
University of Texas at Arlington University of Texas at Arlington 

MavMatrix MavMatrix 

Mathematics Dissertations Department of Mathematics 

2017 

Existence of Exact Zero Divisors and Totally Reflexive Modules in Existence of Exact Zero Divisors and Totally Reflexive Modules in 

Artinian Rings Artinian Rings 

Basanti Sharma Poudyal 

Follow this and additional works at: https://mavmatrix.uta.edu/math_dissertations 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Sharma Poudyal, Basanti, "Existence of Exact Zero Divisors and Totally Reflexive Modules in Artinian 
Rings" (2017). Mathematics Dissertations. 225. 
https://mavmatrix.uta.edu/math_dissertations/225 

This Dissertation is brought to you for free and open access by the Department of Mathematics at MavMatrix. It 
has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of MavMatrix. For 
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu. 

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/math_dissertations
https://mavmatrix.uta.edu/math
https://mavmatrix.uta.edu/math_dissertations?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/math_dissertations/225?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F225&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu


EXISTENCE OF EXACT ZERO DIVISORS AND TOTALLY REFLEXIVE

MODULES IN ARTINIAN RINGS

by

BASANTI SHARMA POUDYAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2017



Copyright c© by Basanti Sharma Poudyal 2017

All Rights Reserved



Acknowledgments

First and foremost, I would like to express my deepest gratitude to my Ph.D.

advisor, David Jorgensen, for his excellent guidance, advice, and encouragement for

the past five years. You have guided me to my accomplishments throughout the PhD

program and I will be forever grateful for all your time, patience and wisdom. I

am eternally grateful to my former advisor Theresa Jorgensen for her support and

vision for last seven years. It is because of her guidance I was able to discover

commutative algebra. I would also like to thank the rest of my committee - Minerva

Cordero, Dimitar Grantcharov and Michaela Vancliff - for taking the time to read

the dissertation and for helping me improve my work. My sincere appreciation also

goes to all the professors whose courses I took at this program for their devoted

instructions during my graduate years. In addition, I would also like to thank all the

staff at the University of Texas at Arlington Department of Mathematics for their

support in administrative work.

I am also grateful to all the teachers who taught me during the years. I am

especially thankful to my High School math teacher Bhesh Raj Sharma who believed

in me and gave me a chance to take optional math course, even when I was not

qualified for that class.

I would also like to thank my office-mates and friends - Sarah Langford, Iris Al-

varado, Melinda Au, and Denise Rangel-Tracy for their continued support, feedback,

and encouragement. I am greatly indebted to Mr. Derek Tomlin, for his precious

comments and proofreading of my dissertation. I will be forever grateful for his

kindness. Also, I would like to thank Andrew Cavanness, Richard Chandler, Denise

iii



Rangel Allie Ray, Derek Tomlin, and the rest of the Discussions in Algebra students

for giving me feedback on my presentations.

A huge thank you to my parents, Guru Sharma and Devi Sharma. Your constant

love and support has been a blessing throughout my time in school. Without that, I

could not have succeeded. I wish to give my heartfelt thanks to my husband, Bikash,

whose unconditional love, patience, and continual support of my academic endeavors

over the past several years enabled me to complete this thesis. I also dedicate this

Ph.D. thesis to my little son, Viaan, who has given me much happiness and keeps me

hoping. Your smile encourages me to efficiently overcome the difficulties encountered

in my pursuit of the degree.

April 21, 2017

iv



Abstract

EXISTENCE OF EXACT ZERO DIVISORS AND TOTALLY REFLEXIVE

MODULES IN ARTINIAN RINGS

Basanti Sharma Poudyal, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: David Jorgensen

In this dissertation, we consider commutative local Artinian rings (A,m, k),

which are rings that satisfy the descending chain condition on ideals. First, we inves-

tigate the existence of exact zero divisors in Artinian Gorenstein rings. We say that

a pair of elements a, b in m is an exact pair of zero divisors in A if annA(a) = (b) and

annA(b) = (a). It is known that a generic Artinian Gorenstein ring of socle degree 3

contains at least one pair of exact zero divisors. We are interested in the existence of

exact pairs of zero divisors in the case of socle degree bigger than 3. We present the

conditions when an Artinian Gorenstein ring of socle degree bigger than 3 contains

linear pairs of exact zero divisors.

We also investigate the existence of totally reflexive modules in the absence of

exact pairs of zero divisors. Since the existence of totally reflexive modules is guaran-

teed in Artinian Gorenstein rings, we consider Artinian Non-Gorenstein rings. As a

result, we obtain a class of rings having non-free totally reflexive modules in the ab-

sence of exact pairs of zero divisors. We also discuss the Weak Lefschetz property and

v



the connection between the Weak Lefschetz Property and exact pairs of zero divisors.

We use Macaulay’s Inverse System to construct rings in both investigations.
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Chapter 1

INTRODUCTION

Besides this introduction, this dissertation consists of four additional chapters

containing some preliminary definitions and the proofs of main results. This reseach

lies within the subject area of commutative and homological algebra. The particular

focus of this thesis is Artinian rings, those rings that satisfy the descending chain

condition on ideals. They are also called Artin rings and are named after Emil Artin,

who first discovered that the descending chain condition for ideals simultaneously

generalizes finite rings and rings that are finite-dimensional vector spaces over fields.

This thesis work has two main components. The first part investigates the ex-

istence of exact pairs of zero divisors. The second part investigates the existence of

totally reflexive modules in the absence of exact pair of zero divisors. These investi-

gations take place specifically over Artinian Gorenstein and Artinian non-Gorenstein

rings, respectively. These rings are also finite dimensional vector spaces over their

coefficient field. The motivation to study exact pairs of zero divisors and totally re-

flexive modules comes from the fact that one can construct totally reflexive modules

from exact pairs of zero divisors. In fact, if a and b form an exact pair of zero divisors

in a ring A then the modules (a) ∼= A/(b) and (b) ∼= A/(a) are totally reflexive.

These modules are of interest since they are essential objects in Gorenstein relative

homological algebra and are used to extend the relative Ext and relative Tor derived

functors into negative homological degrees. We also discuss the connection between

exact pairs of zero divisors and the Weak Lefschetz property.
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In Chapter 2, we discuss the definitions and notation that will be used through-

out this thesis. For more detail on Artinian rings and Gorenstein rings, see [8,31], and

for the areas of homological algebra, we will be following the definitions and notation

of [32, 36].

In Chapter 3, we present Macaulay’s Inverse System, which we use as a tool to

construct both Artinian Gorenstein and Artinian non-Gorenstein rings. The study

of the inverse system requires us to introduce injective modules, injective envelope,

and Matlis duality. Macaulay’s Inverse System [30] tells us that there is a one-

to-one correspondence between finitely generated nonzero R-submodules F in S =

K[y1, y2, . . . , ye] and ideals I = annR(F ) in R, where annR(F ) = {r ∈ R : ry =

0∀ y ∈ M}, and R/I is a local Artinian ring. If we take F to be a cyclic module,

then the corresponding Artinian ring becomes Gorenstein.

In Chapter 4, we consider only Artinian Gorenstein rings and establish re-

sults about the existence of exact pair of zero divisors in these rings. Let R =

k[x1, x2, . . . , xe] be a polynomial ring with coefficients in a field k, and let I ⊂ R be

a homogeneous ideal. The graded ring A = R/I is then Artinian if there exists a

positive integer d > 0 such that Ad+1 = 0. An Artinian ring with the maximal ideal m

is called Gorenstein if annA(m) is one-dimensional as a vector space over k. If d+ 1 is

the least integer such that Ad+1 = 0 and if A is Gorenstein, then Soc(A) = Ad. In this

instance, d is called the socle degree of A. It seems that the notion of exact pairs of

zero divisors first appeared in [27] under the name of exact sequences of pairs. Later

they were reintroduced by Henriques and Sega as exact pairs of zero divisors in [21],

and recently they have been studied widely, see [6], [12], [22] and [28]. A pair of non

zero elements a, b ∈ A is said to be an exact pair of zero divisors if annA(a) = (b) and

annA(b) = (a). Their existence is known for rings with socle degree 3, and our inter-

est in higher socle degrees has led to some new results and techniques. Our different
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approach allows us to extend results to the higher socle degree case. The proof of

the main theorem heavily relies on so-called catalecticant matrices and the varieties

defined by the maximal minors of these matrices and annihilators of associated ma-

trices. The approach that we use is to show that the condition of these rings having

an exact pair of zero divisors corresponds to a non-empty Zariski open subset in some

projective variety. We prove that for Artinian Gorenstein rings of socle degree d > 3,

having an exact pair of zero divisors is an open condition under a nontrivial closed

condition.

In the late 1960s, Auslander and Bridger first introduced the idea of totally

reflexive modules in [3], but the terminology “totally reflexive” was introduced in

2002 by Avramov and Martsinkovsky [4]. Totally Reflexive modules have been stud-

ied by many researchers using several different terminologies, such as modules of

G-dimension zero [3], maximal Cohen-Macaulay modules [9], and (finitely generated)

Gorenstein-projective modules [18]. The existence of totally reflexive modules is al-

ways guaranteed, since every free module is trivially totally reflexive. It is also known

that over a Gorenstein local ring, the totally reflexive A-modules are exactly the max-

imal Cohen-Macaulay modules. Thus we are interested in observing their existence

over non-Gorenstein local ring. There has been some work done to answer this ex-

istence question over non-Gorenstein rings, see [12], [2] and [37]. Most of the recent

constructions of totally reflexive modules start with an exact pair of zero divisors

(a, b), see for example [12]. If (a, b) is a pair of exact zero divisors, then the complex

· · · −→ A
a−→ A

b−→ A
a−→ · · ·

is a totally acyclic complex and A/(a) and A/(b) are totally reflexive modules. How-

ever, it is mentioned in [12] that non-free totally reflexive modules may exist even

in the absence of an exact pair of zero divisors. Christensen, Jorgensen, Rahmati,
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Striuli, and Wiegand proved in [12] that a generic standard graded k-algebra A with

Hilbert series 1 + et+ (e− 1)t2 has an exact pair of zero divisors and a non-free cyclic

totally reflexive module. They also found an example of a ring over field of charac-

teristic 2 that admits non-free totally reflexive modules, but does not have an exact

pair of zero divisors. In a recent study, Vraciu and Atkins constructed an example of

ring having codimension 8 that has totally reflexive modules in the absence of exact

pairs of zero divisors. These results motivated us to look for classes of Artinian rings,

possibly of smaller codimension, that admit totally reflexive modules in the absence

of exact pairs of zero divisors. We were able to obtain totally reflexive modules in the

absence of exact pairs of zero divisors in rings of codimension 5 and higher, Theorem

5.2.5.

