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ABSTRACT

MATHEMATICAL MODELING OF ZIKA VIRUS TRANSMISSION AND

MULTIPLE PATHOGEN INTERACTIONS

Omomayowa Olawoyin, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Christopher Kribs

The purpose of this dissertation is twofold: to deepen our understanding of

the complex transmission routes of the Zika virus (ZIKV), and to study multiple

pathogen interactions (specifically cocirculation of Zika and dengue and discrete-

time coinfection models) through the lens of invasion reproductive numbers (IRNs)

which measure the ability of a disease to invade a population endemic with another

disease(s).

In addition to being transmitted to humans through the bite of infected female

Aedes aegypti mosquitoes, studies show that the ZIKV can also be sexually and ver-

tically transmitted within both populations. We develop a new mathematical model

of the ZIKV which incorporates sexual transmission in humans and mosquitos, ver-

tical transmission in mosquitos, and mosquito to human transmission through bites.

Analysis of this deterministic model shows that although the secondary transmission

pathways cause minor qualitative changes on a Zika outbreak, they have important

consequences for control strategies and estimates of Zika’s basic reproductive number

(BRN).
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Over the past five years, cocirculation of dengue and Zika has increased; how-

ever, very little is known about its epidemiological consequences. Using a dengue

and Zika coinfection model that incorporates altered infectivity of mosquitoes (due

to coinfection), and antibody-dependent enhancement (ADE) within the human pop-

ulation, we study the impact of cocirculation on the spread of both diseases. Central

to our analysis is the derivation and interpretation of the basic reproductive number

(BRN) and IRN of both pathogens. Our results identify threshold conditions under

which one disease facilitates the spread of the other and show that ADE has a greater

impact on disease persistence than altered vector infectivity.

IRNs are utilized frequently in continuous-time models with multiple interacting

pathogens; however, they are yet to be explored in discrete-time systems. We extend

the concept of IRNs to discrete-time models by showing how to calculate them for

a set of two-pathogen SIS models with coinfection. In our exploration, we address

how sequencing events impacts the BRN and IRN, and analyze a formulation of the

discrete-time model which assumes that events occur simultaneously. Results show

that while the BRN is unaffected by variations in the order of events, the IRN differs.

Furthermore, although the simultaneous model lacks the simplification property that

other models possess and the mathematics involved in its analysis is complex, the

model exhibits competitive exclusion under cross-immunity which is not observed in

the sequential formulations.
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CHAPTER 1

Introduction

1.1 Vector-Borne Disease Modeling

More than half of the world’s population is at risk for vector-borne diseases,

illnesses that are caused by pathogens transmitted to humans via snails, mosquitoes,

ticks, flies, or other animals. These diseases (examples of which include malaria,

dengue, yellow fever, and Zika) result in over one million deaths annually and ac-

count for approximately 17% of all infectious diseases [2]. Although historically lim-

ited to (sub)tropical and developing countries, the range of vector-borne diseases has

increased with urbanization, climate change, and international travel.

Mathematical models are especially useful in studying vector-borne diseases.

These models provide insight on disease spread and the effectiveness of control mea-

sures, while obviating the need for heavy economic commitments or lofty epidemio-

logical experiments. One of the earliest mathematical models of vector-borne diseases

was formulated by a British medical doctor, Sir Ronald Ross, to study malaria trans-

mission. In his model, Ross used differential equations to describe the change in

susceptible and infectious human and mosquito populations and discovered a thresh-

old mosquito density under which malaria could be eradicated. Decades later, George

Macdonald extended the work of Sir Ross and developed the classical Ross-Macdonald

model. Amongst other things, his model incorporated latency within mosquito classes

and introduced the basic reproductive number (BRN), the expected number of sec-

ondary infections caused by a single infected individual in a completely susceptible

population, of malaria. Over the past several decades, the Ross-Macdonald model
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has been extended to study various illnesses and remains an integral component of

vector-borne disease modeling [3].

1.2 Zika Virus

One particular vector-borne disease that has received international attention

is Zika. Zika is caused by the Zika virus (ZIKV) which is transmitted to humans

primarily through the bite of infected female Aedes mosquitoes. This virus was first

isolated in a rhesus monkey in Uganda in 1947 and the first human infection was

discovered in Nigeria in 1953. Prior to the 21st century, Zika spread sporadically

in Africa and Asia. In 2007, however, a series of massive outbreaks began, first in

Micronesia (2007), then French Polynesia (2013), and more recently the Americas

(2014). Since its introduction into the western hemisphere, over 200,000 confirmed

cases (and approximately 600,000 suspected cases) of Zika have been reported in the

region [4].

The clinical manifestations and transmission mechanisms of Zika complicate

the study of this disease. For one, 80% of individuals infected with ZIKV are asymp-

tomatic. Those that are symptomatic typically experience fever, rash, conjunctivitis,

or myalgia. While ZIKV infection lasts approximately two weeks (followed by life-

long immunity), severe forms of the disease have been associated with Guillain-Barré

syndrome, Congenital Zika Syndrome, and increased microcephaly in newborns. Fur-

thermore, although Zika is primarily spread by mosquitoes, the virus can be sexu-

ally and vertically transmitted (from a mother to her offspring) within human and

mosquito populations [4, 5]. Since there are currently no vaccines for Zika, disease

prevention efforts focus on the use of biological controls, insecticides, repellents, or

bird nets.
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1.3 Pathogen Interactions

With the rapid spread of pathogens across the globe, cocirculation of multiple

diseases within the same geographical region is inevitable (for example Chagas disease

and chikingunya in Latin America, and Zika and dengue in Southeast Asia). As a

result, it is important to consider how these pathogens interact and how their inter-

actions impact disease spread (e.g. whether they lead to copersistence or competitive

exclusion).

One way to examine the interplay between multiple pathogens is through a key

epidemiological quantity called the invasion reproductive number (IRN). The IRN

describes the number of secondary infections produced by an infected individual in a

population where one (or more) other pathogen is endemic [6]. If a disease’s IRN is

greater than 1, it can spread in a population endemic with other disease(s), but if it is

less than 1, the disease will die off. One of the earliest mathematical models to discuss

the use of IRNs is [6]. In this article, Porco and Blower develop a vaccination model

for controlling two subtypes of HIV and show that four distinct outcomes are possible-

eradication of both subtypes, persistence of both subtypes, eradication of only the

endemic subtype, and persistence of only the invading subtype. In addition to [6],

IRNs have been considered in numerous continuous-time models such as [7, 8, 9].

However, it is important to note that IRNs have not previously been discussed in the

context of discrete-time models, where biological events occur within specific time

intervals.

1.4 Outline

In this thesis, we model Zika transmission and multiple pathogen interactions

(as it pertains to the ZIKV and more generally discrete-time models). In Chapter
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2, we examine the impact of multiple transmission pathways (vector-human trans-

mission, sexual transmission in humans and mosquitoes, and vertical transmission

in mosquitoes) on the spread and control of the ZIKV. Specifically, we focus on how

additional transmission mechanisms effect Zika’s BRN, the timing of an outbreak, the

number of people infected, and the effectiveness of control measures. In Chapter 3,

we model the cocirculation of dengue and Zika to determine how the presence of one

disease affects that of the other. Central to our analysis is the IRN of each pathogen,

which provides a way to measure the effects of antibody-dependent enhancement and

altered infectivity of coinfected mosquitoes on the dengue-Zika interplay. Lastly, in

Chapter 4, we expand the analytical tools used in modeling multiple pathogen inter-

actions by extending the concept of IRNs to simple discrete-time coinfection models.

We show that the ordering of events (which does not exist in continuous-time models)

greatly impacts reproductive numbers in discrete-time.
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CHAPTER 2

Effects of Multiple Transmission Pathways on Zika Dynamics

2.1 Introduction

Zika is a vector-borne disease transmitted to humans primarily through the bite

of infected female Aedes aegypti mosquitoes. The Zika virus (ZIKV) was first found

in Uganda in 1947 and has since spread sporadically to regions in Africa and Asia

[10]. However, since 2015, Zika has been reported in over 50 countries in the Americas

including the United States and has been associated with serious clinical implications

such as Guillain-Barré syndrome and increased microcephaly in newborns [10]. To

date, there have been approximately 200,000 confirmed cases of Zika and approxi-

mately 2,600 confirmed congenital syndrome cases associated with ZIKV infection

[11].

Transmission of Zika within human and mosquito populations is quite complex.

Although ZIKV is primarily transmitted to humans through the bite of infected Aedes

mosquitoes, recent reports have confirmed sexual and perinatal transmission among

humans [12]. In addition to these transmission routes, the virus can spread vertically

from a female mosquito to her offspring [5] and has the potential to spread sexually in

Aedes mosquitoes. While sexual transmission of ZIKV within mosquito populations

is not yet confirmed (in part because of the lack of studies investigating transmission

of ZIKV within mosquitoes), this transmission route is highly probable given evidence

of sexual transmission of the Dengue virus (DENV), a closely related flavivirus, in

Aedes mosquitoes [13].
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Since little is known about Zika, mathematical models are essential to under-

standing the transmission dynamics of the disease, deriving key epidemiological quan-

tities, and informing the creation of disease control strategies [14]. Most of the early

mathematical models of Zika were employed to estimate the basic reproductive num-

ber, R0, of the virus (the number of secondary infections that a single infected individ-

ual can make in a completely susceptible population). By examining the 2013/2014

Zika outbreak in French Polynesia through a simple compartmental model which in-

corporates only human-vector transmission, R0 was found to range between 2.6-4.8

[15]. This range for R0 is consistent with other estimates [16, 10].

As evidence of sexual transmission of ZIKV emerged, researchers began to in-

vestigate the impact of this additional transmission pathway on the spread of the

disease. In [10], authors present one of the first mathematical models to examine the

combined effects of direct (sexual) and indirect (vector to human) modes of ZIKV

transmission in the human population. Their deterministic model utilized data from

several South American countries and showed that sexual transmission contributes

very little to R0 (3%) but has the potential to increase the risk of infection and epi-

demic size of an outbreak. To further explore the contribution of sexual and vector

transmission of Zika, an age-and-sex structured model was developed in [17]. Analysis

of the model revealed that human-mosquito interaction parameters have a more sig-

nificant impact on R0 than do sexual transmission parameters which contribute less

than 5% to the reproductive number. However, sexual transmission was shown to

strongly contribute to an outbreak in regions where mosquito populations are sparse.

In addition to the two transmission mechanisms studied in the previous models, the

effect of migration on disease spread was investigated in [18]. As with other studies,

it was shown that sexual transmission alone cannot drive the spread of Zika but that
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this transmission pathway and migration can increase the magnitude and duration of

outbreaks.

Researchers in [19] are among the first to develop and analyze a mathematical

model of Zika which incorporates vertical transmission of the virus in humans (in

addition to transmission of the disease through mosquito bites). Sensitivity analysis

of the model showed that mosquito demographic parameters and human-mosquito

transmission parameters play critical roles in the diffusion of Zika. The authors also

investigated the effects of varying levels of control techniques on Zika and found that

personal protection strategies were more effective at controlling the spread of disease

than delayed conception or mosquito-reduction.

Although incorporating the additional transmission mechanisms of ZIKV into

mathematical models adds to their complexity, these epidemiological details can im-

pact the initial growth rate of an outbreak and estimates of the basic reproductive

number [20, 21, 22, 23]. In a general exploration of the sensitivity of parameter esti-

mates to model structure, Lloyd [20] shows that models with algebraically identical

R0 expressions can have drastically different initial growth rates due to variations in

the biological assumptions of the models (e.g. SIR versus SEIR classes and exponen-

tial versus gamma distribution of infectious and latent periods). The sensitivity of

the initial growth rate of an outbreak to the model structure can lead to inaccurate

estimates of the basic reproductive number of a disease. As detailed in the within-

host study of viral dynamics in [21] and the disease management context of [23], this

results in unrealistic predictions of the effectiveness of control measures needed to

curtail the spread of a pathogen.

While individually, some of the transmission mechanisms of the ZIKV are un-

likely, in combination they can affect the persistence of Zika. The different com-

ponents can increase the size and duration of outbreaks, result in peak infections
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occurring sooner in Zika outbreak history, and allow the virus to circulate at low

levels until favorable environmental conditions cause an outbreak. In contrast to pre-

vious studies which focus on at most two transmission pathways of the ZIKV, we

introduce a new mathematical model which incorporates (1) sexual and (2) vertical

ZIKV transmission within mosquito populations as well as (3) sexual transmission in

humans and (4) vector to human transmission. We omit vertical ZIKV transmission

in humans both to simplify our model and because the infectious period of Zika (at

most two weeks [24]) is too short for an infant class to contribute to further sexual

or vertical transmission of the disease. By analyzing the simultaneous ZIKV trans-

mission cycles in humans and vectors, something which no other model has done, we

aim to answer the following research question: what is the relative contribution of

the individual and combined transmission mechanisms (1-4) on the spread of Zika?

Quantifying the effects of these transmission pathways will not only contribute to a

better understanding of the overall population dynamics of Zika but may also aid in

the formation of control strategies.

In the following sections, we formulate a mathematical model incorporating

transmission modes 1-4 and compare it with a simplified vector transmission model

to determine the combined effects of secondary transmission pathways on the spread

of Zika. We derive and numerically approximate the basic reproductive numbers of

both models which are used to determine whether an epidemic will occur (R0 > 1

implies sustained disease spread within a population). We also analyze the sensitivity

of the basic reproductive number, peak time, and final epidemic size to variations in

parameter values. In addition, we explore how differential timing of control measures

(based on the proportion of people infected in each model) may affect the outcome

of an outbreak. Lastly, we investigate how secondary transmission pathways impact

estimates of Zika’s R0.

8



2.2 Model Formation

The deterministic mathematical model discussed in this paper utilizes a system

of nonlinear ordinary differential equations to capture the overall trends in Zika dy-

namics and estimate the likely contribution of each transmission route. In the model,

we consider two populations: humans and mosquitoes. Humans are compartmental-

ized into susceptible, exposed, symptomatic, asymptomatic, and recovered, classes

(Sh, Eh, Ih, Ah, Rh) with the total number of humans denoted by Nh. In the vec-

tor population, we consider susceptible, exposed, and infectious female mosquitoes

(Svf , Evf , Ivf ), infectious male mosquitoes (Ivm), and susceptible and infected juve-

nile mosquitoes (Se, Ie). The total number of adult female, adult male, and juvenile

mosquitoes is given by Nvf , Nvm, and Ne respectively. We also include demographics

for the mosquito population and not the human population because the lifespan of

the mosquito is much shorter than that of a human. A complete list of the state

variables used in this model is shown in Table 2.1.

Susceptible humans become exposed to ZIKV after it is transmitted to them

through the bite of an infectious female mosquito or through sexual contact with an

infected person. This infected person could be symptomatic or asymptomatic since

the sexual transmission of ZIKV from both classes has been documented [10, 25].

After a person is infected with ZIKV, he or she incubates the virus at rate δ before

becoming infectious. Infectious humans recover at rate γ and are assumed to have

lifelong immunity following recovery. This assumption is based on evidence from

other flaviviruses, such as DENV, and the presence of ZIKV neutralizing antibodies

in human and animal sera [26, 27, 28]. We neglect ZIKV induced mortality in this

model because symptoms of Zika (rash, fever, conjunctivitis, and muscle and joint

pain) are mild and rarely result in death [29].

9



State
Variable

Description

Sh Susceptible Humans
Eh Exposed Humans
Ih Symptomatic Infected Humans
Ah Asymptomatic Infected Humans
Rh Recovered Humans
Nh Total Number of Humans
Svf Susceptible Adult Female

Mosquitoes
Evf Exposed Adult Female Mosquitoes
Ivf Infectious Adult Female Mosquitoes
Ivm Infectious Adult Male Mosquitoes
Se Susceptible Juvenile Mosquitoes
Ie Infectious Juvenile Mosquitoes
Ne Total Number of Juvenile

Mosquitoes
Nvm Total Number of Adult Male

Mosquitoes
Nvf Total Number of Adult Female

Mosquitoes

Table 2.1: Epidemiological Classes

Susceptible adult female mosquitoes become exposed to ZIKV after feeding on

an infected person. We assume that asymptomatic humans can transmit ZIKV to

mosquitoes, as is the case in [30]. During exposure to ZIKV, mosquitoes undergo an

incubation period of 7-10 days before becoming infectious [12]. Once a mosquito is

infectious, we assume that it does not clear the virus.

