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ABSTRACT

OPTIMAL CONTROL FRAMEWORKS FOR MODELING DYNAMICS AND
ANDROGEN DEPRIVATION THERAPIES IN PROSTATE CANCER

Hussein Ed duweh, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Souvik Roy

In this work, we present an optimal control approach for the assessment of
treatments in prostate cancer. For this purpose, we use two different approaches,
based on differential equations, to model the dynamics of prostate cancer. For
the first approach, we use a system of ordinary differential equations (ODE) that
model androgen-dependent and independent prostate cancer cell mechanisms. Given
some synthetic patient data, we then performed a parameter estimation process by
formulating an optimization problem to obtain the coefficients in this model. A second
optimal control problem was formulated to obtain optimal androgen suppression
therapies. A theoretical analysis of both optimization problems was performed
to prove the existence of the minimizers. The numerical implementation of the
optimization problems was done using a non-linear conjugate gradient method. Several
numerical experiments demonstrate the accuracy and robustness of our proposed
ODE framework. The second approach involved extending a reduced version of the
aforementioned ODE model to a Liouville partial differential equation model that

captures more variabilities and randomness involved in clinical trials and formulating



the corresponding parameter estimation and optimal control problems. The numerical
implementation was done using a second-order spatially accurate finite volume scheme.
First, the comparison of the ODE and the Liouville framework results of parameter
estimation demonstrated that the Liouville modeling framework is more accurate in
capturing the cancer cell dynamics. Results of the Liouville optimal control framework
demonstrated the effectiveness in obtaining optimal therapies to combat prostate

cancer.
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CHAPTER 1
Introduction

1.1 Prostate

The prostate is a small male gland about the size of a walnut that is part of
both the male reproductive and endocrine systems. It is located below the bladder.
Precisely, deep inside the groin, between the base of the penis and the front of the
rectum. It is very important for reproduction because it produces and supplies part of
the seminal fluid, which mixes with sperm from the testes and helps it travel, nourish,
and survive. During ejaculation, the prostate muscles help push this fluid into the
urethra, where it’s ejected with sperm as semen. One of the deadliest conditions that

affect the prostate is cancer.

—me SpaceoAR

Figure 1.1: prostate gland [79]

1.2 Prostate cancer developments, motivation
Prostate cancer begins when some of the cells in the prostate gland start growing

uncontrollably. It usually starts as a tumor without any signs or symptoms in young



men, typically between the ages of 20 and 30. However, the problem is that symptoms
only become noticeable after a long time, when the disease has already become
dangerous. This means that by the time symptoms appear, the available treatment
options for the patient are reduced, and the chances of survival are also lower [10, 41].
Although it is difficult to determine the exact causes of prostate cancer, age, race,
and inherited factors are the most strongly established risk factors for it. [65].

Prostate cancer is one of the most common and dangerous type of non-skin
cancer, and is considered the second leading cause of death among men in the United
States [54]. One out of every six men is estimated to be diagnosed with prostate
cancer at some point in their life [53]. According to the American Cancer Society,
there are around 268,490 new cases of prostate cancer in the United States, with
34,500 deaths in 2022 [92]. There are more than 3.1 million American men currently
living with prostate cancer, which is nearly equal to the population of Chicago,
[llinois. Therefore, the disease remains a highly discussed and researched topic in
cancer studies [96].

Globally, prostate cancer is becoming more common, although it is particularly
prevalent in poorer countries [89]. The World Health Organization reported 9.6
million cancer deaths and 18.1 million new cancer cases in 2018. By the year 2040, it
is expected that there will be 29.5 million new cases of cancer and 16.5 million deaths
[72]. Thus, it is imperative to determine efficient and effective treatment strategies

for this disease.

1.3 Prostate cancer models
Doctors and researchers began to study the growth and effects of prostate
cancer, and most studies and research were done in clinics. However, there are many

challenges exist in clinical prostate cancer research. Some of them require clinical
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studies to understand the complex mechanisms of cancer and associated treatments.
Another significant clinical challenge is obtaining an effective treatment strategy for
each patient individually, or at least identifying a subset of patients who could benefit
from a particular treatment. In addition, testing even one therapy during clinical
trials is costly.

These obstacles show the necessity of continuous research efforts to improve our
understanding of prostate cancer and optimize treatment options for better patient
results. There is a significant lack of detailed knowledge of the intricate mechanisms
behind prostate cancer and the results of different therapies, and it is for this reason
that some researchers have found new research methods using mathematical models
to more effectively understand how prostate cancer behaves [59].

In the past years, a lot of mathematical models have been created and analyzed
through collaborations with doctors to explore various aspects of prostate cancer,
such as treatment choices and timetables for those treatments [76]. Through these
collaborations, important discoveries have been made about how prostate cancer
develops and changes over time. In the most notable of these discoveries, Yorke et al.
[76] created a simple model to describe and explain how prostate cancer grows and
progresses. Ideta et al. [50] formulated mathematical models to determine prostate
cancer growth while on intermittent androgen therapy. Portz and Kuang [78] created
a mathematical model of the cancer with the treatment of androgen deprivation
therapy, and this is the first clinically validated dynamical model for the disease.
Rutter and Kuang [83] built a new population model for vaccination and androgen
deprivation therapy. Baez and Kuang [7] introduced a two-subpopulation model
for prostate cancer undergoing androgen suppression therapy. For other models,

29, 31, 42, 43, 51, 52, 94, 95].



1.4 Prostate cancer treatment

The success of some previous work [7, 59, 78, 83] led to the development of
several models to study the cancer’s progression and treatment. One of the frequently
used methods for this treatment is androgen deprivation therapy (ADT), which uses
drugs to block or lower levels of androgen and starve the prostate cancer cells of
androgen. This method was based on the significant cancer research discovery made
by Huggins and Hodes [49]. They found that removing the testicles (castration) can
help reduce the size of prostate tumors. This discovery highlighted the significant
role of androgen, a male sex hormone, in the growth of prostate cancer cells. Their
research opened the possibility of treating some cancers using chemical treatments,
making this an essential development in the field. As a result, Huggins was awarded
the Nobel Prize in Medicine and Physiology in 1966 for this remarkable discovery
[70].

Over time, androgen deprivation therapy, a form of hormone therapy, is a
typical treatment for localized and locally progressing prostate cancer and has been
shown to improve survival significantly. It can be said that mathematical models
have made great progress in helping us understand how cancer cells grow and
how androgen deprivation affects their growth and response to treatment. These
models have made significant contributions to the field of cancer treatment and
provided important knowledge and new ways to treat cancer effectively. See, e.g.,
(7,29, 31, 42, 43, 46, 50, 52, 78, 83, 91, 94].

Typically, androgen deprivation therapy (ADT) thrives at the beginning of
treatment because it targets the primary tumor cells that rely on androgen for their
growth. However, in many cases, ADT has some side effects [60]. It is unable to
prevent a relapse. This happens because, after a few years, the androgen-dependent

(AD) tumor cells resist treatment and transform into androgen-independent (AT)
4



cells. These Al cells can continue multiplying even in an environment with limited
androgen availability [20, 38, 85]. Some research indicates that only specific groups
of patients may experience benefits from intermittent androgen deprivation therapy,
but the determination of those specific groups is still an ongoing process [58, 93].

Although mathematical models have suggested that intermittent androgen
deprivation therapy might extend the time until androgen-independent relapse, there
is currently no solid proof from clinical trials to support this claim [15, 25, 84, 90].
Moreover, doctors have no agreement about the treatment’s duration or intervals
[35].

One could say that the results shown in these studies show that prostate cancer
can go into near extinction during the on-treatment interval before coming back during
the off-treatment break. Also, the mechanism used for the method to incorporate
androgen into growth and death rates is ineffective when androgen independence (Al)
cells overtake androgen dependence (AD) cells. Thus, developing and assessing the

optimal ADT method for prostate cancer is essential.

1.5 Optimal control

Most of the past optimal control models of cancer therapy worked to minimize
total tumor volume. Swan and Vincent [88] provide the first cancer treatment
applications of optimal control theory. Over time, researchers have applied optimal
control theory to explore various cancer treatments, including chemotherapies and
radiotherapy [1, 11, 56, 21, 63, 68, 23]. Additionally, in prostate cancer research,
some studies use optimal control to find the best schedule of androgen-dependent

therapy [45, 47].



The optimal dose schedule is considered good when the goal of the therapy is
to reduce the variance in tumor burden over a period of time. In 2009, Gatenby [33]
demonstrated how effective this goal is in achieving long-term control of tumors.

Jessica J. Cunningham et al. [27] used optimal control theory to find the best
treatment schedule for patients by using nonlinear constrained optimization. The
results showed that long-term tumor control is possible with optimized therapy.

The primary motivation of this work is to formulate an optimization problem
to find the optimal dose (lowest dose) that will result in the best treatment for the
patient. In this context, developing and assessing effective treatment methods for
prostate cancer is essential, as it will provide a fast and practical framework for

treatment assessments.

1.6 Outline of thesis

This dissertation is organized into six chapters and has the following structure:
In Chapter 2, provides the preliminary work and essential definitions necessary for
the subsequent parts of this dissertation. In Chapter 3, delves into ODE modeling
and the parameter estimation problem, covering and explaining the mathematical
ODE model and the non-dimensional modeling approach used. Provided are some
theoretical results and formulate an optimality system, in addition to the showcases
numerical results obtained from solving the parameter estimation problem. In
Chapter 4, formulates optimization problems related to drug treatments, discussing
theoretical results and presenting numerical optimal control results from optimal
control procedures. In Chapter 5, the focus shifts to the Liouville optimal control
problem in PDE. This section introduces the Liouville model for prostate cancer and
explores two optimization problems related to parameter estimation and optimal

control. It offers theoretical insights, numerical schemes, and outcomes derived
6



from solving the Liouville equations. Finally, Chapter 6 concludes the thesis and

summarizes the main findings, contributions, and potential future research directions.



CHAPTER 2
Definitions and preliminaries

This chapter explains some important terms and background knowledge nec-
essary for understanding what follows. This will help us understand the upcoming

content more easily. Many definitions and theorems come from this books [14, 16, 67].

2.1 The Nonlinear Conjugate Gradient Method

Nonlinear conjugate gradient method (NCG) [40, 80] are iterative approaches

used to solve optimization problems of the form

Upt1 = Ug + apdy,

Where d, is a search direction, and «; is a stepsize usually computed using a line
search. We will use the Armijo line search because it effectively tackles non-convex
regression problems [22]. A conjugate gradient approach combines information about
the negative gradient at the current point with the direction from the previous step.
This helps us make progress in the right direction. Consequently, an NCG method

chooses
do = =V f (uo)
di1 = =V f (ups1) + Beprde VEk €N

Where (.1 is the NCG update parameter is chosen according to the formula

proposed by Hager and Zhang [39] given by

T
1 [l
HZ — __ —2d \Y%
Bk—l-l dzyk (yk k dzyk f(uk+1>7

where yp = V f (upi1) — Vf (up).



Algorithm 2.1 Projected NCG Scheme

1: Input: initial approx. wg. Evaluate dy = —Vf (ug), index k£ = 0, maximum

k = kmnax, tolerance = tol .
2: While (k < kmayx) do
3: Set ugy1 = ug + apdy, where oy is obtained using a line-search algorithm.
4: Compute yp = V[ (ug1) — Vf (up).
5: Compute 5{!# using Bfl4 = lyk (yk - Qdk%>T Vf (ugsr).

6: Set dk—f—l = —Vf (uk+1> + Bk—&—ldk Vk € N.

7. If ||ugr1 — ugl] < tol, terminate.
8 Set k=Fk+ 1.

9: End while.

Definition 2.1.1 (Vector Space). Let V' be a non-empty set, and suppose u,v €
V= u+wv eV, and let a,b be scalars. Then V is called a vector if the following
properties hold:

(DHu+v=0v+u,
(2) u+ (v+w)=(u+v)+w forall u,v,w eV,
3)30eV, VueVu+0=0+u=u,
(4) Yu € V3(—u) € V such that u + (—u) = 0 = (—u) + u,
B)Vue Va(lu+v)=a-u+a-v,

(6) (a+bu=a-u+b-v,

(7) (ab)u = a(bu),

(8)

8

1-u=

Definition 2.1.2 (Norm). Let V' be a vector space. Let ||u]| be a non-negative

number associated with each v € V such that if u,v € V', which has the following



properties:

(1) [Jull =0 == u =0,

@) llaw] = lal|lu],

(3) llu+ o]l < fjull + o]

Then || - || is referred to as a norm and V' is called a norm vector space.

Theorem 2.1.1 (Gronwall’s Inequality). Let z(-) be a nonnegative, absolutely

continuous function on [0, 7], which satisfies the almost everywhere (a.e.) inequality
() < p)x(t) + at)

where 3, a are nonnegative, summable functions on [0, 7]. Then

2(t) < [z(@) + / ta(s)ds} e

forall0 <t <T.
Definition 2.1.3 (Strongly convergence). A sequence {u,},, in a vector space V is

said to converge strongly to some u € V', written as
Up — U

if

lim ||u, —ul| =0
n—oo

Definition 2.1.4 (Weakly convergence). A sequence {u,} in a Banach space V

weakly convergence to u € V, written as
U — U
if

lim f(u,) = f(u),VfeV"

n—oo

10



Definition 2.1.5 (Sobolev space). The Sobolev space W*?(Q) is defined as
WHP(Q) = {u e W*Q): D*u € L?,V|a| < k}
Definition 2.1.6 (norm Sobolev space). If u € W*P(U), we define its norm to be

(Z\alﬁk Jur 1D uf” dfC>; (1<p<oo)

HUHW’W(U) =
Z\a|§k esssupy | Dul (p=o0)

Definition 2.1.7 (coerciveness). Let f : R® — R be a continuous function defined

over R". The function f is called coercive if

| l‘i‘m f(x) =00

Let V be a Banach space and K be a non-empty subset of V. Let J:V — R,
and we consider

inf J(v)

veEKCV

Definition 2.1.8. An element u is called a local minimizer of J on K if u € K and

36 > 0 such that Vv e K
o —ull <6 = J(v) = J(u)
An element u is called a global minimizer of J on K if u € K and
Jw)>Ju) VveK

Definition 2.1.9. A minimizing sequence of a function .J on the set K is a sequence
(u"),,en such that

u" € K¥n and lim J(u") = inf J(v)

n—+00 veK
Definition 2.1.10 (convex). A set K C V is said to be convex if, for any u,v € K
and for any 6 € [0, 1],

u+ (1 -0 e K
11



Definition 2.1.11. Let K be convex subset of V', then a function J : K — R, is said

to be convex on K if
J(Ou+ (1 —0)v) <0J(u)+ (1 —0)J(y),Yu,v € K,V0 € [0,1].

Definition 2.1.12. Definition 9.2 The functional J is called (sequential) lower

semi-continuous (Isc) at y € V' if
J(y) < lilgninfj(yk) (2.1.1)
— 00

for all sequences (yx) C V' converging strongly to y,yx — y. The functional J is
(sequential) weakly lower semi-continuous (wlsc) if (2.1.1) holds for all sequences
(yx) C V converging weakly to v,y — y.

Theorem 2.1.2 (Cauchy, Lipschitz, Picard). Let E be a Banach space and let F :

E — FE be a Lipschitz map, i.e., there is a constant L such that
|Fu— Fvl| < L|lu—v| VYu,veE.

Then given any ug € F, there exists a unique solution u € C'([0, 4+00); E) of the
problem
() = Fu(t) on [0,+0),
u(0) = up.
ug is called the initial data.
Definition 2.1.13 (Gateaux derivative). F is said to be Gateaux differentiable at z

if its is directional derivative exists and F'(z;h) = F'(2)h for F'(z) € L(Z; V). We

refer to F'(z) as the Gateaux derivative at z.

Definition 2.1.14 (Fréchet derivative). F' is said to be Fréchet differentiable at z if

and only if F'is Gateaux differentiable at z and the following holds:

(2, ) [lv

F(z+4 h) = F(z) + F'(2)h + r(z, h) with I,

— 0 as||hllz —0

12



CHAPTER 3
ODE modeling: Parameter estimation problem

3.1 Introduction

We formulated a prostate cancer dynamics model to determine optimal ADT
dosage using an ordinary differential equation (ODE) model. These ODE models
contain numerous parameters usually estimated from disparate sources, posing a
significant challenge in devising personalized treatments. Some parameters have
similar values across patients, while others are more patient-specific, called unknown
parameters. Our goal is to find the unknown parameters of the ODE model from
measured data. That is known as the parameter estimation method.

Olufsen and Ottesen [74] studied three methods to estimate parameters. Their
methods involved lengthy computations. In the work of Yoshito Hirata et al., [48],
seven methods for parameter estimation were studied. They concluded that these
methods are only sometimes feasible due to numerous disadvantages, e.g., huge
computational costs associated with the bootstrapping method. Suzuki and Aihara
[87] discussed two methods: the variational Bayes method, which is slightly more
effective for long-term predictions, whereas the Gaussian method is better for short-
term predictions. The SVD-QR and the sub-space selection methods for estimating
parameters contained correlated parameters that gave rise to more significant errors
in the predicted parameter estimates. E J Her et al. [44] studied the clinical outcomes
data between 1995 and 2012 using parameter estimation performed with a maximum

likelihood estimation method. However, with this approach, fitting all the parameters

13



was impossible. Roberta Coletti et al. [24] use parameter estimates from the literature
related to human patients.

In the aforementioned parameter estimation methods, correlated parameters
and huge computational expenses are significant challenges. To address these issues,
we will use a new method for parameter estimation that is robust and accurate. Our
parameter estimation method is based on an optimization framework numerically

implemented using a robust and accurate optimization scheme.

3.2 Mathematical ODE model

Portz et al.[78] created a model that uses cell quotas to study the relationship
between androgen levels and prostate cancer cells. According to this model, they
assumed that the tumor consists of two types of cells: androgen-dependent (AD) and
androgen-independent (AI) cancer cells. Each cell type needs a certain amount of
androgen called the cell quota (Q). When the available androgen drops below this
threshold, the specific type of cells that depend on it decreases. This model helps us
understand how prostate cancer cells react to different androgen levels.

We describe an ODE-based mathematical cell quota model to describe the dynamics

of prostate cancer, where the model variables are as follows

Xi(t) : Androgen dependent (AD) - cells
Xo(t) :  Androgen independent (Al) -cells
Q(t) :  The cell quota for androgen -nM

t: Time - /day

14



Androgen

Figure 3.1: Schematic of the processes that occur in the model

The AD and AI cell populations are modeled by

dX
L — M (1 - 2) X — di Xy —mi(Q) Xy + ma(Q)Xa,

dil; 22 (3.2.1)
d_t2 = MUm (1 — 5) Xo — da Xy — m2(Q)X2 + ml(Q)Xl‘

The proliferation rate of the AD cell population is zero when Q(t) is at the minimum
cell quota q. As () increases, the growth rate approaches its maximum value fi,,.
The AD cell population’s apoptosis rate and the Al population’s net growth rate,
excluding mutation, are constant. We also have the following expressions for the AD

to AT mutation rate, m;(Q), and the ATl to AD mutation rate my(Q)

kn
mi(Q) = ey =
@ ikl (3.2.2)
mg(Q) = CQQ"——FI{;S‘.

We remark that m;(Q) is low for normal androgen levels and high for low androgen
levels. In contrast, mo(Q) is high for normal androgen levels and low for low androgen

levels. Where n is a hill coefficient, which describes the cell switching sensitivity to

15



the cell quota level, we considered n = 1 for ultrasensitivity [31]. The cell quota for

androgen within the AD cells is modeled by

@:’U Qm_Q A
dt QO_qA+Uh

— ftm(Q — ) — bQ (3:2.3)

3.2.1 The non-dimensional modeling

This section will convert the system from its current form with specific values
to a non-dimensional form. That has two purposes: First, it helps simplify our
equations by grouping parameters, making them cleaner and easier to handle. Second,
non-dimensionalization is often done to reduce the computational cost of solving the
system and guarantee the numerical algorithms’ stability. We non-dimensionalize

the ODE system using the following non-dimensionalized states, time variables, and

parameters:
X* X0
Xl* = lle — X1 = l—l, XQ* = ZQXQ — X2 = l2
o ! " 2 (3.2.4)
Q*:ng—)Q: s t*:l4t—>t:—
l3 4
The non-dimensionalized parameters will be:
Mm* = M—, d1 = —1, dy" = —2, @ = 13q1, @@° = l3qo, ki =13k, k" = I3k,
ly ly ly
l b
CT ﬁa C; = ga Um* - _SUrm Qm* — l3Qma q* = l3Q> Uh* = lg’Uh, b* = ' A" = ZSA
ly ly ly ly

(3.2.5)

Then (3.2.1) can be transformed in the following way:

qxe Xt X KXy ( >
— =l |1 — 5= —d —C nl L +c ks
dt " ( Q_) ll L ll 1(@) +k7? ll 2

l3

I3

Which gives us

dX1* pm lsq1 dy ., o (lsky)" Iy Q™"
=t X - X - A B Xt L X
=l ( Q)" U, L0 + Uk TR0 T (k)
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Using the non-dimensional parameters, we have

= | 1—= ) X" —di" Xy — o ———= X1 o —————— X"
dt % ( O 1 1 A1 1 0" 1 ki 1 2 0" + k3 2
Using similar computations, we have
aXy° qQ*) Q" "
e 2 ( O 1 2 A2 2 O + k" 2 1 Q" + ki 1
dQ” qm” — Q" A
— m* _ m* * _ * _ b* *.

Without loss of generality, we can remove the x and rewrite the non-dimensional

ODEs as follows

dX,
dt
% = (Mm <1 - %) X2 - d2X2 — Mo (Q) X2 + my (Q) X1> =F; (X1;X2,Q79) , XQ(O) =1
dQ m _Q A

%:vam_QA—FUh — 1m(Q — q) —0Q = F3 (X1, X5,Q,0), Q(0)=1

_ (um (1 . %> X1 — Xy —mn (Q) X +ms (Q) X2> — B (X0 X0 Q.0), X,(0) =1

(3.2.6)

3.3 Parameter estimation optimization problem

Let 6 = (pim,q1,q2,d1,ds, A) be the vector of the unknown patient specific
parameters in (3.2.6). The reason for this choice is because these parameters show
wide variability amongst different patients. The other parameters in (3.2.6) are more
specific to the cancer type and, thus, can be considered fixed and known across

patients.

17



Parameter Meaning Value and units | Reference

L Maximum proliferation rate 0.025-0.045/day [13]
q Minimum AD cell quota 0.175-0.45 nM [18]
7 Minimum AD cell quota 0.175-0.45 nM [18]
0 Minimum AT cell quota 0.1-0.3 nM [18]
ky AD to AI mutation half-saturation level 0.08 nM [78]
ko AT to AD mutation half-saturation level 1.7 nM [78]
dq AD cell apoptosis rate 0.015-0.02/day [13]
dy Al cell apoptosis rate 0.015-0.02/day [13]
c Maximum AD to Al mutation rate 0.00015/day [50]
2 Maximum Al to AD mutation rate 0.0001/day [78]
b Cell quota degradation rate 0.09/day [50]
Im Maximum cell quota 5 nM [78]
U, Maximum cell quota uptake rate 0.275 nM/day [78]
up, Uptake rate half-saturation level 4 nM [78]
A Maximum serum androgen level 27-35 nM [77]

Table 3.1: Biological reference range for the parameters

Our goal is to estimate 6 given some data about X, Xs, (). For this purpose,

we solve the following constrained optimization problem:

min J(Xl,XQ,Q,9> = —

0€Tyq

o

2
Lo
2 Jo

/T (X1(t) — X, %4(1))" dt + %

T

(Xa(t) — Xo(t))° dt

0

(@)~ Q") dt + o]z

(3.3.1)

subject to the system (3.2.6). Here X;%(t), X»%(t), Q4(t) are given data functions
constructed using observations of these variables from an individual patient. The first
three terms in the functional J, given in (3.3.1), are data-fitting terms with weights
aq, a9, ag. The last term in J is a [? regularization term for the parameter set , with
|| - ||z representing the standard /> Euclidean norm. The set T4 is the admissible set
of # defined as
T.a=1{0€R°:03i) €[0,M;], M; >0},
18



with M; chosen based on the observed biological reference range of the parameters,

as given in Table 3.1.

3.4 Theoretical results

This section will present some theoretical results for the optimization problem
stated in (3.3.1). We begin with the positivity of the solutions of (3.2.6)
Theorem 3.4.1. Given X;(0) > 0, X5(0) > 0,Q(0) > 0, the solutions (X (), Xa(t), Q(t))

of (3.2.6) are non-negative for all £ > 0.

