistently outperform the

vanilla overlay with packet steering by as much as 63%, within 58% to 75% of that in

the host network. Note that Falcon neither improved nor degraded performance for

a single flow. It is because, for UDP tests with 16 B packets without using multiple

clients, the sender was the bottleneck.

For TCP multi-flow tests, we further enabled GRO-splitting for the host net-

work (denoted as Host+). Figure 3.14 (c) and (d) show that GRO processing is a

significant bottleneck even for the host network. GRO-splitting helped achieve up to

56% throughput improvement in Host+ than that in the vanilla host network. With

Falcon, the overlay network even outperformed Host by as much as 37%.

6 10 20 40
Number of flows/containers

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (M

pp
s)

(a) UDP Throughput

Con
Falcon

6 10 20 40
Number of flows/containers

0

25

50

75

100

CP
U

Ut
iliz

at
io

n
(%

)

(b) UDP CPU Utilization

6 10 20 40
Number of flows/containers

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

(c) TCP Throughput

6 10 20 40
Number of flows/containers

0

25

50

75

100

CP
U

Ut
iliz

at
io

n
(%

)

(d) TCP CPU Utilization

Figure 3.15: Falcon’s benefit diminishes as utilization increases but causes no per-
formance loss when system is overloaded.

Multi-container throughput in busy systems. This section evaluates Falcon

in more realistic scenarios in which multiple containers, each hosting one flow, are

55

running in a busy system. Unlike the multi-flow tests that used dedicated, idle cores

for flow parallelization, in the multi-container tests all cores were actively processing

either hardirqs, softirqs, or application threads. Falcon needed to exploit idle CPU

cycles on unsaturated cores for flow parallelization. This evaluates the effectiveness of

the dynamic balancing algorithm. We limited the packet receiving CPUs to 6 cores 4

and configured them as FALCON CPUS. As illustrated in Figure 3.15, we gradually in-

creased the number of containers from 6 to 40 in order to drive the receiving cores

from around 70% busy until overloaded. We observed that: 1) when the system had

idle CPU cycles (e.g., under 6 or 10 containers), Falcon was able to improve overall

throughput by up to 27% and 17% under UDP and TCP, respectively. In addition,

Falcon’s performance was more consistent across runs compared to the vanilla con-

tainer network; 2) when the system was pressed towards fully saturated (e.g., 100%

utilization with 20 and more containers), Falcon’s gain diminished but never under-

performed RSS/RPS. Figure 3.15 (b) and (d) show that Falcon’s diminishing gain

was observed during high CPU utilization and Falcon was disabled once system is

overloaded.

Parameter sensitivity. Falcon is disabled when the system load is high since

there is a lack of CPU cycles for parallelization. In this section, we evaluate the

effect of parameter FALCON LOAD THRESHOLD, which specifies the utilization threshold

for disabling Falcon. Figure 3.16 shows that always enabling Falcon (denoted as

always-on) hurt performance when the system was highly loaded while setting a low

utilization threshold (e.g., 70% and lower) missed the opportunities for parallelization.

Our empirical studies suggested that a threshold between 80-90% resulted in the best

performance.

4It was impractical for us to saturate a 40-core system due to limited client machines; hence we

selected a subset of cores for evaluation.

56

6 10 20 40
Number of flows

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (M

pp
s)

(a) UDP

6 10 20 40
Number of flows

0
10
20
30
40

Th
ro

ug
hp

ut
 (G

bp
s)

(b) TCP

70% 80% 90% Always on

Figure 3.16: Effect of the average load threshold and its impact on container network
performance.

UDP TCP0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Re
la

tiv
e

th
ro

ug
hp

ut Static Dynamic

Figure 3.17: Falcon adapts to changing workload and re-balances softirqs dynami-
cally.

Adaptability test. To demonstrate the significance of Falcon’s two-random

choice algorithm, we created hotspots by suddenly increasing the intensity of certain

flows. In a hashing-based balancing algorithm, such as RSS/RPS and the first ran-

dom choice in Falcon, the softirq-to-core mapping is fixed, thereby unable to adapt

to workload dynamics. In contrast, Falcon’s two-choice dynamic re-balancing algo-

rithm allows some softirqs to be steered away from an overloaded core and quickly

resolves the bottleneck. In the test, we randomly increased the intensity of one flow,

resulting in one overloaded core. We compare Falcon’s two-choice balancing algo-

rithm (denoted as dynamic) with static hashing (Falcon’ balancing algorithm with

57

the second choice disabled, denoted as static). As shown in Figure 3.17, the two-

choice balancing algorithm achieved 18% higher throughput in UDP about 15% higher

throughput in TCP, respectively. Most importantly, the performance benefit was

consistent across multiple runs. These results suggest that the two-choice balancing

algorithm can effectively resolve transient bottlenecks without causing fluctuations.

3.6.3 Application Results

Web serving. We measured the performance of the Cloudsuite’s Web Serving

benchmark [48] with Falcon. Cloudsuite Web Serving, which is a benchmark to

evaluate page load throughput and access latency, consists of four tiers: an nginx

web server, a mysql database, a memcached server and clients. The web server runs

the Elgg [49] social network and connects to the cache and database servers. The

clients send requests, including login, chat, update, etc., to the social network (i.e.,

the web server). We evaluated the performance with our local testbed. Web server’s

pm.max children was set to 100. The cache and database servers were running on

two separate cores to avoid interferences. All clients and servers ran inside containers

and were connected through Docker overlay networks on top of the 100 Gbps NIC.

BrowsetoElgg

DoLogin

PostSelfWall

SendChatMessage

AddFriend

Logout

UpdateActivity

ReceiveChatMessage

0

1

2

3

4

Re
la

tiv
e

no
. o

f
op

er
at

io
ns

(a) Success operation
Con
Falcon

BrowsetoElgg

DoLogin

PostSelfWall

SendChatMessage

AddFriend

Logout

UpdateActivity

ReceiveChatMessage

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

re
sp

on
se

 ti
m

e

(b) Average response time

BrowsetoElgg

DoLogin

PostSelfWall

SendChatMessage

AddFriend

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

de
la

y
tim

e

(c) Average delay time

Figure 3.18: Falcon improves the performance of a web serving application in terms
of higher operation rate and lower response time.

58

Figure 3.18(a) shows the “success operation” rate with a load of 200 users

under the vanilla overlay network and Falcon. Compared to the vanilla case, Fal-

con improves the rate of individual operations significantly, by up to 300% (e.g.,

BrowsetoElgg). Figure 3.18(b) and (c) illustrate the average response time and de-

lay time of these operations: The response time refers to the time to handle one

request, while the delay time is the difference between the target (expected time

for completion) and actual processing time. With Falcon, both response time and

delay time are significantly reduced. For instance, compared to the vanilla case,

the maximum improvement in average response time and delay time is 63% (e.g.,

PostSelfWall) and 53% (e.g., BrownsetoElgg), respectively. Falcon’s improve-

ments on both throughput and latency are mainly due to distributing softirqs to

separate cores, thus avoiding highly loaded cores.

Avg 90% 95% 99%0

20

40

60

80

La
te

nc
y

(µ
s)

1 Client (Con)
1 Client (Falcon)

10 Clients (Con)
10 Clients (Falcon)

Figure 3.19: Falcon reduces the average and tail latency under data caching using
Memcached.

Data caching. We further measured the average and tail latency using Cloudsuite’s

data caching benchmark, memcached [50]. The client and server were running in

two containers connected with Docker overlay networks. The memcached server was

configured with 4GB memory, 4 threads, and an object size of 550 bytes. The client

59

had up to 10 threads, submitting requests through 100 connections using the Twitter

dataset. As shown in Figure 3.19, with one client, Falcon reduces the tail latency

(99th percentile latency) slightly by 7%, compared to the vanilla case. However,

as the number of clients grows to ten, the average and tail latency (99th percentile

latency) are reduced much further under Falcon, by 51% and 53%. It is because,

as the number of clients (and the request rate) increases, kernel spends more time

in handling interrupts, and Falcon greatly increases its efficiency due to pipelined

packet processing and balanced software interrupts distribution.

100 200 300 400 500
Packet rate (Kpps)

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
CP

U
us

ag
e

(a) Total CPU utilization
Host Con Falcon

NET_RX0

10

20

30

40

In
vo

ca
tio

n
pe

r s
ec

 (x
10

00
)(b) Softirq count

Figure 3.20: Overhead of Falcon.

3.6.4 Overhead Analysis

The overhead of Falcon mainly comes from two sources: interrupt redistri-

bution and loss of packet data locality. These are inevitable, as Falcon splits one

softirq into multiple ones to help packets migrate from one CPU core to another.

Note that, the essence of Falcon is to split and spread CPU-consuming softirqs

to multiple available CPUs instead of reducing softirqs. As the overhead ultimately

results in higher CPU usage given the same traffic load, we quantify it by measuring

60

the total CPU usage with fixed packet rates. Figure 3.20 shows the CPU usage with

a 16B single-flow UDP test under various fixed packet rates in three network modes:

native host, vanilla overlay, and Falcon.

As depicted in Figure 3.20 (a), compared to vanilla overlay, Falcon consumes

similar (or even lower) CPU resources when the packet rate is low, while slightly

more CPU resources (≤ 10%) when the packet rate is high. Meanwhile, Falcon

triggers more softirqs, e.g., by 44.6% in Figure 3.20 (b).5 It indicates that though

Falcon could result in loss of cache locality as the processing of a packet is spread

onto multiple cores, it brings little CPU overhead compared to the vanilla overlay. It

is likely because the vanilla overlay approach does not have good locality either, as it

needs to frequently switch between different softirq contexts (e.g., for NIC, VXLAN,

and veth) on the same core. As expected, Falcon consumes more CPU resources

compared to native host, and the gap widens as the packet rate increases.

3.6.5 Discussion

Dynamic softirq splitting. While we found softirq splitting is necessary for TCP

workloads with large packets and can significantly improve both throughput and

latency, it may impose overhead for UDP workloads that are not bottlenecked by GRO

processing. In the meantime, we employ offline profiling to determine the functions

within a softirq that should be split and require the kernel to be recompiled. Although

Falcon can be turned on/off completely based on the system load, there is no way

to selectively disable function-level splitting while keeping the rest part of Falcon

running. As such, certain workloads may experience suboptimal performance under

GRO splitting. One workaround is to configure the target CPU for softirq splitting

5Note that the overlay network triggers fewer softirqs in Figure 3.20 (b) than that in Figure 3.4,

as we measured it in a less loaded case (400 Kpps).

61

to use the same core so that the split function is never moved. We are investigating

a dynamic method for function-level splitting.

Real-world scenarios. Falcon is designed to be a general approach for all types

of network traffic in container overlay networks. Particularly, two practical scenarios

would greatly benefit from it: 1) Real-time applications based on “elephant” UDP

flows, such as live HD streaming, VoIP, video conferencing, and online gaming; 2) a

large number of flows with unbalanced traffic — multiple flows could co-locate on the

same core if the number of flows is larger than the core count, where Falcon can

parallelize and distribute them evenly. Note that, Falcon’s effectiveness depends on

access to idle CPU cycles for parallelization. In a multiple-user environment, policies

on how to fairly allocate cycles for parallelizing each user’s flows need to be further

developed.

3.7 Conclusion

This chapter demonstrates that the performance loss in overlay networks due to

serialization in the handling of excessive, expensive softirqs can be significant. We seek

to parallelize softirq processing in a single network flow and present Falcon, a fast

and balanced container network. Falcon centers on three designs: softirq pipelining,

splitting, and dynamic balancing to enable fine-grained, low-cost flow parallelization

on multicore machines. Our experimental results show that Falcon can significantly

improve the performance of container overlay networks with both micro-benchmarks

and real-world applications.

