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ABSTRACT

Likelihood Inference for Flexible Cure Models with Interval Censored Data

Jodi Treszoks, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Dr. Suvra Pal

Models for survival data with a surviving fraction, known as cure rate models,

play a vital role in survival analysis. Due to the improvement of intervening method-

ologies, some subjects are seen to be immune permanently. While cure rate models

have been studied extensively in the recent literature with a standard assumption of

right-censored data, in many applied settings, such as recidivism studies or medical

studies where the event of interest is not immediately harmful, continuous observation

of a subject is impracticable. We call lifetime data generated with discrete follow-up

times as interval-censored.

In this thesis, we extend several existing cure models to accommodate interval

censoring and develop efficient likelihood-based inference methods. We first extend

two destructive cure rate models, in which a certain number of competing risks

are reduced by a destructive mechanism, to the interval-censored setting. For the

destructive shifted Poisson model under interval censoring, we propose an efficient

expectation maximization (EM) algorithm by using the conditional distributions

of the missing data to decompose the conditional expected complete log-likelihood

function into simpler functions which are maximized independently and evaluate
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the performance of this algorithm through Monte Carlo simulation and analysis of

recidivism data. Likelihood inference for the interval-censored destructive negative

binomial cure rate model is developed using the conditional distributions of the

missing data in two distinct implementations of the EM algorithm and a variation

of the EM algorithm called the stochastic EM (SEM) algorithm. We address the

advantages of the recommended estimation method, the SEM algorithm, through

simulation study and analysis of smoking cessation data. Finally, we use a semi-

parametric framework to extend the Box-Cox transformation cure rate model to the

interval-censored setting, formulate the EM algorithm, and present a comprehensive

simulation study addressing its performance and an analysis of smoking cessation

data.
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CHAPTER 1

INTRODUCTION

1.1 Cure rate models

While conventional survival analysis methods assume all individuals to be sus-

ceptible to the event of interest given sufficient follow-up time [68, 83], advancements in

medical science have led to a proportion of patients responding favorably to treatment

and experiencing no recurrence of disease until the end of a long follow-up time. These

survivors are termed as cured or non-susceptible. The remaining patients are subject

to recurrence of the disease and are described as susceptible. The population can then

be viewed as a mixture of susceptible and non-susceptible patients. Survival models

that allow for a proportion of the population to be cured are termed cure rate models.

Cure rate estimation is of particular interest to practitioners and is utilized in context

of biomedical and financial applications, among others [1, 2, 3, 18, 46, 51, 98, 104].

Cure models are instrumental in reliability and biomedical science and are commonly

used in cancer clinical trials.

1.2 Mixture cure rate model

The first cure rate model, known in the literature as the mixture cure rate

model, was developed by Boag [15], where the author proposed a cure component to

represent the proportion of patients not susceptible to recurrence of disease. In the

mixture cure rate model, the population survival function of a time-to-event variable

Y is given by

Spop(y) = p0 + (1− p0)Ssusc(y), (1.1)
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where p0 is the cure rate and Ssusc(·) is a proper survival function of the susceptible

patients only. For a book-length account on mixture cure rate model, interested

readers may refer to the research monographs by Maller and Zhou [58] and Peng and

Yu [85]. The mixture cure rate model is widely used, with parametric [20, 35, 36],

semi-parametric [16, 34, 33, 46, 49, 66, 53, 67, 65, 92, 110], and non-parametric

[21, 55, 99] inferential methods having been explored extensively.

1.3 Promotion time cure rate model

While the model in (1.1) is intuitive, it lacks a proportional hazards structure

which is a desirable property to facilitate covariate analyses. The proportional hazards

structure has been adopted in estimating cure rates using Bayesian [43, 44, 98, 111] as

well as parametric [104] and semi-parametric [56, 54] approaches. The promotion time

cure model is an alternative cure rate model which includes a proportional hazards

structure, and is strongly motivated by biological considerations [23, 105]. Chen et

al. proposed a Bayesian approach for a new cure rate model, known in the literature

as the promotion time or Poisson cure rate model, where the event of interest (e.g.,

relapse of cancer) is related to a number of carcinogenic cells (competing risks) left

active after an initial treatment [23]. Assuming the latent number of competing risks

to follow a Poisson distribution, the population survival function for the promotion

time cure rate model is given by

Spop(y) = e−η(1−S(y)), (1.2)

with η representing the mean number of competing risks and S(·) representing the

common survival function corresponding to the promotion time of each competing risk.

Within the context of the promotion time cure rate model, varying assumptions about

the parametric distribution of the competing risks variable appear in the literature
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[13, 26, 38, 41, 87, 40], among others. Non-parametric [22, 103] and semi-parametric

inference methods [14, 28, 45, 63] have also been developed using the promotion

time cure model. A piecewise linear approximation to model the hazard functions of

competing risks in the context of mixture and promotion time cure rate models was

developed [5]. The parametric negative binomial cure model was extended by utilizing

a piecewise exponential approximation for the progression time of each competing

risk [42]. Novel estimation algorithms for cure models have recently been proposed

and the advantages demonstrated with simulation and real data analyses [69, 80, 81].

Rodrigues et al. [90] proposed the Conway Maxwell Poisson (COM-Poisson) cure rate

model which can account for both over-dispersion and under-dispersion and includes

well-known cure rate models, such as (1.1) and (1.2), as special cases. Balakrishnan

and Pal [6, 7, 8, 10] developed the steps of the expectation maximization (EM)

algorithm for the determination of the maximum likelihood estimates (MLEs) for

parameters of the COM-Poisson model based on non-informative right censored

data and different parametric assumptions on the susceptible lifetime distribution.

Alternative unified approaches considering both the mixture and promotion time cure

rate models can be found in [24, 88, 107].

1.4 Destructive cure rate model

The destructive cure rate model, developed by Rodrigues et al., introduces to

the COM-Poisson cure rate model a natural destructive process which imposes on

the original number of competing risks [89]. Borges et al. extended the destructive

cure rate model by incorporating a biological dependence between the initiated cells

[17], and Gallardo et al. included the effect of bivariate random variable (U, V ),

where U is related to relapse times of the disease caused by non-destroyed cells

and V is associated with the cure rate corresponding to a particular clinic under
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study [37]. While [89] utilized direct maximization of the (observed) log-likelihood

function for maximum likelihood estimation of the parameters of the destructive cure

rate model, alternative estimation methods have been explored to address problems

with convergence of the classical method depending on choice of initial parameter

values [86]. The development of likelihood inference and finding maximum likelihood

estimates (MLEs) in cure rate models has been well studied, largely making use of the

expectation maximization (EM) algorithm [6, 7, 8, 9, 10, 71, 72, 73, 74, 75, 76, 78, 57].

A novel variation of the EM algorithm for the destructive weighted Poisson cure

rate model was developed by Gallardo et al. [37]. This variation, which makes use

of conditional distributions of the missing data, allows the complete log-likelihood

function to be split into simpler functions which may be maximized independently.

1.5 Transformation cure rate models

Many generalizations of the mixture and promotion time models utilizing

transformations can be found in the literature [24, 48, 61, 96, 97, 100, 109]. By

applying a reparameterization or a transformation to the population survival function,

a resulting model may be seen to generalize popular models such as the mixture and

promotion time models, as well as achieve greater realistic interpretability.

1.5.1 Box-Cox transformation cure rate model

Yin and Ibrahim proposed a class of cure rate models based on the Box-Cox

transformation (BCT) which contains both the mixture and promotion time cure

rate models as special cases [107]. A novel biological interpretation for the BCT

model was proposed, along with maximum likelihood parameter estimation using a

proportional hazards structure [84]. Non-parametric maximum likelihood estimation

was developed for the BCT model with an added frailty term for multivariate survival
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data [29]. Viewing the latent cured status as missing data, Pal and Balakrishnan

developed an EM algorithm for the Box-Cox transformation cure rate model, with

the assumption that the lifetimes follow a Weibull distribution [76]. Recently, Pal

and Roy proposed an algorithm utilizing a non-linear conjugate gradient method for

estimation of the BCT model parameters which was shown to produce more accurate

and precise inference on the cure rate as compared to the EM algorithm [82].

1.6 Interval censoring

Though traditional survival models, as well as the cure rate models discussed

previously, assume the data to be right censored, it is not uncommon in practice

for data to be interval-censored. In a scenario where subjects are not monitored

continuously but rather observed at discrete follow-up times, an observed lifetime

may be said only to lie in an interval. The mixture cure rate model was extended to

accommodate interval-censored data while considering spatial correlation, and Markov

Chain Monte Carlo methods were used to develop Bayesian inference [11]. Covariate

effects were introduced to the mixture cure rate model under interval censoring and

the EM algorithm was developed for this framework [47]. The effects of covariates

in both the mixture and promotion time cure rate models have been studied in the

context of interval-censored data [50, 79, 93, 102, 108]. Pal and Balakrishnan [73]

developed the steps of the EM algorithm for the determination of the MLEs of the

COM-Poisson cure rate model parameters with interval censoring; see also Wiangnak

and Pal [101].

1.6.1 Form of interval-censored data

Let Ti denote the i-th patient’s true failure time (unobserved), for i = 1, 2, . . . , n,,

with n denoting the number of patients in the study. To develop an interval censoring
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scheme, let us assume the i-th subject is observed at times Yi = (Y0(i), Y1(i), . . . , Yj−1(i),

Yj(i)), with 0 < Y0(i) < Y1(i) < · · · < Yj(i) < ∞. In a practical setting, observation

occurs only until either the event of interest has occurred or the lifetime is right-

censored. In the case that the lifetime is observed, the interval (Yj−1(i), Yj(i)) is known

to contain Ti, and we consider the lifetime to be interval-censored. If the i-th subject’s

failure time did not occur prior to the last observation time, we consider the lifetime

right-censored and can only conclude the lifetime is contained in the interval (Yj(i),∞).

The observed data is denoted as Dobs = (l, r, δ), where l = (l1, l2, . . . , ln) such that

li =


Yj−1(i), if lifetime is interval-censored

Yj(i), otherwise,

r = (r1, r2, . . . , rn) such that

ri =


Yj(i), if lifetime is interval-censored

∞, otherwise,

δ = (δ1, δ2, . . . , δn) such that

δi =


1, if lifetime is interval-censored

0, otherwise.

While the focus of this thesis is interval-censored data, it is important to note that

both right- and left-censored data can be viewed as special cases of the general

interval-censored form. This property supports the utility of developing inferential

methods that accommodate interval-censored data, as these methods will be more

broadly applicable to varying forms of data than the majority of existing methods

which rely on an assumption of right censoring.
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1.7 Thesis structure

This thesis aims to extend several existing cure models to accommodate interval

censoring and develop corresponding likelihood-based inference methods. The rest

of this thesis is organized as follows. In Chapter 2, we apply the destructive shifted

Poisson cure rate model to interval-censored data, propose an efficient EM algorithm

for this model, and examine the performance of the proposed estimation method

through a simulation study and real data analysis. Chapter 3 presents the destructive

negative binomial cure rate model under interval censoring and demonstrates the

performance of the recommended estimation method, a variation of the EM algorithm

called the stochastic EM (SEM) algorithm, as compared to two distinct implemen-

tations of the EM algorithm. The SEM algorithm is shown to be preferred both

through simulation and analysis of a real data on smoking cessation. In Chapter

4, we use a semi-parametric framework to extend the Box-Cox transformation cure

rate model to the interval-censored setting and formulate the EM algorithm. The

performance of the proposed EM algorithm at parameter recovery is considered using

both simultaneous maximization and profile likelihood techniques and compared

to the performance of direct maximization of the log-likelihood function through a

comprehensive simulation study, and the EM algorithm is applied to a real data on

smoking cessation. Finally, in Chapter 5 we summarize and suggest areas for future

related research.
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CHAPTER 2

Destructive shifted Poisson cure rate model under interval censoring

2.1 Introduction

This chapter aims to extend the destructive cure rate model developed by Ro-

drigues et al. [89] to accommodate interval-censored data assuming initial competing

risks follow a shifted Poisson distribution. The shifted Poisson distribution is prefer-

able to the (standard) Poisson distribution for settings in which no cure component is

present prior to a destructive process imposed by intervention. Applications exist in

biomedical studies, such as the study of tumor recurrence in cancer patients, where

all individuals are susceptible to the event of interest prior to treatment. In criminal

recidivism applications, a group of inmates is susceptible to committing crime at time

of arrest, however rehabilitative measures such as counseling or vocational training

may take place during incarceration with the goal of preventing a relapse of crime. By

using the identity weight function, the shifted Poisson distribution allows for modeling

the scenario where at least one initial risk exists without introducing an additional

parameter. Noting that both right-censored and left-censored data may be considered

special cases of interval-censored data, this work provides a generalization of the

destructive cure rate model. Further, the EM algorithm proposed by Gallardo et al.

[37] is implemented in the interval-censored setting with a simulation study. This

chapter is adapted from [95], previously published by Communications in Statistics -

Simulation and Computation.

The rest of this chapter is organized as follows. In Section 2.2, we describe

the destructive shifted Poisson cure rate model under interval censoring and present

8



the complete log-likelihood function. In Section 2.3, we develop the steps of the

EM algorithm for the model in Section 2.2. Section 2.4 presents two Monte Carlo

simulations, first evaluating the performance of the proposed EM algorithm in

parameter recovery then comparing the performance of the EM algorithm to that

of direct maximization of the observed log-likelihood function under three initial

parameter settings. In Section 2.5, the EM algorithm is applied to real data from a

study on crime recidivism.

2.2 Model formulation

Let us assume the unobserved number of competing risksM to follow a weighted

Poisson distribution with probability mass function (pmf)

pm = P [M = m; θ, ϕ] =
w(m;ϕ)p∗(m; θ)

Eθ[w(M ;ϕ)]
, m = 0, 1, 2, . . . , (2.1)

where w(m;ϕ) is a non-negative weight function with parameter ϕ, p∗(m; θ) is the pmf

of a Poisson distribution with parameter θ > 0, and Eθ[·] implies that the expectation

is taken with respect to p∗(m; θ). Taking w(m;ϕ) = m, the form of (2.1) becomes

P [M = m; θ] =
me−θθm

m!θ
=
e−θθm−1

(m− 1)!
,m = 1, 2, 3, . . . , (2.2)

thus (M − 1) follows a Poisson distribution with parameter θ, and M is said to follow

a shifted Poisson distribution. Now suppose that an intervention takes place resulting

in a quantity D(≤M) competing risks remaining active, each of which could result

in a detectable tumor with probability p. To each competing risk M we can associate

a Bernoulli random variable Xj such that P (Xj = 1) = p. The remaining quantity of

competing risks not destroyed can be modeled as

D = X1 +X2 + . . .+XM .
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Proposition 2.2.1. For the cure rate model with the pmf of the number of competing

risks as in (2.2), the distribution of D is given by

pd = P (D = d; θ, p) =
e−θp(θp)d

d!
[(1− p) +

d

θ
], d = 0, 1, 2, ...,M. (2.3)

A proof of proposition 2.2.1 is provided in the Appendix A.1. We note that random

variable D may be obtained as a sum of two random variables having Poisson

and Bernoulli distributions with respective means θp and p, thus we will say D ∼

Pois(θp) + Bern(p).

Let Wa be the time taken for the ath active risk to produce a detectable disease

(event of interest). The waiting times Wa, a = 1, 2, · · · , are assumed to be identically

and independently distributed with a common distribution function F (t;λ), where

λ is an unknown set of parameters, and are also independent of D. Because the

number of active competing risks D and lifetime Wa associated with a given risk

are latent variables, one generally only observes the time taken by the first active

risk to produce the event. To accommodate the presence of a cured proportion, the

time-to-event or lifetime is defined as

T = min{W0,W1, · · · ,WD},

where W0 is such that P [W0 = ∞] = 1. After some algebra, the population survival

function can be expressed as [89]

Spop(t; θ, p,λ) = P (T > t) = exp{−θpF (t)}(1− pF (t;λ)).

For the sake of simplicity, we will use F (·) instead of F (·;λ). Similarly, we will use

S(·) instead of S(·;λ). We note that Spop(·) is an improper survival function with

corresponding cure fraction p0 = Spop(∞; θ, p,λ) = e−θp(1− p). To study the effects
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of covariates, we propose to use two sets of covariates, z1 and z2, where z1 is related

to the initial number of competing risks and z2 is related to activation probability

for non-destroyed risks, with corresponding link functions

θ = ez1
′β1 and p =

ez2
′β2

1 + ez2′β2
,

where β1 and β2 represent vectors of regression coefficients. We note that z1 and z2

share no common elements, and an intercept term is excluded either from β1 or from

β2 to avoid identifiability problems [52]. Let ψ = (β1,β2,λ) denote the vector of

unknown parameters.

2.2.1 Form of data and likelihood function

We consider a scenario where the true lifetimes are not exactly observed and

are subject to interval censoring. Adopting the form of data as described in Section

1.6.1, the observed data is denoted as Dobs = (l, r, δ). Based on the observed data

(l, r, δ), the observed likelihood function under non-informative censoring is given by

L(ψ|Dobs) ∝
n∏

i=1

{Spop(Yj−1(i))− Spop(Yj(i))}δi{Spop(Yj(i))}1−δi ,

while the observed log-likelihood function is given by

l(ψ|Dobs) ∝
n∑

i=1

{
δilog

[
Spop(Yj−1(i))− Spop(Yj(i))

]
+ (1− δi)logSpop(Yj(i))

}
. (2.4)

The complete data are denoted by Dcomp = (l, r, δ,M ,D) which includes the

observed data and the missing data, where M = (M1,M2, . . . ,Mn) and D =

(D1, D2, . . . , Dn) are the missing data. Following Yakovlev and Tsodikov [105], the

joint distribution of the complete data can be expressed as

f(li, ri, δi,mi, di) = f(li, ri, δi|Di = di)P (Di = di|M = mi)P (Mi = mi).

Noting that the second and third terms in the product above are well defined, we

focus on the derivation of f(li, ri, δi|Di = di).
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Proposition 2.2.2. For the cure rate model with the pmf of the number of active risks

as in (2.3), the joint distribution of (li, ri, δi) given Di = di under interval censoring

is given by

f(li, ri, δi|Di = di) =
[
di{S(Yj−1(i))− S(Yj(i))}

]δi {S(Yj(i))}di−δi .

A proof of proposition 2.2.2 is provided in the Appendix A.1.

Using proposition 2.2.2, the complete data likelihood function may be defined as

Lc(ψ|Dcomp) =
n∏

i=1

f(li, ri, δi,mi, di)

=
n∏

i=1

f(Yj−1(i), Yj(i), δi,mi, di)

=
n∏

i=1

{S(Yj(i))di−δi}[di{S(Yj−1(i))− S(Yj(i))}]δi
(
mi

di

)
pdii (1− pi)

mi−di
e−θiθmi−1

i

(mi − 1)!
.

The complete data log-likelihood function can then be written as

lc(ψ|Dcomp) = lc(β1) + lc(β2) + lc(λ) +K, (2.5)

where

lc(β1) =
n∑

i=1

{
(mi − 1) log θi − θi

}
,

lc(β2) =
n∑

i=1

{
di log pi + (mi − di) log(1− pi)

}
,

lc(λ) =
n∑

i=1

{
(di − δi) logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,

and K is a constant independent of model parameters, given by

K =
n∑

i=1

{
δi log di + log

mi!

di!(mi − di)!
+ log[(mi − 1)!]

}
. (2.6)
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2.3 EM algorithm

In this section we present the construction of the EM algorithm to produce

estimates of the parameters for the destructive shifted Poisson cure rate model

under interval censoring. The first step in the implementation of the EM algorithm

[60] requires taking the conditional expectation of a complete data log-likelihood

function, such as (2.5), given some proposed parameter values. The second step

requires maximizing the conditional expected complete data log-likelihood function.

In the traditional approach, this may involve maximizing a complicated function that

involves all model parameters. Such an approach is computationally less efficient

and may lack robustness with respect to initial values, specifically in the presence

of a large set of unknown parameters. The implementation of the EM algorithm

proposed here is motivated by the work of Gallardo et al. [37] and uses the conditional

distributions of both initial competing risks and active competing risks to decompose

the conditional expectation of lc(ψ|Dcomp) into three simpler functions that can each

be maximized independently. This makes the entire formulation of the EM algorithm

much more efficient.

Let ψ(k) = (β
(k)
1 ,β

(k)
2 ,λ(k)) be the estimate of ψ at the kth iteration, and let

Q(ψ|ψ(k)) denote the conditional expectation of lc(ψ|Dcomp) given the observed data

and ψ(k). Then by (2.5),

Q(ψ|ψ(k)) = E
[
lc(β1)|Dobs;ψ

(k)
]
+ E[lc(β2)|Dobs;ψ

(k)] + E[lc(λ)|Dobs;ψ
(k)] +K∗

= Q1(β1|ψ(k)) +Q2(β2|ψ(k)) +Q3(λ|ψ(k)) +K∗,

with

Q1(β1|ψ(k)) =
n∑

i=1

{
log θi(M̃

(k)
i − 1)− θi

}
(2.7)

Q2(β2|ψ(k)) =
n∑

i=1

{
D̃

(k)
i log pi + (M̃

(k)
i − D̃

(k)
i ) log(1− pi)

}
(2.8)
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Q3(λ|ψ(k)) =
n∑

i=1

{
(D̃

(k)
i − δi) logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,(2.9)

where D̃
(k)
i = E(Di|Dobs,ψ

(k)), M̃
(k)
i = E(Mi|Dobs,ψ

(k)), and K∗ is a constant

independent of ψ. The following results will be needed to compute the required

conditional expectations.

Proposition 2.3.1. For the cure rate model with the pmf of the number of competing

risks as in (2.2), the conditional distribution of Mi− δi given the observed data under

interval censoring is given by

Mi − δi|Dobs;ψ ∼ Pois
(
θi[1− piF (Yj(i))]

)
+ Bern

(
1− piF (Yj(i))

1− piF (Yj(i)) +
δi
θi

)
.

A proof of proposition 2.3.1 is provided in the Appendix A.1.

Proposition 2.3.2. For the cure rate model with the pmf of the number of active risks

as in (2.3), the conditional distribution of Di − δi given the observed data under

interval censoring is given by

Di − δi|Dobs;ψ ∼ Pois(θipiS(Yj(i))) + Bern

(
piS(Yj(i))

1− piF (Yj(i)) +
δi
θi

)
. (2.10)

A proof of proposition 2.3.2 is provided in the Appendix A.1.

Applying the results of propositions 2.3.1 and 2.3.2, we can compute D̃
(k)
i , M̃

(k)
i

as

D̃
(k)
i = θi[1− piF (Yj(i))] +

1− piF (Yj(i))

1− piF (Yj(i)) +
δi
θi

and

M̃
(k)
i = δi + θi[1− piF (Yj(i))] +

1− piF (Yj(i))

1− piF (Yj(i)) +
δi
θi

− 1,

with θi = ez1i
′β1 and pi =

ez2i
′β2

1+ez2i
′β2

.
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The next step is to maximize Q1(β1|ψ(k)), Q2(β2|ψ(k)), and Q3(λ|ψ(k)) inde-

pendently with respect to β1, β2, and λ, respectively. This can be done using readily

available optimization routines in R such as the “optim()” function. In this regard,

interested readers may also look at new optimization techniques studied by Pal and

Roy [80, 81]. The steps of the EM algorithm can be summarized as follows:

Step 1 (Expectation step or E-step): For i = 1, . . . , n, compute D̃
(k)
i and M̃

(k)
i .

Step 2 (Maximization step or M-step): Given D̃(k) = (D̃
(k)
1 , . . . , D̃

(k)
n ) and M̃ (k) =

(M̃
(k)
1 , . . . , M̃

(k)
n ), find ψ(k) that maximizes (2.7)-(2.9) in relation to β1,β2, and λ,

respectively, to obtain an improved estimate ψ(k+1) .

Step 3 (Iterative step): The E-step and M-step are repeated until a suitable conver-

gence criterion is met. For this purpose, we use the relative difference in successive

values of the estimates,

∣∣∣∣ψ(k+1)−ψ(k)

ψ(k)

∣∣∣∣, as stopping criterion with a tolerance value of

10−4.

Note that in the work of Pal and Balakrishnan [75], an EM algorithm has been

developed to estimate the parameters of the destructive length-biased Poisson cure

rate model when the form of the data is right censored. In the construction of the EM

algorithm, the authors considered the latent cured statuses to be the missing data.

This resulted in one complicated objective function (containing all model parameters)

to be maximized in the M-step of the EM algorithm. Such an approach is certainly

not computationally efficient, and the computational complexity increases with an

increase in the covariate dimension. In this thesis, we develop an EM algorithm for

estimating the parameters of the destructive length-biased Poisson cure rate model

when the form of the data is interval-censored. In this case, we assume the latent

number of initial competing risks (M) and the latent number of active competing

risks (D) to be the missing data. Interestingly, this approach, motivated by the work

15



of Gallardo et al. [37], results in an objective function that can be split into simpler

functions. Each simple function can be maximized independently of the others since

these simple functions do not share common model parameters. This makes the entire

computation much more efficient and also suitable for incorporating more covariates.

2.4 Simulation study

This section presents the results of two simulation studies. The first study

evaluates the performance of the proposed EM algorithm to recover parameter values,

while comparison of the EM algorithm to direct maximization of the observed log-

likelihood function is considered in the second study.

2.4.1 Parameter recovery

In this section, we evaluate the performance of the proposed EM algorithm

to recover parameter values for a simulated data set. This empirical study partially

mimics the real melanoma dataset which was used for illustrative purposes by Ro-

drigues et al. [89] using covariates of treatment group (1: treatment, 0: placebo) and

tumor thickness (in mm).

2.4.1.1 Data generation

To simulate covariate data we first generated treatment group, denoted by z1,

from a Bern(0.5) distribution. Noting that tumor thickness values in the melanoma

data set range from 0.1 to 17.42 mm, we generated tumor thickness values, denoted

by z2, from a uniform U(0.1, 20) distribution. We link parameter θ to treatment

group only using θ = eβ11z1 and parameter p to tumor thickness only, using p =

exp(β20+β21z2)
1+exp(β20+β21z2)

. Note that only one regression parameter corresponds to parameter θ

in order to circumvent problems with identifiability in the sense of Li et al. [52]. A
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higher cure rate, and consequently a smaller value of θ, is expected for the treatment

group, while a lower cure rate and larger value of θ is expected for the placebo group.

A negative value of β11 is consistent with this expectation, and we select β11 = −0.5.

To select regression parameters for p, we posit that the activation probability will be

proportionally higher for higher values of tumor thickness and select values β20 = −1,

β21 = 0.1 in accordance with this observation. We shall assume the waiting time W

to follow a Weibull distribution with shape parameter 1
λ1

and scale parameter 1
λ2
, and

density function given by

f(w) = f(w;λ) =
1

λ1w
(λ2w)

1
λ1 e−(λ2w)

1
λ1 , w > 0, λ1 > 0, λ2 > 0. (2.11)

Random censoring was introduced through censoring time C following exponen-

tial distribution with rate α = 0.05. To generate interval-censored lifetime data

(li, ri, δi), i = 1, 2, · · · , n, we execute the following steps:

1. Generate censoring time Ci, competing risks Mi ∼ Pois(θ) + 1, and damaged

cells Di|Mi = mi ∼ Bin(m, p);

2. If Di = 0, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

3. If Di > 0, generate times to event due to each non-eliminated risk, Wj, j =

1, 2, · · · , Di, from the considered Weibull distribution with parameter λ;

4. Set Yi = min{W1,W2, . . . ,WDi
};

(a) If Yi > Ci, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

(b) If Yi ≤ Ci, set δi = 1 and generate l1i from U(0, 1) distribution and l2i from

U(0.2, 0.7) distribution. Construct intervals (0, l1i], (l1i, l1i + l2i], · · · , (l1i +

k × l2i,∞], k = 1, 2, · · · , and select (li, ri) that satisfies li < Yi ≤ ri.

The choice of the lifetime parameter λ was obtained by equating the mean and

variance of the underlying Weibull distribution to fixed values. For this purpose, we

considered two different choices for the variance as 1.5 and 3 for the same fixed choice
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of mean as 5, which gives us two possible choices of (λ1, λ2) as (0.215, 0.183) and

(0.316, 0.179). Sample sizes of both n = 100 and n = 200 are used in order to observe

the performance of the algorithm under small and moderate sample sizes. This study

applies the EM algorithm proposed in Section 2.3 to interval-censored data from the

destructive shifted Poisson cure rate model, simulated using the parameters and data

generation methods outlined above. All simulations are done using the R statistical

software (version 4.0.5) and all results are based on M = 1000 Monte Carlo runs.

Computational codes for data generation and EM algorithm are available in the

Appendix C.1.

2.4.1.2 Parameter estimation

To assess the performance of this method in parameter recovery, we report the

empirical bias and root mean square error (RMSE) of the estimates, as well as the

coverage probabilities (CP) of the asymptotic confidence intervals at 95% confidence

level under the assumption that the estimators are asymptotically normally distributed.

The results are presented in Table 2.1. Initial values of parameter estimates for a

given Monte Carlo run were selected as follows: for a given parameter Γ, initial guess

Γinit is generated such that Γinit = Γ + U(0, 0.1)|Γ|.

We observe that in all cases, the EM algorithm produces parameter estimates

with high accuracy. The empirical coverage probabilities are close to the nominal

level for all model parameters, and in all cases the bias and RMSE decrease with an

increase in sample size, which is consistent with the large sample properties.
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2.4.2 Comparison with direct maximization of log-likelihood function

In this study, we compare the performance of the proposed EM algorithm

to that of direct maximization of the observed log-likelihood function using three

different methods for selecting initial parameter estimates:

• ψ0 = (β11, β20, β21, λ1, λ2)

• ψ1 = (β11 + ϵ1|β11|, β20 + ϵ2|β20|, β21 + ϵ3|β21|, λ1 + ϵ4|λ1|, λ2 + ϵ5|λ2|)

• ψ2 = (β11 − ϵ1|β11|, β20 − ϵ2|β20|, β21 − ϵ3|β21|, λ1 − ϵ4|λ1|, λ2 − ϵ5|λ2|),

where ϵi ∼ U(0, 0.5), i = 1, · · · , 5.

For each true and initial value parameter setting, M = 1000 convergent Monte

Carlo runs were performed with n = 100 using both the proposed EM algorithm and

direct maximization of the observed log-likelihood function (DM) with the “optim()”

function in R. The median (Med) for each parameter under all settings was computed.

To identify atypical estimate values, we compute Q1, Q3, and IQR = Q3−Q1, the first

quartile, third quartile, and interquartile range, respectively, and report the percentage

of times that the estimate is outside the interval (Q1 − 1.5× IQR,Q3 + 1.5× IQR),

denoted by PT. Results are presented in Table 2.2. With the exception of median of

estimates for parameter β11, the medians of estimates from the EM algorithm are

either comparable or closer to the true values than the medians of estimates obtained

from direct maximization of the log-likelihood function. In comparing the PT values

however, we see evidence that the atypical values obtained through the EM algorithm

are consistently smaller, most notably when comparing percentage of atypical values

in estimating β11.
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Table 2.1. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP)

n Parameter Estimate (SE) Bias RMSE 95% CP

100 β11 = −0.5 −0.502 (1.135) −0.002 0.580 0.957

β20 = −2 −2.090 (0.556) −0.090 0.563 0.967

β21 = 0.1 0.103 (0.044) 0.003 0.045 0.952

λ1 = 0.215 0.210 (0.029) −0.005 0.031 0.912

λ2 = 0.183 0.184 (0.008) 0.001 0.008 0.942

100 β11 = −0.5 −0.479 (1.076) 0.021 0.590 0.947

β20 = −2 −2.095 (0.551) −0.095 0.553 0.969

β21 = 0.1 0.103 (0.043) 0.003 0.044 0.954

λ1 = 0.316 0.309 (0.042) −0.007 0.043 0.934

λ2 = 0.179 0.180 (0.011) 0.001 0.011 0.939

200 β11 = −0.5 −0.568 (0.838) −0.068 0.472 0.963

β20 = −2 −2.030 (0.384) −0.030 0.365 0.966

β21 = 0.1 0.100 (0.030) 0.000 0.029 0.962

λ1 = 0.215 0.214 (0.021) −0.001 0.019 0.954

λ2 = 0.183 0.183 (0.005) 0.000 0.006 0.944

200 β11 = −0.5 −0.532 (0.800) −0.032 0.481 0.958

β20 = −2 −2.032 (0.382) −0.032 0.375 0.963

β21 = 0.1 0.100 (0.030) 0.000 0.030 0.953

λ1 = 0.316 0.314 (0.030) −0.002 0.031 0.946

λ2 = 0.179 0.179 (0.008) 0.000 0.008 0.948
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Table 2.2. Comparison of the EM algorithm with direct maximization of the observed
log-likelihood function (DM) for n=100

ψ0 ψ1 ψ2

Approach Parameter Med PT (%) Med PT (%) Med PT (%)

EM β11 = −0.5 −0.680 0.0 −0.729 0.0 −0.770 0.0

β20 = −2 −2.043 0.8 −2.059 1.7 −2.045 1.2

β21 = 0.1 0.099 1.6 0.099 1.1 0.099 1.0

λ1 = 0.215 0.207 1.3 0.209 1.0 0.210 0.8

λ2 = 0.183 0.183 0.8 0.183 0.6 0.183 0.8

β11 = −0.5 −0.624 0.0 −0.495 0.0 −0.705 0.0

β20 = −2 −2.044 0.9 −2.081 1.4 −2.016 1.0

β21 = 0.1 0.100 0.5 0.103 1.9 0.101 0.9

λ1 = 0.316 0.306 0.6 0.311 0.3 0.308 0.6

λ2 = 0.179 0.179 1.0 0.179 1.0 0.178 1.2

DM β11 = −0.5 −0.402 8.0 −0.274 10.4 −0.502 8.9

β20 = −2 −2.041 1.9 −2.025 1.6 −2.077 0.7

β21 = 0.1 0.102 1.4 0.097 2.0 0.105 1.5

λ1 = 0.215 0.207 1.5 0.211 1.1 0.210 0.7

λ2 = 0.183 0.183 0.5 0.184 0.2 0.183 1.5

β11 = −0.5 −0.340 8.1 −0.353 7.7 −0.461 11.5

β20 = −2 −2.050 1.8 −2.003 1.4 −2.084 1.4

β21 = 0.1 0.101 2.0 0.097 1.5 0.103 1.6

λ1 = 0.316 0.305 1.0 0.311 0.9 0.309 0.5

λ2 = 0.179 0.179 1.3 0.180 1.5 0.179 0.6
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To compare the divergence rate of direct maximization of the observed log-

likelihood function to the proposed EM algorithm, we compute the percentage of

divergent runs out of M = 1000 Monte Carlo runs of each method using data

simulated with true parameter values as in Section 2.4.1.1, sample sizes of both

n = 100 and n = 200, and initial parameter estimates ψ0, ψ1, and ψ2. We note that

parameter setting 1 is ψ = (−0.5,−2, 0.1, 0.215, 0.183) and parameter setting 2 is

ψ = (−0.5,−2, 0.1, 0.305, 0.179). Additionally, in order to provide the best basis

for comparison, the same simulated data sets and initial parameter estimates were

used for both estimation methods under each sample size and parameter setting.