Proof. From the first equation of (3.2.6), we have

dX, q1 k’? Q"
— =, |1 —= ) X —di Xq — X1+ co——Xo,
dt % ( Q) 1 1441 ClQ"—Fk:? 1 C2Q"+k§‘ 2

¢ kY Q"
= —pm (1= = | +d + X, + X
(“ ( Q) : Cl@uk?) B o T

We consider the following integrating factor

_ ‘ a1 Kkt
Ijlc = exp/o <—,um (1 — @) + d1 + C1m> ds (342)

Multiplying (3.4.1) by the integrating factor I}, we obtain

e [ (- (1-55) )
— — i [ 1= +di+o———]d
at P\ TN Q) T TAQem k)

_Qr e o L
_C2Q”+k‘§X2eXp/o ( fom (1 @<s>>+dl+“@(s>n+k?)d8
(3.4.3)

(3.4.1)

This gives us

X1 () exp /Ot (—um (1 - %) +dy + clm) ds — X,(0)

[ Q" X a @ kT
‘/OCQQn+k3X2ep/o ( fom (1 @<z>)+d1“1@<z>n+k?)dz

19



which implies
il kY
0= 500 [ (e (1 ) s B
8 ) T Ty v
kn
+ +di+ o= )d
o ( (1= gtg) o)
/ Xgexp/ (—um (1—L)+d1+clL> dz >0
Q” + k% Q(z) Q)" + k7
Thus, X;(t) > 0.
For the second equation in (3.2.6)
ng 42 Qn k’?
= |1 — = | Xo—da Xy — Xo +
M < Q) 2 242 C2Q”—|—k:§ 2 le”—i—k:{‘ 1
" (3.4.4)
1

q2 Q"
= (—pm (1-2) +dy+ X ) Xo+o—— X,
(“ ( Q) 2T O kg ) 2O !

we consider the following integrating factor

= eXpO/t (—um (1 . Qq(i)) Y dy+ CQ%&) ds (3.4.5)

Multiplying (3.4.4) by the integrating factor I7, we obtain

dX, t @ Q(s)"
_eXp/O (‘“’“ (1 - @<s>) T enrey kX) s

dt
_ kY (o @ Q(s)"
‘cl@wk?XleXp/o ( Fim (1 @(s)) +d2“2@<s>n+kgx2) s

Which again gives us
QL) X2> ds + exp

X (t) = X»(0) exp—/ot (-Mm <1 _ Q‘-’(QS)) R e
- (o (- g) o g ) & [ g
exp /0 (—um (1 - %) tdy + CZ%&) dz >0

Thus, Xg(t) > 0.
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From the third equation in (3.2.6)

@:U Qm_Q A
dt QO_qA+Uh
C UmGmA — v, QA
(@m — q) (A+ )

_Mm(Q_Q) _bQ

- :qu +Mmq - bQ

Umdm A Un QA (3.4.6)
T (gm—) A+ v (gm—q) (A+ o) — @ + fimq — bQ
Nz _U%qu Fo) T ((qm - Z;n(/zl‘l Top T b) @
we consider the integrating factor
! U A
= eXp/o <(qm - q;n(A o) T b> ds (3.47)

Multiplying (3.4.6) by the integrating factor I}, we obtain

dQ /t ( v, A )
—ex + ty + b ds
it P Jy \lgm—a) (At on) "

- (et ) oo [ (Gt o)

(3.4.8)
Solving this equation, we obtain
Q0 = Qe [ (A +b) ds b
—= XD — m X
0o \(@n—a)(A+om) "
¢ Um A ) t U Gm A
_ m + t + 0 ds/ ( mem
/0 ((qm—Q) Ato) " o \(@m —q) (A+vp)
+pmq) dt e p/t< Um A + +b>dz>0
m X m iy
! o \(@n—a)(A+u) "
This gives us Q(t) > 0. O

Proposition 3.4.1. The solution of the system (3.2.6), satisfies the following stability

estimate

Q) < alQO)] + 8 where a, 3 > 0,

(X1 + Xo) < (X1 + Xo) (0)] ermT
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Proof. We have
@ qm — Q A

_UmAQ UQOA
an—a) Aron) P T (A T
—UmA UQOA
(<qm—q><A+vh> : )Q (Gm —q) (At o) 11
Let
—v,, A
C, = n — Uy, — b
Y g (At "
and

U Gm A

Cy = + Um(-
2" g —q) (At vy 11

Then we have

d@
% = ClQ+OQ

Using Gronwall’s inequality, we obtain the following

t
Q(t) < e~ o Cret (Q(O) + 2/ CoeJo CldeS)

0

t
< e (Q(O) + 20, / e—CISds>
0

< (@ +2c: {:D
< cn

Now if C; > 0,e ¢ <1 and if C; < 0,e"¢* < =T, Thus, we have

|Q0)] if ¢} >0
Q) <
e OTQO)| +2|Cof =T |[<E=L] |, i €y <0
Q) < a|Q0)|+ B where a, >0 (3.4.9)
Next, we consider the first two equations of (3.2.6)

dX, Q1) 1 Q
L (1-2 )X —d X — X =X
dt H < Q ! L ClQ"—i—k‘? ! C2Q"+/€§L 2

dXQ QQ) Qn k?
—Z = (12 ) X — do X — Xy + X
a ( Q) T gy T g !
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Adding these two equations, we have

d(X;+ X
(X7 + Q)I/Jm(l—ﬁ

k n
i ) X1 — d1X1 — Cl—le + CQQ—XQ

Q
0 " kY
+ — = Xy —dy X5 — ¢ Xo+c
H ( Q) 2 242 2@"+k§‘ 2 1Q”—|—k" 1
q1 T "
=unll1—=]X;—d1 X; —¢ +c
K ( Q) 1 1Al 1@”+k” 1 2Q”—|—k:" 2
q2 " Kt
+pm |1 — = | Xo—day Xy —c + X
% ( Q> 2 242 2@"—1—/{3 2 1Q”+k:1” 1
=um(1—%)Xl—d1X1+um(1—%))@—@)@
= X0 = PPN — X+ X — P X — do X
Q Q@
= fim (X1 + X2) — Fm (@1 X1+ g2 Xo) — (di Xy + d2 X)

Q
Let d = max {d;,ds} and ¢ = max{q,¢2}. Then, we have

d(X; +X
TR < (0 X) = (004 X) — (X + )
< l,um—q'u—m—d] (X1 + Xo)
Q
Let a(t) = p — %5* — d. Then, we have
d (X1 + Xy)

i <a(t) (X1 + X2) (¢)

By Gronwall’s inequality, we have

<X1 + Xg) (t) < (Xl + X2) (O)efOT a(s)ds

< (X + Xp) (0)elo (em =)

)

< (X1 + X») (O)efoT(“m_%_d)ds, (since Q(s) < o|Q(0)| + B)
< (X; + X) (0)elimandie )T,
< |(X1 + X3) (0)] e,

Which gives us the desired result.
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We next state and prove the existence and uniqueness of the solutions of (3.2.6).

Proposition 3.4.2. The solution (X;(t), X2(t), Q(t)) of (3.2.6) exists in C*([0,T7])?

and is unique.

Proof. To prove the existence and uniqueness result, we will verify all the conditions

of Picard’s theorem. For this purpose, let

fl (Xl’Xz’ Q) Hm (1 — %) X1 — d1X1 — Clan—};k?Xl -+ C2_Q§:ng2
P X0 Q) = | f(X0X0Q) | = | o (1-8) X0 = X — 0@z Xo + 1l Xy
f3 (XlaX2aQ) vm?;;__gquvh _,um(Q_Q> _bQ

Now F' is continuous in (Xj, X3, @), since each f; (X1, X, Q) is continuous as i =
1,2,3. Next, we investigate the differentiability of F'. For this purpose, we have the

following partial derivatives of fi, fo, f3

d_ﬁ:M L S
ax, "0 T Ry
dfy Q"

dX; © Q" + ki
% _ @1 X1 nelkPXQ"h negkh XoQm !
dQ Q? (@ + kp)? Q"+ kp)?

dfs . kY

dX; ~ 'Qr+kr

R S R
ng_“m 0 2 2@”4—]{;’21

df2 . [,LmQQXQ HCQk:nganl nclk?XlQ"’1

Q- @ o+ @rmy

df3

— =0

dX,

dfs

dX, 0

dfg ’UmA

—b.

AQ (Gm—a)At+u) '
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Thus

F, (X17X27Q)
[ o4
dX1 dXso dQ

= dfo dfs  dfs
dX1 dXso dQ

dfs ~ dfs  dfs

dX1 dXso dQ

kT n X nclknlen—l nczk"Xan_l
_ Mmqr di — ¢ 1 c Hmgi X1 + 1 2
— ki pma2 _ g Q" pm@aXy | ne2kBXoQ" ' meilkfXiQ" !
= L _ Mmq2 —c
& Qr+k7 Hm Q 2 2Qn+k§l Q2 + (Q”-HCS)Q (Q”-l-k?f)z
. vmA _
i 0 0 =) (Ao — Hm =

Now, F’ (X, X5, Q) is continuous, since each f! (X, X3, @) is continuous. Thus,
F <X17X27 Q) S Cl([O7T])3
Next, we will show that F'is locally Lipschitz. From Proposition 4.3.1, we have

that @) is bounded. We will show that X; and X, are also bounded. We have

d(X; + X5)

7 =l (X7 + X2) — %n (1 X1 + @ X2) — (i X1 + d2 X5)

From Theorem 3.4.1, since X7, X5, () > 0, this gives us

%n (1 X1+ @X) >0, (diX1+dX5)>0
Thus,
d(X;+ X
TR 0+ )

By Gronwall’s inequality, we have
(X1 + X) (1) < (X1 + Xo) (0)els 1
< et (X1 4 Xo) (0)
So, X1 + X5 is bounded. Since,
(X1) (1) < (X1 +X2) (), X1,X22>0

(X1) (1) < e (X1 + X5) (0),
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and

(X2) (1) < (Xi+X2) (1), X1, X22>0
(3.4.10)

(X2) (1) < e (X1 + X2) (0),
we have that (X;) (¢) and (X3) (¢) are also bounded.

Now,

Ci
R

b

Hmd1 k?
IV fill SUP{ 2 0 oy

@1 X1 . ne kX, Q™! . neoky XoQm !
Q? Q"+ kp)* Q" + kp)?

Y Y

Now,
q1 Clk? q1 Clk‘?
m\1mg) B <t | 1= 2 ||+ ldu| + :

< | + |di| + |e1]|,  (since ¢1 < Q).

Again,
Q" n
<leo—=—| <
CQQ"—{—IQ‘QL = CQQn < |02|

Also,

Hmq1 X1 n ne kP X1Q" 1 neki XoQm
2 n n\2 n n\2
Q (Q"+ kT) (Q™ + k3)

< Mm@ X1 ne kX, Q1 neoky XoQ"
T (Q+ kp)? (Q+ kp)?
S /ﬁ (2)2)(1 4 nclk?X12Q"_1 nCngXZQCQn_l
a1 \Q (k7) (k3)
n—1 n—1
< ,u_m‘ X4 + nClenQ nCzinQ
0 K ks
Hm necy n—1 ney n—1
< | =X —|X — | X
= q1‘| 1|+ o ’ 1|}Q ‘4— = ’ 2"@ ‘
Since X1, X5, () are bounded.
m X k‘nX n—1 k,nX n—1
AL T ! 1% _ 4 L an —| < Kj (3.4.11)
Q Q"+ k7) Q"+ k3)
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Denoting |fim| + |di| + 1| = Ki, |c2| = K2, we have
||Vf1||oo S max {Kl,KQ,Kg} = K

So, fi is locally Lipschitz. Next, we have

n

1 Mmd2
\V4 = 1 m —dy —
IV el Sup{ ok |t Q QiR
,LLmQQXQ nCngXQQnil nClk?XlQnil
@2 (@ + k)" (Q+Kp)

Y Y

Now,
M kn <le1|, (since @ is bounded )
Qn_{_kﬂ — k,n 1
Again,
42 Q" q2 C2
g < Q> oyl Rl ( Q> & ‘ka’g
Q" .
< || + o] + | = (since g2 < Q)
< | + lda] + |2
Also,

,quQXg TLCngLXanfl +nclk‘?X1Q”*1
Q? (@ +k5)" (@ +kp)?
Hm@2 X2 neaky XoQm !
@ (Q"+ kp)?
Fom (@)2)(2 N n02k§X22Q"*1
g \Q (k%)
nea XoQ" 1
k3

ne kP X, Q!
(Q" + kp)*
ne kP X, Q™1
(k7)”

IN

IN

ne X1 Q"1
kn

n01

< ,u_m‘ |X2| +
q2

Hm
q2

< B X Q@ | oot X | @Y

’lel +

Let |c1| = L1, |pm| + |da| + |c2| = Lo. Since X7, X, Q) are bounded

pm@aXo  nekEXoQ" T ne kP X,QM
2 + n\2 + n\2
Q (Q" + kz) Q"+ kp)
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Then
||Vf2||oo S max {L27 LQ,Lg} =1

So, fy is locally Lipschitz. Finally, we have

U A

Vf OO:sup{O,O,— — m—b‘
We have
U A U, A
— n — i — b < - + [t | + 10
T T ea I, e e et R R
Let
U A
+ |tm| + 10| = M
e G| el
Then,
U A
_ — lyy — D < M
'<qm—q><A+vh> 3 ’
Thus,
IV f3]lo < M,

and so f3 is locally Lipschitz. Since fi, f2, f3 Lipschitz, we have F' is locally Lipschitz.

Thus, by Picard’s theorem, (3.2.6) has an unique solution in C*([0, T])3. O

We next state and prove some properties of the objective functional J.
Proposition 3.4.3. The objective functional J is sequentially weakly lower semi-

continuous (w.l.s.c.), bounded from below, coercive on T4 and is Fréchet differentiable.

Proof. The functional J is said to be weakly lower semi-continuous in 8 € T, if

J(0) < lim inf J (0,), for all 0,, € T,y s.t. 6, — u.

n—00

It can be easily verified that J, given in (3.3.1), is w.Ls.c due to being continuous
in . We also note that .J for every sequence 0, C Tyq with ||0,[| — oo, we have

J (0,) — oo. To show that J is bounded from below, assume it is not true. Then
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there exists a sequence 6,, C Tyq with J (0,) — —oo. The coercivity of J implies that
this sequence is bounded. Otherwise we would have J (6,,) — oo. Then, we have the
existence of a weakly convergent subsequence (6, ) where k € N, whose limit 6 € T4
satisfies, by weak lower semi-continuity, J(6) < limj_, inf J (6,,) = —oco. However,
this is a contradiction since the range of .J lies in R. Finally, Fréchet differentiability

of J follows from the Fréchet differentiability of (X7, Xs, @) as a function of . O

We finally conclude the theoretical results with the existence of an optimal
parameter set.

Theorem 3.4.2. There exists a minimizer 0* € T,4 of J, given in (3.3.1).

Proof. Boundedness from below of J implies there exists a minimizing sequence
(0™) € Toq. With J being in 7,4, this sequence is bounded and, thus, contains a
convergent subsequence (6™) in T,4 with ™ — 6*. Correspondingly, the sequence
(X7, X3", Q™), obtained by solving (3.2.6) with 6™ is bounded in (C*(0,T))? while
the sequence of the time derivatives, (9; X", 9, X5", 0,Q™), is bounded in (C°(0,T))3.
Therefore, both the sequences converge to (X7, X5, Q*) and (9, X7, 0;X3, 0,Q%), re-

spectively. This implies that 6* minimizes J, with (X7, X5, Q*, 0*) solving (3.2.6). O
3.5 Optimality system

We now describe the characterization of the minimizer of J, given in (3.3.1),

through the first-order necessary optimality system.
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Theorem 3.5.1. The minimizer of (3.3.1) is obtained by solving the following
optimality system

. (um (1 _ %) X, — Xy —mn (Q) X1 +ms (Q) X2> B (X1, X0, Q.0), X1(0) = 1

—_

% = (Nm <1 - @) X2 d2X2 — My (Q) X2 —|—m1 (Q) X1> - FQ (X1,X27Q,0), X2(O) — 1

d Q@ A
d_cfzvq ¢ (@ — @) = bQ = F5 (X1, X5,Q,60), Q(0) =1

" gm —q Aty
(FOR:ODE)
S = (Xa(t) = X7 (1)) o - {um <1 - @> —dy —my (Q)} X1 +m1 (Q) Xo, Xo(T) =0

Q

o001 (5) () (5 (5

CQXQ]{JQ S Q A A ) 9 —
+ ((—) <X2 X1) +Um——QA+Uh + @ + bQ, Q(T) =
(ADJ:ODE)

Bl + /OT {— <1 - %) XX, — (1 — @) XoXo +(Q — q)@} dt) (v = fim) >0,

XQXth) : (?)3 — QQ) > 0

T Qm_Q )
(6A+/O o' _q(Aﬂh)Qth (v — A) > 0,

(OPT:ODE)

for all v = (v, ..., v6) € Tha.
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Proof. To derive the optimality system, we start with the continuous Lagrangian

defined as follows:
dX,

T
L <X17X27Q7X17X27Q79> = J(X17X27Q79) +/ (W - Fl) det
0

T rax, . T rdQ -
— — F5 ) X,dt — — F dt
+/0 (dt 2> 2 +/0 (dt 3)@

Define the Gateaux derivative (or directional derivative) of L with respect to a generic

(3.5.1)

variable V in the direction V as

ov
where (-, ), is an inner product in a suitable Banach space By . For X1, X», Q, X1, Xo,Q,

we choose (-, )5, as the L([0,T]) inner product, i.e.,

Vv

T
<fag>3v:/0 fg dt?

whereas for each element of 6, we choose (-,-)5, as the product between two real

\%4

numbers, i.e.,

<f7 g>BV = fg
Then
oL

OL 0L OL
For the L defined in (3.5.1), we compute the Gateaux derivatives < ),

X, 90X, 0Q
oL OL 8L)
0X, 0X, 0Q)
oL
which gives the adjoint equations (ADJ:ODE); and the Gateaux derivatives 20 1=
1,---,6, which gives the optimality condition (OPT:ODE). The derivation is pre-

which gives the forward equations (FOR:ODE); the Gateaux derivatives (

sented in Appendix A. ]
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3.6 Numerical results

We now present the numerical results of our non-linear optimization framework
for estimating the unknown parameters for the prostate cancer model using noisy
synthetic patient data. We choose the final time 7" = 1000, the regularization weights
in the functional J, given in (3.3.1) to be a; = 1, ap =1, a3 =1, = 0.5. Our
time domain [0, 7] is divided into a mesh of 100,000 equally spaced subintervals. The
non-dimensionalization scaling factors are I; = 1/60, I, = 1/60, I3 = 2.5, I, = 0.01.

To generate the data, we simulate the forward ODE system (FOR:ODE) on a
coarse mesh of 1000 subintervals, interpolate the numerical solution over the actual
finer mesh, and add 5% additive Gaussian noise to the interpolated resolution that
gives the final form of the data. The forward and the adjoint ODE systems were solved
using the forward Euler method. The optimality system (FOR:ODE)-(OPT:ODE)
was numerically solved by using the iterative non-linear conjugate gradient (NCG)
method. We choose different initial guesses for the NCG algorithm from the biological
reference intervals, given in Table 3.1.
Test Case 1: In the first test case, we generate the patient data using the true
parameters given in Table 3.2. The initial guess for the parameters are chosen to be
0. The obtained parameters are shown in the third column. We observe that even
though the initial guess is far away from the true parameters, some of our estimated

parameters are very close to the true parameters, whereas the others are not.

32



True parameters (0;) | Initial guess (6y) | Estimated parameters (6)
o = 3.D o =0 L = 2.5
qo = 0.6 qo = 0 qo = 0.4156
d =19 dy =0 dy =2
dy =18 dy =0 do =2
A=4 A=0 A =3.375

Table 3.2: Test case 1: Patient-specific parameter values

We also solve (FOR:ODE) with the estimated parameters; we plot and compare
the solutions of X, X5, ) with the data. The plots are shown in Figure 3.2. We

observe that the fit for X, () are very good, whereas the fit for X5 is not as good.

Plot of X1 Data & X1 Estimated Plot of X2 Data & X2 Estimated Plot of Q Data & Q Estimated

50
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (days) Time (days) Time (days)

Figure 3.2: Test Case 1: mean trajectories of X, X5, ) with the true and optimal
parameter set.

Test Case 2: In test case 2, we choose the same true parameters, but the initial
guesses are chosen to be different from test case 1. They are actually chosen to be
the maximum possible attainable values in the set T,4. The estimated parameters are
again shown in the third column. We again observe a similar behavior as in test case
1, i.e., some of the estimated parameters are close to the true parameters, whereas

the others are far away.
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True parameters (0;) | Initial guess (6y) | Estimated parameters (6)
o = 3.D P =T Lo = 4.36
q1 = 1 q1 = 5) q1 = 1.098
qo = 0.6 qo = 1 qo = 0.636
d =19 dy =8 dy =1.99
dy =18 dy =6 dy = 1.98
A=14 A=10 A =457

Table 3.3: Test case 2: Patient-specific parameter values

The resulting plots of the solution of (FOR:ODE) with the estimated parameters
and the data are compared in Figure 3.3. We now observe that there is a mismatch

in the fits of Xy, X5, whereas the fit of @) is still good.

150 Plot of X1 Data & X1 Estimated 250 Plot of X2 Data & X2 Estimated 8 Plot of Q Data & Q Estimated

200

£ 150

50 X
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (days) Time (days) Time (days)

Figure 3.3: Test Case 2: mean trajectories of X, X5, ) with the true and optimal
parameter set

Test Case 3: In the final test case, we choose the same true parameters but initial
guesses are chosen a bit closer to the true parameters. The results of the estimated
parameters in Table 3.4 show that all the estimated parameters are now close to the

true parameters.
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True parameters (0;) | Initial guess (6y) | Estimated parameters (6)
o = 3.D Lo = 3 Lo = 3.12
q1 = 1 q1 = 0.5 q1 = 0.7
qo = 0.6 qo = 1 Qo = 0.47
d =19 dy =15 dy =1.79
dy = 1.8 dy =15 dy = 1.76
A=14 A=3 A =351

Table 3.4: Test case 3: Patient-specific parameter values

The plots of the solution of (FOR:ODE) and the data, presented in Figure 3.4,
now show very good fits for all the three variables X7, X5, (), which demonstrates the

robustness and accuracy of our proposed parameter estimation framework.

Plot of X1 Data & X1 Estimated Plot of X2 Data & X2 Estimated Plot of Q Data & Q Estimated

50 50 04
o 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 800 1000 o 100 200 300 400 500 600 700 800 900 1000
Time (days) Time (days) Time (days)

Figure 3.4: Test Case 3: mean trajectories of X, X5, ) with the true and optimal
parameter set.

We also compute the respective relative L? errors for the 2 test cases. The

relative L? error between 2 functions X (¢) and X%(t) is defined as

1X — XLy 0.17)
| X4 Ly 0,17

Err(X, X% =
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’ Test Case ‘ Err(Xi, X%) ‘ Err(X,, X9) ‘ Err(Q,Q%) ‘

1 0.0981 0.2207 0.0314
0.3286 0.2342 0.0319
3 0.1614 0.1789 0.0302

Table 3.5: L? error table

The error measurement provides a quantitative way to assess how close the
estimated and true values are. When the error is close to zero, it suggests that the
estimated values closely align with the true ones. Also, a low error value indicates
that the estimates are accurate and that the two sets of values are indeed very close
to each other. This helps provide confidence in the reliability of the estimation or
modeling process. But if the error is big, it indicates a significant discrepancy between
the estimated values and the true values. What we observe from Table 3.5 is that for
all the three test cases, the estimated @ is very close to the data. However, either X!
or X? are not very close to their respective datasets. This suggests that even though
the ODE parameter estimation framework yields good results, these results are not
the most accurate, which motivates the development of the Liouville framework in

Chapter 5.
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CHAPTER 4
Formulate the optimization problems with drugs

4.1 Introduction

Many mathematical models have been created, most of them aim to achieve
results that are very close to the results of clinical trials, and others are only interested
in studying the effectiveness of treatments. We found a significant deficiency in this
field and therefore need more study. The circulating level of androgen significantly
impacts the growth, division, and atrophy of healthy and cancerous prostate cells
[30]. When androgen levels are low, it slows down the growth of cancer cells, which
is the natural process of prostate cancer cell death [13]. In the field of mathematical
oncology, researchers are working on finding the most effective dosing strategies for
cancer treatment. They determine that using lower doses and treatment breaks
can lead to better long-term control of the disease [12]. One explored approach
is metronomic therapy, which involves giving low doses of medication at specific
intervals. This alternative strategy has been mathematically studied as a potential
option to replace high dose strategies [6, 32, 55, 57, 62, 64, 73, 75].

Chemotherapy is a way to control cancer by directly impacting its growth. To
reduce the level of androgen. There are three strategies of treatment [19]:

e Maximum tolerable dose: This strategy uses a high dose of medication
determined by considering the side effects.
e Adaptive: This strategy determines the start and end of treatment based
on the patient’s biomarkers. It involves stopping treatment before it becomes

ineffective, earlier than intermittent strategies. The clinical trial data from
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Zhang et al. [34] show that the adaptive treatment is effective at less than 20%
of the maximum dose.

e Intermittent: This strategy involves taking medication periodically with
scheduled breaks in treatment. It is a commonly used approach [2].In the
context of modeling intermittent androgen deprivation therapy, the variable w(t)
determines the treatment dose. The patients go on and off of therapy according
to a fixed interval of time. When u(t) is equal to 1, it signifies the on-treatment
period, while u(t) being 0 represents the off-treatment period [83]. The on-off
cycles are repeated until the treatment becomes ineffective.

Although initial treatment for prostate cancer often yields positive results, the
development of androgen-independent prostate cancer eventually occurs, which is
highly lethal in almost all cases [69]. Recent studies and clinical trials have raised
concerns about whether intermittent androgen deprivation (IAD) therapy could be
increased the comfort and effectiveness of this treatment.[26, 52, 36]. This indicates
that the previous methods were not effective treatments. So, we will use a new

method to find the optimal dose for treatment using optimal control.