62

CHAPTER 4

ACCELERATING PACKET PROCESSING IN CONTAINER

OVERLAY NETWORKS VIA PACKET-LEVEL PARALLELISM

Overlay networks serve as the de facto network virtualization technique for pro-

viding connectivity among distributed containers. Despite the flexibility in building

customized private container networks, overlay networks incur significant performance

loss compared to physical networks (i.e., the native). The culprit lies in the inclusion

of multiple network processing stages in overlay networks, which prolongs the net-

work processing path and overloads CPU cores. In this chapter, we propose mFlow,

a novel packet steering approach to parallelize the in-kernel data path of network

flows. mFlow exploits packet-level parallelism in the kernel network stack by split-

ting the packets of the same flow into multiple micro-flows, which can be processed in

parallel on multiple cores. mFlow devises new, generic mechanisms for flow splitting

while preserving in-order packet delivery with little overhead. Our evaluation with

both micro-benchmarks and real-world applications demonstrates the effectiveness of

mFlow, with significantly improved performance – e.g ., by 81% in TCP through-

put and 139% in UDP compared to vanilla overlay networks. mFlow even achieved

higher TCP throughput than the native (e.g ., 29.8 vs. 26.6 Gbps).

4.1 Introduction

Due to high portability, high density, low performance overhead, and low oper-

ational cost, containers have quickly gained popularity and become adopted by high

performance computing systems (HPC) [51, 52, 53, 54, 55, 56, 57, 58, 59]. Unlike

63

VMs, containers achieve lightweight virtualization by running directly on the host op-

erating systems (OS) – i.e., no guest OSes and virtual hardware emulation involved

– while isolation between containers remains enforced through kernel-level features

such as namespaces [60], cgroups [61], and seccomp [62].

However, containers are no longer lightweight with regard to peripheral compo-

nents, especially for networking. Recent studies [2, 1, 14] revealed that compared to

the native (i.e., no virtualization), containers achieved ∼50% less network through-

put and suffered much higher packet-level processing latency. The culprit of the poor

container network performance lies in the complexity of constructing network con-

nections: Containers rely on overlay networks – the de facto network virtualization

technique in containers – allowing each container to have its own network namespace

and private IP address while being independent of the host network. The construction

of overlay networks requires a set of software network devices, such as VxLAN [12] for

packet encapsulation/decapsulation, veth for virtual network interfaces of contain-

ers, and virtual bridges (e.g ., Linux bridge or Open vSwitch [13]) to connect them.

The involvement of multiple software network devices prolongs the data path of con-

tainer network packets, inevitably incurring additional overhead and delays to packet

processing with high CPU usage [2, 14].

Worse, since the Linux kernel typically squeezes all the processing stages of

a single flow on a single CPU core [2], the computation of packet processing can

easily overload the core, thus throttling the network throughput of the flow. This

negatively impacts the performance and scalability of many HPC workloads, such as

live HD streaming, distributed machine learning tasks, and big data processing tasks –

typically generating long-lived, high-throughput flows, known as “elephant” flows. For

example, due to such a CPU bottleneck, distributed machine learning tasks stopped

scaling after only consuming 25 Gbps out of a 100 Gbps network link [63].

64

This chapter investigates how and to which degree in-kernel packet process-

ing can be optimized to accelerate container overlay networks. Ideally, the above-

mentioned CPU bottleneck can be addressed/mitigated if we can effectively convert

any elephant flow into multiple mouse flows, each containing a small portion of the

flow’s packets and being processed upon a separate core. Several instant benefits are:

(1) Each mouse flow contains fewer packets, thus avoiding overloading a single core

(even for a heavyweight network device); (2) Packets of different mouse flows can

be processed in parallel, thus accelerating packet processing speed; (3) It can more

efficiently leverage a multi-core system to mix and balance elephant and mouse flows

– i.e., an elephant flow is just equivalent to a bunch of mice flows.

To seek the feasibility of this idea, we design and develop mFlow – a novel

approach to parallelize in-kernel data path of (elephant) flows. mFlow exploits fine-

grained, packet-level parallelism based on an often overlooked fact: While existing

in-kernel packet processing requires all packets of a single flow to be processed in

a pipelined manner (in sequence), in-order packet processing does not need to be

strictly guaranteed at all times along the stateless network path, but instead only

when necessary (for the stateful path), e.g ., before packets enter the transport layer

(i.e., TCP) or are sent to user-space applications. Upon this observation, mFlow

achieves packet-level parallelism by splitting the packets of the same flow into multiple

small batches, called micro-flows, which can be processed in parallel on multiple cores.

mFlow devises generic packet steering mechanisms for in-kernel flow splitting that

can be enabled at any point of the stateless network path.

One key challenge to mFlow lies in that as each CPU core may have different

processing capability and/or be interrupted by concurrent kernel tasks, packets of

different micro-flows may not preserve their arrival order after parallel processing –

out-of-order packet delivery causes incorrectness (in TCP) or poor user experiences (in

65

UDP). This is precisely why the existing in-kernel network stack processes packets

in order, thus only needing to reorder a small number of packets that are delayed

during transmission. Although mFlow can leverage the kernel’s packet reordering

mechanism to ensure all packets are still in order after parallel processing, the packet-

level reordering incurs significant overhead. mFlow addresses this issue in two ways:

(1) by choosing a suitable batch size for micro-flows, the number of out-of-order

packets can be dramatically reduced; (2) instead of reordering packets at a per-

packet level, mFlow devises a batch-based flow reassembling mechanism incurring

little overhead.

We know of no other kernel techniques supporting packet-level parallelism for

accelerating container overlay networks. We have implemented a prototype of mFlow

in the Linux network stack (with kernel version 5.7). To summarize, in this chapter,

we have made the following contributions:

• We perform a detailed investigation of the performance of container overlay

networks and identify the main performance bottleneck for elephant flows to be

the lack of sufficient network processing parallelism.

• We design and implement mFlow, which explores packet-level packet process-

ing parallelism in commodity OS kernel for fast overlay networks. Unlike ex-

isting approaches that only parallelize packet processing at a coarse-grained

flow/device level, mFlow allows a flow to be parallelized at any stateless stage

along the network processing pipeline.

• Our evaluation of mFlow using both micro-benchmarks and real-world appli-

cations shows that mFlow can significantly improve network throughput (e.g .,

by 81% in TCP and 139% in UDP compared to the vanilla overlay networks)

and application-level performance (e.g ., by up to 7.5x for web serving). mFlow

66

even achieves higher TCP throughput under container overlay networks than

the native (e.g ., 29.8 vs. 26.6 Gbps) due to packet-level processing parallelism.

pNIC Packets

Ring Buffer

❶ IRQ ❶ DMA

Top Half

❷ softIRQ

Application Application
Buffer

❸ Data Copy

❸ Packet Delivery

rq1
rq2
rq3
rq4
…
rqn

Request
Queue(s)

skb1
skb2
skb3
skb4
…

skbn

Packet
Processing
Queue(s)pNIC

Network
stacks

Bottom Half

Figure 4.1: In-kernel packet processing.

4.2 Background and Motivation

4.2.1 Background

Packet processing: In-kernel packet processing, as illustrated in Figure 4.1, involves

a complicated pipeline that traverses the physical network interface controller (pNIC),

the kernel space, and the user space. We use packet reception as an example to

demonstrate the process: When a packet arrives at the pNIC, in step ➊, it is copied

(via DMA) to the kernel ring buffer, and the pNIC triggers a hardware interrupt

(IRQ). The kernel is then invoked by the IRQ and starts the packet receiving process.

The in-kernel receiving procedure further involves two parts: the top half and the

bottom half.

67

The top half runs in the context of the IRQ, which simply marks that there is

an incoming packet (in request queues) waiting for processing and notifies the bottom

half (i.e., by raising a software interrupt). The bottom half is then executed in the

form of a software interrupt (softirq) (in step ➋). It serves as the main kernel network

packet processing routine to process the packet through a set of network devices (e.g .,

both physical and software NICs) and network protocol layers (e.g ., from layer 2 to

layer 3/4). The Linux kernel uses a key data structure, skb (i.e., socket buffer), to

represent each packet that can be freely manipulated and transferred across these

network devices and layers. After a packet traverses all needed network devices and

protocol layers along its path, it is finally delivered to the user-space application (in

step ➌) — i.e., the packet data/payloads (stored in the kernel ring buffer) is copied

from the kernel buffer to the user-space application’s buffer.

pNIC Packets

Top Half

Application Application
Buffer

VXLAN Container
bridge

Container
vNIC

Layer2

Layer3

Layer4 Processing
through
Protocol
Stacks

(IP,
UDP/TCP)

Bottom Half

Packet
Decaps
ulation

Ring
Buffer

❶ IRQ
❶ DMA

❷ softIRQ

❸ Packet Delivery

❸ Data
Copy

pNIC

Figure 4.2: Container overlay networks.

68

Container overlay networks: Container overlay networks hinge on a tunneling

technique (e.g ., through VxLAN [12]): When a container sends a packet (with private

IPs), the overlay network encapsulates the packet in a new packet with the (source

and destination) host IPs as the new packet header and the original packet as payload.

When a container receives a packet, the overlay network decapsulates the received

packet to recover the original packet and delivers it to the target containerized appli-

cation using its private IP address.

As illustrated in Figure 4.2, the Linux kernel constructs the container overlay

network with the help of several in-kernel software network devices – i.e., a VxLAN net-

work device for packet encapsulation/decapsulation, a virtual Ethernet device (veth)

for virtual network interfaces of containers, and a virtual bridge (e.g ., Linux bridge or

Open vSwitch [13]) to connect them. Hence, before a container packet is received by

the user-space application, it needs to traverse three software devices and goes through

the network protocol stacks twice — one for packet decapsulation and one for sending

the decapsulated packet (by veth) to the user-space application. Throughout the

whole process, one IRQ and three softirqs — i.e., by pNIC, VxLAN, and veth — are

raised. Therefore, compared to the native, the overlay network incurs prolonged data

path with extra processing overhead.

Parallel packet processing: The prolonged data path in container overlay networks

slows down per-packet processing and consumes more CPU cycles. By default, as the

vanilla case shows in Figure 4.3, the Linux kernel squeezes all stages of a single

flow’s packet processing onto a single CPU core 1. It is because the Linux network

stack has been developed over the years and originally targeted less-powerful network

1The kernel thread for packet delivery – i.e., copying data from the kernel ring buffer to the user-

space buffer – is bonded with the core where the application thread runs; it can run on a separate

core other than the in-kernel packet processing core(s).

69

CPU4

Packet
Delivery

Bottom
Half

CPU1

Top Half

Top Half

CPU2

Others
Bottom

Half

VXLAN

Packet
Delivery

CPU3

vNIC

Packet
Delivery

Vanilla

RPS

FALCON

pNIC

Top Half

pNIC

Figure 4.3: Parallel packet processing.

devices (e.g ., 1/10 Gbps) where a single core was powerful enough to handle a single

network flow. However, in the face of today’s high-performance, high-throughput

network devices (e.g ., 100/400 Gbps), the CPU becomes the bottleneck – i.e., packet

processing can easily saturate a single core, preventing a single flow from achieving

higher network throughput.

To leverage a multi-core system, both hardware and software packet steering

approaches have been proposed to parallelize packet processing:

(1) Modern physical NICs enable multiple queues and apply receive side scaling

(RSS) [26] to map different flows to separate cores (via hash values). This achieves

inter-flow parallelism as different flows are associated with distinct hash values and

can be mapped to different cores. Note that, it is common that one server can have

more flows than available CPU cores; multiple flows might still be mapped to the same

CPU core. The hardware-based parallelism mechanism, however, does not parallelize

70

a single (elephant) flow, as all packets from the same flow are assigned with the same

hash value and hence processed on the same core.

(2) Receive packet steering (RPS) [27] in the Linux kernel is a software imple-

mentation of RSS, which realizes packet steering in the context of the first softirq

(raised by pNIC’s IRQs) and again achieves inter-flow parallelism – i.e., each flow is

identified using a distinct hash value and mapped to a separate core. As the “RPS”

case shows in Figure 4.3, for a single flow, RPS only separates the “top half” (as well

as the first softirq) and the remaining “bottom half” onto two cores.