The life cycle of Aedes mosquitoes consists of four successive stages: egg, larva,

pupa, and adult. In this model, we begin our observation of the mosquito population

following the hatching of eggs (at rate r) and combine the two aquatic stages (larva

and pupa) into the juvenile mosquito compartments Se and Ie. The growth of the

juvenile vector population is limited by the carrying capacity K of the breeding

site. These juvenile vectors mature at a rate γe into either susceptible or infectious
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adult mosquitoes. We assume that those infected juvenile mosquitoes that mature

into infectious male mosquitoes can transmit ZIKV to female vectors through sexual

contact. This assumption is based on experimental studies which show evidence

of venereal transmission of viruses from male to female Aedes mosquitoes [5, 31].

We do not include sexual transmission from female to male mosquitoes since female

mosquitoes are not shown to transmit DENV through sexual contact. Finally, since

male mosquitoes do not feed on humans, we assume that they can only become carriers

of ZIKV through vertical transmission from their mother.

A flowchart of ZIKV transmission is illustrated in Figure 2.1. The system of

equations that will henceforth be referred to as the full model is given by (2.1) and

the parameter values are shown in Table 2.2.

Figure 2.1: ZIKV Transmission Model Schematic: The solid lines in this flow
chart represent movement between different state variables. Thin dashed lines rep-
resent disease transmission between different classes of the same population, thick
dashed lines represent disease transmission across different populations, and dotted
lines represent birth in the mosquito population.
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Ṡh = −bβvh
IvfSh

Nh
− a Sh

Nh
(βaAh + βIIh)

Ėh = bβvh
IvfSh

Nh
+ a Sh

Nh
(βaAh + βIIh)− δEh

İh = φδEh − γIh

Ȧh = (1− φ)δEh − γAh

Ṙh = γ(Ih + Ah)

Ṡvf = αγeSe − b
Svf

Nh
(βhsIh + βhaAh)− sβmf IvmSvf

Nvm
− µSvf

Ėvf = b
Svf

Nh
(βhsIh + βhaAh) + sβmf

IvmSvf

Nvm
− (δv + µ)Evf

İvf = δvEvf − µIvf + γeαIe

İvm = γeIe(1− α)− µIvm

Ṡe = r(1− Ne

K
)(Nvf − qIvf )− (γe + µe)Se

İe = rq(1− Ne

K
)Ivf − (γe + µe)Ie

(2.1)

2.3 Parameter Estimates

The parameter values used in this model were retrieved from previously pub-

lished literary sources as shown in Table 2.2. However, due to the scarcity of available

data on the transmission dynamics of ZIKV, some of the values, namely b, βvh, βhs,

and βmf , are based on DENV studies since DENV and ZIKV are of the same genus

and are both spread by Aedes aegypti mosquitoes. Since no studies were found inves-

tigating sexual transmission of ZIKV in Aedes aegypti mosquitoes, the βmf parameter

was retrieved from a study on Aedes albopictus and is an average of the transmission

probability of DENV in this species across various days after female mosquito blood

meals [13]. Lastly, since clinical studies suggest that the viral load of asymptomati-

cally infected ZIKV patients is approximately half of the viral load of symptomatic

patients, we assume that the transmission probability of asymptomatic people is half

of the transmission probability of symptomatic people [32, 33]. The initial suscepti-
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ble human population (76, 182 people) in our work represents the calculated at-risk

population for Zika in El Salvador that is presented in [24]. Assuming that at demo-

graphic equilibrium there are 6 adult female mosquitoes per person (a ratio within

the range of values found in literature [34, 35, 36]), the carrying capacity, K, was

derived through back calculation of the equilibrium value of adult female mosquitoes,

N∗vf = K(αγe
µ
− µe+γe

r
).

2.4 Results

To understand the contribution of additional transmission pathways (1-3) on the

spread of Zika, we compare the basic reproductive numbers and key epidemiological

quantities of dynamical system (2.1) with those of a vector-only transmission model

(2.2) which incorporates disease transmission in the human and vector populations

solely through mosquito bites.
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Symbol Description (Units) Value (Range) Source

b Mosquito biting rate (days−1) 0.50 (0.33− 1) [37]

φ Proportion of symptomatic infections (Di-
mensionless)

0.20 [26]

a Sexual contact rate between humans
(days−1)

0.14 (0.01− 0.20) [17]

q Vertical transmission probability in
mosquitoes (Dimensionless)

0.01 [38]

βvh Transmission probability, mosquito to hu-
man (Dimensionless)

0.30 (0.10− 0.75) [37]

βhs Transmission probability symptomatic
human to mosquito (Dimensionless)

0.30 (0.10 − 0.75,
baseline )

[37]

βha Transmission probability asymptomatic
human to mosquito (Dimensionless)

βhs/2 Assumed

βa Transmission probability- asymptomatic
humans to susceptible humans (Dimen-
sionless)

βI/2 Assumed

βI Transmission probability- symptomatic
humans to susceptible humans (Dimen-
sionless)

0.35 (0− 1) Assumed

δ Incubation rate in humans (days−1) 0.2 (0.14− 0.50) [10]

γ Recovery rate (days−1) 0.14 (0.07− 0.30) [24]

γe Maturation rate- mosquitoes (days−1) 0.06 (0.06− 0.20) [39]

µ Natural mortality rate of adult female
mosquitoes (days−1)

0.07 (0.03− 0.09) [39]

µe Natural mortality rate of juvenile
mosquitoes (days−1)

0.07 (0.03− 0.47) [39]

δv Incubation rate in mosquitoes (days−1) 0.10 (0.06− 0.22) [24]

α Proportion of female juvenile mosquitoes
(Dimensionless)

0.5 [40]

βmf Transmission probability-infected male
vectors to susceptible female vectors (Di-
mensionless)

0.45 (0.15− 0.65) [13]

r Egg hatching rate (days−1) 0.40 (0.13− 1) [41]

K Carrying capacity (total number of juve-
nile mosquitoes)

4, 413, 320 Assumed

s Mosquito sexual contact rate (days−1) 1 [40]

Nh Total number of humans 76, 182 [24]

Table 2.2: Model Parameters and Values

14



Ṡh = −bβvh
IvfSh

Nh

Ėh = bβvh
IvfSh

Nh
− δEh

İh = φδEh − γIh

Ȧh = (1− φ)δEh − γAh

Ṙh = γ(Ih + Ah)

Ṡvf = αγeSe − b
Svf

Nh
(βhsIh + βhaAh)− µSvf

Ėvf = b
Svf

Nh
(βhsIh + βhaAh)− (δv + µ)Evf

İvf = δvEvf − µIvf

Ṡe = r(1− Se

K
)Nvf − (γe + µe)Se

(2.2)

2.4.1 Disease-Free Equilibria

The disease-free equilibrium is the point where no disease is present within the

population. For system (2.1), this occurs when Ih = Ivf = Ie = 0. Setting all of the

differential equations in (2.1) equal to zero, we find an infinite line of non-isolated

disease-free equilibria of the form [S∗h, 0, 0, 0, R
∗
h, S

∗
vf , 0, 0, 0, S

∗
e , 0], where S∗h and R∗h

are free variables such that S∗h + R∗h = Nh, S
∗
vf = αγeS∗e

µ
, and S∗e = K(1 − µ(µe+γe)

αrγe
).

The value of S∗e is only biologically feasible (i.e. greater than zero) when r > µ(µe+γe)
αγe

.

Similarly, we find non-isolated disease-free equilibria for system (2.2) of the

form [S∗∗h , 0, 0, 0, R
∗∗
h , S

∗∗
vf , 0, 0, S

∗∗
e ], where S∗∗h and R∗∗h are free variables such that

S∗∗h + R∗∗h = Nh, S
∗∗
vf = S∗vf , and S∗∗e = S∗e . The authors note that an endemic

equilibrium exists for system (2.1) and involves the transmission of ZIKV solely within

the mosquito population. Due to the focus of the current study on the contribution of

Zika transmission pathways to the spread of the disease within the human population,

we omit detailed computation of the endemic equilibrium.
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2.4.2 Basic Reproductive Number

The next-generation operator method proposed by Diekmann and Heesterbeck

[42] was used to derive the basic reproductive numbers of system (2.1) and (2.2),

denoted R0f and R0v respectively. To obtain R0f , we begin by separating the state

variables into uninfected (X), noninfectious infected (Y ), and infectious (Z) classes;

X =



Sh

Svf

Se

Rh


, Y =

Eh

Evf

 , Z =



Ih

Ah

Ivf

Ivm

Ie.


After substituting the equilibrium values of the Y classes into the differential

equations for the Z classes, we generate the Jacobian matrix

A = (
∂

∂Z
)(
dZ

dt
).

Evaluating A at the disease-free equilibrium for system (2.1), we obtain A = M −D,

with

M =



φaβIS
∗
h

Nh

φaβaS∗h
Nh

φbβvhS
∗
h

Nh
0 0

(1−φ)aβIS
∗
h

Nh

(1−φ)aβaS∗h
Nh

(1−φ)bβvhS
∗
h

Nh
0 0

δvbβhsS
∗
vf

(δv+µ)Nh

δvbβhaS
∗
vf

(δv+µ)Nh
0

δvsβmfS
∗
vf

(δv+µ)N∗vm
γeα

0 0 0 0 γe(1− α)

0 0 qr(1− N∗e
K

) 0 0


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and

D =



γ 0 0 0 0

0 γ 0 0 0

0 0 µ 0 0

0 0 0 µ 0

0 0 0 0 γe + µe


,

where N∗vm = K(1− α)(γe
µ
− µe+γe

αr
), and N∗e = K(1− µ(µe+γe)

αrγe
).

Since S∗h can take on any value at the disease-free equilibrium, we take S∗h = Nh

and calculate R0f , which is the dominant eigenvalue of MD−1. Due to the complex-

ity of the analytic expression for R0f we estimate it using parameter values in Table

2.2 and obtain R0f ≈ 2.32.

Similarly, R0v is calculated as the dominant eigenvalue of the next generation

matrix MvD
−1
v , where

Mv =


0 0

φbβvhS
∗∗
h

Nh

0 0
(1−φ)bβvhS

∗∗
h

Nh

δvbβhsS
∗∗
vf

(δv+µ)Nh

δvbβhaS
∗∗
vf

(δv+µ)Nh
0


and

Dv =


γ 0 0

0 γ 0

0 0 µ

 .
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Taking S∗∗h = Nh, we have

MvD
−1
v =


0 0 e

0 0 f

c d 0


where e = φbβvh

µ
, f = (1−φ)bβvh

µ
, c =

δvbβhsS
∗∗
vf

(δv+µ)γNh
, and d =

δvbβhaS
∗∗
vf

(δv+µ)γNh
. The simpler matrix

structure in this scenario leads to the analytic expression R0v =
√
ec+ fd where the

first term under the radical contains parameters involved in disease transmission be-

tween symptomatic humans and mosquitos and the second term involves transmission

between asymptomatic humans and mosquitos.

Using parameter values in Table 2.2, we obtain R0v ≈ 2.21. Hence, the sec-

ondary transmission pathways increase the basic reproductive number by an estimated

5%.

2.4.3 Visualizing ZIKV Dynamics

To visualize the difference between the dynamics of the vector-only model and

full model, we generate numerical simulations in Mathematica using the baseline pa-

rameter values. Assuming that there are 6 adult female mosquitoes per person and

about seven juvenile mosquitoes per adult female mosquito (values within previously

reported ranges, [34, 35, 36]), we estimate the initial susceptible adult female and

juvenile mosquito populations to be 457, 092 and 3, 199, 644 respectively. The initial

susceptible adult male mosquito population for system (2.1) is the same as the initial

susceptible adult female mosquito population. Starting with only one infected indi-

vidual (or mosquito) in each infected class, we observe through Figure 2.2 and Table

2.3 that the full model predicts an outbreak occurring (and ending) approximately
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two weeks sooner than the vector-only model with more infections during the first

half of the epidemic.

In order to track the effect of additional transmission pathways on the course of

a Zika outbreak, we graph the ratio of infected humans in a set of models that each

include one or more secondary transmission pathways (in addition to transmission via

mosquito bites) to infected humans in the vector-only model. The set of models con-

sidered includes a human sexual transmission model, mosquito vertical transmission

model, mosquito vertical and sexual transmission model, and full model. The hu-

man sexual transmission, mosquito vertical transmission, and mosquito vertical and

sexual transmission models were derived by simply deleting terms or equations in

the full model that did not correspond to the additional transmission route(s) under

investigation.

As expected, the fastest growth in infected humans is seen with the full model,

where about 2.5 times as many people are infected with ZIKV at the peak of the

epidemic than in the vector-only model. At the point when the epidemic is growing

fastest, the human sexual transmission model predicts almost 1.8 times as many Zika

cases. Through Figure 2.3, we see that sexual transmission in the mosquito population

greatly impacts the initial growth of an outbreak and results in up to 1.5 times as

many Zika infections at the epidemic’s peak than model (2.2). This is approximately

42% higher than the ratio of Zika cases observed at the peak of an epidemic when

modeling only vertical transmission in the mosquito population.

2.4.4 Sensitivity Analysis

Since the additional transmission pathways of ZIKV resulted in an increase

in the basic reproductive number and decrease in the peak time (the time of the

maximum number of infected humans) of a Zika outbreak, we conduct a sensitivity
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Figure 2.2: ZIKV Dynamics: Full Model vs. Vector-Only Model
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(a) Human Sexual Transmission
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(b) Mosquito Vertical Transmission

0 50 100 150 200 250 300

0.6

0.8

1.0

1.2

1.4

Days

R
a
ti
o
o
f
H
u
m
a
n
In
fe
c
ti
o
n
s

(c) Mosquito Vertical and Sexual
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(d) Full Model

Figure 2.3: The Ratio of Human Infections Over Time. The figures show the
ratio of Zika cases in models including secondary transmission pathways a, b, c, or d
to Zika cases in the vector-only model over the time course of an outbreak.
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Vector-Only Model Full Model

Duration 312 days 300 days
Final Size* .99 .99
Peak Time 153 days 137 days
Peak Size* .12 .13

Table 2.3: Comparison of ZIKV Dynamics, *-Proportion of At-Risk Population
Infected

analysis to determine how variations in individual parameter values impact R0f and

the peak time. In particular, we increase each parameter by 0.1% (while keeping other

parameters at the baseline values found in Table 2.2) and calculate the normalized

sensitivity index. This index, as described in [43] is given by ∂u
∂p

p
u
, where u represents

the output variable and p represents the specific parameter under investigation. No

simple analytic expression exists for eitherR0f or the peak time (the expression forR0f

is complex and not easily manipulated), thus we compute the normalized sensitivity

index numerically using ∆u
∆p

p
u
. The results of the sensitivity analysis shown in Figures

2.4 and 2.5 reveal that R0f is most sensitive to parameter values involved in the vector

to human transmission of ZIKV such as the biting rate (b), transmission probabilities

(βvh, βhs), and the mortality rate of adult female mosquitos (µ). The peak time is

also greatly impacted by the mortality rate of adult female mosquitos (µ) and the

biting rate (b), and is highly sensitive to parameters that impact juvenile mosquito

stages such as the proportion of female juvenile mosquitoes (α) and maturation rate

(γe). These results indicate that methods which decrease b, βvh, and βhs, and increase

µ would be most beneficial at reducing R0f while methods which decrease b, α, and

γe, and increase µ may significantly delay the peak time of an outbreak. Although

not shown here, a sensitivity analysis was also performed for the final epidemic size

and yielded indices of magnitude less than 0.1 for all parameters except for µ which

had a sensitivity index of −0.13.
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Figure 2.4: Sensitivity Analysis for R0f : Sensitivity Indices are listed in order of
decreasing magnitude.

μ b α γe βv� r β�h μe δv γ K δ ϕ a βz s βm� q

-1.0

-0.5

0.0

0.5

1.0

1.5

Parameter

S
e
n
s
it
iv
it
y
In
d
e
x

Figure 2.5: Sensitivity Analysis for Peak Time: Sensitivity Indices are listed in
order of decreasing magnitude.

2.4.5 Consequences for Implementing Control Measures

Assuming that public health officials utilize predictive modeling tools to deter-

mine the timing and intensity of control strategies, the variation in the magnitude of

infected individuals between the vector-only and full models (as seen in Figure 2.3)

may impact the outcome of such strategies. Here, we examine how differences in the
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type of model used to describe the spread of Zika impact the final size of an epidemic

and estimates of the basic reproductive number of the virus.