4.2 Optimal control problem for treatment

We first formulate a mathematical deterministic ODE system with an androgen

receptor blocker u(t) as a function of time in order to obtain the optimal dosage.

dX; T kY k3

dt % ( Q) 1 1X1— ¢ 0+ k?XI Ca 0"+ k§X2 X1( )
dX, 0 ky i Y. X

dt a ( Q) 2 22 CZQ”+]<:’2"‘ 2 CIQ"—I—kJ? ! 2( )

@IU Q’m_Q A _
dt " m —q A+

1im(Q — q) — bQ — yQu(t), Q(0) =1

(4.2.1)
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The term —yQu(t) denotes a decrease in androgen in the presence of the treatment,
where 7 is the androgen clearance rate 0.08 /day [50]. Our goal is to estimate
the best dose of u(t) to control the androgen level @ in a cell close to a normal
level (0.11 — 0.96) nM [86]. For this purpose, we solve the following constrained

optimization problem:

min Ju(Quu) = [ Q) = @u e+ [ (u) a5 Q) - Qu)* (422

subject to the system (4.2.1). Here we will consider @, as the middle of the normal
androgen level. The first and last terms in the functional J,, given in (4.2.2), are
data-fitting terms with weights ag, ay. The second term in J, is a regularization term

for u(t) with weight Sy. We look for w in the set
Udgg = {u(t) € L*([0,T]) : 0 < u(t) < u,, ¥Vt €[0,T]}.

where u, is the maximum tolerable dose.

4.3 Theoretical results

In this section, we present some theoretical results for the optimization problem
stated in (4.2.2). We begin with the positivity of the solutions of (4.2.1). The proof
follows the same steps that were presented in the previous chapter.

Theorem 4.3.1. Given X;(0) > 0, X5(0) > 0,Q(0) > 0, the solutions (X (), Xa(t), Q(t))

of (4.2.1) are non-negative for all £ > 0.

Proof. From the first equation of (4.2.1), we have

dX ki ;
d_tl = Hm (1 - %) X, —di Xy —e——X, + C2Q—X2a

q1 k? Qn
== (11— ) +di+e—— )| X1+ 6—-X
(“ ( @) : Cl@wk?) B o T

39
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We consider the following integrating factor

t k,n
Ilzexp/ <—m(1—L)+d +c—1>ds 4.3.2
! o \ Q) T QM) k. 432
Multiplying (4.3.1) by the integrating factor I}, we obtain
e [ (o (1 5t5) )
e} i (1 bt )y
at P Q) T TGy k)

_ Q" e @ kY
‘Czka;X?eXp/o ( fim (1 Q(s))”l“lcz(s)wk?)ds
(4.3.3)

That gives us

X, (t) exp /Ot (—ﬂm (1 - qus)) b+ clﬁ) ds — X,(0)

t z
Sen [ (- (1-55) )
= c Xoex —tm | 1 — +di+c———|dz
0 Pk P TN Q) " TQR T R

which implies

X1 (t) = X1(0) exp /Ot - (—Mm (1 - Qq(ls)) +dy+ clﬁ) ds

t Q1 kn
" e"p/o B (‘“’” (1 - @<s>> Fht gy k:?) s

t z
Seew [ (- (1-5) )
c X, ex —pp |1 ——=— ) +di+c;=————]dz>0
/o kg P S\ Q) T QR T Ry

,ThU_S7 Xl(t) Z 0.

For the second equation in (4.2.1)

dX " kY
2:,um<1—@)X2—d2X2—02 Q X2+C1 ! X1

dt Ny fn nf fn
= (—pm [1=2) +d X5 ) X X
( e ( Q)+ 2+02Q”+k§ 2) 2+CIQ"—|—I€{‘ 1,

we consider the following integrating factor

]}% = exp/ (—um (1 __2 ) +dy + CQMXQ) ds (4.3.5)
0

Q(s) Q(s)" + ky
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Multiplying (4.3.4) by the integrating factor I7, we obtain

e t 0 Q(s)"
row [ (o (1-g) + o) @

_ kT ' 2 Q(s)"
R TR p/ (‘“m (1 - @<s>) LR roT T kX) s

Which again gives us

Xa(t) = X5(0) exp—/ot (—um (1 = %) +dy + CQ%

! 0 Q(s)" ! kY
_/o (_“’“ (1 - Q(8)> +d2”2@<s>n+k3X2) AT
? Q2 Q(z)"
o (o (- at) Ht o ) 20

Thus, Xo(t) > 0.

X2> ds + exp

From the third equation in (4.2.1)

@ Qm_Q A

Ty e — (@ — @) = 0Q — 1Qu
VnGmA — v, QA
= im0 Qh 04 g~ 1Q — Qu
(qm - Q) (A + Uh)
(4.3.6)
_ UmgmA B QA O 4 i — B0 — 4Ou
(@n— ) (At o) (gm—q) (Atoy) 1m0 !
U Gm A ( U A >
= + g — + pm +b—yu ) Q,
(@m — @) (A+ ) (@m — @) (A+ )
we consider the integrating factor
IE: /t( e 4 i+ b )d (4.3.7)
= eX m — YU S ..
P o NG~ Ao !

Multiplying (4.3.6) by the integrating factor I?, we obtain

dQ /t( U A )
—ex + Uy +b—yu | ds
at LSy \ =) (At on) " !

( Umdm A ) / t ( UmA PR ) y
= mq eXp m — YU S
(Gm—q) Aoy o \(@m—0)Atoy " K

(4.3.8)
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Solving this equation, we obtain

Q0 =@ e [ (A o) ds b

- /ot <(qm - Z;n(/zl‘l Ty T . 'yu) & /ot ((qm —UZ)quﬂL Un)

¢ v, A
+1,,q) dt e /( i + f + b — u)dzzo
pna) A exp |\ G =g Aoy im0

That gives us Q(t) > 0. O

Proposition 4.3.1. The solution of the system (4.2.1), satisfies the following stability

estimate
Q(t) < alQ(O)| + 5 where a, 5 >0,
(X1 + Xo) < (X1 + X5) (0)] e

Proof. We have

d m — A
d_?:vm(i]m—cjfl+vh_Mm(Q_Q)_bQ_VQu Q0 =9
—0mAQ VmgmA

— tm@ — bQ — YQu +

" m—0) (At ) (G —q) (At o) Hmd

— U A UmnGmA

—q) (A+vp) (Gm — @) (A+vp)
Let
—v,, A
C) = = - m_b_ U
Y Gm (At " !
and
mmA
Cy = —md

(Gm—q) (At on) Hrd

Then we have

dQ
o CiQ + Gy
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Using Gronwall’s inequality, we obtain the following
t
Q(t) < e Jo Crdt (Q(O) + 2/ Coe=Jo Cldsds)
0
t
< e Gt (Q(O) + 202/ eclsds>
0
|
< o <Q(0) 120, {—D
G

Now if C; > 0,e ¢ <1 and if C; < 0,e " < =T Thus, we have

Q
43

Q(0)] if ¢y >0
Q(t) <
TR +2(Col e [ ¢ <
Q(t) < alQ(0)[+ 4 where a, 5 >0 (4.3.9)
Next, we consider the first two equations of (4.2.1)
dX, Ch) kY "
— =pn(1l— =) X; —di Xy — Xq + X,
dt H < 0 1 141 ClQ”—l—k? 1 CQQ”—l—kS 2
dXs G2 Q" kY
— =pn (1= =) Xo—do Xy —co———Xo + X
di H < Q) 2 242 C2Q"+k3 2 ClQ”—l—k{l 1
Adding these two equations, we have
d (X1 + X3) ( Q1) 1 "
—— =l |1 - = | Xi -1 X, — Xq + X
dt H 0 1 141 ClQ”—i—k? 1 CQQ”—i—kQ 2
a2 Q" kY
ml 1= )Xo —do Xy —co——X X
+p ( Q) 2 — (2X C2Q"+k§‘ 2+01Q"+k’{‘ 1
hl kY Q"
=t |1—= X1 -1 X1 —c—-X
H ( Q) 1— a1 ClQ”—i—k? 1+62Q”+/{:§ 2
2 " kY
m|1—=) Xo—doXs — X X
+ ( Q> 2 — A2 Can+k5 2+ClQ”—|—k7f 1
= Um (1—%) X1 — di Xy + (1— %) Xy —dy Xy
= X1 — Hmih X1 —di X1+ pmXo — MZ;QXQ — d2 X5
= o (X1 4 X2) = 22 (X0 + 2 Xo) — (X0 + doXo)



Let d = max {d;,ds} and ¢ = max{q1, ¢2}. Then, we have

d(X; +X
%Sﬂm(XrFXQ)—%(X1+X2)—d(X1+X2)
< [um—q”—’"—d} (X1 + X»)
Q
Let a(t) = p, — %5* — d. Then, we have
d(X1 + Xs)

22 < alt) (X0 + Xa) ()

By Gronwall’s inequality, we have

(X1 +Xo) (1) < (X1 + Xo) (O)QfOT a(s)ds

< (X7 + Xy) (O)efoT(“m_un(g —d)ds

< (X1 + Xo) (0)elo (m=amdizm =% (since Q(s) < alQ(0)] + 5)
< (Xy + X) (0)elimande )T,
< |(X1 + X3) (0)] e,
Which gives us the desired result. [
We next state and prove the existence and uniqueness of the solutions of (4.2.1).
Proposition 4.3.2. The solution (X (¢), X2(t), Q(¢)) of (4.2.1) exists in C''([0,T])?

and is unique.

Proof. To prove the existence and uniqueness result, we will verify all the conditions

of Picard’s theorem. For this purpose, let

fi (Xh X, Q) L (1 — %) Xy —di Xy — Cl_Q"kEkle + CQ—QT?:,C%XQ
F (X17X27 Q) = f2 (Xla X27 Q) = Hm (]' - %) X2 - d2X2 - CQQSQ:I{;LX2 + Clan‘;ljk?Xl
f3 (X17X27Q) vm(f]Tn_—gAfvh _NW’L(Q_q) —bQ—’YQU
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Now F' is continuous in (Xi, X», @), since each f; (X1, Xo, Q) is continuous as i =
1,2,3. Next, we investigate the differentiability of F'. For this purpose, we have the

following partial derivatives of fi, fa, f3

d_fl =l — Umd1 o d —ec kqll
ax, "0 T Ry
dfh Q"

ix, Qi kp
% _ L1 X1 ne kX QM neokh XoQM !
Q @ (@ +K)" (@ + k)

dfs . kY

dxX, ~ 'Qr+ kT

dfz Hm42 Qn
S T i N N —
ax, 0 T %0t

% _ /J/mq2X2 RCQkSXQanl nClk?XlQnil

Q @’ @ +H) (@ +kp)
dfy
dX,
dfs
ax, !
dhs _ Um A — b — b —yu
dQ (G — @) (A+wvp) " '

=0

Thus

F/ <X17X27Q)

dh o df dh
dX; dX, dQ
= dfa dfs  dfa
dX; dX. dQ

dfs dfs  dfs
dX, dX; dQ

kT Q"

_Bm@n g . RT _Qr pm@i X1 | nelkPXiQmh | neokB XoQn !
= k¢ HUmq2 Q" Lmq2Xo nCzngzQ"71 nclk?XlQ"*I
o fm = Q" — 2~ Coguiry Tz (@ k)’ (@ ihp )’
UmA o K
i 0 0 g (ATon — Hm — b= U

Now, F' (X3, X5, Q) is continuous, since each f! (X, X3, @) is continuous. Thus,

F (X1, X5,Q) € C'([0,T7]).
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Next, we will show that F'is locally Lipschitz. From Proposition 4.3.1, we have
that Q) is bounded. We will show that X; and X5 are also bounded. We have

d (X + Xs)

7 =l (X7 + X2) — Fm (1 X1 + @ X3) — (i X1 + d2 X5)

Q

From Theorem 3.4.1, since X7, X5, () > 0, this gives us
%n (1 Xi+@X2) 20, (diX;+dyX3) >0

Thus,
d(X; + Xo)

< (X X
7 < i (X1 + Xo)

By Gronwall’s inequality, we have

(X1 + Xo) (1) < (X1 + Xy) (0)elo #mes
< et T (X) 4+ X5) (0)

So, X1 + X5 is bounded. Since,

(X1) () S (Xi+ X2) (1), X1,X22>0
(X1) () < e (X1 + X2) (0),
and

(Xo) (1) S (Xhi+ X)) (1), X1,X22>0
(4.3.10)

(X2) (1) < e (X1 + X2) (0),

we have that (X;) (t) and (X3) (t) are also bounded.

Now,

n

Ci
QK

b

Hmq1 1
\V4 = - —dy — e —L

@1 X1 . ne kX, Q"1 . neoky XoQm 1
Q? Q"+ kp)* Q" + kp)?

Y Y
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Now,

b

¢ a1kt
o (1= 5) =y
( Q LQr -k

q1 Clk?
< | (1 — + dq| +
—”( Q)‘ R T

< | + |di| + |e1],  (since ¢1 < Q).

Again,

n

Qn

Qn
RO

< |ea

Also,

,umqul nClk‘?XlQnil +TLCQ]€§X2QTL71
@ @) @R

< Mm@ X1 ne kP X, Q"1 nCngXan_ll
@ (Q" + k)" (Q" + k3)”
2 n n— n n—
< o (@) x|+ nclk1X12Q 1 n02k2X22Q 1
o \€ (k1) (k3)
n—1 n—1
< |Fm X[+ ne1 X0 nce XoQ
¢ k” /{Zn
fim ne - -
< |13+ 5 @ + 52 Ll [
Since X7, Xs, () are bounded.
m X kn X n—1 kn X n—1
Iz (J12 1, nekX,Q i nezky XoQ <k, (43.11)
Q (@™ +k7) (@ +k3)
Denoting |fim| + |di] + 1| = Ki, |e2| = K2, we have
||Vf1||oo S max {Kl,KQ,Kg} = K
So, fi is locally Lipschitz. Next, we have
\Y% =sup{ |c ! s | o, — —dy —c ,
19 Al = { e b = 22— ey O

,quQXz ’rLCQk’SXQQnil TLClk{LXlQnil
@’ (Q"+k3)°  (Q"+ k)
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Now,

ke K
Q” | S 1k_’1f' <le1|, (since @ is bounded )
Again,
q2 Q)" Q"
w(1=2) g, < (1= 2 )| 4 1ds) + ,
g < Q> T ( Q> I o
Cco Q™ )

< [t + |do| + Z;i (since ¢z < Q)
< |Mm‘ + |d2| + |C2’

Also,

,quQXQ HCngXanfl nclk‘?XlQ”’l
@ (Q"+k5)*  (Q+kp)’
Hmq2Xo negky XoQ" !
Q2 Q"+ ky)’

ne kP X,Qnt
Q"+ kp)*
ncy ]{Z?XlQn_l

IN

IN

Fom (@)2)(2 N n02k§X22Q”_1

@ \Q (k)

nee XoQm !
ky

X Q" +

(k7)*
ne X1 Q"1
kn

n01

< ,u_m‘ | Xo| +
q2

n02

IXll\Q” ']

< ,um‘ |X2| +
q2

Let |e1| = L1, |fm| + |da| + |c2| = La. Since X3, X, Q are bounded

/,LmQQXQ nCQk‘nganl ncy ]{??XlQnil
@ (@R Q)

Then
||Vf2||oo S max {L27 LQ,Lg} = L

So, fy is locally Lipschitz. Finally, we have

U A B
(G —q) (At

IV £l =sup{|0|,|0|, ]— b

We have

_ U A
(Gm — q) (A +vy)

‘ U A
N (Qm - Q) (A + Uh)

~ = b=

‘ T 1t + 18] = [yl



Let
‘ U A
(Qm - Q) (A + Uh)

+ || + 0] = |yu| = M

Then,
‘_ U A
(Qm - Q) (A + Uh)

_:um_b_/yu SM

Thus,
IVfsllo < M,

and so f3 is locally Lipschitz. Since fi, f2, f3 Lipschitz, we have F' is locally Lipschitz.

Thus, by Picard’s theorem, (3.2.6) has an unique solution in C*([0, T7])3. O

We next state and prove some properties of the objective functional J,,.
Proposition 4.3.3. The objective functional J, is sequentially weakly lower semi-
continuous (w.l.s.c.), bounded from below, coercive on U,y and is Fréchet differentiable.

We finally conclude the theoretical results with the existence of an optimal
parameter set.

Theorem 4.3.2. There exists a minimizer u € U, of J,, given in (4.2.2).

Proof. For proving the existence of a minimizer of .J,, given in (4.2.2), we can follow
the same arguments as given in Theorem 4.3.2, due to the fact that U,, is a closed
subspace of a Hilbert space and J, is coercive in U,y, which yields a convergent
subsequence (u,,) of a minimizing sequence (u,,) for J,. The compactness result of
Aubin-Lions [66] yields strong convergence of a subsequence (X", X3 Q™) of a

sequence (X7, X5, Q") = (X7 (tny), X3 (), Q™ () in (0. T))%. O

4.4 Optimality system
We now describe the characterization of the minimizer of J,, given in (4.2.2),

through the first order necessary optimality system.

49



Theorem 4.4.1. The minimizer of (4.2.2) is obtained by solving the following

optimality system

dt
dX,
dt
dt
dX;
dt
dX,
dt
dQ
dt

i (um <1 - @) X1 — di X1 —my (Q) X1+ m2 (Q) X2> = My (X3, X5,Q,u), X,(0) =1

Q

= (Nm (1 - %) Xy — dy Xy —my (Q) Xy +my (Q) Xl) = My (X1, X5,Q,u), X3(0)=1

—Q A
@:’U m Q —lum(Q—q)—bQ—’YQU:M3<X1aX2aQ7u)7 Q(O):l

Qm_qA+Uh

(FORU:ODE)

{Mm (1 - 2) —di—m (Q)} Xi+mi(Q) Xz, Xo(T) =0

O

=— [Mm (1 - @> —dy —my (Q)} Xo+me (Q) X1, Xo(T) =0

—ap (Q(t) — Q) — (“—m) (q1X1X1 + qQXQXQ) - (ﬂ) (Xl - Xg)

O

Q? (@ + k1)?

+((C2ﬂ) (XQ_X1>+'Um Q 4 + @ + bQ + yuQ,

Q+l€2)2 Qm_qA+Uh

QT) = s (Q(T) — Qu)

(ADJU:ODE)

/T (5u - vQQ) [v(t) — u(t)]dt > 0, Yo € Uyg. (OPTU:ODE)

Proof. The proof follows the same lines as given in Theorem 3.5.1, starting from the

following Lagrangian

SO T rax . T rax -
L <X1,X27Q7X1,X27 Qa’U) = Ju(Qvu)+/ <_dt1 — M1) Xqdt +/ (_dt2 — Mz) Xodt
0 0

where

T dQ _
i /0 (E - M3> Qdt,

(4.4.1)
a1 i 2
M (X, X = U |1 —=)Xi —di Xq — )
1( 1, 27Q7U) 1% ( Q) 1 141 ClQn+kn 1+02Qn—|—kn 2
My (X1, X2, Q,u) = pim, (1—%) X2—dQXQ—CQ—Qn+ng2+C1Qn+k? 1

M; (X17X27 Q,U) = Um

Qm_Q A
Qm_qA+Uh

— 1tm(Q — q) — bQ — yQu(t).
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4.5 Numerical optimal control results

We now present the numerical results of our non-linear optimization framework
for estimating treatment for the prostate cancer model (4.2.1) using noisy synthetic
data. We choose the final time 7" = 1000, the regularization weights in the functional
Jy, given in (4.2.2) tobe ap = 1, ay =1, By = 0.5. Our time domain [0, T is divided
into a mesh of 100,000 equally spaced subintervals. The non-dimensionalization
scaling factors are [; = 1/60, I, = 1/60, I3 = 2.5, I, = 0.01.

To generate the data, we simulate the forward ODE system (FORU:ODE) on
a coarse mesh of 1000 subintervals, interpolate the numerical solution over the actual
finer mesh, and add 3% additive Gaussian noise to the interpolated solution that gives
the final form of the data. The forward and the adjoint ODE systems were solved
using the forward Euler method. The optimality system (FORU:ODE)-(OPTU:ODE)
was numerically solved by using the iterative non-linear conjugate gradient (NCG)
method. We choose different initial guesses for the NCG algorithm from the biological
reference intervals, given in Table 3.1.
Test Case 1: In this test case, we determined the optimal dose using the same
unknown parameters as those estimated in Test Case 3 of Chapter 3, which gave
the best parameter estimation results. The determined values are as follows: p,, =

312,¢y =0.7,q0 = 0.47,d; = 1.79,dy = 1.76, A = 3.51.
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Figure 4.1: The plots of X, X5, Q,u with treatment

The plots of the solution of figure (4.1) make it easy to see that the number of
cancer cells X7, X5 for both types is decreasing with treatment and increasing with
out treatment. We also note that androgen level () decreases with treatment until
it reaches the normal level. while that androgen level (Q without treatment is high.
Finally,we notice that the value of u in the last figure is changing with time, which
means that we do not need to give the patient the same amount of medicine every
time. This will increase the efficiency of treatment and survival as well as reduce the
cost of treatment.

Test Case 2: To make sure our findings were correct, we used a different set of values
that we estimated using our method. These values were u,, = 4.2,q; = 1.125,q, =

0.6,dy =2,dy =2, A =4.4. This helped us be sure our results were consistent and
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dependable. The best dose we found during this check supported the accuracy of our

earlier estimates and gave us more confidence in our research.
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Figure 4.2: The plots of Xi, X5, Q,u with treatment

The solution plots of (4.2) show the decreasing trend in the number of both
type X1 and X, cancer cells with treatment and increasing with out treatment.
Additionally, the androgen level () with treatment decreases until it reaches the
normal range. Furthermore, the plot of variable u indicates a changing pattern over
time, suggesting that administering the exact medication dosage every time may not
be necessary. This dynamic approach could enhance treatment effectiveness, improve
survival rates, and potentially reduce treatment costs.

Test Case 3: To double-check about our results, we used another set of unknown
values that we estimated using our method. We found these values: pu,, =3.3,¢1 =

09,0 = 0.5,dy = 1.7,dy = 1.7, A = 3.9. This way, we wanted to make sure our
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findings were reliable and consistent. The best dose we find out during this double-
checking process supported the accuracy of our previous estimates and gave us feel

more confident in our research.
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Figure 4.3: The plots of X3, X5, Q,u with treatment

The plots of the solution derived from the optimization problem stated in (4.2.2)
and the corresponding to the parameters estimated and the data presented in Table
3.1 provide important information regarding the dynamics of cancer cells. It is clear
that the number of cancer cells, both types X; and Xs, is consistently decreasing over
time with treatment and increasing with out treatment. This observation indicates
a positive response to the treatment, suggesting the potential effectiveness of the
therapeutic approach.

Moreover, the analysis of the androgen level () with treatment shows that it is

decreasing until it eventually stabilizes within the normal range, while the level of
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androgen without treatment increases. This is an encouraging finding, as reducing
androgen levels is a desired outcome in prostate cancer treatment given its influence
on the growth and proliferation of cancer cells.

Additionally, the changing values of variable u in the last figure imply that
administering the exact medicine dosage at each interval may not be necessary. This
dynamic pattern suggests the possibility of adjusting the medication amount according
to the patient’s condition, which could lead to improved treatment efficacy, enhanced
patient survival rates, and potentially reduced treatment costs. Such personalized
treatment strategies can potentially optimize the therapeutic outcome and minimize

unnecessary medication taken.
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CHAPTER 5
Liouville optimal control problem

5.1 Introduction

The parameter estimation results we estimated in Chapter 3 are not very
accurate. The primary reason was the use of deterministic modeling of cancer
dynamics. We will use a stochastic model for cancer dynamics based on the Liouville
equation to address this issue.

In this chapter, we will develop optimization algorithms to solve the unknown
patient-specific parameters based on patient data and identify effective androgen
suppression methods in prostate cancer using Liouville dynamical models for cancer.
These optimization algorithms are important because they let us personalize cancer
treatments for each patient. By understanding the specific parameters for each person,
we can design treatments that fit their needs. This personalized approach could lead
to better outcomes and improve the quality of life for people with prostate cancer.

The Liouville equations are used in different fields like biology, finance, mechan-
ics, and physics to describe how density functions change over time. These equations
help us understand the behavior of multiple trials or non-interacting systems [82].
While the focus on control problems governed by Liouville equations has been limited,
there are advantages to using the Liouville framework [3, 17]. It allows us to extend
optimal control problems from ordinary differential equations (ODE) to partial differ-
ential equations (PDE), considering not just one trajectory but a group of trajectories.
This perspective is helpful for modeling systems with uncertain initial data and

exploring robust control strategies and feedback mechanisms, potentially leading to
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new successful outcomes [81]. Liouville dynamic models will help us simulate and
study how cancer cells grow and how treatments work on them. By doing this, we
can understand how best to treat prostate cancer and the most effective methods
for each person’s situation. It is important to note that the analysis of the Liouville
equation is an important topic in modern partial differential equations theory, e.g.,
[4, 5, 28|.

Javier Baez and Yang Kuang found that although the model (3.2.6) is more
realistic. However, they reduced the model to make it simple, and they obtained
results that better matched the clinical data [7]. Using this method, the model
becomes a good balance between being not too complicated and still useful in real-life
medical situations.

By the end of this chapter, we hope to find new and effective ways to treat
prostate cancer. This will help improve the field of cancer treatment and bring us
closer to finding personalized and targeted therapies for people with this disease.
Our main goal is to make a difference in patients lives by providing better care and

advancing our knowledge in the fight against prostate cancer.