Percentage of divergent runs, denoted by Div (%), are presented in Table 2.3. Direct

maximization of the observed log-likelihood function is seen to be divergent in all

settings, with the lowest divergent percentage of 16%, and percentages increasing to

40% and higher when initial estimates deviate from true parameter values. The EM

algorithm, however, is observed to be convergent in all settings.

Table 2.3. Comparison of divergence of the EM algorithm with direct maximization
of the observed log-likelihood function

EM DM

ψ0 ψ1 ψ2 ψ0 ψ1 ψ2

Parameter

n Setting Div (%) Div (%) Div (%) Div (%) Div (%) Div (%)

100 1 0 0 0 28.8 67.7 58.1

2 0 0 0 30.4 60.8 47.9

200 1 0 0 0 17.3 61.8 50.7

2 0 0 0 16 56.8 42.5
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2.5 Illustration using data from a crime recidivism study

In this section, we apply the proposed EM algorithm to a real data on crime

recidivism. The dataset, available in the “penPHcure” package in R software, includes

432 inmates who were released from Maryland state prisons from October 1971 to

June 1973. Subjects were followed for one year after release, with the event of interest

being rearrest. The aim of this study, conducted by Rossi et al. [91], was to investigate

the relationship between the time to first arrest after release and some covariates

observed during the follow-up period. The data contains continuous covariates age at

release (Age) and number of prior convictions, and binary covariates race (black or

other), marriage status at release, number of prior convictions, whether the subject

received financial aid after release, whether the subject had full-time work experience

prior to incarceration, and whether the individual was working full time during the

observation period (EMP, 1:Employed and 0:Not Employed). It bears mentioning

that while the employment status of some subjects was observed to vary over time,

for the purpose of this analysis we take EMP as employment status during the last

observation interval. To mimic the covariate configuration in Section 2.2 we considered

regression models linking each potential continuous and binary covariate pair to model

parameters θ and p. The proposed algorithm produced MLEs for models using each

potential covariate pair, and results from all models are available from the author

upon request. For illustrative purposes, we select one binary covariate, EMP, and one

continuous covariate, Age, to examine the results of the proposed algorithm. Denoting

EMP by z1 and Age by z2, this gives way to four potential regression models:

• Model 1.1: θ = eβ10+β11z1 , p = exp(β21z2)
1+exp(β21z2)

, where p contains no intercept term.

• Model 1.2: θ = eβ11z1 , p = exp(β20+β21z2)
1+exp(β20+β21z2)

, where θ contains no intercept term.

• Model 2.1: θ = eβ20+β21z2 , p = exp(β11z1)
1+exp(β11z1)

, where p contains no intercept term.

• Model 2.2: θ = eβ21z2 , p = exp(β10+β11z1)
1+exp(β10+β11z1)

, where θ contains no intercept term.
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While the aim of this study is not model selection, we compare AIC and BIC values

for the above models to identify the model that best fits the data by first selecting

appropriate initial parameter estimates, applying the proposed EM algorithm to

obtain MLEs, and computing the observed log-likelihood function (2.4) using MLEs.

The process by which initial parameter estimates were selected is described in the

Appendix B, and values for the observed log-likelihood function (Obs log-lik), AIC,

and BIC are reported in Table 2.4. We choose the model producing the lowest AIC

and BIC values, Model 1.1, as our working model. Kaplan-Meier curves stratified

by EMP, as shown in Figure 2.1, level off to non-zero proportions which supports

the presence of a cure component in the data. The stratified Kaplan-Meier curves do

not intersect and demonstrate a trend of higher survival times for those subjects who

were employed during the last observation interval.

Table 2.4. Model Discrimination

Model Obs log-lik AIC BIC
1.1 -354.0 718.0 738.4
1.2 -356.6 723.3 743.6
2.1 -359.5 729.0 749.3
2.2 -355.1 720.3 740.6

Table 2.5 presents the estimates and standard errors of the parameters of the

working model, as well as p-values and 95% asymptotic confidence intervals. The

negative sign of the estimate for β11 agrees with the stratified Kaplan-Meier plot in

Figure 2.1 and the predictor of EMP is significant at a 5% level of significance. The

estimate of β21 < 0 indicates that older individuals tend to relapse later, but the

predictor of Age fails to be significant at a 5% level of significance.
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Figure 2.1. Kaplan-Meier plot of survival curves stratified by employment status.

Though the modeling framework differs from the structure adopted in this work,

we find it interesting to compare the regression estimates reported herein with the

analysis performed by Beretta and Heuchenne [12] using the methodology developed

in R package “penPHcure.” The semiparametric proportional hazards (PH) cure

model of Sy and Taylor [94] was extended to accommodate time-varying covariates

by using the covariate’s time-weighted average over all observation periods and a PH

cure model was fit to the crime recidivism data with all explanatory variables included

in both the latency and incidence components. Confidence intervals created using the

basic bootstrap method identified only one covariate, EMP, as statistically significant

at a 5% level of significance. The regression coefficient for (time-varying) EMP was

statistically significant in the latency component with a negative value which implies

that among susceptible individuals, working full time after release is associated with

a lower risk of rearrest. While the model as described in (2.2) does not separate the

covariates’ effects on the incidence and the latency, and the regression developed

in this section does not consider the time-varying nature of EMP, our analysis is
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consistent with the conclusion of Beretta and Heuchenne in finding EMP to have a

statistically significant effect associated with a reduced incidence of rearrest.

Table 2.5. Estimation results corresponding to the working model for the crime
recidivism data

Parameter Estimate Standard error 95% CI p−value
β10 2.024 0.625 (0.800, 3.249) 0.001
β11 −1.500 0.500 (−2.481, −0.520) 0.003
β21 −0.032 0.021 (−0.074, 0.009) 0.131
λ1 0.757 0.071 (0.617, 0.897) −
λ2 0.009 0.003 (0.004, 0.014) −

Figure 2.2. Predicted survival probabilities stratified by employment status for
subjects of different ages.

Figure 2.2 shows the predicted survival probabilities for subjects with ages of

18, 23, 27 and 30.9 years, which correspond to the 5th, 50th, 75th, and 95th percentiles,
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stratified by employment status. Note that the survival probability for employed

subjects is higher across all values of age. While it may be seen by comparing the

plots fixing age at 18 and 40.9 years that the survival probability is greater for greater

values of age, this effect is more fully observed in Figure 2.3 where the cure rate is

seen to increase in a nearly linear fashion as age increases.
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Figure 2.3. Cure rate against age stratified by employment status.

Figure 2.4. Q-Q plot of the normalized randomized quantile residuals.
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We inspect the goodness-of-fit of our model by using the calculated normalized

randomized quantile residuals [32]. Figure 2.4 presents the quantile-quantile plot, with

each point corresponding to the median of five sets of ordered residuals. The linearity

depicted in this plot supports the conclusion that the shifted Poisson destructive cure

rate model with Weibull lifetimes provides a good fit to the crime recidivism data.

Finally, the assumption of normality of residuals is tested using the Kolmogorov-

Smirnov test. The resultant p-value of 0.9946 strongly supports the assumption of

normality of residuals.
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CHAPTER 3

Destructive negative binomial cure rate model under interval censoring

3.1 Introduction

In this chapter, we extend the destructive cure rate model developed by Ro-

drigues et al. [89] to accommodate interval-censored data assuming initial competing

risks follow a negative binomial distribution; see also [69]. It is of particular interest

for practitioners to obtain accurate and precise estimates for the cure probability of

subjects, as a high probability of cure can inform a patient’s continued treatment,

allowing them to avoid further unnecessary and potentially harmful interventions.

Similarly, a low probability of cure can help a clinician to decide on the need to

develop adjuvant therapies. While most established parameter estimation methods

for the destructive negative binomial (DNB) cure rate model with right censored

data employ an EM algorithm with a profile likelihood approach (for the shape

parameter of the negative binomial distribution) which may result in inaccurate and

imprecise estimates for cure rate, we aim to identify an efficient estimation method

that can provide accurate and precise cure estimates. To this end, we propose a novel

stochastic variation of the EM algorithm, called the stochastic EM (SEM) algorithm,

to find the MLEs of the DNB cure rate model in the presence of interval-censored

data. To compare the SEM algorithm with the commonly used EM algorithm, we

also develop the steps of the EM algorithm since such an algorithm does not exist in

the context of DNB cure rate model with interval-censored data. The EM algorithm

is formulated first by using a profile likelihood approach for the estimation of shape

parameter ϕ, and then using a mixture representation for the negative binomial
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distribution, which is theoretically equivalent and offers the potential computational

advantage of simultaneously maximizing all parameters. We show that the SEM

algorithm easily avoids calculation of complicated conditional expectations and hence

allows simultaneous maximization of all model parameters. We further show that the

SEM algorithm results in more accurate and precise estimates of model parameters,

specifically those that are related to the estimation of cure rate, as compared to both

EM algorithms. In addition, through a real data analysis, we show the destructive

mechanism when taken into account results in a better model fit. The rest of this

chapter is organized as follows. In Section 3.2, we present the destructive negative

binomial cure rate model under interval censoring, define the form of the data and

the complete and observed log-likelihood functions, and describe an alternative rep-

resentation of the negative binomial distribution. In Section 3.3, the steps of the

EM algorithm are formulated in detail for two distinct implementations of the EM

algorithm, while Section 3.4 presents the steps of the SEM algorithm in detail and

describes the advantages of the proposed SEM algorithm over both proposed EM

algorithms. We present a three-way Monte Carlo simulation study in Section 3.5

to compare the performances of the SEM and EM algorithms. In Section 3.6, the

SEM algorithm and preferred EM algorithm are applied to real data from a study

on smoking cessation, illustrating both the advantage of the SEM algorithm and the

practicality of using a destructive model in this context.

3.2 Model formulation

Consider a practical scenario where an unobserved number of risk factors (also

called competing risks or competing causes) compete to produce an event of interest

(e.g, death due to a disease or recurrence of a disease). For example, several malignant

cells are related to the occurrence of a cancerous tumor. However, the number of
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malignant cells produced by nature remains unobserved. Hence, these malignant cells

can be termed as competing risks.

Let M be a random variable denoting the initial number of competing risks.

Assume M to follow a weighted Poisson distribution with probability mass function

(pmf)

pm = P [M = m; θ, ϕ] =
w(m;ϕ)p∗(m; θ)

Eθ[w(M ;ϕ)]
, m = 0, 1, 2, . . . , (3.1)

where w(m;ϕ) is a non-negative weight function with parameter ϕ, p∗(m; θ) is the pmf

of a Poisson distribution with parameter θ > 0, and Eθ[·] implies that the expectation

is taken with respect to p∗(m; θ). Taking w(m;ϕ) = Γ(m+ ϕ−1), the form of (3.1)

becomes

P [M = m;ϕ, η] =
Γ(ϕ−1 +m)

m!Γ(ϕ−1)

(
ϕη

1 + ϕη

)m

(1 + ϕη)−ϕ−1

,m = 0, 1, 2, . . . , (3.2)

Proposition 3.2.1. The weighted Poisson distribution of M in (3.2) with θ = ϕη
1+ϕη

and w(m;ϕ) = Γ(m+ ϕ−1), is equivalent to consider

M ∼ NB

(
ϕ−1,

ϕη

1 + ϕη

)
, (3.3)

where M ∼ NB(r, p) conveys that M follows a negative binomial distribution with

pmf f(m; r, p) = Γ(m+r)
m!Γ(m)

pm(1− p)r.

A proof of proposition 3.2.1 is provided in the Appendix A.2.

Suppose that an intervention takes place resulting in a quantity D(≤ M)

competing risks remaining active, each of which could bring about a detectable tumor

with probability p. For example, after a patient goes through a chemotherapy or

a radiation session, it is expected that a certain number of initial competing risks

will be destroyed. This results in only D(≤M) active malignant cells still capable

of producing the tumor. Consistent with the existing literature [89], we assume

a common activation probability for each risk factor within a patient. Later, to

31



capture the heterogeneity in the patient population, we propose to vary the activation

probabilities across patients through incorporation of patient-related characteristics

or covariates. To model the destruction process of risk factors, we can associate a

Bernoulli random variable Xj, such that P (Xj = 1) = p, to each competing risk M .

Note that p denotes the activation probability. The remaining quantity of competing

risks not destroyed can then be modeled as

D =


X1 +X2 + . . .+XM , if M > 0

0, if M = 0.

Note that unlike the standard cure models that do not look at the destruction process

of risk factors [69], the proposed approach allows a patient to be cured even in the

presence of initial risk factors.

Proposition 3.2.2. For the cure rate model with the pmf of the number of competing

risks as in (3.2), the distribution of active risks D is given by

P [D = d; η, ϕ, p] =
Γ(ϕ−1 + d)

Γ(ϕ−1)d!

(
ϕηp

1 + ϕηp

)d

(1 + ϕηp)−ϕ−1

, d = 0, 1, 2, . . . ,M. (3.4)

A detailed proof of proposition 3.2.2 is provided in the Appendix A.2. LetWa represent

the time taken for the ath active risk to produce the event. Consistent with the

existing literature and conditioned on D, the waiting times Wa, a = 1, 2, · · · , D, are

assumed to be identically and independently distributed with a common distribution

function F (t;λ), where λ is an unknown set of parameters and is also independent

of D. Because the number of active risks D and waiting times Wa associated with

each given risk are latent variables, one typically only observes the minimum of

W1, . . . ,WD. To accommodate the presence of a cured proportion, the time-to-event

or lifetime is defined as

T = min{W0,W1, · · · ,WD},
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where W0 is such that P [W0 = ∞] = 1. Utilizing the results of Rodrigues et al. [89],

the population survival function can be expressed as

Spop(t;ϕ, η, p,λ) = P (T > t) = [1 + ϕηpF (t;λ)]−ϕ−1

. (3.5)

For the sake of simplicity, we will use F (·) instead of F (·;λ). Similarly, we will use

S(·) instead of S(·;λ), where S(·;λ) = 1− F (·;λ). Note that Spop(·) is an improper

survival function since limt→∞Spop > 0. From (3.5), the long-term survival probability

or the cure fraction is given by

p0 = Spop(∞;ϕ, η, p,λ) = [1 + ϕηp]−ϕ−1

. (3.6)

We note that the parameters in the negative binomial cure rate model in (3.2) possess

biological interpretations. Parameter η is related to the mean number of initial

competing risks, while ϕ accounts for the inter-individual variance in the quantity

of initial competing risks. To capture the heterogeneity in patient population, we

bring in the effects of covariates. For this purpose, we propose to use two sets of

covariates, z1 and z2, where z1 is related to the initial number of competing risks

through the parameter η and z2 is related to activation probability for each risk, with

corresponding link functions

η = ez1
′β1 and p =

ez2
′β2

1 + ez2′β2
,

where β1 and β2 represent vectors of regression coefficients. We note that z1 and z2

share no common elements, and an intercept term must be excluded either from β1

or from β2 to circumvent identifiability problems [52]. Let ψ = (β1,β2,λ, ϕ) denote

the vector of unknown parameters. Depending on the specific needs of an application,

it is straightforward to also relate another set of covariates to a suitable component

of λ.
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3.2.1 Form of data and likelihood function

We consider a scenario where the true lifetimes are not exactly observed and

are subject to interval censoring. Adopting the form of data as described in Section

1.6.1, the observed data is denoted as Dobs = (l, r, δ). Based on the observed data

(l, r, δ), the observed likelihood function under non-informative censoring is given by

L(ψ|Dobs) ∝
n∏

i=1

{Spop(Yj−1(i))− Spop(Yj(i))}δi{Spop(Yj(i))}1−δi ,

while the observed log-likelihood function is given by

l(ψ|Dobs) ∝
n∑

i=1

[
δilog

{
Spop(Yj−1(i))− Spop(Yj(i))

}
+ (1− δi)logSpop(Yj(i))

]
. (3.7)

The complete data are denoted by Dcomp = (l, r, δ,M ,D) which includes the

observed data and the missing data, where M = (M1,M2, . . . ,Mn) and D =

(D1, D2, . . . , Dn) are the missing data. Following Yakovlev and Tsodikov [105], the

joint distribution of the complete data can be expressed as

f(li, ri, δi,mi, di) = f(li, ri, δi|Di = di)P (Di = di|M = mi)P (Mi = mi). (3.8)

The second and third terms in the product above are well defined, and by proposition

2.2.2, we have that

f(li, ri, δi|Di = di) =
[
di{S(Yj−1(i))− S(Yj(i))}

]δi {S(Yj(i))}di−δi . (3.9)

Using (3.8) and (3.9), the complete data likelihood function may be defined as

Lc(ψ|Dcomp) =
n∏

i=1

f(li, ri, δi,mi, di)

=
n∏

i=1

f(Yj−1(i), Yj(i), δi,mi, di)

=
n∏

i=1

S(Yj(i))
di−δi [di{S(Yj−1(i))− S(Yj(i))}]δi

(
mi

di

)
pdii (1− pi)

mi−di×
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Γ(ϕ−1 +mi)

Γ(ϕ−1)mi!

(
ϕηi

1 + ϕηi

)mi

(1 + ϕηi)
−ϕ−1

.

The complete data log-likelihood function can then be written as

lc(ψ|Dcomp) = lc(ξ) + lc(β2) + lc(λ) +K, (3.10)

where

lc(ξ) =
n∑

i=1

{
log[Γ(ϕ−1 +mi)]− ϕ−1log(1 + ϕηi) +milog

ϕηi
1 + ϕηi

}
− nlog[Γ(ϕ−1)],

lc(β2) =
n∑

i=1

{di log pi + (mi − di) log(1− pi)} ,

lc(λ) =
n∑

i=1

{
(di − δi) logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,

ξ = (β1, ϕ), and K is a constant independent of model parameters, given by

K =
n∑

i=1

{
δi log di + log

(
mi!

di!(mi − di)!

)
− log(mi!)

}
. (3.11)

3.2.2 Mixture representation of negative binomial distribution

Following the method employed by Gallardo et al. [39], we make use of an

equivalent form to the distribution in (3.2) to present an alternative construction of

the likelihood functions.

Proposition 3.2.3. The negative binomial distribution of M in (3.2) is equivalent to

consider

M |U = u ∼ Poisson(u) and U ∼ Gamma(ϕ−1, ϕη), (3.12)

where Gamma(a,b) denotes the gamma distribution with density function f(u; a, b) =

b−aua−1e−
u
b /Γ(a).

A proof of proposition 3.2.3 is provided in the Appendix A.2.

Making use of the mixture representation, the complete data are then denoted

byDcomp = (l, r, δ,M ,U ,D) which includes the observed data and the missing data,
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where M = (M1,M2, . . . ,Mn), U = (U1, U2, . . . , Un), and D = (D1, D2, . . . , Dn) are

the missing data. The joint distribution of the complete data is expressed as

f(li, ri, δi,mi, ui, di) =f(li, ri, δi|Di = di)P (Di = di|Mi = mi)×

P (Mi = mi|Ui = ui)fUi
(ui; ηi, ϕ). (3.13)

Using (3.9) and (3.13), the complete data likelihood function may be defined as

Lc(ψ|Dcomp) =
n∏

i=1

f(li, ri, δi,mi, ui, di)

=
n∏

i=1

f(Yj−1(i), Yj(i), δi,mi, ui, di)

=
n∏

i=1

S(Yj(i))
di−δi [di{S(Yj−1(i))− S(Yj(i))}]δi

(
mi

di

)
pdii (1− pi)

mi−di×

ui
mi

mi!
e−ui

ui
ϕ−1−1e

− ui
ϕηi

Γ(ϕ−1)(ϕηi)ϕ
−1 .

The complete data log-likelihood function can then be written as

lc(ψ|Dcomp) = lc(ξ) + lc(β2) + lc(λ) +K, (3.14)

where

lc(ξ) =
n∑

i=1

{
ϕ−1 [log(ui)− log(ηi)− log(ϕ)]− ui

ϕηi

}
− nlog(Γ(ϕ−1)),

lc(β2) =
n∑

i=1

{di log pi + (mi − di) log(1− pi)} ,

lc(λ) =
n∑

i=1

{
(di − δi) logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,

ξ = (β1, ϕ), and K is a constant independent of model parameters, given by

K =
n∑

i=1

{
δi log di+log

(
mi!

di!(mi − di)!

)
+mi log(ui)−log(mi!)−ui−log(ui)

}
. (3.15)
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3.3 EM algorithm

In this section we present the construction of two distinct EM algorithms to

produce estimates of the parameters for the DNB cure rate model under interval

censoring. The first step in implementing the EM algorithm [60] requires taking the

conditional expectation of a complete data log-likelihood function, such as (3.10) or

(3.14), given some proposed parameter values and the observed data. In the second

step, the conditional expected complete data log-likelihood function is maximized.

While the traditional approach involves maximizing a complicated function consisting

of numerous model parameters, this approach can lack both computational efficiency

and robustness with respect to initial values. The two implementations of the EM

algorithm proposed here are motivated by the works of Gallardo et al. [37, 39]. By

using the conditional distributions of the missing data to decompose the conditional

expectation of lc(ψ|Dcomp) into three simpler functions that can each be maximized

independently, these formulation of the EM algorithm offer much greater efficiency.

3.3.1 EM algorithm with profile likelihood

Because taking the conditional expectation of the complete log-likelihood func-

tion in (3.10) requires computing E [log {Γ(Mi + ϕ−1)} |Dobs;ψ] which has no closed

form, simultaneous maximization of all parameters in (3.10) is challenging. A com-

monly used method to overcome this difficulty in computation is to use a profile

likelihood approach, in which the EM algorithm is performed and the observed data

log-likelihood function value is calculated for a fixed set of distinct admissible values

of ϕ. The MLE of ϕ is taken as the value for which the maximized log-likelihood

function value is the maximum.
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3.3.2 EM algorithm with simultaneous maximization

While estimation of the parameter ϕ is possible through the profile likelihood

approach, this method can be computationally intensive as it requires the EM

algorithm be performed for each permissible value of ϕ. As suggested by Gallardo et

al. [39] we make use of proposition (3.2.3) to present an alternative construction of the

EM algorithm which allows simultaneous maximization of all model parameters. We

note that this representation introduces an additional latent variable, U , which, while

lacking apparent biological interpretation, circumvents the issue of such calculations

as E[Γ(Mi + ϕ−1)|Dobs;ψ] in (3.10), thus allowing ϕ to be estimated simultaneously.

We present the necessary expressions for the EM algorithms using profile

likelihood (EM-PL) and simultaneous maximization (EM-SM) in parallel.

Let ψ(k) = (ξ(k),β
(k)
2 ,λ(k)) be the estimate of ψ at the kth iteration, and let

Q(ψ|ψ(k)) denote the conditional expectation of lc(ψ|Dcomp) given the observed data

and ψ(k). Then by (3.10) and (3.14),

Q(ψ|ψ(k)) = E[lc(ξ)|Dobs;ψ
(k)] + E[lc(β2)|Dobs;ψ

(k)] + E[lc(λ)|Dobs;ψ
(k)] +K∗

= Q1(ξ|ψ(k)) +Q2(β2|ψ(k)) +Q3(λ|ψ(k)) +K∗, (3.16)

with

Q1(ξ|ψ(k)) =


∑n

i=1

{
M̃

(k)
i log ϕηi

1+ϕηi
− log(1+ϕηi)

ϕ

}
, EM-PL∑n

i=1

{
ϕ−1

[
l̃og(U

(k)
i )− log ϕ− log ηi

]
− Ũ

(k)
i

ϕηi
− log(Γ(ϕ−1))

}
, EM-SM

Q2(β2|ψ(k)) =
n∑

i=1

{
D̃

(k)
i log pi + (M̃

(k)
i − D̃

(k)
i ) log(1− pi)

}
,

Q3(λ|ψ(k)) =
n∑

i=1

{
(D̃

(k)
i − δi) logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,
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where D̃
(k)
i = E(Di|Dobs,ψ

(k)), M̃
(k)
i = E

(
Mi|Dobs,ψ

(k)
)
, Ũ

(k)
i = E

(
Ui|Dobs,ψ

(k)
)
,

l̃og(U
(k)
i ) = E

(
log(Ui)|Dobs,ψ

(k)
)
, and K∗ is a constant independent of ψ. The

following results will be needed to compute the required conditional expectations.

Proposition 3.3.1. For the cure rate model with the pmf of the number of initial

competing risks as in (3.2), the conditional distribution of Mi − δi given the observed

data under interval censoring is given by

Mi − δi|Dobs;ψ ∼ NB

(
ϕ−1 + δi,

ϕηi[1− piF (Yj(i))]

1 + ϕηi

)
. (3.17)

A proof of proposition 3.3.1 is provided in the Appendix A.2.

Proposition 3.3.2. For the cure rate model with the pmf of the number of active risks

as in (3.4), the conditional distribution of Di − δi given the observed data under

interval censoring is given by

Di − δi|Dobs;ψ ∼ NB

(
ϕ−1 + δi,

ϕηipiS(Yj(i))

1 + ϕηipi

)
. (3.18)

A proof of proposition 3.3.2 is provided in the Appendix A.2.

Proposition 3.3.3. For the cure rate model with the pmf of the number of competing

risks as in (3.2), the conditional distributions of Mi − δi|Ui = ui and Ui given Dobs

are

Mi − δi|Ui = ui,Dobs;ψ ∼ Poisson(ui[1− piF (Yj(i))])

and

Ui|Dobs;ψ ∼ Gamma
(
ϕ−1 + δi,

ϕηi
1+ϕηipiF (Yj(i))

)
.

A proof of proposition 3.3.3 is provided in the Appendix A.2.
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Applying the results of propositions 3.3.1, 3.3.2 and 3.3.3, we can compute

D̃
(k)
i , M̃

(k)
i , Ũ

(k)
i and l̃og

(
U

(k)
i

)
as

D̃
(k)
i =


δi +

η
(k−1)
i p

(k−1)
i S(Yj(i))(1+δiϕ)

1+ϕη
(k−1)
i p

(k−1)
i F (Yj(i))

, for EM-PL

δi +
η
(k−1)
i p

(k−1)
i S(Yj(i))(1+δiϕ

(k−1))

1+ϕ(k−1)η
(k−1)
i p

(k−1)
i F (Yj(i))

, for EM-SM

M̃
(k)
i =


δi +

{
1−p

(k−1)
i F (Yj(i))

}
η
(k−1)
i (1+ϕδi)

1+ϕη
(k−1)
i p

(k−1)
i F (Yj(i))

, for EM-PL

δi +

{
(1−p

(k−1)
i F (Yj(i))

}
η
(k−1)
i (1+ϕ(k−1)δi)

1+ϕ(k−1)η
(k−1)
i p

(k−1)
i F (Yj(i))

, for EM-SM

Ũ
(k)
i =

(1 + ϕ(k−1)δi)η
(k−1)
i

1 + ϕ(k−1)η
(k−1)
i p

(k−1)
i F (Yj(i))

, and

l̃og
(
U

(k)
i

)
= φ(ϕ−1(k−1) + δi) + log(ϕ(k−1)) + log(η

(k−1)
i )− log(1 + ϕ(k−1)η

(k−1)
i p

(k−1)
i F (Yj(i))),

where φ(·) denotes the digamma function, ηi = ez1i
′β1 , and pi =

ez2i
′β2

1+ez2i
′β2

.

The next step is to maximize Q1(ξ|ψ(k)), Q2(β2|ψ(k)), and Q3(λ|ψ(k)) inde-

pendently with respect to ξ, β2, and λ, respectively. This can be done using readily

available optimization routines in R such as the “optim()” function. In this regard,

interested readers may also look at new optimization techniques studied by Pal and

Roy [80, 81]. The expectation and maximization steps are then repeated until a

specified convergence criterion is satisfied. The steps of the EM algorithm can be

summarized as follows:

Step 1 (Expectation step or E-step):

EM-PL: For i = 1, . . . , n, compute D̃
(k)
i and M̃

(k)
i given parameter estimates ψ(k)

with a fixed value of ϕ.

EM-SM: For i = 1, . . . , n, compute D̃
(k)
i , M̃

(k)
i , Ũ

(k)
i and l̃og

(
U

(k)
i

)
.

Step 2 (Maximization step or M-step):

EM-PL: Given D̃(k) = (D̃
(k)
1 , . . . , D̃

(k)
n ) and M̃ (k) = (M̃

(k)
1 , . . . , M̃

(k)
n ), find ψ that
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maximizes (3.16) in relation to β1,β2, and λ, respectively, to obtain an improved

estimate ψ(k+1).

EM-SM: Given D̃(k) = (D̃
(k)
1 , . . . , D̃

(k)
n ), M̃ (k) = (M̃

(k)
1 , . . . , M̃

(k)
n ), Ũ (k) = (Ũ

(k)
1 , . . . , Ũ

(k)
n ),

and l̃og
(
U

(k)
i

)
= (l̃og(U

(k)
1 ), . . . , l̃og(U

(k)
n )), find ψ(k) that maximizes (3.16) in rela-

tion to ξ,β2, and λ, respectively, to obtain an improved estimate ψ(k+1).

Step 3 (Iterative step):

The E-step and M-step are repeated until a suitable convergence criterion is met.

For this purpose, we use the relative difference in successive values of the estimates,∣∣∣∣ψ(k+1)−ψ(k)

ψ(k)

∣∣∣∣, as stopping criterion with a tolerance value of 10−4.

To apply the profile likelihood approach in the EM-PL algorithm, we first

select an initial grid of distinct admissible values of ϕ. We then employ the EM-PL

algorithm for each fixed value of ϕ and compute the observed log-likelihood for

each estimate. If the log-likelihood is monotone decreasing (increasing), we decrease

(increase) the grid and apply the EM-PL algorithm to all prospective values until a

maximum log-likelihood value is achieved. The value of ϕ which attains the maximized

log-likelihood function value and corresponding estimates of other model parameters

are taken as the MLEs.

3.4 SEM algorithm

A well known drawback to the EM algorithm is that it does not guarantee

convergence to a global or even a local maximum. As with other Newton-based

methods, such as the Newton Raphson method, the resulting point of convergence

may be a saddle point close to the starting value rather than a maximum. Due to

the stochastic nature of the SEM algorithm, it is free of this saddle point problem.

SEM estimators are demonstrated to be efficient under some suitable regularity
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conditions. The SEM algorithm is also known to be insensitive to starting values

and performs well for small sample sizes. Further, unlike the EM, the SEM does

not require computation of complicated conditional expectations and hence allows

simultaneous maximization of all parameters [25, 69, 77]. These benefits lead us to

consider the SEM algorithm as the proposed estimation method for the DNB cure

model under interval censoring.

In the SEM algorithm, the expectation step (E-step) of the EM algorithm is

replaced by a stochastic step (S-step), in which each missing datum in the complete

log-likelihood function is replaced by a value randomly generated from the conditional

distribution of the missing data given the observed data and current estimates of

the parameters. The S-step synthesizes a pseudo-complete data set, comprised of

the observed data and randomly generated substitutes for the missing data, then

the maximization step (M-step) involves maximizing the complete log-likelihood

function based on the complete sample. Considering the complete data to beDcomp =

(l, r, δ,M ,D), the development of the SEM algorithm makes use of propositions

3.3.1 and 3.3.2 to randomly generate the missing data,M and D, given the observed

data and current parameter estimates.

3.4.1 Steps of the SEM algorithm

Step 1 (Initial guess): Start with an initial guess of the parameterψ(0) = (ξ(0),β
(0)
2 ,λ(0))

and the observed data Dobs.

Step 2: Stochastic step or S-step: Replace each missing datum, mi and di, i =

1, 2, · · · , n, in the complete data log-likelihood function lc(ψ|Dcomp) by a value ran-

domly generated using the conditional distributions in (3.17) and (3.18). Namely,

generate mi − δi from a negative binomial distribution with parameters r = ϕ−1 + δi
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and p =
ϕηi[1−piF (Yj(i))]

1+ϕηi
, where the parameters are evaluated at ψ = ψ(0). Similarly,

generate di − δi from a negative binomial distribution with parameters r = ϕ−1 + δi

and p =
ϕηipiS(Yj(i))

1+ϕηipi
, with parameters taking value ψ = ψ(0). Denote the generated

values of mi and di by m̂i
(0) and d̂i

(0)
, respectively, for all i = 1, 2, · · · , n. Replace

each unobserved mi and di in lc(ψ|Dcomp) by m̂i
(0) and d̂i

(0)
, respectively, and denote

the resulting function as

lc(ψ; m̂
(0), d̂(0)) = lc(ξ; m̂

(0)) + lc(β2; m̂
(0), d̂(0)) + lc(λ; d̂

(0)) + K̂(0),

where

lc(ξ; m̂
(0)) =

n∑
i=1

{
log
[
Γ(ϕ−1 + m̂i

(0))
]
− ϕ−1log(1 + ϕηi) + m̂i

(0)log
ϕηi

1 + ϕηi

}
−

nlog(Γ(ϕ−1)),

lc(β2; m̂
(0), d̂(0)) =

n∑
i=1

{
d̂i

(0)
log pi + (m̂i

(0) − d̂i
(0)
) log(1− pi)

}
,

lc(λ; d̂
(0)) =

n∑
i=1

{(
d̂i

(0)
− δi

)
logS(Yj(i)) + δi log[S(Yj−1(i))− S(Yj(i))]

}
,

and

K̂(0) =
n∑

i=1

{
δi log d̂i

(0)
+ log

(
m̂i!

(0)

d̂i!(0)(m̂i
(0) − d̂i

(0)
)!

)
− log

(
m̂i!