(3) Recent effort, Falcon [2], observed the lack of single-flow parallelization

and enabled device-level and function-level parallelization for a single flow. As the

“Falcon” case shows in Figure 4.3, packet processing stages associated with distinct

network devices (pNIC, VxLAN, vNIC, etc.) can be distinguished and placed on separate

cores by Falcon. However, one limitation of Falcon lies in that if a network device

is heavy (e.g ., VxLAN), it can still saturate one CPU core and becomes the bottleneck.

Further, the processing of a network packet in Falcon spans across multiple CPU

cores, resulting in reduced data locality and extra queuing delays. Last, function-

level parallelization in Falcon seems hard-coded and requires in-depth kernel code

analysis.

4.2.2 Motivation

Experimental settings: To quantitatively analyze the effectiveness of existing par-

allel packet processing approaches, we evaluated the throughput and CPU utilization

of the VxLAN-based overlay network using sockperf [41] (i.e., a TCP/UDP traffic gen-

erator) between a pair of client and server machines. The machines were connected

with Mellanox ConnectX-5 EN 100-Gigabit Ethernet adapters. Both the client and

server had sufficient CPU and memory resources.

71

16B 4KB 64KB
Message Size (UDP)

0

5

10

15

20

25

30

35

40

16B 4KB 64KB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (TCP)

Native
Con (vanilla)
RPS
Falcon (device-level)
Falcon (function-level)

Figure 4.4: Throughput comparison under TCP/UDP with varying message sizes.

0 1 2 3 0 1 2 30 1 2 3

Con (vanilla) RPS FALCON (dev) FALCON (func)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3

C
P

U
 u

ti
liz

a
ti
o
n

user system softirq idle

Native

0 1 2 3

Figure 4.5: CPU utilization on separate cores (TCP with 64KB packet size).

Performance analysis: Figure 4.4 and Figure 4.5 depict the performance and CPU

utilization comparisons between the native (i.e., no containers), VxLAN-based con-

tainer overlay network, RPS [27], and Falcon [2] using a single flow. We enabled

the Linux kernel’s default RPS mechanism. We downloaded Falcon’s source code

from its Github repository [64] and deployed its two parallelization approaches – at

the device or function level.

72

Compared to the native, container overlay networks incurred higher perfor-

mance overhead with significant performance drops – 40% for TCP and 80% for UDP

under large message sizes (e.g ., 64 KB). The main reason is that: (1) container over-

lay networks entail prolonged data path with more software network devices as shown

in Figure 4.2; (2) the Linux kernel by default places all packet processing of these

devices on a single core, which easily overloads the core as indicated in Figure 4.5

(the container vanilla case) – softirqs of all network devices overloaded core one (close

to 100%). Note that, Figure 4.5 shows average CPU utilization (e.g ., over 30 sec-

onds). Although the average CPU% is under 100%, instant peak CPU% could reach

100% and throttle the performance, preventing a single flow from achieving higher

throughput.

Compared to the vanilla overlay case, RPS slightly improved the throughput of

container overlay networks – by 6% for UDP and 24% for TCP under large message

sizes (e.g ., 64 KB). It is because, as shown in Figure 4.5 (the RPS case), RPS steered

part of the softirqs from core one to core two, making core one capable of serving

more packets. However, core one remained the bottleneck with high CPU usage, as

the heavyweight network device – VxLAN (i.e., part of the first softirq) – were still

processed on core one.

To mitigate this, Falcon [2] distinguished different network devices and dis-

patched them onto separate cores, namely the device-level pipelining. As the example

in Figure 4.5 shows, Falcon dispatched VxLAN to core two and placed the remain-

ing devices on core three. In this way, Falcon increased the UDP throughput of

container overlay networks significantly — by 80% (compared to vanilla overlay).

However, it was still far below the native (only within 30%), because the device-level

pipelining is still coarse-grained — i.e., a heavy device/function can still saturate a

single core.

73

Worse, the device-level pipelining merely worked for TCP with similar perfor-

mance as RPS (in Figure 4.4). The reason is that, under TCP, heavyweight functions

– e.g ., per-packet skb allocation and generic receive offload (GRO) 2 – remained on

core one and overloading it, as depicted in Figure 4.5 (i.e., the Falcon-dev case).

To overcome this, the function-level pipelining in Falcon can further separate these

functions onto separate cores. For example, by dispatching the GRO function (and all

the following softirqs) on core two, Falcon increased the throughput of TCP – by

20% (compared to RPS). Meanwhile, core one again was overloaded – now purely by

the skb allocation function (i.e., the Falcon-func case in Figure 4.5) that cannot be

parallelized by Falcon or any existing approaches.

Summary: Overlay networks incur non-trivial performance overhead for both TCP

and UDP. State-of-the-art approaches can parallelize packet processing to a certain

degree but encounter new bottlenecks. Hence, the performance of container overlay

networks remains significantly lower than the native.

4.3 Design

To exploit in-kernel packet processing parallelism, we design and developmFlow

with the key ideas as follows: Instead of following the long-established pipelined, in-

order processing, mFlow exploits packet-level parallelism by splitting packets of the

same flow into multiple small batches, called micro-flows, each being able to be pro-

cessed on a separate core, called splitting cores. By doing this, multiple micro-flows of

the same flow can be processed in parallel along the stateless network path and only

reassembled before entering the stateful processing stage or user-space applications.

As depicted in Figure 4.6, mFlow can scale a heavyweight network device or even

2GRO reassembles small packets into larger ones to reduce per-packet processing overhead. We

observed that the Linux kernel’s GRO is mainly effective for TCP connections but not for UDP.

74

vNIC

CPU5

Packet
Delivery

CPU1 CPU2/CPU3

VXLAN

CPU4

vNIC

Single
device
scaling

Top Half

pNIC

VXLAN’

Packet
Delivery

VXLAN
Full
path

scaling

Top Half VXLAN’ vNIC’

Splitting Merging

Splitting Merging

Parallel
processing

Parallel
processing

pNIC

pNIC’

Figure 4.6: mFlow achieves single device scaling or full path scaling via exploiting
packet-level parallelism.

the full network path for a single flow. In the following sections, we present mFlow’s

splitting mechanisms and how mFlow efficiently preserves in-order packet delivery.

4.3.1 Flow Splitting

mFlow does not re-design existing well-tested, mature kernel network stack,

but instead realizes novel packet steering mechanisms to exploit packet-level paral-

lelism. mFlow devises two generic mechanisms for in-kernel flow splitting – i.e.,

depending on whether the per-packet skb data structure is created or not. These

splitting mechanisms enable mFlow to either split a flow at a very early stage (i.e.,

right after the first IRQ) or at any point along the stateless network processing path

(i.e., layer 2/3 and UDP layer).

Splitting mechanism along stateless network path: mFlow splits a single

flow by leveraging in-kernel stage transition functions. Specifically, during packet

processing, a network packet – represented in the form of a skb data structure –

75

is transferred from one processing stage (i.e., a network device) to another via a

stage transition function (e.g ., netif rx). The stage transition function enqueues

the packet (i.e., skb) into the queue of the device to be processed next on the same

core. In this way, stage transition functions multiplex multiple stages of the flow in

a pipelined manner on the same core – i.e., once scheduled, each stage can process a

batch of packets; stages are processed in an interleaved manner.

skb1
skb2
skb3
skb4
…
skbi

❶ splitting
queue

Stage
transition

CPU2

skb5
skb6
skb7
skb8
…
rqm

CPU3

❶ splitting
queue

CPU1

a single flow

❷ split into
micro-flows

Heavy device
(e.g., VxLAN)

❹ packet
processing

❸ dispatch

Heavy device
(e.g., VxLAN)

❹ packet
processing

skb5
skb6
skb7
skb8
…
skbn

skb1
skb2
skb3
skb4

micro-
flow 1

micro-
flow 2

❸ dispatch

Figure 4.7: Flow-splitting function.

mFlow re-purposes the stage transition functions into a flow-splitting function

for heavyweight network devices (in Figure 4.7): During network device initialization,

for any network device (e.g ., VxLAN) that needs the packet-level parallelism, mFlow

creates per-core, per-device splitting queues (➊). During packet processing, before any

identified (elephant) flow enters the heavyweight network device, mFlow divides the

packets of the flow into multiple small batches (➋). Each batch is called a micro-flow

and covers a portion of the consecutive packets in the original flow. Then, mFlow

76

can select a distinct splitting core for a micro-flow and enqueues the packets of the

micro-flow into its target core’s splitting queue (➌). Meanwhile, a softirq is raised on

the target splitting core via inter-processor interrupt (IPI). In this way, the bottom

half of the network device will be executed later on all the involved splitting cores in

parallel (➍).

This flow-splitting function works upon the per-packet skb data structure and

can parallelize the processing of any stateless heavyweight network devices (or func-

tions, e.g ., GRO). However, similar to the “Falcon-func” case in Figure 4.5, after

mFlow scales the heavyweight VxLAN device in container overlay networks via the

flow-splitting function, we observed that the construction of the skb data structure

(in the first stage of packet processing) became a heavy process – i.e., it overloaded

a single core.

To scale these heavyweight functions, we need a flow splitting mechanism that

works at the earliest point of the network stack:

rq1
rq2
rq3
rq4
…
rqi

❶ request
ring buffer

Top Half

First half

CPU2

rq5
rq6
rq7
rq8
…
rqj

CPU3

❶ request
ring buffer

CPU1

rq5
rq6
rq7
rq8
…
rqn

rq1
rq2
rq3
rq4

driver’s request
queue

❸
split and
dispatch
requests

❷
locate

requests Second half

Second half
❹ skb

allocation

❹ skb
allocation

❸
split and
dispatch
requests

Figure 4.8: IRQ-splitting function.

77

Splitting mechanism for the first stage: Splitting the packets of a flow before

skb allocation is challenging due to two factors: (1) It requires the support of the

physical network device driver to locate raw packets. (2) As there is no skb, it

needs a lightweight data structure to represent each raw packet, thus being able to

dispatch them onto separate cores. To overcome these, mFlow devises an IRQ-

splitting function to split/parallelize packet processing at the first stage:

As depicted in Figure 4.8, during the initialization of a flow that needs first stage

parallelization, mFlow creates per-core request ring buffers on the splitting cores that

will parallelize the first stage processing (➊). Then, the IRQ-splitting function divides

the first stage – i.e., the softirq context of the pNIC – into two halves. The first half (1)

locates the incoming packet requests from the driver’s request queue (➋) – e.g ., each

request represents an incoming packet and contains information for the skb creation;

(2) dispatches the requests onto target cores (➌) – similar to the above micro-flow

based dispatching 3; and (3) raises softirqs on target splitting cores (via IPIs). Finally,

the second half will be invoked on the splitting cores to finish the remaining part of the

original first stage – e.g ., skb allocation (➍). With this, mFlow can split and scale

heavyweight functions at the earliest network software point by taking advantage of

multiple cores. Note that, the design of the IRQ-splitting function relies little on a

specific network device driver – i.e., it only needs to know the driver’s request queue

and the way to locate its requests – making it portable to different network devices.

Parameters for packet-level parallelism: The degree of packet-level parallelism

in mFlow is mainly determined by: (1) the number of outstanding packets; (2)

3Note that the IRQ-splitting function dispatches packet requests rather than skbs; it relies on

the data structure of packet requests, created by device drivers, to represent each raw packet, hence

being lightweight.