5.2 A Liouville model for prostate cancer
We start off with the non-dimensional ODE model (3.2.6), governing the

dynamics of prostate cancer cells that was described in Chapter 3 as follows

n n

Xm Q1) 1

= (1 - = ) X —di Xy —e—— X1+ ——X
at ( 0 Y O TONEY ¥t o LY ¥
dXQ QQ> n {l
= [ 1= 2 ) Xy —deXo — o KXo+ ——X
a " < Q) T T g T g !

aQ _  gm—Q A
G s Aty Mm(@—s) e
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We consider a reduced model wherein the AD and Al prostate cancer cells are
combined together as a single cell type X. The dynamics of prostate cancer is then

described through the following set of equations

dX S k™

@ (1) XX -

0 a0 (5.2.1)
@ @~ 5) ~ bQ.

= U
dt Gm — S A+ vy,

In clinical trials, experiments are performed using varying setups, which leads to
randomness in the initial conditions. To model this behavior accurately, the aforemen-
tioned deterministic setup is inappropriate. Rather, one needs to consider X (0), Q(0)
to be random and drawn from some appropriate distribution. This renders X, ) to be
random variables. Correspondingly, the ODE system (5.2.1) represents the ensemble
dynamics of prostate cancer, initiating from different initial conditions.

Let p(x,q,t) be the joint probability density function associated to X, Q, i.e.,
P(X(t) = z,Q(t) = q¢) = p(x,q,t). Then the ensemble dynamics of (5.2.1) can be

represented by the following Liouville equation
dp

=+ V- (b(z, q)p(z, ¢, 1)) =0, (5.2.2)

p(.fl?,q,()) = pO('x?Q)

where
b(z,q) = (bi(z,q), b2(z,q))

with the initial condition at ¢t = 0 given by p(z,q,0) = po(z,q), (z,q) € RT U
{0}xRTU {0}, V= (%, a%)’ and

s k"
bl(x,q):um(l——>a:—dx—cn ~x
a ¢k (5.2.3)
balar,q) = vn LA (=)~ bg
’ Gm — s A+ vy ’

Note that by, by are essentially the right hand sides of the ODE (5.2.1), replacing

X with x and @) with q.
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5.3 Liouville optimization problems

5.3.1 Parameter estimation

Let 6 = {{im, s,d, A} be the vector of the unknown patient specific parameters

in (5.2.1). The reason for this choice is because these parameters show wide variability

amongst different patients. The other parameters in (5.2.1) are more specific to the

cancer type and, thus, can be considered fixed and known across patients.

Parameter Meaning Value and units | Reference
Lo Maximum proliferation rate 0.025-0.045/day [13]
s Minimum AD cell quota 0.175-0.45 nM [18]
k AD to AT mutation half-saturation level 0.08 nM [78]
d AD cell apoptosis rate 0.015-0.02/day [13]
c Maximum AD to Al mutation rate 0.00015/day [50]
b Cell quota degradation rate 0.09/day [50]
Im Maximum cell quota 5 nM [78]
U Maximum cell quota uptake rate 0.275 nM /day [78]
vy, Uptake rate half-saturation level 4 nM [78]
A Maximum serum androgen level 27-35 nM [77]

Table 5.1: Biological reference range for the parameters

Our goal is to estimate #, given some data about x,q. For this purpose, we

solve the following constrained optimization problem for finding 6

. v r
min J (p, 0) = 5/ / (p(w, g, t) — p*(x,q,1))" dadqdt + §||9||2
0 Q

subject to the Liouville equations (5.2.2) where Q0 = R*U{O} xR*U{O}, p(z1,9,q,0) =

(5.3.1)

po(z1,79,q) in Q and p?(x, ¢, t) is the probability density function of given data ob-

servations from the patient. The set T,4 is the admissible set of 6 defined as

Tha = {9 S R* - 9(@) c [O,MZ], M; > 0},

with M; chosen based on the observed biological reference range of the parameters,

as given in Table 5.1.
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5.3.2 Optimal control problem
We next consider the second optimization problem to control the Liouville

prostate cancer dynamics. For this purpose, we consider a controlled Liouville

equation
dp
% + V (b(l’, q, U)p(l’, q, t)) = 07
(5.3.2)
p(x,4,0) = po(z,q)
where

b(z,q,u) = (bi(z,q), ba(z, q,u))

with the initial condition at ¢ = 0 given by p(x,q,0) = po(x,q), (x,q) € RT U
{0} xRYU{0}, V= (£, £), and

kn
bl(x,q):um<1—§>x—d:c—c x

qm — 4 A
Gm — S A+ vy

(5.3.3)

b2(x7Q> = Unm

Here, u(t) is a function that represents an androgen receptor blocker drug to control
the androgen level ) and ~ is the androgen clearance rate, as given in Chapter 4.
Our goal is to determine the optimal dosage of u(t) that can control the androgen

production in cancer cells. We look for v in the admissible set
Uga = {u(t) € L*([0,T]) : 0 < u(t) < wu,}, Vt € (0,77,

where u, is the maximum tolerable dose. This can be formulated through the following

optimal control problem

MIQ

T
min Jy, (p, u) = %//(p(fv,q,t)—pd (,q.t))" dedqdt +
0 Q

T
/ 2t (5.3.4)
0

subject to the controlled Liouville equations (5.3.2), where p? (z, ¢, t) is the desired

distribution of the dynamics that represents a successful treatment regime.
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5.4 Theory of the optimization problems
In this section, we present some theoretical results related to the two optimiza-
tion problems (5.3.1) and (5.3.4). We start with the existence and uniqueness of the
solutions of (5.2.2) and (5.3.2), whose proof can be found in [§].
Proposition 5.4.1. Let py € H'(Q) with py > 0, 0 € T,g, and u € U,g. Then, there
exists an unique non-negative solution of (5.2.2) and (5.3.2) given by C([0, T]; H*(Q)).
We also have the following conservativeness property of the Liouville equations
(5.2.2) and (5.3.2).

Proposition 5.4.2. The Liouville equations (5.2.2) and (5.3.2) are conservative.

Proof. Multiplying (5.2.2) and (5.3.2) by ¢ € H*(2) and integrating by parts, we
obtain the following

op B
i E@/de = /Q(bp) -V de. (5.4.1)

Choosing ¢ = 1, we obtain [, p(z,q,t)dx = [, po(z)dx for all t € (0,T] and this

proves the result. [

We also have the following stability estimate of the Liouville equations (5.2.2)
and (5.3.2) from [8].
Proposition 5.4.3. The solutions p, ps of (5.2.2) and (5.3.2), respectively, satisfies

the following stability estimate

T
0

where C' is independent of p, pg, T', b.

The aforementioned results implies that p as functions of 6 and w is continuous.
Furthermore, it can also be shown that these functions are Fréchet differentiable.
We now state some properties of the functionals J, J,, given in (5.3.1) and (5.3.4),
respectively, that can be proved using the fact that the PDF p is non-negative.
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Proposition 5.4.4. The objective functionals J, J,, given in (5.3.1) and (5.3.4), are
sequentially weakly lower semi-continuous (w.l.s.c.), bounded from below, coercive on
T4, Uaq. respectively, and are Fréchet differentiable.

We finally state and prove the existence of the optimal parameter set 6* and
the optimal drug dosage concentration vector u* in the following theorem.
Theorem 5.4.1. Let py € H'(Q) and let J, J, be given as in (5.3.1) and (5.3.4). Then,
there exists pairs (p}, 0%) € C([0,T]; H(Q)) X T,q and (p5, u*) € C([0,T]; H(Q)) X Uya
such that pi, p; are solutions of (5.2.2) and (5.3.2), respectively, and 6*, «* minimize

J, J, in Thg, Uyg, respectively.

Proof. First, we prove the existence of minimizer of J, given in (5.3.1). Due to
the fact that J; is bounded below, there exists a minimizing sequence (0™) € T,q.
Furthermore, J being coercive in T4, this sequence is bounded, and, thus, it contains
a convergent subsequence (™) in T,4 with 6™ — 0*. Correspondingly, the sequence
(p™) = p(0™) is bounded in L?(0, T; H*()) by (5.4.2), while the sequence of the time
derivatives, (9;p™), is bounded in L?*(0,7; H~*(€2)). Therefore, both the sequences
converge weakly to pj and 0;p7, respectively. We, thus, obtain weak convergence of
the sequence (b(6™*)) in L?(0,T, L*(€2)). This implies that the pair (p}, #*) minimizes
J.

The existence of a minimizer of J,, given in (5.3.4), can be proved following
the same arguments as above noting the fact that since U, is a closed subspace of
a Hilbert space and J, being coercive in U4, there exists a convergent subsequence
(tm,) of a minimizing sequence (u,,) for J,, and the compactness result of Aubin-

Lions [66] yields strong convergence of a subsequence (p™*) of a sequence (p™) in

L2(0,T, L*(%)). n
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The differentiability of J, J,, given in (5.3.1) and (5.3.4), respectively, gives the
following optimality systems:

1. Optimality system for parameter estimation:

d
== V- (b, @p(. 0,1)) = 0.
(FOR:LIOUV)
p(2,4,0) = po(z, q).
dw
—p T a) - Vu(z,g,t) = a (p—p7),
(ADJ:LIOUV)

w(z,q,T) = 0.

(Bitm — / /{[(1——) -g—i,—(q—S)g—ﬂ p(w,q,t)} drdgdt) - [v1 — i) > 0,
m—/L/C%$ )§%>w®w¢w—ﬂ2&
ar [ ] <xpa:q, 52 ) dodadt) - [oa @ 2 0,

Un Ow
(54 - / / ( m — 8 A-|- )2p($’q’t)'%) dzdgdt) - [vs — A] > 0,
(OPT:LIOUV)

for all v = (vy, v, v3,v4) € Tha.

2. Optimality system for optimal drug control:

d
= V- (b, g, wp(, ,1) = 0,
(FORU:LIOUV)

p(7,q,0) = po(z, q).

dw
& bz, qu) - Vu(z,g.t) = o (p— p%)

dt (ADJU:LIOUV)
w(z,q,T)=0.
r dw
/0 (ﬁu(t) — Q/ (—yqp(x,q,t)d—q) da:dq) [v(t) —u(t)] dt >0, Yv € Uyg.
(OPTU:LIOUV)
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5.5 Numerical schemes for solving the optimality systems

In this section, we present and analyze some numerical schemes to solve the two
optimality systems (FOR:LIOUV)-(OPTU:LIOUV). We first note that even though
the Liouville equations (5.2.2) and (5.3.2) are theoretically setup in an unobunded
domain, for practical implementation, we need to consider a large but bounded
domain Q = (=B, B) x (—B, B) C R?. For the initial PDF py, we choose a smooth
density that is numerically compactly supported in €. We then solve (5.2.2) and
(5.3.2) in © x [0,T], choosing homogeneous Dirichlet boundary conditions on 0f2.
Using the results and techniques proposed in [8; 9], one can prove existence and
uniqueness of smooth solutions of (5.2.2) and (5.3.2) in Q x [0, 7]. We also choose
the final time 7" such that the solutions of the Liouville equations (5.2.2) and (5.3.2)
are still contained in {2 away from its boundary.

We now consider a numerical grid that partitions €2 in N, x N,, with N, > 1,
equally-spaced non-overlapping square cells of side length A = 2B/N,. On this grid,
we develop a cell-centered finite-volume scheme with the PDF p and its adjoint w

defined at the centers of the square cells. These nodal points are given by

) 1 ) 1
=g — = — B Jo=5—= — B.
T (z 2)h , q (j 2>h

Therefore, the elementary cell is defined as

. . h . h - h . h
1] — Q T _ (2 _ J _ J _ .
wy, {(az,q)e ‘ xe{m 5T +2}, qe[q 54 +2}}
This results in the computational domain as given below
N‘T ..
Qh = U W;L].
ij=1

In a similar way, the time interval [0, 7] is divided in N, > 1 subintervals of length

At = % and the points t* are given by

th .= kA€, k=0,...,N,.
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Then the time grid is given by I'a; := {t* € [0,7], k =0,..., N;}. Thus, corre-
sponding to the space-time cylinder @ := € x [0,7] we have the numerical grid as
Qnat = X Tag.

We now define the cell average of the PDF p (and any other integrable function)

on the cell with centre (2, ¢?) at time t* as follows

Zit1/2 git1/2
ﬁfj / / p(z,q,t%) dq d. (5.5.1)
’ zi—1/2 Jgi-1/2

The initial condition is then given by

Lit1/2 qg+1/2
ﬁ?,j = p?,j = / / (x,q)dgdx.
zi-1/2 Jgi-1/2

In the aforementioned finite-volume setting, the unknown variables are the
cell-average values p. Thus, we will formulate numerical schemes to determine these
unknown cell-averages as the numerical approximations to the solutions of the Liouville
equations and its adjoints. Without loss of generality, we denote the cell-averages
without the bars.

For the control function u, we use a piecewise constant approximation, where
we denote with uf+1/2 the value of the control in the time interval [t*, t**1). We then
project the continuous u to the corresponding numerical grid by setting u*1/2 = u(t*).
For a function ¢ defined on @Qj a¢, we also define the discrete norms || - ||1,, and || - || ooz

as follows:

N,
gt lw =02 [ghy ],
1,5

where gF; = g(z', ¢, "), and (27, ¢/, t*) denotes a grid point in € x [0, T].

ot t)lloe =, max gl
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5.5.1 A Euler-Kurganov-Tadmor scheme for solving the Liouville equations

In this section, we discuss a numerical scheme for solving the Liouville equa-
tions (5.2.2) and (5.3.2) in 2 x [0, T]. For the spatial discretization, we consider a
finite-volume scheme proposed by Kurganov-Tadmor (KT) in [61], combined with a
generalized MUSCL flux. To describe this scheme, the flux in the Liouville equations
can be considered as a function of p and is denoted by H(p) = bp. Then the KT
scheme for the Liouville equation in semi-discretized form is given as follows

4. (t) = _511/2,3-@#,1?_;25) - Fy—l/27j<p+,p_;t)
agle\t = -

— ﬂ?jﬂ/Q(er’p_; t) - Fi(fj—1/2<p+ap_§t)

h ;

i j=1,...,N, —1,

(5.5.2)

where the F* (p*,p~;t), F4(p*,p~;t) are the numerical fluxes in the = and ¢ directions,

respectively. These numerical fluxes are defined as follows:

W (Diy o, (0) + R (0o, (1) Vi e ()
Efie (07 p75t) o= (2] 5 PRI /27] [pz‘trl/w(t) _p;+1/2,j<t>)}’

(5.5.3)

P25 1) + 02 (000 0(1) Vi 0(t)
Elya (0t p75t) = o 2 T 2/ [p;,rj+1/2(t) _pf,j+1/2<t))}’

(5.5.4)
where H = (h', h?) = (b'p, v?p). In the aforementioned formulae, the so-called local

speeds V*(t), VI(t) are given by

, VI (t) = }b2(a:i,qj+1/2,t;u(t)) , (5.5.5)

ij+1/2

f+1/2,j(t) = ‘bl(xiﬂpaqj,t%u(t))
since H(p) = bp is linear in p.
The approximation of p at the cell edges in (5.5.4) is given by following inter-
mediate values

h _ h
Py (t) = piv15(t) — 5 Po)irri (), P (1) = 0ig(t) + 5 (p2)iy(2)- (5.5.6)
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The partial derivatives of p are approximated using the minmod function as follows:

In direction x, we have

Pij(t) = Dic1(t) Pig1;(t) — i1 (t) piy1;(t) — piy(t) ) '

(p2)i;(t) = minmod( . , 5 , .

(5.5.7)

An analogous expression holds in the direction ¢q. Here the multivariable minmod

function for vectors x € R? is given by

;

min;{z;} if z; >0, Vj € [1,d]
minmod(z1, @, ..., ¥a) == { max;{z;}  ifa; <0, ¥j € [1,d]

0 otherwise.

\

For the time discretization of the Liouville equations (5.2.2) and (5.3.2), we use
the standard first order Euler finite differencing scheme. Together with the the KT
flux discretization in the spatial variables, we obtain the fully discrete approximation
of the Liouville equations that we call as the Euler-KT (EKT) scheme. This scheme

is implemented as follows: Given initial condition pf;, in (t*,#*1), we have
Pyt =i+ ALG(f). (5.5.8)

Here, we use the following definition of the fully discrete fluxes

ok o pmk o pak o pak
G(pﬁ]) _ i+1/2,5 i—1/2,5 . 1,j+1/2 1,371/2. (559)

h h

where F' ”’k , F ?}k denotes F", F1, as given in (5.5.4), corresponding to the time step
tk.

We now analyze some properties of the EKT scheme, given in (5.5.8). We
begin with a strong stability property of the EKT scheme that can be proved using

arguments given in [37, Lemma 2.1]
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Proposition 5.5.1. The EKT scheme has the following strong stability property
Hpk+1Hoo,h S HpkHoo,fu k:Ow"aNt_ 1

We next show the conservativeness property of the EKT scheme.
Lemma 5.5.1 (Conservativeness). The EKT scheme is conservative, in the sense

that

Ny Ny
STk =30 k=1,...,N.

ij=1 ij=1
Proof. For a fixed k € {0,...,N;}, summing up both the sides in (5.5.8) over all
indices i,j € {1,..., N,} and using the fact that the solution has zero flux on the

boundary (since it has compact support in ), we get

Ng Ny
k+1 k
2{:1%4 = Eizpaf

ig=1 ij=1
[terating over k, we have

Ny N
Zpﬁjzngp k=1,...,N;.

1,7=1 7,j=1

]

We next show that, under some restriction on At, the EKT scheme is positive,
i.e., starting with py > 0, we obtain p* > 0 for all k. For this purpose, we define the

CFL-number as
At
A= — 5.5.10
h ) ( )
We then impose that the function b satisfies the following conditions
Alo*

A Hb2 (5.5.11)

1 1
HL;O(LOO(Q)) < 4’ HL%O(LOO(Q)) < 4°

Under the CFL condition (5.5.11), we can prove the following lemma on the positivity

of the EKT scheme.
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Lemma 5.5.2 (Positivity). Under the CFL-condition (5.5.11), the numerical solutions
to the Liouville equations (5.2.2) and (5.3.2), computed with the EKT scheme, given

in (5.5.8) is non-negative, that is,
;>0 = pf; >0, ij=1,..,N,, k=1,...,N,. (5.5.12)

Proof. Let pﬁj > 0 for fixed 0 < £k < N,. We will show that ]ok+1 > 0 for all
1,7 = 1,..., N,. For this purpose, notice that the EKT scheme can be written as
follows

k+1 _

Di; (031251 = biv1 /o) Py 2y + (|b1 124+ 5%71/2,3')1’;—1/2,]-

(|b ]+1/2| ,]+1/2)p i,5+1/2 +3 (|bz] 1/2| + bz?j—l/2)p;,j_1/2

Y

1 _ 1

+[Z (|bz+1/2j| + bz‘1+1/2,j)}pi+1/2,j + [ (|bz 1/273| bzl—l/?yj)}pztl/zj
[1
4

1
(|bz]+1/2| +b22,j+1/2)} ,j+1/2+ [ (|b ij— 1/2| ,g 1/2)} Z+J_1/2

(5.5.13)

where all discrete quantities on the right are considered at the timestep t*. We note
that if piiﬂ/Qj, pfjﬂ/z > 0, then the first four terms on the right hand side in (5.5.13)
are always non-negative. The other terms are non-negative under the CFL-condition

(5.5.11). Thus, we only need to show that p>- >0foralli,j=1,..., N,

i+1/2,5 pz J+1/2 =

where pjfj is given as in (5.5.6).

For this purpose, we will consider each expression of (p,)};, given in (5.5.7)(a

ko _pk .
similar analysis also holds for (py);). For the first case, we assume (jogg)i€ ;= %.
We then have

1 1
- _ 1ok k
pi+1/2’j - épi—&-l,j + épi,ja
which is non-negative, since p ;> 0foralli,j=1,...,N,. We also have, p;, 2 =

k LI o _pk
P+ b [M} If JT’” > 0, we then have p, > 0. On the other

h i+1/2,j
69



k o_pk
hand, if % < 0, then by the definition of the minmod limiter, we have

k k

k k
Pii~Pi 1, Piv1,j " Pij S ;
- > i—=2. This implies

h

- k
pi+1/2,j Z pw + §

k k k k
Piv1; —Pij| _ Piviy + P
A = > 0.

The other cases for the value of (px)f ; # 0 follow analogously. If (105,;)41C ; = 0, then

pz’il/?,j = pit+1,; > 0 and pfjﬂﬂ = pij+1 = 0. This completes the proof. O

We next prove the discrete L! stability of the EKT scheme.
Lemma 5.5.3 (Stability). The solution pj; obtained with the EKT-scheme in (5.5.8)

is discrete L' stable in the sense that
251 = 1P ], k=1, N
under the CFL condition (5.5.11).

Proof. The conservativeness property in Lemma 5.5.1 implies

Ng Ny
dooki=) vy k=1,...,N,
i:j:[) i,j:O

The positivity property from Lemma 5.5.2 implies

Na N,
Z Ipﬁj = Z |p(z'),j ; k

1,7=0 ,7=0

1,..., NV,
which proves the desired result. O

We next aim at proving the L! convergence of the EKT scheme. For this
purpose, we state the following stability result, whose proof can be found in [9].
Lemma 5.5.4. Let p; be the numerical solution to the Liouville equations (5.2.2)
and (5.3.2), with a Lipschitz continuous right-hand side g(z, ¢, ), obtained with the
EKT scheme. Then under the CFL condition (5.5.11), this solution satisfies the

following stability estimate

k
P < 22+ A g,

m=0
70



where gj = g(z*, ¢/, t™).

We now consider the local consistency error of our EKT at the point (2%, ¢/, t*)

defined as
pla’, ¢ ") — p(a, ¢/, tF) 1 i
7 M >At ( ) 4 S (LE+ LYt 1) = gt
where

z+1/2,j z+1/2,j 1+1/2] i+1/2, j| + bz+1/2,] 7,+1/2,j

+

)p;
Z 1/2]) D;— 1/2,5°
v

|7 12l sz+1/2 i 1/2

)pii ey — (16

1B 1j25 + 012 5) P g — (1Bica o
)Pisia = (

— (It}

=(Ib;
(
= (167 4172] = b1 /2
(19

k
+(| i,j— 1/2| ,g 1/2)pi,;r—1/2

i,j— 1/2| + b hj— 1/2) Dij-1/2
The accuracy result for the KT scheme, given in [9], the MUSCL reconstruction
error given in Equation (60) in [71, Section 4.4] for the case when x = 0, give us the
following result

Lemma 5.5.5. Let p € C? be the exact solution of the Liouville equations (5.2.2)
and (5.3.2) Under the CFL condition (5.5.11), the consistency error T}, satisfies the

following error estimate

ITE| = O(h®) + O(AY)

except possibly at the points of extrema of p where the consistency error can be
first-order in h.

We now define the error at the point (z%, ¢/, t*) as
ef; =iy — pla', ¢, 1%).

We then note that e satisfies (5.5.8) with the source term given by —7}’3. Lemma

5.5.4 gives us

k
lefH < Hletl + A8 20T,

m=0
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With the aforementioned preparation, we now have the following result on the L!
convergence of the solution obtained using the EKT scheme.

Theorem 5.5.1. Let p € C? be the exact solution of the Liouville equations (5.2.2)
and (5.3.2), with finite many extrema, and let |[p°. — po(-, -)Hl’h = O(h). Under the
CFL condition (5.5.11), the solution pﬁ ; obtained with the EKT scheme, given by

(5.5.8), is first-order accurate in the discrete L'-norm as follows
[P = p( - 9|, , < D(T,Q,A) h
p~’~ p ’ 17h — Y Y *

For the adjoint equations (ADJ:LIOUV) and (ADJU:LIOUV), we first convert
the equations into a divergence form, which results in additional zeroth order terms
in w. We then use the Euler time discretization and the KT spatial derivative
discretization to solve the adjoint equations numerically. For the optimization

problems, we again use the NCG algorithm.

5.6 Numerical results

In this section, we present the results of numerical simulations with the Liouville
parameter estimation and optimal control frameworks. For the parameter estimation
problem, given in (5.3.1), we choose our domain Q = (0,6)? and discretize it using
N, = 51 points. The final time ¢ is chosen to be 1.0 and the maximum number of
time steps NV, is chosen to be 1000. We generate the patient data, using different
true parameter values of 6, by first considering target PDFs pd(x), i = 1,--- | N
with N = 100, where p¢ are described by a normal distribution about the measured
mean value E[pf] and variance 0.05. We then use a 3D interpolation to obtain the
data function p?(x, q,t) at all discrete times t, k = 1,---, N;. The regularization

parameters are chosen to be « =1, 5 =0.1.
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5.6.1 Parameter estimation results

Test Case 1: In the first test case, the true parameters and the initial guess for
the NCG algorithm are given in Table 5.2. We then solve the Liouville parameter
estimation problem, given in (5.3.1). For comparison purposes, we use the reduced
ODE system (5.2.1) and use the parameter estimation framework presented in Chapter

3. The results of this comparison are shown in Figure 5.1.

Parameters o d s A
True 3.3 1.7 1 0.9 3.9
Guess 2.5 0.5 | 0.1 3

Table 5.2: Test case 1: Patient-specific parameter values

Trise cna ity § e trjesctory 811 v 04690 " Neinial guiess Ssnainy § s Wajectaay 5 1w 8450 . Obtmined density | nd Waectony st1= 0850

Figure 5.1: Test Case 1: Comparison between the ODE and Liouville parameter
estimation case

In the first row of Figure 5.1, the first figure represents the PDF obtained by

solving the Liouville equation (5.2.2) with the true parameters at t = 0.49. The small
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dot represents the corresponding trajectory point of the ODE (5.2.1) and is at the
same location across all the figures in the first row. We note that the center of the
PDF approximately matches the trajectory point, which is because the expected value
of the Liouville PDF should give the solution of the ODE (5.2.1). The second figure in
the first row represents the PDF obtained by using the initial guess for the parameters.
We note that the center of this PDF does not match the trajectory point, which
means we are not close to the true parameters. By solving the parameter estimation
problem, we obtain the PDF in the third figure of the first row whose center now is
very close to the trajectory point. On the other hand, the ODE parameter estimation
framework results are shown in the second row and we clearly see that the trajectory
for the X variable does not resemble the true trajectory. This implies the accuracy
of our Liouville parameter estimation framework over the ODE parameter estimation
framework.