(0)
)}

,

with m̂(0) and d̂(0) denoting the vectors of m̂i
(0) and d̂i

(0)
values, respectively.

Step 3 (Maximization or M-Step): Maximize lc(ψ; m̂
(0), d̂(0)) with respect to ψ to

find an improved estimate of ψ. This is a matter of maximizing lc(ξ; m̂
(0)) with

respect to ξ, lc(β2; m̂
(0), d̂(0)) with respect to β2, and lc(λ; d̂

(0)) with respect to λ,

independently. Denote the improved estimates of ξ, β2, and λ by ξ(1),β
(1)
2 ,λ(1),

respectively, where

ξ(1) = argmax
ξ

lc(ξ; m̂
(0)), β

(1)
2 = argmax

β2

lc(β2; m̂
(0), d̂(0)) and λ(1) = argmax

λ
lc(λ; d̂

(0)).
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Since the missing data was replaced in the S-step, the M-step may be implemented by

maximizing the complete data log-likelihood using standard optimization techniques

such as the ”Nelder-Mead” method readily available in R software.

Step 4 (Iterative step): Using the updated estimate ψ(1) = (ξ(1),β
(1)
2 ,λ(1)) from Step

3, repeat steps 2 and 3 R times to obtain sequence ψ(k), k = 1, 2, · · · , R. While this

sequence of estimates does not converge to a single point, the resulting Markov chain

rapidly converges to a stationary distribution, given some regularity conditions are

satisfied [30, 31].

Step 5 (Burn-in and MLE): The stationary distribution of estimates is achieved after

a sufficiently long burn-in period of length r, and the MLE of ψ can be obtained

by discarding the first r iterations. With the remaining R− r iterations, the MLE

may be obtained by averaging over the estimates (a method we will denote as “MLE

(mean)”) or by calculating the observed data log-likelihood function in (3.7) for

each ψ(k), k = r, r + 1, · · · , R, and taking ψ(k) as the MLE for which the observed

log-likelihood function is maximized (a method we will denote as “MLE (max)”).

The length of the burn-in period is dependent on the form of the data, and as pointed

out by Nielsen [64], greater amounts of missing data can lead to longer necessary

burn-in periods. However, with moderate missing data rates, a burn-in period of 100

iterations and an additional 1000 estimates are sufficient to estimate the parameters

[59, 106]. It is recommended to inspect a trace plot of the sequence of estimates

versus the iterations to validate the sufficiency of the burn-in period and adjust the

length of the burn-in period as needed.
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3.5 Simulation Study

In this section, we evaluate the performance of the EM and SEM algorithms to

recover parameter values for simulated data sets. This empirical study partially mimics

the real melanoma dataset which was used for illustrative purposes by Rodrigues et

al. [89] using covariates of treatment group (0: treatment, 1: placebo) and tumor

thickness (in mm).

3.5.1 Data generation

To simulate covariate data we first generated treatment group, denoted by z1,

from a Bernoulli distribution with probability of success 0.5. Noting that tumor

thickness values in the melanoma data set range from 0.1 to 17.42 mm, we generated

tumor thickness values, denoted by z2, from a uniform U(0.1, 20) distribution. Param-

eter η is linked to treatment group only, using η = eβ11z1 , and parameter p to tumor

thickness only, using p = exp(β20+β21z2)
1+exp(β20+β21z2)

. Only one regression parameter corresponds

to parameter η in order to avoid problems with identifiability in the sense of Li et al.

[52]. Because a higher cure rate, and consequently a smaller value of η, is expected

for the treatment group than the placebo group, a positive value of β11 is chosen,

β11 = 1, to be consistent with this expectation. To select regression parameters for

p, we propose a proportional increase in activation probability as tumor thickness

increases and select values β20 = −2, β21 = 0.1 in accordance with this observation.

We assume the waiting time W to follow a Weibull distribution with shape parameter

1
λ1

and scale parameter 1
λ2
, and density function given by

f(w) = f(w;λ) =
1

λ1w
(λ2w)

1
λ1 e−(λ2w)

1
λ1 , w > 0, λ1 > 0, λ2 > 0. (3.19)

Note that one can also use any other parametric distribution for W or choose to use

a semi-parametric or a completely non-parametric model for W . Random censoring
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was introduced through censoring time C following exponential distribution with rate

α, where α can be chosen to achieve a desired censoring proportion. We chose α to

be 0.05 which resulted in approximately 60% cured observations and 70% censored

observations. To generate the observed data (li, ri, δi), i = 1, 2, · · · , n, we execute the

following steps:

1. Generate censoring time Ci, competing risks Mi ∼ NB
(
ϕ−1, ϕηi

1+ϕηi

)
, and dam-

aged cells Di|Mi = mi ∼ Bin(mi, pi);

2. If Di = 0, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

3. If Di > 0, generate times to event due to each non-eliminated risk, Wj, j =

1, 2, · · · , Di, from the considered Weibull distribution with parameter λ;

4. Set Yi = min{W1,W2, . . . ,WDi
};

(a) If Yi > Ci, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

(b) If Yi ≤ Ci, set δi = 1 and generate l1i from U(0, 1) distribution and l2i from

U(0.2, 0.7) distribution. Construct intervals (0, l1i], (l1i, l1i + l2i], · · · , (l1i +

k × l2i,∞], k = 1, 2, · · · , and select (li, ri) that satisfies li < Yi ≤ ri.

The choice of the lifetime parameter λ was obtained by equating the mean and variance

of the underlying Weibull distribution to fixed values. For this purpose, we considered

two different choices for the variance as 1.5 and 3 with a fixed mean value of 5, which

yields two suitable choices for λ. We also choose two different true values of ϕ as 0.5

and 0.8. These specifications for λ and ϕ give way to four parameter settings which

we denote as ψ1 = (1,−2, 0.1, 0.215, 0.183, 0.5), ψ2 = (1,−2, 0.1, 0.215, 0.183, 0.8),

ψ3 = (1,−2, 0.1, 0.316, 0.179, 0.5), and ψ4 = (1,−2, 0.1, 0.316, 0.179, 0.8). Sample

sizes of both n = 200 and n = 300 are used in order to observe the performance

of the algorithms under small and moderate sample sizes. This study applies the

algorithms proposed in Sections 3.3 and 3.4 to interval-censored data from the

destructive negative binomial cure rate model, simulated using the parameters and
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data generation methods outlined above. All simulations are done using the R

statistical software (version 4.2.1) and all results are based on M = 250 Monte Carlo

runs. Computational codes for data generation, SEM and EM algorithms are available

in the Appendix C.2.

3.5.2 Parameter estimation

To find an initial guess for the model parameters, we employ the following

selection method: for a given parameter Γ, initial guess Γinit is generated such that

Γinit = Γ + U(0, 0.2)|Γ|. To employ the profile likelihood approach to estimate ϕ

in the EM-PL algorithm, we select the initial grid for ϕ as {0.05, 0.1, · · · , 2.05}. To

implement the SEM algorithm, we first inspect trace plots for each parameter setting

and identify the number of SEM iterations R of 1100 and burn-in period of r = 100

iterations to be sufficient. We also check both methods, MLE (mean) and MLE

(max), for estimating model parameters. However, the MLE (mean) method is seen

to produce large bias in the estimates for ϕ, irrespective of sample size. Consequently,

we use the MLE (max) method to select parameter estimates for all SEM results.

Tables 3.1, 3.2, 3.3, and 3.4 present the simulation results when the true value of

ψ is taken asψ1,ψ2,ψ3, andψ4, respectively. We first consider the performance of the

EM-SM approach, which offers computational ease by using a mixture representation

for the negative binomial distribution thus circumventing the estimation difficulties for

parameter ϕ. First, regardless of the true value of ϕ, the EM-SM approach consistently

and significantly underestimates ϕ, with a much larger bias, as well as SE and RMSE,

as compared to the other two methods. The EM-SM method performs comparably

in regards to the estimation of the remaining parameters, while also producing

asymptotic confidence intervals close to the nominal level and demonstrating the

large sample properties. However, accurate estimation of all parameters associated
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Table 3.1. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) under setting ψ = ψ1

n Approach Parameter Estimate (SE) Bias RMSE 95% CP
200 EM-PL β11 = 1 1.086 (0.342) 0.086 0.412 0.944

β20 = −2 −2.150 (0.593) −0.150 0.752 0.956
β21 = 0.1 0.150 (0.081) 0.050 0.249 0.948
λ1 = 0.215 0.211 (0.022) −0.004 0.026 0.880
λ2 = 0.183 0.181 (0.006) −0.002 0.010 0.784
ϕ = 0.5 1.039 (−) 0.539 1.473 −

EM-SM β11 = 1 0.908 (0.442) −0.092 0.311 0.973
β20 = −2 −2.037 (0.518) −0.037 0.466 0.989
β21 = 0.1 0.091 (0.055) −0.009 0.042 0.958
λ1 = 0.215 0.219 (0.032) −0.006 0.023 0.990
λ2 = 0.183 0.186 (0.013) 0.003 0.007 0.998
ϕ = 0.5 0.045 (1.820) -0.455 0.473 0.999

SEM β11 = 1 1.061 (0.471) 0.061 0.370 0.944
β20 = −2 −2.132 (0.572) −0.132 0.587 0.948
β21 = 0.1 0.112 (0.069) 0.012 0.062 0.964
λ1 = 0.215 0.211 (0.031) −0.004 0.023 0.964
λ2 = 0.183 0.182 (0.012) −0.001 0.008 0.968
ϕ = 0.5 0.582 (1.581) 0.082 0.680 0.824

300 EM-PL β11 = 1 1.032 (0.272) 0.032 0.325 0.920
β20 = −2 −2.060 (0.439) −0.060 0.409 0.976
β21 = 0.1 0.120 (0.042) 0.020 0.073 0.944
λ1 = 0.215 0.209 (0.018) −0.006 0.023 0.860
λ2 = 0.183 0.182 (0.005) −0.001 0.008 0.824
ϕ = 0.5 0.866 (−) 0.366 1.214 −

EM-SM β11 = 1 0.910 (0.345) −0.090 0.327 0.964
β20 = −2 −2.041 (0.410) −0.041 0.400 0.984
β21 = 0.1 0.094 (0.044) −0.006 0.033 0.984
λ1 = 0.215 0.217 (0.025) 0.002 0.018 0.980
λ2 = 0.183 0.186 (0.010) 0.003 0.006 1.000
ϕ = 0.5 0.100 (1.377) −0.400 0.453 1.000

SEM β11 = 1 1.009 (0.351) 0.009 0.237 0.968
β20 = −2 −2.053 (0.421) −0.053 0.409 0.944
β21 = 0.1 0.104 (0.049) 0.004 0.036 0.932
λ1 = 0.215 0.213 (0.024) −0.002 0.021 0.928
λ2 = 0.183 0.184 (0.009) 0.001 0.006 0.960
ϕ = 0.5 0.431 (1.207) −0.069 0.432 0.876
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Table 3.2. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) under setting ψ = ψ2

n Approach Parameter Estimate (SE) Bias RMSE 95% CP
200 EM-PL β11 = 1 1.052 (0.363) 0.052 0.467 0.884

β20 = −2 −2.260 (0.637) −0.260 0.929 0.936
β21 = 0.1 0.156 (0.074) 0.056 0.219 0.912
λ1 = 0.215 0.208 (0.023) −0.007 0.027 0.884
λ2 = 0.183 0.182 (0.007) −0.001 0.010 0.816
ϕ = 0.8 1.408 (−) 0.608 2.061 −

EM-SM β11 = 1 0.895 (0.492) −0.105 0.334 0.971
β20 = −2 −2.070 (0.568) −0.070 0.628 0.982
β21 = 0.1 0.090 (0.062) −0.010 0.095 0.961
λ1 = 0.215 0.222 (0.036) 0.007 0.025 0.992
λ2 = 0.183 0.188 (0.015) 0.005 0.008 0.994
ϕ = 0.8 0.070 (2.215) −0.730 0.753 1.000

SEM β11 = 1 1.031 (0.473) 0.031 0.372 0.944
β20 = −2 −2.120 (0.590) −0.120 0.636 0.980
β21 = 0.1 0.115 (0.070) 0.015 0.092 0.956
λ1 = 0.215 0.210 (0.031) −0.005 0.025 0.936
λ2 = 0.183 0.184 (0.012) 0.001 0.008 0.956
ϕ = 0.8 0.779 (1.743) −0.021 0.954 0.840

300 EM-PL β11 = 1 1.041 (0.292) 0.041 0.371 0.904
β20 = −2 −2.093 (0.491) −0.093 0.691 0.948
β21 = 0.1 0.129 (0.054) 0.029 0.175 0.900
λ1 = 0.215 0.212 (0.018) −0.003 0.024 0.860
λ2 = 0.183 0.182 (0.005) −0.001 0.008 0.816
ϕ = 0.8 1.241 (−) 0.441 1.494 −

EM-SM β11 = 1 0.879 (0.365) −0.121 0.296 0.964
β20 = −2 −2.008 (0.417) −0.008 0.379 0.996
β21 = 0.1 0.086 (0.047) −0.014 0.037 0.944
λ1 = 0.215 0.220 (0.027) 0.005 0.020 0.996
λ2 = 0.183 0.188 (0.011) 0.005 0.008 0.996
ϕ = 0.8 0.131 (1.643) −0.669 0.706 1.000

SEM β11 = 1 1.027 (0.386) 0.027 0.299 0.976
β20 = −2 −2.092 (0.462) −0.092 0.523 0.952
β21 = 0.1 0.110 (0.058) 0.010 0.080 0.964
λ1 = 0.215 0.214 (0.026) −0.001 0.021 0.968
λ2 = 0.183 0.184 (0.010) 0.001 0.007 0.956
ϕ = 0.8 0.773 (1.447) −0.027 0.871 0.864
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Table 3.3. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) under setting ψ = ψ3

n Approach Parameter Estimate (SE) Bias RMSE 95% CP
200 EM-PL β11 = 1 1.083 (0.342) 0.083 0.475 0.872

β20 = −2 −2.126 (0.627) −0.126 0.846 0.952
β21 = 0.1 0.158 (0.076) 0.058 0.213 0.944
λ1 = 0.316 0.304 (0.032) −0.012 0.042 0.848
λ2 = 0.179 0.176 (0.009) −0.003 0.014 0.808
ϕ = 0.5 1.125 (−) 0.625 1.689 −

EM-SM β11 = 1 0.984 (0.459) −0.016 0.319 0.984
β20 = −2 −2.059 (0.538) −0.059 0.489 0.992
β21 = 0.1 0.097 (0.060) −0.003 0.047 0.968
λ1 = 0.316 0.318 (0.047) 0.002 0.036 0.980
λ2 = 0.179 0.182 (0.019) 0.003 0.011 0.992
ϕ = 0.5 0.265 (1.890) −0.235 0.579 1.000

SEM β11 = 1 1.094 (0.472) 0.094 0.395 0.980
β20 = −2 −2.186 (0.603) −0.186 0.651 0.960
β21 = 0.1 0.132 (0.077) 0.032 0.100 0.960
λ1 = 0.316 0.301 (0.043) −0.015 0.040 0.916
λ2 = 0.179 0.178 (0.016) −0.001 0.013 0.936
ϕ = 0.5 0.878 (1.603) 0.378 1.195 0.816

300 EM-PL β11 = 1 1.093 (0.279) 0.093 0.360 0.904
β20 = −2 −2.116 (0.459) −0.116 0.526 0.956
β21 = 0.1 0.130 (0.047) 0.030 0.093 0.928
λ1 = 0.316 0.305 (0.026) −0.011 0.036 0.832
λ2 = 0.179 0.176 (0.008) −0.003 0.012 0.804
ϕ = 0.5 1.058 (−) 0.558 1.403 −

EM-SM β11 = 1 0.950 (0.355) −0.050 0.247 0.984
β20 = −2 −2.007 (0.409) −0.007 0.391 0.972
β21 = 0.1 0.089 (0.044) −0.011 0.034 0.964
λ1 = 0.316 0.321 (0.038) 0.005 0.026 0.992
λ2 = 0.179 0.183 (0.015) 0.004 0.009 1.000
ϕ = 0.5 0.132 (1.449) −0.368 0.429 1.000

SEM β11 = 1 1.061 (0.359) 0.061 0.279 0.956
β20 = −2 −2.111 (0.439) −0.111 0.512 0.924
β21 = 0.1 0.117 (0.054) 0.017 0.069 0.936
λ1 = 0.316 0.307 (0.034) −0.009 0.031 0.912
λ2 = 0.179 0.179 (0.013) −0.000 0.009 0.944
ϕ = 0.5 0.688 (1.246) 0.188 0.871 0.832
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Table 3.4. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) under setting ψ = ψ4

n Approach Parameter Estimate (SE) Bias RMSE 95% CP
200 EM-PL β11 = 1 1.127 (0.368) 0.127 0.502 0.900

β20 = −2 −2.222 (0.679) −0.222 1.010 0.964
β21 = 0.1 0.175 (0.098) 0.075 0.304 0.948
λ1 = 0.316 0.301 (0.032) −0.015 0.048 0.796
λ2 = 0.179 0.176 (0.010) −0.003 0.014 0.792
ϕ = 0.8 1.554 (−) 0.754 2.025 −

EM-SM β11 = 1 0.959 (0.508) −0.041 0.317 0.988
β20 = −2 −2.062 (0.569) −0.062 0.553 0.992
β21 = 0.1 0.094 (0.066) −0.006 0.097 0.936
λ1 = 0.316 0.321 (0.053) 0.005 0.039 0.984
λ2 = 0.179 0.184 (0.023) 0.005 0.012 0.992
ϕ = 0.8 0.278 (2.387) −0.522 0.737 0.996

SEM β11 = 1 1.092 (0.500) 0.092 0.379 0.980
β20 = −2 −2.222 (0.681) −0.221 0.720 0.965
β21 = 0.1 0.165 (0.119) 0.065 0.269 0.950
λ1 = 0.316 0.305 (0.045) −0.011 0.040 0.920
λ2 = 0.179 0.178 (0.017) −0.001 0.014 0.910
ϕ = 0.8 1.242 (1.829) 0.442 1.544 0.825

300 EM-PL β11 = 1 1.074 (0.293) 0.074 0.392 0.904
β20 = −2 −2.091 (0.488) −0.091 0.576 0.960
β21 = 0.1 0.131 (0.053) 0.031 0.127 0.944
λ1 = 0.316 0.308 (0.027) −0.008 0.035 0.864
λ2 = 0.179 0.177 (0.008) −0.002 0.012 0.800
ϕ = 0.8 1.334 (−) 0.534 1.575 −

EM-SM β11 = 1 0.860 (0.369) −0.140 0.319 0.928
β20 = −2 −1.990 (0.456) 0.010 0.429 0.996
β21 = 0.1 0.095 (0.053) −0.005 0.056 0.960
λ1 = 0.316 0.319 (0.040) 0.003 0.028 0.964
λ2 = 0.179 0.184 (0.017) 0.005 0.011 0.988
ϕ = 0.8 0.289 (1.764) −0.511 0.742 0.988

SEM β11 = 1 1.090 (0.401) 0.090 0.363 0.976
β20 = −2 −2.091 (0.504) −0.091 0.566 0.976
β21 = 0.1 0.114 (0.062) 0.014 0.075 0.976
λ1 = 0.316 0.311 (0.038) −0.005 0.033 0.968
λ2 = 0.179 0.179 (0.015) 0.000 0.011 0.948
ϕ = 0.8 1.041 (1.561) 0.241 1.197 0.888
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Figure 3.1. Profile likelihood plot for the parameter ϕ.
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Figure 3.2. Plot of cure rate estimates against tumor thickness (z2).
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with the cure probability is important in practice, as is the interpretability of the

model. Because the addition of missing data variable U in the mixture representation

of the negative binomial distribution lacks biological interpretation and provides no

improvement in accuracy or efficiency for the parameter settings considered, we do

not recommend the EM-SM algorithm as a viable inference method for the interval-

censored DNB model. We note that while an EM algorithm was constructed using

the mixture representation for the negative binomial distribution and applied to a

right-censored real data [39], this work presents the first simulation study of the EM

algorithm constructed as proposed in [39] using the mixture representation for the

destructive negative binomial model. We restrict our further analysis to consideration

of the EM-PL and SEM estimation methods.

First, we note that for all parameter settings, SEM produces smaller biases

and root mean square errors (RMSEs) of the parameters associated with the cure

probability, i.e., β11, β20, β21, and ϕ, than the EM-PL approach. We also note that

regardless of the true value of ϕ, the EM-PL approach overestimates ϕ. Though

the RMSEs of EM-PL-produced ϕ estimates are high in all settings, this may be

attributed to the relative flatness of the log-likelihood function with respect to ϕ, as

shown in Figure 3.1 for sample size 200 and setting ψ = ψ1. As compared to the

SEM approach, larger biases and RMSEs of EM-PL-produced ϕ, β1, and β2 estimates

indicate that the SEM algorithm performs better than the EM-PL algorithm with

regard to both accuracy and precision. Further, the profile likelihood method used in

the EM-PL algorithm precludes the computation of standard error for ϕ estimates

through the inversion of the observed information matrix, and the treatment of ϕ

as fixed leads to underestimation of the standard error for other parameters. This

underestimation is seen in the coverage probabilities of the asymptotic confidence

intervals, where undercoverage is most prominent for the lifetime parameters λ1 and
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λ2. In all settings, the SEM approach produces empirical coverage probabilities

that are close to the nominal level for the regression and lifetime parameters, with

only slight undercoverage observed for ϕ. The standard errors and RMSEs decrease

with an increase in sample size for all settings and estimation approaches, which is

consistent with the large sample properties. Because of the advantages the SEM

algorithm presents with respect to bias, standard error, and coverage probabilities,

we consider the proposed SEM algorithm as the preferred algorithm.

To illustrate the impact of accurate parameter estimation on the estimated

cure rate, in Figure 3.2 we compare the estimated cure rates to the true cure rates

for parameter setting ψ1 and n = 200. While estimated cure rates are relatively close

to true cure rates for smaller values of tumor thickness, we see that the EM-PL-

produced estimates (p̂0(EM)) lose accuracy for larger values of tumor thickness while

the SEM-produced estimates (p̂0(SEM)) remain closer to the true cure probabilities.

In a clinical setting, tumor thickness is a prognostic factor of interest that may be

expected to be associated with severity of illness. Significant underestimation of cure

for patients with large tumor thickness may lead a practitioner to proceed with a more

aggressive and potentially dangerous treatment than the patient’s condition dictates.

The values of p̂0(EM) are consistently lower than p̂0(SEM) for tumor thicknesses larger

than 5 mm, with lowest accuracy observed in estimates for treatment group and larger

tumor thickness values. While differences in relative error of p̂0(SEM) and p̂0(EM) as

large as 6.6%, as observed for a treatment patient with tumor thickness of 15 mm,

may not constitute a drastic underestimation, neither can this underestimation be

dismissed as negligible when considering potentially dangerous adjuvant therapy.
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3.6 Illustration using data from a smoking cessation study

In this section, we demonstrate the performance of the proposed SEM algorithm

using a real data on smoking cessation. The study consists of 223 subjects who had

attempted to quit smoking at least once during the study period of November 1986

to February 1989. For a full description of the data, see Murray et al. [62]. At the

time of enrollment, subjects were randomly assigned to either a smoking intervention

(SI) group (treatment group) or a usual care (UC) group (control group), which

received no intervention. Subjects were monitored annually for a follow-up period

of 5 consecutive years, with the event of interest being whether subjects resume

smoking or not (relapse). The data consists of 65 (45 for SI and 20 for UC) out of

223 (169 for SI and 54 for UC) subjects experiencing relapse. For this application,

we considered gender (GEN, 1:Female and 0:Male) and years smoking (DUR) as

covariates of interest that are linked to model parameters η and p. We denote GEN

by z1 and DUR by z2, and consider five potential regression models:

• Model 1: η = eβ10+β11z1 , p = exp(β21z2)
1+exp(β21z2)

, where p contains no intercept term.

• Model 2: η = eβ11z1 , p = exp(β20+β21z2)
1+exp(β20+β21z2)

, where η contains no intercept term.

• Model 3: η = eβ20+β21z2 , p = exp(β11z1)
1+exp(β11z1)

, where p contains no intercept term.

• Model 4: η = eβ21z2 , p = exp(β10+β11z1)
1+exp(β10+β11z1)

, where η contains no intercept term.

• Model 5: η = eβ0+β1z1+β2z2 , p = 1.

We note that the first four models accommodate a destructive element, while

the fifth model takes the activation probability of initial risks as p = 1, indicating that

no destruction of initial risks may take place. In the context of smoking cessation,

it is hoped by a practitioner that a medical or behavioral intervention will reduce a

subject’s propensity to re-engage in smoking. Model 5 is included in this comparison to

assess whether the inclusion of a destructive element facilitates greater maximization

of the observed log-likelihood value, which may indicate that an intervention reduced
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the propensity to relapse. In order to identify the model best fitting the data, we

compare AIC and BIC for the above models by applying the proposed SEM algorithm

and computing the observed log-likelihood function evaluated at MLEs. AIC and

BIC values are reported in Table 3.5. For comparison purposes, the EM algorithm is

applied to the above models and values of observed log-likelihood function, AIC, and

BIC through using the EM algorithm are also reported in Table 3.5. We observe first

that for each model, the SEM-produced estimates yield larger observed log-likelihood

function values, and consequently smaller AIC and BIC values, than the EM-produced

estimates. Further, the SEM-produced estimates for Model 2, which accommodates a

destructive mechanism, produce the lowest AIC and BIC values, indicating that the

effect of intervention may be captured through the destructive process. Consequently,

we choose Model 2 as our working model. Kaplan-Meier curves stratified by GEN, as

shown in Figure 3.3, level off to non-zero proportions which supports the presence

of a cure component in the data. While the stratified Kaplan-Meier curves intersect

in the initial stage of the study (t < 1), the shapes of the curves convey a similar

relationship between gender and long term survival.

Table 3.5. Model Discrimination

EM SEM

Model Obs log-lik AIC BIC Obs log-lik AIC BIC

1 -213.3 438.6 459.0 -204.0 420.0 440.4
2 -202.9 417.8 438.2 -202.8 417.6 438.0
3 -205.9 423.8 444.2 -204.4 420.8 441.2
4 -203.4 418.8 439.2 -203.0 418.0 438.4
5 -206.2 424.3 444.8 -204.6 421.2 441.6
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Figure 3.3. Kaplan-Meier plot of survival curves stratified by gender.

Table 3.6 presents the estimates and standard errors of the parameters of

the working model using both the EM and SEM algorithms, as well as p-values of

regression coefficients. To obtain the estimates using the SEM algorithm, we first

conduct a preliminary study and decide to use 1100 iterations and consider the

first 100 iterations as burn-in. In computing the standard errors by inverting the

observed information matrix, we observe that the second-order derivatives of the

observed log-likelihood function are highly unstable, particularly with respect to the

parameter ϕ. For this reason, we calculate and report the standard errors using

the non-parametric bootstrap method and 200 bootstrap iterations for estimates

produced by both SEM and EM algorithms. We note that while the sign of each

regression coefficient estimate is the same regardless of approach, indicating the

direction of covariate effect is consistent across approaches, the standard errors of

SEM-produced estimates are smaller. Noting the consistency of sign across methods

and the superior precision of SEM-produced estimates, we identify the SEM algorithm
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as the preferred estimation method and proceed with analysis of the results using

only the SEM-produced estimates. While the positive sign of the estimate for β11

agrees with both the stratified Kaplan-Meier plot in Figure 3.3 and previous findings

observing women as more likely to relapse than men [11], the predictor of GEN fails

to be significant at a 5% level of significance. The estimate of β21 < 0 indicates that

longer term smokers relapse later, which is consistent with the findings of Banerjee

and Carlin [11]. Further, the significance of DUR at a 5% level of significance is

consistent with prior analyses [73].

Table 3.6. Comparison of estimation results for the smoking cessation data

EM SEM

Parameter Estimate Standard error p−value Estimate Standard error p−value

β11 0.316 0.305 0.301 0.244 0.289 0.400
β20 1.043 13.837 0.940 1.349 0.901 0.136
β21 −0.058 0.352 0.870 −0.066 0.030 0.028
λ1 0.389 0.030 − 0.405 0.024 −
λ2 0.322 0.049 − 0.321 0.023 −
ϕ 1.200 1.561 − 0.587 0.083 −

Figure 3.4 shows the predicted survival probabilities for patients with smoking

durations of 18, 31, 35 and 40.9 years, which correspond to the 5th, 50th, 75th, and

95th percentiles, stratified by gender. Note that the survival probability for males is

higher across all values of duration. It may be observed that the survival probability

increases for longer smoking duration by comparing the plots fixing duration at 18

and 40.9 years of smoking. The effect of smoking duration on survival is further

conveyed in Figure 3.5 where the estimated cure rate is shown to increase in a nearly

linear fashion as duration of smoking increases. Figure 3.6 shows the evolution paths
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Figure 3.4. Predicted survival probabilities stratified by gender for patients with
different durations of smoking.

of parameter estimates in the SEM algorithm. The estimates are observed to oscillate

without any discernable upward or downward trend.

We check the adequacy of the DNB model by using the calculated normalized

randomized quantile residuals [32]. Figure 3.7 presents the quantile-quantile plot,

where each point corresponds to the median of five sets of ordered residuals. The

linearity in this plot suggests that the destructive negative binomial cure rate model

with Weibull lifetimes provides a good fit to the smoking cessation data. Finally, the

Kolmogorov-Smirnov test for normality of residuals provides strong evidence for the

normality of residuals, with a p-value of 0.986.
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Figure 3.5. Cure rate against duration of smoking stratified by gender.
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CHAPTER 4

Box-Cox transformation cure rate model under interval censoring

4.1 Introduction

In this chapter, we extend the BCT cure rate model developed by Yin and

Ibrahim [107] to interval-censored data. Assuming a semi-parametric setup, the

main contribution of this work is twofold. First, we generalize the BCT model to

accommodate interval-censored data. Further, the EM algorithm developed by Pal and

Balakrishnan using a fully parametric framework [76] is implemented in the interval-

censored setting, and an extensive simulation study demonstrates the performance of

the proposed algorithm using simultaneous maximization of all parameters. Since the

initial formulation of the EM algorithm for the BCT model used a profile likelihood

technique, the proposition of simultaneous maximization introduces novelty and the

potential for improved computational efficiency.

The rest of this chapter is organized as follows. In Section 4.2, we describe

the BCT cure rate model under interval censoring and present the complete log-

likelihood function. In Section 4.3, we develop the steps of the EM algorithm for

the model in Section 4.2. Section 4.4 presents a Monte Carlo simulation study

comparing the performance of the proposed EM algorithm, using both simultaneous

maximization and profile likelihood techniques, and direct maximization of the

observed log-likelihood function. In Section 4.5, the EM algorithm, using the preferred

technique of simultaneous maximization, is applied to a real data from a study on

smoking cessation.
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4.2 Box-Cox transformation cure rate model

The Box-Cox transformation on a variable y, indexed by a transformation

parameter α [19], is defined as

G(y, α) =


yα−1
α
, 0 < α ≤ 1

log(y), α = 0.

(4.1)

A general class of cure rate which unifies the mixture and promotion time cure

models was proposed by applying a Box-Cox transformation to the population

survival function, indexed by transformation parameter α [107]. Introducing a general

covariate structure where Spop(t|x, z)) depends on set of covariates x and z, the BCT

cure rate model is defined as

G(Spop(t|x, z), α) = −θ(α, z)F (t|x), α ϵ [0, 1] (4.2)

where

θ(α, z) =


exp(z′β)

1+αexp(z′β)
, 0 < α ≤ 1

exp(z′β), α = 0

(4.3)

and F (·) is a proper distribution function.

The BCT model has been studied with various modeling specifications. For

example, [84] introduced a novel biological interpretation for the BCT model and

assumed a proportional hazards structure to perform likelihood inference. Non-

parametric maximum likelihood estimation was developed for the BCT model contain-

ing a frailty term for multivariate survival data [29]. A parametric set-up assuming

a two-parameter Weibull distribution for F (·) was considered in the formulation of

the EM algorithm for the BCT model [76]. In this work, we adopt a semi-parametric
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framework by using the proportional hazards model in the latency. Accordingly, we

incorporate set of covariates x through

F (t|x) = 1− S0(t)
exp(γ′x) (4.4)

where S0(·) is the baseline survival function and γ represents the parameter vector

associated with short-term survivors. While the proportional hazards structure allows

for non-parametric estimation of the baseline survival S0(·), for this work we will

assume a one-parameter Weibull distribution for the baseline survival such that

S0(t) = exp(−t 1
λ ), for λ > 0. Applying (4.1) in the left hand side of (4.2), the

population survival function is given by

Spop(t|x, z) =


{1− αθ(α, z)(1− S0(t)

exp(γ′x))}1/α, 0 < α ≤ 1

exp{−θ(0, z)(1− S0(t)
exp(γ′x))}, α = 0.

(4.5)

The cure rate corresponding to the BCT cure rate model as in (4.5) is

p0(x, z) = lim
t→∞

Spop(t|x, z) =


[1− αθ(α, z)]1/α , 0 < α ≤ 1

exp{−θ(0, z)}, α = 0.

=


[1 + αexp(z′β)]1/α , 0 < α ≤ 1

exp{−exp(Z′β)}, α = 0.

Note that (4.5) dictates constraints

0 ≤ αθ(α, z) ≤ 1 and 0 ≤ exp{−θ(0, z)} ≤ 1, (4.6)

(since 0 ≤ F (t|x) ≤ 1), which are automatically satisfied using (4.3). For the sake of

simplicity, we will use θ, F (·), Spop(·), and p0 in place of θ(α, z), F (·|x), Spop(·|x, z),

and p0(x, z), respectively.
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4.2.1 Special cases

While all values such that α ≥ 0 satisfy the constraints in (4.6), we restrict the

values of interest to 0 ≤ α ≤ 1 in order to examine intermediate modeling between

the mixture and promotion time cure rate models. We present the special cases that

occur at the boundaries of the interval of interest for α.

4.2.1.1 Mixture cure rate model: α = 1

When α = 1, θ(1, z) = exp(z′β)
1+exp(z′β)

and (4.5) reduces to

Spop(t) = 1− θ(1, z)F (t)

= 1− exp(z′β)

1 + exp(z′β)
{1− S(t)}

=
1

1 + exp(z′β)
+

exp(z′β)

1 + exp(z′β)
S(t)

= p0 + (1− p0)S(t),

which is the mixture model in (1.1) with p0 = 1
1+exp(z′β)

, where S(t) = 1 − F (t)

denotes the proper survival function.