In Chapter 6, we provide the definition of the Weak Lefschetz property, and we

present some well-known results about this property. We also establish a connection

between the Weak Lefschetz property and exact pairs of zero divisors in certain Ar-

tinian rings. The Weak Lefschetz property simply means that there exists a linear

form a ∈ A such that the multiplication map Ai
a−→ Ai+1 has maximal rank for every

i. A linear form having maximal rank is equivalent to it having a minimal annihila-

tor, and linear forms with minimal annihilators are candidates for being exact zero

divisors. We conjecture that an Artinian quadratic algebra A = k[x1, . . . , xe]/I with

homogeneous ideal I and Hilbert series 1 + et + (e − 1)t2 has the Weak Lefschetz

property if and only if A admits an exact pair of zero divisors.

4



Chapter 2

DEFINITIONS AND PRELIMINARY CONCEPTS

In this chapter, we present the basic definitions that will be used throughout

this thesis. All rings will be commutative. The notation (A,m, k) means that A is a

local ring with unique maximal ideal m and residue field k = A/m. All modules are

assumed to be finitely generated.

2.1 Artinian Rings

Definition 2.1.1. A ring A is a Noetherian ring if it satisfies the ascending chain

condition for ideals. That is, for any increasing sequence of ideals I1 ⊆ I2 ⊆ I3 · · · ,

there exists a natural number n such that In = In+1 = In+2 = · · · . A module M

is a Noetherian module if it satisfies ascending chain condition on it’s submodules.

It is equivalent to say that every submodule of M is finitely generated. The name

”Noetherian” comes from the mathematician Emmy Noether.

Definition 2.1.2. A ring A is an Artinian ring if it satisfies the descending chain

condition for ideals. That is, for any decreasing sequence of ideals I1 ⊇ I2 ⊇ I3 · · · ,

there exists a natural number n such that In = In+1 = In+2 = · · · . They are also

called Artin rings and are named after Emil Artin. A module M is an Artinian

module if it satisfies descending chain condition on it’s submodules.

Example 2.1.3.

1. The rings Q and Z/nZ are both Noetherian and Artinian rings.
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2. The rings Z and k[x] are Noetherian but not Artinian. Let I be an ideal in Z.

Since every ideal in Z is principal, I = nZ where n is some integer. Observe that

for any n > 1, we have (n) ⊃ (n2) ⊃ (n3) ⊃ . . . which is a decreasing chain of

ideals that does not stabilize. Hence Z is not an Artinian ring. The descending

chain of ideals (x) ⊃ (x2) ⊃ (x3) ⊃ . . . in k[x] never stabilizes either.

3. The polynomial ring k[x1, x2, x3, . . . ] in infinitely many variables is neither Ar-

tinian nor Noetherian. The sequence of ideals (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂

. . . is ascending, and does not stabilize. Thea chain (x1) ⊂ (x2
1) ⊂ (x3

1) ⊂ . . .

is ascending and never stabilizes.

4. Suppose A is a finite-dimensional k-algebra, and M is a finitely generated A-

module. Then M is Artinian.

5. A vector space V over a field k is Artinian as a k-module if and only if it is a

finite-dimensional over k.

Definition 2.1.4. The socle of a local ring (A,m, k) is the ideal Soc(A) = annA(m) =

{r ∈ A | rm = 0}.

Example 2.1.5.

1. If A = k[x, y]/(x2, xy, y2), then Soc(A) is the maximal ideal m = (x, y).

2. If A = k[x, y, z]/(xy, yz, xz, x2 − y2, y2 − z2), then Soc(A) = (x2).

3. If A = k[x, y]/(x2, xy, y3), then Soc(A) = (x, y2).

2.2 Hom Functor

In this section we recall the definition of the Hom functor.

6



Definition 2.2.1. Let M and N be two A-modules. The set HomA(M,N) of all

A-module homomorphisms f : M → N is an A-module under natural addition and

scalar multiplication.

In the special case where N = A, we get the A-module M∗ = HomA(M,A).

This is called the dual module, or A-dual of M . In particular, A∗ = HomA(A,A) is

isomorphic to A.

Suppose g : M ′ →M is an A-module homomorphism. Define

HomA(g,N) : HomA(M,N)→ HomA(M ′, N)

by HomA(g,N)(f) = f ◦g for f ∈ HomA(M,N). Note that HomA(−, N) reverses the

direction of the arrow, as seen by the following computation; for h : N →M ′,

HomA(g ◦ h,N)(f) = f ◦ (g ◦ h) = (f ◦ g) ◦ h = HomA(h,N)(f ◦ g)

= HomA(h,N)(HomA(g,N)(f))

=
(

HomA(h,N) ◦ HomA(g,N)
)
(f).

We say that HomA(−, N) is a contravariant functor on the category of A-

modules.

Proposition 2.2.2. For a local ring (A,m, k), Soc(A) ∼= HomA(k,A).

Proof. Recall that Soc(A) = ann(m) and A/m = k. Define a map

φ : HomA(k,A)→ annA(m)

by φ(g) = g(1̄). If x ∈ m, then x.g(1̄) = g(x̄) = g(0̄) = 0. Therefore g(1̄) ∈ annA(m),

so the map makes sense. It is easy to see that φ is a homomorphism. Let g ∈ ker(φ).

Then g(1̄) = 0 and so g = 0. This implies that ker(φ) = 0.

To show the surjectivity of φ, it is enough to show that there exists g ∈

HomA(k,A) such that φ(g) = x for every x ∈ annA(m). If we define g : k → A by

g(1̄) = x, then g is a well-defined homomorphism and this completes our proof.

7



Proposition 2.2.3. (Nakayama’s Lemma) Let A be a local ring with maximal ideal

m and let M be a finitely generated A-module. If mM = M , then M = 0.

Fact 2.2.4.

1. Soc(A) is a vector space over R/m.

2. If A is a local Artinian ring, then its socle is nonzero.

Proof. If m is the maximal ideal of A, then we have the descending chain m ⊃ m2 ⊃

· · · . Since A is Artinian, there exists a smallest number i ≥ 0 such that mi = mi+1.

Therefore m.mi = mi, and Nakayama’s Lemma implies that mi = 0. Since mi−1 6= mi,

we have mi−1 6= 0, and therefore mi−1 ⊆ Soc(A).

2.3 Injective Modules and Matlis Duality

In this section, we present the basic concepts that are needed to introduce

Matlis duality.

Definition 2.3.1. An A-module E is injective if and only if HomA(−, E) is exact.

Recall that HomA(−, E) is always left exact, Thus an A-module is injective if and

only if HomA(−, E) is right exact.

Definition 2.3.2. The injective resolution of an A-module M is an exact sequence

0→M → E0 → E1 → · · · ,

where the En are inective modules over A.

Definition 2.3.3. The injective dimension of an A-module M is the smallest integer

n ≥ 0 such that there is an injective resolution of the form

0→M → E0 → · · · → En → 0.

Our notation for injective dimension is injdimA(M).

8



Definition 2.3.4. An A-module N is said to be an essential extension of M if

M ⊂ N , and for every submodule N0 of N , N0 ∩M 6= 0. Such an essential extension

is called maximal if no module properly containing N is an essential extension of

M . A maximal essential extension of a module always exists and is unique up to

isomorphism.

Definition 2.3.5. It is known that any module M can be embedded into an injective

module. If the embedding chosen is minimal, the corresponding injective module is

called the injective hull of M and is unique up to isomorphism, but the isomorphism

is not necessarily unique [8, 3.2]. In this case E is an essential extension of M. Our

notation for the injective hull of M will be E(M) or EA(M).

Let (A,m, k) be a complete Noetherian local ring, and let E be the injective

hull of k. The the functor HomA(−, E) establishes an anti-equivalence between the

category of Artinian A-modules and the category of Noetherian A-modules. This

result is known as Matlis duality.

Definition 2.3.6. The Matlis dual of an A-module M is the module

M∨ := HomA(M,EA(k)).

With this definition, we can write (−)∨ = HomA(−, EA(k)), which is a contravariant

exact functor from the category of A-modules to itself.

If there is a finite sequence 0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M of submodules

of M such that each quotient module Mi+1/Mi is simple and nonzero for all i =

0, 1 . . . n − 1, then we define n to be the length of M . If such a finite sequence does

not exist, then the length of M is defined to be ∞. Define l(M) := length of M .

9



Corollary 2.3.7. Let (A,m, k) be a Noetherian local ring. Then, for every finite

length module M , l(M) = l(M∨).

Proof. We use induction on l(M). Observe that k∨ = HomA(k,E) ∼= Soc(E), since

Soc(E) is one-dimensional, we have k∨ ∼= k. If l(M) = 1, then M ∼= k and l(M∨) =

l(k∨) = l(k) = 1. Now suppose l(M) > 1. Then there exists an exact sequence

0→ k →M → N → 0

where l(N) = l(M)− 1. Since E is injective, the sequence

0→ N∨ →M∨ → k∨ → 0

is exact. By induction hypothesis, l(M∨) = l(N∨) + 1 = l(N) + 1 = l(M).

Theorem 2.3.8. Let (A,m, k) be an Artinian local ring and let (−)∨ denote HomA(−, E),

where E = EA(k). Then l(EA(k)) = l(A).

Proof. Since A is an Artinian, it has finite length as an A-module. By using the pre-

vious corollary, we have A∨ = HomA(A,EA(k)) ∼= EA(k) and hence l(A) = l(A∨) =

l(EA(k)).

Matlis duality states that the duality functor ∨ gives an anti-equivalence be-

tween {Artinian A-modules} ←→ {Noetherian A-modules}. In particular the duality

functor gives an anti-equivalence from the category of finite-length modules to itself.

Theorem 2.3.9. [8, Theorem 3.2.13] Let (A,m, k) be a complete Noetherian local

ring, let E = EA(k), and let M be an A-module. Then:

(i) If M is Noetherian, then M∨ is Artinian.

(ii) If M is Artinian, then M∨ is Noetherian.

(iii) If M is either Artinian or Noetherian, then M∨∨ ∼= M.

10



2.4 Artinian Gorenstein Rings

There are many equivalent definitions of a Gorenstein ring, and some of them

are listed below. One commonly used definition is the following:

A Noetherian local ring A is Gorenstein if it has finite injective dimension as an A-

module. It is well known that, for an n-dimensional Noetherian ring A, injdim(A) <

∞⇔ injdim(A) = n.

Proposition 2.4.1. Let (A,m, k) be an Artinian local ring. Then the following state-

ments are equivalent.

(i) A is Gorenstein

(ii) A is self-injective

(iii) The socle of A is one-dimensional.

Proof. (i) ⇔ (ii). Let A be Gorenstein. Since A is Artinian, dim(A) = 0 ⇔

injdim(A) = 0⇔ A is self injective.