Test Case 2: In our second test case, we now have a set of different true parameters

and, correspondingly, different initial guesses, given in Table 5.3.

Parameters L d S A
True 3.5 1.9 | 11 3.9
Initial guess 4 1.0 | 0.5 3.0

Table 5.3: Test case 2: Patient-specific parameter values

We again perform a comparison between the Liouville parameter estimation
framework and the ODE parameter estimation framework. The results are shown in

Figure 5.2.
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True density f and trajectory at t =0.490 Initial guess density f and trajectory at t = 0.490 Obtained density f and trajectory at t= 0490
6

Plod of et & X1 = Flot of Qd & O

Figure 5.2: Test Case 2: Comparison between the ODE and Liouville parameter
estimation case.

Using a similar analysis as in Test Case 1, we again note that the Liouville
parameter estimation framework provides more accurate results as compared to the
ODE parameter estimation framework. We also compute the respective relative L?
errors for the 2 test cases. The relative L? error between 2 functions X (t) and X%(¢)

is defined as
1 X — X o0,

| X £ 0,17)

Err(X,X?%) = :
whereas the relative L?error between 2 functions p(x, ¢, t) and p?(z, g, t) is defined as

1P — 2| Logex o)
Err p,pd = :
P2 = A oy

’ Test Case \ Err(X, X9) \ Err(Q,Q% \ Erry(p,p?) ‘
1 0.4761 0.0803 0.1314
2 0.3312 0.0347 0.1219

Table 5.4: L? error table
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From Table 5.4, we observe that the error between the ODE solution (X!, Q')
and the data is far more higher than the corresponding difference between the Liouville
PDF p and the data function p?. This further shows that the Liouville modeling and

parameter estimation framework is more accurate than the ODE framework.

5.6.2 Optimal control results

We now present the results of our optimal control framework. For this purpose,
we consider the patient-specific parameters obtained from Test Case 1 in Section 5.6.1.
We then considered a PDF along a desired trajectory and the goal of the optimal
control problem is to drive the uncontrolled PDF to the desired PDF. We consider

two such cases whose plots are shown in Figures 5.3 and 5.4.

Figure 5.3: Test Case 1: Optimal control results
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<

Non-controlled density fat t = 0.490

In each set of plots, the first row is composed of three figures.
figure represents the desired trajectory, the second figure represents the trajectory
without control, and the third figure represents the trajectory with control strategies.
Progressing to the following row, again composed of three figures, the first figure
represents the desired Probability Density Function (PDF) at the specific time point
of t = 0.49. The second figure in this row represents the PDF without control, and
the last figure represents the controlled PDF. Concluding the sequence, the last row
contains the plot of the controls.

We observe that in both cases, the control drives the PDF to the desired state

in an accurate way. The major difference between the two test cases is the asymptotic

7

Figure 5.4: Test Case 2: Optimal control results

The first



level of the desired value of (), which is lower in the second case. For this reason, we
also observe that the control value is higher in the second case compared to the first

case.
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CHAPTER 6
Conclusion

In the first part of this dissertation, We used an ODE system to represent the
dynamics of prostate cancer. We solved a parameter estimation problem to obtain the
unknown parameters of the ODE system from noisy data. We chose some case studies
to test our work. We used the same true parameters but different initial guesses. The
results of the estimated parameters showed that our estimated parameters are very
close to the true parameters.

Next, we formulated a robust framework and solved an optimal control problem
for obtaining optimal androgen suppression treatments for treating prostate cancer
patients. In the plots, we saw that the number of androgen-dependent and independent
cancer cells are decreasing. We also note that androgen level decreases until it
reaches the normal level. Also, the resultant solution of the optimal control problem
demonstrated that the treatment profile changes over time, unlike the standard
constant profile, which leads to a more efficiient treatment regime. Results of
numerical experiments suggest the feasibility and robustness of the framework for
getting the optimal therapies. However, from the parameter estimation results, we
noted that the results are very accurate. To address this issue, we used a stochastic
model for cancer dynamics based on the Liouville equation.

Next, we have presented a Liouville framework for parameter estimation and
optimal control in prostate cancer. The primary rationale behind this framework is
the uncertainty in carrying out similar trials in a given environment, which leads

to random evolution mechanisms. We compared the Liouville parameter estimation
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framework and the ODE parameter estimation framework and demonstrated that
the Liouville parameter estimation framework provides a more accurate and robust
parameter estimation technique. Finally, we also implemented the Liouville optimal
control framework, and the results validated the robustness and accuracy of our

proposed methods.
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APPENDIX A

Derivation of ODE optimality system
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A.1 The first adjoint equation:

L (X +e%1,%,Q, %1, %, 0, 9) L (X1, %, Q. %1, %5,Q.0)

Xm =1 -
:l%é(%/oT((leLeXl dt+—/ (Xt
+% [@ - @aptas o + / (X1 +2X) dﬁl
_ (u (1 §> (X1 4 2X0) = db (X1 4+ £51) — my (Q) (Xy +£51)
+my (Q) XQ))detJr/T Xz%
— (Mm (1 §> Xo — doXo — my (Q) Xo +my (Q) (X1 + 5X1)> Xz} dt
o[ ]-e%2 - (vmqq“;‘_fAfvh — (@ = q) - b@) @] dt

+ [(X1 +eX,) (T) <X1) (T) — (X; +2X,) (0) (Xl) (0)]
+ [Xa(n)%(T) - X2<o>ff2<o>] + QAT - QO)Q)]
(%/0 ( 2dt+%/T(X2(t)—X (1))2 dt

+% [ Q- ot Sl
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(
o ~ )
+/ —X1& — (/lm (1 — —> X1 —di Xy —my (Q) X1 +me (Q) XQ) X,
0
( X, | dt

dt



_ . dX
— (X1 + 5X1) d_tl

+/ —Xl& — (um (1 — %) X1 — lel — my (Q) Xl + Mo (Q) X2) Xl dt
oL i

T Z
+A __XQ% — (um (1 — %) XQ — d2X2 — Ma (Q) XQ + ma (Q) Xl) XQ_ dt

i * (% [ Grexy-xeo)ya [ en - (n (1-5)ex,

S0 e dt Q@
—de Xy —m (Q) e Xy Xyt + /0 o (Q) e X, Xodt + [g)‘(l (T) <X1> (T) — X,1(0) (X1> (0)}
_ % OT (X1 (t) — X1*(t)) dt)
:112%§ (% /OT (X1 +X3) () — Xy (1)) dt — % /OT (X1(t) — X17 ()2 dt
N /T —5X1dd_)~§1 — (,um (1 — %) eX| — dieX; —my (Q) 5)_(1) Xl] dt

+/0T i (Q) X\ Kdt + |:€X1(T) (f(l) (T) — £X1(0) (jﬁ) (0)])
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:liml (% (/OT (X1 +£X3) (8) — X,°(8)) dt — /OT (Xi(t) — Xl*(t))th)
+ /OT _g)‘(ld_j(l _ (Hm (1 . %) eX) — die Xy —my (Q) 5)‘(1) 5(1] Jt

4 /0 " (Q) <Xy Kot + BAGICHIGEDAUIEY <0>])

_lig%é (%/0 [(X1 X)) —2X0" (X + X)) + (X5 (1)? = (X (1) — 2 (X (6) X1 (2)

T o dX . . N\ <
—€X1d—t1 — (,um (1 — %) 8X1 — d18X1 — M (Q) EX1> X1

+ (X (b))t +/

0

oy (Q) e X, Xodt + [gxl (T) (Xl) (T) — le(O)Xl(O)])

im (% / ' ((0(0)° + 22 X0 5a(0) + (50)° = 2X (DX (1) — 22X (0 Ka(0) + (X7 (0)°

— (Xu(1)* = 2X1 () X7 (1) + (X7 (1)) dt

T o dX . . N\ - oS
+/ —Sde—{;l — (,um (]_ — %) €X1 — d1€X1 — my (Q) 6X1) X1 + my (Q) EXlXQ dt
0

_dX,
—e X, —=
AT

— <,um (1 — %) 5X1 — d15X1 — M (Q) 5X1> Xl +m; (Q) 5X1X2i| dt
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e—0 E
Tl 1_dX 1 1 1.\ -

+/ —€—X1—1— <,um (1—2> E—Xl—dlg—Xl—ml (Q)g—Xl) Xl
0 3 dt Q) € € €

s (Q) %leg} dt + {%le (%) @) - %Xl(()) (%) (0)}

T - 1. ~
:lir%%/ [2X (1) X, (t) + ~e* X7 — 2X1*(t)X1(t)} dt
e— 0 g
T aX, A N .
+ —de—— Hom, 1—= Xl—lel—ml (Q)Xl X1
0 t Q

1 (Q) Xua] dt + [ (1) (%) (7) = %1(0) (K1) (0)]

—oy /OT (X1 (?) —Xl*(t))Xl(t)dtJr/oT

Q) )‘(15(2] dt + [Xl (T) ()”(1) (T) — X,(0) ()”(1) (0)}

:/OT [(Xl(t) —XO) an Xa(t) = Xyt (um (1 -~ QI> X1 —di Xy —mi (Q) Xl) X

:/OT —ded—)il n [(Xl(t) X)) e — (Mm (1 - ﬂ) —d —my (Q)) X,
i (Q) XQ} Xy (t)dt + X.(T) <X1> (T) — X,(0) <X1> (0) =0
Since <)~(1) (0) = 0 Remove the test function X, (t)

:/OT _dd—jil + [(Xl(t) — Xy () oy — (Mm <1 - %) —di—m (Q)) X1+ m (Q) )2’2} dt

+ (5(1) (T) =0
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So, the first adjoint equation

= 0000 = X0 @) ar = (s (1= ) == ma(Q)) T+ (@) Ko

dX,
dt
Condition : <X1> (I)=0
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A2

The second adjoint equation:

L <X17X2 +€X27Q>X17X27Q79) — L <X17X27Q7X17X27Q79)

e—0 £ - O
1 T T B
— ll—rf(l) . <%/ﬂ (X1(t) — X1%(t)* dt + %/ (Xa+eXo) (t) — Xz*(t))Q dt
ag [ (1)) 2 Branz ’ Xm
22 [ @u-@wrasdirs [ -xG

— (um (1 — @) X1 — di X1 —my (Q) X1 4+ ma (Q) (Xa +eX5) (t)) Xl} dt

-/ '
- (um (1 - §> (Xo +£Xs) — dy (X + %) —m2 (Q) (Xa + 2.Xo)

@_ v Qm_Q A
dt mqm_qA+Uh

dX,
dt

(XQ + €X2)

T
+ mi (Q) Xngdt + /
0

—Q — i (Q — q) — bQ) Q] dt

+ 41 (%) (1) - %00 (%) (0)]
+ [(Xg +eX,) (T) (XQ) (T) — (X5 +2X) (0) <X2> (0)}

(651

+[@<T>@<T>—@<0>@(0>]—(7 [ - x2a

+%/( dt+—/ VYt + 2 ||6>||2
2 Jo

T -
+/ —Xlﬁ — (ﬂm <1 — q—) X1 lel mi (Q) X1 + Mo (Q) X2> Xl dt
0

T Z
+ /O —XQ% — (Nm <1 @) XQ dQXQ mo (Q) X2 + my (Q) X1> XQ dt

T : S _ A ~ -
[ e - (= @0 - 1) | i

+ [X(D)X(T) = X1 (0)X1(0)| + [Xa(1) Ko (T) = Xa(0)Xa(0)]

+[RITQ(T) — Q0)Q(0)])
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1 T
=lim - (% / ((X2 + EXQ dt + / mg Xg + €X2 det
& 0

dX,
dt

(X2 + EXQ)

Q
+ (6 +e%) (1) (%) (1) = (X +2%) (0) (%) (0)]

7/; (Xa(t) _XQ*(Zf))Zdt—l—/Tmz (Q)Xz) Xdt

— ( (1 — @) (X2 + ng) —dy (XQ + 6)_(2) —may (Q) (Xg + 5)_(2) +my (Q) X1) Xo| dt
{

—XQ— — <,LL (1 — 6) XQ dQXQ meo (Q) X2 + ma (Q) X1X2:| dt

~lim (a— / (X2 %) (1) = X" (1) " dt + / (2 (@ X+ my (Q)6X2)> (%) at

dX dX
ng—j - €X2d_t2 [hm (1 5) X0 Xy — fim (1 - 5) eXo Xy + dy X5 Xo

Fdpe Xo Xy — s (Q) XoXa — ma (Q) eXa X +mi (Q) le(g] dt
+ [(XQ(T) (XQ) (T) + eXo(T) (XQ) (T) — X,(0) (XQ) (0) — £X5(0) (XQ) (0)}
# (% [ e - xro2as [ m @ xS

Q

—XQ% — (u (1 —) XQ dQXQ meo (Q) X2 + ma (Q) Xl) XQ] dt

limé (7/0 (X5 +£Xs) () — X5 (¢))” dt+/ ma (Q) e Xy X1 dt

—5X2— - (,um (1 - qé) €X2 d2€X2 mo (Q) 6X2> Xg] dt
&%)

+ [5X2(T) <X2) (T) — X(0) (XQ) (0)] -2 /O ' (Xo(t) — X2*(t))2dt)>
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:yml (%/ﬂ (X +eXs) (t)—XQ*(t))Zdt—%/o (Xat) — Xo* (1)) dt

T
—+ / mo (Q) €X2X1dt
0
_ dX ¢ v ¢, ) X
—5X2—2 - (Mm (1 — %) Xy — doe Xy — mo (Q) 5X2) XZ] dt

" /OT dt Q

+ %) (%) (1) - £X%,0) (%) 0)])

:lli’%% (%/ﬂ [(Xa(t))? + 2 X () Xa(t)
+ (eX2)” = 2X5(8) X (1) — 26 X" ()Xo (1) + (Xo* (1))

— (G0 = 2X6l0) X0+ (0 + | " (Q) <Ko Kt

T
+/
0

—5X2— — (,um (1 — %) €X2 — d2€X2 — My (Q) €X2> XQ] dt

Q
+ [)Q(T) (XQ) (T) — X,(0) (XQ) (o)}

—Xo—— — <Mm (1 - %) Xy — da Xy —ms (Q) )_(2) X +ms (Q) XQXI] dt
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_XQ% — < (1 — —) X2 d2X2 mo (Q) XQ) Xz -+ Mo (Q) X2X1] dt

=ay /OT [(Xa(t) Xo(t) — Xo*(t) Xo(t)] dt

_XQ@ — <,um (1 — —) X2 d2X2 mo (Q) XQ) XQ + mo (Q) X2X1] dt

= [ 0 - ot - Ko (i (1-8) K- - e (@05 Ky
g (Q) XoXdt + Xo(T) (5(2) (T) — X,(0) (5(2) (0)

+ Xu(T) (X2) (1) = X2(0) (X%:) (0)

/ e e - <wmwﬁwéﬂﬁwrm@ﬁm

Since <X2> (0) = 0. Remove the test function Xy(t)

=ATQ%%+MA>Xﬂm@—QMQ—%)—@HW@QXﬁwm@XJw

(5@) (T) =0
Xalt) = X' (0) = (s (1= 2 ) = o = 2 (@)) o 4 ma Q) Ko
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So, the second adjoint equation:

dd_)% = (Xa(t) — Xo*(t)) ag — (um (1 - %) Xy —do Xy —my (Q) Xz) +ms (Q) Xadt,
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A.3  The third adjoint equation:

dL B 1 L (XlaX%Q_'_EQ?leXQ?Qae) _L (X17X27Q7X17X27Qa9> B 0
@_slg% g B
:ﬂ%§C§A(X@—x@Wﬁ+%A(&@—Xﬂm%t
+2 [ @+ - ) a5l
T dX @ WX —m )
+/0 _ X, 7 (,um(l (Q+5Q)(t))X1 d1 Xy 1 ((Q+2Q)(1) X,
+nm«Q+fowy@<Xth
T dXe @ Xy —m )
. / 0 (,um(l (Q+eQ)(t))X2 0, — my ((Q + £Q) (1) X,

+WM«Q+f@xwya<ngt
+AT-%Q+eQ¢Q

. ( an— (Q+:Q) A
" dm — 4 A+Uh

~in(((@+2Q) ~ )~ HQ + 20 at
[ (%) @ - x50 (%) )] + [ x(1) (%) (1) - X200 (%) 0]

aq

+1(Q+=Q)T)Q)(T) — (Q +Q)(0)(Q)(0)] - (7 | @ -x o

T
2 (X0 - Xt ) dt+ 2
2 0 2 0

T 5 -
+/ —Xlﬁ — (,um (1 — %) X1 — lel — my (Q) X1 + Mo (Q) X2> Xl dt
0

(@)~ @ (1) dt + 5 0]
o -
+/ _XQ@ — (,um (1 — %) XQ — d2X2 — Mo (Q) X2 + ma (Q) X1> Xz dt

0

T: dQ Qm_Q A A
+/0 -_Q__(Umqm_qA+Uh_um<Q_Q>_bQ)Q

dt

+ X D)XT) = X2 (0K (0)] + [ Xa(1)Xo(T) = X2(0)Xa(0)|

+[Q(T)Q(T) — Q(0)Q(0)])) -



651

—tin? (9 [ 2050+ QP - 22007+ (@ QD) - Q) - G QD) - Q)

T . X, X X, X
+/ q1 1 X 1+ 1 X Xy + c1ky 1AL c1ky L142
o | (Q+eQ) (Q+ Q) RQ+eQ+k Q+eQ+k
Q+5Q — Q+5Q ~ Clk'leXl
- T XX+ —2—F XX mXX mXoXo —
Q+€Q+k2221 Q+€Q+k2222 QM 1A1 — QM 2A2 O+ k

Q+ ki Q + ko Q + ko
T *dQ qm — (Q+5Q) A A o
"—/O |:—€Q_t+ <_Um G — A—I—U +Mm5Q+b€Q>
- Q

m —q A+ vy

C1/€1X1X2 CQQXQXl C2QX2X2} dt

+on Q1 ]dt+ (Q +Q)T)QT) — (@ + Q) (0)O(0)

- [Q(T)Q(T) ~ Q(0)Q(0)])

~ lim © (% | 20:0+ (207 ~2:00°t + G 2:QTIQT) + (T - 2:QT)Q)

T
M oy S Cllel — —
X1 X XX — (X; - X
+/0 [(Q%—SQ) <Q1 141 + q2X2 2>+Q+8Q+k1( 1 2)
c2QXo + c2eQXo [ 5
+ Xo— X
Q+eQ + ky ( 2 1)

—%n (91X1X1 + CJ2X2X2)

T
_'_/
0

+0m@Q

aki Xy /s > C2QX2 S S
Q+ k (XZ_Xl) +
*dQ qm — (Q + 5@) A
8th+< Um Gm — q A+ vy,

Q4 be@) 9

Qm_Q
Qm_qA+Uh

] &t + QT — s@<o>@<o>)

— i © (% / 200+ (:Q) — 2:0Q"dt + L (2:Q(T)QT) + (Q(T))* — 2:Q(T)Q")

+ /DT [ fm (CI1X1X1 + Q2X2X2> — % <Q1X1X1 + CI2X2X2> Clk—l—Xl (Xl - X2>

(Q+¢eQ) Q+eQ+k
aki Xy /g 5 2QXs + 2eQXs / 5 c2QXs [ 5
g - R) e H e (-8 -0 (XQ_Xlﬂ “
T _dQ Gm — (Q+eQ) A A A\ A
+ /o —8QE + (—vm pa— At o + pme@ + beQ) Q
Fn Q=LA QAT - 2Q0)0))
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~lim © (% | 20:0+ (007 —2:00" ar+ G QAT + QT —2:QNQ)

g [, [ 1 1
+/o K(@+a@> @)<Q1X1X1+Q2X2X2> (Q+8Q+k1_Q+k1>

ot it CQQXQ + CQSQXQ CQQXQ ~ ~
c1k1 Xy (Xl—X2>+( 0+:0+ ks _Q—l—k‘g) <X2—X1>} dt
T
+/
0

~Qm_Q A A A ~
r0n Q=LA cQ(QT) - Q10)20))

_ i — A —£0 A
—eQ—< + (—vmq Q — o, eQ
Gm —q A+ vy Gm —q A+

+ pmeQ + bEQ) Q

—tin (5[ 200+ (60 - 22007t + 5§ QU + QT ~ 2:QT)Q)

r @ — Qpm — gQﬂm ¥ ¥
A (G g IERRTERD

Q+k —Q—eQ—k o o
' ((Q+6Q+k1) <Q+k1>> ki (0~ )

. 2QX2Q + 2QXoks + 22QX0Q + c26QXoks — ©2QX2Q — 26QQ X2 — 2Q X0k (X
(Q+2Q +k2) (Q + ko) ’
T
—Xl)] dt + /
0

+eQ(T)Q(T) — £Q(0)Q(0))

fdQ eQ A - -\ =~
QG+ (e e +10) Q] :

HE / 20eQ + (€Q)? —2:QQ"  dt + 5 (2:Q(T)Q(T) + (eQ(T))* — 2:Q(1)Q")
4 —€QMm > > —EQC1]€1X1 S S
| (@ ) i+ e « <(Q Qi k) @+ m) = %)

CQEQXQ]CQ d it
N ((Q +2Q + k) (Q+kz)) (*: _X1>] “
T ~dQ eQ - =\ ~ ~ ~
# [ @t (oL G 0:0) @t QDI
—Q(0)Q(0))

94



 eQpm
(Q+:Q)Q
€chk1X1 CQ&QXQ]CQ ~ —
_<(Q+€Q+k1)<Q+k1> +<Q+€Q+k2 Q—i‘kz)) <X2_X1)

_dQ eQ
—€Q%+( ——qA+ h+Mm5Q+b€Q) )

+%(2€Q(T)Q( ) + (Q(T))* = 2:Q(T)Q") + Q(T)Q(T) — £Q(0)Q(0)
— lim <%/ QQQ—F EQ —2QQ ( Qﬂm

i\, Q+20)Q
5

) Q1X1X1 + QZX2X2>

0\ 2

chk’le CoQ) Xk > % *dQ
(Q+6Q+k1)<Q+k1>( o)+ (Q+6Q+k2)<Q+k2>>(XQ_XI)_QE
Um Q— Af h+“mQ+bQ) )

(QQ(T)Q(T) e(Q(T))* = 2Q(T)Q") + Q(T)Q(T) — Q(0)Q(0)

( QQQ+ (eQ)* — 2QQ" — <(QQ—) @ X1 X, +Q2X2X2)

chk’le C2QX21€2 S > —dQ
<Q+k:1 Q+k:1) ) <Q+k:z Q+k2)<X2_X1>_Q_

+(vmqm_qA+ h+qu+bQ) Q> dt+— (2Q(T)Q(T) — 2Q(T)Q")

_|_

a
+

T)Q(T) - Q(0)Q(0) =
Since Q(0)
Remove the test function Q(t)

(/OT% (Q-Q) - <Q2> (605 + X s) ((ccglilil)z) (.- %)
() (-5 - 22

1 A ~ (6%} " ~
(o ) Q) de+ 5 QUT) 20 + QU
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iQ

dt

— 0y Q) — Q%) — (%) (lele +qQX2X2) - (

Cllel
(@ + ky)”

+<<02Lk2> (X2—X1>+Um ¢ A +/me©+b@>

Q + k»)? Gm — QA+ vy
Q(T) = a1 (Q(T) — Q)

The third adjoint equation:

= 03 (Q(1) ~ Q") ~ (’5—’") (X% + X% - (

cllel
(@ + ky)”

Xok - . ) A - 3
+< CoR2m2 )(Xg—Xl)Hm ¢ + 1O + b0,

(Q+ k) Gm — q A+

QT) = a3 (Q(T) = Q")
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A.4 First forward equations:

dL L <X1,X2,Q>X1 +€):(1,X2,Q79) — L <X17X27Q,X1,X27Q79>
Xm e—0 £
i 2 (O ) - xe o7+ 22 [ () - X))
S C MRS R OEE S AR A0)
T
Q *
+ 2 @ - @ w2ars o
0
T [ d(X1+€X1> ¢
+/ —-Xi o - (Mm <1—§) Xi —di Xy —my (Q) Xy +my (Q)X2>
0

T ~
_|_/ _X2% — (Mm (1 — %) X2 — d2X2 — Mo (Q) X2 + my (Q) X1> Xg] dt
0

dt
+ /OT _—Q% — (Um(f;; —?Afvh pm(Q = q) — bQ) Q| dt
+ [Xl (T) (5(1 + ng) (T) — X1(0) (5(1 + 55(1> (0)}
XD X (T) ~ Xa(0)Xe(0)] + [QRIDQT) ~ QOQ(O)]
_ (% /OT (X (1) — X" ()" dt + 2 OT (Xa(t) — Xo* (1)) dt
w5 [ Q) - @@+ S
+ /OT _—X1dd—)~§1 - (Mm (1 - %) Xi = di Xy —my (Q) Xi +m2 (Q) X2> Xl_ dt
+ /OT -_XQdd_j% - (Mm <1 - %) Xy — daXo —ma (Q) X2 +m1 (Q) X1> X2: dt
+/0T —Q%— (vm‘;:_CjAfvh - m<Q—q>—bQ)@ dt
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i ([ [ 55 o (18 5 - em@15)

e—0 g

(Xl + g)?1>]dt + X\(T) ()”(1 + 85(1) (T) — X1(0) (f(l + 5)?1)) (0)