4.2.1.2 Promotion time cure model: α = 0

When α = 0, we have θ(0, z) = exp(z′β) and (4.5) reduces to

Spop(t) = exp{−exp(z′β)F (t)},

which is the promotion time model in (1.2) with η = exp(z′β).

4.2.2 Form of data and likelihood function

We consider a scenario where the true lifetimes are not exactly observed and

are subject to interval censoring. Adopting the form of data as described in Section

1.6.1, the observed data is denoted as Dobs = (l, r, δ).
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Based on the observed data, the likelihood function under non-informative

censoring is given by

L(ψ) ∝
n∏

i=1

{Spop(li)− Spop(ri)}δi{Spop(li)}1−δi

=
∏
∆1

{Spop(li)− Spop(ri)}
∏
∆0

Spop(li)

whereψ = (β,γ, λ, α) denotes the unknown parameters, ∆1 = {i : δi = 1} corresponds

to the set of observed lifetimes and ∆0 = {i : δi = 0} corresponds to the set of censored

lifetimes.

4.3 EM algorithm

If the lifetime of a subject is interval-censored, then the cured status variable

I takes the value one. However, if a subject’s lifetime is right-censored, its value is

unknown, and can be either zero or one. With the introduction of the missing data,

we can estimate the MLE of ψ by the use of the EM algorithm, which incorporates

the complete data likelihood function. For the BCT model as in (4.5), the survival

function of the susceptibles is obtained as

Ssusc(t|x, z) = P [T > t|I = 1]

=
P [T > t]− P [I = 0]

P [I = 1]

=
Spop(t)− p0

1− p0

=


{1−αθ(1−S0(t)exp(γ

′x))}1/α−[1−αθ]1/α

1−[1−αθ]1/α
, 0 < α ≤ 1

exp{−θ(1−S0(t)exp(γ
′x))}−exp{−θ}

1−exp{−θ} , α = 0.

(4.7)
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We will denote Ssusc(·|x, z) by Ssusc(·).

By using (4.7) and noting that any cure rate model can be represented as a mixture

of cure and susceptible, the complete data likelihood function may be expressed as

L(ψ) ∝
∏
∆1

{Spop(li)− Spop(ri)}
∏
∆0

p1−Ii
0 {(1− p0)Ssusc(li)}Ii

and the corresponding log-likelihood function is

l(ψ) ∝
∑
∆1

log{Spop(li)− Spop(ri)}+
∑
∆0

(1− Ii)logp0 +
∑
∆0

Iilog{(1− p0)Ssusc(li)}.

To implement the EM algorithm, in the E-step we replace unknown cure status

Ii with wi, the conditional expectation of Ii given the observed data and current

parameter estimates, ψ(k), where

w
(k)
i = E(Ii|Dobs;ψ

(k))

= P [Ii = 1|Ti > li;ψ
(k)]

=
P [Ti > li|Ii = 1][P [Ii = 1]

P [Ti > li]
|ψ=ψ(k)

=
(1− p0)Ssusc(li)

Spop(li)
|ψ=ψ(k) .

The resulting conditional expectation of the complete data log-likelihood func-

tion is denoted by Q(ψ, w(k)), where

Q(ψ, w(k)) =
∑
∆1

log{Spop(li)− Spop(ri)}+
∑
∆0

(1− w
(k)
i )logp0+

∑
∆0

w
(k)
i log{(1− p0)Ssusc(li)}. (4.8)

In the maximization step, the function Q(ψ, w(k)) is maximized with respect to ψ to

obtain a new estimate

ψ(k+1) = argmax
ψ ϵΨ

Q(ψ, w(k)).
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The E-step and then M-step are then continued iteratively until a suitable convergence

criterion is met to obtain the MLE of ψ.

We can summarize the steps of the EM algorithm as follows:

Step 1 (Expectation step or E-step):

Given parameter estimates ψ(k), for i in ∆0 compute

w
(k)
i =

(1− p0)Ssusc(li)

Spop(li)
|ψ=ψ(k) =

Spop(li)− p0
Spop(li)

|ψ=ψ(k) .

Step 2 (Maximization step or M-step):

Given w(k), find ψ that maximizes (4.8) to obtain an improved estimate ψ(k+1) .

Step 3 (Iterative step):

The E-step and M-step are repeated until a suitable convergence criterion is met.

For this purpose, we use the relative difference in successive values of the estimates,∣∣∣∣ψ(k+1)−ψ(k)

ψ(k)

∣∣∣∣, as stopping criterion with a tolerance value of 10−4.

4.4 Simulation study

To determine the accuracy of the proposed model, we study the performance of

the proposed model with simulated data. We consider the case where x = z contains

both a binary and continuous covariate.

4.4.1 Data generation

To generate the data for the i-th subject, we first generate covariates x1 from

a Bernoulli distribution taking values of 0 or 1 with probability 0.5 and x2 from a

uniform U(0.1, 20) distribution. We assume a Weibull distribution for the baseline

survival function such that the scale parameter is equal to 1, i.e. S0(t) = exp(−t 1
λ ),

where λ > 0. Random censoring is introduced through censoring time C following
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exponential distribution with rate ν = 0.2. Note that ν can be chosen to achieve a

desired censoring proportion.

True parameter values were chosen to produce varying censored and cured

proportions. Parameter settings chosen as ψ1 = (0.2,−1.4, 0.1,−1.2, 0.05, 0.215, α)

and ψ2 = (0.9,−0.6,−0.1, 1,−0.2, 0.316, α), with α taking values {0, 0.5, 0.75, 1},

produced empirical censored and cured proportions (averaged over 100 Monte Carlo

trials with sample size n = 200) as reported in Table 4.1. Choosing settings with

empirical cured proportions varying from lowest proportion of 0.25 to highest pro-

portion of 0.59 is useful in checking the algorithm’s performance in scenarios where

probability of cure may be relatively lower or higher. Sample sizes of both n = 200

and n = 400 are used in order to observe the performance of the algorithms under

small and moderate sample sizes. This study applies the algorithms proposed in

Section 4.3 to interval-censored data from the BCT cure rate model, simulated using

the parameters and data generation methods outlined above. All simulations are done

using the R statistical software (version 4.2.2) and all results are based on M = 250

Monte Carlo runs. Computational codes for data generation and EM algorithm are

available in the Appendix C.3.

To generate the observed data (li, ri, δi), i = 1, 2, · · · , n, we execute the following

steps:

1. Generate censoring time Ci from exponential distribution with rate ν;

2. Given X1 = x1, X2 = x2, calculate θ, where

(a) θ = eβ0+β1x1+β2x2 , if α = 0

(b) θ = eβ0+β1x1+β2x2

1+αeβ0+β1x1+β2x2
, if 0 < α ≤ 1

3. Calculate p0i, where

(a) p0i = exp{−θ} if α = 0;

(b) p0i = [1− αθ]1/α if 0 < α ≤ 1;
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4. Generate a variable U1i from a Uniform(0,1) distribution;

5. If U1i ≤ p0i, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

6. If U1i > p0i, generate another variable U2i from a Uniform(0, 1) distribution;

7. Time to event (Ti) is generated by setting (4.7) equal to U2i and solving for Ti,

namely

(a) Ti = {−e−γ1x1−γ2x2 log (1 + θlog [p0i + (1− p0i)U2i])}λ if α = 0;

(b) Ti =
{
−e−γ1x1−γ2x2 log

(
αθ+[p0i+U2i−p0iU2i]

α−1
αθ

)}λ

if 0 < α ≤ 1;

8. Set Yi = min{Ti, Ci};

(a) If Yi > Ci, then (li, ri, δi) = (Ci,∞, 0) and data generation is complete.

(b) If Yi ≤ Ci, set δi = 1 and generate l1i from U(0, 1) distribution and l2i from

U(0.1, 0.5) distribution. Construct intervals (0, l1i], (l1i, l1i + l2i], · · · , (l1i +

k × l2i,∞], k = 1, 2, · · · , and select (li, ri) that satisfies li < Yi ≤ ri.

Table 4.1. Empirical cured proportions (Cure) and censored proportions (Cens) for
chosen parameter settings

ψ1 ψ2

α Cure Cens Cure Cens

0 0.25 0.35 0.50 0.62
0.5 0.33 0.45 0.55 0.65
0.75 0.36 0.46 0.57 0.67
1 0.40 0.50 0.59 0.69

4.4.2 Parameter recovery

It is noted that the observed log-likelihood can be flat with respect to the

transformation parameter α. Figure 4.1 presents the profile likelihood plots for a

single dataset simulated using parameter setting ψ = ψ1 and each possible value of α
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considered, stratified by true value of α. In this setting, the profile likelihood is seen

to be increasingly flat for larger values of α. Because flatness of the likelihood surface

may produce convergence problems when maximizing all parameters simultaneously,

we consider the performance of the proposed EM algorithm by using simultaneous

maximization (EM-SM) as well as by using a profile likelihood technique (EM-PL) to

estimate α.

To find an initial guess for the model parameters, we first employ the following

selection method: for a given parameter Γ, we take 20% deviation off its true value

and create the interval (Γ− 0.2|Γ|,Γ + 0.2|Γ|). Then, we randomly sample a value of

Γ from this interval which is used as the initial value (IV) to start off the iterative

algorithm. Note that we restrict the selection of initial value of α to values that fall

in the interval of interest, [0,1], by sampling from the intersection of the interval

of interest and the interval constructed using 20% deviation as described above.

To employ the profile likelihood approach to estimate α in the EM algorithm, we

first select a set of possible values for α as {0, 0.05, 0.1, · · · , 1}. Then, for each

fixed value of α, the proposed EM algorithm is run and the log-likelihood value

is calculated. The value of α which attains the maximized log-likelihood function

value and corresponding estimates of other model parameters are taken as the MLEs.

Tables 4.2, 4.3, 4.4, and 4.5 present the simulation results using both EM-PL and

EM-SM techniques with α taking values 0, 0.5, 0.75, and 1, respectively. We first

note that in all considered parameter settings, the proposed algorithm performs

well when using both techniques in regards to biases, standard errors (SEs), and

root mean square errors (RMSEs) of estimates. In all cases, the bias and RMSE

decrease with an increase in sample size, which is consistent with the large sample

properties. The transformation parameter α is estimated with greater accuracy using

the EM-SM approach across all settings, as indicated by comparatively smaller biases.
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Additionally, the EM-SM approach offers several computational advantages. Firstly,

because the EM-SM approach requires only one convergent run of the EM algorithm

to produce a set of parameter estimates whereas the EM-PL approach requires one

convergent run of the EM algorithm for each permissible value of α, the computational

time is expected to be lower using the EM-SM approach. For parameter setting

ψ = ψ1, α = 0, and n = 200, one convergent run using the EM-SM approach took

1.89 seconds as compared to 10.97 seconds for one convergent run using the EM-PL

approach, which clearly makes the EM-SM approach more computationally appealing.

Secondly, because the profile likelihood method precludes the computation of standard

error for α estimates through the inversion of the observed information matrix, the

EM-SM technique offers the advantage of constructing confidence intervals for cure

estimates without needing to produce estimates for the standard error of α through

potentially computationally intensive methods such as bootstrapping. While the

SEs and RMSEs of EM-PL-produced estimates are marginally smaller than those of

EM-SM-produced estimates, the treatment of α as fixed leads to underestimation of

the standard error for other parameters. This underestimation is seen in the coverage

probabilities of the asymptotic confidence intervals, where undercoverage of some

EM-PL-produced estimates is observed in all settings. The EM-SM approach produces

empirical coverage probabilities that are close to the nominal level in all settings.

Because the EM-SM approach provides reasonably accurate and efficient estimates

with added computational advantages, the EM-SM approach is the preferred method

to implement the proposed EM algorithm.

4.4.3 Comparison with direct maximization of the log-likelihood function

In considering the efficacy of the proposed EM algorithm in parameter estima-

tion, we compare the performance of the proposed algorithm to direct maximization
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Table 4.2. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for parameter settings when α = 0

EM-PL EM-SM

n Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

200 β0 = 0.2 0.271 (0.238) 0.071 0.305 0.916 0.310 (0.320) 0.110 0.404 0.976
β1 = −1.4 −1.571 (0.287) −0.171 0.432 0.900 −1.551 (0.432) −0.190 0.514 0.972
β2 = 0.1 0.114 (0.025) 0.014 0.037 0.948 0.111 (0.032) 0.011 0.035 0.976
γ1 = −1.2 −1.255 (0.337) −0.055 0.381 0.908 −1.215 (0.392) −0.015 0.392 0.952
γ2 = 0.05 0.056 (0.023) 0.006 0.030 0.868 0.053 (0.033) 0.003 0.035 0.912
λ = 0.215 0.214 (0.019) −0.001 0.019 0.948 0.212 (0.021) −0.003 0.020 0.968
α = 0 0.085 (−) 0.085 0.199 − 0.076 (0.192) 0.076 0.261 0.968

β0 = 0.9 1.147 (0.268) 0.247 0.485 0.772 1.052 (0.588) 0.152 0.583 0.968
β1 = −0.6 −0.691 (0.266) −0.091 0.300 0.928 −0.680 (0.311) −0.080 0.329 0.940
β2 = −0.1 −0.115 (0.025) −0.015 0.033 0.888 −0.109 (0.035) −0.009 0.036 0.964
γ1 = 1 1.031 (0.272) −0.005 0.259 0.964 1.042 (0.277) 0.042 0.273 0.972
γ2 = −0.2 −0.202 (0.027) −0.002 0.027 0.936 −0.205 (0.031) −0.005 0.031 0.968
λ = 0.316 0.311 (0.030) −0.005 0.031 0.932 0.308 (0.033) −0.008 0.032 0.928
α = 0 0.155 (−) 0.155 0.267 − 0.034 (0.432) 0.034 0.418 0.964

400 β0 = 0.2 0.232 (0.162) 0.032 0.205 0.912 0.231 (0.197) 0.031 0.207 0.964
β1 = −1.4 −1.511 (0.194) −0.111 0.265 0.904 −1.453 (0.272) −0.053 0.274 0.972
β2 = 0.1 0.111 (0.017) 0.011 0.023 0.912 0.103 (0.021) 0.003 0.020 0.960
γ1 = −1.2 −1.247 (0.236) −0.047 0.253 0.936 −1.259 (0.275) −0.059 0.283 0.948
γ2 = 0.05 0.055 (0.016) 0.005 0.020 0.872 0.054 (0.023) 0.004 0.022 0.956
λ = 0.215 0.216 (0.014) 0.001 0.015 0.940 0.211 (0.014) −0.004 0.015 0.924
α = 0 0.063 (−) 0.063 0.131 − 0.026 (0.127) 0.026 0.129 0.992

β0 = 0.9 1.051 (0.178) 0.151 0.292 0.832 0.934 (0.407) 0.034 0.400 0.960
β1 = −0.6 −0.640 (0.180) −0.040 0.177 0.952 −0.625 (0.215) −0.025 0.215 0.952
β2 = −0.1 −0.109 (0.017) −0.009 0.020 0.924 −0.102 (0.024) −0.002 0.024 0.956
γ1 = 1 1.013 (0.189) 0.013 0.188 0.960 1.010 (0.192) 0.010 0.193 0.940
γ2 = −0.2 −0.199 (0.018) 0.001 0.019 0.944 −0.203 (0.022) −0.003 0.022 0.956
λ = 0.316 0.315 (0.022) −0.001 0.021 0.976 0.310 (0.024) −0.006 0.024 0.916
α = 0 0.105 (−) 0.105 0.195 − 0.012 (0.308) 0.012 0.294 0.956
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Table 4.3. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for parameter settings when α = 0.5

EM-PL EM-SM

n Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

200 β0 = 0.2 0.233 (0.322) 0.033 0.442 0.856 0.335 (0.532) 0.135 0.555 0.936
β1 = −1.4 −1.462 (0.322) −0.062 0.473 0.820 −1.580 (0.603) −0.180 0.657 0.932
β2 = 0.1 0.104 (0.028) 0.004 0.035 0.896 0.114 (0.050) 0.014 0.056 0.944
γ1 = −1.2 −1.220 (0.274) −0.020 0.298 0.928 −1.234 (0.302) −0.034 0.327 0.930
γ2 = 0.05 0.049 (0.014) −0.001 0.024 0.740 0.055 (0.030) 0.005 0.031 0.890
λ = 0.215 0.208 (0.019) −0.007 0.022 0.876 0.210 (0.023) −0.005 0.024 0.912
α = 0.5 0.503 (−) 0.003 0.384 − 0.660 (0.630) 0.160 0.668 0.890

β0 = 0.9 1.002 (0.336) 0.102 0.531 0.784 1.001 (0.651) 0.101 0.670 0.954
β1 = −0.6 −0.638 (0.313) −0.038 0.321 0.964 −0.643 (0.356) −0.043 0.383 0.932
β2 = −0.1 −0.106 (0.029) −0.006 0.036 0.912 −0.106 (0.038) −0.006 0.039 0.942
γ1 = 1 1.036 (0.270) 0.036 0.310 0.908 1.050 (0.278) 0.050 0.276 0.950
γ2 = −0.2 −0.209 (0.028) −0.009 0.035 0.896 −0.209 (0.033) −0.009 0.036 0.942
λ = 0.316 0.303 (0.030) −0.013 0.035 0.880 0.304 (0.034) −0.012 0.037 0.902
α = 0.5 0.523 (−) 0.023 0.394 − 0.504 (0.655) 0.004 0.663 0.964

400 β0 = 0.2 0.227 (0.226) 0.027 0.322 0.820 0.276 (0.367) 0.076 0.372 0.924
β1 = −1.4 −1.468 (0.226) −0.068 0.390 0.728 −1.508 (0.407) −0.108 0.398 0.954
β2 = 0.1 0.104 (0.020) 0.004 0.027 0.840 0.105 (0.030) 0.005 0.030 0.950
γ1 = −1.2 −1.229 (0.191) −0.029 0.207 0.936 −1.222 (0.211) −0.022 0.219 0.946
γ2 = 0.05 0.050 (0.010) 0.000 0.018 0.648 0.051 (0.021) 0.001 0.021 0.926
λ = 0.215 0.210 (0.014) −0.005 0.017 0.868 0.212 (0.016) −0.003 0.016 0.944
α = 0.5 0.520 (−) 0.020 0.343 − 0.560 (0.407) 0.060 0.399 0.898

β0 = 0.9 0.932 (0.232) 0.032 0.409 0.680 0.938 (0.452) 0.038 0.465 0.948
β1 = −0.6 −0.618 (0.218) −0.018 0.241 0.940 −0.621 (0.247) −0.021 0.253 0.956
β2 = −0.1 −0.102 (0.020) −0.002 0.025 0.884 −0.103 (0.026) −0.003 0.027 0.946
γ1 = 1 0.995 (0.188) −0.005 0.200 0.928 1.020 (0.190) 0.020 0.202 0.946
γ2 = −0.2 −0.203 (0.020) −0.003 0.021 0.928 −0.206 (0.023) −0.006 0.025 0.954
λ = 0.316 0.311 (0.022) −0.005 0.024 0.904 0.310 (0.024) −0.006 0.026 0.924
α = 0.5 0.502 (−) 0.002 0.347 − 0.499 (0.452) −0.001 0.463 0.964
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Table 4.4. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for parameter settings when α = 0.75

EM-PL EM-SM

n Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

200 β0 = 0.2 0.138 (0.329) −0.062 0.412 0.848 0.363 (0.584) 0.163 0.659 0.920
β1 = −1.4 −1.354 (0.320) 0.046 0.438 0.804 −1.635 (0.627) −0.235 0.673 0.958
β2 = 0.1 0.096 (0.028) −0.004 0.034 0.872 0.118 (0.051) 0.018 0.056 0.950
γ1 = −1.2 −1.188 (0.271) 0.012 0.283 0.948 −1.251 (0.281) −0.051 0.294 0.944
γ2 = 0.05 0.046 (0.013) −0.004 0.021 0.796 0.057 (0.027) 0.007 0.030 0.886
λ = 0.215 0.206 (0.019) −0.009 0.024 0.852 0.212 (0.023) −0.003 0.023 0.930
α = 0.75 0.604 (−) −0.146 0.419 − 0.998 (0.734) 0.248 0.784 0.924

β0 = 0.9 0.863 (0.352) −0.037 0.445 0.860 1.019 (0.692) 0.119 0.683 0.966
β1 = −0.6 −0.593 (0.328) 0.007 0.345 0.944 −0.615 (0.384) −0.015 0.380 0.938
β2 = −0.1 −0.100 (0.030) 0.000 0.035 0.924 −0.108 (0.041) −0.008 0.042 0.950
γ1 = 1 1.056 (0.274) 0.056 0.295 0.940 1.081 (0.277) 0.081 0.300 0.948
γ2 = −0.2 −0.213 (0.029) −0.013 0.035 0.916 −0.208 (0.034) −0.008 0.034 0.954
λ = 0.316 0.301 (0.031) −0.015 0.036 0.892 0.305 (0.034) −0.011 0.035 0.910
α = 0.75 0.644 (−) −0.106 0.385 − 0.811 (0.783) 0.061 0.745 0.982

400 β0 = 0.2 0.157 (0.238) −0.043 0.303 0.848 0.269 (0.399) 0.069 0.386 0.938
β1 = −1.4 −1.366 (0.231) 0.034 0.305 0.836 −1.503 (0.426) −0.103 0.409 0.940
β2 = 0.1 0.099 (0.020) −0.001 0.027 0.848 0.107 (0.033) 0.007 0.032 0.952
γ1 = −1.2 −1.213 (0.187) −0.013 0.208 0.936 −1.209 (0.197) −0.009 0.192 0.952
γ2 = 0.05 0.047 (0.009) −0.003 0.018 0.672 0.052 (0.020) 0.002 0.019 0.932
λ = 0.215 0.208 (0.014) −0.007 0.016 0.900 0.212 (0.017) −0.003 0.016 0.944
α = 0.75 0.672 (−) −0.078 0.345 − 0.843 (0.514) 0.093 0.489 0.946

β0 = 0.9 0.840 (0.247) −0.060 0.373 0.796 0.964 (0.470) 0.064 0.476 0.950
β1 = −0.6 −0.614 (0.230) −0.014 0.252 0.932 −0.619 (0.264) −0.019 0.271 0.940
β2 = −0.1 −0.097 (0.021) 0.003 0.025 0.892 −0.105 (0.028) −0.005 0.027 0.952
γ1 = 1 1.021 (0.190) 0.021 0.195 0.944 1.019 (0.191) 0.019 0.188 0.954
γ2 = −0.2 −0.206 (0.020) −0.006 0.023 0.916 −0.203 (0.023) −0.003 0.024 0.956
λ = 0.316 0.309 (0.023) −0.007 0.025 0.920 0.310 (0.024) −0.006 0.024 0.934
α = 0.75 0.648 (−) −0.102 0.355 − 0.782 (0.522) 0.032 0.548 0.950
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Table 4.5. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for parameter settings when α = 1

EM-PL EM-SM

n Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

200 β0 = 0.2 0.118 (0.343) −0.082 0.448 0.832 0.365 (0.625) 0.165 0.663 0.904
β1 = −1.4 −1.323 (0.328) 0.077 0.405 0.848 −1.602 (0.642) −0.202 0.688 0.926
β2 = 0.1 0.090 (0.029) −0.010 0.033 0.888 0.115 (0.054) 0.015 0.059 0.938
γ1 = −1.2 −1.209 (0.270) −0.009 0.281 0.964 −1.228 (0.278) −0.028 0.297 0.948
γ2 = 0.05 0.042 (0.013) −0.008 0.019 0.848 0.055 (0.027) 0.005 0.031 0.874
λ = 0.215 0.204 (0.019) −0.001 0.024 0.876 0.210 (0.024) −0.005 0.023 0.942
α = 1 0.721 (−) −0.279 0.471 − 1.251 (0.889) 0.251 0.987 0.908

β0 = 0.9 0.693 (0.355) −0.207 0.534 0.768 1.024 (0.714) 0.124 0.776 0.946
β1 = −0.6 −0.533 (0.332) 0.067 0.358 0.944 −0.637 (0.410) −0.037 0.433 0.936
β2 = −0.1 −0.092 (0.030) 0.008 0.035 0.904 −0.106 (0.042) −0.006 0.046 0.930
γ1 = 1 1.040 (0.278) 0.040 0.302 0.944 1.032 (0.277) 0.032 0.292 0.948
γ2 = −0.2 −0.216 (0.030) −0.016 0.040 0.892 −0.207 (0.034) −0.007 0.037 0.942
λ = 0.316 0.302 (0.032) −0.014 0.037 0.904 0.304 (0.034) −0.012 0.035 0.908
α = 1 0.677 (−) −0.323 0.513 − 1.089 (0.900) 0.089 0.962 0.966

400 β0 = 0.2 0.094 (0.247) −0.106 0.312 0.836 0.274 (0.426) 0.074 0.431 0.932
β1 = −1.4 −1.332 (0.237) 0.068 0.296 0.840 −1.485 (0.435) −0.085 0.443 0.938
β2 = 0.1 0.096 (0.021) −0.004 0.022 0.932 0.106 (0.035) 0.006 0.035 0.934
γ1 = −1.2 −1.200 (0.187) 0.000 0.175 0.960 −1.223 (0.192) −0.023 0.205 0.930
γ2 = 0.05 0.044 (0.009) −0.006 0.014 0.796 0.052 (0.019) 0.002 0.020 0.922
λ = 0.215 0.208 (0.014) −0.007 0.017 0.844 0.212 (0.017) −0.003 0.018 0.948
α = 1 0.798 (−) −0.202 0.357 − 1.097 (0.611) 0.097 0.608 0.930

β0 = 0.9 0.758 (0.259) −0.142 0.374 0.808 0.968 (0.490) 0.068 0.487 0.962
β1 = −0.6 −0.582 (0.239) 0.018 0.244 0.940 −0.615 (0.280) −0.015 0.283 0.932
β2 = −0.1 −0.095 (0.022) 0.005 0.024 0.924 −0.105 (0.029) −0.005 0.029 0.962
γ1 = 1 1.019 (0.194) 0.019 0.207 0.944 1.020 (0.192) 0.020 0.200 0.940
γ2 = −0.2 −0.208 (0.021) −0.008 0.023 0.928 −0.203 (0.024) −0.003 0.024 0.962
λ = 0.316 0.309 (0.023) −0.007 0.025 0.904 0.310 (0.025) −0.006 0.026 0.936
α = 1 0.772 (−) −0.228 0.386 − 1.041 (0.596) 0.041 0.571 0.970
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Figure 4.1. Profile likelihood plot for the transformation parameter α, ψ = ψ1.

of the observed log-likelihood function using the “optim()” function in R. For this

comparison, we use two different methods for selecting initial parameter estimates:

• IV = IV1 : For a given parameter Γ, take 20% deviation off its true value and

create the interval (Γ− 0.2|Γ|,Γ+ 0.2|Γ|). Then, randomly sample a value from

this interval as the initial value.

• IV = IV2 : For a given parameter Γ, ensure a 50%− 75% deviation off its true

value by creating intervals (Γ− 0.75|Γ|,Γ− 0.5|Γ|) and (Γ + 0.5|Γ|,Γ + 0.75|Γ|)

then randomly sampling a value from the union of these intervals as the initial

value.

We restrict the selection of initial value of α to values that fall in the interval of

interest, [0,1], by sampling from the intersection of the interval of interest and the

intervals constructed using one of the methods described above.
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4.4.3.1 Simultaneous maximization of all parameters

To address the value of the proposed estimation method, we compare the

preferred implementation of the EM algorithm, EM-SM, with the direct maximization

of the observed log-likelihood function using the “optim()” function in R to maximize

all parameters simultaneously (DM-SM).

Tables 4.6, 4.7, 4.8, and 4.9 present the simulation results using both EM-SM

and DM-SM techniques for all considered parameter settings and n = 200. We first

note that in all settings, both estimation methods perform well with regard to biases,

SEs, RMSEs, and coverage probabilities of estimates, with corresponding statistics

produced by both methods differing by only a matter of hundredths in the vast

majority of instances. Both approaches produce empirical coverage probabilities that

are close to the nominal level in all settings. Even when the initial values deviate

significantly from the true parameter values, as is the case when IV = IV2, the

estimates retain a comparable level of accuracy and efficiency to estimates produced

using initial values that are closer to the true parameter values.

To further discriminate between the performance of the two methods, we

compare the maximized log-likelihood values. For each parameter setting, Table 4.10

presents the average maximized log-likelihood values (l̂ obs) as well as the proportion

of runs in which a given estimation method produced the greater maximized log-

likelihood value (Pmax). We note that this comparison can be made equitably since,

for each parameter setting, the same 250 datasets and initial values were used in

applying both estimation methods. It can be seen that for all parameter settings,

the value of l̂ obs produced using the EM algorithm is greater than the corresponding

value using DM-produced estimates. Further, for all parameter settings, the EM

algorithm produced a greater maximized observed log-likelihood at least 98% of the
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time. Because the EM algorithm produces comparable estimates with regards to

accuracy and efficiency and consistently produces a greater value of the maximized

log-likelihood function as compared to direct optimization, we prefer the proposed

EM algorithm for the BCT cure model with interval-censored data.

4.4.3.2 Profile likelihood estimation of α

While the EM-SM estimation method is demonstrated to perform well in

the specified parameter settings, we acknowledge that the true parameter settings

encountered in real data can assume many forms. Because flatness of the likelihood

with respect to transformation parameter α may cause difficulties implementing

estimation algorithms using simultaneous maximization of all parameters, it is valuable

to examine the performance of estimation methods which use profile likelihood to

estimate α. Consequently, we compare the performance of the proposed EM algorithm

using profile likelihood, EM-PL, to direct maximization of the observed log-likelihood

function with a profile likelihood estimation of α (DM-PL) using the “optim()”

function in R.

Tables 4.11, 4.12, 4.13, and 4.14 present the simulation results using both

EM-PL and DM-PL techniques for all considered parameter settings and n = 200.