78

the batch size of micro-flows; and (3) the number of splitting cores. We discuss the

implications of each parameter as follows:

For both TCP and UDP workloads, a number of outstanding packets could

arrive at the receiver side approximately at the same time, especially for elephant

flows. For example, given a TCP connection under the throughput of ∼ 30 Gbps,

the sender (e.g ., iperf3 [31]) can issue ∼2,000 outstanding packets (with the size of

MTU being 1,500 bytes) without receiving an ACK from the receiver. As there is no

acknowledgment mechanism in UDP, a sender theoretically can issue as many out-

standing packets as possible to the receiver.4 As the outstanding packets arrive at

the receiver approximately at the same time, dispatching them onto multiple cores

enables packet-level parallelism. Therefore, the “heavier” a flow is, the more out-

standing packets it produces and the higher the packet-level parallelism degree can

be exploited.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

2 5 10 50 100 1000

O
u
t-

o
f-

o
rd

e
r

n
u

m
b

e
r

Batch size

Vanilla

Pipelining

2-core splitting

Figure 4.9: Number of out-of-order packet delivery vs. batch size of micro-flows (TCP
with 64KB packet size).

4Practical UDP workloads implement congestion control upon the UDP protocol, which adjusts

sending rate based on the observed quality of service such as packet loss, delay, jitter, etc.

79

Simply dispatching the outstanding packets of the same flow onto multiple cores

may cause out-of-order delivery as different cores may not have a uniform processing

speed. Though mFlow’s flow reassembling mechanism eventually preserves packet

orders, more out-of-order delivery means additional effort for order preservation.

We observed that, in Figure 4.9, the number of out-of-order delivery after split-

ting reduced significantly as the batch size of micro-flows increased. When the batch

size was set to 256 or above, little overhead was incurred for packet order preservation

in mFlow. Having a large batch size also preserves optimizations in packet process-

ing. For example, GRO reassembles small packets into larger ones, thus reducing the

number of packets to be processed. GRO can merge more consecutive small packets

given a larger batch size. Batch size also has implications on load distribution: If all

micro-flows have the same batch size and mFlow evenly distributes them on multiple

splitting cores, CPU utilization of each core would be similar (as packets go through

similar processing).

Ideally, mFlow can leverage as many cores as possible to exploit packet-level

parallelism. However, in practice, the performance benefit may diminish as the core

number increases due to multiple factors, such as the number of outstanding packets,

batch size, queuing delay, and reassembling overhead. Our evaluation shows that

using two cores for parallel packet processing greatly accelerates container overlay

networks performance – e.g ., even higher than the vanilla native case. Further, as the

original packet processing bottleneck has been mitigated by mFlow, a new bottleneck

arises due to data copying from the kernel to the user-space application.

4.3.2 Flow Reassembling

A key design goal of mFlow is not to involve out-of-order packet delivery due

to mFlow’s splitting mechanisms and parallel processing. We note that splitting a

80

CPU4

skb1
skb2
skb3
skb4

...
❶ buffer queue

skb5
skb6
skb7
skb8

...
Next network

processing stage

CPU2

CPU3

…

skb1❷
Intermediate

caching

❸ merging

❹ merging

❶ buffer queue
❷

Intermediate
caching

micro-
flow 1

micro-
flow 2

Figure 4.10: In-order flow reassembling.

single flow into micro-flows ensures that packets in each micro-flow naturally preserve

their arrival orders. However, since each core may have different processing capability

and/or be interrupted by other concurrent kernel tasks, packets of different micro-

flows may not preserve their arrival orders after parallel processing.

To preserve the original sequences of micro-flows, mFlow devises an efficient

batch-based flow reassembling mechanism. As depicted in Figure 4.10, for heavyweight

network devices (or functions) that need packet-level parallelism, mFlow creates

per-core, per-device buffer queues (➊). Then, for each splitting core that finishes

the processing of a packet, it enqueues the packet to its buffer queue (➋), instead

of directly sending it to the next processing stage. Meanwhile, each micro-flow is

associated with an identifier which is incremented based on the position of the micro-

flow in the original flow 5. In other words, the ID reflects each micro-flow’s order in

the original flow. mFlow uses a global merging counter to keep track of the ID of the

5mFlow stores the ID information in each packet’s skb data structure.

81

micro-flow being merged. To merge a micro-flow, mFlow (1) locates the buffer queue

that stores the packets having the ID same as the merging counter; (2) fetches the

packets from the buffer queue; and (3) sends them to the next processing queue/stage

(➌ and ➍). mFlow keeps consuming packets from the same buffer queue until the

next packet stores a different ID than the merging counter, indicating that mFlow

should move to consume the next micro-flow. After mFlow increments the merging

counter, it repeats step (1).

mFlow’s batch-based flow reassembling approach has the following advantages:

(1) The per-core, per-device buffer queues (used to cache intermediate micro-flows)

ensure that each core can keep processing packets without being blocked by the merg-

ing process. (2) Packets are “re-ordered” on a per-batch basis, which is extremely

efficient, especially compared to the kernel’s existing per-packet reordering mecha-

nism using an out-of-order queue. It also indicates that using a large batch size can

significantly reduce merging overhead – i.e., mFlow does not need to frequently

switch between buffer queues to locate the next micro-flow.

Note that, although it makes intuitive sense to merge micro-flows right after a

heavy device/function and before the next processing stage, we find that micro-flows

can actually be merged as late as possible as long as the following packet processing is

stateless (i.e., no inter-packet processing dependency). For example, for UDP flows,

micro-flows can be merged right before being delivered to user-space applications.

The advantages for the late merging are as follows: (1) mFlow can reuse existing in-

kernel backlog queues 6 as buffer queues with reduced queuing delay. (2) mFlow can

parallelize the full packet processing path with fewer splitting cores (in Figure 4.6).

(3) Packets are being processed on the same core with good data locality.

6In delivering packets to a user application, the kernel uses a backlog queue to store packets

temporarily while the receive queue is being used by the application’s receiving thread.

82

4.4 Implementation

We have implemented mFlow on the Linux network stack with kernel version

5.7 (∼600 LoC of addition or modification) with the focus on the presented splitting

and reassembling mechanisms.

4.4.1 Flow-Splitting Function

mFlow implements the flow-splitting function by re-purposing a state tran-

sition function, netif rx. Originally, such a state transition function enqueues a

packet (i.e., its skb) into the current core’s backlog queue for future processing on the

same core. mFlow, instead, splits received packets of a flow – that requires packet-

level parallelism for a heavy network device – into micro-flows (➋ in Figure 4.7) and

enqueues each micro-flow’s packets onto one selected splitting core (➌ in Figure 4.7).

mFlow creates and associates the per-core, per-device splitting queues to the de-

vice’s NAPI structure napi struct (➊ in Figure 4.7), which can be easily accessed

by the network device’s softirq handler once executed on the splitting cores (➍ in

Figure 4.7).

4.4.2 IRQ-Splitting Function

mFlow implements the IRQ-splitting function in the Mellanox NIC driver – its

softirq handler (mlx5e napi poll). The IRQ-splitting function relies on two inputs

from the driver code: a request queue (mlx5e rq), and the way to retrieve requests

(mlx5e poll rx cq) (➋ in Figure 4.8). With this, mFlow, once enabled, can retrieve

any available incoming packet requests in the context of the physical NIC’s softirqs

and dispatch them onto selected splitting cores (➌ in Figure 4.8). mFlow creates

and associates the per-core request buffer to Linux kernel’s per-core data structure,

softnet data, which can be easily accessed in a softirq context (➊ in Figure 4.8).

83

mFlow implements the second half (➍ in Figure 4.8) as a regular softirq handler

(scheduled by kernel’s NAPI scheduler and executed on the splitting cores). The

second half can be processed in parallel most of the time except when it needs to

update the driver that a packet request has been consumed (i.e., after its skb has

been created) and can be released (i.e., can be reused for another incoming request).

To reduce any possible contention, mFlow updates the driver once in a while (e.g .,

every 128 requests).

4.4.3 Flow-Reassembling Function

The implementation of batch-based flow reassembling uses two queues – the

backlog queue for receiving packets from the previous network processing stage and

the receive queue for delivering packets to user-space applications. Under UDP,

sk receive queue serves as the backlog queue, while reader queue serves as the re-

ceive queue. Under TCP, sk backlog serves as the backlog queue, while sk receive queue

serves as the receive queue. mFlow extends the backlog queue into per-core buffer

queues (➊ in Figure 4.10), with each serving one splitting core. Thus, all packets

from the previous stage are first cached in the buffer queues (➋ in Figure 4.10) before

merging. mFlow does not create a new kernel thread for executing the merging

functionality. Instead, it adds the merging functionality in the existing kernel thread

for packet delivery, i.e., tcp recvmsg for TCP and udp recvmsg for UDP (➌ and ➍

in Figure 4.10). These threads will be woken up when new packets arrive, during

which mFlow checks which micro-flow’s packets should be merged.

4.5 Evaluation

We have evaluated the effectiveness of mFlow. Results with micro-benchmarks

demonstrate that: (1) mFlow significantly improves the throughput of an elephant

84

single flow – by 81% for TCP and 139% for UDP compared to vanilla overlay net-

works; (2) mFlow achieves even higher throughput than the native under TCP (29.8

vs. 26.6 Gbps); (3) mFlow reduces average and tail latency for both TCP and UDP.

Results with real-world applications demonstrate significant application-level perfor-

mance benefits brought by mFlow– the performance of a web serving application

increases by up to 7.5x, while the latency of a data caching application reduces by

up to 48%, compared to vanilla overlay networks.

4.5.1 Experimental Configurations

The experiments were performed on two PowerEdge R740XD servers, each with

2×16-core Intel Xeon Gold 5218 processors (2.30 GHz) and 384 GB memory. The two

machines were connected directly by Mellanox ConnectX-5 EN 100-Gigabit Ethernet.

We used Ubuntu 20.04 (with the kernel version 5.7) as the host OSes and the

Docker overlay network mode (with Docker version 19.03) as the container overlay

network. Docker overlay network uses Linux’s builtin VxLAN. We evaluated the fol-

lowing cases: (1) native: the physical host network (i.e., no containers); (2) vanilla

overlay: containers with the default docker overlay network (VxLAN); (3) RPS: con-

tainers with Linux RPS [27] enabled; (4) Falcon: containers with FALCON [64]

enabled – the state-of-the-art in-kernel parallelization optimization for container net-

works; and (5) mFlow.

For mFlow, unless otherwise specified, we set the batch size to 256 and the

number of splitting cores to 2, evenly distributed micro-flows to the splitting cores

and enabled full path scaling for TCP and device scaling for UDP (in Figure 4.6).

For all tests, CPU and memory resources were sufficient. All experiments were run

multiple times to mitigate variation.

85

0

5

10

15

20

25

30

35

40

16B 4KB 64KB

Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (TCP)

Native
Con (vanilla)
RPS
Falcon
mFlow

16B 4KB 64KB
Message Size (UDP)

Figure 4.11: Performance comparisons between state-of-the-art approaches.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

C
P

U
 u

ti
liz

a
ti
o

n

TCP (64 KB)

user system
softirq idle

0 1 2 3

UDP (64 KB)

CPU5

CPU1

CPU2

CPU4

CPU3

CPU0

Full path scaling (TCP)

CPU1

CPU2 CPU3

CPU0

Device scaling (UDP)

Figure 4.12: CPU utilization breakdown under TCP/UDP with 64KB packet size.

4.5.2 Micro-Benchmarks

Single-flow throughput: To measure the throughput of a single flow, we used

sockperf [41] to generate traffic with various message sizes. Note that when a mes-

sage is larger than MTU (1,500 bytes), it will be fragmented into multiple packets

during transmission. For TCP, we used a pair of sockperf client and server. How-

ever, the client under UDP was often bottlenecked (i.e., overloading a CPU core).

Hence, similar to Falcon [2], we used three sockperf clients to send traffic to one

86

sockperf server to stress the network stack on the receiver side to its limit for a UDP

flow.

In Figure 4.11, mFlow improved the throughput of a single flow significantly,

especially with large message sizes (e.g ., 64 KB), by 81% for TCP and 139% for UDP,

compared to vanilla overlay. Under TCP, mFlow even achieved higher throughput

than the native – 29.8 Gbps vs. 26.6 Gbps. It is because although the native network

was much simpler than overlay network, a single core (for skb allocation) was

overloaded at the high throughput. In contrast, mFlow leveraged multiple cores to

process a single flow in parallel. For UDP (under 64 KB), mFlow achieved lower

throughput than the native. The reason is that, under UDP, the clients were throttled

after they overloaded client-side CPU cores.