(ii) ⇒ (iii). Since A is Artinian, there exists an exact sequence 0 → k → A.

The sequence HomA(A,A) = A → HomA(k,A) → 0 is exact because A is injective.

Therefore, HomA(k,A) is generated by one element, and HomA(k,A) 6= 0. Thus we

must have HomA(k,A) ∼= Soc(A) is one-dimensional.

(iii) ⇒ (ii). Assume that Soc(A) is one-dimensional, i.e. Soc(A) ∼= k, and let

E = EA(k) be the injective hull of the residue field of A. Every 0 dimensional ring

is an essential extension of it’s socle. Given any submodule I, that is an ideal of A,

there is a smallest integer i such that miI = 0 and mi−1I ⊆ Soc(A) ∩ I 6= 0. But by

Theorem 2.3.8, E and A have the same length, thus we must have E ∼= A. Hence A

is injective as required.

11



As we can see, Gorenstein rings are defined in different ways. Since our interest

is in the Artinian case, we will be using the following definition throughout this thesis.

Definition 2.4.2. An Artinian local ring (A,m, k) is called Gorenstein if its socle is

a one-dimensional k-vector space.

The socle degree of an Artinian local ring A is the greatest integer d such that md 6= 0.

There exists such d by Fact 2.2.4 (ii).

Example 2.4.3.

1. Let A = k[x, y, z]/(x2, y2, xz, yz, z2 − xy). Then A is a Gorenstein ring with

socle degree 2, where Soc(A) = kz2.

2. Let A = k[x, y]/(x2, y2, xy). Then A is not Gorenstein because Soc(A) = (x, y),

which is not a one-dimensional vector space.

Definition 2.4.4. The depth of an module R-module M is the maximal integer s

such that there is a regular sequence in M of length s. The module M is called a

Cohen-Macaulay module if depth(M) = dim(M). If depth(M) = dim(M) = dim(A),

then the module is called a maximal Cohen-Macaulay module, or MCM. If A itself is

a Cohen Macaulay module then it is called Cohen Macaulay ring.

2.5 Exact Pairs of Zero Divisors

Definition 2.5.1. Let A be a ring. A pair of non zero elements (a, b) in A is said

to be an exact pair of zero divisors if annA(a) = (b) and annA(b) = (a). An element

a ∈ A is an exact zero divisor if it belongs to a pair (a, b) of exact zero divisors.

Equivalently, it satisfies the condition

R 6= ann(b) ∼= R/(a)

12



and

R 6= ann(a) ∼= R/(b).

If a and b are linear forms in A, then we call (a, b) linear exact pair of zero divisors.

Example 2.5.2.

1. Let A = k[x, y]/(x2 − y2, xy). The pair (x, y) is an exact pair of zero divisors.

The pair (x− y, x+ y) is also an exact pair of zero-divisors.

2. Let A = k[x, y]/(x2, xy). Here, (x, y) is not an exact pair of zero-divisors, since

annA(y) = (x), but annA(x) = (x, y) 6= (y).

Definition 2.5.3. The Hilbert function of a graded ring A is the numerical function

defined by

HA(t) = dimK(At)

with t ∈ N.

The Hilbert series of A is the formal power series HA(t) =
∑

n(dimk(An))tn. If A is

also Artinian, then the Hilbert series of A is actually a polynomial.

2.6 Complexes and Totally Reflexive Modules

Definition 2.6.1. A complex is a sequence of A-modules and homomorphisms,

C : · · · −→ Ci+1
di+1−−→ Ci

di−→ Ci−1
di−1−−→ · · · ,

such that didi+1 = 0 for all i ∈ Z. Equivalently, Im(di+1) ⊂ ker(di) for all i. A

complex is exact (acyclic) if ker(di) = Im(di+1) for all i.

Definition 2.6.2. Let M be an A-module. A free resolution of M is an exact complex

F : · · · → F2
d2−→ F1

d1−→ F0
d0−→M → 0

13



in which each Fi is a free A-module. If F is a free resolution of M , then its deleted

free resolution is the complex of the form

F : · · · → F2
d2−→ F1

d1−→ F0 → 0.

No information is lost by omitting M since M ∼= Coker(F1
d1−→ F0).

Definition 2.6.3. A complex F = · · · → F1 → F0 → F−1 → · · · of finitely gen-

erated free A-modules is totally acyclic if both the complex F and the dual com-

plex F∗ = HomA(F, A) are exact. An A-module M is said to be totally reflexive if

M ∼= Coker(F1
d1−→ F0) for some totally acyclic complex F.

The notion of totally reflexive modules is due to Auslander and Bridger [3].

They were introduced as modules of Gorenstein dimension zero. These modules were

used as a generalization of free modules, in order to define a new homological dimen-

sion for finitely generated modules over Noetherian rings, called the G-dimension.

Over a Gorenstein ring, the totally reflexive modules are exactly the maximal Cohen-

Macaulay modules, and Gorenstein rings are characterized by the fact that every

finitely generated module has finite G-dimension. All totally reflexive modules have

a doubly infinite resolution of free modules, which we call a complete resolution.

Definition 2.6.4. The Gorenstein dimension of a module M denoted, G-dimA(M),

is the smallest integer n ≥ 0, such that there exists an exact sequence

0→ Tn → Tn−1 → . . .→ T0 →M → 0

in which each Ti is totally reflexive module for for 0 ≥ i ≥ 1. If no such integer exists,

then G-dimA(M) =∞.
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Note that every finitely generated free module M is totally reflexive. Since in

this case the complex 0→ M → M → 0, with M in homological degrees 0 and 1, is

totally acyclic. Let A be a ring. If

M ′ →M →M ′′ → 0

is an exact sequence of A-modules, then the induced sequence

HomA(−, N) : 0→ HomA(M ′′, N)→ HomA(M,N)→ HomA(M ′, N)

is exact. Similary, if

0→ N ′ → N → N ′′

is an exact sequence of A-modules, then the induced sequence

Hom(−, N) : 0→ HomA(M,N ′)→ HomA(M,N)→ HomA(M,N ′′)

is exact. We call the properties of Hom(−,−) described in the above proposition left

exactness.

Definition 2.6.5. The embedding dimension of an A-module M is dim(m/m2), which

is the minimal number of generators of the maximal ideal of A. Our notation for the

embedding dimension of A will be edim(A). The codimension of A is the number

codim(A) = edimA− dim(A).

Definition 2.6.6. A non-zero element in a ∈ (A,m, k) is called a Conca generator if

a2 = 0 and am = m2.
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Chapter 3

MACAULAY’S INVERSE SYSTEM

In this chapter, we introduce Macaulay’s Inverse System, which is a special

case of Matlis duality. This system is the main tool we use to construct our rings

of interest. The concepts in this chapter provide a method which can be used to

determine the existence of exact pairs of zero divisors.

3.1 Macaulay’s Inverse System

In this section we will consider two polynomial rings R and S at the same time.

We assume that k is algebraically closed and that the characteristic of k is 0. Let

R = k[x1, x2, . . . , xe] and S = k[y1, y2, . . . , ye] be polynomial rings with coefficients

in k, and with deg(xi) = 1 and deg(yj) = 1 for all 1 ≤ i, j ≤ e. In 1916, Macaulay

stated a one-to-one correspondence between Artinian Gorenstein rings A = R/I and

polynomials in S, see [30]. This correspondence can be extended to all Artinian rings

A = R/I, and finitely generated R-submodules of S. It turns out that Macaulays

correspondence is a particular case of Matlis duality, see [17, Theorem 2.3 and Propo-

sition 2.4].

Let us now introduce the contraction action, which will play a key role in

Macaulay’s Inverse System.

Definition 3.1.1. (Contraction Action) Let α = (α1, α2, . . . , αe) and β = (β1, β2, . . . , βe)

be multi-indices . We denote by xα and yβ the monomials xα1
1 . . . xαe

e and yβ11 . . . yβee ,

respectively.
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Define the contraction action

◦ : R× S → S

by

xα ◦ yβ =

{
yβ−α if β ≥ α

0 otherwise

}
,

where β ≥ α means βi ≥ αi for all i = 1, 2, . . . , e and β − α is the multi-index

(β1 − α1, . . . , βe − αe).

We extend this action by linearity to all polynomials of R on S. In this way,

the {xi} behave like the basis of R1 dual to the basis {yi} of S1. Hence, R1 can be

thought of as the dual space Homk(S1, k) of S1, see [26].

Example 3.1.2.

Let x1, x2 ∈ R and y1, y2 ∈ S.

1. x1 ◦ y2
1 = y1

2. x2 ◦ y2
1 = 0

3. (x1x2) ◦ (y1y2) = 1

4. x1 ◦ (y1y2) = y2

Notice that the action ofR on S turns S into anR-module, since, for r, r2, r3 ∈ R

and s, s1, s2 ∈ S, we have

1. r ◦ (s1 + s2) = r ◦ s1 + r ◦ s2,

2. (r1r2) ◦ s = r1 ◦ (r2 ◦ s) ,

3. (r1 + r2) ◦ s = r1 ◦ s+ r2 ◦ s ,

4. and 1 ◦ s = s, and

5. If c ∈ k, then r ◦ (cs) = (cr) ◦ s = c(r ◦ s) .
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When the characteristic of k is zero, this action is closely related to partial dif-

ferentiation as we described in the next proposition. We can think of the polynomials

of R as representing partial differential operators and the polynomials of S as the

real polynomials on which the differential operators act. This action is also called the

apolarity action of R on S, see [26].

Proposition 3.1.3. Let S ′ denote the R-module S, except using the partial differen-

tiation action. Then the R-module homomorphism φ : S → S ′ defined by

φ(yα) =
1

α!
yα,

where α! = α1!α2! . . . αe!, is an isomorphism of R-modules.

Proof. The R-module structure of partial differentiation is defined by

? : R× S → S

xα ? yβ =

{
β!

(β−α)!
yβ−α if β ≥ α

0 otherwise

That is

xα ? yβ =
β1!. . . . .βe!

(β1 − α1)!. . . . .(βe − αe)!
yβ−α.

We have

φ(xα ◦ yβ) = φ(yβ−α) =
1

(β − α)!
yβ−α

and

xα ? φ(yβ) = xα ?
1

β!
yβ =

1

β!
.

β!

(β − α)!
yβ−α =

1

(β − α)!
yβ−α.

Hence

φ(xα ◦ yβ) = xα ? φ(yβ).