In all settings, both estimation methods perform well with regard to biases, SEs,

and RMSEs, with corresponding statistics produced by both methods differing by

a matter of hundredths in all instances. The empirical coverage probabilities are

below the nominal level in most cases, likely due to the underestimation of SEs and

RMSEs resulting from treating α as fixed. Even when the initial values deviate

more drastically from the true parameter values, as is the case when IV = IV2, the

estimates retain a comparable level of accuracy and efficiency to estimates produced

using initial values that are closer to the true parameter values.
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Table 4.6. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ1 and IV = IV1

EM-SM DM-SM

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.2 0.324 (0.319) 0.124 0.388 0.968 0.320 (0.319) 0.120 0.375 0.972
β1 = −1.4 −1.569 (0.425) −0.169 0.506 0.960 −1.559 (0.423) −0.159 0.481 0.968
β2 = 0.1 0.109 (0.032) 0.009 0.037 0.952 0.109 (0.032) 0.009 0.036 0.952
γ1 = −1.2 −1.280 (0.383) −0.080 0.396 0.928 −1.272 (0.387) −0.072 0.381 0.940
γ2 = 0.05 0.058 (0.032) 0.008 0.035 0.936 0.058 (0.032) 0.008 0.034 0.948
λ = 0.215 0.211 (0.020) −0.004 0.021 0.924 0.211 (0.020) −0.004 0.021 0.928
α = 0 0.083 (0.197) 0.083 0.263 0.988 0.078 (0.200) 0.078 0.256 0.988

β0 = 0.2 0.283 (0.498) 0.083 0.555 0.880 0.279 (0.533) 0.079 0.526 0.904
β1 = −1.4 −1.545 (0.564) −0.145 0.638 0.936 −1.546 (0.596) −0.146 0.603 0.960
β2 = 0.1 0.108 (0.044) 0.008 0.048 0.924 0.109 (0.045) 0.009 0.047 0.952
γ1 = −1.2 −1.192 (0.305) 0.008 0.307 0.940 −1.195 (0.310) 0.005 0.297 0.944
γ2 = 0.05 0.049 (0.029) −0.001 0.030 0.908 0.050 (0.031) 0.000 0.028 0.940
λ = 0.215 0.211 (0.023) −0.004 0.023 0.928 0.211 (0.023) −0.004 0.023 0.944
α = 0.5 0.567 (0.550) 0.067 0.596 0.876 0.572 (0.600) 0.072 0.544 0.924

β0 = 0.2 0.284 (0.554) 0.084 0.581 0.900 0.283 (0.565) 0.083 0.556 0.924
β1 = −1.4 −1.548 (0.594) −0.148 0.648 0.952 −1.542 (0.603) −0.142 0.611 0.964
β2 = 0.1 0.111 (0.048) 0.011 0.052 0.948 0.111 (0.049) 0.011 0.050 0.952
γ1 = −1.2 −1.230 (0.287) −0.030 0.275 0.956 −1.232 (0.287) −0.032 0.271 0.952
γ2 = 0.05 0.053 (0.028) 0.003 0.029 0.908 0.054 (0.028) 0.004 0.028 0.916
λ = 0.215 0.210 (0.023) −0.005 0.023 0.944 0.210 (0.023) −0.005 0.023 0.944
α = 0.75 0.848 (0.700) 0.098 0.726 0.920 0.858 (0.728) 0.108 0.683 0.928

β0 = 0.2 0.305 (0.592) 0.105 0.597 0.916 0.266 (0.604) 0.066 0.550 0.924
β1 = −1.4 −1.537 (0.620) −0.137 0.663 0.932 −1.499 (0.630) −0.099 0.611 0.952
β2 = 0.1 0.111 (0.053) 0.011 0.061 0.940 0.108 (0.053) 0.008 0.056 0.952
γ1 = −1.2 −1.246 (0.278) −0.046 0.293 0.956 −1.243 (0.283) −0.043 0.292 0.948
γ2 = 0.05 0.053 (0.027) 0.003 0.028 0.912 0.052 (0.028) 0.002 0.026 0.948
λ = 0.215 0.211 (0.024) −0.004 0.025 0.912 0.211 (0.024) −0.004 0.025 0.916
α = 1 1.187 (0.870) 0.187 0.921 0.932 1.127 (0.898) 0.127 0.824 0.932
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Table 4.7. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ2 and IV = IV1

EM-SM DM-SM

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.9 1.018 (0.588) 0.118 0.565 0.980 1.025 (0.592) 0.125 0.516 0.988
β1 = −0.6 −0.651 (0.310) −0.051 0.296 0.968 −0.652 (0.312) −0.052 0.290 0.972
β2 = −0.1 −0.108 (0.035) −0.008 0.034 0.960 −0.108 (0.035) −0.008 0.032 0.984
γ1 = 1 1.069 (0.281) 0.069 0.319 0.932 1.063 (0.280) 0.063 0.307 0.936
γ2 = −0.2 −0.207 (0.031) −0.007 0.034 0.940 −0.206 (0.031) −0.006 0.033 0.936
λ = 0.316 0.306 (0.033) −0.010 0.035 0.908 0.306 (0.033) −0.010 0.035 0.904
α = 0 0.023 (0.435) 0.023 0.402 0.980 0.042 (0.435) 0.042 0.361 0.984

β0 = 0.9 1.010 (0.662) 0.110 0.660 0.952 0.993 (0.662) 0.093 0.591 0.956
β1 = −0.6 −0.658 (0.362) −0.058 0.367 0.928 −0.651 (0.361) −0.051 0.350 0.944
β2 = −0.1 −0.106 (0.038) −0.006 0.038 0.940 −0.105 (0.038) −0.005 0.036 0.952
γ1 = 1 1.034 (0.277) 0.034 0.282 0.944 1.034 (0.276) 0.034 0.282 0.944
γ2 = −0.2 −0.205 (0.033) −0.005 0.032 0.968 −0.205 (0.033) −0.005 0.031 0.964
λ = 0.316 0.308 (0.034) −0.008 0.032 0.960 0.308 (0.034) −0.008 0.032 0.960
α = 0.5 0.528 (0.669) 0.028 0.687 0.988 0.528 (0.666) 0.028 0.600 0.988

β0 = 0.9 1.019 (0.693) 0.119 0.765 0.944 1.016 (0.693) 0.116 0.671 0.968
β1 = −0.6 −0.611 (0.386) −0.011 0.409 0.944 −0.606 (0.388) −0.006 0.394 0.968
β2 = −0.1 −0.109 (0.041) −0.009 0.047 0.924 −0.109 (0.041) −0.009 0.044 0.944
γ1 = 1 1.078 (0.280) 0.078 0.304 0.936 1.067 (0.279) 0.067 0.295 0.936
γ2 = −0.2 −0.207 (0.034) −0.007 0.034 0.956 −0.206 (0.034) −0.006 0.032 0.952
λ = 0.316 0.305 (0.034) −0.011 0.034 0.956 0.306 (0.035) −0.010 0.033 0.956
α = 0.75 0.828 (0.802) 0.078 0.849 0.964 0.861 (0.791) 0.111 0.716 0.976

β0 = 0.9 1.022 (0.716) 0.122 0.768 0.956 1.016 (0.718) 0.116 0.691 0.976
β1 = −0.6 −0.651 (0.411) −0.051 0.410 0.972 −0.655 (0.411) −0.055 0.401 0.960
β2 = −0.1 −0.108 (0.042) −0.008 0.046 0.932 −0.107 (0.042) −0.007 0.043 0.956
γ1 = 1 1.056 (0.282) 0.056 0.326 0.928 1.051 (0.281) 0.051 0.323 0.936
γ2 = −0.2 −0.207 (0.035) −0.007 0.037 0.964 −0.206 (0.034) −0.006 0.037 0.968
λ = 0.316 0.309 (0.035) −0.007 0.036 0.920 0.310 (0.035) −0.006 0.037 0.932
α = 1 1.034 (0.884) 0.034 0.916 0.956 1.037 (0.881) 0.037 0.778 0.972
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Table 4.8. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ1 and IV = IV2

EM-SM DM-SM

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.2 0.359 (0.337) 0.159 0.488 0.956 0.373 (0.373) 0.173 0.476 0.964
β1 = −1.4 −1.627 (0.445) −0.227 0.568 0.976 −1.648 (0.475) −0.248 0.541 0.980
β2 = 0.1 0.110 (0.033) 0.010 0.034 0.992 0.112 (0.034) 0.012 0.035 0.972
γ1 = −1.2 −1.222 (0.382) −0.022 0.389 0.932 −1.210 (0.396) −0.010 0.394 0.932
γ2 = 0.05 0.058 (0.032) 0.008 0.035 0.936 0.058 (0.034) 0.008 0.037 0.908
λ = 0.215 0.212 (0.021) −0.003 0.020 0.940 0.214 (0.021) −0.001 0.021 0.956
α = 0 0.103 (0.203) 0.103 0.318 0.984 0.121 (0.237) 0.121 0.313 0.984

β0 = 0.2 0.103 (0.203) 0.103 0.318 0.984 0.121 (0.237) 0.121 0.313 0.984
β1 = −1.4 −1.541 (0.574) −0.141 0.580 0.944 −1.596 (0.635) −0.196 0.569 0.976
β2 = 0.1 0.114 (0.046) 0.014 0.050 0.960 0.118 (0.054) 0.018 0.052 0.972
γ1 = −1.2 −1.234 (0.299) −0.034 0.296 0.976 −1.245 (0.299) −0.045 0.290 0.964
γ2 = 0.05 0.054 (0.029) 0.004 0.030 0.892 0.058 (0.031) 0.008 0.029 0.916
λ = 0.215 0.208 (0.022) −0.007 0.023 0.928 0.211 (0.024) −0.004 0.022 0.932
α = 0.5 0.641 (0.583) 0.141 0.623 0.908 0.739 (0.699) 0.239 0.642 0.952

β0 = 0.2 0.291 (0.554) 0.091 0.542 0.936 0.343 (0.607) 0.143 0.524 0.952
β1 = −1.4 −1.511 (0.586) −0.111 0.595 0.940 −1.559 (0.628) −0.159 0.583 0.976
β2 = 0.1 0.108 (0.047) 0.008 0.049 0.952 0.112 (0.051) 0.012 0.049 0.960
γ1 = −1.2 −1.220 (0.283) −0.020 0.309 0.928 −1.238 (0.281) −0.038 0.303 0.924
γ2 = 0.05 0.052 (0.027) 0.002 0.028 0.932 0.056 (0.028) 0.006 0.028 0.932
λ = 0.215 0.208 (0.023) −0.007 0.025 0.908 0.211 (0.024) −0.004 0.025 0.932
α = 0.75 0.872 (0.709) 0.122 0.783 0.892 0.988 (0.801) 0.238 0.769 0.932

β0 = 0.2 0.301 (0.584) 0.101 0.670 0.908 0.235 (0.611) 0.035 0.624 0.908
β1 = −1.4 −1.553 (0.614) −0.153 0.753 0.884 −1.492 (0.631) −0.092 0.714 0.900
β2 = 0.1 0.109 (0.051) 0.009 0.058 0.936 0.106 (0.054) 0.006 0.053 0.940
γ1 = −1.2 −1.219 (0.284) −0.019 0.296 0.948 −1.216 (0.291) −0.016 0.284 0.960
γ2 = 0.05 0.051 (0.027) 0.001 0.030 0.900 0.049 (0.030) −0.001 0.028 0.920
λ = 0.215 0.206 (0.023) −0.009 0.027 0.900 0.206 (0.025) −0.009 0.025 0.920
α = 1 1.079 (0.834) 0.079 0.971 0.904 1.010 (0.955) 0.010 0.853 0.928
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Table 4.9. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ2 and IV = IV2

EM-SM DM-SM

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.9 0.967 (0.581) 0.067 0.579 0.980 0.989 (0.588) 0.089 0.557 0.984
β1 = −0.6 −0.631 (0.305) −0.031 0.299 0.948 −0.631 (0.306) −0.031 0.295 0.940
β2 = −0.1 −0.105 (0.035) −0.005 0.034 0.952 −0.106 (0.035) −0.006 0.034 0.960
γ1 = 1 1.039 (0.283) 0.039 0.291 0.948 1.041 (0.281) 0.041 0.301 0.944
γ2 = −0.2 −0.209 (0.032) −0.009 0.031 0.960 −0.207 (0.032) −0.007 0.033 0.952
λ = 0.316 0.305 (0.033) −0.011 0.034 0.920 0.307 (0.033) −0.009 0.036 0.904
α = 0 0.021 (0.447) 0.021 0.408 0.972 0.053 (0.460) 0.053 0.392 0.976

β0 = 0.9 0.963 (0.660) 0.063 0.659 0.960 1.021 (0.677) 0.121 0.588 0.972
β1 = −0.6 −0.648 (0.362) −0.048 0.356 0.956 −0.655 (0.371) −0.055 0.355 0.948
β2 = −0.1 −0.104 (0.038) −0.004 0.040 0.932 −0.106 (0.039) −0.006 0.038 0.944
γ1 = 1 1.046 (0.279) 0.046 0.269 0.976 1.043 (0.277) 0.043 0.274 0.964
γ2 = −0.2 −0.207 (0.034) −0.007 0.033 0.972 −0.204 (0.033) −0.004 0.031 0.976
λ = 0.316 0.306 (0.034) −0.010 0.033 0.948 0.308 (0.034) −0.008 0.032 0.952
α = 0.5 0.522 (0.690) 0.022 0.720 0.980 0.622 (0.709) 0.122 0.616 0.992

β0 = 0.9 1.022 (0.678) 0.122 0.705 0.956 1.070 (0.691) 0.170 0.624 0.972
β1 = −0.6 −0.625 (0.384) −0.025 0.426 0.936 −0.624 (0.395) −0.024 0.425 0.936
β2 = −0.1 −0.107 (0.040) −0.007 0.042 0.940 −0.109 (0.041) −0.009 0.039 0.968
γ1 = 1 1.020 (0.277) 0.020 0.296 0.940 1.021 (0.276) 0.021 0.296 0.944
γ2 = −0.2 −0.204 (0.033) −0.004 0.033 0.948 −0.201 (0.033) −0.001 0.032 0.944
λ = 0.316 0.307 (0.034) −0.009 0.039 0.900 0.309 (0.034) −0.007 0.038 0.916
α = 0.75 0.837 (0.766) 0.087 0.814 0.960 0.931 (0.787) 0.181 0.684 0.972

β0 = 0.9 1.005 (0.720) 0.105 0.761 0.948 0.865 (0.716) −0.035 0.594 0.992
β1 = −0.6 −0.641 (0.408) −0.041 0.397 0.960 −0.616 (0.398) −0.016 0.380 0.960
β2 = −0.1 −0.109 (0.043) −0.009 0.042 0.956 −0.102 (0.042) −0.002 0.036 0.960
γ1 = 1 1.060 (0.283) 0.060 0.294 0.944 1.044 (0.285) 0.044 0.295 0.944
γ2 = −0.2 −0.208 (0.035) −0.008 0.037 0.932 −0.210 (0.035) −0.010 0.037 0.944
λ = 0.316 0.307 (0.035) −0.009 0.038 0.892 0.306 (0.035) −0.010 0.038 0.900
α = 1 1.016 (0.892) 0.016 0.982 0.964 0.873 (0.898) −0.127 0.687 0.984
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Table 4.10. Comparison of maximized observed log-likelihood values

IV = IV1 IV = IV2

EM-SM DM-SM EM-SM DM-SM

l̂ obs Pmax l̂ obs Pmax l̂ obs Pmax l̂ obs Pmax

ψ = ψ1 α = 0 -197.60 0.98 -197.67 0.02 -196.14 0.99 -196.57 0.01
α = 0.5 -214.56 0.99 -214.64 0.01 -212.44 1 -212.80 0
α = 0.75 -213.99 1 -214.06 0 -213.73 1 -214.09 0
α = 1 -214.88 0.98 -214.97 0.02 -212.55 1 -213.03 0

ψ = ψ2 α = 0 -224.68 0.98 -224.77 0.02 -226.18 0.99 -226.62 0.01
α = 0.5 -216.63 0.98 -216.74 0.02 -215.20 1 -215.63 0
α = 0.75 -209.60 0.99 -209.74 0.01 -211.26 1 -211.60 0
α = 1 -204.38 0.98 -204.52 0.02 -203.34 0.98 -203.71 0.02

We further compare the performance of the two methods by comparing the

resulting maximized log-likelihood values after the same 250 datasets and initial

values were used with both estimation methods. For each parameter setting, Table

4.15 presents the average maximized log-likelihood values (l̂ obs) as well as the pro-

portion of runs in which a given estimation method produced the greater maximized

log-likelihood value (Pmax). In all cases, the value of l̂ obs produced using the EM-PL

method is greater than the corresponding value using DM-PL-produced estimates.

The EM-PL technique also produced a greater maximized observed log-likelihood in

all settings, with the difference in proportions Pmax being more pronounced when the

initial values deviate more from the true parameter values. The EM-PL technique

produced comparable estimates with regards to accuracy and efficiency and consis-

tently produces a greater value of the maximized log-likelihood function as compared

to the DM-SM technique. We note that the EM-SM method is the preferred method
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according to the analysis in Section 4.4.2, however if computational difficulties arise

in implementation, the EM-PL method is shown to be a viable option.

4.5 Illustration using data from a smoking cessation study

In this section, we demonstrate the performance of the preferred EM algorithm

(EM-SM) using a real data on smoking cessation. The study consists of 223 subjects

who attempted to quit smoking at least once during the study period of November

1986 to February 1989. A full description of the data may be found in Murray et al.

[62]. Subjects were randomly assigned to either a smoking intervention (SI) group

(treatment group) or a usual care (UC) group (control group), which received no

intervention, at time of enrollment. Annual monitoring was conducted for a follow-up

period of 5 consecutive years, with the event of interest being whether subjects resume

smoking or not (relapse). The data consists of 65 (45 for SI and 20 for UC) out of

223 (169 for SI and 54 for UC) subjects experiencing relapse. Available covariates

for each subject are gender (GEN, 1:Female and 0:Male), treatment group, years

smoking (DUR), and average number of cigarettes smoked daily prior to attempting

to quit smoking. To mimic the covariate configuration in Section 4.2 we consider

GEN (x1) and DUR (x2) as covariates of interest. Kaplan-Meier curves stratified by

GEN, as shown in Figure 2.1, level off to non-zero proportions which supports the

presence of a cure component in the data. While the stratified Kaplan-Meier curves

intersect in the initial stage of the study (t < 1), the shapes of the curves convey a

similar relationship between gender and long term survival.

To apply the algorithm, we first select initial values for the parameters by using

a grid-search method and selecting the set of values which maximize the log-likelihood

function as initial values. Since the computational time of a grid search grows

exponentially with the inclusion of additional parameters, we fix values of α = 0.5
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Table 4.11. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ1 and IV = IV1

EM-PL DM-PL

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.2 0.311 (0.250) 0.111 0.445 0.896 0.310 (0.250) 0.110 0.435 0.896
β1 = −1.4 −1.645 (0.302) −0.245 0.561 0.852 −1.645 (0.303) −0.245 0.553 0.848
β2 = 0.1 0.116 (0.026) 0.016 0.035 0.932 0.116 (0.026) 0.016 0.034 0.928
γ1 = −1.2 −1.294 (0.340) −0.094 0.393 0.920 −1.296 (0.339) −0.096 0.390 0.920
γ2 = 0.05 0.059 (0.023) 0.009 0.033 0.816 0.060 (0.023) 0.010 0.033 0.824
λ = 0.215 0.212 (0.019) −0.003 0.020 0.932 0.212 (0.019) −0.003 0.020 0.932
α = 0 0.112 (−) 0.112 0.248 − 0.112 (−) 0.112 0.240 −

β0 = 0.2 0.247 (0.319) 0.047 0.447 0.852 0.244 (0.319) 0.044 0.435 0.868
β1 = −1.4 −1.458 (0.319) −0.058 0.482 0.792 −1.455 (0.318) −0.055 0.468 0.800
β2 = 0.1 0.101 (0.028) 0.001 0.036 0.892 0.101 (0.028) 0.001 0.036 0.900
γ1 = −1.2 −1.215 (0.275) −0.015 0.312 0.924 −1.212 (0.275) −0.012 0.308 0.936
γ2 = 0.05 0.049 (0.014) −0.001 0.025 0.716 0.049 (0.014) −0.001 0.024 0.724
λ = 0.215 0.210 (0.019) −0.005 0.022 0.888 0.210 (0.019) −0.005 0.022 0.892
α = 0.5 0.487 (−) −0.013 0.396 − 0.487 (−) −0.013 0.385 −

β0 = 0.2 0.117 (0.331) −0.083 0.437 0.832 0.119 (0.332) −0.081 0.430 0.836
β1 = −1.4 −1.377 (0.323) 0.023 0.435 0.832 −1.379 (0.323) 0.021 0.428 0.836
β2 = 0.1 0.100 (0.029) 0.000 0.037 0.840 0.100 (0.029) 0.000 0.037 0.840
γ1 = −1.2 −1.211 (0.272) −0.011 0.305 0.932 −1.208 (0.272) −0.008 0.306 0.928
γ2 = 0.05 0.045 (0.013) −0.005 0.022 0.820 0.045 (0.013) −0.005 0.021 0.828
λ = 0.215 0.206 (0.019) −0.009 0.024 0.868 0.206 (0.019) −0.009 0.023 0.872
α = 0.75 0.612 (−) −0.138 0.416 − 0.616 (−) −0.134 0.403 −

β0 = 0.2 0.021 (0.339) −0.179 0.431 0.840 0.024 (0.339) −0.176 0.428 0.852
β1 = −1.4 −1.258 (0.323) 0.142 0.391 0.848 −1.258 (0.323) 0.142 0.386 0.860
β2 = 0.1 0.092 (0.029) −0.008 0.034 0.884 0.092 (0.029) −0.008 0.033 0.888
γ1 = −1.2 −1.193 (0.271) 0.007 0.278 0.960 −1.193 (0.271) 0.007 0.275 0.960
γ2 = 0.05 0.041 (0.013) −0.009 0.022 0.768 0.042 (0.013) −0.008 0.021 0.768
λ = 0.215 0.207 (0.020) −0.008 0.022 0.900 0.207 (0.020) −0.008 0.022 0.900
α = 1 0.700 (−) −0.300 0.496 − 0.705 (−) −0.295 0.478 −
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Table 4.12. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ2 and IV = IV1

EM-PL DM-PL

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.9 1.156 (0.275) 0.256 0.507 0.792 1.157 (0.275) 0.257 0.506 0.796
β1 = −0.6 −0.689 (0.268) −0.089 0.306 0.944 −0.689 (0.268) −0.089 0.308 0.940
β2 = −0.1 −0.113 (0.025) −0.013 0.033 0.924 −0.113 (0.025) −0.013 0.033 0.920
γ1 = 1 1.024 (0.271) 0.024 0.294 0.940 1.026 (0.271) 0.026 0.296 0.940
γ2 = −0.2 −0.198 (0.026) 0.002 0.028 0.952 −0.199 (0.026) 0.001 0.028 0.944
λ = 0.316 0.315 (0.031) −0.001 0.032 0.940 0.315 (0.030) −0.001 0.032 0.940
α = 0 0.172 (−) 0.172 0.297 − 0.173 (−) 0.173 0.293 −

β0 = 0.9 1.052 (0.343) 0.152 0.571 0.792 1.041 (0.341) 0.141 0.557 0.804
β1 = −0.6 −0.677 (0.317) −0.077 0.374 0.928 −0.672 (0.316) −0.072 0.368 0.928
β2 = −0.1 −0.109 (0.029) −0.009 0.036 0.904 −0.109 (0.029) −0.009 0.036 0.904
γ1 = 1 1.068 (0.273) 0.068 0.314 0.936 1.071 (0.273) 0.071 0.317 0.936
γ2 = −0.2 −0.207 (0.028) −0.007 0.031 0.936 −0.208 (0.028) −0.008 0.032 0.928
λ = 0.316 0.306 (0.031) −0.010 0.033 0.924 0.306 (0.031) −0.010 0.033 0.920
α = 0.5 0.541 (−) 0.041 0.392 − 0.533 (−) 0.033 0.379 −

β0 = 0.9 0.853 (0.348) −0.047 0.463 0.836 0.850 (0.348) −0.050 0.454 0.860
β1 = −0.6 −0.620 (0.325) −0.020 0.354 0.928 −0.618 (0.325) −0.018 0.352 0.924
β2 = −0.1 −0.099 (0.030) 0.001 0.032 0.924 −0.099 (0.030) 0.001 0.032 0.920
γ1 = 1 1.051 (0.274) 0.051 0.279 0.952 1.053 (0.274) 0.053 0.277 0.948
γ2 = −0.2 −0.207 (0.029) −0.007 0.033 0.932 −0.207 (0.029) −0.007 0.033 0.928
λ = 0.316 0.308 (0.032) −0.008 0.033 0.920 0.308 (0.032) −0.008 0.034 0.912
α = 0.75 0.623 (−) −0.127 0.419 − 0.623 (−) −0.127 0.409 −

β0 = 0.9 0.801 (0.364) −0.099 0.479 0.828 0.796 (0.363) −0.104 0.471 0.844
β1 = −0.6 −0.569 (0.338) 0.031 0.365 0.932 −0.567 (0.337) 0.033 0.361 0.932
β2 = −0.1 −0.099 (0.031) 0.001 0.035 0.920 −0.099 (0.031) 0.001 0.035 0.912
γ1 = 1 1.011 (0.277) 0.011 0.304 0.952 1.011 (0.277) 0.011 0.306 0.952
γ2 = −0.2 −0.210 (0.030) −0.010 0.034 0.928 −0.210 (0.030) −0.010 0.034 0.932
λ = 0.316 0.305 (0.032) −0.011 0.035 0.920 0.305 (0.032) −0.011 0.035 0.912
α = 1 0.738 (−) −0.262 0.448 − 0.732 (−) −0.268 0.438 −
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Table 4.13. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ1 and IV = IV2

EM-PL DM-PL

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.2 0.342 (0.266) 0.142 0.544 0.900 0.381 (0.268) 0.181 0.537 0.896
β1 = −1.4 −1.652 (0.316) −0.252 0.574 0.872 −1.692 (0.318) −0.292 0.587 0.872
β2 = 0.1 0.115 (0.026) 0.015 0.033 0.920 0.117 (0.027) 0.017 0.035 0.912
γ1 = −1.2 −1.321 (0.343) −0.121 0.410 0.872 −1.350 (0.335) −0.150 0.433 0.848
γ2 = 0.05 0.062 (0.023) 0.012 0.035 0.808 0.066 (0.022) 0.016 0.039 0.740
λ = 0.215 0.212 (0.019) −0.003 0.022 0.912 0.214 (0.019) −0.001 0.021 0.920
α = 0 0.107 (−) 0.107 0.240 − 0.142 (−) 0.142 0.264 −

β0 = 0.2 0.183 (0.313) −0.017 0.398 0.872 0.179 (0.313) −0.021 0.390 0.864
β1 = −1.4 −1.435 (0.315) −0.035 0.415 0.892 −1.437 (0.316) −0.037 0.400 0.908
β2 = 0.1 0.105 (0.028) 0.005 0.036 0.876 0.105 (0.028) 0.005 0.036 0.900
γ1 = −1.2 −1.211 (0.275) −0.011 0.338 0.900 −1.211 (0.274) −0.011 0.335 0.908
γ2 = 0.05 0.049 (0.014) −0.001 0.026 0.724 0.049 (0.014) −0.001 0.025 0.732
λ = 0.215 0.209 (0.019) −0.006 0.021 0.904 0.210 (0.019) −0.005 0.021 0.908
α = 0.5 0.484 (−) −0.016 0.380 − 0.487 (−) −0.013 0.351 −

β0 = 0.2 0.206 (0.311) 0.006 0.404 0.872 0.207 (0.313) 0.007 0.398 0.856
β1 = −1.4 −1.404 (0.311) −0.004 0.429 0.832 −1.411 (0.313) −0.011 0.423 0.840
β2 = 0.1 0.100 (0.027) 0.000 0.035 0.856 0.101 (0.028) 0.001 0.035 0.880
γ1 = −1.2 −1.203 (0.275) −0.003 0.311 0.940 −1.210 (0.274) −0.010 0.307 0.936
γ2 = 0.05 0.047 (0.014) −0.003 0.024 0.748 0.048 (0.014) −0.002 0.023 0.764
λ = 0.215 0.208 (0.019) −0.007 0.022 0.900 0.209 (0.019) −0.006 0.021 0.900
α = 0.75 0.457 (−) −0.293 0.483 − 0.471 (−) −0.279 0.451 −

β0 = 0.2 0.026 (0.340) −0.174 0.434 0.824 0.014 (0.336) −0.186 0.422 0.852
β1 = −1.4 −1.275 (0.324) 0.125 0.397 0.828 −1.259 (0.320) 0.141 0.387 0.828
β2 = 0.1 0.094 (0.029) −0.006 0.036 0.840 0.093 (0.029) −0.007 0.036 0.864
γ1 = −1.2 −1.184 (0.269) 0.016 0.276 0.940 −1.183 (0.270) 0.017 0.274 0.944
γ2 = 0.05 0.040 (0.013) −0.010 0.021 0.784 0.040 (0.013) −0.010 0.020 0.788
λ = 0.215 0.204 (0.019) −0.011 0.024 0.844 0.203 (0.019) −0.012 0.024 0.832
α = 1 0.702 (−) −0.298 0.486 − 0.683 (−) −0.317 0.464 −
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Table 4.14. Estimates, standard errors (SE), bias, root mean square error (RMSE),
and 95% coverage probabilities (95% CP) for ψ = ψ2 and IV = IV2

EM-PL DM-PL

Parameter Estimate (SE) Bias RMSE 95% CP Estimate (SE) Bias RMSE 95% CP

β0 = 0.9 1.145 (0.275) 0.245 0.496 0.812 1.181 (0.282) 0.281 0.508 0.788
β1 = −0.6 −0.689 (0.268) −0.089 0.302 0.936 −0.704 (0.272) −0.104 0.311 0.928
β2 = −0.1 −0.113 (0.025) −0.013 0.034 0.868 −0.114 (0.025) −0.014 0.034 0.868
γ1 = 1 1.047 (0.271) 0.047 0.301 0.924 1.047 (0.270) 0.047 0.303 0.912
γ2 = −0.2 −0.202 (0.026) −0.002 0.028 0.944 −0.201 (0.026) −0.001 0.028 0.924
λ = 0.316 0.313 (0.030) −0.003 0.032 0.904 0.314 (0.030) −0.002 0.032 0.904
α = 0 0.175 (−) 0.175 0.307 − 0.208 (−) 0.208 0.322 −

β0 = 0.9 0.921 (0.325) 0.021 0.472 0.812 0.917 (0.325) 0.017 0.446 0.856
β1 = −0.6 −0.627 (0.308) −0.027 0.361 0.916 −0.620 (0.309) −0.020 0.352 0.924
β2 = −0.1 −0.102 (0.028) −0.002 0.034 0.916 −0.102 (0.029) −0.002 0.033 0.920
γ1 = 1 1.053 (0.276) 0.053 0.278 0.952 1.050 (0.276) 0.050 0.277 0.956
γ2 = −0.2 −0.210 (0.028) −0.010 0.033 0.928 −0.209 (0.028) −0.009 0.032 0.932
λ = 0.316 0.306 (0.031) −0.010 0.035 0.916 0.307 (0.031) −0.009 0.035 0.920
α = 0.5 0.471 (−) −0.029 0.375 − 0.476 (−) −0.024 0.352 −

β0 = 0.9 0.892 (0.357) −0.008 0.461 0.824 0.867 (0.352) −0.033 0.444 0.836
β1 = −0.6 −0.622 (0.329) −0.022 0.354 0.932 −0.610 (0.327) −0.010 0.344 0.936
β2 = −0.1 −0.103 (0.031) −0.003 0.032 0.944 −0.102 (0.030) −0.002 0.032 0.932
γ1 = 1 1.052 (0.276) 0.052 0.281 0.956 1.053 (0.276) 0.053 0.281 0.956
γ2 = −0.2 −0.210 (0.029) −0.010 0.034 0.936 −0.211 (0.029) −0.011 0.035 0.924
λ = 0.316 0.303 (0.032) −0.013 0.038 0.876 0.303 (0.032) −0.013 0.038 0.876
α = 0.75 0.657 (−) −0.343 0.513 − 0.632 (−) −0.368 0.505 −

β0 = 0.9 0.769 (0.360) −0.131 0.494 0.800 0.756 (0.357) −0.144 0.483 0.804
β1 = −0.6 −0.587 (0.333) 0.013 0.336 0.944 −0.585 (0.332) 0.015 0.336 0.944
β2 = −0.1 −0.099 (0.031) 0.001 0.033 0.940 −0.098 (0.031) 0.002 0.034 0.928
γ1 = 1 1.012 (0.277) 0.012 0.293 0.924 1.014 (0.277) 0.014 0.296 0.924
γ2 = −0.2 −0.213 (0.030) −0.013 0.031 0.964 −0.214 (0.030) −0.014 0.032 0.960
λ = 0.316 0.303 (0.032) −0.013 0.033 0.896 0.303 (0.032) −0.013 0.034 0.908
α = 1 0.677 (−) 0.677 0.780 − 0.661 (−) 0.661 0.744 −
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Table 4.15. Comparison of maximized observed log-likelihood values

IV = IV1 IV = IV2

EM-PL DM-PL EM-PL DM-PL

l̂ obs Pmax l̂ obs Pmax l̂ obs Pmax l̂ obs Pmax

ψ = ψ1 α = 0 -196.94 0.70 -196.98 0.30 -195.56 0.91 -195.78 0.09
α = 0.5 -214.12 0.78 -214.14 0.22 -213.90 0.95 -213.98 0.05
α = 0.75 -214.79 0.79 -214.80 0.21 -214.17 0.94 -214.25 0.06
α = 1 -213.81 0.77 -213.82 0.23 -214.78 0.95 -214.86 0.05

ψ = ψ2 α = 0 -227.70 0.75 -227.71 0.25 -226.26 0.97 -226.38 0.03
α = 0.5 -216.26 0.79 -216.29 0.21 -215.51 0.95 -215.59 0.05
α = 0.75 -211.72 0.83 -211.74 0.17 -209.51 0.97 -209.60 0.03
α = 1 -206.99 0.90 -207.01 0.10 -205.34 0.97 -205.42 0.03
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Figure 4.2. Kaplan-Meier plot of survival curves stratified by gender.

and λ = 0.5 then use a five-fold grid search to identify initial values of the remaining

parameters. The grid for all parameters is chosen as {−1,−0.9, ...0.9, 1}, and the

set of values which maximize the log-likelihood function is found to be interior to

the boundary. We proceed with parameter estimation by applying both the EM-SM

algorithm, which encompasses the general case where α ϵ (0, 1] and performing the
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EM-PL for only α = 0. To discriminate between these two sets of estimates we

compare the log-likelihood function values and select the set which produces the

greater maximized log-likelihood function, corresponding to α = 0, as the optimal

estimates. We note that this decision is supported by a test of hypothesis [76, 84].

For the likelihood-ratio test (H0 : α = 0 vs Ha : 0 < α ≤ 1), the likelihood-ratio test

statistic (Λ) turned out to be approximately equal to 0. Because H0 : α = 0 lies

on the boundary of the parameter space, the null distribution of (Λ) is such that

P [Λ ≤ λ] = 0.5 + 0.5P [χ2
1 ≤ λ], where χ2

1 denotes a chi-square variable with one

degree of freedom. The resultant p-value is approximately 0.5 and hence we do not

reject the assumption of α = 0, i.e. a promotion time cure model, for the data. The

subsequent analyses report parameter estimates corresponding to the preferred model

when α = 0.

Table 4.16 presents the estimates and standard errors of the parameters, as

well as p-values and 95% asymptotic confidence intervals. While the positive sign

of the estimates corresponding to covariate GEN, β1 and γ1, agree with both the

stratified Kaplan-Meier plot in Figure 2.1 and previous findings observing women

as more likely to relapse than men [11], the predictor of GEN fails to be significant

at a 5% level of significance. The estimate of β2 > 0 conveys a decrease in cure rate

for longer term smokers, however this relation fails to be significant at a 5% level

of significance. Regression parameter γ2, relaying the effect of DUR on short-term

survivors, is highly significant with p < 0.001. The effect of γ2 < 0 is a decrease in

survival probability associated with longer duration of smoking, and this result is

consistent with previous analysis [79].

Figure 4.3 shows the predicted survival probabilities for patients with smoking

durations of 18, 31, 35 and 40.9 years, which correspond to the 5th, 50th, 75th, and

95th percentiles, stratified by gender. Note that the survival probability for males is
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Table 4.16. Estimation results for the smoking cessation data

Parameter Estimate Standard error p−value

β0 −1.136 0.599 0.059
β1 0.153 0.305 0.616
β2 0.010 0.024 0.672
γ1 0.272 0.426 0.524
γ2 −0.097 0.015 < 0.001
λ 0.484 0.060 −
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Figure 4.3. Predicted survival probabilities stratified by gender for patients with
different durations of smoking.
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higher across all values of duration. It may be observed that the survival probability

decreases for longer smoking duration by comparing the plots fixing duration at 18

and 40.9 years of smoking. The effect of smoking duration on survival is further

conveyed in Figure 4.4 where the estimated cure rate is shown to decrease in a nearly

linear fashion as duration of smoking increases.
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Figure 4.4. Cure rate against duration of smoking stratified by gender.

We check the adequacy of the promotion time cure model by using the calculated

normalized randomized quantile residuals [32]. Figure 4.5 presents the quantile-

quantile plot, where each point corresponds to the median of five sets of ordered

residuals. The linearity in this plot suggests that the promotion time cure model

with a Weibull baseline provides a good fit to the smoking cessation data. Finally,

the Kolmogorov-Smirnov test for normality of residuals provides strong evidence for

the normality of residuals, with a p-value of 0.9943.
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Figure 4.5. Q-Q plot of the normalized randomized quantile residuals.
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CHAPTER 5

Concluding remarks

5.1 Summary of research

A primary objective in clinical research is to maximize the efficacy of medical

interventions. Favorable response to treatment may result in a subject’s subsequent

immunity to a given disease in which case they are said to be cured, while those

who do not respond favorably remain uncured. The purpose of the clinician is then

to estimate the proportion of patients cured and to examine the causes for failure

of treatment in the uncured patients. Estimating the cure proportion, as well as

understanding the effects of prognostic factors, is important in understanding and

improving trends in the survival of patients suffering from diseases such as cancer.