Compared to Falcon, mFlow achieved 22% more throughput under TCP

and 21% more under UDP (with 64 KB). It indicates that exploiting packet-level

parallelism can keep pushing the in-kernel network stack to achieve higher network

performance. For UDP under small message/packet size (16B), mFlow achieved

even higher performance than Falcon – more than 40%. For TCP with a small

packet size (16B), both Falcon and mFlow did not help much (similar to the

vanilla overlay). This is because the TCP client became the bottleneck. This also

indicates that further optimization focus should be placed on the sender side.

Single-flow splitting and CPU utilization: Figure 4.12 shows how mFlow splits

the TCP and UDP flows and the breakdown of average CPU utilization on each core

(with 64 KB).

For TCP, we tested mFlow’s full path scaling scenario – i.e., splitting occurred

in the first stage and merging occurred before packets entered the stateful TCP trans-

port layer. Core one was used for dispatching raw packet requests to two separate

cores – splitting core two and three. We noticed that, if all network processings were

87

50% 90% 99% 99.99%
UDP Percentile

0

200

400

600

800

1000

1200

50% 90% 99% 99.99%

La
te

nc
y

(u
s)

TCP Percentile

native
Con (vanilla)
RPS
Falcon
mFlow

Figure 4.13: Latency comparisons between state-of-the-art approaches and mFlow
with 16B message size.

placed on one splitting core, the splitting core was easily overloaded (as mFlow in-

creased TCP throughput significantly). Hence, to scale the performance of a single

TCP flow, we further split and pipelined the processings on two cores for each parallel

branch – i.e., we used core two only for skb allocation and dispatched the remaining

processings on core four. The same configuration was applied to core three and five.

With this, mFlow achieved extremely high TCP throughput for container overlay

network as shown in Figure 4.11. Now, we observe that core zero – upon which a sin-

gle kernel thread copies data from the kernel ring buffer to the user-space application

– was fully utilized and became the new bottleneck.

For UDP, we tested mFlow’s single device scaling scenario – i.e., splitting

occurred before the heavyweight VxLAN device and merging occurred before packets

were copied to applications. As shown in Figure 4.12, we placed all network devices

after VxLAN on the same core as they consumed way less CPU utilization. Core one

was used for the first stage and dispatching packets in the form of skbs to two sep-

arate cores – splitting core two and three. With this configuration, mFlow achieved

88

0

200

400

600

800

1000

1200

1400

1600

1800

50% 90% 99% 99.99%

La
te

nc
y

(u
s)

TCP Percentile
50% 90% 99% 99.99%

UDP Percentile

Figure 4.14: Latency comparisons between state-of-the-art approaches and mFlow
with 4KB message size.

higher UDP throughput than Falcon for container overlay network (Figure 4.11).

We noticed that none of these cores were fully utilized. Instead, the three clients

overloaded their sender-side cores and were the bottleneck.

Single-flow latency: Figure 4.13, Figure 4.14 and Figure 4.15 depict the per-packet

latency of a single TCP or UDP flow with various message sizes. We measured the

latency in the “overloaded” scenario (using sockperf), in which each case was driven

to its maximum throughput before packet drops occurred. We observe that, under

all cases, mFlow reduced per-packet processing latency compared to vanilla overlay,

RPS, and Falcon. For example with 64 KB, compared to vanilla overlay, mFlow

reduced the median latency by ∼46% and 99th percentile latency by ∼21% for TCP.

It is because mFlow’s packet-level parallelism reduces the latency resulting from

the pipelined processing (i.e., the processing of the following packet depends on the

completion of its previous packet). We observe that there remained a gap in latency

between mFlow and the native due to prolonged data path in container overlay

networks.

89

0

200

400

600

800

1000

1200

1400

1600

50% 90% 99% 99.99%

La
te

nc
y

(u
s)

TCP Percentile
50% 90% 99% 99.99%

UDP Percentile

Figure 4.15: Latency comparisons between state-of-the-art approaches and mFlow
with 64KB message size.

Multi-flow testing: We further conducted multi-flow tests – i.e., multiple flows

co-existed within the same host machine. Since for UDP, clients were the main bot-

tlenecks preventing mFlow from saturating available network bandwidth, we showed

the multi-flow TCP case in Figure 4.16, Figure 4.17 and Figure 4.18. The message

sizes were set to 16 B, 4 KB, and 64 KB, and the number of flows varied from 1 to 20.

In all tests, we used 5 dedicated cores for application threads and 10 dedicated cores

for all in-kernel packet processing to have a more controlled experimental environment

for the ease of result analysis.

In Figure 4.16, Figure 4.17 and Figure 4.18, with the small message/packet size

(i.e., 16 B), all test cases scaled linearly, as the client side became the bottleneck.

With the larger message/packet sizes (i.e., 4 KB and 64 KB), mFlow consistently

outperformed vanilla overlay – e.g ., by 24% with 5 concurrent flows (under 4 KB).

This benefit shrank as more flows were added – e.g ., by 11% with 10 flows and

by 5% under 20 flows. It is because as the flow number increased, there was little

CPU resource to scale up mFlow. This can be further verified with the comparison

90

0

1

2

3

4

5

6

7

8

9

10

1 5 10 20

Th
ro

ug
hp

ut
 (G

bp
s)

Number of flows

Native
Con (vanilla)
RPS
Falcon
mFlow

Figure 4.16: Accumulated network throughput with multiple TCP flows with 16B
packet size.

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20
Number of flows

Figure 4.17: Accumulated network throughput with multiple TCP flows with 4KB
packet size.

91

0

10

20

30

40

50

60

70

80

90

100

1 5 10 20
Number of flows

Figure 4.18: Accumulated network throughput with multiple TCP flows with 64KB
packet size.

between Falcon and mFlow – mFlow outperformed Falcon by 5% with 10

concurrent flows (with 64 KB) while they achieved the same performance with 20

flows, where CPU was the bottleneck.

mFlow overhead: Figure 4.19 shows the average CPU load distribution among

all used cores for the multiple TCP flow case (with 10 flows under 64 KB). More

fine-grained flow steering in mFlow does incur additional overhead – compared to

Falcon, mFlow consumed 15% more CPU utilization (among 10 cores for packet

processing) in exchange for 5% performance gains. However, this is the worst-case

scenario. We observed less than 5% additional overhead with 5 flows and the same

CPU utilization with 20 flows (the system was overloaded). On the other hand, the

advantage of mFlow lies in that, in Figure 4.19, mFlow can leverage CPU cores in

a more balanced manner with even load distribution. In contrast, CPU utilization

variation under Falcon was larger than mFlow – i.e., the standard deviation of

CPU utilization among 10 cores was 20.5 (Falcon) vs. 11.6 (mFlow).

92

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
PU

 U
til

iz
at

io
n

Core number

Falcon mFlow

Figure 4.19: mFlow uses CPU cores in a more balanced manner.

4.5.3 Applications

In this section, we use two representative real-world applications, web serving

and data caching, to evaluate mFlow.

Web serving: We measured the performance of Cloudsuite’s Web Serving bench-

mark [48] under vanilla overlay, Falcon, and mFlow. Cloudsuite’s Web Serving

– the benchmark to evaluate page load throughput and access latency – contains

four components: an nginx web server, a mysql database, a memcached server, and

clients. The web server runs the Elgg [49] social network and connects to the cache

and database servers. The clients send different types of request workloads, including

login, chat, update, etc., to the web server. In our experiments, all of the services

were performed inside containers that were connected via the Docker overlay network

upon the 100 Gbps NIC.

Figure 4.20 depicts the “success operation” rate when we ran the benchmark

with 200 users. We observe that mFlow improved the successful individual operation

rate by 2.3x – 7.5x compared to the vanilla overlay network. For the same metric,

mFlow outperformed Falcon by 1.5x – 3.6x. Figure 4.21 and Figure 4.22 present

the average response time and delay time for different operations. The response

93

0

1

2

3

4

5

6

7

8

9

10

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

Lo
go
ut

Up
da
te
Ac
tiv
it

Re
ce
ive
Ch
at
M
es
sa
geR

el
at

iv
e

no
. o

f o
pe

ra
tio

ns

Con (vanilla)
Falcon
mFlow

Figure 4.20: mFlow improves success operation of a web serving application.

0

0.2

0.4

0.6

0.8

1

1.2

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

Lo
go
ut

Up
da
te
Ac
tiv
it

Re
ce
ive
Ch
at
M
es
sa
ge

R
el

at
iv

e
re

sp
on

se
 ti

m
e

Figure 4.21: mFlow reduces average response time of a web serving application.

94

0

0.2

0.4

0.6

0.8

1

1.2

Br
ow
se
to
El
gg

Do
Lo
gi
n

Po
stS
elf
W
all

Se
nd
Ch
at
M
es
sa
ge

Ad
dF
rie
nd

R
el

at
iv

e
de

la
y

tim
e

Figure 4.22: mFlow reduces average delay time of a web serving application.

time denotes the time to complete one request while the delay time represents the

difference between the target and actual processing time. Compared to the vanilla

overlay network, mFlow reduced the average response time by 35% – 65% while

the average delay time by up to 75%. Compared to Falcon, mFlow reduced the

average response time by 22% – 54% and the average delay time by 36% – 73%.

Data caching: We further measured the average and tail latency using Cloudsuite’s

data caching benchmark. It uses the Memcached data caching server, simulating the

behavior of a Twitter caching server with a Twitter dataset. In our experiments,

the Memcached server was configured with 4GB memory, 4 threads, and 550 bytes

object size. The Memcached server and clients were running under the same Docker

overlay network. As illustrated in Figure 4.23, compared to the vanilla overlay net-

work, mFlow reduced the tail latency (99th percentile latency) by 26% when we

used one client. When the number of clients increased to ten, mFlow’s benefit be-

came more significant – reducing the average and tail latency by 48% and 47% (99th

percentile). It is because, as the number of clients (and the request rate) increased,

95

0

50

100

150

200

250

300

Avg 90% 95% 99%

La
te

nc
y

(u
s)

1 Client (Con) 1 Client (Falcon)
1 Client (mFlow) 10 Clients (Con)
10 Clients (Falcon) 10 Clients (mFlow)

Figure 4.23: mFlow reduces the average and tail latency of a data caching application
(Memcached).

the in-kernel network stack was more stressed. mFlow improved its efficiency by

using multiple cores for parallel packet processing. In addition, compared to Fal-

con, mFlow reduced the average latency by 22% and tail latency (99th percentile)

by 33%, demonstrating a higher degree of packet processing parallelism.

4.6 Conclusion

We have presented mFlow, a novel in-kernel packet steering approach to ac-

celerate container overlay networks by exploiting packet-level parallelism. mFlow

splits the packets of a single flow into multiple micro-flows and processes them in

parallel by taking advantage of a multi-core system while efficiently preserving in-

order packet delivery. Our evaluation with both micro-benchmarks and applications

demonstrates the effectiveness of mFlow. Meanwhile, the results have revealed new

bottlenecks that prevent a single flow from further scaling: One lies in clients/senders

and the other is the receiver-side single data-copying thread. We seek to address these

bottlenecks in our future work.

96

CHAPTER 5

RELATED WORK

5.1 Network Stack Optimization

Researchers have identified that poor network performance often stems from in-

efficiencies and complexities within the kernel network stack. Consequently, numerous

studies have proposed various optimizations along the data path, addressing issues

such as interrupt processing [22, 65, 66, 24, 67], system call batching [68], protocol pro-

cessing [22, 69], memory copying [22, 23, 24, 25], scheduling [65, 70, 24, 71, 72, 73], and

application-kernel interaction [74, 75]. Despite these efforts, some work indicates that

both latency and throughput remain significantly below hardware capabilities [76, 24].