As a result of the various aspects of vector-borne diseases (i.e. seasonality, type

of vector, and location) there is no universal threshold that is used to determine when

vector control methods should begin. Instead, public health officials must make deci-

sions to implement control measures based on when they predict that the prevalence

of a disease will be high enough to warrant them. In the case of Zika, their prediction

will vary depending on whether the secondary transmission routes of the pathogen

are taken into account.

To illustrate this, we assume that due to certain factors (i.e. limited resources),

it would be more economical to implement Zika control measures when approximately

5% of the population is infected with the virus. In this scenario, we consider the pos-

sibility that public health workers rely on model predictions instead of case reports for

the number of Zika infected individuals present over time. This is because reported

cases may not be a good indicator of the actual number of Zika infections in a popu-

lation due to low reporting rates, a large asymptomatic class associated with ZIKV,

and misdiagnosis of Zika (since it is clinically similar to diseases like Chikungunya

and Dengue).

If the secondary transmission pathways of ZIKV are neglected, the vector-only

transmission model (2.2) predicts that the 5% threshold will be reached 123 days

after the first ZIKV infection. However, if the additional transmission mechanisms of

ZIKV (1-4) are considered, model (2.1) predicts that controls should begin 108 days

after ZIKV introduction. Using model (2.1), which provides a more holistic view of

Zika transmission than the vector-only model, we explore how this difference in the

implementation of control measures may affect the final size of a ZIKV outbreak.
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Since there are currently no vaccines for ZIKV, control methods focus on vector

reduction through larvicides and adulticides and prevention of mosquito bites through

the use of repellents. To stimulate the effect of applying each of the three control

measures mentioned above, we vary the parameters µe, µ, and b. This is because

the use of larvicides and adulticides will increase the juvenile and adult mosquito

mortality rates, while using repellents will reduce mosquito biting rate. Presumably,

an effective control measure will decrease the basic reproductive numbers, R0f and

R0v below one. Observing the change in R0f and R0v as each of the control parameter

values is varied, we find that larvicides and adulticides must reduce the average

juvenile and adult mosquito lifetimes below 9 and 11 days respectively and that

repellents must prevent a mosquito from biting for at least 5 days. With this, we

choose our control parameters to be µec = 0.107 days−1, µc = 0.089 days−1, and

bc = 0.180 days−1 and observe the effects of enacting each control individually and in

combination. As adulticides are typically the last resort in integrated vector control

strategies [44], the only double control scenario that we employ is the use of repellents

and larvicides.

When we consider a continuous application of larvicides, adulticides, and repel-

lents from the time that controls are initiated to the end of the epidemic, we find that

a slight delay in the application of control measures (initiation at day 123 versus day

108) results in up to 28% more people infected with Zika in the full model (depending

on the type of control that is used (Table 2.4)).

Since control measures are typically administered in discrete intervals rather

than continuously over an entire outbreak period, we considered a separate scenario

where larvicides and adulticides are applied at specific times, namely every two days

for ten days and thereafter once a week as suggested by the World Health Organization

in [44]. In this case, delayed application of control measures resulted in a similar
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Initiation of Control
Measures (days)

Control Type
L A R L & R L, A, & R

108 0.99 0.93 0.48 0.39 0.38
123 0.99 0.96 0.73 0.67 0.66

Table 2.4: Proportion of At-Risk Population Infected with Continuous Ap-
plication of Controls, L-larvicide, A-adulticide, R-repellent
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Figure 2.6: Cumulative Infections Under Continuous Application of Larvi-
cides, Adulticides, & Repellents. Early control refers to initiation of the com-
bined control measures at day 108 while delayed control refers to initiation at day
123

percent increase (25%, full results not shown) in the number of people infected with

Zika in the full model.

Another way that public health officials may utilize mathematical models is to

estimate the basic reproductive number of a disease through incidence data. These

estimates play a crucial role in the formation of control strategies and may vary

between different models, as described in [20, 21, 22, 23]. To examine how differences

in model structure affectR0 estimates, we fit initial Zika incidence data to models (2.1)

and (2.2) separately, and in each case estimate transmission parameters. βvh, βhs, and

βha. Using Mathematica’s build-in function FindFit, with the other parameters fixed

at baseline values, we fit the respective models to time-series data for the number of
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ZIKV infected individuals (both symptomatic and asymptomatic) generated by the

full model. We then use the best-fit transmission parameter values to estimate R0.

For illustrative purposes, we assume that public health officials fit the vector-only

model to incidence data from the first 75 days of an outbreak. The results of the

data fitting can be seen in Figure 2.7. Although the curve aligns quite well with the

data points, we find that the fitted model estimates R0 to be approximately 3 (with

βvh ≈ 0.35, βhs ≈ 0.48, and βha ≈ 0.1). This is 30% higher than that R0 value

obtained from the full model.
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Figure 2.7: Fitting Vector-Only Model to Zika Incidence Data. Vector-only
model is fit to ZIKV incidence data produced by full model (dots).

2.5 Discussion and Concluding Remarks

Mathematical models are useful in predicting disease dynamics and estimating

key parameters that can be used to combat the spread of a disease. While it is

common for researchers to simplify these models in order to better analyze them,

the simplifications often overlook certain biological components of a disease which
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may dramatically influence its spread. In this paper, we illustrate the impact of such

simplifications in the context of Zika virus dynamics.

We examine a new mathematical model which incorporates multiple transmis-

sion avenues of the unique Zika arbovirus and compare it with a model that only

incorporates the transmission of the virus through direct human and mosquito con-

tacts. Since many researchers agree that the transmission of Zika through mosquito

bites drives the spread of this disease [10, 16], it may be easy to overlook (or even

dismiss) the secondary transmission routes. However, we have shown that these addi-

tional pathways not only increase the basic reproductive number of Zika and shift the

outbreak to occur sooner than expected, but they also have important consequences

for Zika control strategies.

When reflecting on the different ways that public health authorities may use

Zika models to inform control efforts, our results show that if only the human-

mosquito contacts are considered, authorities run the risk of enacting controls too

late and overestimating the basic reproductive number. Delaying the implementation

of control strategies based on using the vector-only model, inevitably results in more

people infected at the end of an outbreak than if the full model were used. The over-

estimation of R0 that is associated with fitting model (2.2) to initial Zika incidence

data from the full model is reminiscent of the work in [20, 21, 22, 23] where differ-

ences in model assumptions (e.g. the inclusion of latent periods and distribution of

latent and infectious periods) result in strikingly different estimates of R0 obtained

from the initial growth rate of a disease or pathogen. While use of simpler models

in [20, 21, 22, 23] to estimate the basic reproductive number consistently resulted in

underestimations, using our simplified vector-only model to estimate R0 from initial

growth results in an overestimate. This is because secondary transmission pathways

increase the initial growth of an epidemic much more than they increase R0. The
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overestimation of R0 may lead to aggressive control efforts, which although not be as

detrimental to the overall health of the public as grossly underestimating this quan-

tity, will result in wasted resources. Hence, we recommend that public health officials

take into consideration the additional transmission pathways of Zika when enacting

controls and estimating crucial disease parameters.

While the mathematical model considered in this study is unique in its combi-

nation of multiple ZIKV transmission pathways, some of its results resemble those of

previous studies. For one, the numerical approximations of R0v and R0f in section

2.4.2 are comparable with other estimates of R0 for Zika [10, 17]. In addition, since

the basic reproductive number for Zika increased by only 5% between the vector-only

and full models, our study supports the notion that vector transmission is primarily

responsible for the spread of ZIKV as described in [10, 16, 17]. The percent increase

in R0 that is described in section 2.4.2 is comparable to the percent increase in

R0 for studies that consider only sexual transmission [10, 17]. Thus, our analysis

suggests that ZIKV transmission within mosquito populations does not contribute

substantially to the initial spread of the disease.

The few studies that describe sensitivity analysis as it pertains to Zika modeling

have focused on the effects of parameter values on R0 (e.g. [17, 19]), however the

present study is distinct in that it also analyzes the sensitivity of other important

epidemiological quantities such as the final size and peak time. Sensitivity analysis for

these latter output variables has not been discussed elsewhere. Similar to [17, 19], our

results show that Zika’s basic reproductive number is most sensitive to the mosquito

biting rate and transmission probability parameters (a fact which supports vector-to-

human transmission as a driving force in the beginning of an outbreak). Therefore, in

order to reduce the possibility of a ZIKV epidemic, public health campaigns should
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emphasize measures which lower the biting rate and probability of transmission of

the virus between humans and mosquitos.

Although we agree that R0 is a vital epidemiological quantity, we note that

this value describes the transmissibility of disease within a completely susceptible

population and only tells whether or not a disease will spread. Given that a disease

will spread, public health officials may look to other epidemiological quantities, such

as the final epidemic size and peak time to determine the intensity of an outbreak and

inform control strategies. Hence understanding how the final epidemic size and peak

time are affected by parameter values would be of great interest. We find that of the

three output variables (R0f , final epidemic size, and peak time), the final epidemic

size is least sensitive to changes in parameter values (all except one of the sensitivity

indices < 0.1) and the peak time is most sensitive to variations in parameters (the

magnitude of seven of its sensitivity indices were > 0.5 with two of the seven indices

having magnitude > 1). In addition, the peak time is shown to be most sensitive

to the death rate of adult female mosquitos, a parameter which plays a crucial role

in accelerating the demographic renewal of mosquitoes and reducing the duration of

infection within the vector population.

It is in the sensitivity analysis for the peak time that we see the importance of

parameters such as α, γe, and r which affect the dynamics of the juvenile mosquito

stages. With regards to the peak time, these parameters have sensitivity indices

with magnitude > 0.6. This suggests that in order to delay the peak time of a

foreboding ZIKV outbreak and potentially provide public health officials with more

time to mobilize their resources and gather information on the nature of the outbreak,

attention should be paid to the juvenile mosquito stages and if possible to developing

methods that retard mosquito maturation.
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When considering the effectiveness of ZIKV control measures, our study shows

(as does [19]) that combined personal protection and mosquito reduction strategies

are the most effective at limiting the transmission of ZIKV and that individually,

personal protection is more effective than vector reduction. The effect of differential

timing of control measures based on the additional transmission pathways of ZIKV is

unique to this study. To our knowledge, no other studies address how the timing of

control measures impact the outcome of ZIKV outbreaks. Our investigation of this

effect shows that although the transmission routes result in a slight qualitative change

in ZIKV dynamics, neglecting them when predicting the initiation of control measures

may have a profound impact on final size of epidemics. This discovery deepens our

understanding of the complex transmission routes of ZIKV and the consequences that

they may hold for public health officials.

In the future, the initiation and duration of controls that were implemented

in the current model can be adapted to vector control strategies of particular cities

to predict how their strategies affect disease outcomes in the face of Zika’s addi-

tional transmission pathways. Furthermore, we would like to fit the full model to

actual Zika incidence data of a specific region to obtain better estimates of parameter

values. Lastly, due to the discrete nature of epidemiological data, it may also be

beneficial to formulate a discrete time model that incorporates the additional trans-

mission pathways of Zika and compare its predicted disease dynamics and effects of

control with the results found in this paper.
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CHAPTER 3

Coinfection, Altered Vector Infectivity, and Antibody-dependent Enhancement: The

Dengue-Zika Interplay

3.1 Introduction

With approximately 50-100 million cases annually, dengue is one of the most

prevalent mosquito-borne diseases in the world [45]. Over 40% of the world’s popu-

lation live in areas with high risk of dengue transmission and over 100 countries are

endemic for the disease [46]. Dengue is transmitted to humans mainly through the

bite of infected female Aedes aegypti mosquitoes and is caused by one or more viral

serotypes of the Flaviviridae family (DENV-1 through 5) [47]. Although this illness is

typically self-limiting, with infection by one serotype resulting in life-long immunity

to that specific serotype, severe forms of the disease can cause dengue hemorrhagic

fever and dengue shock syndrome [46]. Currently, no treatment exists for dengue and

only one controversial vaccine (Dengvaxia
®

) has been licenced. As a result, mosquito

control strategies remain the primary method of preventing dengue transmission.

Closely related to dengue is Zika, another disease of international concern. Zika

was first discovered in Uganda in 1947 and has since spread across the globe, with out-

breaks in Yap Island (2007), French Polynesia (2013), and more recently the Americas

(2015) [10]. The Zika virus (ZIKV) is of the same family as the dengue serotypes and

is also transmitted to humans primarily by Aedes aegypti mosquitoes (although it

can also be sexually and vertically transmitted within the human population). While

some clinical symptoms of Zika, such as acute fever, nausea, rash, joint pain, and
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myalgia, are similar to dengue, Zika is unique in that it can cause serious complica-

tions in the form of Guillain-Barré syndrome and congenital Zika syndrome [10].

Due to having a shared vector, cocirculation of dengue and Zika is common in

many geographical regions and increases the likelihood of dengue-Zika coinfections

within human and mosquito populations. To date, clinical studies have reported hu-

man coinfections in countries such as Colombia, New Caledonia, Nicaragua, and Haiti

[48, 49, 50, 51]. However, because of the rapid introduction of Zika into countries that

are endemic with dengue, similarities in symptoms between the two diseases, under-

reporting, and the lack of proper serotesting in developing countries, it is believed

that the prevalence of coinfections is higher than currently perceived [52].

In Aedes aegypti mosquitoes, infection with multiple arboviruses has been shown

to affect viral dissemination, transmission, and replication [52, 53, 54]. Researchers

in [55] reveal that for dengue and Zika specifically, coinfection can impact mosquito

infectivity. The results of [55] indicate that while the number of dengue virus cDNA

copies in coinfected mosquitoes is higher than in monoinfected mosquitoes (up to 12

times higher), Zika cDNA copies are lower in coinfected mosquitoes than in their

monoinfected counterparts (6-9 times lower). This suggests that coinfection may

cause mosquitoes to be more likely to transmit dengue and less likely to transmit

Zika.

Within humans, dengue and Zika can display complex viral interactions in the

form of antibody-dependent enhancement (ADE). ADE occurs when antibodies from

a previous infection bind to a pathogen in a subsequent infection and, instead of

neutralizing the pathogen, increase viral uptake and replication [56]. Many in vitro

studies (e.g. [57, 58, 59, 60]) have shown that dengue antibodies cross-react with

the ZIKV, increasing Zika infection of cells and production of viral progeny by over

100-fold. Likewise [61, 62] report the reciprocal effect of ZIKV antibodies increasing
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dengue virus titers. Thus, immunity to one of the two viruses can potentially enhance

transmission of the other virus within the human population.

While many mathematical models have been developed to understand the dy-

namics of Zika and dengue individually (e.g. [63, 64, 65]), only two exist, to the best

of our knowledge, that incorporate both viruses simultaneously [66, 67]. The first

mathematical model to describe transmission of dengue and Zika [66] also includes

chikungunya, an arbovirus transmitted by the infamous Aedes aegypti. In [66], two

compartmental models are introduced. The first is a system of 17 ordinary differential

equations which considers single transmission of the three viruses, and the second is

a system of 30 differential equations that incorporates coinfections within the human

population. It is important to note that the models in [66] exclude sexual transmission

of Zika between humans, neglect the possibility of coinfection within the mosquito

population, and do not consider altered infectivity of humans (due to possible ADE)

or mosquitoes (due to coinfection). Furthermore, because of the complexity of the

systems, an analytic expression for the basic reproductive number (i.e. the number

of secondary infections that a single infected individual can make in a completely

susceptible population) of each system was not obtained, and no meaningful epidemi-

ological conclusions were made. Instead, analysis was limited to finding a nontrivial

equilibrium for each system and obtaining a Jacobian matrix and stability conditions

for the equilibrium of the first system.