While the mixture cure rate model is the inaugural survival analysis model to

accommodate a cure component, alternative cure rate models have been developed

to encompass a wider variety of biological applications. The promotion time cure

rate model facilitates modeling the presence of a latent quantity of competing risks,

such as number of metastasis-competent tumor cells, and the destructive cure rate

models allow for modeling the impact of a destructive process, such as chemotherapy,

upon the competing risks. In many clinical applications in which a patient is not

hospitalized, continuous observation is not possible. While these applications produce

interval-censored data, the majority of research on cure rate models assume the

data to be right-censored. In this thesis, we have extended several existing cure

models to accommodate interval censoring. The main contribution of this work is the

development of efficient likelihood-based inference methods for the interval-censored
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cure rate models presented, noting that these methods are of broader utility in

application since the form of interval-censored data encompasses both right- and

left-censored data forms.

We first generalized the destructive shifted Poisson cure rate model to ac-

commodate interval censoring and, motivated by the work of Gallardo et al. [37],

developed likelihood inference based on an implementation of the EM algorithm which

splits the complete log-likelihood function into simpler functions to be maximized

independently. A detailed study was completed examining the performance of the EM

algorithm for this model. Through Monte Carlo simulations, we demonstrated that

the proposed method produces parameter estimates accurately and performs favorably

when compared to direct maximization of the observed log-likelihood function with

respect to both lower incidence of atypical estimates and higher rates of convergence.

In the real data analysis, the proposed algorithm converged to parameter estimates

that were consistent with prior findings.

We then extended the destructive negative binomial cure rate model to ac-

commodate interval censoring. We developed likelihood inference based on two

implementations of the EM algorithm which split the complete log-likelihood function

into simpler functions to be maximized independently, as well as a novel implemen-

tation of the SEM algorithm. Through a Monte Carlo simulation study, we first

demonstrated that the EM-SM algorithm, previously formulated for the DNB model

with right-censored data but not studied through simulation prior to this work, consis-

tently and significantly underestimates ϕ while providing no improvement in accuracy

or efficiency for the parameter settings considered. We showed the proposed SEM

method to perform favorably with simulated data when compared to both variations

of the EM algorithm with respect to parameter recovery. In estimating parameters

that are related to the cure probability (i.e., ϕ,β1,β2), the SEM algorithm provided
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greater accuracy and precision, yielding estimates with smaller biases and smaller

RMSEs than the EM-PL approach. This in turn resulted in more accurate estimates

of the cured probabilities. While standard errors for other parameter estimates were

comparable between the SEM and EM-PL approaches, the coverage probabilities of

the asymptotic confidence intervals produced with the SEM are consistently closer to

the nominal level. For the EM and SEM estimation methods, both the standard error

and RMSE of the estimators of the model parameters decrease with an increase in

sample size. In the real data analysis, we first showed through model discrimination

that both the inclusion of a destructive process and the use of the SEM algorithm

facilitate the greatest maximization of the observed log-likelihood function. Further,

the proposed SEM algorithm produced parameter estimates that are consistent both

with prior findings and with estimates produced by the EM algorithm, and the greater

precision of SEM-produced estimates allowed us to identify the statistical significance

of covariate duration.

Finally, we extended the Box-Cox transformation cure rate model developed by

Yin and Ibrahim [107] to interval-censored data using a semi-parametric framework

for the latency. The EM algorithm for the Box-Cox transformation cure rate model

was formulated in the interval-censored setting followed by an extensive simulation

study examining the performance of the proposed algorithm using both simultaneous

maximization of all parameters and profile likelihood to estimate transformation

parameter α. The EM algorithm with simultaneous maximization, EM-SM, is shown

to be the preferred method, providing comparably accurate and efficient estimates

with added computational advantages. In applying the EM-SM algorithm to a

real smoking-cessation data, we produced results consistent with prior analysis and

illustrated the flexibility of the Box-Cox family of cure rate models in enabling us to

97



carry out a formal test of hypothesis to select the proper model within this family

that provides the best fit for the data.

5.2 Future work

In this section, we explore some of the future research problems that could be

considered as natural extensions of the work carried out in this thesis.

5.2.1 Extend alternative models

A natural continuation of the objective of this work in developing efficient

estimation algorithms for cure rate models under interval censoring will be to generalize

the extension of the interval-censored setting to families of cure rate models; see [48]

and [61]. Within the context of destructive cure rate models, considering a generalized

family of lifetime distributions, for instance, the generalized gamma distribution,

would allow us to perform model discrimination for the lifetime distribution under a

fully parametric setup; see [100].

5.2.2 Semi-parametric and non-parametric approaches

Exploring the performance of the proposed algorithms using semi-parametric or

non-parametric modeling for the lifetimes of susceptibles will provide greater insight

as to the versatility of these estimation methods. Adopting semi-parametric modeling,

such as a piecewise linear approximation for the hazard functions of competing

risks [5] or a piecewise exponential approximation for the progression time of each

competing risk [42], would allow the avoidance of potentially inappropriate parametric

assumptions.
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5.2.3 Alternatives to standard model assumptions

The majority of survival analysis methods rely on the assumption of non-

informative and independent censoring times, however these assumptions are not

always practically appropriate. Relaxing the assumption of non-informative and

independent censoring can help to reduce bias in parameter estimation. We could, for

example, extend the definition of informative censoring used to construct likelihood

inference for the mixture cure rate model [27] to the destructive cure rate or Box-Cox

transformation cure rate model with informative censoring.

5.2.4 Novel estimation methods

The EM algorithm has been used extensively in likelihood inference for cure

rate models due to the presence of latent variable(s). Recently, alternative estimation

methods have been developed incorporating machine learning techniques in the

context of cure models [53, 70, 79]. A non-linear conjugate gradient algorithm was

developed for parameter estimation for the Box-Cox transformation cure model, and

shown to perform better than the existing EM algorithm [82]. It will be of interest to

apply such estimation methods in novel contexts to develop inference for models such

as the interval-censored destructive cure models developed herein.

We hope to report on these problems in future works.
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In this appendix, we present the proofs of the propositions used in Chapters 2 and 3

to construct the EM algorithms for the destructive shifted Poisson cure rate model

and the EM and SEM algorithms for the destructive negative binomial cure rate

model under interval censoring.

A.1 Proofs of the propositions used in Chapters 2

A.1.1 Proof of Proposition 2.2.1

Noting that D|M = m ∼ Bin(m, p) if M > 0 and P (D = 0|M = 0) = 1, the

distribution of D may be derived as

P (D = d; θ, p) =
∞∑

m=d

P (D|M = m)P (M = m)

=
∞∑

m=d

(
m

d

)
pd(1− p)m−d e

−θθm−1

(m− 1)!

=
e−θ(pθ)d

d!θ

∞∑
m=0

m! [θ(1− p)]m−d

(m− d)!(m− 1)!

=
e−θ(pθ)d

d!θ

∞∑
m=0

m [θ(1− p)]m−d

(m− d)!
.

Let t = m− d. Then

P (D = d; θ, p) =
e−θ(pθ)d

d!θ

[
∞∑
t=0

t [θ(1− p)]t

t!
+ d

∞∑
t=0

[θ(1− p)]t

t!

]

=
e−θ(pθ)d

d!θ

[
θ(1− p)

∞∑
t=1

[θ(1− p)]t−1

(t− 1)!
+ d

∞∑
t=0

[θ(1− p)]t

t!

]

=
e−θp(θp)d

d!

[
(1− p) +

d

θ

]
, d = 0, 1, 2, ...,M.

A.1.2 Proof of Proposition 2.2.2

Case 1: δi = 1. Thus lifetime is interval-censored, and (li, ri) = (Yj−1(i), Yj(i)).

f(li, ri, δi|Di = di)
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= f(Yj−1(i), Yj(i), δi = 1|Di = di)

= P [Exactly one of Wa’s has progression time in (Yj−1(i), Yj(i)) and all others > Yj(i)]

=

di∑
a=1

P [Wa has progression time in (Yj−1(i), Yj(i)) and all others > Yj(i)]

=

di∑
a=1

{F (Yj(i))− F (Yj−1(i))}{S(Yj(i))}di−1

= di{F (Yj(i))− F (Yj−1(i))}{S(Yj(i))}di−1.

Case 2: δi = 0. Then the lifetime is right-censored and the subject is either cured or

susceptible. Thus the observed data is (li, ri, δi) = (Yj(i),∞, 0).

a) Suppose the patient is cured. Then Di = 0 and T = W0 = ∞.

f(Yj(i),∞, δi = 0|Di = di = 0) = P (survival past Yj(i) given di = 0)

= P (W0 = ∞)

= 1

= {S(Yj(i))}di

b) Suppose the patient is susceptible. Then di > 0 and T = min{W1, . . . ,Wdi}.

f(Yj(i),∞, δi = 0|Di = di) = P (W1 > Yj(i),W2 > Yj(i), . . . ,Wdi > Yj(i))

= {S(Yj(i))}di .

Hence, when δi = 0, f(Yj(i),∞, δi = 0|Di = di) = {S(Yj(i))}di .

Finally, combining cases 1 and 2, we may write

f(li, ri, δi|Di = di) = f(Yj−1(i), Yj(i), δi|Di = di)

= [di{F (Yj(i))− F (Yj−1(i))}]δi{S(Yj(i))}di−δi

= [di{S(Yj−1(i))− S(Yj(i))}]δi{S(Yj(i))}di−δi .
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A.1.3 Proof of Proposition 2.3.1

Note that

P (Di = di,Mi = mi|Dobs;ψ) =
f(li, ri, δi, di,mi;ψ)

f(li, ri, δi;ψ)
. (A.1)

Using the results of propositions 2.2.1 and 2.2.2,

f(li, ri, δi;ψ) =
∞∑

di=δi

f(li, ri, δi|Di = di)P (Di = di; θi, pi)

=
∞∑

di=δi

[di{S(Yj−1(i))− S(Yj(i))}]δi{S(Yj(i))}di−δi
e−θipi(θipi)

di

di!

[
(1− pi) +

di
θi

]

=

(
S(Yj−1(i))− S(Yj(i))

S(Yj(i))

)δi e−θipi

θi
×

∞∑
di=δi

(θipiS(Yj(i)))
di [θi(1− pi) + di]

(di − δi)!
. (A.2)

Focusing only on the sum term from (A.2),

∞∑
di=δi

(θipiS(Yj(i)))
di [θi(1− pi) + di]

(di − δi)!

= θi(1− pi)
∞∑

di=δi

(θipiS(Yj(i)))
di

(di − δi)!
+

∞∑
di=δi

di(θipiS(Yj(i)))
di

(di − δi)!

=


θi(1− pi)e

θipiS(Yj(i)) + θipiS(Yj(i))e
θipiS(Yj(i)), δi = 0

θ2i pi(1− pi)S(Yj(i))e
θipiS(Yj(i)) + θipiS(Yj(i))e

θipiS(Yj(i))
[
θipi(S(Yj(i)) + 1)

]
, δi = 1

= eθipiS(Yj(i))
[
θi(1− pi)(θipiS(Yj(i)))

δi + θipiS(Yj(i))
(
θipiS(Yj(i)) + δi

)δi] .
Now

f(li, ri, δi;ψ) =

(
S(Yj−1(i))− S(Yj(i))

S(Yj(i))

)δi e−θipi(1−S(Yj(i)))

θi
×[

θi(1− pi)(θipiS(Yj(i)))
δi + θipiS(Yj(i))

(
θipiS(Yj(i)) + δi

)δi]
=

[
θipi(S(Yj−1(i))− S(Yj(i)))

S(Yj(i))

]δi
e−θipi(F (Yj(i)))×
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[
1− pi + piS(Yj(i))

(
1 +

δi
θipiS(Yj(i))

)δi
]

=
[
θipi(S(Yj−1(i))− S(Yj(i)))

]δi e−θipi(F (Yj(i)))

[
1− pi + piS(Yj(i)) +

δi
θi

]
.

Let θ∗i = θi

(
1− piF (Yj(i)) +

δi
θi

)
, p∗i =

1−piF (Yj(i))

1−piF (Yj(i))+
δi
θi

, p+i =
piS(Yj(i))

1−piF (Yj(i))
.

P (Di = di,Mi = mi|Dobs,ψ)

=
[di{S(Yj−1(i))− S(Yj(i))}]δi{S(Y j(i))}di−δi

(
mi

di

)
pdii (1− pi)

mi−die−θi θ
mi−1
i

(mi−1)![
θipi(S(Yj−1(i))− S(Yj(i)))

]δi e−θipi(F (Yj(i)))
[
1− pi + piS(Yj(i)) +

δi
θi

]
=
e−θi(1−piF (Yj(i)))

(mi − δi)!
(θi(1− pi))

mi

(
mi − δi
di − δi

)(
S(Yj(i))pi
1− pi

)di

×

(θipiS(Yj(i)))
−δi

mi

θi

(
1− piF (Yj(i)) +

δi
θi

) . (A.3)

Focusing on the last term in (A.3),

mi

θi

(
1− piF (Yj(i)) +

δi
θi

) =
δi +mi − δi

θi

(
1− piF (Yj(i)) +

δi
θi

)
=
θi

(
1− piF (Yj(i)) +

δi
θi

)
− θi

(
1− piF (Yj(i))

)
+mi − δi

θi

(
1− piF (Yj(i)) +

δi
θi

)
= 1−

1− piF (Yj(i))

1− piF (Yj(i)) +
δi
θi

+
mi − δi

θi

(
1− piF (Yj(i)) +

δi
θi

) .
Now

P (Di = di,Mi = mi|Dobs,ψ) =

(θi(1− pi))
mie−θi(1−piF (Yj(i)))

(mi − δi)!

(
mi − δi
di − δi

)(
S(Yj(i))pi
1− pi

)di

×

(θipiS(Yj(i)))
−δi

1−
1− piF (Yj(i))

1− piF (Yj(i)) +
δi
θi

+
mi − δi

θi

(
1− piF (Yj(i)) +

δi
θi

)
 . (A.4)

Noting that

θ∗i p
∗
i = θi(1− piF (Yj(i))),
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1− p+i =
1− pi

1− piF (Yj(i))
,

(1− p+i )(θ
∗
i p

∗
i ) = θi(1− pi),

p+i θ
∗
i p

∗
i = θipiS(Yj(i)),

we can write (A.4) in equivalent form

P (Di = di,Mi = mi|Dobs;ψ)

=
(θ∗i p

∗
i )

mi−δie−θ∗i p
∗
i

(mi − δi)!

(
1− p∗i +

mi − δi
θ∗

)
︸ ︷︷ ︸

Mi − δi ∼ Pois(θ∗i p
∗
i ) + Bern(p∗i )

(
mi − δi
di − δi

)
(p+i )

di−δi(1− p+i )
mi−di︸ ︷︷ ︸

Di − δi|Mi = mi;Dobs ∼ Bin(mi − δi, p
+
i )

.

A.1.4 Proof of Proposition 2.3.2

Let θ∗i = θi(1− piF (Yj(i)) +
δi
θi
), p∗i =

piS(Yj(i))

1−piF (Yj(i))+
δi
θi

.

Then

P (Di = di|Dobs;ψ) =
f(li, ri, δi, di; θi, pi, ϕ,λ)

f(li, ri, δi; θi, pi, ϕ,λ)

=
f(li, ri, δi|di)P (Di = di; θi, pi)

f(li, ri, δi; θi, pi, ϕ,λ)

=

From Proposition (2.2.2)︷ ︸︸ ︷[
di{S(Yj−1(i);λ)− S(Yj(i))}

]δi S(Y j(i))di−δi e−θipi (θipi)
di

di!

[
(1− pi) +

di
θi

]
[
θipi(S(Yj−1(i))− S(Yj(i)))

]δi e−θipi(F (Yj(i)))
[
1− pi + piS(Yj(i)) +

δi
θi

]
=

[θipiS(Yj(i))]
di−δie−θipiS(Yj(i))

(di − δi)!

(
1− pi +

di
θi

1− piF (Yj(i)) +
δi
θi

)
. (A.5)

Focusing only on the second term in (A.5),

1− pi +
di
θi

1− piF (Yj(i)) +
δi
θi

=
θi − θipi + di

θi

(
1− piF (Yj(i)) +

δi
θi

)
=
θi

(
1− piF (Yj(i)) +

δi
θi

)
− θipi

(
1− piF (Yj(i)) +

δi
θi

)
+ di − δi

θi

(
1− piF (Yj(i)) +

δi
θi

)
=
θ∗i − θ∗i p

∗
i + di − δi
θ∗i
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= 1− p∗i +
di − δi
θ∗i

.

Now (A.5) may be written as

P (Di = di|Dobs;ψ) =
(θ∗i p

∗
i )

di−δie−θ∗i p
∗
i

(di − δi)!

(
1− p∗i +

di − δi
θ∗i

)
. (A.6)

A.2 Proofs of the propositions used in Chapters 3

A.2.1 Proof of Proposition 3.2.1

Selecting η such that η = θ
ϕ(1−θ)

, θ ̸= 1,

Eθ [w(M ;ϕ)] = e−
ϕη

1+ϕη

∞∑
m=0

Γ (m+ ϕ−1)

m!

(
ϕη

1 + ϕη

)m

= e−
ϕη

1+ϕηΓ(ϕ−1)(1 + ϕη)ϕ
−1

.

Hence,

P [M = m;ϕ, θ] =
Γ(m+ ϕ−1)e−θθm

m!Γ(ϕ−1)e−
ϕη

1+ϕη (1 + ϕη)ϕ−1

=
Γ(m+ ϕ−1)

m!Γ(ϕ−1)

(
ϕη

1 + ϕη

)m

(1 + ϕη)−ϕ−1

,m = 0, 1, 2 . . . ,

which is the pmf of a negative binomial distribution with r = ϕ−1 and p = ϕη
1+ϕη

.

A.2.2 Proof of proposition 3.2.2

Noting that D|M = m ∼ Bin(m, p) if m > 0 and P (D = 0|M = 0) = 1,

P (D = d; η, p) =
∞∑

m=d

P (D|M = m)P (M = m)

=
∞∑

m=d

(
m

d

)
pd(1− p)m−dΓ(m+ ϕ−1)

m!Γ(ϕ−1)

(
ϕη

1 + ϕη

)m

(1 + ϕη)−ϕ−1

=
(1 + ϕη)−ϕ−1

(pθ)d

d!Γ(ϕ−1)

∞∑
m=d

Γ(m+ ϕ−1) [θ(1− p)]m−d

(m− d)!
.

Let t = m− d. Then

P (D = d; θ, p) =
(1 + ϕη)−ϕ−1

(pθ)d

d!Γ(ϕ−1)

∞∑
t=0

Γ(t+ d+ ϕ−1) [θ(1− p)]t

t!
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=
(1 + ϕη)−ϕ−1

(pθ)dΓ(ϕ−1 + d)

d!Γ(ϕ−1)

∞∑
t=0

Γ(t+ d+ ϕ−1) [θ(1− p)]t

Γ(ϕ−1 + d)t!

=
Γ(ϕ−1 + d)

d!Γ(ϕ−1)

(
ϕηp

1 + ϕηp

)d(
1

1 + ϕηp

)ϕ−1

, d = 0, 1, 2, . . .

Thus D ∼NB
(
ϕ−1, ϕηp

1+ϕηp

)
.

A.2.3 Proof of Proposition 3.3.1

Note that

P (Di = di,Mi = mi|Dobs;ψ) =
f(li, ri, δi, di,mi;ψ)

f(li, ri, δi;ψ)
. (A.7)

Using the results of propositions 3.2.1 and 3.2.2,

f(li, ri, δi;ψ)

=
∞∑

di=δi

f(li, ri, δi|Di = di)P (Di = di; θi, pi)

=
∞∑

di=δi

[di{S(Yj−1(i))− S(Yj(i))}]δi{S(Yj(i))}di−δi
Γ(ϕ−1 + di)

Γ(ϕ−1)di!

(
ϕηipi

1 + ϕηipi

)di ( 1

1 + ϕηipi

)ϕ−1

=

(
S(Yj−1(i))− S(Yj(i))

S(Yj(i))

)δi ( 1

1 + ϕηipi

)ϕ−1

1

Γ(ϕ−1)

∞∑
di=δi

(
ϕηipiS(Yj(i))

1 + ϕηipi

)di Γ(ϕ−1 + di)

(di − δi)!
.

(A.8)

Focusing on the sum in (A.8):

If δi = 0 then

∞∑
di=0

(
ϕηipiS(Yj(i))

1 + ϕηipi

)di Γ(ϕ−1 + di)

di!
= Γ(ϕ−1)

(
1 + ϕηipi

1 + ϕηipiF (Yj(i))

)ϕ−1

, (A.9)

and (A.8) is equivalent to

f(li, ri; δi = 0,ψ) = (1 + ϕηipiF (Yj(i)))
−ϕ−1

. (A.10)

If δi = 1 then, letting qi = di − 1,
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∞∑
di=1

(
ϕηipiS(Yj(i))

1 + ϕηipi

)di Γ(ϕ−1 + di)

(di − 1)!

= Γ(ϕ−1 + 1)

(
ϕηipiS(Yj(i))

1 + ϕηipi

) ∞∑
qi=0

(
ϕηipiS(Yj(i))

1 + ϕηipi

)qi Γ(ϕ−1 + 1 + qi)

Γ(ϕ−1 + 1)qi!

= Γ(ϕ−1 + 1)

(
ϕηipiS(Yj(i))

1 + ϕηipi

)(
1 + ϕηipi

1 + ϕηipiF (Yj(i))

)ϕ−1+1

, (A.11)

and (A.8) is equivalent to

f(li, ri; δi = 1,ψ) = ηipi{S(Yj−1(i))− S(Yj(i))}
[
1 + ϕηipiF (Yj(i))

]−(ϕ−1+1)
. (A.12)

Combining (A.10) and (A.12),

f(li, ri, δi;ψ) =
(
ηipi{S(Yj−1(i))− S(Yj(i))}

)δi [1 + ϕηipiF (Yj(i))
]−(ϕ−1+δi) . (A.13)

Let ϕ∗
i = ϕ−1 + δi, η

+
i =

ϕηi(1−piF (Yj(i)))
1+ϕηi

, p+i =
piS(Yj(i))

1−piF (Yj(i))
.

P (Di = di,Mi = mi|Dobs,ψ)

=
S(Yj(i))

di−δi [di{S(Yj−1(i))− S(Yj(i))}]δi
(
mi

di

)
pdii (1− pi)

mi−di Γ(ϕ
−1+mi)

mi!Γ(ϕ−1)

(
ϕηi

1+ϕηi

)mi

(1 + ϕηi)
−ϕ−1(

ηipi{S(Yj−1(i))− S(Yj(i))}
)δi [1 + ϕηipiF (Yj(i))

]−(ϕ−1+δi)

=
Γ(ϕ−1 + δi +mi − δi)

Γ(ϕ−1 + δi)(mi − δi)!

(
ϕηi(1− piF (Yj(i)))

1 + ϕηi

)mi−δi (1 + ϕηipiF (Yj(i))

1 + ϕηi

)ϕ−1+δi

×(
mi − δi
di − δi

)(
piS(Yj(i))

1− piF (Yj(i))

)di−δi ( 1− pi
1− piF (Yj(i))

)mi−di

(A.14)

=
Γ(ϕ∗

i +mi − δi)

Γ(ϕ∗
i )(mi − δi)!

(η+)mi−δi(1− η+i )
ϕ∗
i︸ ︷︷ ︸

Mi − δi|Dobs ∼ NB(ϕ∗
i , η

+
i )

×
(
mi − δi
di − δi

)
(p+i )

di−δi(1− p+i )
mi−di︸ ︷︷ ︸

Di − δi|Mi = mi;Dobs ∼ Bin(mi − δi, p
+
i )

. (A.15)

A.2.4 Proof of Proposition 3.3.2:

Let ϕ∗
i = ϕ−1 + δi, η

∗
i =

ϕηipiS(Yj(i))

1+ϕηipi
.

Then

P (Di = di|Dobs;ψ) =
f(li, ri, δi, di; θi, pi, ϕ,λ)

f(li, ri, δi; θi, pi, ϕ,λ)
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=
f(li, ri, δi|di)P (Di = di; θi, pi)

f(li, ri, δi; θi, pi, ϕ,λ)

=

From (3.9)︷ ︸︸ ︷[
di{S(Yj−1(i))− S(Yj(i))}

]δi S(Yj(i))di−δi Γ(ϕ−1+di)
di!Γ(ϕ−1)

(
ϕηipi

1+ϕηipi

)di
(1 + ϕηipi)

−ϕ−1(
ηipi{S(Yj−1(i))− S(Yj(i))}

)δi [1 + ϕηipiF (Yj(i))
]−(ϕ−1+δi)

=
Γ(ϕ−1 + δi + di − δi)

(di − δi)!Γ(ϕ−1 + δi)

(
ϕηipiS(Yj(i))

1 + ϕηipi

)di−δi (1 + ϕηipiF (Yj(i))

1 + ϕηipi

)ϕ−1+δi

=
Γ(ϕ∗

i + di − δi)

(di − δi)!Γ(ϕ∗
i )
(η∗i )

di−δi(1− η∗i )
ϕ∗
i .︸ ︷︷ ︸

Di − δi|Dobs;ψ ∼ NB(ϕ∗
i , η

∗
i )

(A.16)

A.2.5 Proof of Proposition 3.3.3:

From (3.9) and (3.13),

f(li, ri, δi,mi, ui, di;ψ)

=

mi∑
di=0

f(li, ri, δi,mi, ui, di;ψ)

=

mi∑
di=δi

[
di{S(Yj−1(i))− S(Yj(i))}

]δi S(Y j(i))di−δi×(
mi

di

)
pdii (1− pi)

mi−di
umi
i e−ui

mi!
fUi

(ui; ηi, ϕ)

=

[
S(Yj−1(i))− S(Yj(i))

S(Yj(i))

]δi
(1− pi)

mi×

umi
i e−ui

mi!
fUi

(ui; ηi, ϕ)

mi∑
di=δi

dδii

(
mi

di

)[
piS(Yj(i))

1− pi

]di
.

If δi = 0, then

f(li, ri, δi,mi, ui, di;ψ)

= fUi
(ui; ηi, ϕ)

umi
i e−ui

mi!

mi∑
di=0

(
mi

di

)
[piS(Yj(i))]

di(1− pi)
mi−di

= fUi
(ui; ηi, ϕ)

umi
i e−ui

mi!

[
1− piF (Yj(i))

]mi ×
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mi∑
di=0

(
mi

di

)(
piS(Yj(i))

1− piF (Yj(i))

)di ( 1− pi
1− piF (Yj(i))

)mi−di

.︸ ︷︷ ︸
sum of pmf equal to 1

= fUi
(ui; ηi, ϕ)

umi
i e−ui

mi!

[
1− piF (Yj(i))

]mi (A.17)

If δi = 1, then

f(li, ri, δi,mi, ui, di;ψ)

= fUi
(ui; ηi, ϕ)

umi
i e−ui

mi!

[S(Yj−1(i))− S(Yj(i))]

S(Yj(i))

mi∑
di=1

di

(
mi

di

)
[piS(Yj(i))]

di(1− pi)
mi−di .

Letting qi = di − 1,

f(li, ri, δi,mi, ui, di;ψ)

=
S(Yj−1(i))− S(Yj(i))

S(Yj(i))
fUi

(ui; ηi, ϕ)
umi
i e−ui

mi!
mipiS(Yj(i))[1− piF (Yj(i))]

mi−1×

mi−1∑
qi=0

(
mi − 1

qi

)
[piS(Yj(i))]

qi

(
1− pi

1− piF (Yj(i))

)mi−1−qi

︸ ︷︷ ︸
sum of pmf equal to 1

= pi(S(Yj−1(i))− S(Yj(i)))[1− piF (Yj(i))]
mi−1fUi

(ui; ηi, ϕ)
umi
i e−ui

(mi − 1)!
. (A.18)

Combining (A.17) and (A.18),

f(li, ri, δi,mi, ui, di;ψ)

=
[
pi(S(Yj−1(i))− S(Yj(i)))

]δi [1− piF (Yj(i))]
mi−δifUi

(ui; ηi, ϕ)
umi
i e−ui

(mi − δi)!
. (A.19)

Now

f(mi, ui|Dobs;ψ)

=
f(li, ri, δi,mi, ui, di;ψ)

f(li, ri, δi, ;ψ)

=

[
pi(S(Yj−1(i))− S(Yj(i)))

]δi [1− piF (Yj(i))]
mi−δifUi

(ui; ηi, ϕ)
u
mi
i e−ui

(mi−δi)!(
ηipi{S(Yj−1(i))− S(Yj(i))}

)δi [1 + ϕηipiF (Yj(i))
]−(ϕ−1+δi)
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=

[
ui(1− piF (Yj(i)))

]mi−δi

(mi − δi)!
e−ui(1−piF (Yj(i)))

(
1+ϕηipiF (Yj(i))

ϕηi

)ϕ−1+δi

Γ(ϕ−1 + δi)
×

uϕ
−1+δi−1

i exp

{
−
(
1 + ϕηipiF (Yj(i))

ϕηi

)
ui

}
.

Let a∗i = ui(1− piF (Yj(i))), η
∗
i = ϕηi

1+ϕηipiF (Yj(i))
, ϕ∗

i = ϕ−1 + δi. Then

f(mi, ui|Dobs;ψ) =
(a∗i )

mi−δi

(mi − δi)!
ea

∗
i︸ ︷︷ ︸

Mi−δi|Ui=ui,Dobs;ψ∼Poisson(a∗i )

× (η∗i )
−ϕ∗

i

Γ(ϕ∗
i )
u
ϕ∗
i−1

i e
− ui

η∗
i .︸ ︷︷ ︸

Ui|Dobs;ψ∼Gamma(ϕ∗
i ,η

∗
i )

(A.20)
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In this appendix, we present the process by which initial parameter estimates were

selected in implementing the EM algorithm for the destructive shifted Poisson cure

rate model in the real data analysis in Section 2.5.

• Model 1.1: θ = eβ10+β11z1 , p = exp(β21z2)
1+exp(β21z2)

, where p contains no intercept term.

Denote the cure rate of the i-th patient as q0i.

q0i|z1=0 = (1− pi)exp
(
−pieβ10

)
,

q0i|z1=1 = (1− pi)exp
(
−pieβ10+β11

)
.

We obtain estimates for cure rates k0, k1 from the Kaplan-Meier plots stratified

by EMP such that

q̂0i =


k0, z1 = 0

k1, z1 = 1,

where k0, k1 ∈ (0, 1).We equate the cure rate formulas with the above estimates:

(1− pi)exp
(
−pieβ10

)
= k0,

(1− pi)exp
(
−pieβ10+β11

)
= k1,

which gives rise to the equations

β10 = log
[
− 1

pi
log
(

k0
1−pi

)]
,

β11 = log
[
− 1

pi
log
(

k1
1−pi

)]
− β10.

We observe that in order for the outer log function to be defined in both

equations,

pi < min(1− k0, 1− k1). Naively choosing p̂i =
min(1−k0,1−k1)

2
, we can compute

β̂10 = log
[
− 1

p̂i
log
(

k0
1−p̂i

)]
,

β̂11 = log
[
− 1

p̂i
log
(

k1
1−p̂i

)]
− β̂10.
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An estimate for β21 may be obtained by taking p̂i as the cure rate for the mean

age of observed lifetimes. Let z̄2obs denote the mean age given δi = 1. Then

β̂21 =
1

z̄2obs
log( p̂i

1−p̂i
). Finally, we find initial estimates for lifetime parameters

λ1 and λ2. For this purpose, we take a point estimate for each observed lifetime

contained in interval (li, ri), with ri < ∞, as testi = li+ri
2
, and find Weibull

parameters λ̂1, λ̂2, such that the mean is equal to the mean of test and variance

is equal to the mean of test
2.

• Model 1.2: θ = eβ11z1 , p = exp(β20+β21z2)
1+exp(β20+β21z2)

, where θ contains no intercept term.

Denote the cure rate of the i-th patient as q0i.

q0i|z1=0 = (1− pi)e
−pi ,

q0i|z1=1 = (1− pi)e
−pie

β11 .

We obtain estimates for cure rates k0, k1 from the Kaplan-Meier plots stratified

by age such that

q̂0i =


k0, z1 = 0

k1, z1 = 1,

where k0, k1 ∈ (0, 1).We equate the cure rate formulas with the above estimates:

(1− pi)e
−pi = k0,

(1− pi)e
−pie

β11 = k1.

The first equation can be solved explicitly for pi, which we will take as

pi|z2=Med(z2)
= k2. Then β̂11 = log

[
− 1

k2
log
(

k1
1−k2

)]
. It is reasonable to expect

lower activation probability to be associated with higher values of age, thus

to find suitable initial estimates for β20 and β21, we propose an approximately
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proportional relationship between z2 and pi, so that if pi|z2=Med(z2)
= k2, then

pi|z2=Q3(z2)
= Q3(z2)

Med(z2)
k2. Now

pi|z2=Med(z2)
= exp[β20+β21Med(z2)]

1+exp[β20+β21Med(z2)]
= k2

pi|z2=Q3(z2)
= exp[β20+β21Q3(z2)]

1+exp[β20+β21Q3(z2)]
= Q3(z2)

Med(z2)
k2

can be solved explicitly for β20 and β21 yielding initial estimates of

β̂21 =

log
(

k2
1−k2

)
−log

 Q3(z2)
Med(z2)

k2

1− Q3(z2)
Med(z2)

k2


Med(z2)−Q3(z2)

,

β̂20 = log
(

k2
1−k2

)
− β̂21Med(z2).

Initial values for lifetime parameters are obtained as in Model 1.1.

• Model 2.1: θ = eβ20+β21z2 , p = exp(β11z1)
1+exp(β11z1)

, where p contains no intercept term.

Denote the cure rate of the i-th patient as q0i.

q0i|z1=0 =
1
2
exp

[
− exp

(
β20+β21z2

2

)]
,

q0i|z1=1 = (1− pi) exp [−pi exp (β20 + β21z2)] .

We obtain estimates for cure rates k0, k1 from the Kaplan-Meier plots stratified

by EMP such that

q̂0i =


k0, z1 = 0

k1, z1 = 1,

where k0, k1 ∈ (0, 1).We equate the cure rate formulas with the above estimates:

1

2
exp

[
− exp

(
β20 + β21z2

2

)]
= k0,(

1− eβ11

1 + eβ11

)
exp

[
− exp (β20 + β21z2)

eβ11

1 + eβ11

]
= k1.