Unlike these traditional network improvements, our work focuses on optimizing spe-

cific issues within container networks, making these studies orthogonal to ours.

Beyond existing OS enhancements, other research has proposed lightweight and

customized network stacks [76, 77, 78, 79, 80, 81, 14, 82] to boost network perfor-

mance. For instance, Slim [14] is a connection-oriented approach that creates overlay

networks by manipulating connection metadata. While containers use private IPs for

connections, packets use host IPs for transmission. Slim bypasses virtual bridges and

network devices in containers, achieving near-native performance. However, Slim does

not support connection-less protocols like UDP and complicates host network man-

agement, as each overlay connection requires a unique file descriptor and port. Some

designs require changes to the application-kernel interface, rendering them incompat-

ible with legacy applications. Alternatively, research has shifted to bypassing the OS

kernel entirely, implementing the network stack in user space [21, 79, 47]. User-space

97

approaches reduce context switches and allow direct hardware access, minimizing ker-

nel indirection and overhead. Intel’s Data Plane Development Kit (DPDK) [21] is

one example of such user-space libraries. Our work aims to enhance the efficiency

of commodity OS kernels to support all network traffic in overlay networks while

retaining existing network management tools.

5.2 Kernel Scalability on Multicore

As the number of CPU cores increases, improving resource utilization, sys-

tem efficiency, scalability, and concurrency has become a hot research topic. Boyd-

Wickizer et al. [83] analyzed the scalability of applications running on Linux atop

a 48-core machine, revealing that nearly all applications encounter scalability bot-

tlenecks within the Linux kernel. Many researchers advocate rethinking operating

systems [84, 85], proposing new kernels for high scalability, such as Barrelfish [86]

and Corey [87]. The availability of multiple processors in computing nodes and mul-

tiple cores in a processor has also motivated proposals to utilize multicore hardware,

including protocol onloading or offloading on dedicated processors [88, 89, 90, 91],

network stack parallelization [92, 93, 94, 95], packet processing alignment [96, 97],

and optimized scheduling [98, 99, 97]. However, none of these techniques specifically

address inefficiencies within container networks. Our work focuses on mitigating the

serialization of softirq execution due to overlay networks in the Linux kernel.

5.3 Container Network Acceleration

Container networks, being a new and complex technology, suffer from various

inefficiencies. To diagnose bottlenecks and optimize container networks, many tech-

niques have been developed recently. These works fall into two categories: First,

98

many researchers propose to reduce unnecessary work to improve the performance.

Systems can offload CPU-intensive tasks, such as checksum computation, onto hard-

ware [100, 101, 102, 103] or bypass inefficient kernel parts [104, 103] to improve con-

tainer network processing. Advanced offloading techniques, like Mellanox ASAP2 [40],

enable virtual switches and packet transformation to be handled entirely by NIC

hardware, achieving near-native overlay performance. However, this approach has

drawbacks: it is only available on high-end hardware, restricts overlay network con-

figuration flexibility and scalability, and requires SR-IOV to pass virtual functions

(VFs) directly to containers, limiting the number of containers per host (e.g., 512

VFs in the Mellanox ConnectX®-5 100 Gbps Ethernet adapter) [105]. Another cate-

gory of works, including virtual routing [10], memory sharing [39], resource manage-

ment [106], redistribution and reassignment [107], and manipulating connection-level

metadata [14]. Unlike these works, our research addresses the inefficiencies in inter-

rupt processing within container networks. We propose solutions leveraging multicore

hardware with minimal modifications to the kernel stack and data plane.

99

CHAPTER 6

FUTURE WORK

My future research will continue to develop innovative solutions to further en-

hance the efficiency and performance of cloud networking infrastructures, by lever-

aging techniques that include kernel optimization, user space offloading, and the

integration of reconfigurable, disaggregated hardware.

6.1 SmartNIC-Assisted Zero-Copying

Through our efforts working in system kernel, the efficiency and scalability of

container overlay networks have experienced significant improvements. However, a

substantial performance gap remains when comparing a single flow throughput to

the physical bandwidth of hardware NICs (e.g., 100 Gbps). Our research reveals

the final-step processing in the kernel as an inevitable bottleneck, specifically due

to the overhead of copying packet payloads from kernel to user space. Overcoming

this requires addressing two key challenges not yet solved by existing methods: First,

only the packet payloads should be accessible to user applications, which implies the

necessity to separate the packet headers and payloads during processing. Second, the

existing kernel-user communication interface, which relies on data copying, requires

an overhaul with a newly implemented zero-copying interface.

In response, we plan to develop a full-stack zero-copying framework which or-

chestrates hardware, kernel, and user applications to enhance networking performance

by eliminating the copying overhead. Within this framework, packet headers and

payloads are separated (based on identifying the protocol header or computing the

100

header length) on SmartNICs (e.g., Nvidia BlueField [108]) as a pre-processing stage

as packets approach the host server. Upon arrival at the host server, it is the ker-

nel’s responsibility to allocate distinct memory regions for storing the headers and

payloads separately. Headers undergo further processing via the traditional kernel

protocol stack, while payloads are held in a designated memory area, awaiting access

by user application via mapping-based zero-copying. Once the headers have been pro-

cessed in the kernel network stack, user applications can retrieve the packet payloads

via a new zero-copying interface. To ensure compatibility with legacy applications, we

will deploy a new dynamic runtime library that allows the applications to be launched

with the new interface without requiring any modifications.

6.2 Elastic Networking Offloading

Existing hardware offloading solutions of network stack are still limited. Con-

sider two typical types of SmartNICs: SoC-based SmartNICs offer limited resources

[109]. Developers can offload only part of the network stack [110]. FPGA-based

SmartNICs provide minimal flexibility. Network protocols are hard-coded into the

hardware, making protocol adaptation to new applications needs a time-consuming

process of hardware reprogramming [111]. Our objective is to develop elastic solutions

that integrate SmartNICs with host servers, thereby addressing the complexities of

network traffic processing and optimizing cloud networking offloading efficiency.

This research comprises two primary components. Firstly, we aim to develop

a transparent and elastic offloading scheme by following a modular design principle.

This approach separates the stateless packet processing path into multiple fine-grained

modules (or pipelines), encompassing both low-level network functions such as packet

partitioning and transport, and high-level computation tasks including filtering, sort-

ing, encapsulation/decapsulation. Given that different devices have varied processing

101

capabilities and different types of traffic impose distinct pressures to networking mod-

ules, a crucial feature is allowing for the flexible integration of these modules across

NICs, host server kernels, or even user-space libraries. For example, packet processing

involving OVS-related packet filters (e.g., TC flower [112]), packet classification [113],

and overlay encapsulation/decapsulation can be extensively offloaded to SmartNICs

via ASAP2 technology [114] to leverage ASIC-based hardware accelerators for en-

hanced performance. Secondly, we plan to deploy a central scheduler that monitors

the computation resources and memory constraints on the SmartNIC. This sched-

uler dynamically reallocates computation workloads between the host CPU and the

SmartNIC in real-time, ensuring optimal utilization of resources in both of them to

prevent the slower SmartNIC cores from becoming a bottleneck.

6.3 Reshaping Networking via CXL

Emerging applications and an increasingly huge amount of data are driving a

greater specialization in hardware. As a result, the PCIe link [115], which connects

the CPU to these devices, is becoming a bottleneck. Compute Express Link (CXL)

is a cache-coherent interconnect for processors, memory expansion, and specialized

accelerators [116]. Although its developement is still in early stages, CXL’s potential

to transform the underlying cloud architecture has already attracted our attention.

Our research will focus primarily on the benefits of utilizing CXL to build a shared

memory system among specialized hardware (e.g., SmartNICs) and host machines to

accelerate networking.

Firstly, CXL enables coherent cache and consistent memory access between

CPUs and peripheral devices. This capability can expand the limited memory em-

bedded in specialized hardware, significantly enhancing functional scalability. For

instance, TC flower serves as a packet filter and classifier, running on the SmartNIC

102

with its control plane located in the host server. In a cloud multi-tenancy architecture,

connections can expand to millions. Deploying traffic rules, which involve copying the

rules from the host server memory to the NIC memory, can consume substantial CPU

resources. Additionally, the limited size of NIC memory can restrict the ability of TC

to serve large-scale services. With CXL, a SmartNIC can directly access the host’s

large amount of memory, supporting millions of rules while eliminating the overhead

of copying rules from host memory to NIC memory. Secondly, utilizing SmartNICs

as intermediary nodes allows for the offloading of all CXL-related computations. In

the cloud, many applications that span across cores or require cooperative workloads

face the challenge of data movement between cores. To meet these needs, future

SmartNICs will be crucial in offloading data movements between containers, VMs,

accelerators, and CXL attached memory. This offloading improves core efficiency,

enforces security and access policies, and provides advanced features such as remote

atomics used for statistics and other purposes [117]. Lastly, CXL interconnects are

expected to be more efficient than traditional networks. The reason is that traditional

networking requires conversions between network protocols and the PCIe protocol.

For instance, a NIC uses PCIe to communicate with its host, but network interactions

typically use the TCP/IP software stack or RDMA. In contrast, all traffic in CXL

already travels in CXL messages with unified semantics, which should result in lower

latency and higher bandwidth. With these insights and observations, a lot of great

opportunities are already exposed to us in investigating the new cloud infrastructures

with reconfigurable, disaggregated harware.

103

CHAPTER 7

CONCLUSION

In this dissertation, I have systematically explored and addressed the efficiency

and scalability challenges of container overlay networks in cloud environments. To

tackle these challenges, I made several significant and innovative contributions:

Firstly, our comprehensive performance study on multi-core systems with high-

speed network devices identified three critical parallelization bottlenecks within the

kernel network stack: (1) the lack of effective parallelization mechanism in system

kernel, preventing a single container flow from achieving high network throughput;

(2) inefficient handling of various packet processing tasks, preventing multiple con-

tainer flows from saturating a 40 Gbps network link; and (3) these issues become

more severe with small packets due to the kernel’s inability to manage a large num-

ber of interrupts, disrupting overall system efficiency. Secondly, We proposed Falcon,

a fast and balanced container networking approach which parallelizes softirq process-

ing within a single network flow. Falcon employs three key designs: softirq pipelining,

splitting, and dynamic balancing, enabling low-cost flow parallelization on multicore

machines. Our experimental results demonstrated that Falcon significantly enhances

the performance of container overlay networks, as evidenced by improvements in

both micro-benchmarks and real-world applications. Thirdly, We presented mFlow,

a novel in-kernel packet steering approach which leverages fine-grained, packet-level

parallelism by splitting packets of a single flow into multiple micro-flows and process-

ing them in parallel across multiple cores while preserving in-order packet delivery.

104

Our evaluations with micro-benchmarks and applications showcased the effectiveness

of mFlow.

Through these contributions, I have demonstrated significant improvements in

the efficiency and scalability of cloud networking systems, specifically the container

overlay networks. My research provides a solid foundation for further enhancements

in cloud-based container networking, paving the way for more efficient and scalable

cloud infrastructures.

105

REFERENCES

[1] J. Lei, K. Suo, H. Lu, and J. Rao, “Tackling parallelization challenges of ker-

nel network stack for container overlay networks,” in Proceedings of the 11th

USENIX Conference on Hot Topics in Cloud Computing, 2019, pp. 9–9.

[2] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet process-

ing in container overlay networks,” in Proceedings of the Sixteenth European

Conference on Computer Systems, 2021, pp. 261–276.

[3] J. Lei, M. Munikar, H. Lu, and R. Jia, “Accelerating packet processing in

container overlay networks via packet-level parallelism,” in 2023 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2023,

pp. 79–89.

[4] Google Cloud Container, https://cloud.google.com/containers.

[5] Apache Mesos, https://mesos.apache.org.

[6] Kubernetes, https://kubernetes.io.

[7] Docker Swarm, https://docs.docker.com/engine/swarm/.

[8] Flannel, https://github.com/flannel-io/flannel.