_ </OT [_ded_)il _ ( (1 - @) X1 — di X1 —m1 (Q) X1+ ma (Q) XQ) fg] dt

T ~ =

- (um (1 - 5) X — i X1 —mi (Q) X1 +ms (Q) X2) eX, dt

Xu(T) + X (D)X (T) = X2(0)X3(0) — X2(0)=%1(0)]

)
_ </OT [ Xl% - (u (1 - 5) X, — di X, —my (Q) Xy + ma (Q)XQ) 5(1] dt
)

Xu(T) - X,(0)%,(0)])

T % _
:ll_I}(l)é </0 [—Xl dsdi(l _ (M (1 — @) X1 d1X1 mq (Q) X1 -+ Moy (Q) X2> <€X1>] dt
1

+ [XI(T)&;)Z (T) — Xl(O)e):ﬁ(O)D
XlldaXl B (u (1 —) Xi —di Xy —my (Q) Xy +ma (Q) XQ) 555(1] dt

T
:1'
250 /0‘ e dt Q

+§X1(T)5X1(T) - %X1(0)€X1(0)>

:/OT [_XlW _ (ﬂ (1 @> Xy — di X1 —mi (Q) X1 +ms (Q) X2> 5(1] dt

+ X1(T)X.(T) — X1(0)X,(0)
/ Xlﬁ + X, (T) X\ (T) — X,1(0)X,(0)—
/0 (Mm (1 _ @) Xy — dy Xy — my (Q) X +ma (Q) X2) X, dt
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T _
:/ (%—Mm (1—%) Xl—lel—ml(Q)X1+m2(Q)X2) Xl dt
0

Remove the test function f( 1

T
:/0 (%_,um(1—%)Xl_lel_ml(Q)X1+m2(Q)X2) dt =
i (1_%) X = i Xy = (Q) X +ma (Q) Xz =0

First forward equation:

%:Mm <1—%> Xp —di Xy —my (Q) X1 +ma (Q) Xz
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A.5 second forward equation:

dL L <X1>X2>Q,X1,X2 + 5):(27(2,9) — L (Xl,Xz, Q7X1,X27Q,9>
dXZ e—0 £
. 1 1 T 2 65} T 2
=lim — (—/ (Xq(t) — Xy™(t))" dt + —/ (Xa(t) — Xo"(t))" dt
e—0 g 0 2 0

+2 [ Q- @) i+ Sy

T ~
+/0 —Xl% — (/Lm <1 — %) X1 — d1X1 — m (Q) X1 —+ mo (Q) X2) <X1>] dt

[ d(X;+eX
+/ X, ( 2 2>—(um<1—%>X2—d2X2_m2(Q)X2
0

%) (%) (D) - X0) (%) 0)]
+ [X(T) (% + %) (T) = Xo(0) (o + 22 (0)] + [RIT)QUT) - Q(O)Q(O)]

_ <%/0 (X1(t) — X1° (1) dt + % | (Xe() — Xo'(t))" dt
=2 [ - @ myar+ Zyore

2 Jo

(
T B -
+/0 —Xl% - (/Lm <]. - %) X1 — d1X1 — my (Q) X1 + Mo (Q) X2> X1 dt

T B Z
+/ _XQ%_ Mm, <1—%> Xg—dQXQ—mQ(Q)X2+m1(Q)X1> XQ dt
0
Tl dQ n—Q A -
[ e - (=Y @0 - 1) | i

+ [Xl(:mfcl (T) — X1(0>X1(0)] n [XQ(T)X'Q(T) _ X2(0>X2(0)]

+[Q(T)Q(T) — Q(0)Q(0)))
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1 T d <X2 + 8)?2>
=lim — / D
e—=0¢ 0 dt

- (um ( - %) Xo — doXo — ms (Q) X+ my (Q) Xl) (5(2 —1—5):(2)} dt

+ [X2<T) (X; + 5)?2) (T) — X»(0) <X2 + 5)?2) (0)]

—Xo—— — (Mm (1 - %) Xy — dy Xy —my (Q) Xo +my (Q) Xl) X2] dt

- (,um (1 - %) Xy — da Xy —my (Q) Xo +my (Q) Xl) X

—Xo—— — <um (1 - %) Xo — d2Xo —ma (Q) Xo + 1y (Q)Xl) X2] dt

T X ~
:lli%é </0 [_X2 di;(Q _ (ﬂ’m (1 — %) XQ — d2X2 — Mo (Q) X2 + mq (Q) Xl) <€X2>] dt

+ [XQ(T)E):(Q(T) - XQ(O)»S):Q(O)]

T

=lim
e—0 0

1deX Lz
—ng di 2 - <,Um (1 - %) Xy — doXo —mo (Q) Xo +m1 (Q) Xl) 55X2] dt
1

+ [Xg(T)ég):Q(T) - X2(0)gaf<2(0)]

T % _
:/ [—XQ% — (Nm <1 — %) X2 — d2X2 — My (Q) X2 + my (Q) X1> XQ] dt
0

+ Xo(T) Xo(T) — X5(0)X2(0) = 0
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/ XQ— dt + Xo(T) Xo(T) — X5(0)X5(0)

(o)

T rdx, = ( >
= 22X m 1—— X do X
/O(dt 2 — U 0 2 — Ao A2

Remove the test function ):(2 :

T rdX, < Q2>
= — —um [ 1 == ) Xo —da X
/0 (dt ¥ 0 2 2X2

Second forward equation:

dX
dt2 = Um (1 - a) Xy — dy Xy
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— My (Q) X2 + my (Q) Xl) )?th =0

—msy (Q) Xo +my (Q) Xl) dt =0

—me (Q) Xo +my (Q) Xy



A.6 Third forward equation:

dL L <X17X2>Q,X1,X2, Q-+ 552,9> —L <X17X27 Q. X1,X5,Q, 9)

g
1 T T
:mm(%/(&@—&WWﬁ+%/(&@—Xt dt
e—0 € 2 0 2 0

+ 2 [ Q- @z Do

=0

. ~ -
-I—/O __Xl% - <,um (1 - %) X1 —di Xy —my (Q) X1 +me (Q) XQ) X1_

/T_ 10D _(,, 1m0 4

e WAL A Q0= 1Q) (@ +2Q)|
+ [xu(r Xl(O)} + [X(1)%(T) - X:(0)%:(0)]
+ QDG+ Q)T - Q)G + )0 >] - (% / (X2(0) — X0° (1))

2/<2 m+—/‘ ﬁ+|w2

_I._
N l\.’>|
|
.-><
QL
\s<
|

+
c\
N
|
o
2%
|
VR
/}
|
Q2

) Xo — dy Xy —my (Q) Xo +my (Q) Xl) X

/T_—Qg—(vm%_c2 4 —um(Q—Q)—bQ>Q dt
+
QT

+

X1(0)X1(0)] + | Xa(T)Ka(T) — X(0)Xa(0)|

0)Q0)])
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+/O —XQ% - <,um (1 - a) Xy — do Xo —my (Q) Xo+my (Q)Xl) Xz

dt (M (1 - a) X) —di X1 —my (Q) X1 +ma(Q) X2) X,

dt

dt

dt

dt



—Q dt

dQ+eQ) <U gm—Q A

g = (@)= Q) (Q+<Q)

1 T
=lim — /
e—0 ¢ 0

+[Q(TY(Q +Q)(T) — Q(0)(Q + £Q)(0)]

T d@ Qm_Q A A
- </0 [_Q%_ <Umqm—qA+vh_um(Q_q)_bQ> Q] «

_Q@_ v Qm_Q A
dt QO_qA+Uh

_ AT

104



Qi
=
|
o\
S
VRS
3
()
3
|
L
N

_ / _Q%t +Q(T)Q(T) — Q(0)

_[1dQs Gm—Q A _
_/0 EQ_(Umqm—qAJrvh_“m(Q_Q)_bQ)th

Remove the test function 6:2

T p—
:/0 @—(vm% ©_A —um@—q)—bcz)dt

dt Gm — q A+ vy

Third forward equation:

dQ am—Q A
= m - m - _b
g e g At M (@ —q) —bQ

A.7 Optimality condition:

0= {,Umv q1, 42, dF? d27 A}
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dL L (XlaXQaQ7X17X27Qa0+€0_> — L (XlaXQaQ7X17X27Qa0>

9~ . =0
=t (3 [ mo-xeoras 2 [ o - xeor
Qg3 T * 2 5 _ 2 r dX1
+ 5 (Q(t) —Q(t))" dt + 5 | (e + €fim, q1, g2, d1, da, A)|| +/ _XIW
0 0

- ((um + Eflm) (1 - %) X, —di X; —my (Q) X1 +my (Q) XQ) Xl} dt

@—(’U Qm_Q A
QO_qA_vh

= (pm + fim) (@ — q) = bQ> Q] dt
+ [XDXUT) = X 0X1(0)] + [ Xa(1)Xo(T) — Xa(0)Xa(0)]
+QT)QT) - QO)Q))

—~ (% : (X1(t) — X" () dt + %/0 (Xa(t) — Xo" (1)) dt

T
=2 QW — Q) e+ e, A
0

Hm <1 — ﬂ) X —di Xy —my (Q) X1 +me (Q) X2> Xy | dt

(-

T _ Z
+/0 —XQ%—(/ULTQ <1—%) XQ—dQXQ—mg(Q)X2+ml (Q)X1> Xg dt
d dQ m—Q A ~ _

+/0 —Q%—(Umqm_qA+vh_Nm(Q—Q)_bQ)Q dt

+ [Xl (T) X\ (T) — X1(0>X1<0)] n [XQ(T)XQ(T) _ Xg(o)&m)]

+[QITQT) = Q0)Q(0)])
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n%((— (s + Fm, @1, 2, iy, o, A + /OT [— ((um + fim) (1 - 6) Xl) Xl} dt
L8

= = o+ ) (@ - ) Q) )

§ [t @1, g2, iy, do, A)|* + /OT [— (um (1 - é) Xl) Xl} dt

o O (=8) ) sfos [ Fiopeio-in )

1. _
R ((§ 1t i 41, 40, o, A2

.
“ [ | (1- ) 0 e (1- ) 0
oo
—I—/O _—Mm (1 - 6) X2X2 Eflm (1 - 6) X2X2} dt
+/0 :u (Q— )Q + efim(Q — Q)Q] dt)
(g (Hm> @1, G2, dv,do, A || + { ( q@) Xl} dt
T

[ oo )5 f o001

1. (B _
= — lim (— ||(,um + EUm; q1, q2)d17d27A)H2
ce—=0\ 2

T
+ /0 {—s,um (1 - %) X1 X1 = &fim (1 = %) XX + i (Q — q)@} dt

B
_5 H(:uma q1, 42, dl, dg, A)H2

li
T

!

1., _
- gllir[l) (g ||(:um + Elm; 41, QQ7d17d27A)||2 - é ||(:uma th27d17d27"4)”2

T
+/0 [—eum (1 — 5) XXy — efim (1 - 5) XoXs + €fim(Q — Q)Q] dt)
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1 B _ 2= \2

T
+/0 {—eﬂm (1 — %) X1 X1 — efim (1 — %) XX + efinm(Q — q)@} dt)

= (Btmfim) + fim /OT {— (1 — %) X1 X, — <1 - %) XoXo +(Q — q)@] dt

(e [ [ (-1 w0 i

Remove the test function fi,,

T
Bl = —/0 {— (1 = %) X, X - (1 = %) XX+ (Q — q)@] di
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T T
ok ——l1m( 71/0 (X1(t) — X, (t))zdt+%/0 (Xo(t) — Xo* (1)) dt
T
=2 QO — Q) e+ S e+ 21 A
0
4 dX,
*A T

— (,um (1 — il —ggq_l) X1 — lel — mq (Q) Xl + Mo (Q) Xg) X1:| dt
T r ~
+ / _XQ% — (Nm (1 — %) Xg — d2X2 — My (Q) X2 + my (Q) X1> XQ] dt
0

T: 2 - 5
+/0 —Q@—(v n=Q_A —um(Q—Q)—bQ)Q

m dt
qm_qA+Uh

X D)XD) = X2(OX(0)] + | Xa(1)Ko(T) = X2(0)Xa(0)|

T

_ (ﬂ ' (X1(t) = X)) dt+ 2 | (X)) — Xo™(8)2dt

2 /o 2 Jo

n % /OT (Q(t) — Q*(1))* dt + g (s @1, 2, i, da, A) |

N /OT _ded_jil - (um (1 - %) Xi —di Xy —my (Q) Xy +ma (Q) X2> X1 dt
N /OT _ngd—% - (ﬂm (1 . %) Xy — doXo — ms (Q) X +my (Q) X1> X2 dt
+/0T —Q% - (vm(zz__CjAfvh — (in(Q — q) —bQ) Q| dt
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1. _ T +eq ~
=—lim ((g ||(Mm,(h +5Q17Q2,d1,d2,A)||2 +/ —Hm (1 -4 0 C]1) Xledt>
0

_ (g 1 (ms @1, 2, da, da, A + /OT {_ (“m (1 - %) Xl) Xl] dt))

1. B _ 2 T o5} 5 Eqy -
=—lim 5 | (o> @1 + €G1, g2, di, da, A)|| +/ — i | 1 — 0 X1 X, — MmaXledt
0

s 2 ’ a1 o
- E H(:um7QI7q27dl7d27A)H + —Hm 1— 6 Xledt
0

_1 lim (g ((\/(um)2 (g1 +eq)* + () + (d)? + (do)* + (A)z)

£ e—0

- (\/ () + (@1)" + (g2)" + () + (o) + <A)2)2>

T _
+ / —um@)(lxldt)
0 Q

—o (g ((n)* + (@1)* + 220000 + (2301)” + (02)° + (d1)* + (do)” + (A)?

— () + (@) + (@2)° + (d1)* + (do)® + (A)?)) + /0 —um%Xledt)

1 lim (g ((um)z (@) +2eq1q + (6q)” + (g2)° + (d0) + (do)® + (A)? — (1)

Eq

— (@)~ (@) — (1) — (o) — (A)?) + / —umaXledt)

1. (B _ _\2 g Q1
:g l]i% E (26(]1(]1 + (5(]1) ) +A —[I,maXledt

T _
:li_f}(l) (5 (CI1Q1 + % (Q1)2) +/0 _,Um%Xledt>

T _
=Baq +/ —MmﬂXledt =0
0 Q1
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Remove the test function ¢

T X, X
5Q1+/ L dt = 0
0 Ql

dL . _
o (i 1,02+ oy )17 = 1o D) =0
1. o [T 2 ay [T 2
== lim ((—/ (X1(t) — X17(t))" dt + —/ (Xa(t) — Xo*(t))" dt
g e—0 2 0 2 0
as 4 * 2 5 _ 2
+ 5 (Q(t) — Q*(t))" dt + 3 | (o @1, G2 + €2, di, da, A)||
0
T dX -
+/ _de_tl — (/Lm <]_ — %) X1 — d1X1 — mi (Q) X1 -+ mo (Q) X2> X1 dt
0
T dX,
X, 02
+/0 2t

+ > (Q(t) — Q*(t))2 dt + g |I(MmaQbQ2>d17d27A)”2
0

T 5 -
+/0 —Xl% - (/Lm <1 - %) X1 — d1X1 — my (Q) X1 + Mo (Q) X2> Xl dt

T B Z
+ / _XQ@ - (/Lm <]_ - %) X2 — d2X2 — My (Q) X2 + my (Q) X1> Xg dt
0

dt
Tl dQ m—Q A -
v _—Q%—(vmqm_qA+vh—um(Q—Q)—bQ)Q at

+ [Xl (T)X\(T) — X1(0>X1<0)] n [XQ(T)XQ(T) _ X2(0>X2<0)]
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dL B
dgs

dL
dgs

1. _
— lim( é | (o> @1, G2 + 56]27d1,d2,14)||2 - é ||(Mm,Q17Q2,d17d27A)||2
£ e—=0 2 2

T — B T B
[ ) [ o3 w5])

Liim(2 ((V (1) + (@1)° + (g2 + £G2)* + () + (do)” + <A>2)

T 5 — 5 T 5
oy G- g) et mmn)uc [ (1) v )

! (@ () + (@1 + (02)* + 260+ (c02)° + ()2 + (d)? + (A)?

ce -0\ 2

— () + (@) + (g2)* + (d0)? + (o) + (A))) + /0 ' (—Mm%&@) dt)

-y (§ (()* + (00)" + (02)" + 22020+ (e)° + (d)* + () + (A)? = ()’

- (@)~ (@) - @) = (@) = (aP) + [ ' (—Mm%m@) dt)

T _
! lim <§ (2€Q2sz + (59_2)2) +/ (_Nm%X2X2> dt)

ge =0 = 0

=lim

T _
um <<5Q2§2 + % (6?2)2> +/0 (—Mm%X2X2> dt)

T _
=Bq2q2 + / _,UmﬂXQXth
0 Q2

T
1 ~
Bqo +/ — i~ X Xodt = 0
0 Q2
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a _Bs
ddl _25

(llg% | (sms @1+ @2, di + 2y, day A)||* = (s @1, G2, i, do, A)

1) =0

T

T
:E?i%(%/o (Xl(t)_Xl*(t))Zdt—l-% 0 (Xo(t) — Xo™(1))2 dt
) 7 T dX
=2 [ @ - P ar+ L (o + i )+ [ |35

- —> X1 — (dy +edy) X1 —m1 (Q) X1 +m2 (Q) X2) 5(1} dt

+ /OT _Xde_)% — (,um (1 — %) Xy — dy Xy —my (Q) Xo +my (Q)Xl) X2] dt
+/OT _—Qg —~ (”m(i;;_—?Afvh — pm(Q = q) — b@> Q| dt
+ [Xl(T)f(l(T) — X1<O)X1(O):| + [X2(T))~(2(T) - XQ(O)X2(O)}

0

+ /OT —ded—)il - (um (1 - %) X, — di Xy —mi (Q) Xy +ms (Q)Xz) %]
[l (1 (1= 2) %o = X = s (Q) o 4 (Q) X0 ) Ko
+/OT QU (vm‘f}”;__fAfvh — (@ = q) —b@) 0| at
+ [XD) () - X1(0)%2(0)] + [XalT)Ko(T) = X3(0)%2(0)]

T
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1 _
=—lim (g H (Mm,CI17Q27d1 + €d17d2>f4)||2 - g ||(Hm,CI17QQ>d1,d27A)||2

g e—0

T T
+/ (dl + ECZl) Xledt — / leledt>
0 0

£ e—0

i (§ () + (@) + (@) + () + 22y + (2di)” + (do)” + (A = (i)’

T

—(@1)* = ()" = (d1)” — (d2)* — (A)?) +/

€J1X1X1dt>
0

g e—0

T
:1 lim (ﬁ <2€d1d1 + (5&1)2> +/ elel)z'ldt>
2 !

T
=Bd,d; + / di X1 X, dt
0

T
<6d1 + / X1X1dt> dy =0
0

Remove the test function d;

T
Bd, +/ X1 Xdt =0
0
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dL _
; (llg% | (1t @1, g2, dv, do + ds, A) H2 — || Ctn Q17QQ7d1,d27A)||2) =0

ddy ~ 2
1 T T
IQE(C§K(x@—mefm+%1:@xwi&wym
a3 ! * 2 5} 2
+? (Q(t) — Q*(1)) dt+§”(l’[’m7q1aQQ7d1;d2aA)”
0
T r ~
+/0 _—Xl% — <,um (1 — %) X1 — lel — my (Q) X1 -+ Mo (Q) XQ) Xl] dt
Tl ax,

—(m;<y—%>x5—@b+s@)xy—mamnxr+mey&)X4dt

_Q@_ v Qm_Q A
dt " gm —q A+

(@ —q) bQ) @] i
+ [ X D)XUT) = X (0 X1(0)] + | Xa(1)Xo(T) — Xa(0)Xa(0)]
+ [Q(D)Q(T) - Q0)Q0))
—<74(&@—&WWﬁ+%A(&@—&%Wﬁ

4o OT (@)~ Q (1) 1+ [t 1.2, )P
+AT;&%%—Q%O—%)&—@&—md@XﬁWMQXQXJﬁ
+AT—&%%—Q%O—%)&—@&—mﬂ@XﬁWM@XQX;ﬁ
+/OT -—Q% - <Umi[Z:§Afvh — 11m(Q — q) — bQ> Q| dt

+Pﬂﬂ&@%%MW%®%{%@WWD—&mWMﬂ

+[QITQT) = Q0)Q(0)])
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2

! lim (g ((\/(Mm)Z (@)’ (g)® + (dh)* + (da + 6672)2 + (A)2>2>

B W (m)® + (01 + (22)° + (d1)* + (do)® + <A>2) ) €de25pdt>

T

€J2X2X2dt>

L. (p 7 ;
:g ll—I}(l) <§ <2€d2d2 + (€d2)2> +/0

T
—Liim <§ (25d2J2 + (5J2)2> + / a&QXQXth>
2 0

g e—0

T
~lim (5d2d2 Lo (d2)2) + [ XK
e—0 2 0

T
=LBdyds + / do X5 Xodt =0
0

T
(@dg + / X2X2dt> dy =0
0

Remove the test function dy

T
Bds + / XoXodt =0
0
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B
Z_j :2_5 (6%0

dL

1 a; [T /2 (%)
ﬂ—gy(iéuw>xmmﬁ+7

i || (pm, @1, G2, di, do, A 4 € A) H2 — || (e, Q17QQ7d1>d27A)||2) =0
T
(Xa(t) — Xo* (1)) dt
0
T

—+ % (Q(t) — Q*<t))2 dt + g H (/meaq1aq27dl7d2aA + EA)H2
0
T ~
+/0 _—Xl% - (um (1 - %) Xi =i Xy —m (Q) Xy +ms (Q) X2)

Q

r 42
+ /0 __XQW - (Mm (1 - —) Xy = do Xy —ma (Q) Xz +my (Q) Xl)

Tl dQ Gm—Q (A+ed) -
+/0 __QE_(Umqm—q(A—{—ezé_l)—vh_ﬂm(Q_Q)_bQ)Q]dt

+[XDXUT) - X 0X1(0)] + [ Xa(1)Xo(T) — Xa(0)Xa(0)]

_/% OT(Xl(t)—Xl*(t)>2dt+% OT(Xz(t)—Xz*(t))2dt

2 @O = Q0 5 o o, AP

dX,

+/T _X__( (1—2)X—dx—m(Q)X —|—m(Q)X>
; L Hm 1 141 1 1 2 2

Q

T dx,
+ —Xy—= —
/0 - a Q

dQ_( Qm_Q A

—Q— dt
Q Qm_qA+Uh

dt

— 1 (Q — q) —bQ) Q

Xi(T) % (T) = X:(0)%1(0)] + | Xa(1) Xa(T) — Xa(0) X(0)]
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(um (1 - @) Xy — doXo — ms (Q) X +my (Q) X1>

2

X

X

X

dt

dt

dt

dt



1 B 112 T Gm—Q (A+eA) -
—glﬁ%((EH(Mm,€117Q2>d17d27A+5A)H +/0 [_Um qm—q(AJre/_l)—UhQ “

B 2 /T[ Qm_Q A ~:| )
-\ 5 ms ) 7d7d7A —Ym dt =0
(2||(M 1, 2, du, do, A)||” + : v qm—qA+th

1. -
:g lﬂ%(g (H(MmaQI7QZ7d1>d27A+5A)H2 - ||(HmaQ1,C]2,d1,d2,A)||2>

T gm—Q (A+ed ~} B T{_ Gn—Q A ~} >_
+/0 {vmqm—q(A—i—efl)—th dt /0 o @] dt ) =0

2

~ L lim (g ((\/(M)Q ()" + (@) + (1) + (do)” + (A + 5A)2)2>

g e—0

- (\/(um)2 + ()" + (@2)* + (d1)* + (do)* + (A)2>2>

. _
Qm_Q A+5A A Qm_Q A ”:| )
+ U, _ + Uy dt) =0
/0 {U qm—qA+eA—th ! qm—qA+th

- élﬂ% (§ () + (@0)° + (@) + (d1)? + + (do)® + (A)? + 2cAA + (cA)?

— () + (@) + (@2)* + (d1)* + (do)* + (A)%))
T ~qm — @ A+eA A B
+/0 —omQy { }dt>_0

m — (q A+€A—Uh_A+Uh

== lim( (g ((m)* + (01)* + (g2)* + (d1)* + (do)?* + (A)? + 2cAA + (e A)?
— ((m)* + (@) + (@2)* + (d)* + (d2)* + (A)%))

- _
~qm — Q A+cA A

— U _ — dt] =0
+/0 Uqu—q [A+5A—vh A+ vy,
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1

2ty (5 (o) (00 (@ (0 () (A 4 2240+ (62 = (1)’
- (Q1)2 - (CI2)2 - (d1)2 - (d2)2 - (A)2)
r <gm—Q |(A+ed)(A+u,) —A(A+eAd—w,)
+/0 ~Um@ Gm — ¢ (A+eA—v) (A+vy) dt)

+/T_v qu_Q A2_Avh+gAA_5Avh_A2_6AA+Avh
0 m qm — 4 (A—l—é‘/_l—vh)(A_i_Uh)

dt) =0

_! lim (g (2cAA + (£4)?)