Some algebraic manipulations yield

β20 + β21z2 = log [−2 log(2k0)] , (B.1)
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β20 + β21z2 = log
[
− 1

pi
log
(

k1
1−pi

)]
. (B.2)

We note that (B.1) is only defined if k0 < 0.5, so if the estimated cure rate

from the Kaplan-Meier curve is greater than 0.5 we choose k0 = 0.49 to proceed.

(B.2) is only defined if pi < 1 − k1. To proceed, we choose the midpoint of

(0, 1− k1) as an estimator for pi|z1=1. Substituting this value into the logistic

link function for p, we obtain initial estimate β̂11 = log
(

1−k1
1+k1

)
. We naively

set z2 = Med(z2) in (B.2) and, since we could reasonably expect the number

of initial cells to be lower with lower age, after observing that in our case

log [−2 log(2k0)] < log
[
− 2

1−k1
log
(

2k1
1+k1

)]
, we fix z2 = Q1(z2) in (B.1) and

calculate initial estimates for β20 and β21 :

β̂21 =
log[−2 log(2k0)]−log

[
− 2

1−k1
log

(
2k1
1+k1

)]
Med(z2)−Q1(z2)

,

β̂20 = log [−2 log(2k0)]− β̂21Med(z2).

Initial values for lifetime parameters are obtained as in Model 1.1.

• Model 2.2: θ = eβ21z2 , p = eβ10+β11z1

1+eβ10+β11z1
, where θ contains no intercept term.

Denote the cure rate of the i-th patient as q0i.

q0i|z1=0 = (1− pi|z1=0) exp
[
− exp (β21z2) pi|z1=0

]
,

q0i|z1=1 = (1− pi|z1=1) exp
[
− exp (β21z2) pi|z1=1

]
.

We obtain estimates for cure rates k0, k1 from the Kaplan-Meier plots stratified

by EMP such that

q̂0i =


k0, z1 = 0

k1, z1 = 1,

where k0, k1 ∈ (0, 1).We equate the cure rate formulas with the above estimates:

(1− pi|z1=0) exp
[
− exp (β21z2) pi|z1=0

]
= k0,
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(1− pi|z1=1) exp
[
− exp (β21z2) pi|z1=1

]
= k1,

which yields the equations

β21 =
1
z2
log
[
− 1

pi|z1=0
log( k0

1−pi|z1=0
)
]
, (B.3)

β21 =
1
z2
log
[
− 1

pi|z1=1
log( k1

1−pi|z1=1
)
]
.

From the above equations we can see that pi|z1=0 ∈ (0, 1 − k0) and pi|z1=1 ∈

(0, 1−k1). We choose estimates for p as the midpoints of these intervals, namely

p̂i|z1=0 =
1−k0
2

p̂i|z1=1 =
1−k1
2
,

which allows computation of initial estimates

β̂10 = log
(

1−k0
1+k0

)
β̂11 = log

(
1−k1
1+k1

)
− β̂10.

Since we chose pi|z1=0 as the midpoint of the intervals of possible values, it is

reasonable to set z2 = Med(z2) in (B.3) to solve for initial estimate

β̂21 =
1

Med(z2)
log
[
− 2

1−k0
log( 2k0

1−k0
)
]
.

Initial values for lifetime parameters are obtained as in Model 1.1.
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In this appendix, we present the computational codes which were developed to

generate data and implement the EM and SEM algorithms.

C.1 Computational code for interval-censored destructive length biased Poisson cure

model

C.1.1 Data generation code

LR in t=function ( y1 , len1 , l 1 ){

i f ( y1>0 & y1<=l1 ){

a=c ( .Machine$double . eps , l 1 )

} else {

k=as . integer ( ( y1−l 1 )/ l en1 )+1

a=c ( l 1 +((k−1)∗ l en1 ) , l 1+(k∗ l en1 ) )

}

return ( a )

}

sim data=function (n , b11 , b02 , b12 , g1 , g2 , d e l t a ){

l=rep (NA, n)#l e f t endpoint o f l i f e t i m e i n t e r v a l

r=rep (NA, n)#r i g h t endpoint o f l i f e t i m e i n t e r v a l

d=rep (NA, n)#censor ing i n d i c a t o r

x1 = rbinom(n , s i z e =1,prob=0.5)

x2 = runif (n , 0 . 1 , 2 0 )

theta = exp( b11∗x1 )

p = exp( b02+b12∗x2 )/(1+exp( b02+b12∗x2 ) )

M=rep (NA, n)

D=rep (NA, n)
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C=rexp (n , r a t e=de l t a )

count=0

for ( i in 1 : n){

M[ i ]=rpois (1 , lambda=(theta [ i ] ) )

D[ i ]=rbinom (1 , s i z e=M[ i ]+1 , prob=p [ i ] )

i f (D[ i ]==0){

count=count+1

l [ i ]=C[ i ]

r [ i ]=1/0

d [ i ]=0

} else {

y=min( rweibull (D[ i ] , shape=1/g1 , scale=1/g2 ) )

i f (min(y ,C[ i ])==C[ i ] ) {

l [ i ]=C[ i ]

r [ i ]=1/0

d [ i ]=0

} else {

l en=runif ( 1 , 0 . 2 , 0 . 7 )

l i=runif ( 1 , 0 , 1 )

ans=LR in t (y , len , l i )

l [ i ]=ans [ 1 ]

r [ i ]=ans [ 2 ]

d [ i ]=1

}

}
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}#end o f f o r

data=data . frame (cbind ( l , r , d , x1 , x2 ,M,D) )

return (data )

}

C.1.2 EM algorithm code

This section presents the computational code to implement the EM algorithm

for covariate configuration denoted by Model 1.1 in Section 2.5

EM.DLBP. IC1 . 1 = function (mydata , to l , maxit , b01 . i n i t ,

b11 . i n i t , b12 . i n i t , g1 . i n i t , g2 . i n i t ){

obs data = mydata [ mydata$d==1,]

cens data = mydata [ mydata$d==0,]

L obs = obs data$ l

R obs = obs data$ r

L cens = cens data$ l

x1t = obs data$x1

x1c = cens data$x1

x2t = obs data$x2

x2c = cens data$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

y = c (R obs ,L cens )

d = c ( obs data$d , cens data$d)

p .new = matrix (0 , ncol=1,nrow=5)

p . old = matrix (0 , ncol=1,nrow=5)
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p . old [ 1 , 1 ] = b01 . i n i t

p . old [ 2 , 1 ] = b11 . i n i t

p . old [ 3 , 1 ] = b12 . i n i t

p . old [ 4 , 1 ] = g1 . i n i t

p . old [ 5 , 1 ] = g2 . i n i t

count = 0

cont inue = TRUE

i t e r = 1

while ( cont inue ){

########Q func t i on :E s t ep : ###########

theta . r = exp(p . old [ 1 ,1 ]+p . old [ 2 , 1 ] ∗x1 )

p . r = exp(p . old [ 3 , 1 ] ∗x2 )/(1+exp(p . old [ 3 , 1 ] ∗x2 ) )

F . r = 1 − exp(−(p . old [ 5 , 1 ] ∗y )ˆ(1/p . old [ 4 , 1 ] ) )

S . r = exp(−(p . old [ 5 , 1 ] ∗y )ˆ(1/p . old [ 4 , 1 ] ) )

e .M = d + theta . r∗(1−p . r∗F. r ) +

(1−p . r∗F. r )/(1−p . r∗F. r+d/ theta . r )

e .D = theta . r∗p . r∗S . r + (p . r∗S . r )/

(1−p . r∗F. r + d/ theta . r ) + d

Q1 = function (par=c ( b01 , b11 ) ){

theta = exp(par [1 ]+par [ 2 ] ∗x1 )

#E−s t ep ( r−th i t e r a t i o n )

dum. r = log ( theta )∗ ( e .M−1)

r e s u l t 1 = sum(dum. r−theta )

return(− r e s u l t 1 )

}#end o f Q1 func t i on
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Q2 = function (par=c ( b12 ) ){

p = exp(par [ 1 ] ∗x2 )/(1+exp(par [ 1 ] ∗x2 ) )

#E−s t ep ( r−th i t e r a t i o n )

dum. r = log (p)∗ ( e .D)+log(1−p)∗ ( e .M−e .D)

r e s u l t 2 = sum(dum. r )

return(− r e s u l t 2 )

}#end o f Q2 func t i on

Q3 = function (par=c ( g1 , g2 ) ){

S = exp(−(par [ 2 ] ∗y )ˆ(1/par [ 1 ] ) )

#E−s t ep ( r−th i t e r a t i o n )

for ( i in 1 : length (S ) ){

i f (S [ i ]==0){

S [ i ] = .Machine$double . eps

}

}

dum1 . r = log (S)∗ ( e .D−d)

dum2 . r = exp(−(par [ 2 ] ∗L obs )ˆ(1/par [ 1 ] ) ) −

exp(−(par [ 2 ] ∗R obs )ˆ(1/par [ 1 ] ) )

dum3 . r = log (dum2 . r )

r e s u l t 3 = sum(dum1 . r ) + sum(dum3 . r )

return(− r e s u l t 3 )

}#end o f Q3 func t i on

####### M step ##########

beta1 .new = optim(par=c (p . old [ 1 , 1 ] , p . old [ 2 , 1 ] ) ,

fn=Q1, method=”Nelder−Mead” )$par
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beta2 .new = optim(par=c (p . old [ 3 , 1 ] ) , fn=Q2,

method=”Brent” , lower=−5,upper=5)$par

lambda .new = optim(par=c (p . old [ 4 , 1 ] , p . old [ 5 , 1 ] ) ,

fn=Q3, method=”Nelder−Mead” )$par

p .new = matrix (c ( beta1 .new , beta2 .new , lambda .new) )

i t e r = i t e r+1

cont inue = max(abs ( ( p .new−p . old )/p . old))> t o l&( i t e r<maxit )

p . old [ 1 , 1 ] = p .new [ 1 , 1 ]

p . old [ 2 , 1 ] = p .new [ 2 , 1 ]

p . old [ 3 , 1 ] = p .new [ 3 , 1 ]

p . old [ 4 , 1 ] = p .new [ 4 , 1 ]

p . old [ 5 , 1 ] = p .new [ 5 , 1 ]

}#end o f wh i l e

out = rep (NA, 11 )

# ca l c u l a t i o n o f the s tandard error

std = function ( param){

b01 = param [ 1 ]

b11 = param [ 2 ]

b12 = param [ 3 ]

g1 = param [ 4 ]

g2 = param [ 5 ]

theta . t = exp( b01+b11∗x1t )

theta . c= exp( b01+b11∗x1c )

p . t = exp( b12∗x2t )/(1+exp( b12∗x2t ) )

p . c = exp( b12∗x2c )/(1+exp( b12∗x2c ) )
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F. c = 1 − exp(−(g2∗L cens )ˆ(1/g1 ) )

F . t l = 1 − exp(−(g2∗L obs )ˆ(1/g1 ) )

F . t r = 1 − exp(−(g2∗R obs )ˆ(1/g1 ) )

Sp . c = exp(− theta . c∗p . c∗F. c )∗(1−p . c∗F. c )

Sp . t l = exp(− theta . t∗p . t∗F. t l )∗(1−p . t∗F. t l )

Sp . t r = exp(− theta . t∗p . t∗F. t r )∗(1−p . t∗F. t r )

dum1 = rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ] = max( ( Sp . t l [ i ]−Sp . t r [ i ] ) , .Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return(−out1 )

}

hessmat1=hes s i an ( std , c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] , p .new [ 3 , 1 ] ,

p .new [ 4 , 1 ] , p .new [ 5 , 1 ] ) , method=”Richardson” )

FI=solve(−1∗hessmat1 )

std1 = sqrt ( FI [ 1 , 1 ] )

std2 = sqrt ( FI [ 2 , 2 ] )

std3 = sqrt ( FI [ 3 , 3 ] )

std4 = sqrt ( FI [ 4 , 4 ] )

std5 = sqrt ( FI [ 5 , 5 ] )

out = c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] , p .new [ 3 , 1 ] , p .new [ 4 , 1 ] ,

p .new [ 5 , 1 ] , std1 , std2 , std3 , std4 , std5 , i t e r )

return ( out )

}
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C.2 Computational code for interval-censored destructive negative binomial cure

mode

C.2.1 Data generation code

This section presents the computational code to generate data with covariate

configuration denoted as Model 2 in Section 3.6.

LR in t=function ( y1 , len1 , l 1 ){

i f ( y1>0 & y1<=l1 ){

a=c ( .Machine$double . eps , l 1 )

} else {

k=as . integer ( ( y1−l 1 )/ l en1 )+1

a=c ( l 1 +((k−1)∗ l en1 ) , l 1+(k∗ l en1 ) )

}

return ( a )

}

sim data Wei=function (n , b11 , b20 , b21 , g1 , g2 , de l ta , phi ){

l=rep (NA, n)#l e f t endpoint o f l i f e t i m e i n t e r v a l

r=rep (NA, n)#r i g h t endpoint o f l i f e t i m e i n t e r v a l

d=rep (NA, n)#censor ing i n d i c a t o r

x1=rep (NA, n)#cova r i a t e : t reatment group (1 : t r t , 0 : p l acebo )

x2=rep (NA, n)#cova r i a t e : tumor t h i c kn e s s

x1 = rbinom(n , s i z e =1,prob=0.5)

x2 = runif (n , 0 . 1 , 2 0 )

eta=rep (NA, n)

theta=rep (NA, n)

p=rep (NA, n)
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D=rep (NA, n)

C=rexp (n , r a t e=de l t a )

count=0

for ( i in 1 : n){

eta [ i ]=exp ( ( b11∗x1 [ i ] ) )

theta [ i ]=( phi∗eta [ i ] ) /(1+phi∗eta [ i ] )

p [ i ]=exp( b20+b21∗x2 [ i ] ) /(1+exp( b20+b21∗x2 [ i ] ) )

m=rnbinom (1 , s i z e =(1/phi ) , prob=(1/(1+( phi∗eta [ i ] ) ) ) )

i f (m==0){

D[ i ]=0

} else {

D[ i ]=rbinom (1 , s i z e=m, prob=p [ i ] )

}

i f (D[ i ]==0){

count=count+1

l [ i ]=C[ i ]

r [ i ]=1/0

d [ i ]=0

} else {

y=min( rweibull (D[ i ] , shape=1/g1 , scale=1/g2 ) )

i f (min(y ,C[ i ])==C[ i ] ) {

l [ i ]=C[ i ]

r [ i ]=1/0

d [ i ]=0

} else {
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l en=runif ( 1 , 0 . 1 , 0 . 5 )

l i=runif ( 1 , 0 , 1 )

ans=LR in t (y , len , l i )

l [ i ]=ans [ 1 ]

r [ i ]=ans [ 2 ]

d [ i ]=1

}

}

}#end o f f o r

data=data . frame (cbind ( l , r , d , x1 , x2 ) )

return (data )

}

C.2.2 EM-PL algorithm code

This section presents the computational code to implement the EM algorithm

formulated in Section 3.3 using a profile likelihood search to estimate ϕ and using

the covariate configuration denoted as Model 2 in section 3.6.

EM.DNB=function (mydata , to l , maxit , increment ,

b11 , b20 , b21 , g1 , g2 , phi ){

obs data=mydata [ mydata$d==1,]

cens data=mydata [ mydata$d==0,]

L obs=obs data$ l

R obs=obs data$ r

L cens=cens data$ l

x1t=obs data$x1
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x1c=cens data$x1

x2t=obs data$x2

x2c=cens data$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

y = c (R obs ,L cens )

d = c ( obs data$d , cens data$d)

p .new=matrix (0 , ncol=1,nrow=5)

p . old=matrix (0 , ncol=1,nrow=5)

p . old [ 1 ,1 ]= b11 + runif (1 , 0 , increment )∗abs ( b11 )

p . old [ 2 ,1 ]= b20 + runif (1 , 0 , increment )∗abs ( b20 )

p . old [ 3 ,1 ]= b21 + runif (1 , 0 , increment )∗abs ( b21 )

p . old [ 4 ,1 ]= g1 + runif (1 , 0 , increment )∗abs ( g1 )

p . old [ 5 ,1 ]= g2 + runif (1 , 0 , increment )∗abs ( g2 )

count=0

cont inue = TRUE

i t e r=1

while ( cont inue ){

########Q func t i on :E s t ep : ###########

eta . r = exp(p . old [ 1 , 1 ] ∗x1 )

p . r = exp(p . old [ 2 , 1 ] + p . old [ 3 , 1 ] ∗x2 )/

(1 + exp(p . old [ 2 ,1 ]+p . old [ 3 , 1 ] ∗x2 ) )

F . r = 1 − exp(−(p . old [ 5 , 1 ] ∗y )ˆ(1/p . old [ 4 , 1 ] ) )

S . r = exp(−(p . old [ 5 , 1 ] ∗y )ˆ(1/p . old [ 4 , 1 ] ) )

e .M = d + ((1+phi∗d)∗eta . r∗(1−p . r∗F. r ) )/
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(1+phi∗eta . r∗p . r∗F. r )

e .D = d + ((1+phi∗d)∗eta . r∗p . r∗S . r )/(1+phi∗eta . r∗p . r∗F. r )

Q1 = function (par=c ( b11 ) ){

eta = exp(par [ 1 ] ∗x1 )

#E−s t ep ( r−th i t e r a t i o n )

dum1 . r = e .M∗ log ( ( phi∗eta )/(1+phi∗eta ) )

dum2 . r = log (gamma(1/phi )∗exp(−( phi∗eta )/(1+phi∗eta ) )∗

(1+phi∗eta )ˆ(1/phi ) )

r e s u l t 1 = sum(dum1 . r−dum2 . r−(phi∗eta )/(1+phi∗eta ) )

return(− r e s u l t 1 )

}#end o f Q1 func t i on

Q2 = function (par=c ( b20 , b21 ) ){

p = exp(par [1 ]+par [ 2 ] ∗x2 )/(1+exp(par [1 ]+par [ 2 ] ∗x2 ) )

#E−s t ep ( r−th i t e r a t i o n )

dum. r = log (p)∗ ( e .D)+log(1−p)∗ ( e .M−e .D)

r e s u l t 2 = sum(dum. r )

return(− r e s u l t 2 )

}#end o f Q2 func t i on

Q3 = function (par=c ( g1 , g2 ) ){

S = exp(−(par [ 2 ] ∗y )ˆ(1/par [ 1 ] ) )

#E−s t ep ( r−th i t e r a t i o n )

for ( i in 1 : length (S ) ){

i f (S [ i ]==0 | i s .nan(S [ i ] ) ) {

S [ i ]=.Machine$double . eps

}
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}

dum1 . r = log (S)∗ ( e .D−d)

dum2 . r = exp(−(par [ 2 ] ∗L obs )ˆ(1/par [ 1 ] ) ) −

exp(−(par [ 2 ] ∗R obs )ˆ(1/par [ 1 ] ) )

dum3 . r = log (dum2 . r )

r e s u l t 3 = sum(dum1 . r ) + sum(dum3 . r )

return(− r e s u l t 3 )

}#end o f Q3 func t i on

####### M step ##########

beta1 .new = tryCatch ({optim(par=p . old [ 1 , 1 ] , fn=Q1,

method=”Brent” , lower=−10,upper=10)$par

} , e r r o r=function ( e ){

beta1 .new = c (0 )

return ( beta1 .new)

}

)

beta2 .new = tryCatch ({optim(par=c (p . old [ 2 , 1 ] , p . old [ 3 , 1 ] ) ,

fn=Q2, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

beta2 .new = c ( 0 , 0 )

return ( beta2 .new)

}

)

lambda .new=tryCatch ({optim(par=c (p . old [ 4 , 1 ] , p . old [ 5 , 1 ] ) ,

fn=Q3, method=”Nelder−Mead” )$par
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} , e r r o r=function ( e ){

lambda .new = c ( 0 , 0 )

return ( lambda .new)

}

)

p .new = matrix (c ( beta1 .new , beta2 .new , lambda .new) )

i f (any(p .new==0)){

cont inue = FALSE

p .new = matrix (c ( 0 , 0 , 0 , 0 , 0 ) )

break

}

else {

i t e r = i t e r+1

cont inue=max(abs ( ( p .new−p . old )/p . old))> t o l&( i t e r<maxit )

p . old [ 1 ,1 ]=p .new [ 1 , 1 ]

p . old [ 2 ,1 ]=p .new [ 2 , 1 ]

p . old [ 3 ,1 ]=p .new [ 3 , 1 ]

p . old [ 4 ,1 ]=p .new [ 4 , 1 ]

p . old [ 5 ,1 ]=p .new [ 5 , 1 ]

}#end o f e l s e

}#end o f wh i l e

out = rep (NA, 12 )

i f (p .new[1 ,1]==0 & p .new[2 ,1]==0 & p .new[3 ,1]==0

& p .new[4 ,1]==0 & p .new[5 ,1]==0){

out = rep (0 , 12 )
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} else {

std = function ( param){

b11 = param [ 1 ]

b20 = param [ 2 ]

b21 = param [ 3 ]

g1 = param [ 4 ]

g2 = param [ 5 ]

eta . t = exp( b11∗x1t )

eta . c = exp( b11∗x1c )

theta . t = ( phi∗eta . t )/(1+phi∗eta . t )

theta . c = ( phi∗eta . c )/(1+phi∗eta . c )

p . t = exp( b20+b21∗x2t )/(1+exp( b20+b21∗x2t ) )

p . c = exp( b20+b21∗x2c )/(1+exp( b20+b21∗x2c ) )

F . c = 1 − exp(−(g2∗L cens )ˆ(1/g1 ) )

F . t l = 1 − exp(−(g2∗L obs )ˆ(1/g1 ) )

F . t r = 1 − exp(−(g2∗R obs )ˆ(1/g1 ) )

Sp . c = (1 + phi∗eta . c∗p . c∗F. c )ˆ(−(1/phi ) )

Sp . t l = (1 + phi∗eta . t∗p . t∗F. t l )ˆ(−(1/phi ) )

Sp . t r = (1 + phi∗eta . t∗p . t∗F. t r )ˆ(−(1/phi ) )

dum1=rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ]=max( ( Sp . t l [ i ]−Sp . t r [ i ] ) , .Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return ( out1 )
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}

hessmat1=hes s i an ( std , c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] ,

p .new [ 3 , 1 ] , p .new [ 4 , 1 ] , p .new [ 5 , 1 ] ) , method=”Richardson” )

FI=tryCatch ({ solve(−1∗hessmat1 )

} , e r r o r=function ( e ){

FI=matrix ( 0 , 5 , 5 )

return ( FI )

}

)

std1 = sqrt ( FI [ 1 , 1 ] )

std2 = sqrt ( FI [ 2 , 2 ] )

std3 = sqrt ( FI [ 3 , 3 ] )

std4 = sqrt ( FI [ 4 , 4 ] )

std5 = sqrt ( FI [ 5 , 5 ] )

out = c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] , p .new [ 3 , 1 ] , p .new [ 4 , 1 ] ,

p .new [ 5 , 1 ] , phi , std1 , std2 , std3 , std4 , std5 , i t e r )

}#end o f e l s e

return ( out )

}

#p r o f i l e l i k e l i h o o d approach to e s t imate phi

grid . phi = function (mydata , to l , maxit , increment , param){

grid=seq ( 0 . 0 5 , 2 . 05 , by=0.05)

cont inue=TRUE

count=1

while ( cont inue ){
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phi . cur r = grid [ 1 ]

phi .maxim = phi . cur r

mle . cur r = EM.DNB(mydata , to l , maxit , increment ,

b11=param [ 1 ] , b20=param [ 2 ] , b21=param [ 3 ] , g1=param [ 4 ] ,

g2=param [ 5 ] , phi=phi . cur r )

mle .maxim = mle . cur r

log .maxim = std (mydata , param=mle . cur r [ 1 : 6 ] )

for ( i in 2 : length ( grid ) ){

phi . cur r=grid [ i ]

mle . cur r = EM.DNB(mydata , to l , maxit , increment ,

b11=param [ 1 ] , b20=param [ 2 ] , b21=param [ 3 ] ,

g1=param [ 4 ] , g2=param [ 5 ] , phi=phi . cur r )

log . cur r=std (mydata , param=mle . cur r [ 1 : 6 ] )

i f ( log . cur r > log .maxim){

phi .maxim = phi . cur r

log .maxim = log . cur r

mle .maxim = mle . cur r

}

}

i f ( phi .maxim==grid [ 1 ] | phi .maxim == grid [ length ( grid ) ] ) {

i f ( phi .maxim==0.01){

cont inue = FALSE

}

i f ( phi .maxim == grid [ 1 ] ) {

count=count+1
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grid = grid−2

i f ( grid [ 1 ] <= 0){

grid = seq ( 0 . 0 1 , 1 . 0 1 ,by=0.05)

}

}

i f ( phi .maxim == grid [ length ( grid ) ] ) {

grid = grid+2

}

i f (count>2){

cont inue=FALSE

count=1

}

}

else {

cont inue = FALSE

}

}

return (mle .maxim)

}

#ca l c u l a t i o n o f SE fo r EM algor i thm es t ima t e s

std = function (mydata , param){

b11 = param [ 1 ]

b20 = param [ 2 ]

b21 = param [ 3 ]

g1 = param [ 4 ]
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g2 = param [ 5 ]

phi = param [ 6 ]

obs data = mydata [ mydata$d==1,]

cens data = mydata [ mydata$d==0,]

L obs = obs data$ l

R obs = obs data$ r

L cens = cens data$ l

x1t = obs data$x1

x1c = cens data$x1

x2t = obs data$x2

x2c = cens data$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

y = c (R obs ,L cens )

d = c ( obs data$d , cens data$d)

eta . t = exp( b11∗x1t )

eta . c = exp( b11∗x1c )

p . t = exp( b20+b21∗x2t )/(1+exp( b20+b21∗x2t ) )

p . c = exp( b20+b21∗x2c )/(1+exp( b20+b21∗x2c ) )

F . c = 1 − exp(−(g2∗L cens )ˆ(1/g1 ) )

F . t l = 1 − exp(−(g2∗L obs )ˆ(1/g1 ) )

F . t r = 1 − exp(−(g2∗R obs )ˆ(1/g1 ) )

Sp . c = (1 + phi∗eta . c∗p . c∗F. c )ˆ(−(1/phi ) )

Sp . t l = (1 + phi∗eta . t∗p . t∗F. t l )ˆ(−(1/phi ) )

Sp . t r = (1 + phi∗eta . t∗p . t∗F. t r )ˆ(−(1/phi ) )

137



dum1=rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ] = max( ( Sp . t l [ i ]−Sp . t r [ i ] ) , .Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return ( out1 )

}

C.2.3 EM-SM algorithm code

This section presents the computational code to implement the EM algorithm

formulated in Section 3.3 using the mixture representation of the negative binomial

distribution and using the covariate configuration denoted as Model 2 in section 3.6.

EM.DNB. IC .MC=function (mydata , to l , maxit ,

increment , b11 , b20 , b21 , g1 , g2 , phi ){

obs data=mydata [ mydata$d==1,]

cens data=mydata [ mydata$d==0,]

L obs=obs data$ l

R obs=obs data$ r

L cens=cens data$ l

x1t=obs data$x1

x1c=cens data$x1

x2t=obs data$x2

x2c=cens data$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )
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y = c (R obs ,L cens )

d = c ( obs data$d , cens data$d)

p .new=matrix (0 , ncol=1,nrow=6)

p . old=matrix (0 , ncol=1,nrow=6)

p . old [ 1 ,1 ]= b11+increment∗runif ( 1 , 0 , 1 )∗abs ( b11 )

p . old [ 2 ,1 ]= phi+increment∗runif ( 1 , 0 , 1 )∗abs ( phi )

p . old [ 3 ,1 ]= b20+increment∗runif ( 1 , 0 , 1 )∗abs ( b20 )

p . old [ 4 ,1 ]= b21+increment∗runif ( 1 , 0 , 1 )∗abs ( b21 )

p . old [ 5 ,1 ]= g1+increment∗runif ( 1 , 0 , 1 )∗abs ( g1 )

p . old [ 6 ,1 ]= g2+increment∗runif ( 1 , 0 , 1 )∗abs ( g2 )

count=0

cont inue = TRUE

i t e r=1

while ( cont inue ){

########Q func t i on :E s t ep : ###########

phi . r = p . old [ 2 , 1 ]

eta . r = exp(p . old [ 1 , 1 ] ∗x1 )

p . r = exp(p . old [ 3 , 1 ] + p . old [ 4 , 1 ] ∗x2 )/

(1 + exp(p . old [ 3 ,1 ]+p . old [ 4 , 1 ] ∗x2 ) )

F . r = 1 − exp(−(p . old [ 6 , 1 ] ∗y )ˆ(1/p . old [ 5 , 1 ] ) )

S . r = exp(−(p . old [ 6 , 1 ] ∗y )ˆ(1/p . old [ 5 , 1 ] ) )

e .M = d + ((1+phi . r∗d)∗eta . r∗(1−p . r∗F. r ) )/

(1+phi . r∗eta . r∗p . r∗F. r )

e .D = d + ((1+phi . r∗d)∗eta . r∗p . r∗S . r )/

(1+phi . r∗eta . r∗p . r∗F. r )
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e .U = ((1+phi . r∗d)∗eta . r )/(1+phi . r∗eta . r∗p . r∗F. r )

e . logU = digamma(1/phi . r + d) + log ( phi . r )

+log ( eta . r ) − log (1+phi . r∗eta . r∗p . r∗F. r )

Q1 = function (par=c ( b11 , phi ) ){

eta = exp(par [ 1 ] ∗x1 )

phi = par [ 2 ]

#E−s t ep ( r−th i t e r a t i o n )

for ( i in 1 : length ( phi ) ){

i f ( phi [ i ]<=0 | i s .nan( phi [ i ] ) ) {

phi [ i ]=.Machine$double . eps

}

}

dum1 . r = (1/phi )∗ ( e . logU − log ( phi ) −

log ( eta ) ) − e .U/ ( phi∗eta )

r e s u l t 1 = sum(dum1 . r)−length ( x1 )∗

log (gamma(1/phi ) )

return(− r e s u l t 1 )

}#end o f Q1 func t i on

Q2 = function (par=c ( b20 , b21 ) ){

p = exp(par [1 ]+par [ 2 ] ∗x2 )/(1+exp(par [1 ]+par [ 2 ] ∗x2 ) )

#E−s t ep ( r−th i t e r a t i o n )

dum. r = log (p)∗ ( e .D)+log(1−p)∗ ( e .M−e .D)

r e s u l t 2 = sum(dum. r )

return(− r e s u l t 2 )

}#end o f Q2 func t i on
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Q3 = function (par=c ( g1 , g2 ) ){

S = exp(−(par [ 2 ] ∗y )ˆ(1/par [ 1 ] ) )

#E−s t ep ( r−th i t e r a t i o n )

for ( i in 1 : length (S ) ){

i f (S [ i ]==0 | i s .nan(S [ i ] ) ) {

S [ i ]=.Machine$double . eps

}

}

dum1 . r = log (S)∗ ( e .D−d)

dum2 . r = exp(−(par [ 2 ] ∗L obs )ˆ(1/par [ 1 ] ) ) −

exp(−(par [ 2 ] ∗R obs )ˆ(1/par [ 1 ] ) )

dum3 . r = log (dum2 . r )

r e s u l t 3 = sum(dum1 . r ) + sum(dum3 . r )

return(− r e s u l t 3 )

}#end o f Q3 func t i on

####### M step ##########

beta1 .new = tryCatch ({optim(par=c (p . old [ 1 , 1 ] ,

p . old [ 2 , 1 ] ) , fn=Q1, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

beta1 .new = c ( 0 , 0 )

return ( beta1 .new)

}

)

beta2 .new = tryCatch ({optim(par=c (p . old [ 3 , 1 ] ,

p . old [ 4 , 1 ] ) , fn=Q2, method=”Nelder−Mead” )$par
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} , e r r o r=function ( e ){

beta2 .new = c ( 0 , 0 )

return ( beta2 .new)

}

)

lambda .new = tryCatch ({optim(par=c (p . old [ 5 , 1 ] ,

p . old [ 6 , 1 ] ) , fn=Q3, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

lambda .new = c ( 0 , 0 )

return ( lambda .new)

}

)

p .new = matrix (c ( beta1 .new , beta2 .new , lambda .new) )

i f (p .new[1 ,1]==0 | p .new[2 ,1]==0 | p .new[3 ,1]==0 |

p .new[4 ,1]==0 | p .new[5 ,1]==0 | p .new[6 ,1]==0){

cont inue = FALSE

p .new = matrix (c ( 0 , 0 , 0 , 0 , 0 , 0 ) )

break

} else {

i t e r = i t e r+1

cont inue= max(abs ( ( p .new−p . old )/p . old))> t o l&( i t e r<maxit )

p . old [ 1 ,1 ]=p .new [ 1 , 1 ]

p . old [ 2 ,1 ]=p .new [ 2 , 1 ]

p . old [ 3 ,1 ]=p .new [ 3 , 1 ]

p . old [ 4 ,1 ]=p .new [ 4 , 1 ]
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p . old [ 5 ,1 ]=p .new [ 5 , 1 ]

p . old [ 6 ,1 ]=p .new [ 6 , 1 ]

}#end o f e l s e

}#end o f wh i l e

out = rep (NA, 12 )

i f (p .new[1 ,1]==0 & p .new[2 ,1]==0 & p .new[3 ,1]==0 &

p .new[4 ,1]==0 & p .new[5 ,1]==0){

out = rep (0 , 12 )

} else {

std = function ( param){

b11 = param [ 1 ]

phi = param [ 2 ]

b20 = param [ 3 ]

b21 = param [ 4 ]

g1 = param [ 5 ]

g2 = param [ 6 ]

eta . t = exp( b11∗x1t )

eta . c = exp( b11∗x1c )

theta . t = ( phi∗eta . t )/(1+phi∗eta . t )

theta . c = ( phi∗eta . c )/(1+phi∗eta . c )

p . t = exp( b20+b21∗x2t )/(1+exp( b20+b21∗x2t ) )

p . c = exp( b20+b21∗x2c )/(1+exp( b20+b21∗x2c ) )

F . c = 1 − exp(−(g2∗L cens )ˆ(1/g1 ) )