A second mathematical model which incorporates Zika and dengue (in addition

to chikungunya) is discussed in [67]. Instead of considering coinfections, the model

in [67] investigates the impact of a dengue-chikungunya-Zika superinfection hierar-

chy within humans, where infection with dengue completely replaces infection with

chikingunya or Zika, and infection with chikungunya replaces Zika. This hierarchy

was based on epidemiological records that showed a greater number of dengue cases

33



than chikungunya or Zika, and a greater number of chikungunya cases than Zika. Al-

though the effect of a dengue vaccine on Zika is unknown, Okuneye et al. [67] include

dengue vaccination in their model and assume that vaccination can reduce Zika sus-

ceptibility. Furthermore, the authors include sexual transmission of Zika and consider

the possibility of ADE of dengue over Zika (but not ADE of Zika over dengue) by let-

ting Θz > 1 , where Θz is the modification parameter for the infectiousness of Zika in

relation to dengue. The way that Θz is incorporated in [67] assumes that ADE alters

the susceptibility of hosts and vectors to Zika, rather than altering Zika infectivity

of these populations. Analysis of the model included finding the basic reproductive

number and conducting stability analysis on the disease-free equilibrium. The model

was fit to outbreak data in Mexico and extended to study the effect of seasonality,

temperature, and rainfall on disease burden. In addition to finding temperature and

rainfall ranges for maximum transmission of the diseases, the authors in [67] found

that altering the infectiousness of Zika only mildly affects transmission of the disease

and that under their assumptions, the use of a dengue vaccine minimally impacts

Zika dynamics.

While it is important to grasp the epidemiological significance of the cocircu-

lation of dengue and Zika, neither of the two studies described above simultaneously

explores the three facets of what will henceforth be called the dengue-Zika interplay–

coinfection of humans and vectors, altered vector infectivity, and ADE of dengue

and Zika. In this article, we develop the first Zika and dengue model that includes

coinfection (in humans and mosquitoes), altered vector infectivity, and ADE for both

viruses (i.e. viral enhancement of Zika given dengue antibodies and enhancement of

dengue given Zika antibodies). The goal of the present study is to better understand

the epidemiological consequences of the dengue-Zika interplay. In particular, through
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a deterministic mathematical model that utilizes a system of nonlinear ordinary dif-

ferential equations, we seek to answer the following research questions:

1. How does the endemic presence of dengue affect Zika’s ability to spread in a

region?

2. How does invasion of Zika affect the endemic presence of dengue?

With Zika rapidly spreading across the globe to regions endemic with dengue, exam-

ining the complex interactions between the two pathogens is vital to clarifying the

public health impact of the cocirculation of both diseases and potentially informing

future vaccine development and control strategies.

3.2 Model Development

The current study is placed in the context of dengue and Zika cocirculation

in El Salvador. The total human population (given in Table 3.2) represents the

calculated at-risk population for Zika in El Salvador during the 2015/2016 outbreak,

as described in [24]. Since Zika and dengue are spread by the same vector and are in

similar geographic regions, we assume that this number also represents the population

at risk for dengue during that time.

A visual representation of the deterministic dengue and Zika coinfection model

that we consider is shown in Figure 3.1, with the state variables and parameters

described in Tables 3.1 and 3.2 respectively. In this model, we make the following

assumptions:

1. Human and mosquito populations remain constant.

2. Only one dengue serotype is cocirculating in the study region (an assumption

also made in [66] and [67]).

3. There is no disease-induced death in the human population as the case-fatality

rate for each disease is low [68, 69].
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(a) Humans (b) Vectors

Figure 3.1: Zika and Dengue Coinfection Model Schematic: Arrows repre-
sent movement between different state variables within each population. Note that
demographic renewal is not depicted in this diagram

4. ADE occurs after a person has recovered from a disease.

5. Humans and mosquitoes cannot simultaneously become coinfected with dengue

and Zika (i.e. coinfection results only from sequential infection with each virus).

6. Coinfection alters the rate at which mosquitoes transmit dengue/Zika.

Humans are born fully susceptible to dengue and Zika at a rate of µNh, where

µ is the natural birth/death rate for humans and Nh is the total human population.

Susceptible individuals can become infected with dengue from either a dengue-infected

(Idv) or coinfected female mosquito (Icv). The mosquito-to-human dengue infection

rate is given by βhd. This rate is modified by a factor of νd to indicate the altered

infectivity of coinfected mosquitoes. Once infected with dengue, humans can recover

or become coinfected with Zika (by a Zika-infected (Izv) or coinfected female mosquito

(Icv)) and transition into the Rd or Ic class respectively. In a similar manner, fully

susceptible humans become infected with Zika from a mosquito in the Izv or Icv

compartment. The mosquito-to-human Zika infection rate is given by βhz and is

modified by a factor of νz for coinfected mosquitoes. Once infected with Zika, humans
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State
Variable

Description

Sh Dengue & Zika-susceptible humans
Id Dengue-infected humans
Iz Zika-infected humans
Ic Dengue & Zika-coinfected humans
Rd Dengue-recovered humans
Rz Zika-recovered humans
Jd Dengue-infected humans immune to

Zika due to previous exposure
Jz Zika-infected humans immune to

Dengue due to previous exposure
Rc Dengue & Zika-recovered humans

due to previous exposure to both
pathogens

Sv Susceptible female Mosquitoes
Idv Dengue-infected female mosquitoes
Izv Zika-infected female mosquitoes
Icv Dengue & Zika-coinfected female

mosquitoes

Table 3.1: Epidemiological Classes

either recover (with the Zika recovery rate given by γz) or become coinfected with

dengue through a mosquito in Idv or Icv.

When a coinfected human recovers from dengue, he or she becomes dengue-

immune and enters the Jz class. Meanwhile, singly infected humans who recover from

dengue join the Rd compartment where they are susceptible to further infection with

the ZIKV. For individuals in the Jz class, the rate of ZIKV infection is modified by a

factor of kz which represents the relative likelihood of Zika infection given the effect

of ADE. Furthermore, coinfected humans who recover from Zika transition into the

Jd class and are immune to ZIKV infection. Once in Jd, the rate of dengue infection

is modified by a factor of kd which signifies the relative likelihood of dengue infection

given ADE. On the other hand, individuals who recover from a single infection with
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Symbol Description (Units) Value Reference

βhd Mosquito-to-human dengue infection rate
(humans/(mosquito*day))

0.25 [64]

βhz Mosquito-to-human Zika infection rate
(humans/(mosquito*day))

0.15 [37]

βvd Human-to-mosquito dengue infection rate
(days−1)

0.25 [64]

βvz Human-to-mosquito Zika infection rate
(days−1)

0.15 [37]

βs Zika human sexual transmission rate
(days−1)

0.05 [70]

γd dengue recovery rate (days−1) 0.14 [64]

γz Zika recovery rate (days−1) 0.14 [24]

µ Human birth/death rate (days−1) 4.47x10−5 [64]

µv Mosquito birth/death rate (days−1) 0.07 [39]

νd Modification factor for dengue transmis-
sion by coinfected mosquitoes

12 [55]

kd Likelihood of dengue transmission given
prior Zika infection

> 1 Assumed from
[61, 62]

kz Likelihood of Zika transmission given
prior dengue infection

> 1 Assumed from
[57, 58, 59, 60]

νz Modification factor for Zika transmission
by coinfected mosquitoes

0.11 [55]

Nv Total number of female mosquitoes 457, 092 [70]

Nh Total number of humans 76, 182 [70]

Table 3.2: Model Parameters

Zika enter Rz and are susceptible to further infection with dengue. Lastly, individuals

immune to dengue or Zika (i.e. those in Jd or Jz) that undergo subsequent infection

with the secondary virus recover and become immune to both diseases (Rc).

In the vector population, mosquitoes are born into the susceptible class (Sv)

at a rate of µvNv, where µv is the natural birth/death rate for mosquitoes and Nv

is the total mosquito population. Susceptible mosquitoes are infected with dengue

after feeding on a dengue-infected or coinfected human. In this case, the human-to-

mosquito dengue infection rate is given by βvd. Likewise, susceptible mosquitoes can

become infected with Zika after feeding on a Zika-infected or coinfected human, with
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a human-to-mosquito Zika infection rate of βvz. These singly infected mosquitoes can

be coinfected with both pathogens after feeding on a human infected with the second

virus.

3.2.1 Model Equations

The system of nonlinear differential equations corresponding to the dengue and

Zika coinfection model described above is given by (3.1).

Ṡh = µNh − βhd Sh

Nh
(Idv + νdIcv)− βhz Sh

Nh
(Izv + νzIcv)− βs Sh

Nh
(Iz + Ic + kzJz)− µSh

İd = βhd
Sh

Nh
(Idv + νdIcv)− βhz IdNh

(Izv + νzIcv)− βs IdNh
(Iz + Ic + kzJz)− γdId − µId

İz = βhz
Sh

Nh
(Izv + νzIcv) + βs

Sh

Nh
(Iz + Ic + kzJz)− βhd IzNh

(Idv + νdIcv)− γzIz − µIz

İc = βhz
Id
Nh

(Izv + νzIcv) + βs
Id
Nh

(Iz + Ic + kzJz) + βhd
Iz
Nh

(Idv + νdIcv)− γdIc − γzIc − µIc

Ṙd = γdId − βhz Rd

Nh
(Izv + νzIcv)− βs Rd

Nh
(Iz + Ic + kzJz)− µRd

Ṙz = γzIz − βhd Rz

Nh
(Idv + νdIcv)− µRz

J̇d = βhd
Rz

Nh
(Idv + νdIcv) + γzIc − γdJd − µJd

J̇z = βhz
Rd

Nh
(Izv + νzIcv) + βs

Rd

Nh
(Iz + Ic + kzJz) + γdIc − γzJz − µJz

Ṙc = γdJd + γzJz − µRc

Ṡv = µvNv − βvd Sv

Nh
(Id + Ic + kdJd)− βvz Sv

Nh
(Iz + Ic + kzJz)− µvSv

İdv = βvd
Sv

Nh
(Id + Ic + kdJd)− βvz IdvNh

(Iz + Ic + kzJz)− µvIdv

İzv = βvz
Sv

Nh
(Iz + Ic + kzJz)− βvd IzvNh

(Id + Ic + kdJd)− µvIzv

İcv = βvz
Idv
Nh

(Iz + Ic + kzJz) + βvd
Izv
Nh

(Id + Ic + kdJd)− µvIcv.
(3.1)

A majority of the baseline parameter values used for this model were obtained

from previously published literary sources as indicated in Table 3.2. To obtain the

Zika and dengue transmission modification factors, we observed the difference in

viral cDNA copies between monoinfected and coinfected mosquitoes described in [55].
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Based on this study, dengue virus cDNA copies in coinfected mosquitoes was 1.25-12

times higher than in monoinfected mosquitoes, while ZIKV cDNA copies were 6-9

times lower in coinfected mosquitoes than monoinfected mosquitoes. Assuming that

these ranges correspond to the disease transmission capability of coinfected vectors,

we use values within the ranges for νd and νz. Since the only studies on the effect

of ADE on Zika and dengue have been conducted at the cellular level (i.e comparing

viral titers and replication), the direct effect of ADE on dengue or Zika transmission is

unknown. However, due to the large rise (up to two orders of magnitude) in viral load

caused by ADE, we assume that ADE increases the likelihood of disease transmission

and take kd and kz to be greater than one.

Under the assumption that human infection with the ZIKV is completely inde-

pendent of DENV immunity (i.e. kz = 1) and that the ability of vectors to transmit

Zika is independent of their coinfection with dengue (i.e. νz = 1), system (3.1) sim-

plifies to

˙̃Sh = µNh − βhz S̃h

Nh
Ĩzv − βs S̃h

Nh
Ĩz − µS̃h

˙̃Iz = βhz
S̃h

Nh
Ĩzv + βs

S̃h

Nh
Ĩz − γz Ĩz − µĨz

˙̃Rz = γz Ĩz − µR̃z

˙̃Sdv = µvNv − βvz S̃dv

Nh
Ĩz − µvS̃dv

˙̃Izv = βvz
S̃dv

Nh
Ĩz − µv Ĩzv,

(3.2)

where S̃h = Sh + Rd + Id, Ĩz = Iz + Ic + Jz, R̃z = Rz + Jd + Rc, S̃dv = Sv + Idv, and

Ĩzv = Izv+Icv. Since the total human and vector populations, Nh and Nv respectively,

are constant, (3.2) can be rewritten as
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˙̃Sh = µNh − βhz S̃h

Nh
(Nv − S̃dv)− βs S̃h

Nh
Ĩz − µS̃h

˙̃Iz = βhz
S̃h

Nh
(Nv − S̃dv) + βs

S̃h

Nh
Ĩz − γz Ĩz − µĨz

˙̃Sdv = µvNv − βvz S̃v

Nh
Ĩz − µvS̃v

(3.3)

A similar reduction of (3.1) can be obtained when kd = 1 and νd = 1. In this

case, the model simplifies to system (3.3), with the exception that there is no sexual

transmission term, and the z’s in the subscripts of (3.3) are replaced with d’s.

3.3 Equilibrium Points

To find equilibrium values of system (3.1), we set all of the differential equations

to zero. Some of the equilibria are detailed in Table 3.3 and describe scenarios when no

disease is present within the population (disease-free equilibrium), or when only one

disease is present (dengue-only or Zika-only equilibrium). Although we were unable

to find an analytic expression for a copersistence equilibrium, numerical explorations

suggest the existence of a stable copersistence equilibrium when both the dengue and

Zika IRNs (detailed in section 3.5) exceed 1. Existence criteria for the unique single

pathogen equilibria are described in Lemma 3.3.1 and Theorem 3.3.2.

Lemma 3.3.1. For (3.1), a unique dengue-only equilibrium exists iff

Rd =
√

Nv

Nh

βvd
µv

βhd
µ+γd

> 1.

The proof of Lemma 3.3.1 is in Appendix A.1.

Theorem 3.3.2. For (3.1), a unique Zika-only equilibrium exists iff

Rz = 1
2

[
βs

γz+µ
+
√

( βs
γz+µ

)2 + 4 βvzβhzNv

(γz+µ)µvNh
)
]
> 1.
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Proof. As seen in Table 3.3, all of the nonzero points of the Zika-only equilibrium

are expressed in terms of I∗z , where I∗z is the solution to the quadratic equation

aI∗z
2 + bI∗z + c = 0. In this equation,

a = βsβvz(γz + µ)Nh,

b = Nh[(γz + µ)(βvzβhzNv +Nhβsµv + βvzµ)− βsβvzµNh], and

c = N2
h [µµv(γz + µ)Nh − βsµµvNh − βhzβvzµNv].

Using the quadratic formula, we have I∗z = −b±
√
b2−4ac

2a
. Since a > 0, when c > 0,

I∗z takes the sign of −b. When c < 0, one positive (−b+
√
b2−4ac

2a
) and one negative

(−b−
√
b2−4ac

2a
) solution are obtained.

Notice that

c > 0 ⇐⇒

µµv(γz + µ)Nh − βsµµvNh − βhzβvzµNv > 0 ⇐⇒

(γz + µ) > βsµvNh+βvzβhzNv

µvNh
⇐⇒

(γz + µ)(βvzβhzNv + (βsµv + βvzµ)Nh) > (βsµvNh+βvzβhzNv

µvNh
)(βvzβhzNv + (βsµv + βvzµ)Nh)

> βsβvzµNh.

By this last inequality, have (γz + µ)(βvzβhzNv + (βsµv + βvzµ)Nh) > βsβvzµNh.

Finally, multiplying by Nh and subtracting βsβvzµNh on both sides of the inequality,

we obtain b > 0. This implies that for c > 0, I∗z < 0. Thus, the only biologically

feasible solution for I∗z occurs iff c < 0 and is given by I∗z = −b+
√
b2−4ac

2a
.
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Since

c < 0 ⇐⇒

µµv(γz + µ)Nh − βsµµvNh − βhzβvzµNv < 0 ⇐⇒

1− βs
γz+µ

− βvzβhzNv

(γz+µ)µvNh
< 0 ⇐⇒

4(1− βs
γz+µ

− βvzβhzNv

(γz+µ)µvNh
) < 0 ⇐⇒

4− 4 βs
γz+µ

+ ( βs
γz+µ

)2 < 4 βvzβhzNv

(γz+µ)µvNh
) + ( βs

γz+µ
)2 ⇐⇒

(2− βs
γz+µ

)2 < 4 βvzβhzNv

(γz+µ)µvNh
) + ( βs

γz+µ
)2 ⇐⇒

1 < 1
2

[
βs

γz+µ
+
√

( βs
γz+µ

)2 + 4 βvzβhzNv

(γz+µ)µvNh
) + ( βs

γz+µ
)2
]
,

this unique Zika-only equilibrium exists iff Rz > 1.