£ e—0
T o 2 P Y P 1
+/ _Uqum Q | A% — Av, +cAA _5Avh A —cAA + Avy, gt
0 Gm — (A+eAd—u,) (A+wy)
1. (B - - T ~Gm — Q —cAvy,
=-1 — (2eAA A)? / —Up, - dt
855%(2(6 +(€ ))+ 0 v qu—q (A+€A—Uh)<A+Uh>

—flvh
(A +eA+ vh) (A+vp)

=1i
e—0 Gm — q

1 65 1 4 NQm_Q
m (5AA+ 5 (A7 + /O —0,Q

:

B _ T ’“Qm_Q —A’Uh
_@AA+/O “om@ [(A+vh) (A“’h)] :

o

T
A mqm—Q el ~d)A:O
<5 +/0 ! dm — (4 (A—i‘vh)QQt

Remove test function A

T
Qm_Q Uh A
0 Qm_Q(A+Uh)2
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Optimality condition:
’ 4 o a2 5 =
(ﬁum)-i-/ {— (1_§> XXy — (1_6) XoXo+(Q—q)Q|dt =0
0
T 1 R
Baqr + / — = X1 Xqdt =0
0 Q
T 1 R
Bz + / — =X Xodt = 0
0 Q

T
Bdy + / X1 Xqdt =0
0

T
Bdy + / XoXodt = 0,
0

T
Qm_Q Vh ~
P 0 Gm — q (A+vh)2Q
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APPENDIX B

Derivation of ODE optimality system with drugs
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In this appendix, we present the derivation of the optimality system for treat-

ment.

B.1 The first adjoint equation:

dL L <X1 +eX1, Xo, Q, X1, X, QU) - L (XI,X%QquaXQu Q,U>
ax, i : =0
1 T T
—tin 2 ([ (@) - Quprar+ § [ worar) + 5 @) - @)
i ~
i /0 - (<) O (um (1 _ %) (X1 +2X0) — dy (X1 + X))

— ml(Q) (Xl + €X1 + mg(Q)XQdet

)
. /T _x, e (um <1 - %) Xy — dy Xy — ma(Q) X +my (Q) (X, + 5X1)) f@] dt

A0 ([ a-Q A
-/ _—Q——(vmqm_QA+vh—Mm(Q—q)—bQ—vQU)Q]dt

+ [(X1 + X)) (D)X (T) — (Xy + X)) (O)XI(O)] + [XQ(T)XQ(T) - X2(0>X2<0)]

T r ~
+/ _Xl% — <Mm <1 — %) X1 — d1X1 - ml(Q>X1 + mz(Q)X2> Xl] dt
0

T
+ /0 —Xz% - (/Lm <1 - %) Xg — d2X2 — m2(Q>X2 + ml(Q)(Xl))Q} dt

12 _(, m-Q_ A :
e - (et S i@ ) -0 - 5Qu) @ a

+ [(X)MXUT) - (X)) %1(0)] + [Xa(T)Xa(T) — X2(0)X2(0)

+[Q(T)Q(T) — Q(0)Q(0)))) =0
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T ~
= lim 1 / —EXlﬁ — | Um 1-— 2 €X1 - dngl - ml(Q)le Xl dt
E—00 £ 0 dt Q

+ofim 2 ( /0 ' ‘—ml(Q)gfchQ] dt + ]gXl(T)Xl(T) - eXl(())Xl(o)D

E—O0 £

_ /0 ' {_XIW _ (Mm (1 _ %) X — ml(Q)X1> < - ml@)XlXQ] it
+ [Xl (T)X,(T) — Xl(o)Xl(O)}

Remove the test function X (t)

_ /OT [—% - (um (1 - %) . m1<Q>) £- (@)%

Since X;(0) =0

- /DT [—% _ <um (1 - %) - m1<@>> % - mi(Q)%,

The first adjoint equation:

dt +X,(T) =0

o (1 (1= %) = = m@) K= (@)% 4(T) =
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B.2 The second adjoint equation:

dL L <X17X2 +€X2,Q,X1,X2,Q7U> —L <X1,X2,Q>X1>X2>Q,U>
—— = lim =0
dX, e—0 5
1 T
— (% [ @ - Quioytar+ [ a5 @ - o

+/0T :_Xlﬁ _ ( (1 @) X1 — di X1 — mi(Q) X1 + ma(Q) (X2 +5X2)) X1] dt

T
+/0 (X2 +€X2) dt

- (um_(l — 5) (Xo +eXo) —dy (Xo +eXo) — ma(Q) (Xo +2Xo) + ml(Q)X1> XQ} dt

+/0T aQ g —Q A

¢ dt (Um Gm —q A+ vy
+ [ XD X(T) = X0 X 0)] + [ (X2 +e%) (1) X(T) = (Xa 4655 ) (0)Xa(0)]

— 1 (Q — q) — bQ — WQU) Q]

+1Q(T)Q(T) = Q(0)Q(0)]
- (% / @) - Qutar+ 2 [ i+ @) - o

+/0T —deXl (u ( )X1 di X1 — ml(Q)X1+m2(Q)(X2)) Xl] dt

.. - oo X _ (1 (1= 2 ) (X0 () = ) (30) + 0,(@)X1 ) Ko

+[Q(TA(T) - Q(0)Q(0)]
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2
T ~
— ( —Xl% — (Mm (1 — 2) X1 — d1X1 — ml(Q)Xl + mQ(Q)Xg) Xl] dt
0 t Q
T ~
+A _XQ% — (,um (1 — %) XQ — d2X2 — mQ(Q)XQ + ml(Q)Xl) XQ] dt

n [XQ(T)XQ(T) - XQ(O)XZ(O)])) —0

1/ (" oo
= lim- (/ —mg(Q)é‘XQdet
e—=0¢g 0

— (,Um (1 — %) X2 + Hm (1 — %) €X2 — d2X2 — dQEXQ — mQ(Q)XQ — mQ(Q)EXg

_ (/OT [_ngd—)% - (,um (1 _ %) Xy — dy Xy — ma(Q)Xs + ml(Q)Xl) X2] dt)) —0
-
15

. dX _ _ N\ -
—5X2d—t2 — (um (1 — %) 6X2 — d2€X2 — mz(Q)EXQ) XQ] dt

1
e—0
T
+/
0

+[(%2) (1)%e(T) = (%) (0)%2(0)] = 0

1T dXy @\ - _ _ _
= lim — [—€X2 W — | Um 1-— @ €X2 - d2€X2 - TTIQ(Q)&‘XQ X2 - mg(Q)eXQdet
& 0

+[(%) (M%) - (%) (00%(0)]) =0
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Since (X,) (0) =0

Remove the test function X,(t)

Q

=—— = (Mm (1 - @) —dy — m2(Q)> Xy —ma(Q) X1 4+ Xo(T) =0

At Q

The second adjoint equation:

%,
dt

126

% (Mm (1 . q_) oy m2<Q>) Xy — malQ)

Xl; XQ(T) :0

= —Um (1 — %) XQ + dQXQ + mQ(Q)XQ — m2<Q)X1, XQ(T) =0



B.3 The third adjoint equation:

dL ‘ L <X1,X2,Q+€Q,X1,X2,Q,U> — L <X1,X2,Q,X1,X2,Q,U)
— = lim =0
dQ e—0 £
1 T _
~ it (2 [ (@4 - uit)ar+ 2 [+ S (@+QD) - @)

T ~
+/0 —Xl% — (/,L (1 — 6) X1 d1X1 ml(Q)Xl + m2<Q>X2) X1 dt

_I_

/T _ X dX; 1— 2 ) Xy — doX X X, | X _ d
Ao = | Hm 6 2 — daXo —ma(Q)Xa +my(Q) X1 | Xof dt
0 - -

+/OT _—(Q +2Q)—~

(q (Q+eQ) A
Gmn—q A+,

— Q4 2Q) — q) — b(Q + Q) — 1(Q + 8Q)u) @} it

+[xmx X (0)] + [(X) (1) Xo(T) = (52 (0)X(0)
+ [(@+:Q)1)QT) - (@ +2Q)(0)Q()]
(3 [ @ dt+%/0<<>>dt+%<Q<T>—Q>2
+/OT _—X1d—)21 - (,u (1 a) X1 —di X1 —my(Q) X, +m2(Q)X2) Xl_ dt

+

/T _ x, 382 1 X,y — do X X X, | X _ d
—Aem = ( Hm —a 2 — da Xy —ma(Q)Xo +m(Q) Xy | Xo| dt
O .

T: dN o — A -
- _—Qd—ff— (vmq (o —bQ—vQU) Q] it

+ [ XD X(T) = X1(0)X1(0)| + | X(T) Xal(T) = X2(0) X2 (0)|

+ XU Z () - X1(0)%(0)] + [X(T) %a(T) - X5(0) %(0)]

+[em)@m) - @)am]) =0

127



(651

i ? (5 [ 2050+ (0 - 2:0Quit + G (@ QD) - Q) - 5 (@1 - @)

T . X, X X, X
+/ q1 1 X 1+ 1 X Xy + c1ky 1AL c1ky L142
o | (Q+eQ) (Q+ Q) RQ+eQ+k Q+eQ+k
Q+5Q — Q+5Q ~ Clk'leXl
- T XX+ —2—F XX mXX mXoXo —
Q+€Q+k2221 Q+€Q+k2222 QM 1A1 — QM 2A2 O+ k

Q + ky Q+ ks Q + ko
T @@ Ay
+/0 {_gQ_th(_vm Gm — q A+vh+um8Q+b€Q+7(€Q)u)Q
—Q

m —q A+ vy

C1/€1X1X2 CQQXQXl C2QX2X2} dt

+on } dt + [(Q + Q)T)OT) — (Q + Q) (0)Q(0)]

- [Q(T)Q(T) —Q(0)Q(0))) =0

- nml (% /O 2QQ + (eQ)? — 2eQQndt + % (2eQ(T)Q(T) + (eQ(T))* — 2eQ(T) Q)

T
,um it ot C1/€1X1 _ _
X X X, X — (X; - X
+/0 [(Q%Q) <Q1 1A 2>+Q+6Q+k1( 1= )

CQQXQ + CQZ‘:QXQ ~ ~
+ Xo— X
Q+eQ + ko ( ? 1)
m c1k1 X ~ _ coQX. _ _
_% (X1 X1 + @ XoX0) + éi ki <X2 _ Xl) n 23 kz (X, — Xz)l dt
r _dQ w—(Q+e0) A _ _ N -
+ / —8Q—Q + —vmq (@+<Q) + pmeQ + be@Q + veQu | Q
0 dt Gm — q A+,

Qm_Q

+ 0, Q
QQm_qA+Uh

] dt + <Q(T)OT) - s@<o>@<o>) _

— i © (@ / 200 + (:Q)? — 2:QQudt + 5 (2:Q(T)Q(T) + (:Q(T))* — 2:Q(T) Q)

+ /DT [ fm (CI1X1X1 + Q2X2X2> — % <Q1X1X1 + CI2X2X2> Clk—l—Xl (Xl - X2>

(Q+6Q) Q+eQ + Kk
cih1 Xy (5 S 2QXs + ceQXs (o 5 2QXs (5 >
g - R) e H e (-8 -0 (XQ_Xlﬂ “
T an—(QreQ) A N
+ /o —8QE + (—vm pa— At o + pme@ + be@ + 'yeQu> Q
+0,, QL _?A } dt +Q(T)Q(T) —5@(0)@(0)) =
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- nml (% /O 20:Q + (eQ)? — 2:QQ,, dt + % (2eQ(T)Q(T) + (eQ(T))* — 2eQ(T) Q)

g [, [ . . 1 1
+/0 K(QHQ) - 5) (Q1X1Xl HDXQXZ) " (Q+8Q+k1 N Q+k‘1>

ot it CQQXQ + CQSQXQ CQQXQ ~ ~
c1k1 Xy (Xl—X2>+( 0+:0+ ks _Q—l—k‘g) <X2—X1>} dt
T
+/
0

~gm —Q A A A A S _
+0, Q=L Q) - <00)00) ) -

~ ( gm—Q A —Q A
—eQ——+ | —Um — U,
Gm — q A+ vy Gm — q A+

+ fmeQ + beQ + veQu) Q

—lim (% || 20:0+ (60 = 2:0Qudt + 5 (2:QUIQT) + (2QT)? - 2:QTIG)

r @ — Qpm — gQﬂm ¥ ¥
A (G g IERRTERD

Q+k —Q—eQ—k o o
' ((Q+6Q+k1) <Q+k1>> ki (0~ )

. 2QX2Q + 2QXoks + 22QX0Q + c26QXoks — ©2QX2Q — 26QQ X2 — 2Q X0k (X
(Q+2Q +k2) (Q + ko) ’
T
—Xl)] dt + /
0

+eQ(T)Q(T) — Q(0)Q(0)) = 0

_dO ) A _ _ _ -

— nm1 %o /0 2QQ + (eQ)* — 2¢QQ,, dt + % (2eQ(T)Q(T) + (eQ(T))* — 2eQ(T) Q)

e=0e \ 2
T - Q m B B
[ (% >) =)
Co Qszz > >
" ((Q +eQ€+ k2) (Q+k2>) (% _X1>] “
+/T

—eQ(0)Q(0)) =0

_Echlel
Q+eQ+k)(Q+k

+

) (Q1X1X1 + C]2X2X2) + <(

dt + eQ(T)Q(T)

-d@ eQ A - - - ~
_SQE + (UmmA Yo, + /Lm€@ + be’i@ + ’}/EQU) Q
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— Jim * (% /0 19Q:Q + (:Q)* — 2600, (@f?—ggm) (X0 X + 25, 5,)
6@011{31)(1 -~ = CQ&QXQ]CQ ~ —
B ((Q+6Q+k1) <Q+k1>> (%) + ((Q+6Q+kz) <Q+k2>> (%)
_dQ eQ
_ €QE + (Um—qm — qA+Uh

+ pmeQ + beQ + stu) Q) dt

+ 2L (2:QM)Q(T) + (£Q(T))? = 2:Q(T)Qun) + £Q(T)Q(T) — 2Q(0)Q(0) = 0

2
. apg [T = = = Qﬂm & x
= ll_{% <7/0 200 + (eQ)* — 2QQn, — (m) <Q1X1X1 + Q2X2X2>

Qerki X, _ - QX ks - )
- ((Q+8Q+k1) (Q+k1)> (Xl _X2> * ((Q+8Q+k2) (Q+k2)> (X — X)) —Q—

O AN
+(vmqm_qA+Uh+qu~l—bQ+7Qu) Q) dt

+ 2 (20(T)Q(T) +£(Q(T))* — 2Q(T)Qn) + ATQ(T) — Q(O)Q(0) = 0

T _
= <@/ QQQ + (€Q)2 - QQQm - <%) (Q1X1X1 + Q2X2X2)

2 J, Q)Q
Q01k1X1 5 5 C2QX2]€2 S S —dQ

- ((@m) (Q+kr1)) (%1- %) + ((Q+k2) (Q+k2)> (e-%) -0

(o Q00 +9Qu) Q) di+ G 2QTIQUT) - 20(T)Q)

+Q(T)Q(T) = Q(0)Q(0) =0
Since Q(0) = 0

Remove the test function Q(t)
T . _ . b X _ .
(/0 o (Q — Qm) — <%) <Q1X1X1 + C]2X2X2> - ((Cch—i—l/ﬁl)2) <X1 - X2)
CQXQkQ ~ ~ d@
! ((@ ¥ z@)?) (- %) -0

1A ) o .
(o b)) di+ 5 (2Q(T) ~ 200) + QD) =0
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%gzadﬁﬂ—QM—(%ﬂ(%&Xﬁqﬁ@@»—ngi})C&_Xﬁ

CQXQ]CQ ~ ~ Q A R ~ B
—— | (X — X1 ) + v, + 1,,Q + bO + 7
+<(Q+k2)2>( 2 1) U Ao T H Q +bQ + yu@

Q(T) = a1 (Q(T) — Q)
The third adjoint equation:

% =ap (Q(t) — Q) — (%) (qule + q2X2j(2) . ((;1/—?;(11)2) (X1 B )Q)

62X2k2 ~ ~ @ A _ ~ 3
Xo = Xy ) + v + 1@ + bQ + yuQ),
+((Q+k2)2>< - X) Aty @ TR TC

Q(T) = o1 (Q(T) — Q)
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B.4 Optimality condition:

@ = lim L (X1’X2’ Q’XDXQ’Q’u + 871) — L (X17X27 Q?XMX%Q’U) =0
du N e—0 € =
1. a; [T T ,
——tim ( (2 [ (X00) = X, (1) dt+ 2 [ (X(t) — X (1)) dt
£ e—0 2 0 2 0
Q3 T 9 T
Y (Q(t) — Qm(t))" dt + (u+ eu)’dt
0

[0 (40 4
+A i@g-(WQVWA+waMQ—®—M2w@@+w0Q

T)X1(T) = X1(0)X1(0)] + [Xa(T)X2(T) — X2(0)X:2(0)] + [Q(T)Q(T) — Q(0)Q(0)]

(%/ o - a2 [ oom -t 2 [ @ - aue
é T
2

/ V2dt + / ' [ Xlﬁ - (Mm (1 - 5) X1 — di Xy — mi(Q)X, +m2(Q)X2> )‘(11 dt

+/D [ XQ% - (,um <1 - %) Xg — d2X2 — m2<Q>X2 + ml(Q)Xl) X2:| dt

dQ < gm —Q A
— — | Uy,
Gm —q A+

— 11 (Q — q) — bQ — VQU) Q] dt
+ [ XDXUT) = X 0X1(0)] + | Xa(1)Xo(T) — Xa(0)Xa(0)]

+[Q(T)Q(T) - Q0)Q(0)])

Lo (B [T

g . @_ Qm_Q A
+/0 Q (v

dt " gm —q A+
r T o A B
—<§/O<u>2dt+/0 Q% (4, =9 —um(Q—Q)—bQ—vQU)Q] dt))

Qm_qA+Uh

—mﬂ@—@—ﬁQ—va+fw)@]ﬁ>
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T T T T
= 1lim (—/0 (u + eu)’dt — g/o (u)?dt —|—/0 [—7QuQ — vQeuQ)dt —/0 —7Qu@dt>
= 111m((§ /OT(u)2 + 2euti + (ew)*dt — g/ﬂT(u)th - /OT 7@8&@6&)

T T
= llim (g/o 2euii + (eu)*dt — / ngant)

0

= lim <§ /OT 2uil + (eu)*dt — /TyQant) =0

_§/0T2uﬂ—/0T7QﬂQ~dt O

- 5/0Tuu— /OT'yQqut
= /0 T(ﬁu — yQQ)udt

Remove u(t) , then optimality condition:

T ~
/D Bu —~QOdt = 0
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APPENDIX C

Derivation of Liouville optimality system
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C.1 Forward equations:

dL L(p,w + cw, 9) L(p,w,0) _0

(lii% /0 ’ /Q (%(w+5ﬂ?)(w,q,t) (b, )pl(, 4, )Y - (w + ), q, t)> dodadt
/Q (d—fwmw — (0(z, q)p(z,q,1))V - w(x,q,t)) dxdth)) _0

glﬂ% /OT/Q (%gw(x,q,t) — (b(, q)p(z, q,1))V - €@(x,q,t)) d:cdth) _0

- [ [ (%00 - 0t apte. .07 - q,t>> dodqdt = 0
Z/OT/Q (%@(%%t) — (b(z, q)p(z,q,t)V - w(z,q,t / / z,q)p(z,q,t )dfﬂdth—o
_ /0 ' /Q (%@(m,q,t) —v-(b(x,q)p(x,q,t))w(x,q,t)> dadgdt = 0

_ /0 ! /Q (% V- (b g, q,t))) @(x, g, t)dadgdt = 0

Remove w(x,q,t), then we have

dp

= TV bz, 9)p(z, 1) =0

p(x,q,0) =po(z,q) =0
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C.2  Adjoint equation:

dL(p,w,H) L(p +ep,w, 9) L(p,w,0)

= lim

e—0

(hm // (p+ep)(z,q,t) — (x,q,t))2dxdth—|—§||0||2

e—0 2

—|—/0 /Q%Emw(x, q,t)da:dth—/o /Q(b(x,q)(p—l-sﬁ)(x,q,t))-Vw(x,q,t)d:z:dth

_ (% /OT/Q (p(z,q,t) — p(z,q, t))zdxdth - §||¢9||2
[ [ Bt ytodads— [ [ 0t ante0.0)- Vutr. . tddoit)

<hm / / p+ep)(x, q,t) — p(x, q,t))2 — (p(x, q,t) — p*(z, q,t))2 dxdqdt

e—0 2

// ( p+€p p)>w($,q7t)d:rdth

_/ /(b(x>q)<p+5ﬁ_p)(93>q,t))-Vw(x,q,t)dxdth>

=0

<hm / / (p+ep)(z,q,t) — (:c,q,t))2 — (p(z,q,1) —pd(:c,q,t))zda:dth

e—0 2

te / / D g, t)drdgit — < / / (b(x,q)ﬁ(x,q,t))-Vw(x,q,t)dxdth)

(hm / / p + 5@ Z,4, ) <x7Q7t>)2 - (p(xqut) _pd(l‘qut))zdxdth

e—0 2

—i—s/ /—w x,q,t dmdth—e/ / z,q)p(x,q,t)) - Vw(z,q, )dwdth)

(ll_lg% 5 / / +ep)* — 2pp” — 2epp” + (p ) — (p)? + 2pp® — (pd) dxdqdt

te / / D (g, t)drdgit — < /0 /Q (b(m,q)ﬁ(x,q,t))-Vw(x,q,t)dxdth)

~ - ~ 2 2
(gg% 5 / / 2+ 2pep + (ep)? — 2pp” — 2epp” + (%) — (0)* + 200" — (p*) ) drdqdt

T
+€/ /—w(x,q,t)dwdth—e/ /(b(w,q)ﬁ(:v,q,t))-V’w(fc,q,t)dxdth)
o Jodt o Jao
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~ ~ ~ 2 2
(hm / / 4 2pep + (ep)? — 2pp® — 2epp” + (p*)” — (p)* + 200" — (p7) ) dadqdt

e—0 2

T
+6/ /—w(x,q,t)dfcdth—e/ /(b(l‘,q)ﬁ(%q,t))-Vw(x,q,t)dxdth
o Jodt 0o Ja

1
= (hm / / 2pep + (€)*(p)* — 2epp )d:cdth

e—0 2

T
+6/ /—w(w,q,t)dfcdth—ef /(b(xaq)ﬁ(fv,q7t))-VW($7q,t)dqudt
0 Jodt 0o Ja

a [T d\ ~
:_/ /2(p—p ) pdxdqdt
2Jo Ja
T

T T dﬁ T
+ / / %w(nx7Q7t>d:€dth — / / (b(:r,q)ﬁ(q;,q,t)) . Vw(a:,q,t)d:cdth
Q 0

Q

T T gw T
:oz/ / (p - pd) pdxdqdt — / / —p(z, q, t)dxdgdt + / p(T)w(T)dzdgq
0 Q 0 Jo dt Q

—/Qﬁ(O)w(O)dxdq—/ /(b(w,q)ﬁ(w,q,t})-Vw(x,q,t)dxdth

Choose w(T') =

/ / p—p° pd{Edth—// p(z, q,t)dxdgdt

b(x,q)p(v,q,t)) - Vw(r,q,t)dvdqdt

Take

a(p—p)—il—l;—b(x q).Vw(z,q,t) =0

Then, the adjoint equation:

dw
a(p—p9 —E—b(w q) - Vw(z,q,t) =0
w(z,q,T) =0

w(z,q) =0 on Jf)
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The adjoint equation:

dw
a(p—p') = —7 F (@) Vu(z,q,1)
w(z,q,T) =0

w(z,q) =0 on Jf)

C.3 Optimality condition

The unknown parameters 6 = {fimn, s,d, A}

Lagrange multipliers equal

L(p,w,0) / / (,q,1) — pX(x, q,1))" drdgdt + EWHZ

/ /d_p w(x,q,t d.rdth—/ / z,q)p(x,q,t)) - Vw(z, q,t)dzdqdt

L(p,w,0) / / (x,q,t) (:L',q,t)) dxdth+—||9||2—i—/ /%w(x,q,t)dmdth
o Ja

k" m—q A
1—2 ) —dr — _
/ /((Mm( )x dr —c T Ao — pm(g — 3)

— bg)p(w, q,t)) - Vwdzdqdt

We want to find the optimality condition.

e—0 e
a1, ) 4 ) 2
dﬂm 5 8—)0 ( / / LU q’ (LU, Q7t)) dxdth + = ||(:um + eum, s, d7 A)H
/ / —w(z, q,t)dzdgdt — / / (( L + €T) (1 — —) r —dzr
dm
B —s) - d
_|_kn m _ SA—l—v — (tm + €fim) (¢ — s) — bg)p(z, g, )) -Vw $dth>

T
d
( // Pz 0,1) <$’q>t>)2d$dth+g\\(um,s,d,A)\l2+/ /d_lt)w(x,q,t)dxdth
0 Q
k" dm — 4 A
)T " ~ tim(g = 5) = bq | plz, g, 1
//(< ( >x T g —s At il = 9) q>p(xq ))

Vwdzdqdt) = 0
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dL 1. (p _ 2 B 2
—=-1 a m my © 7A -5 my 2y
e = 21 (S 1+ e, AV = 5 ., )]

T
_ S k" qm — ¢ A -
- . 1-2) e —de— . o) (o
/0 /Q<((N +€Mm)< Q)x T g — s At (tm + €ftm) (¢ = 5)

— bq)p(z,q,t)) - Vwdzdqdt

/ /((um (1——>x—dx—0q lfkn T, U m:zAfvh um(q—S)—bQ>p(:v,q,t)>

Vwdzdqdt) =0

dL 1
o = iy o+ 20, A = 5 5, A

d_L‘lhm(g(wmwmnm (e + ()2 + (@) + (A = ()” — ()7 — (d)* — (4)?)

dL 1 B T $

_— = 1 —_ = — —

dum € El_r}(l) (2 (261umlum " 6 /0 /Q (( (1 q) - glum(q S)) p($’ & t))
Vwdzdgdt) =0

dﬂm = Ottmftm = / / (< ( ) —hm(q — s)) (e, g, t)) - Vwdzdgdt = 0

Remove [i,,, then we have

dum = Pltm = / / (((1 B ‘) ZL“,—(q—s)) p(fc,q,t)) - Vwdzdgdt = 0
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Now, the following unknown parameter.