[9] Weave, https://github.com/weaveworks/weave.

[10] Calico, https://github.com/projectcalico/calico.

[11] Use Overlay Networks, https://docs.docker.com/network/drivers/overlay/.

[12] VxLAN, https://datatracker.ietf.org/doc/html/rfc7348.

[13] Open vSwitch (OVS), https://www.openvswitch.org.

[14] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy, and

T. Anderson, “Slim: Os kernel support for a low-overhead container overlay

106

https://cloud.google.com/containers
https://mesos.apache.org
https://kubernetes.io
https://docs.docker.com/engine/swarm/
https://github.com/flannel-io/flannel
https://github.com/weaveworks/weave
https://github.com/projectcalico/calico
https://docs.docker.com/network/drivers/overlay/
https://datatracker.ietf.org/doc/html/rfc7348
https://www.openvswitch.org

network,” in Proceedings of the 16th USENIX Conference on Networked Systems

Design and Implementation, 2019, pp. 331–344.

[15] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study of

container networks,” in IEEE INFOCOM 2018-IEEE Conference on Computer

Communications. IEEE, 2018, pp. 189–197.

[16] L. Angrisani, L. Peluso, A. Tedesco, and G. Ventre, “Measurement of processing

and queuing delays introduced by a software router in a single-hop network,” in

2005 IEEE Instrumentationand Measurement Technology Conference Proceed-

ings, vol. 3. IEEE, 2005, pp. 1797–1802.

[17] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting parallelism

to scale software routers,” in Proceedings of the ACM SIGOPS 22nd symposium

on Operating systems principles, 2009, pp. 15–28.

[18] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Proceedings of

the 5th annual Linux Showcase & Conference-Volume 5, 2001, pp. 18–18.

[19] GRO: Surviving 10Gbp/s with Cycles to Spare, https://events.static.linuxfound.

org/images/stories/slides/jls09/jls09 xu.pdf.

[20] Large Receive Offload (LRO), https://lwn.net/Articles/243949/.

[21] DPDK, https://www.dpdk.org.

[22] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and S. K.

Reinhardt, “Performance analysis of system overheads in tcp/ip workloads,” in

14th International Conference on Parallel Architectures and Compilation Tech-

niques (PACT’05). IEEE, 2005, pp. 218–228.

[23] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,

S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library operating systems

107

https://events.static.linuxfound.org/images/stories/slides/jls09/jls09_xu.pdf
https://events.static.linuxfound.org/images/stories/slides/jls09/jls09_xu.pdf
https://lwn.net/Articles/243949/
https://www.dpdk.org

for the cloud,” ACM SIGARCH Computer Architecture News, vol. 41, no. 1,

pp. 461–472, 2013.

[24] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. Anderson,

and T. Roscoe, “Arrakis: The operating system is the control plane,” ACM

Transactions on Computer Systems (TOCS), vol. 33, no. 4, pp. 1–30, 2015.

[25] L. Rizzo, “netmap: a novel framework for fast packet i/o,” in 21st USENIX

Security Symposium (USENIX Security 12), 2012, pp. 101–112.

[26] Receive Side Scaling (RSS), https://www.kernel.org/doc/Documentation/

networking/scaling.txt.

[27] Receive Packet Steering (RPS), https://lwn.net/Articles/362339/.

[28] Linux Overlay Network, https://www.kernel.org/doc/Documentation/

networking/vxlan.txt.

[29] Docker, https://www.docker.com.

[30] Consul, https://www.consul.io.

[31] iPerf3, https://iperf.fr.

[32] Packet Length Distributions, https://www.caida.org/catalog/papers/2000

aix0005/aix0005/.

[33] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance

comparison of virtual machines and linux containers,” in 2015 IEEE interna-

tional symposium on performance analysis of systems and software (ISPASS).

IEEE, 2015, pp. 171–172.

[34] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and virtual

machines at scale: A comparative study,” in Proceedings of the 17th interna-

tional middleware conference, 2016, pp. 1–13.

108

https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://lwn.net/Articles/362339/
https://www.kernel.org/doc/Documentation/networking/vxlan.txt
https://www.kernel.org/doc/Documentation/networking/vxlan.txt
https://www.docker.com
https://www.consul.io
https://iperf.fr
https://www.caida.org/catalog/papers/2000_aix0005/aix0005/
https://www.caida.org/catalog/papers/2000_aix0005/aix0005/

[35] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to

support paas,” in 2014 IEEE International Conference on Cloud Engineering.

IEEE, 2014, pp. 610–614.

[36] D. Merkel, “Docker: lightweight linux containers for consistent development

and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[37] 8 surprising facts about real docker adoption, https://www.datadoghq.com/

docker-adoption/.

[38] K. Suo, Y. Zhao, W. Chen, and J. Rao, “vnettracer: Efficient and pro-

grammable packet tracing in virtualized networks,” in 2018 IEEE 38th Interna-

tional Conference on Distributed Computing Systems (ICDCS). IEEE, 2018,

pp. 165–175.

[39] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar, “Freeflow:

High performance container networking,” in Proceedings of the 15th ACM work-

shop on hot topics in networks, 2016, pp. 43–49.

[40] OVS Offload Using ASAP2 Direct, https://docs.nvidia.com/networking/

display/mlnxofedv473290/ovs+offload+using+asap2+direct.

[41] Sockperf, https://github.com/Mellanox/sockperf.

[42] Flame Graph, https://github.com/brendangregg/FlameGraph.

[43] Encrypting Network Traffic, https://encryptionhowto.sourceforge.net/

Encryption-HOWTO-5.html.

[44] TCPdump, https://www.tcpdump.org.

[45] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,

S. Das, and A. Akella, “Opennf: Enabling innovation in network function con-

trol,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4, pp.

163–174, 2014.

109

https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://docs.nvidia.com/networking/display/mlnxofedv473290/ovs+offload+using+asap2+direct
https://docs.nvidia.com/networking/display/mlnxofedv473290/ovs+offload+using+asap2+direct
https://github.com/Mellanox/sockperf
https://github.com/brendangregg/FlameGraph
https://encryptionhowto.sourceforge.net/Encryption-HOWTO-5.html
https://encryptionhowto.sourceforge.net/Encryption-HOWTO-5.html
https://www.tcpdump.org

[46] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization:

Challenges and opportunities for innovations,” IEEE communications maga-

zine, vol. 53, no. 2, pp. 90–97, 2015.

[47] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and

F. Huici, “Clickos and the art of network function virtualization,” in Proceed-

ings of the 11th USENIX Conference on Networked Systems Design and Imple-

mentation, 2014, pp. 459–473.

[48] CloudSuite, https://www.cloudsuite.ch.

[49] Elgg, https://elgg.org.

[50] Memcached, https://memcached.org.

[51] N. Zhou, Y. Georgiou, M. Pospieszny, L. Zhong, H. Zhou, C. Niethammer,

B. Pejak, O. Marko, and D. Hoppe, “Container orchestration on hpc systems

through kubernetes,” Journal of Cloud Computing, vol. 10, pp. 1–14, 2021.

[52] C. Cérin, N. Grenèche, and T. Menouer, “Towards pervasive containerization of

hpc job schedulers,” in 2020 IEEE 32nd International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD). IEEE, 2020, pp.

281–288.

[53] G. Li, J. Woo, and S. B. Lim, “Hpc cloud architecture to reduce hpc workflow

complexity in containerized environments,” Applied Sciences, vol. 11, no. 3, p.

923, 2021.

[54] Y. Zhou, B. Subramaniam, K. Keahey, and J. Lange, “Comparison of virtu-

alization and containerization techniques for high performance computing,” in

Proceedings of the 2015 ACM/IEEE conference on Supercomputing, 2015.

[55] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, G. Morgan, and R. Ran-

jan, “A study on the evaluation of hpc microservices in containerized environ-

110

https://www.cloudsuite.ch
https://elgg.org
https://memcached.org

ment,” Concurrency and Computation: Practice and Experience, vol. 33, no. 7,

pp. 1–1, 2021.

[56] S. Herbein, A. Dusia, A. Landwehr, S. McDaniel, J. Monsalve, Y. Yang, S. R.

Seelam, and M. Taufer, “Resource management for running hpc applications

in container clouds,” in High Performance Computing: 31st International Con-

ference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016,

Proceedings. Springer, 2016, pp. 261–278.

[57] A. Ruhela, M. Vaughn, S. L. Harrell, G. J. Zynda, J. Fonner, R. T. Evans, and

T. Minyard, “Containerization on petascale hpc clusters.” State of Practice

talk in International Conference for High Performance . . . , 2020.

[58] A. Torrez, T. Randles, and R. Priedhorsky, “Hpc container runtimes have min-

imal or no performance impact,” in 2019 IEEE/ACM International Workshop

on Containers and New Orchestration Paradigms for Isolated Environments in

HPC (CANOPIE-HPC). IEEE, 2019, pp. 37–42.

[59] M. Höb and D. Kranzlmüller, “Enabling easey deployment of containerized

applications for future hpc systems,” in Computational Science–ICCS 2020:

20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020,

Proceedings, Part I 20. Springer, 2020, pp. 206–219.

[60] Separation Anxiety: A Tutorial for Isolating Your Sys-

tem with Linux Namespaces, https://www.toptal.com/linux/

separation-anxiety-isolating-your-system-with-linux-namespaces.

[61] Linux Control Groups, https://docs.kernel.org/admin-guide/cgroup-v1/

cgroups.html.

[62] Seccomp security profiles for Docker, https://docs.docker.com/engine/security/

seccomp/.

111

https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/

[63] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, “Is network the

bottleneck of distributed training?” in Proceedings of the Workshop on Network

Meets AI & ML, 2020, pp. 8–13.

[64] Falcon, https://github.com/munikarmanish/falcon.

[65] L. Cheng and C.-L. Wang, “vbalance: Using interrupt load balance to improve

i/o performance for smp virtual machines,” in Proceedings of the third ACM

symposium on cloud computing, 2012, pp. 1–14.

[66] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster,

and D. Tsafrir, “Eli: Bare-metal performance for i/o virtualization,” ACM

SIGPLAN Notices, vol. 47, no. 4, pp. 411–422, 2012.

[67] Performance Tuning for Mellanox Adapters, https://enterprise-support.nvidia.

com/s/article/performance-tuning-for-mellanox-adapters.

[68] L. Soares and M. Stumm, “Flexsc: flexible system call scheduling with

exception-less system calls,” in Proceedings of the 9th USENIX conference on

Operating systems design and implementation, 2010, pp. 33–46.

[69] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and

O. Spatscheck, “An in-depth study of lte: Effect of network protocol and appli-

cation behavior on performance,” ACM SIGCOMM Computer Communication

Review, vol. 43, no. 4, pp. 363–374, 2013.

[70] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized

task-aware scheduling for data center networks,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 4, pp. 431–442, 2014.

[71] K. Suo, Y. Zhao, J. Rao, L. Cheng, X. Zhou, and F. C. Lau, “Preserving i/o

prioritization in virtualized oses,” in Proceedings of the 2017 Symposium on

Cloud Computing, 2017, pp. 269–281.

112

https://github.com/munikarmanish/falcon
https://enterprise-support.nvidia.com/s/article/performance-tuning-for-mellanox-adapters
https://enterprise-support.nvidia.com/s/article/performance-tuning-for-mellanox-adapters

[72] Y. Zhao, K. Suo, L. Cheng, and J. Rao, “Scheduler activations for

interference-resilient smp virtual machine scheduling,” in Proceedings of the

18th ACM/IFIP/USENIX Middleware Conference, 2017, pp. 222–234.

[73] Y. Zhao, K. Suo, X. Wu, J. Rao, S. Wu, and H. Jin, “Preemptive multi-queue

fair queuing,” in Proceedings of the 28th International Symposium on High-

Performance Parallel and Distributed Computing, 2019, pp. 147–158.