3.4 Basic Reproductive Number

To derive the basic reproductive number (BRN) of the ZIKV and DENV coinfec-

tion model we use the next-generation operator method proposed by van den Driessche

and Watmough [71]. Evaluating the F and V matrices obtained from this method at

the disease-free equilibrium, we have

F =



0 0 0 0 0 βhd 0 βhdνd

0 βs βs 0 βs 0 βhz βhzνz

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

βvdNv

Nh
0 βvdNv

Nh

βvdNv

Nh
0 0 0 0

0 βvzNv

Nh

βvzNv

Nh
0 βvzNv

Nh
0 0 0

0 0 0 0 0 0 0 0


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Equilibrium Type S∗h I∗d I∗z I∗c R∗d R∗z J∗d J∗z R∗c S∗v I∗dv I∗zv I∗cv

Disease-Free Nh 0 0 0 0 0 0 0 0 Nv 0 0 0

Dengue-Only
µN2

h

βhdI
∗
dv+µNh

I∗d 0 0 γd
µ
I∗d 0 0 0 0 µvNvNh

βvdI
∗
d+µvNh

βvdI
∗
dNv

βvdI
∗
d+µvNh

0 0

Zika-Only
µN2

h

βhzI∗zv+βsI∗z +µNh
0 I∗z 0 0 γz

µ
I∗z 0 0 0 µvNvNh

βvzI∗z +µvNh
0 βvzI∗zNv

βvzI∗z +µvNh
0

Table 3.3: Equilibrium Points. In this table, I∗d = µNh(βhdβvdNv−µvNh(γd+µ))
βvd(γd+µ)(µNh+βhdNv)

and I∗z = −b+
√
b2−4ac

2a
, where a, b, and c are

as described in Section 2
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and

V =



γd + µ 0 0 0 0 0 0 0

0 γz + µ 0 0 0 0 0 0

0 0 γd + γz + µ 0 0 0 0 0

0 0 −γz γd + µ 0 0 0 0

0 0 −γd 0 γz + µ 0 0 0

0 0 0 0 0 µv 0 0

0 0 0 0 0 0 µv 0

0 0 0 0 0 0 0 µv



.

The BRN is the spectral radius of FV −1, and is given by

max{
√

Nv

Nh

βvd
µv

βhd
µ+γd

, 1
2

[
βs

µ+γz
+
√

( βs
µ+γz

)2 + 4Nv

Nh

βvz
µv

βhz
µ+γz

]
} = max{Rd, Rz}.

The fractions βvd
µv

and βhd
µ+γd

in Rd are the product of the DENV infection rates

and the average time a human or vector remains infected with dengue ( 1
µv

days for

vectors and 1
µ+γd

days for humans). The second term under the radical in Rz is similar

to Rd and represents vector transmission of Zika. However, Rz also includes sexual

transmission of Zika within the human population in the form βs
µ+γz

, where βs is the

sexual transmission rate and 1
µ+γz

is the average duration of infection in humans.

3.5 IRNs

3.5.1 Dengue IRN

The dengue IRN, which describes the ability of dengue to spread in a popula-

tion endemic with Zika, is also calculated using the next generation matrix method

described by van den Driessche and Watmough (see [6, 7]), but with Id, Ic, Jd, Idv,
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and Icv categorized as the infectious classes. Evaluating the F and V matrices at the

Zika-only endemic equilibrium, we obtain

F =



0 0 0 βhd
S∗h
Nh

νdβhd
S∗h
Nh

0 0 0 βhd
I∗z
Nh

νdβhd
I∗z
Nh

0 0 0 kdβhd
R∗z
Nh

kdνdβhd
R∗z
Nh

βvd
S∗v
Nh

βvd
S∗v
Nh

βvd
S∗v
Nh

0 0

βvd
I∗zv
Nh

βvd
I∗zv
Nh

βvd
I∗zv
Nh

0 0


and

V =



βhz
I∗zv
Nh

+ βs
I∗z
Nh

+ γd + µ 0 0 0 0

−βhz I
∗
zv

Nh
− βs I

∗
z

Nh
γd + γz + µ 0 0 0

0 −γz γd + µ 0 0

0 0 0 βvz
I∗z
Nh

+ µv 0

0 0 0 −βvz I
∗
z

Nh
µv


.

Dengue’s IRN is the spectral radius of FV −1 and is given by R̃d = Rd

√
KvdKhd,

where

Kvd =
S∗v
Nv

[
βvzI

∗
z

βvzI∗z + µvNh

νd +
µvNh

βvzI∗z + µvNh

] +
I∗zv
Nv

νd

and
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Khd =
S∗h
Nh

(
βhzI

∗
zv + βsI

∗
z

(βhzI∗zv + βsI∗z ) + (µ+ γd)Nh

[
µ+ γd + kdγz
µ+ γd + γz

] +
(µ+ γd)Nh

(βhzI∗zv + βsI∗z ) + (µ+ γd)Nh

)
+
I∗z
Nh

µ+ γd + kdγz
µ+ γd + γz

+
R∗z
Nh

kd.

It is important to note that when kd = vd = 1, R̃d = Rd.

Epidemiologically, Kvd is the average relative dengue infectivity of mosquitoes

in a setting where Zika is resident and Khd is the average relative dengue infectivity of

humans within that setting. While the proportion of susceptible mosquitoes that get

Zika before dying ( S
∗
v

Nv
[ βvzI∗z
βvzI∗z +µvNh

]) and the proportion of Zika infectious mosquitoes

( I
∗
zv

Nv
) at the time that dengue arrives have relative dengue infectivity of νd, the rel-

ative dengue infectivity of the proportion of susceptible mosquitoes that die before

contracting Zika ( S
∗
v

Nv
[ µvNh

βvzI∗z +µvNh
]) is 1.

In the Khd expression, the proportion of susceptible humans who get Zika before

dying but recover from Zika prior to getting dengue (
S∗h
Nh

βhzI
∗
zv+βsI∗z

(βhzI∗zv+βsI∗z )+(µ+γd)Nh

γz
µ+γd+γz

),

the proportion of humans infected with Zika when dengue arrives who recover before

getting dengue ( I
∗
z

Nh

γz
µ+γd+γz

), and the proportion of humans already recovered from

Zika when dengue is introduced (R
∗
z

Nh
) have a relative dengue infectivity of kd. On

the other hand, susceptibles who get Zika but die or get dengue before recovering

from Zika (
S∗h
Nh

βhzI
∗
zv+βsI∗z

(βhzI∗zv+βsI∗z )+(µ+γd)Nh

µ+γd
µ+γd+γz

), susceptibles who die or get infected with

dengue prior to getting Zika (
S∗h
Nh

(µ+γd)Nh

(βhzI∗zv+βsI∗z )+(µ+γd)Nh
), and those currently infected

with Zika who die or get dengue before recovering from Zika ( I
∗
z

Nh

µ+γd
µ+γd+γz

) all have a

relative dengue infectivity of 1.

3.5.2 Zika IRN

The Zika IRN describes the ability of Zika to spread in a population endemic

with dengue and is computed in a similar manner as the dengue IRN. However, in
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this case Iz, Ic, Jz, Izv, and Icv are categorized as the infectious classes. Evaluating F

and V at the dengue-only endemic equilibrium, we obtain

F =



βs
S∗h
Nh

βs
S∗h
Nh

βs
S∗h
Nh

βhz
S∗h
Nh

νdβhz
S∗h
Nh

βs
I∗d
Nh

βs
I∗d
Nh

βs
I∗d
Nh

βhz
I∗d
Nh

νzβhz
I∗d
Nh

kzβs
R∗d
Nh

kzβs
R∗d
Nh

kzβs
R∗d
Nh

kzβhz
R∗d
Nh

kzνzβhz
R∗d
Nh

βvz
S∗v
Nh

βvz
S∗v
Nh

βvz
S∗v
Nh

0 0

βvz
I∗dv
Nh

βvz
I∗dv
Nh

βvz
I∗dv
Nh

0 0


and

V =



βhd
I∗dv
Nh

+ γz + µ 0 0 0 0

−βhd
I∗dv
Nh

γd + γz + µ 0 0 0

0 −γd γz + µ 0 0

0 0 0 βvd
I∗d
Nh

+ µv 0

0 0 0 −βvd
I∗d
Nh

µv


.

Zika’s IRN is the spectral radius of FV −1 and is given by

R̃z = 1
2

(
βs

µ+γz
Khz +

√
( βs
µ+γz

Khz)2 + 4KhzKvz
Nv

Nh

βhz
µ+γz

βvz
µv

)
,

where

Kvz =
S∗v
Nv

[
βvdI

∗
d

βvdI∗d + µvNh

νz +
µvNh

βvdI∗z + µvNh

] +
I∗dv
Nv

νz

and
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Khz =
S∗h
Nh

(
βhdI

∗
dv

(βhdI∗dv + (µ+ γz)Nh

[
µ+ kzγd + γz
µ+ γd + γz

] +
(µ+ γz)Nh

(βhdI∗dv + (µ+ γz)Nh

)
+
I∗d
Nh

µ+ kzγd + γz
µ+ γd + γz

+
R∗d
Nh

kz.

Notice that when kz = vz = 1, R̃z = Rz. Furthermore, in a similar manner as Kvd

and Khd, the Kvz and Khz expressions describe the relative Zika infectivity of vectors

and humans respectively.

3.6 BRN/IRN Threshold Curves

In order to visualize how various aspects of the dengue-Zika interplay impact

the persistence of each disease, we plot IRN threshold curves for R̃d = R̃z = 1 on the

Rd vs. Rz axis. As seen in Figures 3.2 and 3.3, this results in four distinct regions of

possible model outcomes (extinction of both diseases, E0, persistence of only dengue,

Ed, persistence of only Zika, Ez, and copersistence of both pathogens, Edz). In these

figures, the curve above the Rz = 1 line is R̃d = 1 and the curve to the right of the

Rd = 1 line is R̃z = 1.

Figure 3.2 illustrates that ADE (i.e. kd, kz > 1) causes Zika and dengue to

benefit from the presence of each other. In particular, due to ADE, the presence of

dengue makes it possible for Zika to persist in regions where it would not have been

able to persist on its own (i.e. in regions where Rz < 1). Similarly, this figure shows

that the reciprocal effect of Zika presence on dengue is also true with ADE. In fact, as

the likelihood of disease transmission by recovered individuals increases across various

orders of magnitude, the Edz region widens and makes it easier for dengue and Zika

to copersist.

To disentangle the effects of altered infectivity of hosts from that of vectors,

we let kd = kz = 1 (while keeping νd and νz at their baseline values) and obtain
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Ez Edz
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kd=kz=100
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1.5

2.0
Rz

Figure 3.2: Variations in IRN Threshold Curves with kd and kz. The kd and
kz parameter values used to generate the IRN threshold curves are as indicated, while
other parameter values are kept at their baseline values.
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Figure 3.3: IRN Threshold Curves for kd = kz = 1. To generate this figure, we
let kd = kz = 1 and keep other parameters at their baseline values. The miniature
figures represent enlarged sections of the R̃d = 1 (top figure) and R̃z = 1 (bottom
right figure) curves. This graph shows the relatively minimal effect of altered vector
infectivity on transmission of the viruses.
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Figure 3.4: BRN & IRN Comparisons on ν Versus k Axes

Figure 3.3. Since the R̃d = R̃z = 1 curves appear to be straight lines, it seems,

at first glance, that altered infectivity of vectors does not affect persistence of Zika

and dengue. However, after enlarging the IRN threshold curves, it is clear that Zika

slightly facilitates the spread of dengue (as seen in the Edz region where dengue is able

to invade even though Rd < 1) while dengue hinders the spread of Zika (as evidenced

by the narrow Ed region where Zika is not able to establish itself even though Rz > 1).

This minor impact of νd and νz on the persistence of each pathogen can be attributed

to the fact that coinfected mosquitoes have a higher likelihood of transmitting dengue

and a lower likelihood of transmitting Zika than monoinfected mosquitoes.

A more detailed exploration of how the altered infectivity parameters impact

dengue and Zika dynamics is conducted by plotting the R̃d = Rd and R̃z = Rz curves

on the ν versus k axis. As shown in Figure 3.4, these curves divide the plane into

two distinct regions, one where the IRN is greater than the BRN and the other where

the IRN is less than the BRN. If Zika-recovered individuals are more than 5.2 times

as likely as their Zika-naive counterparts to transmit dengue, the dengue IRN will

always be greater than its BRN. On the other hand, any level of ADE (i.e. any

kz > 1) causes the Zika IRN to be greater than its BRN.
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3.7 Discussion and Concluding Remarks

Although cocirculation of Zika and dengue is common due to the pathogens’

shared vector, the impact of cocirculation on the presence of each pathogen has not

received great mathematical modeling attention. In this study, we develop and an-

alyze the first mathematical model of dengue and Zika that incorporates coinfection

in humans and vectors, altered infectivity of coinfected vectors, and ADE. Through

various analytical and numerical results, we highlight possible epidemiological conse-

quences inherent in the cocirculation of both diseases.

The results of this work differ from those of [66] and [67], the only other math-

ematical modelling studies to consider dengue and Zika cocirculation. While the

complexity of the model in [66] prevents the authors from finding the BRN, we pro-

vide an explicit expression for the BRN of our model. The Rd and Rz expressions

in our BRN are structurally similar to those in [67]. However, they do not include

the vaccination and ADE parameters present in [67]. The lack of ADE parameters in

our BRN is due to the fact that ADE is incorporated in our model through altered

infectivity of humans instead of altered susceptibility of humans and vectors. As a

result, we are only able to assess the impact of ADE on the IRN (rather than on the

BRN as discussed in [67]).

A major contribution of the present article to the study of dengue and Zika is

the calculation of the IRN of both diseases which has not previously been computed.

Not only are we able to write down explicit IRN expressions, we are also successful

in interpreting these quantities and investigating how variations in key parameter

values impact them. Through Figure 3.4, we see that altered infectivity of hosts has

a greater impact on the IRNs than the altered infectivity of vectors. In addition,

the kd and kz variables can be used to determine when the presence of one disease

makes it easier or harder for the other to spread (i.e when each pathogen’s IRN will
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be greater than or less than its BRN). Regardless of the level of ADE, we find that

Zika will always spread more easily in dengue endemic regions than it would on its

own. However, this is not the case with dengue. For dengue, the effect of ADE has

to be high enough (i.e. kz > 5.2) in order for the presence of Zika to facilitate the

establishment of dengue. This allows for interesting scenarios where Zika and dengue

will have opposite effects on each other. For example, when kz > 1 and 1 < kd < 5.2,

high dengue propagates the spread of Zika (i.e. R̃z > Rz), but high Zika prevalence

impedes the invasion of dengue (i.e.R̃d < Rd ).

In addition to Figure 3.4, Figures 3.2 and 3.3 provide valuable insight on how

the Zika and dengue viruses affect each other on the population level. With or without

altered infectivity of humans, the presence of Zika makes it possible for dengue to

persist in a population in which it would not be able to persist by itself. However, our

results show that ADE (i.e. kz > 1) is essential for Zika to benefit from the presence

of dengue. Without ADE, it is possible for Zika’s BRN to be greater than 1, but Zika

not be able to suscessfully invade a population because of the presence of dengue.

Both of these results are due to the baseline νd but νz values that allow coinfected

mosquitoes to be better at transmitting dengue than Zika. Furthermore, as altered

host infectivity parameters increase, the region of copersitence of both viruses widens,

showing a mutualistic relationship between Zika and dengue due to ADE.

From this research, it is clear that the impact of ADE on the infectivity of hosts

plays a crucial role in dengue-Zika dynamics. However, there are no experimental

studies that address the epidemiological consequences of ADE, specifically how it

affects dengue infectivity of Zika-immune individuals or Zika infectivity of dengue-

immune persons. Currently, the studies that address ADE do so on the cellular level,

describing its impact on viral titers. We argue that due to the effect of the kd and kz

parameters on IRN and BRN comparisons and the persistence of Zika and dengue,
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there is a need for studies that focus on estimating these values. Using experimentally

validated kd and kz estimates would allow us to draw more concrete conclusions on

the population-wide impact of Zika and dengue, which can potentially inform vaccine

development efforts.