The inverse is defined by φ−1(yα) = α!yα.
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Let F = RF1 + RF2 + · · · + RFn be a finitely generated S-module, where

each Fi, 1 ≤ i ≤ n is a homogeneous polynomial of degree d. The homomorphism

CF (u, v; e) : Rv→Su defined by

CF (u, v; e)(r) = r ◦ F,

where u+v = d, is called the catalecticant homomorphism, and the matrix associated

to CF (u, v; e) with respect to the standard monomial bases elements of Rv and Su

(ordered lexicographically) is the catalecticant matrix, denoted by CatF (u, v; e). The

size of CatF (u, v; e) is
(
e+u−1
u

)
×
(
e+v−1
v

)
.

Remark 3.1.4. When char(k) > 0, there is an isomorphism between R-modules

of divided power ring D with contraction action and R-modules of S with partial

differentiation. If char(k) = 0, then φ : D→ S is an isomorphism, see [26].

Example 3.1.5.

Take e = 3 and d = 3. Let cijk ∈ k for all 1 ≤ i, j, k ≤ 3.

Let F = c300y1
3 + c210y1

2y2 + c201y1
2y3 + c120y1y2

2 + c102y1y3
2 + c111y1y2y3 + c030y2

3 +

c021y2
2y3 +c012y2y3

2 +c003y3
3 and let a = a1x1 +a2x2 +a3x3. The catalecticant matrix

associated to the catalecticant homomorphism Cata◦F (1, 1; 3) : R1 → S1 is given bya1c300 + a2c210 + a3c201 a1c210 + a2c120 + a3c111 a1c201 + a2c111 + a3c102

a1c210 + a2c120 + a3c111 a1c120 + a2c030 + a3c021 a1c111 + a2c021 + a3c012

a1c201 + a2c111 + a3c102 a1c111 + a2c021 + a3c012 a1c102 + a2c012 + a3c003

 .

Lemma 3.1.6. Suppose S = k[y1, y2, . . . , yn] and r ∈ Ri is fixed. Then the homo-

morphism Φr : Sj → Sj−i defined by Φr(F ) = r ◦ F is a surjective homomorphism.

Proof. If r ∈ Ri and F ∈ Sj then Φr(F ) = r◦F = 0⇔ Sj−1◦r◦F = 0⇔ Sj−ir◦F = 0.

The kernel of Φr in Sj has vector space dimension l(ker Φr) = l(Sj)− l(Sj−i), so the

image of Φr in Sj−i has dimension l(Sj)− l(ker Φ(r)) = l(Sj−i). Thus, Φr is surjective.
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Theorem 3.1.7 (Macaulay’s Inverse System Theorem). Let R = k[x1, x2, . . . , xe]

and S = k[y1, y2, . . . , ye] be polynomial rings. There is a one-to-one correspondence

between finitely generated nonzero R-submodules F in S and ideals I = annR(F ) in

R such that R/I is a local Artinian ring.

If I ⊂ R is an ideal then we define I⊥ = {F ∈ S : I ◦ F = 0}. Note that I⊥ is

an R-submodule of S. The corresponding given as follows: The R-submodules I⊥ of

S are called Macaulay’s Inverse System of I and

(R/I)∨ = HomR(R/I, S) ∼= I⊥. By Matlis duality

I⊥ is finitely generated ⇐⇒ A = R/I is Artinian

If the dual module I⊥ is cyclic, then

A is an Artinian Gorenstein ring ⇐⇒ I⊥ ∼= A.

We have the following theorem from Iarrobino and Kanev (1999) which is a special

case of this theorem.

Theorem 3.1.8 ([26]). Let A = R/I be an Artinian graded ring. Then A is Goren-

stein of socle degree d if and only if I = annR(F ) = {r ∈ R|r ◦ F = 0}, for some

homogeneous polynomial F of degree d in S = k[y1, y2, . . . ye].

In other words, all Gorenstein quotients R/I arise in this fashion.

Example 3.1.9.

Let e = 3, R = k[x1, x2, x3] and S = k[y1, y2, y3]. Considering the submodule

F = (y2
1 + y2

2, 2y
2
2 + y2

3) in S, we can compute annR(F ) using the contraction ac-

tion (◦). One finds out that annR(F ) = (x1x3, x2x3, x1x2, x
2
1 − x2

2 + 2x2
3) and the

corresponding Artinian ring A = R/ annR(F ) has Hilbert series 1 + 3t + 2t2 and k

basis {1, x1, x2, x3, x
2
2, x

2
3}.
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Example 3.1.10.

Take R = k[x1, x2] and S = k[y1, y2] and choose F = y3
1 + y3

2. Then I = annR(F ) =

(x1x2, x
3
1 − x3

2), and the quotient ring A = k[x1, x2]/(x1x2, x
3
1 − x3

2) has a k-basis

{x1, x2, x
2
1, y

2
1, x

3
1} with socle kx3

1. Hence it is a Gorenstein ring of socle degree 3.

We prove that for the Gorenstein case there is a bijection between the R-

submodule F in S and the quotient ring A/I.

Proposition 3.1.11. Let A = R/I be a Gorenstein ring with I = annR(F ), for some

homogeneous degree d element F in S = k[y1, y2, . . . , yn].

Define M(F ) = {y ∈ S : y = r ◦ F} for some r ∈ R. Then there exists a bijection

between R/I and M(F ).

Proof. Define the map φ : R → M(F ) by φ(r) = r ◦ F . Then φ is a homomorphism

since, for all r1, r2 ∈ R and a ∈M(F ),

1. φ(r1 + r2) = (r1 + r2) ◦ f = r1 ◦F + r2◦ F = φ(r1) +φ(r2) for all r1, r2 ∈ R, and

2. φ(ar) = (ar) ◦ F = a(r ◦ F ) = aφ(r2).

For any y ∈ M(F ), y = r ◦ F , and there exist r ∈ R such that φ(r) = r ◦ F .

Thus, φ is a surjective homomorphism. By the First Isomorphism Theorem, φ induces

an isomorphism φ′ : R/ kerφ → M(F ). We need to prove that kerφ = annR(F ).

Let r ∈ kerφ. Then φ(r) = 0 implies r ◦ F = 0, and r ∈ annR(F ). That is,

kerφ ⊆ annR(F ). Now let r ∈ annR(F ), which means r ◦ F = 0. But r ◦ F ∈M(F ),

so there exists an r̄ ∈ R/ ker(φ) such that φ′(r̄) = r ◦ F = 0. Thus, r̄ ∈ kerφ′.

Whence, kerφ′ = {r̄|r ∈ kerφ}, and φ(r) = 0, and hence r ∈ ker(φ).

Fact 3.1.12. Let F be a homogeneous of degree d polynomial, and letA = R/ ann(F ).

Then, A is an Artinian Gorenstein graded ring, and the socle of A is determined by

any of the terms of F , see [26].
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When A is an Artinian ring, a nonzero element a ∈ A is an exact zero divisor

if and only if the ideal annA(a) is principal:

Theorem 3.1.13. [20] If A is an Artinian ring, then annA(a) = (b) implies annA(b) =

(a).

Proof. Let annA(a) = (b). Since ab = 0, we have (a) ⊆ annA(b). By length count and

the isomorphisms R/ ann(b) ∼= (a) and R/ ann(a) ∼= (b), gives

l(A) = l(A/(b)) + l(b) = l(A/ ann(a)) + l(b) = l(a) + l(A/(a))

≤ l(annA(b)) + l(A/ annA(b)) = l(A).

Therefore, l(a) = l(annA(b)); hence annA(b) = (a).
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Chapter 4

EXISTENCE OF EXACT PAIRS OF ZERO DIVISORS

In this Chapter, all rings A are of the form A = R/I for R = k[x1, . . . , xe]. In

Section 1, we discuss some known results about the existence of exact pairs of zero

divisors in these rings of socle degree 2 and 3. We investigate some conditions when

these rings of socle degree d > 3 contain linear pairs of exact zero divisors. In Section

3, we establish the main result, Theorem 4.3.2.

Throughout this section, d will denote the degree of the socle of A, and e will

denote the embedding dimension of A.

4.1 Artinian Gorenstein rings of socle degree d ≤ 2

The ring A = k[x]/(x2) is the only Artinian Gorenstein ring of socle degree 1,

and we can easily see that it has (x, x) as an exact pair of zero divisors. For e ≥ 2,

all the Artinian rings of socle degree 1 are non-Gorenstein. Since these are the rings

satisfying m2 = 0, every a ∈ A1 annihilates all the linear terms in A. Therefore, there

is no exact pair of zero divisors.

Now consider the case d = 2 case. The ring A = k[x]/(x3) is the only Artinian

Gorenstein ring of socle degree 2 when e = 1. While there is the exact pair of zero

divisors (x, x2), there is no linear pair of exact zero divisors.

For e = 2, every Artinian Gorenstein ring of socle degree d = 2 has an exact

pair of zero divisors.
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Proposition 4.1.1. A Gorenstein local ring (A,m, k) satisfying m3 = 0 and e = 2

always admits an exact pair of zero divisors.

Proof. Let R = k[x1, x2] and S = k[y1, y2] be polynomial rings as described in Chapter

3. Define a map Cã◦F̃ (1, 1; 2) : R1 → S#
1 by Cã◦F̃ (0, 1; 2)(r) = r ◦ ã ◦ F̃ = rã ◦ F̃ ,

where ã = a1x1 + a2x2 ∈ A1 and F̃ = c1y
2
1 + c2y1y2 + c3y

2
2. Then we have

Catã◦F̃ (0, 1; 2) =
(
a1c1 + a2c2 a1c2 + a2c3

)
.

Let b be in the kernel of the matrix. We can see that b̃ = −(a1c2 + a2c3)x1 + (a1c1 +

a2c2)x2. If there is another linear element c ∈ R1 not generated by b̃ such that ac = 0,

then the map Ca◦F (1, 1; 2) will be the zero map. We know that ã is in annR(b). If

there is another linear element c ∈ R, not generated by a such that bc = 0, then b

would be a socle element, which contradicts our assumption that A is Gorenstein.

This implies that, for every linear form ã in A, there is exactly one linear form b ∈ A1

such that ãb = 0. Next, we observe that there are no quadratic terms in annR(F )

annihilating ã, otherwise we will have Ab 6= A2, which is a contradiction again. Hence,

(ã, b) make an exact pair of zero divisors.

We have shown that when A has socle degree 2 and if the embedding dimension

e = 2, there exists a pair of exact zero divisors. But this is not the case when e ≥ 3.

Proposition 4.1.2. A Gorenstein local ring (A,m, k) satisfying m3 = 0 and e ≥ 3

does not have a linear pair of exact zero divisors.