[74] P. Emmerich, D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M. Runge,

S. Gallenmüller, and G. Carle, “Optimizing latency and cpu load in packet pro-

cessing systems,” in 2015 International symposium on performance evaluation

of computer and telecommunication systems (SPECTS). IEEE, 2015, pp. 1–8.

[75] H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu, “Adaptive resource

views for containers,” in Proceedings of the 28th International Symposium on

High-Performance Parallel and Distributed Computing, 2019, pp. 243–254.

[76] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion,

“Ix: a protected dataplane operating system for high throughput and low la-

tency,” in Proceedings of the 11th USENIX conference on Operating Systems

Design and Implementation, 2014, pp. 49–65.

[77] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li, “Los: A high

performance and compatible user-level network operating system,” in Proceed-

ings of the First Asia-Pacific Workshop on Networking, 2017, pp. 50–56.

[78] M. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: a reusable net-

working stack for flow monitoring middleboxes,” in Proceedings of the 14th

USENIX Conference on Networked Systems Design and Implementation, 2017,

pp. 113–129.

[79] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park,

“mtcp: a highly scalable user-level tcp stack for multicore systems,” in Pro-

113

ceedings of the 11th USENIX Conference on Networked Systems Design and

Implementation, 2014, pp. 489–502.

[80] Z. Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein, “Net-

work stack as a service in the cloud,” in Proceedings of the 16th ACM Workshop

on Hot Topics in Networks, 2017, pp. 65–71.

[81] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,” in

Proceedings of the 8th international conference on Emerging networking exper-

iments and technologies, 2012, pp. 61–72.

[82] M. Munikar, J. Lei, H. Lu, and J. Rao, “Prism: Streamlined packet process-

ing for containers with flow prioritization,” in 2022 IEEE 42nd International

Conference on Distributed Computing Systems (ICDCS). IEEE, 2022, pp.

336–346.

[83] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,

R. Morris, and N. Zeldovich, “An analysis of linux scalability to many cores,”

in Proceedings of the 9th USENIX conference on Operating systems design and

implementation, 2010, pp. 1–16.

[84] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al., “A view of the parallel

computing landscape,” Communications of the ACM, vol. 52, no. 10, pp. 56–67,

2009.

[85] D. Patterson, “The parallel revolution has started: are you part of the solution

or part of the problem? an overview of research at the berkeley parallel comput-

ing laboratory,” in International Conference on High Performance Computing

for Computational Science. Springer, 2010, pp. 26–27.

[86] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os ar-

114

chitecture for scalable multicore systems,” in Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, 2009, pp. 29–44.

[87] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y. Dai, et al., “Corey: an operating system

for many cores,” in Proceedings of the 8th USENIX conference on Operating

systems design and implementation, 2008, pp. 43–57.

[88] P. Gilfeather and A. B. Maccabe, “Modeling protocol offload for message-

oriented communication,” in 2005 IEEE International Conference on Cluster

Computing. IEEE, 2005, pp. 1–10.

[89] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli,

D. Newell, L. Cline, and A. Foong, “Tcp onloading for data center servers,”

Computer, vol. 37, no. 11, pp. 48–58, 2004.

[90] P. Shivam and J. S. Chase, “On the elusive benefits of protocol offload,” in

Proceedings of the ACM SIGCOMM workshop on Network-I/O convergence:

experience, lessons, implications, 2003, pp. 179–184.

[91] R. Westrelin, N. Fugier, E. Nordmark, K. Kunze, and E. Lemoine, “Studying

network protocol offload with emulation: approach and preliminary results,” in

Proceedings. 12th Annual IEEE Symposium on High Performance Interconnects.

IEEE, 2004, pp. 84–90.

[92] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley, “Performance issues

in parallelized network protocols,” in Proceedings of the 1st USENIX conference

on Operating Systems Design and Implementation, 1994, pp. 10–es.

[93] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and

S. Shenker, “E2: A framework for nfv applications,” in Proceedings of the 25th

Symposium on Operating Systems Principles, 2015, pp. 121–136.

115

[94] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker, “Netbricks:

taking the v out of nfv,” in Proceedings of the 12th USENIX conference on

Operating Systems Design and Implementation, 2016, pp. 203–216.

[95] P. Willmann, S. Rixner, and A. L. Cox, “An evaluation of network stack paral-

lelization strategies in modern operating systems,” in Proceedings of the annual

conference on USENIX’06 Annual Technical Conference, 2006, pp. 8–8.

[96] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris, “Improving network

connection locality on multicore systems,” in Proceedings of the 7th ACM eu-

ropean conference on Computer Systems, 2012, pp. 337–350.

[97] G. Prekas, M. Kogias, and E. Bugnion, “Zygos: Achieving low tail latency for

microsecond-scale networked tasks,” in Proceedings of the 26th Symposium on

Operating Systems Principles, 2017, pp. 325–341.

[98] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and C. Kozyrakis,

“Shinjuku: preemptive scheduling for µsecond-scale tail latency,” in Proceedings

of the 16th USENIX Conference on Networked Systems Design and Implemen-

tation, 2019, pp. 345–359.

[99] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan, “Shenango:

achieving high cpu efficiency for latency-sensitive datacenter workloads,” in

Proceedings of the 16th USENIX Conference on Networked Systems Design and

Implementation, 2019, pp. 361–377.

[100] Improving Overlay Solutions with Hardware-Based VXLAN Termination, https:

//www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.

pdf.

[101] Mellanox VXLAN Acceleration, https://www.slideshare.net/slideshow/

vxlan-vm-world-02-theatre/38833540.

116

https://www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.pdf
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.pdf
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.pdf
https://www.slideshare.net/slideshow/vxlan-vm-world-02-theatre/38833540
https://www.slideshare.net/slideshow/vxlan-vm-world-02-theatre/38833540

[102] Optimizing the Virtual Network with VXLAN Overlay Offloading, https://www.

intel.com/content/www/us/en/developer/overview.html#gs.b681eb.

[103] J. Weerasinghe and F. Abel, “On the cost of tunnel endpoint processing in

overlay virtual networks,” in 2014 IEEE/ACM 7th International Conference

on Utility and Cloud Computing. IEEE, 2014, pp. 756–761.

[104] Scalable High-Performance User Space Networking for Contain-

ers, https://www.dpdk.org/wp-content/uploads/sites/35/2016/08/

Day02-Session02-Steve-Liang-DPDKUSASummit2016.pdf.

[105] World-Class Performance Ethernet SmartNICs Product Line, https://network.

nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf.

[106] Y. Hu, M. Song, and T. Li, “Towards” full containerization” in containerized

network function virtualization,” in Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, 2017, pp. 467–481.

[107] Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang, “A

communication-aware container re-distribution approach for high performance

vnfs,” in 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 2017, pp. 1555–1564.

[108] NVIDIA BlueField Networking Platform, https://www.nvidia.com/en-us/

networking/products/data-processing-unit/.

[109] X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen, “Characterizing off-path

{SmartNIC} for accelerating distributed systems,” in 17th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 23), 2023, pp. 987–

1004.

[110] T. Kim, D. M. Ng, J. Gong, Y. Kwon, M. Yu, and K. Park, “Rearchitecting the

{TCP} stack for {I/O-Offloaded} content delivery,” in 20th USENIX Sympo-

117

https://www.intel.com/content/www/us/en/developer/overview.html#gs.b681eb
https://www.intel.com/content/www/us/en/developer/overview.html#gs.b681eb
https://www.dpdk.org/wp-content/uploads/sites/35/2016/08/Day02-Session02-Steve-Liang-DPDKUSASummit2016.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2016/08/Day02-Session02-Steve-Liang-DPDKUSASummit2016.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

sium on Networked Systems Design and Implementation (NSDI 23), 2023, pp.

275–292.

[111] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,

H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al., “Azure accelerated

networking:{SmartNICs} in the public cloud,” in 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 18), 2018, pp. 51–66.

[112] TC Flower, https://netdevconf.info/2.2/papers/horman-tcflower-talk.pdf.

[113] P. Wang, F. Wen, P. V. Gratz, and A. Sprintson, “Simd-matcher: A simd-based

arbitrary matching framework,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 19, no. 3, pp. 1–20, 2022.

[114] ASAP2: Accelerated Switching and Packet Processing, https://network.nvidia.

com/files/doc-2020/sb-asap2.pdf.

[115] PCIe, https://pcisig.com.

[116] Compute Express Link (CXL), https://computeexpresslink.org.

[117] AMD SmartNIC with the support of CXL, https://www.amd.

com/content/dam/amd/en/documents/products/accelerators/alveo/

adaptive-smartnic-white-paper.pdf.

118

https://netdevconf.info/2.2/papers/horman-tcflower-talk.pdf
https://network.nvidia.com/files/doc-2020/sb-asap2.pdf
https://network.nvidia.com/files/doc-2020/sb-asap2.pdf
https://pcisig.com
https://computeexpresslink.org
https://www.amd.com/content/dam/amd/en/documents/products/accelerators/alveo/adaptive-smartnic-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/accelerators/alveo/adaptive-smartnic-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/products/accelerators/alveo/adaptive-smartnic-white-paper.pdf

BIOGRAPHICAL STATEMENT

Jiaxin Lei was born in Xi’an, Shaanxi, China, in 1994. He obtained a B.E. in

Telecommunication Engineering with Management from Beijing University of Posts

and Telecommunications (BUPT) in 2017. He received an M.S. in Computer Science

from the State University of New York (SUNY) at Binghamton in 2018. He completed

his Ph.D. in Computer Science at The University of Texas at Arlington (UTA) in

2024. Throughout his doctoral studies, he focused on developing efficient and scalable

cloud networking systems, with a particular emphasis on container overlay networks.

His research interests include cloud computing, networking systems, reconfigurable

hardware, and datacenter infrastructure.

119

	ENHANCING THE EFFICIENCY AND SCALABILITY OF CLOUD NETWORKING SYSTEMS
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	INTRODUCTION
	Contributions
	Characterizing the Complex Behaviors of Container Overlay Networks
	Accelerating Packet Processing via Device-Level Pipelining
	Accelerating Packet Processing via Packet-Level Parallelism

	Dissertation Organization

	TACKLING PARALLELIZATION CHALLENGES OF KERNEL NETWORK STACK FOR CONTAINER OVERLAY NETWORKS
	Introduction
	Background
	Network Packet Processing
	Container Overlay Networks
	Optimizations for Packet Processing

	Evaluation
	Experimental Settings
	A Single Flow
	Multiple Flows
	Small Packets

	Discussion
	Conclusion

	PARALLELIZING PACKET PROCESSING IN CONTAINER OVERLAY NETWORKS
	Introduction
	Background and Motivation
	Background
	Motivation

	Root Cause Analysis
	Prolonged Data Path
	Excessive, Expensive, and Serialized Softirqs
	Lack of Single-Flow Parallelization

	Design
	Software Interrupt Pipelining
	Software Interrupt Splitting
	Software Interrupt Balancing

	Implementation
	Stage Transition Functions
	Hashing-Based Load Balancing Mechanism

	Evaluation
	Experimental Configurations
	Micro-Benchmarks
	Application Results
	Overhead Analysis
	Discussion

	Conclusion

	ACCELERATING PACKET PROCESSING IN CONTAINER OVERLAY NETWORKS VIA PACKET-LEVEL PARALLELISM
	Introduction
	Background and Motivation
	Background
	Motivation

	Design
	Flow Splitting
	Flow Reassembling

	Implementation
	Flow-Splitting Function
	IRQ-Splitting Function
	Flow-Reassembling Function

	Evaluation
	Experimental Configurations
	Micro-Benchmarks
	Applications

	Conclusion

	RELATED WORK
	Network Stack Optimization
	Kernel Scalability on Multicore
	Container Network Acceleration

	FUTURE WORK
	SmartNIC-Assisted Zero-Copying
	Elastic Networking Offloading
	Reshaping Networking via CXL

	CONCLUSION
	REFERENCES
	BIOGRAPHICAL STATEMENT