In the future, we hope to extend our current dengue-Zika coinfection model to

consider vaccinations or include more than one dengue serotype. Explicitly incor-

porating potential Zika and dengue vaccines will give a clear picture of the possible

impact of vaccinations and whether or not the use of one vaccine can indirectly exac-

erbate the burden of the other pathogen. In addition, since multiple dengue serotypes

typically cocirculate within particular regions (and have been shown to exhibit ADE

with each other), it would be beneficial to examine how the presence of more than one

dengue serotype with Zika affects the long term persistence of the various pathogens.
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CHAPTER 4

Invasion Reproductive Numbers for Discrete-Time Models

4.1 Introduction

The basic reproductive number, R0, is a critical threshold in mathematical

epidemiology. This quantity, defined as the “expected number of secondary cases

produced, in a completely susceptible population, by a typical infected individual

during its entire period of infectiousness” [42, p. 365], is used to determine whether a

disease will persist, with R0 > 1 indicating disease persistence. R0 has been studied in

numerous continuous and discrete-time epidemic models (e.g. [7, 72, 73, 74, 75, 76])

and has proved useful for informing disease control strategies. Although the basic

reproductive number (BRN) is invaluable, it has its restrictions. One main restriction

is that it can only be used to describe disease spread in a naive population.

As many communities around the globe are endemic for at least one pathogen

(e.g. Chagas disease in Latin America, malaria in parts of Africa, and dengue in

regions of South America), it becomes necessary to study invasion reproductive num-

bers (IRNs). An IRN describes the number of secondary infections produced by an

infected individual in a population where one (or more) other pathogen is endemic

[6]. This quantity displays the same threshold behavior as R0, namely if the IRN of

a pathogen is greater than 1, the pathogen can spread in a population endemic with

the other disease(s).

IRNs have been utilized frequently in continuous-time models (e.g. [7, 8, 9,

75, 77]); however, they are yet to be explored in discrete-time systems. This may

be due to the lack of multiple-pathogen discrete-time models in literature. While
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discrete-time competition models have been studied for over forty years and shown

to exhibit both competitive exclusion and coexistence under different conditions [78,

79, 80, 81, 82], the only discrete-time multiple-pathogen models, to the best of our

knowledge, are discussed in [83] and [84]. In the former article, a discrete-time SIS

model of two competing pathogen strains with demography and cross-immunity is

analyzed. The basic reproductive number of each strain is calculated and stability

analyses are conducted for the disease-free and boundary equilibria. The study also

asserts that a coexistence equilibrium exists if and only if the basic reproductive

numbers of both strains are identical. Since most parameter values used in this model

did not satisfy the coexistence condition, the principle of competitive exclusion is

supported. Additionally, through numerical simulations, the author in [83] illustrates

how demography can result in complex population dynamics such as period doubling

and chaos. It is important to highlight that nowhere in the analysis of [83] is the IRN

of the two strains mentioned or alluded to.

In [84], Allen et al. present single-patch and two-patch discrete-time SIS mod-

els for n cocirculating pathogens with complete cross-immunity and no demography.

Here too, the authors compute the BRNs and address stability of the disease-free and

single-strain endemic equilibria. Their analysis reveals that the principle of compet-

itive exclusion holds in a single patch, where the pathogen with the greatest BRN

dominates (given that the BRN is greater than 1). However, coexistence of multiple

pathogen strains is possible in two patches and is impacted by both dispersal proba-

bilities and BRNs. Although [84] examines disease persistence in a population with

multiple pathogen strains, we note that at no point in the study are IRNs mentioned.

The primary purpose of this current work is to extend the derivation of IRNs to

discrete-time models, using as illustrative examples a set of two-pathogen SIS mod-

els. Unlike [83] and [84], the models that we propose assume that coinfection by both
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pathogen strains is possible. Like [84], however, we leave demography implicit (as ex-

plained in the next section) because our interest is in developing the concept of IRNs

in discrete-time models using the simplest possible multiple-pathogen coinfection sce-

nario. By extending IRNs in this fashion, our research adds to the analytical tools

by which discrete-time models can be examined and enriches literature on multiple-

pathogen discrete-time systems.

The secondary purpose of this article is to investigate how different assumptions

on the ordering of events in discrete-time models impact the BRN and IRN, and

ultimately the types of biological conclusions that can be drawn from them. When

creating discrete-time models, it is common practice to specify the order of events

(e.g. [1, 74, 83, 85, 86, 87]). This is because different orderings can lead to differing

conclusions as described in the West Nile virus study of [74] where changing the

order of disease-induced mortality, natural mortality, birth, infection, and transfer

resulted in distinct forms of the BRN. Although various sequential formulations of

our coinfection model can be derived using different ordering of events, we consider

only three sequential models where either (a) all infection events occur before recovery,

(b) infection and recovery are intertwined, or (c) recovery precedes infection. These

three formulations encompass a wide range of infection/recovery patterns that may

arise in nature and thus any conclusions obtained from them can be extended to a

plethora of other models that follow a similar pattern.

In addition, we consider a formulation of the coinfection model that assumes

that events occur simultaneously, as in continuous-time systems. The model of [84]

assumes a small enough time step that all event types can occur simultaneously

without emptying any of the compartments. Although the structure of the model in

[83] is partially ordered, with both infection types occurring simultaneously, a fully

simultaneous “ordering” of events, as presented in this work, has not previously been
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explored in a discrete-time model using arbitrary time step size. While a specific

order of events may be necessary when describing certain biological processes (e.g.

animal life cycles), there are instances where events in discrete-time models can occur

simultaneously (e.g. when describing disease transmission). In such scenarios, a

different formulation of discrete-time models is required, namely the simultaneous

formulation that we propose.

The present study extends the single-patch model of [84] in two ways: by formu-

lating it in terms of an arbitrary time step, following notation such as in [74, 79, 88],

and by allowing coinfection. The following section develops the different formulations

of the two-pathogen discrete-time SIS coinfection model. Next, we derive and com-

pare their respective BRNs and IRNs to develop generalizations about the impact

of ordering on these key epidemiological quantities. Finally, the models are applied

to a specific example of rhinovirus (RV) and respiratory syncytial virus (RSV) co-

circulation to provide insight on the relationship between these two pathogens at the

population level.

4.2 Model Formation

The discrete-time models that we will analyze describe the dynamics of two

pathogen strains competing for susceptible humans within a population, as shown in

Figure 4.1. In the models, humans are compartmentalized into four classes: suscep-

tible (S), infected with pathogen 1 (I1), infected with pathogen 2 (I2), and infected

with both pathogens (I12). Throughout the following sections, we take the propor-

tion of people infected with pathogen 1 to be x(t) = I1(t)+I12(t)
N

, and the proportion

of people infected with pathogen 2 to be y(t) = I2(t)+I12(t)
N

, where the constant N

represents the total human population. The infection and recovery rates of each

pathogen are given by βi, i = 1, 2 and γi, i = 1, 2 respectively, while the relative
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Figure 4.1: SIS Coinfection Model.

likelihood of coinfection with pathogen i given infection with the other pathogen is

represented by ki, i = 1, 2. We note that ecologically, ki inversely measures the level

of interspecific competition, with high ki values indicating low interspecific competi-

tion. The parameter bi = exp (−βi∆t) represents the proportion of people who do

not get infected with pathogen i by a single infective within a certain time interval

and gi = exp (−γi∆t), i = 1, 2 is the proportion that do not recover from pathogen

i in that time interval. In our study, we take the time step, ∆t, to be 1. Hence,

bi = exp (−βi) and gi = exp (−γi). The proportion of people who do not get infected

with pathogen i in unit time when x proportion of the population is infectious with

pathogen i is therefore represented by bxi .

In the subsections below, we develop the simultaneous formulation of the discrete-

time SIS coinfection model, referred to as SIM, along with the three sequential for-

mulations which we call SEQ1, SEQ2, and SEQ3.

4.2.1 SIM Model Formation

Unlike traditional formulations of discrete-time models which specify a distinct

order of events, if we suppose that the infection and recovery events shown in Figure
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4.1 occur simultaneously (i.e. that there is no specific ordering of events), we obtain

the following system of difference equations:

S(t+ 1) = S(t)b
x(t)
1 b

y(t)
2 + I1(t)

γ1

γ1 + k2β2y(t)
(1− g1b

k2y(t)
2 ) + I2(t)

γ2

γ2 + k1β1x(t)
(1− g2b

k1x(t)
1 )

I1(t+ 1) = S(t)
β1x(t)

β1x(t) + β2y(t)
(1− bx(t)

1 b
y(t)
2 ) + I1(t)g1b

k2y(t)
2 + I12(t)

γ2
γ1 + γ2

(1− g1g2)

I2(t+ 1) = S(t)
β2y(t)

β1x(t) + β2y(t)
(1− bx(t)

1 b
y(t)
2 ) + I2(t)g2b

k1x(t)
1 + I12(t)

γ1
γ1 + γ2

(1− g1g2)

I12(t+ 1) = I1(t)
k2β2y(t)

γ1 + k2β2y(t)
(1− g1b

k2y(t)
2 ) + I2(t)

k1β1x(t)
γ2 + k1β1x(t)

(1− g2b
k1x(t)
1 ) + I12(t)g1g2

(4.1)

At time t, a susceptible individual can become infected with either pathogen 1

or pathogen 2. The proportion of people that do not get infected with either pathogen

is represented by b
x(t)
1 b

y(t)
2 . These individuals remain in the susceptible class during

the next time step and are joined by people in the I1 and I2 classes who recover from

infection at time t. The term 1−g2b
k1x(t)
1 describes the proportion of people in I2 who

leave due to recovery or coinfection with pathogen 1. Of those that leave the I2 class,

a proportion γ2
γ2+k1β1x(t)

become susceptible due to recovery. Likewise, of those that

leave the I1 class at time t, a proportion γ1
γ1+k2β2y(t)

recover and become susceptible.

The individuals in I1 at time t+ 1 consist of those in I1 who neither recovered

from their infection nor were coinfected at the previous time step (I1(t)g1b
k2y(t)
2 ),

a proportion β1x(t)
β1x(t)+β2y(t)

of the susceptibles who were infected by pathogen 1, and

a proportion γ1
γ1+γ2

of the I12 who recovered from infection with pathogen 2. The

population in I2 at each time step is composed in a similar fashion.

Humans in the coinfected class, I12, who remain in that class at time t + 1

are those who neither recovered from infection with pathogen 1 nor pathogen 2

during the previous time step (I12(t)g1g2). Adding to this class is a proportion

k1β1x(t)
γ2+k1β1x(t)

(1−g2b
k1x(t)
1 ) of individuals from I2 and a proportion k2β2y(t)

γ1+k2β2y(t)
(1−g1b

k2y(t)
2 )
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of individuals in I1 who were coinfected at time t. We note that this model assumes

that a susceptible individual cannot be coinfected with both pathogens during one

time step.

Intuitively, one expects for model (4.1) to be reduced to a system of two dif-

ference equations denoted by S̃2(t + 1) = S(t + 1) + I1(t + 1) and Ĩ2(t + 1) =

I2(t + 1) + I12(t + 1) when k2 = 1, as is the case with an analogous continuous-

time coinfection model. This is because k2 = 1 indicates that infection with pathogen

2 is completely independent of infection with pathogen 1. Since those in the S and

I1 classes are infected with and recover from infection with pathogen 2 at the same

rate, one expects that these classes can be grouped into a single susceptible class and

that the I2 and I12 classes together can constitute a single infectious class. However,

due to the structure of model (4.1), such a reduction for k2 = 1 (and similarly for

k1 = 1) cannot be achieved.

4.2.2 SEQ1 Model Formation (I1, I2, R1, R2)

In the first sequential model formulation of the discrete-time SIS model, we

assume that infection with pathogen 1 occurs first and is followed by infection with

pathogen 2, then recovery from pathogen 1, and finally recovery from pathogen 2.

From this ordering of events, we obtain the following system of difference equations for

the SEQ1 model (a step-by-step formulation of this system is provided in Appendix

B.1):

61



S(t+ 1) = S(t)[b
x(t)
1 (b

y(t)
2 + (1− by(t)

2 )(1− g2)) + (1− bx(t)
1 )(1− g1)(b

k2y(t)
2 + (1− bk2y(t)

2 )(1− g2))]

+ I1(t)(1− g1)[b
k2y(t)
2 + (1− bk2y(t)

2 )(1− g2)]

+ I2(t)(1− g2)[b
k1x(t)
1 + (1− bk1x(t)

1 )(1− g1)]

+ I12(t)[(1− g1)(1− g2)]

I1(t+ 1) = S(t)(1− bx(t)
1 )g1[b

k2y(t)
2 + (1− bk2y(t)

2 )(1− g2)]

+ I1(t)g1[b
k2y(t)
2 + (1− bk2y(t)

2 )(1− g2)]

+ I2(t)[(1− bk1x(t)
1 )g1(1− g2)]

+ I12[g1(1− g2)]

(4.2)

I2(t+ 1) = S(t)g2[b
x(t)
1 (1− by(t)

2 ) + (1− bx(t)
1 )(1− bk2y(t)

2 )(1− g1)]

+ I1(t)[(1− bk2y(t)
2 )(1− g1)g2]

+ I2(t)g2[b
k1x(t)
1 + (1− bk1x(t)

1 )(1− g1)]

+ I12(t)[(1− g1)g2]

I12(t+ 1) = S(t)[(1− bx(t)
1 )(1− bk2y(t)

2 )g1g2]

+ I1(t)[(1− bk2y(t)
2 )g1g2]

+ I2(t)[(1− bk1x(t)
1 )g1g2]

+ I12(t)[g1g2].

We note that for the special case k2 = 1, model (4.2) simplifies to

S̃2(t+ 1) = S̃2(t)[b
Ĩ2(t)
N

2 + (1− b
Ĩ2(t)
N

2 )(1− g2)] + Ĩ2(t)[1− g2]

Ĩ2(t+ 1) = S̃2(t)[g2(1− b
Ĩ2(t)
N

2 )] + Ĩ2(t)g2

(4.3)

where S̃2(t + 1) and Ĩ2(t + 1) are as defined in section 4.2.1. A similar reduction of

model (4.2) can be obtained when k1 = 1. For this case, model (4.2) simplifies to
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S̃1(t+ 1) = S̃1(t)[b
Ĩ1(t)
N

1 + (1− b
Ĩ1(t)
N

1 )(1− g1)] + Ĩ1(t)[1− g1]

Ĩ1(t+ 1) = S̃1(t)[g1(1− b
Ĩ1(t)
N

1 )] + Ĩ1(t)g1

(4.4)

where S̃1(t) = S(t) + I2(t) and Ĩ1(t) = I1(t) + I12(t). Since the total population, N ,

is constant, systems (4.3) and (4.4) can further be written respectively as

Ĩ2(t+ 1) = (N − Ĩ2(t))[g2(1− b
Ĩ2(t)
N

2 )] + Ĩ2(t)g2 (4.5)

Ĩ1(t+ 1) = (N − Ĩ1(t))[g1(1− b
Ĩ1(t)
N

1 )] + Ĩ1(t)g1. (4.6)

4.2.3 SEQ2 Model Formation (I1, R1, I2, R2)

The second sequential formulation of the SIS model assumes the following or-

der of events: infection with pathogen 1, recovery from pathogen 1, infection with

pathogen 2, and finally recovery from pathogen 2. From this, we obtain the system

of difference equations for the SEQ2 model:

S(t+ 1) = S(t)(b
x(t)
1 + (1− bx(t)

1 )(1− g1))(b
y(t)
2 + (1− by(t)

2 )(1− g2))

+ I1(t)(1− g1)[b
y(t)
2 + (1− by(t)

2 )(1− g2)]

+ I2(t)(1− g2)[b
k1x(t)
1 + (1− bk1x(t)

1 )(1− g1)]

+ I12(t)[(1− g1)(1− g2)]

I1(t+ 1) = S(t)(1− bx(t)
1 )g1[b

k2y(t)
2 + (1− bk2y(t)

2 )(1− g2)]

+ I1(t)g1[b
k2y(t)
2 + (1− bk2y(t)

2 )(1− g2)]

+ I2(t)[(1− bk1x(t)
1 )g1(1− g2)]

+ I12[g1(1− g2)]

(4.7)
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I2(t+ 1) = S(t)g2[b
x(t)
1 (1− by(t)

2 ) + (1− bx(t)
1 )(1− g1)(1− by(t)

2 )]

+ I1(t)[(1− g1)(1− by(t)
2 )g2]

+ I2(t)g2[b
k1x(t)
1 + (1− bk1x(t)

1 )(1− g1)]

+ I12(t)[(1− g1)g2]

I12(t+ 1) = S(t)[(1− bx(t)
1 )g1(1− bk2y(t)

2 )g2]

+ I1(t)[g1(1− bk2y(t)
2 )g2]

+ I2(t)[(1− bk1x(t)
1 )g1g2]

+ I12(t)[g1g2].