=t (5 [ [ 000 - 00,0 drdadt + 3 s+ 5., )

ds € e—0

// w(z, q, t)drdqdt
(s + ¢€s) k" gm—q A
_d - y Um - Mm -
//(( ( . )x x Cq”—kk”xvqm—sA—l—vh tm (g — 8)

—bq)p(z,q,t)) - Vwdzdqdt)

( / / (2.0,0) 1, 0,0) dedgdt + 2 (5., A)|* + / / (. q, t)dzdqdt
kn qm — ¢ A
/ / (( (1 —) T —dx Uy s At tn(q — 5) bq) p(w,q,t)>

Vwdzdgdt) =
dL 5
ds _Elli%(§ (s s + £5,d, A)|* ——H(um,sdA)H
$+€§) kn Gn—q A
—dx — 4m — 9 B _
<< ( >x TR " — s At (g =)

—bq)p(z,q,t)) - Vwdzdqdt

A (G e RO
Vwdzdgdt)
% _ %ll_{% (g ((\/(Mm)2 4 (54 e8)2 + (d)? + (A)Q)2 — (\/(Mm)2 +(5)2+ (d)? + (A)2)2>

_/OT/Q ((um (1_ (STE)) : o> oz, q, ))  Vwdedgdt
+/OT/QT< Mm(l—g)x o)p(a; q, )) -de:vdth) =0

= i (5 (o) (90 22554 (9 (4 4 (A = ) = (61 = (@ - (4)

d
T 4T 3
—/ / (( m—:v 0) (x,q,t)) -dexdth) =0
dL
it gll_xg% (g 2688 + (£5)? / / << )p(:t:,q,t)) ~dea:dth) =0
dL _ _
= Bss — /0 /Q ((uméx, 0) p(moq,t)) - Vwdzdgdt = 0

=



Remove s, then we have

dL T 1
— =fs— / / ((um—x, 0) p(z, q,t)) - Vwdzdgdt = 0
ds 0 Ja q

Now, the next unknown parameter.

dL 1. 2 B 7 A2

+ / / dzz w(z,q, t)dzdqdt
//((Mm(l__>x_(d+€d>x_cq ikn m=l A )

m— S A+,

—bq)p(z,q,t)) - Vwdrdqdt)

( / / (z,q,t) — p*(z,q, )) dxdth—l——”(,um,S,dA 12 +/ / (x,q,t)dxdqdt
//((Mm<1__)x_dx_c kk 2 :ZAfUh—um(q—s)—bq)p(x,q,t)>

-Vwdzdgdt) = 0
dL 1 15} 2
dd =i (§(Il(um;8 A+ ed, A)|[* = (o5, 4. A)|?)
T s _ kn Gm—q A
— m 1—— - d+ d - )y Ym - — Hm -
/0 /sz(<ﬂ ( Q>x (d+ edje Cq”+k‘"xv Gm — s A+ vy, pnla =)

—bq)p(z,q,t)) - Vwdzdqdt

<//<<“m(1")x‘d$‘cqikn L L la—s)

m— S8 A+ vy,

—bq)p(x,q,t)) - Vwdxdqdt)) =0
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daL 1 .
AL _ ELO(_ v 5.4 2, A) [ = 5., AYP)

7 k" dm — ¢ A
_/ /((Mm (1__)I_(d+€d)x_c ”—l-k”x’Um m—sA—i—Uh_um(q_s)

—bq)p(z,q,t)) - Vwdzdqdt

k™ dm q A
1-2 _
( //((Mm( );c dx Cq o z, m S o um(q S)

—bq)p(z,q,t)) - Vwdzdqdt)) =0
2~ Liim <§ (W o+ 04 @+ (A7) = () (002 4 @2+ (47) )

+ /0 ' /Q (edz, 0)p(z, 0, ) - dexdth) — 0

@ Ly, (§ (()? + ()7 + (@)% + 20dd + (20 + (A — () — () = (d)? — (A)%)

+/OT/Q((5dx,o,0)p(x,q,t)).dexdth) 0

dL 1. B
i gll_f)l(l) (2 (2edd + (ed)? / / ((edz,0)p(z,q,1)) - de;z:dth) 0

L _ T
L = Bdd + / /((dx7 0)p(z,q,t)) - Vwdzdgdt = 0
dd o Ja

Remove d, then we have

zz—ﬂd—i—/ / ((z,0)p(z, q,t)) - Vwdrdgdt =0
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Now, the next unknown parameter.

£ e—0

+/ / —w(:z:,q,t)da:dth

// 1—— x—dr—c M m—q A+cd (g —s)
fim q—l—k" m m— S A+eA+u, — Hmid

—bq)p(z,q,t)) - Vwdzdqdt)
T
d
( /t/ plz.0.1) u@wfw@ﬁ+@mm@¢mW+/L/ﬁww%wmmﬁ
0 Q

//((um(l——)x—dx—c ikn U :ZAfvh—um(q—S)—bQ)p(x,q,t))

-Vwdxdqdt

:—lm ( / / (7,q,t (x,q,t))dedth + g | (tms 5, d, A+ 5[1)”2

-2

1
:gl%(_”(ﬂm,sdmw 1t 5, A)

/ / << : ZA f:jfvh — fim(q —5) — bq) p(z,q, t)) : dea:dth>
Lt i -t )

:hm( mwmsdA+Mm-mesdmn)

g e—0

/ / (( : ZA f;gfvh) p(,q, t)) - Vwdzdgdt
/ / (< — zAfv )p(x,q,t)) -dexdth)

_ %EL% (g <<\/(um)2 +(s)2+ (d)? + (A+5A)2>2 - (\/(Mm)2 + ()2 + (d)* + (A)2>2)

. _
Gm — q A+eA A

— 0, v, = — ,q,t) | - Vwdzdqdt

/o /Q<( ° Qm—S{A+€A+0h A+“h}>p($q )) e >
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:é H (g (((m)? + ()2 + ()2 + (A)? + 26 AA + (2A)? — (pm)” — (5)? — (d)* = (A)?)) -
! G —q | (A+eA)(A+v) — A(A+cA+vy)
/0 @ ((O’UWC]W - (A—i—&zl—l—vh) <A+Uh) > p(x,q,t)) dedidth)
1

g e—=0

T /T .
_/ / o,vmq’” q
0 Q dm — S

-Vwdxdqdt)

T —
—sai- | /((0 1
0 Q Qm_s

Remove A, then we have

~ Ly (§ (2:A4 ¢ (A))

A? + Avy + eAA + cAv, — A% — e AA — Awy,
(A+ecA+v,) (A+vp)

) p(w,q,t)>

A
n ) p(z, q, t)) - Vwdxdgdt =0

(A+A+uvp) (A+ o)

—4q Un o
dA = BA— / / <O U ——— 5T A—i—vh) >p(x,q,t).de:cdth =0

C.4 Optimal control problem with drugs

dX s k™
1—— | X —dX — X
dt ”m< Q) Qv ke

d m A
= (@ 9) = 4@~ qult)

the Liouville equation

LY 0w aplra.0) =0

p(l’, q, 0) - po(l’, q)
Where

b(il?,q> = (bl(xa(J)? b3<x7Q)>

with the PDF initial condition at t = 0 given by p(z,q,0) = po(z,q). (z,q) €

Rt U {0}xR* U {0}, V = (2, a%)’ po(z,q) is the PDF of the initial condition
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k,TL
bi(z,q) = m <1 - f) r_dix — Ky L (4
g q" ki (C.A1)
qm — ¢4 A
b — y,, m 4 (g — ) —bg — 7
5(7,q) = v o At M (¢ — 5) — bg — yqu(t)

by, bs are essentially the right hand sides of the ODE (C.4) replacing X with

rand @ with gq.

mln J(p,u

MIQ

o

l\DIQ

T
//@@@ﬂ—ﬁ@@m)dmwt
Q

0
Subject to the equations:

W4 bz, (. 1) = 0

dt
p(l’, q, 0) = po(l‘, q)
where p? (2, g, t) is the desired level that the doctor wants to see (the middle of the

range or close to the normal level).

C.5  Weak formulation of Liouville equation:

dp

/T/ ( (b(x’q)p(xv%t))) w(z,q,t)dxdgdt =0

Q
Distribution w(zx, ¢,t) we have:

T T
/ / (@0, )dadadt + [ [(9.(0(a,0)p(z.q.6)) (o, g, )dodgit =0
0 0 Q
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Using integral by parts, we have

St~
St — s P—

T
P (o) dsdgit — [ / (b(er, p(2,0.1)) - Veo(, g, t)dadgdt
0

/ bz, q)ples 4, £) - Aw = 0

Choose w(x,q,t) = 0 on 0f), we have:

O/Q/[b(x,Q)p(x,% £) - il = 0

+

Then the weak form

T T
// w(zx, q,t)dxdgdt — // z,q)p(x,q,t)).Vw(z,q,t)dxdgdt =0
0 0 Q

We need to make the problem unconstrained using Lagrange multipliers

T
L(p,w, u)

T

// p(x, q,t) — p* (2, gm, 1)) dadgdt +

[

C.6 Forward equations:

+//(dt w(z,q,1) (b(ﬁ,Q)p(%q’t))V'%U(:v,q,t)> dadqdt
e

T
w(,q,t)dxdgdt — / / (b(z, q)p(z, q,1)) - Vw(z, g, t)dwdgdt
0

L(p,w, u)

wl@
wlm

+

E:I%

ot~

% im L(p,w—i—aw,u)—L(p,w,u) -0
dw -0 €
dL(p,w,u) 1 r 8 [
puwuu _ = . g o d 2 ~ 2
= | lim 5 //(p(x,q,t) P (2,4, 1)) drdqdt + 5 /(U(t)) dt
0 Q 0
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—(w +ew)(z,q,t) — (b(z,¢)p(x,q,1))V - (w + ew)(z, q,t)) dxdqdt

T T
%// (x,q,t) — xqm da:’dqd /
0 Q 0

—|—/T/ (%w(w,q,t) — (b(z, ¢)p(x,q,1))V - w(m,q,t)) dxdth)) =0
1

(}gm/jﬂ/< (w +ew)(@, q,t) — (b(z, @)p(z, ¢, 1))V - (w +€@)($,q,t)) drdqdt

MIQ

(d—]zw(m, q,t) — (b(z, q)p(z,q,1))V - w(x, q,t)) dxdth)) =0

(%5@(1’, q,t) — (b(z,q)p(x, ¢, 1))V - cw(x, q,t)) dxdth) =0

_ /(@@@%ﬂ—®@®M%%mVﬁMﬂﬁ>MW“ZO

T
/ (d—?ﬁ?(%q,t) — (b(x, q)p(z,q,t))V.w(z,q,t +// p(z,q,t) ) dxdgdt = 0
Q 0

@@(x,q,t) — V- (b(z,q)p(x,q,t))w(zx,q, t)) dxdgdt = 0

[/
= 7/ (% + V- (b(z, q)p(x, q,t))) w(z, q,t)drdgdt =0
0 Q

Remove w(x,q,t), then we have

LV 0w o a.0) =0

p(x,q,0) = po(zr,q) =0
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C.7 Adjoint equation:

dL(PﬂU u) L(p+5p,w u) L(p,w,u) 0

84)0

T
(hm g/ (p+ep)(z,q.t) — p* (z, g, t da:dth

N’IQ

T
o/
o T

pc—l:ﬁ? w(z, q,t)drdgdt — // z,q)(p+ep)(x,q,t)).Vw(zx,q,t)drdqdt

0 Q

n T

0 Q ]

T

.

= (¢, t)dvdqdt — b(z, q)p(x, g, 1)).Vw(z, g, t)dedgdt
2 0 Q

e—=0 2
0

l\DIQ

| e

+
T O\q

+

St~

I%%// ((p—i—eﬁ)(a:,q,t) _pd (xaqm>t)>2 - (p($7q,t) —pd (x,qm,t))zdxdth

+/T/(d++tpp)) w(z, g, t)dzdqdt - /T/ b(x,q)(p+ep —p)(x,q,t)) - Vw(z,q, )da:dth)

T
(6] 9 )
- ( 1%5// (p+ep)(z,q.t) — p* (2, qm. 1)) — (p(z, ¢, t) — p* (x, G, t))” dadgdt
0 Q

T T
+5//d—p w(z, q,t)dxdgdt — 5// p(z,q,t)).Vw(z,q, )dmdth)
0 0

T
o ) ,
- ( 1%5// (p+ep)(z,q.t) — p* (2, qm, 1)) — (p(z, ¢, t) — p* (2, G, 1)) dadgdt
0 Q
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T
w(z,q,t dxdth—a// p(z,q,t)).Vw(z, q,t)dxdgdt
0

SR
Stl%

T
« ) ,
( D%?//“gp —2pp” = 2epp” + (p°)” — (p)* + 2pp” — (p*)” dwdqdt
0 Q
A T
+€// (z,q,t dxdth—s// z,q)p(x,q,t)) - Vw(z, q,t)dedgdt | =0
0 0

Q

e—0

T

1

— (hm% / / )2+ 2pep + (ep)* — 209" — 2epp" + ()" — () + 200" — (") )dwdth
0 Q

p(z, q, )).Vw(x,q,t)dxdth) =0

T 3 T
—|—5//d—p w(z, q,t)drdgdt — 5//
0 0

T
- ( r%%// 2+ 2pe + (ep)? — 2pp" = 25" + ()" — () + 20" — (¢")”) ddqalt
0 Q

+e / / %w(x,q, t)dzdgdt — / / (b(%CJ)ﬁ(w,qvt))-Vw(ﬂfa%t)dﬂqudt) =0
0 Q 0 Q

T
1
— = (lim % / / (2pep + (€)*(P)* — 2epp?) dadgdt
0 Q

.
—|—5//d—€w(m,q, Ydxdgdt — ¢ / p(z,q,t)) - Vw(x,q,t)dedgdt | =0
Q

0

T
%//2 p—p? pdq;dth—i— w(z, q,t)dxdgdt
0 Q

o\ﬂ o\ﬂ
D\
S
?
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o\%

/ p(z,q,1)).Vw(z, g, t)dedgdt = 0
Q

T T
d
a// p —p?) pdadqdt — //d—? x,q,t d:ﬁdth—i—/p( Jw(T)dxdq
00 0 Q

T
/ 0)dxdq — // p(z,q,t)) - Vw(x,q,t)dxdgdt =0
Q 0

Choose w(T') =0

T T
d
:a//(p(:r;,q,t)—pd (m,qm,t))ﬁdxdxdth—//—l: x,q,t)dxdqdt
0 Q Q 0

T
// z,q)p(x,q,t)) - Vw(z, q,t)dedgdt =0
0 Q
T
d dw -
p(@,q,) = p* (2, 4m, 1)) = — = b(x,4)-Vw(z, q,1) ) blw,q,1)  dedgdt =0
0

Take

dw

o (p(x,q,t) = 1" (@, qm, 1)) = - = bz, ). Ve(w, ¢, £) = 0

Then, the adjoint equation:

«Q (p(xv%t) _pd (xaqmvt)) = Cfi_t + b(l’ Q) V’LU(JT q, )
w(z,q,T) =0

w(z,q) =0 on 0N
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C.8 optimality condition

Lagrange multipliers

(u(t))?dt

L(p, w,u) = (p(, ¢, 1) — (2, g, 1)) dudqdt +

St~
—
N |

Tt~

Q

QU

Tu(e.q.tdsdgit - / (b(er, )pl, 0, 1))- Vo (, ¢, ) ddgdt

/T
T i T

+//—€w(x,q, )dxdqdt — //((um <l—§)x—dx
0 Q 0 Q 1

=

l\DIQ

/(p(%q,t)—pd (2, g, 1))” ddgdt +
Q

k:n qm — 4
- m —s)—b ,q,t) | .Vwdzxdqdt
et Qm—SA-|—1)h — Hm(q — 8) = ba — “Vq“)p(“?q )) Vwdzdg
%—i L(p,w,u+ eu) — L(p, w, u) 0
du_sﬁ(] £ o
T
—Zim (2 [ [ (e a.) b ))? dwdqdt
_55%0 2 p\r,q, b T, qm, xraq
0 Q

T
s k" Gn—q A
- m 1__ _d - y Um - Mm - _b
//((M ( q>$ T e M —s At (7=5) ~ba
0 Q

u+eu))p(z, q,t)) - Vwdrdgdt)

|
)
=

dp

T T
/ dt+//
0 0 Q

’ k A
S " qm — 4
- m 1—-- —dx — y Um - Mm - —b
//((u ( q>x R A (= ) = ba
0 Q

— yqu)p(z,q,t)) - Vwdzrdgdt) = 0

w(z, q,t)dxdqdt

Nl%
S

T
Q
0 Q
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— yqu)p(x,q,t)) - Vwdzdgdt) = 0

= éll_r}% (g /T((u+€u)) —uldt — /T/ 0, —yqeu)p(x, q,t)) - dea:dth)

T T
:/Buudt // ,—vqu)p(x,q,t)) - Vwdzdgdt
0 Q

= 1lim (g / (v + 2euti + (eu)® — u?) dt — //((O, —vqeu)p(z, q,t)) - dexdth)

0

T
ﬂ/ 2eut + (cu)? // ((0, —ygeu)p(z, q,t)) - dexdth)
9)

0
Remove u, then we have

T T

dL
o= [puit— [ [(0.~v0p(w.0.0) - Vwdsdgat
0 Q

0
optimality condition

T

D/ uit - | / (0, —1@)p(, 0,1)) - Vewdzdgdt

0

We can simplify as:

T T
d
/ﬁudt—//( yap(z, q,t d)dxdth—o
q
0 0
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C.9 Kurganov-Tadmor (KT) scheme

The semi discrete scheme for solving Z—Jz + %(b f) = 0, Using the Kurganov-
Tadmor (KT) scheme.
Let (a,c) be a spatial domain. Where a = xg, 1, 22, ..., 2, 1, T, = ¢ are grid points.

TR PR for all © = 1,2,...,n are the mid-point grids. Let

n

f(z) = %f;”% f(z)dz be the average value of f in (:L’F%,xﬂr%). Then we have

1
-3

Tivd df Yivd d d1l [%+} 1 (%l d
o Loy =22 dz + — L bf) =
/H; i az ) dth/‘ ff‘”Lh/ng M) =0

1 1
=5 i—5 i—

NI

i-3
Using integration by parts, we have
= L F )+ baif (220) - boif () 0
Now,
& F )=~ b (i) _ bosf (niy) | _ —sd (%); by (14)
7 () + 7 ()
N h
The second order approximation: Let
v <xl+1> bi+%f<xi+l> ~ Hi+ %(ﬁ
AR R G U TR
F(s1g) =baf (sig) == 500
bi—ift (z 1) + b1 f~ T;_1 b1l ¢ _
i >2 ) 5 | (i) =7 (i)
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Where HH%(J?) is an approximation to F (a:H%).

We denote by z; +1 and T the left and right intermediate values. So,

@2y 2 () by (miy)] o+ oy (my) 0y 7 (o))
af ) = 2h
bir} - bl s -
g (7 (reg) =7 ()| = [ (o) = 7 (o)
Where,
I (%r%) = f(l’z'ﬂ) - g i (it1)
F (i) = £ ) + 55 @)
Similarly, for the negative half-points
fr <$i_%> = [ (zi1) — g f' (i41)

P (ris) = P + 57 @)

Note: To find f’ (z;) we will be using minmod function.

Now, we discretize the time variable ¢ into a series of time steps, such that ¢, =

0,1,..., M where t, = 0+ kAt and At = %, since we discretized the time vari-
able, we also need to write an approximation to % f (x;x) using Euler scheme.

3 F(@igerr) =F (win
Sf (wig) = (I ngt (oee)

SIS

B

Kﬁ\
N

&

T
SIS
S

~

f(mi,kJrl) - fT(JZ'Z’k) . bi—&—%,kf <xi+%,k‘> - bz’— 7
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The second order approximation: Let

‘F(xiJr%,k) = bi+%,kf ('%#%,k) ~ HH%,k(f)
b¢+§,kf+ (xi+%,k> + bi+%,kf_ <$i+%,k>

F(%— ): ~lk (il? %k> %(]?)

:bzf%,k (%%)"‘ %f< )_bil)“ﬂr(

We denote by z;,1 and z; 1 the left and right intermediate values. So,

J @igsr) = [ (ig)
At

Where,
f (Tiv1k)

(ix)

fr (xzur%,k) = f (Tiy1h) —
f~ (xzur%,k) = f(xzk) g

Similarly, for the negative half-points

h
2
f

f ($z+1 k)
(ix)

fr (:Ui,%,k) = f(zin) — g
h
2

F (2imys) = F @) +

]l
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Extension to two dimensions

1 r 1 r 2 r 2 r
if(x. )= bivyif <$i+%ﬂ'> “hiyt <$i*%vﬂ'> Ny <$iﬂ'+%> ey <xiﬂ'*%
dt Z’J Ax Ay

1 r 1 r 2 r r
_ ! (:c%,j) = (xi%d) n ey (%*%) 0 (”:a‘%)
Ax Ay
B Az Ay

The second order approximation: Let

Fa (%ﬁ,j) :b;Jr%,jf (xi-‘r%,j) ~ Hi+%,j(f>
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dtf(%,j)

— [b#_%’ f (:L"H_l ]) +b1+1 I ($z+%,j>] + [bll 1 fr <$Z_1j> —I—bll_l]ff

Ax
n - [b?,j+;f+ (93”+1> b f7 <x23+§>] + |:b12]—% fr <$”_;> + bfg
Ay
bi—f—lj = = bzl—f,j - —

+ g I (ris) = 1 ()| =5 17 (o) = 1 (o

+ b?’j;é [JH (xz’j+§ - f- (fi,j—&-%)} - bzgé [JH (%J—§> — I (xw_
Where,

And similarly, for the negative half-points

P (2g,) = F@ieng) = 57 (i)
P (5iog,) = F @) + 57 (2
F* (rigms) = F wsen) = o (e
F (7ims) = F @) + o (@)

Now, we discretize the time variable ¢ into a series of time steps, such that ¢, =

0,1,..., M where t;, = 0+ kAt and At = %, since we discretized the time variable, we
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also need to write an approximation to 4 f (z; ;) using Euler scheme. <& f (z;;x) =

f(fi,j,k-kl)_f(xi,j,k)
At

f(fﬂz‘,j,kﬂ) - f(fb"i,j,k:)

At

1 1 -
_ b“rzvﬂ kf < '“F%’Jl’f) - bi—%,j,kf (%‘—%,j,k)
B Ax
- b?,j_i,-%,kf <$i7j+%7k> - b?,j—%,kf (xi,j—%,k>

Ay
1 f 1 3 9 = ) _
_ bz+§, kf (%Jr%gk) + b, Lk f( i—L gk ) N —bi7j+%7kf (x”Jr%k) +bi7j—%,kf (ij—%k>
B Ax Ay
_.Fz (xi—l-%,j,k) + Fz (‘ri—%,j,k> _.Fy (xi,j—i-%,k) -+ ]:y <xi7j—%,k)
- +
AZE Ay
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The second order approximation, Let

Fu (xiJr%,j,k) b; i+l jkf ( z+%,j,k) ~ HiJr%,j,k(f)
bt (“”H%M) 0l <xi+%ﬂpk>
a 2

7 (@iean) =1 (e pn)

Fu (xi,lyjyk) =b'i— ;]Jﬂf ( zfé,j,k> ~ Hszjk(f)

Vi = 300 BT (i) + V7= 303 6T (5g0)
2

Y — 5,k 5 .
2. + _
B 2 [f (wi_%,j,k) -/ (”—%M)]
Fy <Ii7j+%,k) - b?,jJr%,kf (xi,j—l—%,k) ~ Hi,j+§,k(f)
i+ 36T (2geya) + 000+ 56 F (201

bl

z+2]k

2
b=1 , ] + 7k f-
_ % 7 () =1 (234

A () )

At
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Ax
gl (1) Byl )] 5 1)+, T ()
+ x5
bz:-l]k = - bi_ljk - o >]
+ ; [f+ (a:ﬁlgk:) —f ($i+%,j,k>] 5 [f (:vl_%]k> f (xz_%]k
2
Sl () - 1 (s - 2 () ()]
Where, -
fr <$¢+§,j,k) = [ (@ip1m) — B "(Tit1in)
I (%%,j,k) = f (i) + g ' (i j,k)
A (xi,j—%é,k) = f(@ijrae) — g F' (@i 41

ft (%_;,j,k> = [ (Ziy15k) — g f (ig15k)
I (Ii_%,j k) = f(zije) + g F' (i k)
It (xi,jfé,k) = (#ijrin) — g f (i j11n)
f- (:p”_%,,& = f (ign) + g ' (iik)
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