Proof. Consider k# = k[a1, . . . , ae, cα : |α| = 2] and S# = k#[y1, . . . , ye]. Let ã =

a1x1 + a2x2 + a3 + · · · + ae ∈ A1 and let F̃ =
∑
|α|=2 cαy

α. The catalecticant matrix

Catã◦F̃ (0, 1; e) is of size 1× e. Since e ≥ 3, this matrix has at least a two-dimensional

kernel, which is equivalent to saying that, for every linear form ã in R, there are at

least two elements in the annR(F ) annihilating ã.
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4.2 Artinian Gorenstein rings of socle degree d = 3

Conca, Rossi, and Valla [15] showed that generic Artinian Gorenstein standard

graded algebras of socle degree 3 admit pairs of exact zero divisors. In this section,

we give an alternate proof.

First we discuss elimination theory, which we will be using in the proof of our

main theorem.

Definition 4.2.1. Given I = (f1, . . . , fe) ⊂ R the j-th elimination ideal Ij is the

ideal of k[xj+1, . . . , xe] defined by

Ij = I ∩ k[xj+1, . . . , xe].

It is an easy exercise to check that the Ij are indeed ideals of k[xj+1, . . . , xe] for

all j. We define the 0-th elimination ideal to be I itself; i.e., I0 = I. This elimination

corresponds to projecting a variety onto subvaritey of a lower dimensional subspace.

Let I be an ideal generated by the determinant of Cata◦F (1, 1; e) in k[a1, a2, . . . , ae, cα :

|α| = 3], and let V ⊆ A(e+d−1
d )+e be the variety V (I). Suppose π and π′ are the

canonical projections from V on to A(e+d−1
d ) and Ae respectively.

V
π

yy
π′

##
A(e+d−1

d ) Ae

To see how this works, consider the following example.

Take e = 2, d = 3 and F̃ = c1y
3
1 + c2y

2
1y2 + c3y1y

2
2 + c4y

3
2 ∈ k#[y1, y2] = S#

where k# = k[a1, a2, c1, c2, c3, c4]. Then the catalecticant matrix corresponding to

Cã◦F̃ (1, 1; 2)R1 → S#
1 for ã = a1x1 + a2x2 is

Catã◦F̃ (1, 1; 2) =

(
a1c1 + a2c2 a1c2 + a2c3

a1c2 + a2c3 a1c3 + a2c4

)
.
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Let I be the ideal generated by the determinant of the above matrix and W be the

variety W (I). Then I = (−a2
1c2 + a2

1c1c3 − a1a2c2c3 − a2
2c

2
3 + a1a2c1c4 + a2

2c2c4). One

can see that for any choices of a’s, we get an equation in c’s and the equation has

a solution. Similarly, for any choices of c’s, we get an equation in a’s and there is a

solution. This implies that for any choices of c’s there are choices of a’s which makes

the determinant 0.

W
π

zz

π′

$$
A2 A4

Let I1 be the eliminating ideal defined by I ∩ k[c1, c2, c3] and I2 be the eliminating

ideal defined by I ∩ k[a1, a2]. We can use Macaulay 2 to compute these eliminating

ideals and the result agrees that both I1 and I2 are the zero ideals. This would mean

that for every choice of c′s, there is a ∈ R such that the determinant of the matrix is

zero. We now want to make precise the term generic.

Definition 4.2.2. Suppose that objects correspond to points in some affine variety.

A condition C on the objects is called an open condition if the points corresponding

to those objects satisfying the condition C form a Zariski open subset of the variety.

Objects satisfying an open condition are called generic.

Now we present the reformulated statement of the theorem of Conca, Rossi and

Valla, and give a proof using our methods.

Theorem 4.2.3 ([15]). A generic Artinian Gorenstein ring A of socle degree d = 3

admits a linear exact pair of zero divisors.

Proof. Let k# = k[a1, . . . , ae, cα : |α| = 3] and S# = k#[y1, . . . , ye]. Suppose that

F̃ =
∑
|α|=3 cαy

α is a homogeneous degree 3 polynomial in S#, and ã = a1x1 +a2x2 +

· · ·+ aexe is a nonzero linear form in k#[x1, . . . , xe].
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We consider catalecticant homomorphisms from R to S#. The catalecticant

matrix Catã◦F̃ (1, 1; e) is an e× e matrix with entries of the form
∑
aicα. Let J be

the ideal in R = k[a1, . . . , ae, cα : |α| = 3] generated by the determinant of the matrix

Cata◦F (1, 1; e) and W be the variety W (J) in A(e+2
3 )+e. Suppose π and π′ are the

projections from W on to A(e+2
3 ) and Ae respectively.

W
π

yy
π′

##
A(e+2

3 ) Ae

Since the variety W is defined by the e × e determinant, for any choices of a ∈ Ae,

we get an equation in c’s and the equation has a solution. Similarly, for any choices

of cj ∈ A(e+2
3 ) , we get an equation in a’s and there is a solution. This implies

that for any choices of c’s there are choices of a’s which makes the determinant 0.

Hence images under π and π′ of W becomes the whole space. This implies that

R1 ∩Ker(Catã◦F̃ (1, 1; e)) 6= 0. Let b ∈ R1 ∩ annA(ã) be nonzero. Let I be the ideal in

R = k[a1, . . . , ae, cα : |α| = 3]/J generated by e − 1 × e − 1 minors of Catã◦F̃ (1, 1; e)

and V be the variety V (I).

Define ker(ãF̃ )i := ker
(

Catã◦F̃ (2 − i, i; e)
)

and ker(F̃ )i := ker
(

CatF̃ (3 −

i, i; e)
)

for i = 2, 3, where we regard these matrices as homomorphisms R(e+i−1
i ) →

R(e−i+1
2−i ) and R(e+i−1

i ) → R(e−i+2
3−i ) respectively. Therefore ker(ãF̃ )i and ker(F̃ )i are

submodules of R(e+i−1
i ). Also we let (Rb)i denote the column space of the ma-

trix representing the map Ri−1 → Ri for i = 2, 3. Then it is easy to see that

(Rb)i + (ker F̃ )i ⊆ (ker ãF̃ )i.

Let {Vi} be the set of varieties defined by

Vi = V
(

annR

(
(ker ãF̃ )i+1/((Rb)i+1) + (ker F̃ )i+1

))
,

for all i = 1, 2.
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We have constructed the varieties such that if p ∈ A(e+2
3 )+e lies outside V1 ∪ V2,

then the corresponding values of ai and cα result in (ker aF )i = (Rb)i + (kerF )i.

Equivalently, there is a non-empty Zariski open subset U of A(e+2
3 )+e such that for all

F ∈ U , A admits an exact pair of zero divisor.

Finally, we need to check that the open sets we considered are not empty.

Let F =
e∑
j=2

y1yj
2. One can see that the corresponding Artinian Gorenstein ring

A = R/(x2
1, xixj, x

2
i − x2

j , 1 < i < j) admits an exact pair of zero divisors (x1, x1).

Example 4.2.4. Let ã = a1x1 + a2x2 + a3x3 ∈ R# and choose F = y3
1 + y3

2 + y3
3 in

S = [y1, y2, y3]. Then

Catã◦F (1, 1; 3) =

a1 0 0

0 a2 0

0 0 a3

 .

The determinant of the matrix is a1a2a3. Choose a1 = 0, then the kernel of the above

matrix is generated by b = x1. Compute

Catb◦F (1, 1; 3) =

1 0 0

0 a2 0

0 0 a3


and one can see that ker(b) = (x2, x3). This example shows that not all Artinian

Gorenstein rings of socle degree 3 admit an exact pair of zero divisors. In other

words, the open set consisting of points lying outside the variety V1 ∪ V2 is not the

whole space.

4.3 Artinian Gorenstein rings of socle degree d > 3

In the socle degree 3 case, the images under π and π′ of the variety defined by

det(Cata◦F (1, 1; e))= 0 turn out to be the whole space. Thus, there always exists at

least one linear term annihilating a.
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However, in socle degree 4 or higher, the images of π and π′ are not the whole

space. There are some Gorenstein rings of socle degree 4 or higher which do not have

any linear pairs of exact zero divisors.

Example 4.3.1.

Take A = k[x1, x2, x3]/(x2
2x3, x1x2x3, x

2
1x3 − x2x

2
3, x

3
2 − x1x

2
3 − x3

3, x
2
1x2 − x3

3, x
3
1)

corresponding to F = y2
1y

2
2 + y1y

3
2 + y2y

3
3 + y2

1y
2
3, and let ã = a1x1 + a2x2 + a3x3 be in

R1. Then the catalecticant matrix is

Catã◦F (2, 1; 3) =



0 a2 a3

a2 a1 + a2 0

a3 0 a1

a1 + a2 a1 0

0 0 a3

a1 a3 a2


.

We compute all 3 × 3 minors of this matrix and the ideal generated by the 3 × 3

minors is (−a1a
2
2− a1a

2
3− a2a

2
3,−a2

1a3− a1a2a3− a2
2a3, a

2
1a2 + a1a

2
2 + a1a

2
3, a

3
1 + a2

1a2 +

a1a
2
2,−a2

2a3,−a2a
2
3,−a1a

2
3 − a2a

2
3,−a1a2a3 − a2

2a3,−a2
1a3 − a1a2a3 − a2

2a3,−a2
1a3 −

a1a2a3−a2
2a3, a1a

2
3,−a3

2−a2
1a3−a1a2a3 +a2a

2
3, a

2
1a2−a2

2a3 +a3
3, a

3
1 +a2

1a2− 2a1a2a3−

a2
2a3,−a1a

2
2−a3

2−a2
1a3+a1a

2
3+a2a

2
3,−a2

1a2−a1a
2
2−a3

2,−a3
1+a2

1a3+2a1a2a3, a1a2a3, a
2
1a3+

a1a2a3 − a2a
2
3,−a3

3, a
2
1a3 − a1a

2
3 − a2a

2
3). As we can see all the 3 × 3 minors vanish if

and only if a1 = a2 = a3 = 0. Therefore, Catã◦F (2, 1; 3) has a trivial kernel in A1 for

every non-zero linear term a ∈ k#[x1, . . . , xe].

Then, by using [30, Lemma 2.15], we obtain I1 = (ann(R3 ◦ F̃ )) ∩ R1 = ∅ for

any a ∈ A1. Hence A doesn’t contain any linear pairs of exact zero divisors. This is

a Gorenstein ring with the Hilbert series HA(t) = 1 + 3t + 6t2 + 3t3 + t4. Hence by

[28], it doesn’t have linear exact pairs of zero divisors.
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Theorem 4.3.2. There exist algebraic varieties W,V, Vk, k = 1, . . . , d−1 of A(e+d−1
d )+e

such that every point p ∈ W \V ∪V1∪· · ·∪Vd−1 corresponds to an Artinian Gorenstein

ring A of socle degree d and a linear exact pair of zero divisors in A.

Proof. Suppose that F̃ =
∑
|α|=d cαy

α is a homogeneous degree d element in S# and

ã = a1x1 + a2x2 + · · · + aexe is a nonzero linear form in R#. Again, we consider

catalecticant homomorphisms from R to S#.