F . t l = 1 − exp(−(g2∗L obs )ˆ(1/g1 ) )

F . t r = 1 − exp(−(g2∗R obs )ˆ(1/g1 ) )
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Sp . c = (1 + phi∗eta . c∗p . c∗F. c )ˆ(−(1/phi ) )

Sp . t l = (1 + phi∗eta . t∗p . t∗F. t l )ˆ(−(1/phi ) )

Sp . t r = (1 + phi∗eta . t∗p . t∗F. t r )ˆ(−(1/phi ) )

dum1=rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ]=max( ( Sp . t l [ i ]−Sp . t r [ i ] ) , .Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return ( out1 )

}

hessmat1=hes s i an ( std , c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] , p .new [ 3 , 1 ] ,

p .new [ 4 , 1 ] , p .new [ 5 , 1 ] , p .new [ 6 , 1 ] ) , method=”Richardson” )

FI=solve(−1∗hessmat1 )

std1 = sqrt ( FI [ 1 , 1 ] )

std2 = sqrt ( FI [ 2 , 2 ] )

std3 = sqrt ( FI [ 3 , 3 ] )

std4 = sqrt ( FI [ 4 , 4 ] )

std5 = sqrt ( FI [ 5 , 5 ] )

std6 = sqrt ( FI [ 6 , 6 ] )

out=c (p .new [ 1 , 1 ] , p .new [ 2 , 1 ] , p .new [ 3 , 1 ] , p .new [ 4 , 1 ] ,

p .new [ 5 , 1 ] , p .new [ 6 , 1 ] , std1 , std2 , std3 , std4 , std5 , std6 , i t e r )

}#end o f e l s e

return ( out )

}
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C.2.4 SEM algorithm code

This section presents the computational code to implement the SEM algorithm

formulated in Section 3.4

SEM.DNB=function (mydata , burn . i t , t o t a l . i t ,

increment , b11 , b20 , b21 , g1 , g2 , phi ){

obs . data=mydata [ mydata$d==1,]

cens . data=mydata [ mydata$d==0,]

L . obs=obs . data$ l

R. obs=obs . data$ r

L . cens=cens . data$ l

x1t=obs . data$x1

x1c=cens . data$x1

x2t=obs . data$x2

x2c=cens . data$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

y = c (R. obs , L . cens )

d = c ( obs . data$d , cens . data$d)

#i n i t i a l i z i n g the e s t ima t e s f o r each i t e r a t i o n

par . e s t=matrix (NA,nrow=to t a l . i t , ncol=6)

#Step 1 s t a r t wi th i n i t i a l guess f o r par

# par . e s t i s i n i t i a l guess f o r par

par . e s t [1 ,1 ]= b11 + runif (1 , 0 , increment )∗abs ( b11 )

par . e s t [1 ,2 ]= b20 + runif (1 , 0 , increment )∗abs ( b20 )

par . e s t [1 ,3 ]= b21 + runif (1 , 0 , increment )∗abs ( b21 )
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par . e s t [1 ,4 ]= g1 + runif (1 , 0 , increment )∗abs ( g1 )

par . e s t [1 ,5 ]= g2 + runif (1 , 0 , increment )∗abs ( g2 )

par . e s t [1 ,6 ]= phi + runif (1 , 0 , increment )∗abs ( phi )

#i n i t i a l i z i n g f i n a l SEM es t ima t e s & SE

par . f i n a l=rep (NA, 6 )

std . b11=NA

std . b20=NA

std . b21=NA

std . g1=NA

std . g2=NA

std . phi=NA

#count a l l ow s f o r Step 4 ( i t e r a t e R=t o t a l . i t t imes )

count = 1

count . bad = 0

cont inue = TRUE

while ( cont inue ){

#Step 2 r ep l a c e miss ing m, d by random gen va lue

M. gen = rep (0 , length ( y ) )

D. gen = rep (0 , length ( y ) )

eta . e s t = exp(par . e s t [ count , 1 ] ∗x1 )

p . e s t = exp(par . e s t [ count ,2 ]+par . e s t [ count , 3 ] ∗x2 )/

(1 + exp(par . e s t [ count , 2 ] + par . e s t [ count , 3 ] ∗x2 ) )

S . e s t = exp(−(par . e s t [ count , 5 ] ∗y )ˆ(1/par . e s t [ count , 4 ] ) )

F . e s t = 1 − S . e s t

i f (par . e s t [ count ,6]<=0 | i s .na(par . e s t [ count , 6 ] ) ) {
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par . e s t [ count , 6 ] = .Machine$double . eps

}

phi . e s t = par . e s t [ count , 6 ]

for ( i in 1 : length ( y ) ){

M. gen [ i ] = rnbinom(n=1, s i z e = ( phi . e s t ˆ(−1)+d [ i ] ) ,

prob = ((1+phi . e s t∗eta . e s t [ i ] ∗p . e s t [ i ] ∗F. e s t [ i ] ) /

(1 + phi . e s t∗eta . e s t [ i ] ) ) )+d [ i ]

i f (M. gen [ i ]==d [ i ] ) {

D. gen [ i ]=d [ i ]

} else {

i f (p . e s t [ i ]<=0){

print ( paste0 (p . e s t [ i ] , ” i n v a l i d a c t i v a t i o n prob” ) )}

i f (M. gen [ i ]<d [ i ] | M. gen [ i ] < 1){

print ( paste0 (M. gen [ i ] , ” i n v a l i d s i z e f o r D” ))}

D. gen [ i ] = rbinom(n=1, s i z e=M. gen [ i ]−d [ i ] ,

prob = (p . e s t [ i ] ∗S . e s t [ i ] /

(1−p . e s t [ i ] ∗F. e s t [ i ] ) ) )+d [ i ]

}

}

#E−s t ep ( r−th i t e r a t i o n )

Q1 = function (par=c ( b11 , phi ) ){

eta = exp(par [ 1 ] ∗x1 )

dum. r = suppressWarnings (par [ 2 ] ∗eta )

for ( i in 1 : length ( x1 ) ){

i f (dum. r [ i ]<=0){
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dum. r [ i ]= .Machine$double . eps

}

}

dum1 . r = lgamma( (1/par [ 2 ] )+M. gen )

dum2 . r = (1/par [ 2 ] ) ∗ log(1+dum. r )

dum3 . r = M. gen∗ ( log ( (dum. r ))− log (1+dum. r ) )

dum4 . r = length ( x1 )∗lgamma(1/par [ 2 ] )

r e s u l t 1 = sum(dum1 . r − dum2 . r + dum3 . r ) − dum4 . r

for ( i in 1 : length ( x1 ) ){

i f ( i s .nan(dum1 . r [ i ] ) | i s .nan(dum2 . r [ i ] ) |

i s .nan(dum3 . r [ i ] ) ) { r e s u l t 1 = In f }

}

return(− r e s u l t 1 )

}#end o f Q1 func t i on

Q2 = function (par=c ( b20 , b21 ) ){

p = exp(par [1 ]+par [ 2 ] ∗x2 )/(1+exp(par [1 ]+par [ 2 ] ∗x2 ) )

dum. r = log (p)∗ (D. gen)+log(1−p)∗ (M. gen−D. gen )

r e s u l t 2 = sum(dum. r )

return(− r e s u l t 2 )

}#end o f Q2 func t i on

Q3 = function (par=c ( g1 , g2 ) ){

S = exp(−(par [ 2 ] ∗y )ˆ(1/par [ 1 ] ) )

for ( i in 1 : length (S ) ){

i f (S [ i ]==0 | i s .nan(S [ i ] ) ) {

S [ i ]=.Machine$double . eps
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}

}

dum1 . r = log (S)∗ (D. gen − d)

dum2 . r = rep (NA, length (L . obs ) )

for ( i in 1 : length (L . obs ) ){

dum2 . r [ i ] = max(0 ,exp(−(par [ 2 ] ∗L . obs [ i ] ) ˆ ( 1/par [ 1 ] ) )

− exp(−(par [ 2 ] ∗R. obs [ i ] ) ˆ ( 1/par [ 1 ] ) ) )

}

dum3 . r = log (dum2 . r )

r e s u l t 3 = sum(dum1 . r ) + sum(dum3 . r )

return(− r e s u l t 3 )

}#end o f Q3 func t i on

####### M step ##########

#Step 3 maximize Q1,Q2,Q3 us ing M. gen ,D. gen

beta1 . phi .new = tryCatch ({optim(par=c (par . e s t [ count , 1 ] ,

par . e s t [ count , 6 ] ) , fn=Q1, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

beta1 . phi .new = c ( 0 , 0 )

return ( beta1 . phi .new)

}

)

beta2 .new = tryCatch ({optim(par=c (par . e s t [ count , 2 ] ,

par . e s t [ count , 3 ] ) , fn=Q2, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

beta2 .new = c ( 0 , 0 )
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return ( beta2 .new)

}

)

lambda .new = tryCatch ({optim(par=c (par . e s t [ count , 4 ] ,

par . e s t [ count , 5 ] ) , fn=Q3, method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

lambda .new = c ( 0 , 0 )

return ( lambda .new)

}

)

par . e s t .optim = c ( beta1 . phi .new [ 1 ] , beta2 .new ,

lambda .new , beta1 . phi .new [ 2 ] )

o u t l i e r = FALSE #check i f param es t imate i s o u t l i e r

#check i f par . e s t i s s u i t a b l e

i f (0% in%par . e s t .optim | par . e s t .optim [4]<0 |

par . e s t .optim [5]<0 | par . e s t .optim [6 ]<0){

count . bad = count . bad + 1

print ( paste0 (count . bad , ” bad runs ” ) )

} else {

par . e s t [ count , ] = par . e s t .optim

count=min(count+1, t o t a l . i t )

par . e s t [ count , ] = par . e s t .optim

}

i f (count . bad>5){

count=to t a l . i t
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return ( rep ( 0 , 1 2 ) )

}

cont inue = count < t o t a l . i t

}

#Step 5 c a l c u l a t e MLE ( by log− l i k method )

std = function ( param){ # observed log− l i k e l i h o o d

b11 = param [ 1 ]

b20 = param [ 2 ]

b21 = param [ 3 ]

g1 = param [ 4 ]

g2 = param [ 5 ]

phi = param [ 6 ]

eta . t = exp( b11∗x1t )

eta . c = exp( b11∗x1c )

theta . t = ( phi∗eta . t )/(1+phi∗eta . t )

theta . c = ( phi∗eta . c )/(1+phi∗eta . c )

p . t = exp( b20+b21∗x2t )/(1+exp( b20+b21∗x2t ) )

p . c = exp( b20+b21∗x2c )/(1+exp( b20+b21∗x2c ) )

F . c = 1 − exp(−(g2∗L . cens )ˆ(1/g1 ) )

F . t l = 1 − exp(−(g2∗L . obs )ˆ(1/g1 ) )

F . t r = 1 − exp(−(g2∗R. obs )ˆ(1/g1 ) )

Sp . c = (1 + phi∗eta . c∗p . c∗F. c )ˆ(−(1/phi ) )

Sp . t l = (1 + phi∗eta . t∗p . t∗F. t l )ˆ(−(1/phi ) )

Sp . t r = (1 + phi∗eta . t∗p . t∗F. t r )ˆ(−(1/phi ) )

dum1=rep (NA, length (Sp . t l ) )

151



for ( i in 1 : length (dum1)){

dum1 [ i ]=max( ( Sp . t l [ i ]−Sp . t r [ i ] ) , .Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return ( out1 )

}

log . l i k = rep (NA, t o t a l . i t−burn . i t )

for ( j in 1 : length ( log . l i k ) ){

log . l i k [ j ]= std (param=par . e s t [ burn . i t+j , ] )

}

index = which .max( log . l i k )

par . f i n a l = par . e s t [ burn . i t+index , ]

hessmat .SEM = hes s i an ( std , par . f i n a l , method=”Richardson” )

FI .SEM = tryCatch ({ solve(−1∗hessmat .SEM)

} , e r r o r=function ( e ){

FI .SEM = matrix (c ( rep ( 0 , 3 6 ) ) ,nrow=6,ncol=6)

return ( FI .SEM)

}

)

i f ( suppressWarnings (any( FI .SEM)==0| i s .na( sqrt ( FI .SEM[ 1 , 1 ] ) )

| i s .na( sqrt ( FI .SEM[ 2 , 2 ] ) ) | i s .na( sqrt ( FI .SEM[ 3 , 3 ] ) ) |

i s .na( sqrt ( FI .SEM[ 4 , 4 ] ) ) | i s .na( sqrt ( FI .SEM[ 5 , 5 ] ) ) |

i s .na( sqrt ( FI .SEM[ 6 , 6 ] ) ) ) ) {

par . f i n a l=c ( 0 , 0 , 0 , 0 , 0 , 0 )

std . b11=0
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std . b20=0

std . b21=0

std . g1=0

std . g2=0

std . phi=0

} else {

std . b11 = sqrt ( FI .SEM[ 1 , 1 ] )

std . b20 = sqrt ( FI .SEM[ 2 , 2 ] )

std . b21 = sqrt ( FI .SEM[ 3 , 3 ] )

std . g1 = sqrt ( FI .SEM[ 4 , 4 ] )

std . g2 = sqrt ( FI .SEM[ 5 , 5 ] )

std . phi = sqrt ( FI .SEM[ 6 , 6 ] )

}

r e s u l t = c (par . f i n a l , s td . b11 , std . b20 ,

std . b21 , std . g1 , std . g2 , std . phi )

return ( r e s u l t )

}#end o f the SEM func t i on

C.3 Computational code for interval-censored Box-Cox transformation cure model

C.3.1 Data generation for α ϵ (0, 1]

LR in t=function ( y1 , len1 , l 1 ){

i f ( y1>0 & y1<=l1 ){

a = c ( .Machine$double . eps , l 1 )

} else {

k = as . integer ( ( y1−l 1 )/ l en1 )+1
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a = c ( l 1 +((k−1)∗ l en1 ) , l 1+(k∗ l en1 ) )

}

return ( a )

}

data gen BC=function (n , alpha , b0 , b1 , b2 , g1 , g2 , lambda , cenrate ){

L=rep (NA, n)

R=rep (NA, n)

d=rep (NA, n)

x1=rbinom(n=n , s i z e =1,prob=0.5)

x2=runif (n ,min = 0 .1 ,max = 20)

phi=exp( b0+(b1∗x1)+(b2∗x2 ) )/(1+

( alpha∗exp( b0+(b1∗x1)+(b2∗x2 ) ) ) )

U=runif (n ,min=0,max=1)

C=rexp (n , r a t e=cenrate )

p0 = (1−( alpha∗phi ) ) ˆ ( 1/alpha )

count . obs=0

count . cure=0

for ( i in 1 : n){

i f (U[ i ]<=p0 [ i ] ) {

L [ i ]=C[ i ]

R[ i ]= In f

d [ i ]=0

count . cure=count . cure+1

} else {

U1 = runif (1 ,min=0,max=1)
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y=(−exp(−(g1∗x1 [ i ])−( g2∗x2 [ i ] ) ) ∗ log ( ( ( alpha∗phi [ i ] )

+((p0 [ i ]+((1−p0 [ i ] ) ∗U1))ˆ alpha )−1)/

( alpha∗phi [ i ] ) ) ) ˆ lambda

t=min(y ,C[ i ] )

i f ( t==C[ i ] ) {

L [ i ]=C[ i ]

R[ i ]= In f

d [ i ]=0

} else {

l en=runif ( 1 , 0 . 1 , 0 . 5 )

l=runif ( 1 , 0 , 1 )

ans=LR in t ( t , len , l )

L [ i ]=ans [ 1 ]

R[ i ]=ans [ 2 ]

d [ i ]=1

count . obs = count . obs + 1

}# end o f inner e l s e

}# end o f outer e l s e

}# end o f f o r

return (data . frame (L ,R, d , x1 , x2 ) )

}

C.3.2 Data generation for α = 0

data 0 BC=function (n , b0 , b1 , b2 , g1 , g2 , lambda , cenra te ){

L=rep (NA, n)
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R=rep (NA, n)

d=rep (NA, n)

x1 = rbinom(n=n , s i z e =1, prob=0.5)

x2=runif (n ,min = 0 .1 ,max = 20)

for ( i in 1 : n){

i f ( x2 [ i ]<=0){

x2 [ i ] = .Machine$double . eps

}

}

phi = exp( b0 + (b1∗x1 ) + (b2∗x2 ) )

U = runif (n , min=0, max=1)

C = rexp (n , r a t e=cenrate )

p0 = exp(−phi )

count . obs = 0

count . cure = 0

for ( i in 1 : n){

i f (U[ i ]<=p0 [ i ] ) {

L [ i ] = C[ i ]

R[ i ] = In f

d [ i ] = 0

count . cure=count . cure+1

} else {

U1 = runif (1 ,min=0,max=1)

y = (−exp(−(g1∗x1 [ i ])−( g2∗x2 [ i ] ) ) ∗ log (1+(exp(−b0−

( b1∗x1 [ i ])−( b2∗x2 [ i ] ) ) ∗ log ( p0 [ i ]+
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((1−p0 [ i ] ) ∗U1) ) ) ) ) ˆ lambda

t = min(y ,C[ i ] )

i f ( t==C[ i ] ) {

L [ i ] = C[ i ]

R[ i ] = In f

d [ i ] = 0

} else {

l en = runif ( 1 , 0 . 1 , 0 . 5 )

l = runif ( 1 , 0 , 1 )

ans = LR in t ( t , len , l )

L [ i ] = ans [ 1 ]

R[ i ] = ans [ 2 ]

d [ i ] = 1

count . obs = count . obs + 1

}# end o f inner e l s e

}# end o f outer e l s e

}# end o f f o r

return (data . frame (L ,R, d , x1 , x2 ) )

}

C.3.3 EM algorithm for interval-censored Box-Cox transformation cure model for

α ϵ (0, 1]

BC gen EM Wei=function (mydata , to l , maxit , increment ,

alpha , b0 , b1 , b2 , g1 , g2 , lambda ){

data obs = mydata [ mydata$d==1,]
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data cens = mydata [ mydata$d==0,]

L obs = data obs$L

R obs = data obs$R

L cens = data cens$L

x1t = data obs$x1

x1c = data cens$x1

x2t = data obs$x2

x2c = data cens$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

pnew = rep ( 0 , 7 )

pold = rep ( 0 , 7 )

pold [ 1 ] = runif (1 , b0−increment∗abs ( b0 ) ,

b0+increment∗abs ( b0 ) )

pold [ 2 ] = runif (1 , b1−increment∗abs ( b1 ) ,

b1+increment∗abs ( b1 ) )

pold [ 3 ] = runif (1 , b2−increment∗abs ( b2 ) ,

b2+increment∗abs ( b2 ) )

pold [ 4 ] = runif (1 , g1−increment∗abs ( g1 ) ,

g1+increment∗abs ( g1 ) )

pold [ 5 ] = runif (1 , g2−increment∗abs ( g2 ) ,

g2+increment∗abs ( g2 ) )

pold [ 6 ] = runif (1 , lambda−increment∗abs ( lambda ) ,

lambda+increment∗abs ( lambda ) )

i f ( alpha==0){
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pold [7 ]= increment∗runif ( 1 , 0 , 1 )

} else {pold [7 ]=min( alpha+increment∗runif ( 1 , 0 , 1 ) , 1 )}

cont inue = TRUE

i t e r = 1

while ( cont inue ){

#Q func t i on :E s t ep :

S0 .L . obs = exp(−L obs ˆ(1/pold [ 6 ] ) )

S0 .R. obs = exp(−R obs ˆ(1/pold [ 6 ] ) )

S0 .L . cens = exp(−L cens ˆ(1/pold [ 6 ] ) )

phi . cens . r = exp( pold [1 ]+ pold [ 2 ] ∗x1c+pold [ 3 ] ∗x2c )/

(1+pold [ 7 ] ∗exp( pold [1 ]+ pold [ 2 ] ∗x1c+pold [ 3 ] ∗x2c ) )

F .L . cens . r = 1−S0 .L . cens ˆ(exp( pold [ 4 ] ∗x1c+pold [ 5 ] ∗x2c ) )

Sp .L . cens . r = (1−pold [ 7 ] ∗phi . cens . r∗

(F .L . cens . r ) ) ˆ ( 1/pold [ 7 ] )

p0 . r= (1−pold [ 7 ] ∗phi . cens . r )ˆ(1/pold [ 7 ] )

Su . r = (Sp .L . cens . r−p0 . r )/(1−p0 . r )

e .W = (Sp .L . cens . r−p0 . r )/Sp .L . cens . r

#E s t ep

Q = function (par=c ( b0 , b1 , b2 , g1 , g2 , lambda , alpha ) ){

S0 .L . obs . e s t = exp(−L obs ˆ(1/par [ 6 ] ) )

S0 .R. obs . e s t = exp(−R obs ˆ(1/par [ 6 ] ) )

S0 .L . cens . e s t = exp(−L cens ˆ(1/par [ 6 ] ) )

phi . obs . e s t = (exp(par [1 ]+par [ 2 ] ∗x1t+par [ 3 ] ∗x2t ) )/

(1+par [ 7 ] ∗exp(par [1 ]+par [ 2 ] ∗x1t+par [ 3 ] ∗x2t ) )

phi . cens . e s t = (exp(par [1 ]+par [ 2 ] ∗x1c+par [ 3 ] ∗x2c ) )/
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(1+par [ 7 ] ∗exp(par [1 ]+par [ 2 ] ∗x1c+par [ 3 ] ∗x2c ) )

F .L . obs . e s t = 1−S0 .L . obs . e s t ˆ

(exp(par [ 4 ] ∗x1t+par [ 5 ] ∗x2t ) )

F .R. obs . e s t = 1−S0 .R. obs . e s t ˆ

(exp(par [ 4 ] ∗x1t+par [ 5 ] ∗x2t ) )

F .L . cens . e s t = 1−S0 .L . cens . e s t ˆ

(exp(par [ 4 ] ∗x1c+par [ 5 ] ∗x2c ) )

Sp .L . obs . e s t = (1−par [ 7 ] ∗phi . obs . e s t∗

F.L . obs . e s t )ˆ(1/par [ 7 ] )

Sp .R. obs . e s t = (1−par [ 7 ] ∗phi . obs . e s t∗

F.R. obs . e s t )ˆ(1/par [ 7 ] )

Sp .L . cens . e s t = (1−par [ 7 ] ∗phi . cens . e s t∗

F.L . cens . e s t )ˆ(1/par [ 7 ] )

p0 . e s t = (1−par [ 7 ] ∗phi . cens . e s t )ˆ(1/par [ 7 ] )

Su . e s t = (Sp .L . cens . est−p0 . e s t )/(1−p0 . e s t )

for ( i in 1 : length ( p0 . e s t ) ){

p0 . e s t [ i ] = max( p0 . e s t [ i ] , .Machine$double . eps )

Su . e s t [ i ] = max(Su . e s t [ i ] , .Machine$double . eps )

}

dum = Sp .L . obs . e s t − Sp .R. obs . e s t

dum1 = log (dum)

dum2 = (1−e .W)∗ log ( p0 . e s t ) + e .W∗log ((1−p0 . e s t )∗Su . e s t )

r e s u l t = sum(dum1)+sum(dum2)

return(− r e s u l t )

} #end o f Q Function
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#M step

pnew = tryCatch ({optim(par=c ( pold ) , fn=Q,

method=”Nelder−Mead” )$par

} , e r r o r=function ( e ){

pnew = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 )

return (pnew)

}

)

i f (0 %in% pnew){

cont inue = FALSE

pnew = c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 )

break

} else {

i t e r = i t e r+1

cont inue = max(abs ( ( pnew−pold )/pold ))> t o l

pold = pnew

}#end o f e l s e

}#end o f wh i l e

out = rep (NA, 14 )

#i f error , don ’ t c a l c u l a t e SE and re turn a l l z e ro s

i f (0 %in% pnew){

out = rep (0 , 15 )

} else {

std = function ( param){

b0 = param [ 1 ]
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b1 = param [ 2 ]

b2 = param [ 3 ]

g1 = param [ 4 ]

g2 = param [ 5 ]

lambda = param [ 6 ]

alpha = param [ 7 ]

phi . t = exp( b0+b1∗x1t+b2∗x2t )/

(1+alpha∗exp( b0+b1∗x1t+b2∗x2t ) )

phi . c = exp( b0+b1∗x1c+b2∗x2c )/

(1+alpha∗exp( b0+b1∗x1c+b2∗x2c ) )

S0 .L . cens = exp(−L cens ˆ(1/lambda ) )

S0 .L . obs = exp(−L obs ˆ(1/lambda ) )

S0 .R. obs = exp(−R obs ˆ(1/lambda ) )

F . c = 1 − S0 .L . cens ˆ(exp( g1∗x1c+g2∗x2c ) )

F . t l = 1 − S0 .L . obs ˆ(exp( g1∗x1t+g2∗x2t ) )

F . t r = 1 − S0 .R. obs ˆ(exp( g1∗x1t+g2∗x2t ) )

Sp . c = (1−alpha∗phi . c∗F. c )ˆ(1/alpha )

Sp . t l = (1−alpha∗phi . t∗F. t l )ˆ(1/alpha )

Sp . t r = (1−alpha∗phi . t∗F. t r )ˆ(1/alpha )

dum1 = rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ] = max( ( Sp . t l [ i ]−Sp . t r [ i ] ) ,

.Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )
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return ( out1 )

}

hessmat1 = hes s i an ( std , c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] ,

pnew [ 5 ] , pnew [ 6 ] , pnew [ 7 ] ) , method=”Richardson” )

FI = tryCatch ({ solve(−1∗hessmat1 )

} , e r r o r=function ( e ){

FI=matrix (0 ,nrow=6,ncol=6)

}

)

i f (any( i s .na( FI ) ) ){

out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , pnew [ 7 ] , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

} else i f ( FI [1 ,1 ]<0 | FI [2 ,2 ]<0 | FI [3 ,3 ] <0 |

FI [4 ,4 ]<0 | FI [5 ,5 ]<0 | FI [6 ,6 ]<0 | FI [7 ,7 ]<0){

out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , pnew [ 7 ] , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )

} else {

std1 = sqrt ( FI [ 1 , 1 ] )

std2 = sqrt ( FI [ 2 , 2 ] )

std3 = sqrt ( FI [ 3 , 3 ] )

std4 = sqrt ( FI [ 4 , 4 ] )

std5 = sqrt ( FI [ 5 , 5 ] )

std6 = sqrt ( FI [ 6 , 6 ] )

std7 = sqrt ( FI [ 7 , 7 ] )

std = std (pnew)
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out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , pnew [ 7 ] , std1 , std2 , std3 , std4 , std5 , std6 , std7 , std )

}

}#end o f e l s e

return ( out )

}

C.3.4 EM algorithm for interval-censored Box-Cox transformation cure model for

α = 0

BC 0 EM Wei=function (mydata , to l , maxit ,

increment , b0 , b1 , b2 , g1 , g2 , lambda ){

data obs = mydata [ mydata$d==1,]

data cens = mydata [ mydata$d==0,]

L obs = data obs$L

R obs = data obs$R

L cens = data cens$L

x1t = data obs$x1

x1c = data cens$x1

x2t = data obs$x2

x2c = data cens$x2

x1 = c ( x1t , x1c )

x2 = c ( x2t , x2c )

pnew = rep ( 0 , 6 )

pold = rep ( 0 , 6 )

pold [ 1 ] = runif (1 , b0−increment∗abs ( b0 ) ,
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b0+increment∗abs ( b0 ) )

pold [ 2 ] = runif (1 , b1−increment∗abs ( b1 ) ,

b1+increment∗abs ( b1 ) )

pold [ 3 ] = runif (1 , b2−increment∗abs ( b2 ) ,

b2+increment∗abs ( b2 ) )

pold [ 4 ] = runif (1 , g1−increment∗abs ( g1 ) ,

g1+increment∗abs ( g1 ) )

pold [ 5 ] = runif (1 , g2−increment∗abs ( g2 ) ,

g2+increment∗abs ( g2 ) )

pold [ 6 ] = runif (1 , lambda−increment∗abs ( lambda ) ,

lambda+increment∗abs ( lambda ) )

cont inue = TRUE

count = 0

i t e r = 1

while ( cont inue ){

S0 .L . obs = exp(−L obs ˆ(1/pold [ 6 ] ) )

S0 .R. obs = exp(−R obs ˆ(1/pold [ 6 ] ) )

S0 .L . cens = exp(−L cens ˆ(1/pold [ 6 ] ) )

phi . cens . r = exp( pold [1 ]+ pold [ 2 ] ∗x1c+pold [ 3 ] ∗x2c )

F .L . cens . r = 1−S0 .L . cens ˆ(exp( pold [ 4 ] ∗x1c+pold [ 5 ] ∗x2c ) )

Sp .L . cens . r = exp(−phi . cens . r∗F.L . cens . r )

p0 . r = exp(−phi . cens . r )

Su . r = (Sp .L . cens . r−p0 . r )/(1−p0 . r )

e .W = (Sp .L . cens . r−p0 . r )/Sp .L . cens . r

#E s t ep
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Q = function (par=c ( b0 , b1 , b2 , g1 , g2 , lambda )){

S0 .L . obs . e s t = exp(−L obs ˆ(1/par [ 6 ] ) )

S0 .R. obs . e s t = exp(−R obs ˆ(1/par [ 6 ] ) )

S0 .L . cens . e s t = exp(−L cens ˆ(1/par [ 6 ] ) )

phi . obs . e s t = exp(par [1 ]+par [ 2 ] ∗x1t+par [ 3 ] ∗x2t )

phi . cens . e s t = exp(par [1 ]+par [ 2 ] ∗x1c+par [ 3 ] ∗x2c )

F .L . obs . e s t = 1−S0 .L . obs . e s t ˆ

(exp(par [ 4 ] ∗x1t+par [ 5 ] ∗x2t ) )

F .R. obs . e s t = 1−S0 .R. obs . e s t ˆ

(exp(par [ 4 ] ∗x1t+par [ 5 ] ∗x2t ) )

F .L . cens . e s t = 1−S0 .L . cens . e s t ˆ

(exp(par [ 4 ] ∗x1c+par [ 5 ] ∗x2c ) )

Sp .L . obs . e s t = exp(−phi . obs . e s t∗F.L . obs . e s t )

Sp .R. obs . e s t = exp(−phi . obs . e s t∗F.R. obs . e s t )

Sp .L . cens . e s t = exp(−phi . cens . e s t∗F.L . cens . e s t )

p0 . e s t = exp(−phi . cens . e s t )

Su . e s t = (Sp .L . cens . est−p0 . e s t )/(1−p0 . e s t )

for ( i in 1 : length ( p0 . e s t ) ){

p0 . e s t [ i ] = max( p0 . e s t [ i ] , .Machine$double . eps )

Su . e s t [ i ] = max(Su . e s t [ i ] , .Machine$double . eps )

}

dum = Sp .L . obs . e s t − Sp .R. obs . e s t

dum1 = log (dum)

dum2 = (1−e .W)∗ log ( p0 . e s t ) + e .W∗ log ((1−p0 . e s t )∗Su . e s t )

r e s u l t = sum(dum1)+sum(dum2)
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return(− r e s u l t )

} #end o f Q Function

#M step

pnew = opt$par

pnew = optim(par=c ( pold ) , fn=Q, method=”Nelder−Mead” )$par

i t e r = i t e r+1

cont inue = (max(abs ( ( pnew−pold )/pold ))> t o l&i t e r<maxit )

pold = pnew

}#end o f wh i l e

out = rep (NA, 14 )

i f (0 %in% pnew){

out = rep (0 , 14 )

} else {

std = function ( param){

b0 = param [ 1 ]

b1 = param [ 2 ]

b2 = param [ 3 ]

g1 = param [ 4 ]

g2 = param [ 5 ]

lambda = param [ 6 ]

phi . t = exp( b0+b1∗x1t+b2∗x2t )

phi . c = exp( b0+b1∗x1c+b2∗x2c )

S0 .L . cens = exp(−L cens ˆ(1/lambda ) )

S0 .L . obs = exp(−L obs ˆ(1/lambda ) )

S0 .R. obs = exp(−R obs ˆ(1/lambda ) )
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F. c = 1 − S0 .L . cens ˆ(exp( g1∗x1c+g2∗x2c ) )

F . t l = 1 − S0 .L . obs ˆ(exp( g1∗x1t+g2∗x2t ) )

F . t r = 1 − S0 .R. obs ˆ(exp( g1∗x1t+g2∗x2t ) )

Sp . c = exp(−phi . c∗F. c )

Sp . t l = exp(−phi . t∗F. t l )

Sp . t r = exp(−phi . t∗F. t r )

dum1 = rep (NA, length (Sp . t l ) )

for ( i in 1 : length (dum1)){

dum1 [ i ] = max( ( Sp . t l [ i ]−Sp . t r [ i ] ) ,

.Machine$double . eps )

}

out1 = sum( log (Sp . c ) ) + sum( log (dum1) )

return ( out1 )

}

hessmat1 = hes s i an ( std , c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] ,

pnew [ 4 ] , pnew [ 5 ] , pnew [ 6 ] ) , method=”Richardson” )

FI = solve(−1∗hessmat1 )

i f (any( i s .na( FI ) ) ){

out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , alpha , 0 , 0 , 0 , 0 , 0 , 0 ,NA)

} else i f ( FI [1 ,1 ]<0 | FI [2 ,2 ]<0 | FI [3 ,3 ] <0 |

FI [4 ,4 ]<0 | FI [5 ,5 ]<0 | FI [6 ,6 ]<0){

out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , alpha , 0 , 0 , 0 , 0 , 0 , 0 ,NA)

} else {
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std1 = sqrt ( FI [ 1 , 1 ] )

std2 = sqrt ( FI [ 2 , 2 ] )

std3 = sqrt ( FI [ 3 , 3 ] )

std4 = sqrt ( FI [ 4 , 4 ] )

std5 = sqrt ( FI [ 5 , 5 ] )

std6 = sqrt ( FI [ 6 , 6 ] )

std . mle = std (c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] ,

pnew [ 5 ] , pnew [ 6 ] ) )

out = c (pnew [ 1 ] , pnew [ 2 ] , pnew [ 3 ] , pnew [ 4 ] , pnew [ 5 ] ,

pnew [ 6 ] , 0 , std1 , std2 , std3 , std4 , std5 , std6 , std . mle )

}

}#end o f e l s e

return ( out )

}
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