For ki = 1, i = 1 or 2, this model has the same simplifications as SEQ1.

4.2.4 SEQ3 Model Formation (R1, R2, I1, I2)

In the third sequential model, we assume that recovery from pathogen 1 occurs

first and is followed by recovery from pathogen 2, then infection with pathogen 1, and

finally infection with pathogen 2. The system of difference equations for SEQ3 is

S(t+ 1) = S(t)[b
x(t)g1
1 b

y(t)g2
2 ]

+ I1(t)[(1− g1)b
x(t)g1
1 b

y(t)g2
2 ]

+ I2(t)[(1− g2)b
x(t)g1
1 b

y(t)g2
2 ]

+ I12(t)[(1− g1)(1− g2)b
x(t)g1
1 b

y(t)g2
2 ]

I1(t+ 1) = S(t)[(1− bx(t)g1
1 )b

k2y(t)g2
2 ]

+ I1(t)b
k2y(t)g2
2 [g1 + (1− g1)(1− bx(t)g1

1 )]

+ I2(t)[(1− g2)(1− bx(t)g1
1 )b

k2y(t)g2
2 ]

+ I12(t)(1− g2)b
k2y(t)g2
2 [g1 + (1− g1)(1− bx(t)g1

1 )]

(4.8)
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I2(t+ 1) = S(t)[b
x(t)g1
1 (1− by(t)g2

2 )]

+ I1(t)[(1− g1)b
x(t)g1
1 (1− by(t)g2

2 )]

+ I2(t)[g2b
k1x(t)g1
1 + (1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

+ I12(t)(1− g1)[g2b
k1x(t)g1
1 + (1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

I12(t+ 1) = S(t)[(1− bx(t)g1
1 )(1− bk2y(t)g2

2 )]

+ I1(t)(1− bk2y(t)g2
2 )[g1 + (1− g1)(1− bx(t)g1

1 )]

+ I2(t)[g2(1− bk1x(t)g1
1 ) + (1− g2)(1− bx(t)g1

1 )(1− bk2y(t)g2
2 )]

+ I12(t)[g1(g2 + (1− g2)(1− bk2y(t)g2
2 ))

+ (1− g1)(g2(1− bk1x(t)g1
1 ) + (1− g2)(1− bx(t)g1

1 )(1− bk2y(t)g2
2 )].

The SEQ3 model can be simplified for ki = 1, i = 1, 2. However, this simplifi-

cation is different from that of SEQ1 and SEQ2 due to the fact that recovery from

each pathogen occurs before infection in SEQ3, while recovery occurs after infection

in SEQ1 and SEQ2. For k2 = 1 and k1 = 1 respectively, the SEQ3 model becomes

Ĩ2(t+ 1) = (N − Ĩ2(t))[1− b
Ĩ2(t)
N

g2
2 ] + Ĩ2(t)[g2 + (1− g2)(1− b

Ĩ2(t)
N

g2
2 )] (4.9)

Ĩ1(t+ 1) = (N − Ĩ1(t))[1− b
Ĩ1(t)
N

g1
1 ] + Ĩ1(t)[g1 + (1− g1)(1− b

Ĩ1(t)
N

g1
1 )]. (4.10)

4.3 BRNs

The BRN of each model is calculated using the next generation matrix ap-

proach outlined in [73]. When modeling scenarios with n pathogens, it is common

for the BRN to have the form R0 =max(Ri), i = 1, 2, ..., n. While R0 measures the

ability of any combination of pathogens to invade the population, Ri measures the
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ability of pathogen i to invade when it is the only pathogen present. In the following

subsections, we denote the overall BRN of each model by R0k , k = s, 1, 2, 3, where

k describes the model at hand (s indicating the simultaneous model and 1, 2, and

3 indicating each of the sequential models). Additionally, we represent each model’s

pathogen i-only BRN by Rik .

4.3.1 SIM BRN

Our analysis begins with the calculation of the basic reproductive number of the

simultaneous model. Using the next generation matrix approach of [73], we obtain

the vector of new infections that survive the time interval

F =


S(t)

β1x(t)
β1x(t) + β2y(t)

(1− bx(t)
1 b

y(t)
2 )

S(t)
β2y(t)

β1x(t) + β2y(t)
(1− bx(t)

1 b
y(t)
2 )

0

 ,

and the vector of all other transitions

T =


I1(t)g1b

k2y(t)
2 + I12(t)

γ2
γ1 + γ2

(1− g1g2)

I2(t)g2b
k1x(t)
1 + I12(t) γ1

γ1+γ2
(1− g1g2)

I1(t)
k2β2y(t)

γ1 + k2β2y(t)
(1− g1b

k2y(t)
2 ) + I2(t)

k1β1x(t)
γ2 + k1β1x(t)

(1− g2b
k1x(t)
1 ) + I12(t)g1g2

 .

Differentiating these with respect to the infected states (I1, I2, I12) and evaluating at

the unique disease-free equilibrium (N,0,0,0), we have

F =


β1 0 β1

0 β2 β2

0 0 0

 and T =


g1 0

γ2(1− g1g2)
γ1+γ2

0 g2
γ1(1− g1g2)
γ1 + γ2

0 0 g1g2

 .

As described in [73], we require ρ(T ) < 1. Indeed, ρ(T ) =max(g1, g2) < 1. We

note that the spectral radius of the T matrices used in the SEQ models’ BRN calcu-
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lations is also max(g1, g2). Thus the requirement ρ(T ) < 1 holds in the computations

of sections 4.3.2- 4.3.4.

The basic reproductive number of the simultaneous model, R0s , is calculated

as ρ(F (I − T )−1) = max( β1
1−g1 ,

β2
1−g2 ) = max(R1s , R2s). In this expression, βi

1−gi can be

interpreted as the product of the number of infections in one time step (β) by the

average duration of infection in time steps ( 1
1−gi =

∑∞
n=0 g

n
i ).

4.3.2 SEQ1 BRN (I1, I2, R1, R2)

Using the next generation operator method to calculate the BRN of the SEQ1

model, our F and T matrices are

F =


S(t)[(1− bx(t)

1 )b
k2y(t)
2 g1 + (1− bx(t)

1 )(1− bk2y(t)
2 )g1(1− g2)]

S(t)[b
x(t)
1 (1− by(t)

2 )g2 + (1− bx(t)
1 )(1− bk2y(t)

2 )(1− g1)g2]

S(t)[(1− bx(t)
1 )(1− bk2y(t)

2 )g1g2]


and

T =



I1(t)[b
k2y(t)
2 g1 + (1− bk2y(t)

2 )g1(1− g2)] + I2(t)[(1− bk1x(t)
1 )g1(1− g2)] + I12[g1(1− g2)]

I1(t)[(1− bk2y(t)
2 )(1− g1)g2] + I2(t)[b

k1x(t)
1 g2 + (1− bk1x(t)

1 )(1− g1)g2] + I12(t)[(1− g1)g2]

I1(t)[(1− bk2y(t)
2 )g1g2] + I2(t)[(1− bk1x(t)

1 )g1g2] + I12(t)[g1g2]


.

Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the

unique disease-free equilibrium (N,0,0,0), we have
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F =


β1g1 0 β1g1

0 β2g2 β2g2

0 0 0

 and T =


g1 0 g1(1− g2)

0 g2 g2(1− g1)

0 0 g1g2

 .

The BRN of the SEQ1 model, R01 , is calculated as

ρ(F (I − T )−1) = max( β1g1
1−g1 ,

β2g2
1−g2 ) = max(β1

∑∞
n=1 g

n
1 , β2

∑∞
n=1 g

n
2 ) = max(R11 , R21),

It is clear that R01 < R0s . The reason for this is embedded in the order of events in

SEQ1. Since recovery follows infection in SEQ1, an infected individual must avoid

recovery in order to be counted as infected after each time step. A proportion gi of

infected individuals do not recover, hence the gi term in R01 , i = 1, 2. This gi term

is not present in R0s due to the concurrent nature of infection and recovery events in

the simultaneous model.

4.3.3 SEQ2 BRN (I1, R1, I2, R2)

To calculate the BRN of the SEQ2 model, we use the following F and T matrices

F =


S(t)[(1− bx(t)

1 )g1b
k2y(t)
2 + (1− bx(t)

1 )g1(1− bk2y(t)
2 )(1− g2)]

S(t)[b
x(t)
1 (1− by(t)

2 )g2 + (1− bx(t)
1 )(1− g1)(1− by(t)

2 )g2]

S(t)[(1− bx(t)
1 )g1(1− bk2y(t)

2 )g2]


and

T =



I1(t)[g1b
k2y(t)
2 + g1(1− bk2y(t)

2 )(1− g2)] + I2(t)[(1− bk1x(t)
1 )g1(1− g2)] + I12[g1(1− g2)]

I1(t)[(1− g1)(1− by(t)
2 )g2] + I2(t)[b

k1x(t)
1 g2 + (1− bk1x(t)

1 )(1− g1)g2] + I12(t)[(1− g1)g2]

I1(t)[g1(1− bk2y(t)
2 )g2] + I2(t)[(1− bk1x(t)

1 )g1g2] + I12(t)[g1g2]


.
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Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the

unique disease-free equilibrium (N,0,0,0), we have

F =


β1g1 0 β1g1

0 β2g2 β2g2

0 0 0

 and T =


g1 0 g1(1− g2)

0 g2 g2(1− g1)

0 0 g1g2

 .

The BRN for the SEQ2 model, R02 , is calculated as

ρ(F (I − T )−1) = max( β1g1
1−g1 ,

β2g2
1−g2 ) =max(β1

∑∞
n=1 g

n
1 , β2

∑∞
n=1 g

n
2 ) = max(R12 , R22).

Here, the R02 expression matches that of R01 . This is because just as in SEQ1,

recovery from a given pathogen follows infection in the SEQ2 model.

4.3.4 SEQ3 BRN (R1, R2, I1, I2)

Finally, we compute the BRN for the SEQ3 model. In this case, we use

F =


S(t)[(1− bx(t)g1

1 )b
k2y(t)g2
2 ]

S(t)[b
x(t)g1
1 (1− by(t)g2

2 )]

S(t)[(1− bx(t)g1
1 )(1− bk2y(t)g2

2 )]


and
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T =



I1(t)[g1b
k2y(t)g2
2 + (1− g1)(1− bx(t)g1

1 )b
k2y(t)g2
2 ] + I2(t)[(1− g2)(1− bx(t)g1

1 )b
k2y(t)g2
2 ]

+I12[g1(1− g2)b
k2y(t)g2
2 + (1− g1)(1− g2)(1− bx(t)g1

1 )b
k2y(t)g2
2 ]

I1(t)[(1− g1)b
x(t)g1
1 (1− by(t)g2

2 )] + I2(t)[g2b
k1x(t)g1
1 + (1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

+I12[(1− g1)g2b
k1x(t)g1
1 + (1− g1)(1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

I1(t)[g1(1− bk2y(t)g2
2 ) + (1− g1)(1− bx(t)g1

1 )(1− bk2y(t)g2
2 )] + I2(t)[g2(1− bk1x(t)g1

1 )

+(1− g2)(1− bx(t)g1
1 )(1− bk2y(t)g2

2 )] + I12(t)[g1g2 + (1− g1)g2(1− bk1x(t)g1
1 )

+g1(1− g2)(1− bk2y(t)g2
2 ) + (1− g1)(1− g2)(1− bx(t)g1

1 )(1− bk2y(t)g2
2 )]



.

Differentiating with respect to the infected classes (I1, I2, I12) and evaluating at the

unique disease-free equilibrium (N,0,0,0), we have

F =


β1g1 0 β1g1

0 β2g2 β2g2

0 0 0

 and T =


g1 0 g1(1− g2)

0 g2 g2(1− g1)

0 0 g1g2

 .

The BRN of the SEQ3 model, R03 , is calculated as

ρ(F (I − T )−1) = max( β1g1
1−g1 ,

β2g2
1−g2 ) = max(β1

∑∞
n=1 g

n
1 , β2

∑∞
n=1 g

n
2 ) = max(R13 , R23).

Note that that R03 = R01 . This occurs because the SEQ1 and SEQ3 models describe

the same infection cycle (infection, recovery, infection, recovery, etc.). The only

difference between them is the point at which the population is observed within that

cycle; in SEQ1 it is observed after recovery and in SEQ3 after infection. As a result,

one expects that the BRN of the two models should be identical.

70



4.4 Endemic Equilibria Stability Analysis

Before computing IRNs, an attempt was made to perform a general stability

analysis of the single pathogen endemic equilibria for the SEQ and SIM models.

However, due to the complexity of the models, no tangible conclusions were obtained

analytically. Thus, we focus our attention on the stability analysis of the endemic

equilibria for the SEQ models when either k1 = 1 or k2 = 1, since these models

simplify and are mathematically tractable under this assumption.

Recall that for k2 = 1, the SEQ1 & SEQ2 models simplify to (4.5) and for

k1 = 1 these models can be rewritten as (4.6). The proof of the stability of the

endemic equilibria for both of these special cases can be obtained by studying the

stability of the endemic equilibrium for the more general equation

Ĩ(t+ 1) = (N − Ĩ(t))[g(1− b
Ĩ(t)
N )] + Ĩ(t)g. (4.11)

Notice that this equation is similar to (4.5) and (4.6) but does not include subscripts.

Hence, any results obtained using (4.11) can be extended to (4.5) or (4.6) by incor-

porating the appropriate subscripts.

Theorem 4.4.1. For (4.11), when βg
1−g > 1, the unique endemic equilibrium (EE) is

locally asymptotically stable (LAS).

Proof. The existence and uniqueness of an EE for system (4.11) can be proved in

the same manner as described in Appendix B.2 (with the exception that the term

1− g1 in the function f(x) of Appendix B.2 be replaced with 1−g
g

). Using this proof,

we find that the EE for (4.1), which satisfies y(1 + 1−g
(1−by)g

) = 1 where y = Ĩ
N

is the

proportion of the population infected with pathogen two, exists and is unique when

βg
1−g > 1. Let G(Ĩ) = (N − Ĩ)[g(1 − b) Ĩ

N )] + Ĩg. For the EE to be LAS, we require

| G′(Ĩ) |= gby(1 + β(1− y)) < 1.
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Since we cannot solve explicitly for y in the EE expression (as y(1+ 1−g
(1−by)g

) = 1

is transcendental for y), we consider the inverse and view β as a function of y. Given

y(1 + 1−g
(1−by)g

) = 1, we have

1−g
g(1−exp(−βy))

= 1−y
y

1− exp(−βy) = y
1−y

1−g
g

exp(−βy) = 1− y
1−y

1−g
g

−βy = ln(1− y
1−y

1−g
g

)

β = 1
y

ln(g−gy
g−y ).

Notice that in the second line of equalities, 1 − exp(−βy) = y
1−y

1−g
g

is less than 1.

This forces y
1−y <

g
1−g which implies that y < g since the function x

1−x is monotone

increasing on (0,1). Substituting β into | G′(Ĩ) | we obtain

| G′(Ĩ) |= F (g, y) = g−y
1−y + g−y

y
ln(g−gy

g−y ).

To prove F (g, y) < 1, we wish to show, using techniques from multivariable

calculus, that max F (g, y) < 1 on 0 < y < g < 1. Notice that the domain does not

include the boundary (i.e. y = 0 or g = 1). This is because y = 0 implies βg
1−g = 1

(as limy→0[y(1 + 1−g
(1−by)g

)] = 1−g
βg

= 1 iff βg
1−g = 1 ), a contradiction to our assumption

that βg
1−g > 1. In addition, g = 1 implies that y = 1 (from y(1 + 1−g

(1−by)g
) = 1), a

contradiction to the requirement that y < g.

Note that F has no critical points in 0 < y < g < 1. We will prove this by

showing that Fg > 0 on its domain (since a critical point in the domain must satisfy

Fg = Fy = 0). For 0 < y < g < 1, we require

h1(y) =
y

1− y
+ ln(1− y) >

y

g
+ ln(1− y

g
) = h2(y).

If we let h1(z) = z
1−z +ln(1−z), we obtain h′1(z) = z

(1−z)2 > 0 on (0, 1) and h1(0) = 0.