Define the map Cã◦F̃ (d− 2, 1; e) : R1 → S#
d−2 by Cã◦F̃ (r) = r ◦ ã ◦ F̃ = rã ◦ F̃ .

We get Catã◦F̃ (d− 2, 1; e) of size
(
e+d−3
d−2

)
× e with entries of the form

∑
aicα. Let J

be the variety defined by e × e minors of Catã◦F̃ (d − 2, 1; e) and W be the variety

W (J).

Let I be the ideal in R = k[a1, . . . , ae, cα : |α| = d]/J generated by e−1 by e−1

minors of Cata◦F (d− 2, 1; e) and V be the variety V (I) in A(e+d−1
d )+e. We will use the

notation ker(ãF̃ )i for ker
(

Catã◦F̃ (d−1+i, i; e)
)

and ker(F̃ )i for ker
(

CatF̃ (d−i, i; e)
)

for all 2 ≤ i ≤ d, where we regard these matrices as homomorphisms R(e+i−1
i ) →

R(e+d−i−2
d−i−1 ) and R(e+i−1

i ) → R(e+d−i−1
d−i ), respectively. Therefore ker(ãF̃ )i and ker(F̃ )i

are submodules of R(e+i−1
i ). Let b ∈ ker

(
Catã◦F̃ (d− 2, 1; e)

)
and let (Rb)i denote the

column space of the matrix representing the map Ri−1 → R#
i for all 2 ≤ i ≤ d − 1.

Then it is easy to see that (Rb)i + (ker F̃ )i ⊆ (ker ãF̃ )i.

Let {Vi} be the set of varieties defined by

Vi = V
(

annR

(
(ker aF )i+1/((Rb)i+1) + (kerF )i+1

))
,

for all 1 ≤ i ≤ d− 1.

We have constructed the varieties such that if p ∈ A(e+d−1
d )+e lies outside V1 ∪

V2 ∪ . . . Vd−1, then the corresponding values of ai and cα result in (ker aF )i = (Rb)i +

(kerF )i. The union of all the varieties is a closed set and its complement is an open
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set. Hence any point p ∈ W \V ∪V1∪· · ·∪Vd−1 corresponds to an Artinian Gorenstein

ring of socle degree d and a linear exact pair of zero divisors (a, b).

The following example demonstrates that these open sets we are considering

are not empty.

Example 4.3.3.

Take e ≥ 3 and d ≥ 3 and choose F = y1y
d−1
2 + y1y

d−1
3 + · · ·+ y1y

d−1
e .

We will use Ik = (ann(Rd−k ◦ F ) ∩Rk [[30], Lemma 2.15] to compute the annihilator

of F . Let I = annR(F ). Then by a simple calculation, we find that Rd−k ◦F consists

only of monomials of the form (yki , y1y
k−1
i , 1 < i ≤ e) for all i = 1, . . . , d − 2. It

is easy to see that I1 = 0 and I2 ⊇ (x2
1, xixj, i 6= 1, i < j). Notice that if x =

xα1
1 x

αj

j , 1 < j ≤ e, then Ik = (xk1,
∑
|α|=k x

α), where xα = xα1
1 x

α2
2 . . . xαe

e , α 6= 1.

Now, for the case k = d − 1, we have R1 ◦ f = (yd−1
i , y1y

d−2
i , 2 < i ≤ e) and

Id−1 ⊇ (yd−1
i − yd−1

e , 2 < i ≤ e). Now to prove that these are the only elements in

I, we will use a dimension argument as follows. Consider the map φ : Rk → D0.

defined by φ(r) = r ◦ (rd−k ◦ F ), where rd−k ∈ Rd−k. Since this map is a surjective

and the dimension of ker(φ) =
(
e+k−1
k

)
− 2e+ 2, we have that ann(Rd−k ◦F )∩Rk has

only
(
e+k−1
k

)
− 2e + 2 elements for all k, with the exception of k = 1 and k = d− 1.

Now, Ik for 2 < k < d − 2 is the ideal generated by the elements in I2. Hence, the

annihilator of F is I = (Ik, Id−1) = (x2
1, xixj, x

d−1
i − xd−1

i+1 , 1 < i < j). Thus, A = R/I

is an Artinian Gorenstein ring having (x1, x1) as an exact pair of zero divisors .

Note that A has the Hilbert series of the form HA(t) = 1 + et +
∑d−2

i=2 (2e −

2)ti + etd−1 + td.
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Example 4.3.4.

Take d = 4 and e = 3, and let F = y1y
3
2 + y1y

3
3. The catalecticant matrix

Cata◦F (2, 1; 3) is 

0 0 0

0 a2 0

0 0 a3

a2 a1 0

0 0 0

a3 0 a1


.

All 3 × 3 minors (a2
2a3, a2a

2
3,−a1a

2
2,−a1a

2
3) of the matrix vanish if and only if a2 =

a3 = 0 or a1 = a2 = 0 or a1 = a3 = 0. Without loss of generality, assume that

a2 = a3 = 0 and a1 = 1. Then one can see, b = x1 generates the kernel of the matrix.

Compute

(Rb)2 = (x2
1, x1x2, x1x3),

(ker(a ◦ F ))2 = (x2
1, x1x2, x1x3, x2, x3)

and

(ker(F ))2 = (x2
1, x2x3).

Therefore, we have ker(a ◦ F )2 = (Rb)2 + (ker(F ))2. Similarly compute

(Rb)3 = (x3
1, x

2
1x2, x

2
1x3, x1x

2
2, x1x

2
3, x1x2x3),

(ker(a ◦ F ))3 = (x3
1, x

2
1x2, x

2
1x3, x1x

2
2, x1x

2
3, x1x2x3, x

2
2x3, x2x

2
3)

and

(ker(F ))3 = (x3
1, x

2
1x2, x

2
1x3, x1x2x3, x

2
2x3, x2x

2
3)

Therefore, we have ker(a ◦ F )3 = (Rb)3 + (ker(F ))3.
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Chapter 5

EXISTENCE OF TOTALLY REFLEXIVE MODULES

This chapter is organized as follows. In Section 1, we give some background

information related to totally reflexive modules, and we study their construction from

a pair of exact zero divisors. In Section 2, we present our results about the existence

of totally reflexive modules over certain Artinian non-Gorenstein rings in the absence

of exact pairs of zero divisors.

5.1 Totally Reflexive Modules

In the late 1960s, Auslander and Bridger first introduced the idea of totally

reflexive modules under the name of modules of G-dimension zero. It was Avramov

and Martsinkovsky who first referred to them as a totally reflexive modules in 2002

[4]. These modules have been studied by many researchers, using several different

terminologies, such as modules of G-dimension zero, maximal Cohen-Macaulay mod-

ules, and (finitely generated) Gorenstein-projective modules [18]. Totally reflexive

modules are of interest since they are essential objects in Gorenstein relative homo-

logical algebra. Over a Gorenstein ring, the totally reflexive modules are exactly the

maximal Cohen-Macaulay modules, but they are known to exist over any ring. This

is because free modules are always totally reflexive modules. It is also known that

if a local ring is not Gorenstein, then it either has infinitely many indecomposable

pairwise non-isomorphic totally reflexive modules, or it has none other than the free

modules.

33



The simplest types of non-trivial totally reflexive modules can be constructed

by using an exact pair of zero divisors. The existence of an exact pair of zero divisors

is equivalent to the existence of a free resolution of A/(a) of the form

F : · · · → R
b−→ R

a−→ R
b−→ R

a−→ 0.

This complex is totally acyclic since F ∼= Hom(F, R) and therefore the modules

R/(a) ∼= (b) and R/(b) ∼= (a) are totally reflexive modules. Hence, the existence

of exact zero divisors implies the existence of totally reflexive modules.

Although most of the recent constructions of these modules in the literature

start with a pair of exact zero divisors, see for example [22], these modules may exist

in the absence of exact zero divisors, see [12]. Our interest in this chapter arises in

their existence over non-Gorenstein local rings that do not have exact pairs of zero

divisors. We are only aware of two examples of rings which admit non-free totally

reflexive modules but do not have exact pair of zero divisors. The first example of

such ring was found in [12] over a field of characteristic 2. In a recent study, Vraciu

and Atkins [2] constructed an example of a ring of embedding dimension 8 over a

field of arbitrary characteristic. The following facts are known about totally reflexive

modules.

Fact 5.1.1.

1. All free modules are totally reflexive modules. We call a nonzero totally reflexive

module trivial if it is free.

2. If M is totally reflexive, then so is the dual M∗ of M .

3. Over a Gorenstein ring, totally reflexive modules are exactly the maximal Cohen

Macaulay modules.

4. Over a local non-Gorenstein ring with m2 = 0, there exist only trivial totally

reflexive modules [4].
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5. If M is totally reflexive module, then so is every syzygy of M .

Now we illustrate the fact 5.1.1(2). If M is a maximal Cohen Macaulay ring

then M∗ is Maximal Cohen Macaulay. Therefore, ExtA(M∗, A) = 0 for all i > 0.

This means if

F : . . .→ F1 → F0 →M → 0

is a free resolution of M and

G : . . .→ G1 → G0 →M → 0

is a free resolution of M∗, then

G∗ : 0→M∗∗ → G∗0 → G∗1 → · · · →

is exact. Since M ∼= M∗∗, we can splice F and G∗ together and get a totally acyclic

complex

F|G∗ : · · · → F2 → F1 → F0 → G∗0 → G∗1 → · · · .

Gorenstein rings are characterized by the fact that every finitely generated

module has finite G-dimension [35].

Theorem 5.1.2. [11, Theorem 1.25]. Let A be local ring. For every finitely generated

A-module M of finite G-dimension, we have the equality

G-dimA(M) = depth(A)− depthA(M).

The condition G-dim(M) = 0 for maximal Cohen Macaulay modules follows

from the Theorem 5.1.2.
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5.2 Totally Reflexive Modules Without Exact Pair of Zero Divisors

As was mentioned earlier in this chapter, we will only consider Artinian non-

Gorenstein local rings (A,m, k). Thus for every such (A,m, k), there exists n ∈ N

such that mn = 0 6= mn−1. As just mentioned, Artinian non-Gorenstein rings with

m2 = 0 admit only trivial totally reflexive modules. Therefore, the rings we will focus

on are these rings with the cube of the maximal ideal being zero.

If e = 1, then A is a hypersurface, which is a Gorenstein ring.

If e = 2, then A is a complete intersection ring, which is also Gorenstein.

The smallest e for which m3 = 0 non-Gorenstein rings exist is e = 3. If e = 3,

then A has a Conca generator by [14, proof of Theorem 1]. An element a ∈ A is

called Conca generator if a2 = 0 and aA1 = A2. Note that Conca generators are

special type of exact zero divisors, that is, we have Conca generators when a = b. In

this case there always exists a non-free totally reflexive modules.

Therefore, in addition to m3 = 0, we will consider rings with an embedding

dimension e ≥ 3. We now give some known necessary conditions for the existence of

totally reflexive modules.

Theorem 5.2.1. [13, Theorem A] Let (A,m, k) be a local ring that is not Gorenstein

and has m3 = 0 6= m2. If F is a non-zero minimal acyclic complex of finitely generated

free A-modules, then the ring A has the following properties:

(i) Soc(A) = m2, and

(ii) edim(A) = dim(Soc(A)) + 1. In particular, length(R) = 2 edim(R).

Theorem 5.2.2. [37, Theorem 3.1] Let (A,m, k) be a non-Gorenstein local ring with

m3 = 0 6= m2. If there exists a non-free totally reflexive A-module M , then the

following conditions hold:
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(i) The Hilbert series of A is 1 + et+ (e− 1)t2,

(ii) A is a Koszul algebra, and

(iii) M has a free resolution of the form

· · · → An → An · · · → An →M → 0.

In other words, the resolution of M is linear with constant betti numbers.

Theorem 5.2.3. [12, Cor 8.5] Let k be an infinite field and let e ≥ 0 be an integer.

A generic standard graded k-algebra A with Hilbert series A(t) = 1 + et + (e − 1)t2

has an exact zero divisor.

It is shown in [12] that for

A = k[x1, x2, x3, x4]/(x2
1, x1x4, x

2
2, x2x4, x

2
3, x3x4, x

2
4 − x1x2 − x1x3),

there are no exact zero divisors in A when char(k) = 2. Observe that A is a quadratic

algebra with Hilbert series 1 + 4t + 3t2. It was also mentioned in [14, Example 12]

that there are Conca generators in A. If k does not have characteristic 2 or 3, then

the elements x1 + x2 + 2x3 − x4 and 3x1 + x2 − 2x3 + 4x4 form an exact pair of zero

divisors in A, see([12]). This was the example used to show that non-free totally

reflexive modules may exist even in the absence of exact zero divisors, and that exact

zero divisors may also exist in the absence of Conca generators. Later in this section,

we use our approach of using catalecticant matrices to illustrate the example from

[12].

In a recent study, Vraciu and Atkins constructed an interesting example of ring

of embeding dimension 8. The ring

A = k[x1, . . . , x4, y1, . . . , y4]/((x1, . . . , x4)2 + (y1, . . . , y4)2 + I),
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where I = (x1, x2)(y3, y4) + (x3, x4)(y1, y2) + ((
∑4

i=1 xi)(
∑4

j=1 yj)) does not have any

exact zero divisors, but has non-free totally reflexive modules.

We now give a class of rings of embedding dimension 5 and higher that have no

exact zero divisors, but each ring has non-free totally reflexive modules.

Theorem 5.2.4. Suppose that F = (f1, f2, f3, {fi}e−1
i=4 ) where

f1 = −y1y2 + y1y4, f2 = −y1y2 + y2y3, f3 = −y1y2 + y3y4, fi = {−y1y2 + y2i+1}e−1
i=4 .

Then A := R/ annR(F ), where annR(F ) = (x1x2, x1x4, x2x3, x3x4, x
2
ixe, xixe, i =

1, 2, . . . e−1) is an Artinian ring with m3 = 0, and Hilbert series of A is 1+et+(e−1)t2.

Proof. We first want to find the generating elements of ann(F ). We look for generators

in each degree. Define the map CF (1, 1; e) : R1 → (S1)e−1 by

CF (1, 1; e)(r) = r ◦ F

.

Look at the catalecticant map CF (1, 1; e) : R1


f1

f2

f3


−−−−→ (S1)3 for e = 5. We

denote the matrix associated with this map by B. Then B is comprised of

B5
1 =


0 −1 0 1 0

−1 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

←→ f1

B5
2 =


0 −1 0 1 0

−1 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

←→ f2
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B5
3 =


0 −1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

←→ f3

and CF (1, 1; e) : R1
[f4]−−→ (S1)3, with

C5
1 =


0 −1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

←→ f4.

For e = 5, we therefore have CF (1, 1; e) : R1



f1

f2

f3

f4


−−−−→ (S1)3, and

CatF (1, 1; e) =


B5

1

B5
2

B5
3

C5
1

 ,

which is
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B =



0 −1 0 1 0

−1 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 −1 0 1 0

−1 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

0 −1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


We can observe that the rank of this matrix is 5, which implies that the the kernel

of the matrix is {0}. Hence, annR(F ) does not contain any linear terms in the case

e = 5.

Next, we will use induction on e. Suppose the rank of the catalecticant matrix

is e− 1 for e− 1 variables. For e− 1 ≥ 5, the catelecticant matrix

CatF (1, 1; e− 1) =



Be−1
1

Be−1
2

Be−1
3

Ce−1
1

Ce−1
2

...

Ce−1
e−5


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has (e− 1)(e− 2) rows and (e− 1) columns where

Be−1
i =

[
Be−2
i 0

0 0

]
for all i = 1, 2, 3,

Ce−1
j =

[
Ce−2
j 0

0 0

]
for 1 ≤ j < e− 5, and

Ce−1
e−5 =

[
M e−6 0

0 1

]
,

M1 =


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

and

Mk

[
Mk−1 0

0 0

]
.

For any e, the catalecticant matrix is

CatF (1, 1; e) =



Be
1

Be
2

Be
3

Ce
1

Ce
2

Ce
3

...

Ce
e−4


,

having e(e − 1) rows and e columns, where Be
i =

[
Be−1
i 0

0 0

]
, Ce

j =

[
Ce−1
j 0

0 0

]
,

and Ce
j =

[
M e−5 0

0 1

]
.
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We have CatF (1, 1; e) =



Be
1

Be
2

Be
3

Ce
1

Ce
2

Ce
3

...

Ce
e−4


=



Be−1
1 0

0 0

Be−1
2 0

0 0

Be−1
3 0

0 0

Ce−1
1 0

0 0

Ce−1
2 0

0 0

Ce−1
3 0

0 0
...

...

Ce−1
e−5 0

0 1



.

Since the matrix



Be−1
1

0

Be−1
2

0

Be−1
3

0

Ce−1
1

0

Ce−1
2

0

Ce−1
3

0
...

Ce−1
e−5

0



has rank e−1, then the catelecticant matrix CatF (1, 1; e)

has rank e.
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We next we look for quadratic elements in annR(F ). Define CF (0, 2; e) : R2 →

(S0)e−1 by CF (0, 2; e)(r) = r ◦ F . The catalecticant matrix Cata◦F (0, 2; e) has size

e− 1×
(
e+1

2

)
. Since xixj ◦F = xixj ◦ fk = cijk for all 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ e− 1,

this map is surjective, and the dimension of it’s kernel is
(
e+1

2

)
− (e− 1) = e2−e+2

2
. It

is easy to check that x2
i ◦F = 0 for all i < 5, and that xixj ◦F = 0, for all i, j except

x1x2, x1x4, x2x3 and x3x4. Also (x1x2 + x1x4 + x2x3 + x3x4 + x2
5 + . . .+ x2

e) ◦ F = 0.

This implies there are 4 + (
(
e
2

)
− 4) + 1 = e2−e+2

2
elements in the annihilator of F .

The corresponding Artinian ring A = R/I has
(
e+1

2

)
− e2−e+2

2
= e − 1 generators

in degree 2. Choose {x1x2, x1x4, x2x3, x3x4, x
2
i
e−1
i=5} as the basis of A2. Note that all

the elements in A3 are generated by the elements x2
1, x

2
2, x

2
3, x1x3, and dimk(A3) = 0.

Thus I = annR(F ) is a homogeneous ideal of degree 2 . Hence the Hilbert series of

A is 1 + et+ (e− 1)t2, which proves the theorem.

Theorem 5.2.5. The Artinian ring A = R/ annR(F ) constructed above does not have

an exact pair of zero divisors, but A has totally reflexive modules that are presented

by the matrices

Φ =

(
−x1 − x4 − x5 − · · · − xe x1 + x2 + x3

x2 + x4 x1 − x4 + x5 + x6 + · · ·+ xe

)

and

Ψ =

(
−x1 + x4 − x5 − · · · − xe x1 + x2 + x3

x2 + x4 x1 + x4 + x5 + x6 + · · ·+ xe

)
.

We use the following lemma to aid in the proof of the above theorem.

Lemma 5.2.6. Let Φ and Ψ be the matrices given above. Then

(i) The dimensions of the image of Φ and Ψ are 2e.

(ii) The dimensions of the image of ΦT and ΨT are 2e.
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Proof. (i) The image of Φ is its column space. Fix the basis ofA as {x1x2, x1x4, x2x3, x3x4, x
2
i },

where 5 ≤ i ≤ e− 1, as in the previous theorem. One can see that the column space

of Φ is the number of linearly independent columns of the transpose of the following

matrix 

−x1 − x4 − x5 − · · · − xe x2 + x4

x1 + x2 + x3 x1 − x4 + x5 + x6 + · · ·+ xe

−x1x4 x1x2 + x1x4

x1x2 −x1x4

−x1x2 0

x1x2 + x2x3 x1x2

−x3x4 x2x3 + x3x4

x2x3 −x3x4

−x1x4 0

x1x4 + x3x+ 4 x1x4

−x2
5 0

0 x2
5

−x2
6 0

0 x2
6

...
...

−x2
e 0

0 x2
e



.

Since there are 2(e− 4)− 2 + 10 = 2e linearly independent rows, the row space is 2e.

Similarly, we compute the column space of Ψ. The column space of the matrix Ψ is

the number of linearly independent columns of the transpose of the following matrix
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

−x1 + x4 − x5 − x6 − · · · − xe x2 + x4

x1 + x2 + x3 x1 + x5 + x6 + · · ·+ xe

−x1x4 x1x2 + x1x4

x1x2 x1x4

−x1x2 0

x1x2 + x2x3 x1x2

0 x2x3

x2x3 x3x4

−x1x4 0

x1x4 + x3x+ 4 x1x4

−x2
5 0

0 x2
5

−x2
6 0

0 x2
6

...
...

−x2
e 0

0 x2
e



.

One can show that these rows are linearly independent. Hence dim Im(Ψ) = dim Im(Ψ) =

2e.

(ii) The image of ΦT is its column space. Fix the basis ofA as {x1x2, x1x4, x2x3, x3x4, x
2
i },

where 5 ≤ i ≤ e− 1, as in the previous theorem. One can see that the column space
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of ΦT is the number of linearly independent columns of the transpose of the following

matrix 

−x1 − x4 − x5 − · · · − xe x1 + x2 + x3

x2 + x4 x1 − x4 + x5 + x6 + · · ·+ xe

−x1x4 x1x2

x1x2 + x1x4 −x1x4

−x1x2 −x1x2 + x2x3

0 x1x2

−x3x4 x2x3

x2x3 + x3x4 0

−x1x4 x1x4 + x3x4

0 x1x4

−x2
5 0

0 x2
5

−x2
6 0

0 x2
6

...
...

−x2
e 0

0 x2
e



.

Since there are 2(e − 4) − 2 + 10 = 2e linearly independent rows, the row space is

2e. Similarly, we compute the column space of ΨT . The column space of the matrix

ΨT is the number of linearly independent columns of the transpose of the following

matrix
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

−x1 + x4 − x5 − x6 − · · · − xe x2 + x4

x1 + x2 + x3 x1 + x5 + x6 + · · ·+ xe

−x1x4 x1x2

x1x2 + x1x4 x1x4

−x1x2 x1x2

−x1x2 x1x2 + x2x3

0 x1x2

x3x4 x2x3

x2x3 + x3x4 x3x4

−x1x4 x1x4 + x3x4

−x2
5 0

0 x2
5

−x2
6 0

0 x2
6

...
...

−x2
e 0

0 x2
e



.

Now we give the proof of the theorem 5.2.5

Proof. First we will show that there are not any exact zero divisors in A. Then we

will prove that the modules presented by given matrices are totally reflexive modules

over A.
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Define the map Ca◦F (0, 1; e) : R1 → (S0)e−1 by Ca◦F (0, 1; e)(r) = r ◦ a ◦ F =

ra ◦ F for a = a1x1 + · · · + aexe. The catalecticant matrix Cata◦F (0, 1; e) is the

e− 1× e matrix

Cata◦F (0, 1; e) =



−a2 + a4 −a1 0 a1 0 0 · · · 0

−a2 −a1 + a3 a2 0 0 0 · · · 0

−a2 −a1 a4 a3 0 0 · · · 0

−a2 −a1 0 0 a5 0 · · · 0

−a2 −a1 0 0 0 a6 · · · 0
...

...
...

...
...

... · · ·
...

a2 −a1 0 0 0 0 · · · ae


.

This matrix has at least a one dimensional kernel, and it is easy to see that

b = a1x1 − a2x2 + a3x3 − a4x4 is in the kernel. That is, b ∈ annR(a ◦ F ). If there are

other linear elements in the kernel then the matrix Cata◦F (0, 1; e) does not have full

rank. Then (a, b) will not be an exact pair of zero divisors.

Now, assume that annA(a) ∩ A1 = (b). This implies that the matrix (Cata ◦

f(2, 1; 3)) has rank e − 1. We repeat the process to find the catalecticant matrix

Catb◦F (0, 1; e), which is

Catb◦F (0, 1; e) =



a2 − a4 −a1 0 a1 0 0 · · · 0

a2 −a1 + a3 −a2 0 0 0 · · · 0

a2 −a1 −a4 a3 0 0 · · · 0

a2 −a1 0 0 0 0 · · · 0

a2 −a1 0 0 0 0 · · · 0
...

...
...

...
...

... · · ·
...

a2 −a1 0 0 0 0 · · · 0


.

It is easy to see that annR(b) = (a, x5, x6, . . . xe). Note that xi 6= a, for all

i = 5, 6, . . . e, otherwise the matrix Cata◦F (0, 1; e) will not have full rank, which

contradicts the assumption. We see that for any non-zero linear form a in A, there is

another linear form b ∈ A such that annR(a) = (b). But annR(b) = (a, x5, x6, . . . xe),

which implies that A does not have any exact zero divisors.
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Next, we want to show that the modules presented by the matrices Φ and Ψ

are totally reflexive modules. It is easy to verify that the products ΦΨ and ΨΦ are

zero, whence F = · · · Φ−→ A2 Ψ−→ A2 Φ−→ A2 Ψ−→ · · · is a complex.

We shall first verify that F is totally acyclic. To see that, we must verify the

equalities Im Ψ = Ker Φ and Im Φ = Ker Ψ. By Lemma 5.2.3, we have dim(Im(Φ)) =

dim(Im(Ψ)) = 2e. But dim(ker(Φ)) = dim(R2) − dim(Im(Φ)) = 4e − 2e = 2e, and

dim(ker(Ψ)) = dim(R2) − dim(Im(Ψ)) = 4e − 2e = 2e. Therefore the complex is

exact, and hence F is acyclic. Since the maps in the dual complex HomA(F, R) are

the transpose matrices ΦT and ΨT , its dual F∗ is also a complex. Hence the complex

is totally acyclic, and the module M , presented by Φ, is totally reflexive. Moreover,

the first syzygy of M presented by Ψ is also a totally reflexive module .

We want to look at the example mentioned in [12]. This is the example from

Conca in [14, Example 12] of a standard graded k-algebra with Hilbert series 1+4t+3t2

and (0 : m) = m2 having no Conca generator of m.

We illustrate the example from [12] using our approach.

Example 5.2.7.

Let e = 4, A = k[x1, x2, x3, x4]/(x2
1, x1x4, x

2
2x2x4, x

2
3, x3x4, x

2
4−x1x2−x1x3) and

the corresponding F is (−y1y2 + y1y3, y2y3,−y1y2 + y2
4) in S. Then

Cata◦F (0, 1; 4) =

−a1 + a3 −a1 a1 0

0 a3 a2 0

−a2 a1 0 a4


has

b = (a1a2a4 + a1a3a4)x1 + (−a1a2a4 + a2a3a4)x2 + (a2
1a2 − a1a

2
2 − 2a1a2a3)x4

in its kernel and
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Catb◦F (0, 1; 4) =

 a2
2a4 − a2

3a4 a1a3a4 + a1a2a4 −a1a2a4 − a1a3a4 0

0 a2
3a4 − a2a3a4 a2

2a4 − a2a3a4 0

a2
2a4 − a2a3a4 −a1a2a4 − a1a3 0 2a1a2a3


In the matrix above, notice that if the characteristic of k is 2, then the last column

is 0. Therefore, a and b are not exact pair of zero divisors in A.
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Chapter 6

WEAK LEFSCHETZ PROPERTY

The Weak and Strong Lefschetz properties are strongly connected to many

topics in algebraic geometry, commutative algebra and combinatorics. Some of these

connections are quite surprising and are still not completely understood, and much

work remains to be done. In this chapter, we give an overview of some known results

on the Weak Lefschetz property and provide a connection between exact zero divisots

and the Weak Lefschetz property for Artinian rings.

6.1 Some Known Results

Definition 6.1.1. Let a be a general linear form. We say that A has the Weak

Lefschetz Property (WLP) if the homomorphism induced by multiplication by a,

Ai
a−→ Ai+1 has maximal rank for all i (i.e. is injective or surjective). We expect

maximum rank rk(a) = min{dimAi, dimAi+1}. The set of linear forms a for which

the map a has maximum rank is an open set in R1, hence the use of the term general

linear form. We say that A has the Strong Lefschetz Property (SLP) if Ai
ad−→ Ai+d

has maximal rank for all i and d (i.e. is injective or surjective).

Theorem 6.1.2. [19] Let R = k[x, y, z], where char(k) = 0. Let I = (F1, F2, F3) be

a complete intersection. Then R/I has the WLP.

Proposition 6.1.3. [19, Proposition 4.4] Every Artinian ideal in k[x, y] with char(k) =

0 has the Strong Lefschetz property (and consequently also the Weak Lefschetz prop-

erty).
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One of the most interesting open problems in this field is whether all embedding

dimension 3 graded Artinian Gorenstein algebras have the WLP.

Example 6.1.4. [19, Example 4.3] Let R be the ring k[u, v, x, y, z] and let F =

xu2 + yuv + zv2. The Gorenstein ring A = R/ ann(F ) algebra has neither the

Weak Lefschetz property nor the Strong Lefschetz property. However, now take the

polynomial g = uF . Then the corresponding Gorenstein ring A = R/ ann(g) has

the Weak Lefschetz property but not the Strong Lefschetz. The Artinian algebra

A = k[x, y, z]/(x3, y3, z3, (x + y + z)3) has the WLP; A does NOT have the SLP

because (a3) fails to have maximal rank.

Theorem 6.1.5. [19] If char(k) = 0 and I is any homogeneous ideal in k[x, y] then

R/I has the SLP.

Theorem 6.1.6. (Stanley (1980), J. Watanabe (1987), Reid-Roberts-Roitman (1991))

Let R = k[x1, . . . , xr], where k has characteristic zero. Let I be an Artinian monomial

complete intersection, i.e. I = (xa11 , ..., x
ar
r ) Then R/I has the SLP. In particular, R/I

has the WLP.

Theorem 6.1.7. [2, 3.6] Let I be homogeneous ideal in R defining A = R/I. Suppose

that the ring A satisfies m3 = 0 and has Hilbert series 1 + et+ (e− 1)t2. If A admits

an exact pair of zero divisors, then A has WLP.

Proof. Consider a general linear form a = a1x1 + . . . aexe. The e − 1 × e matrix

associated to the multiplication map A1
a−→ A2 having maximal rank is an open

condition. If (a, b) is an exact pair of zero divisors then all e − 1 × e − 1 minors are

not identically zero. Therefore, the open condition is non-empty.

Conjecture 6.1.8. Suppose A is a quadratic Artinian Algebra and has Hilbert series

1 + et+ (e− 1)t2. If A has WLP, then it admits an exact pair of zero divisors.
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If A is quadratic, then we believe that with all the hypotheses in the conjecture,

A admits an exact pair of zero divisors. The example below shows that A has WLP

but does not have an exact pair of zero divisors. This is the case when A is not

quadratic.

Example 6.1.9. [2, Example 3.7] Let A = k[x1, x2]/(x2
1 − x2

2, x
2
1 − x1x2, x

3
1). Then

A is an Artinian ring with Hilbert Series 1 + et + (e − 1)t2, but A is not quadratic.

The ring A has WLP since the multiplication by a1x1 + a2x2 : A1 → A2 is surjective

if a1 + b1 6= 0. Every linear term a ∈ A has at least one linear term, say, b in the

annihilator and also a quadratic annihilator which is not multiple of b. Hence A does

not have an exact pair of zero divisors.

Theorem 6.1.10. [31, Theorem 5.11] Let I be a homogeneous ideal in R defining

a Gorenstein graded ring A := R/I of dimension zero. Suppose that char(k) = 0

and the number of the minimal generators of annR(a) over k[x1, x2, x3] is less than

or equal to two for a general linear form a. Then A has the WLP.
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