Hence, h1 > 0 on (0, 1). Likewise, letting h2(z) = z + ln(1 − z), we notice h′2(z) =
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− z
1−z < 0 on (0, 1) and h2(0) = 0, meaning that h2 < 0 on the domain. This proves

that Fg > 0. We note that, similarly, Fy < 0 on the interior of 0 < y < g < 1.

Since limy→0 Fg = limy→0[ 1
1−y −

1
g

+ 1
y

ln(g−gy
g−y )] = 0 and limg→1 Fy =

limg→1[ (1−g)(1−2y)
y(1−y)2

− g
y2

ln(g−gy
g−y )] = 0, (1, 0) is a critical point of F . Also, limg→1 F (g, y) =

1, for 0 < y < 1, limy→0 F (g, y) = 1, for 0 < g < 1, and F (g, g) = 0, for 0 < g < 1.

Thus, max F (g, y) = 1 and is attained on the boundary lines y = 0 and g = 1. Since

the boundary is not included in our domain, we have | G′(Ĩ) |= F (g, y) < 1. This

proves that the unique EE is LAS.

A proof analogous to that of Theorem 4.4.1 can be done to show that the unique

endemic equilibria of the SEQ3 simplifications (4.9) and (4.10) are LAS when their

respective BRNs are greater than one. In this proof, the term 1−g1
1−bx1

in the function

f(x) of Appendix B.2 is replaced with (1−g)byg
(1−byg)

and the y’s in the | G′(Ĩ) | and β

equations are replaced with yg.

In our exploration of the stability of the single-pathogen endemic equilibria

for the general SEQ models, we found that one eigenvalue in each of the Jacobians

used to determine the stability of the equilibria has the same form as the | G′(Ĩ) |

expression. Thus, our analysis of the special cases for the SEQ models proves that the

magnitude of that eigenvalue is less than one. However, because of the complexity of

the other eigenvalues, the question of whether their magnitude is less than one (which

is required for stability of the single pathogen endemic equilibria) was explored solely

numerically.
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4.5 IRNs

4.5.1 SIM IRN

To obtain the invasion reproductive number (IRN) when pathogen 1 is endemic

(i.e. R1s > 1), we reclassify the infectious classes and use the next generation operator

method. The infectious classes are now taken to be I2 and I12. Letting

F =

S(t)
β2y(t)

β1x(t) + β2y(t)
(1− bx(t)

1 b
y(t)
2 )

I1(t)
k2β2y(t)

γ1 + k2β2y(t)
(1− g1b

k2y(t)
2 )

 ,

and

T =

 I2(t)g2b
k1x(t)
1 + I12(t)

γ1
γ1 + γ2

(1− g1g2)

I2(t)
k1β1x(t)

γ2 + k1β1x(t)
(1− g2b

k1x(t)
1 ) + I12(t)g1g2

 ,

we evaluate the resulting F and T matrices at the unique pathogen 1 endemic equi-

librium (N − I∗1 , I∗1 , 0, 0). Proof of the existence of a unique endemic equilibrium for

the SIM model can be found in Appendix B.2. At this equilibrium, we have

F =

β2(1− x∗)
β1x

∗ (1− bx∗1 )
β2(1− x∗)
β1x

∗ (1− bx∗1 )

β2k2x
∗

γ1
(1− g1)

β2k2x
∗

γ1
(1− g1)


and

T =

 g2b
k1x∗

1
γ1

γ1 + γ2
(1− g1g2)

β1k1x
∗

γ2 + β1k1x
∗ (1− g2b

k1x∗

1 ) g1g2


with x∗ =

I∗1
N

being the unique root of x(1 + 1−g1
1−bx1

) = 1. By the Jury criterion [89],

ρ(T ) < 1 if and only if

| tr T |< detT + 1 < 2.

Here, detT = g1g
2
2b
k1x
1 −

γ1
γ1+γ2

(1−g1g2) β1k1x
β1k1x+γ2

(1−g2b
k1x
1 ) and | tr T |= g2b

k1x
1 +g1g2.

Since the entries in T are all less than 1 (as is the case with the entries in the T
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matrices used in the IRN calculations for the SEQ models), detT < 1, and thus the

condition detT+1 < 2 is satisfied. Also, notice that | tr T |= g2b
k1x
1 +g1g2 < detT+1.

This is obtained from the following inequality,

detT > g1g
2
2b
k1x
1 − (1− g1g2)(1− g

2b
k1x
1

) = g2b
k1x
1 + g1g2 − 1.

Using the F and T matrices, we obtain

F (I−T )−1 =
1

dc(1− ge)

h(c+ ed) h(gc+ d)

j(c+ ed) j(gc+ d)

 =

h
d

1
1−ge + h

c
e

1−ge
h
d

g
1−ge + h

c
1

1−ge

j
d

1
1−ge + j

c
e

1−ge
j
d

g
1−ge + j

c
1

1−ge

 ,

where c = 1− g1g2, d = (1− g2b
k1x∗

1 ), e = β1k1x∗

γ2+β1k1x∗
, g = γ1

γ1+γ2
, h = β2(1−x∗)

β1x∗
(1− bx∗1 ),

and j = β2k2x∗

γ1
(1− g1).

To find the invasion capability of pathogen 2, we rewrite

F (I − T )−1 =

h
d

1
1−ge + he

c
1

1−ge
h
c

1
1−ge + hg

d
1

1−ge

j
d

1
1−ge + je

c
1

1−ge
j
c

1
1−ge + jg

d
1

1−ge

 =

A B

C D

 .

Biologically, A represents the mean number of I2’s produced by an I2. The

production of new pathogen 2 infections can be made from an I2 residing in the I2

class (h
d
) and from an I2 that moved to the I12 compartment (he

c
). The second entry,

B, in the next generation matrix describes the average number of I2’s created by an

I12 while in the I12 (h
c
) class and by an I12 that transitioned to the I2 class (hg

d
).

C depicts the mean number of I12’s created by an I2 while in the I2 class ( j
d
) plus

those that were produced by an I2 that transitioned to I12 ( je
c

) . Lastly, D is the sum

of the mean number of I12’s produced by an I12 during it’s stay in I12 ( j
c
) and the

mean number of I12’s produced by an I12 that moved to the I2 compartment ( jg
d

) .

Depending on which compartment one starts in, the fraction 1
1−ge can represent the

average number of times that an I2 visits the I2 class before recovering or the average
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number of times that an I12 visits the I12 class before recovery. A list of the biological

interpretation of the different terms in the F (I − T )−1 matrix is in Table 4.1.

Table 4.1: Biological Interpretation of F (I − T )−1 Matrix Terms

Term Biological Interpretation

h/d Mean number of of I2’s produced by an I2

h/c Mean number of I2’s produced by an I12

j/d Mean number of of I12’s produced by an I2

j/c Mean number of I12’s produced by an I12

c Percentage of people that leave I12 class
d Percentage of people that leave I2 class
e Percentage of I2 that go to I12

g Percentage of I12 that go to I2

The eigenvalues of F (I−T )−1 are roots of the characteristic polynomial p(z) =

z2 − (A + D)z + q. Notice that q = AD − CB = 0. Thus, the roots of p(z) are

0 and A + D. Since R̃2s = ρ(F (I − T )−1), we have that R̃2s = A + D, the mean

number of I2’s produced by an I2 plus the mean number of I12’s produced by an

I12. Calculation of the IRN for pathogen 1 at the pathogen 2 endemic equilibrium is

performed in a similar manner and we obtain R̃1s = A
′
+ D

′
. Here, A

′
and D

′
are

essentially A and D from R2s with the following modifications: in A
′
, y∗ replaces the

x∗ in A and subscripts are switched from 1 to 2 (i.e γ1 in A is replaced with γ2 in

A
′
, b2 in A is replaced with b1 in A

′
, etc.). In A

′
, y∗ is the root of y(1 + 1−g2

1−by2
) = 1.

Notice that unlike the SEQ models below, the SIM model IRNs do not simplify to

their corresponding BRNs when ki = 1.
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4.5.2 SEQ1 IRN (I1, I2, R1, R2)

To obtain the IRN of the SEQ1 model when pathogen 1 is endemic (i.e. R11 >

1), we reclassify the infectious classes and use the next generation operator method.

The infectious classes are now taken to be I2 and I12. Letting

F =



S(t)[b
x(t)
1 (1− by(t)

2 )g2 + (1− bx1(t))(1− b2k
y(t)
2 )(1− g1)g2]

+ I1(t)[(1− b2k
y(t)
2 )(1− g1)g2]

S(t)[(1− bx(t)
1 )(1− bk2y(t)

2 )g1g2] + I1(t)[(1− bk2y(t)
2 )g1g2]


and

T =


I2(t)[b

k1x(t)
1 g2 + (1− bk1x(t)

1 )(1− g1)g2] + I12(t)[(1− g1)g2]

I2(t)[(1− bk1x(t)
1 )g1g2] + I12(t)g1g2

 ,

we evaluate the resulting F and T matrices at the unique pathogen 1 endemic equilib-

rium (N−I∗1 , I∗1 , 0, 0) (see Appendix B.2 for details regarding single-pathogen endemic

equilibria for all models).

F =

a a

b b

 and T =

g2 − g1g2(1− bk1x∗1 ) g2(1− g1)

g1g2(1− bk1x∗1 ) g1g2

 ,

where

a = β2k2g2[(1− x∗)(1− g1 + bx
∗

1 g1 − bx
∗

1 +
bx
∗

1

k2

) + x∗(1− g1)],

and

b = β2k2g2[(1− x∗)(g1 − bx
∗

1 g1) + x∗g1].
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Here, detT = g1g
2
2b
k1x
1 and | tr T |= g2 + g1g2b

k1x
1 . Since detT < 1, the Jury criterion

requirement detT + 1 < 2 is satisfied. Through the set of inequalities

g1g2b
k1x
1 < 1

g1g2b
k1x
1 (1− g2) < 1− g2

g1g2b
k1x
1 − g1g

2
2b
k1x
1 < 1− g2

g2 + g1g2b
k1x
1 < 1 + g1g

2
2b
k1x
1 ,

we see that tr T < detT + 1 and thus ρ(T ) < 1.

Using the F and T matrices, R̃21 = ρ(F (I − T )−1) = R21 [(1− x∗)bx
∗

1 + k2(1−

(1 − x∗)bx
∗

1 )]. In this model, the pathogen 1 prevalence x∗ is the unique root of

x(1 + 1−g1
(1−bx1 )g1

) = 1. The IRN when pathogen 2 is endemic is computed in a similar

manner as R̃21 and calculated to be R̃11 = R11 [(1− y∗) + k1y
∗]. Here, the pathogen 2

prevalence y∗ is the unique solution to y(1 + 1−g2
(1−by2)g2

) = 1. We note that when k2 = 1,

R̃21 = R21 and when k1 = 1, R̃11 = R11 .

R̃21 is a multiple of R21 that is the weighted average of 1 and k2. The value

1 is weighted by the proportion of the population that started out not infected by

pathogen 1 and remained uninfected by pathogen 1 during one time step, while k2

is weighed by the rest of the population. Likewise, R̃11 is a multiple of R11 that

consists of a weighted average of 1 and k1, with 1 weighted by the proportion of the

population that is not infected with pathogen 2 and k1 weighted by the proportion

that is infected with pathogen 2.

4.5.3 SEQ2 IRN (I1, R1, I2, R2)

We obtain the IRN when pathogen 1 is endemic in a similar manner as above.

Here, we let
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F =



S(t)[b
x(t)
1 (1− by(t)

2 )g2 + (1− bx(t)
1 )(1− g1)(1− by(t)

2 )g2]

+ I1(t)[(1− g1)(1− by(t)
2 )g2]

S(t)[(1− bx(t)
1 )g1(1− bk2y(t)

2 )g2] + I1(t)[g1(1− bk2y(t)
2 )g2]


and

T =


I2(t)[b

k1x(t)
1 g2 + (1− bk1x(t)

1 )(1− g1)g2] + I12(t)[(1− g1)g2

I2(t)[(1− bk1x(t)
1 )g1g2] + I12(t)[g1g2]

 .

and evaluating the resulting F and T matrices at the unique pathogen 1 endemic

equilibrium (N − I∗1 , I∗1 , 0, 0), we have

F =

a2 a2

b2 b2

 and T =

g2 − g1g2(1− bk1x∗1 ) g2(1− g1)

g1g2(1− bk1x∗1 ) g1g2


where

a2 = β2g2[(1−x∗)(1−g1+bx
∗

1 g1)+x∗(1−g1)], and b2 = β2k2g2[(1−x∗)(g1−bx
∗

1 g1)+x∗g1].

Since the T matrix presented here is identical to that of Section 4.5.2, we know that

ρ(T ) < 1.

With these F and T matrices, we obtain

R̃22 = ρ(F (I − T )−1) = R22 [1− (1− (1− x∗)bx∗1 )g1 + k2(1− (1− x∗)bx∗1 )g1],

where x∗ is the same as that in SEQ1. The factor which R22 is multiplied by in the

expression for R̃22 is a simplification of

[(x∗ + (1− x∗)(1− bx∗1 ))(1− g1) + (1− x∗)bx∗1 ] + k2[(x∗ + (1− x∗)(1− bx∗1 ))g1].
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In this expression, the value 1 is weighted by the sum of the proportion of

individuals who were initially infected with pathogen 1 but recovered (x∗(1 − g1)),

the proportion of people initially uninfected with pathogen 1 who became infected

with pathogen 1 and recovered from said infection ((1 − x∗)(1 − bx∗1 )(1 − g1)), and

the proportion of people initially uninfected by pathogen 1 who remained uninfected

during one time step ((1 − x∗)bx
∗

1 ). Moreover, k2 is weighted by the sum of the

proportion of individuals who were infected with pathogen one at the beginning of

the time step and did not recover (x∗g1), and the proportion of individuals initially

uninfected with pathogen1 who became infected and did not recover within the time

period ((1− x∗)(1− bx∗1 )g1).

The IRN when pathogen 2 is endemic is calculated to be

R̃12 = R12 [(1− y∗) + k1y
∗],

where y∗ is the same as that in SEQ1. This is identical to R̃11 and results from the

fact that infection with pathogen 1 occurs first in both SEQ1 and SEQ2. Therefore,

the point at which we count the number of secondary pathogen 1 infections is identical

for both models and occurs when the population is divided into only two categories:

those infected with pathogen 2 and those not infected with pathogen 2. In addition,

when k2 = 1, R̃22 = R22 and when k1 = 1, R̃12 = R12 .

4.5.4 SEQ3 IRN (R1, R2, I1, I2)

To calculate the IRN of the SEQ3 model when pathogen 1 is endemic, we use

F =


S(t)[b

x(t)g1
1 (1− by(t)g2

2 )] + I1(t)[(1− g1)b
x(t)g1
1 (1− by(t)g2

2 )]

S(t)[(1− bx(t)g1
1 )(1− bk2y(t)g2

2 )] + I1(t)(1− bk2y(t)g2
2 )[g1 + (1− g1)(1− bx(t)g1

1 )]


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and

T =



I2(t)[g2b
k1x(t)g1
1 + (1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

+I12[(1− g1)g2b
k1x(t)g1
1 + (1− g1)(1− g2)b

x(t)g1
1 (1− by(t)g2

2 )]

I2(t)[g2(1− bk1x(t)g1
1 ) + (1− g2)(1− bx(t)g1

1 )(1− bk2y(t)g2
2 )]

+I12(t)[g2(g1 + (1− g1)(1− bk1x(t)g1
1 )) + (1− g2)(1− bk2y(t)g2

2 )(g1 + (1− g1)(1− bx(t)g1
1 ))]


.

Evaluating the resulting F and T matrices at the unique pathogen 1 endemic equilib-

rium (N − I∗1 , I∗1 , 0, 0) we have

F =

a3 a3

b3 b3

 and T =

 g2b
k1x∗g1
1 g2b

k1x∗g1
1 (1− g1)

g2(1− bk1x
∗g1

1 ) g2(1− bk1x
∗g1

1 (1− g1))


where

a3 = β2g2b
x∗g1
1 [(1−x∗)+x∗(1−g2)] and b3 = β2k2g2[(1−x∗)(1−bx

∗g1
1 )−x∗bx

∗g1
1 (1−g1)].

Here, detT = g1g
2
2b
k1xg1
1 and | tr T |= g2 + g1g2b

k1xg1
1 . To prove that ρ(T ) < 1, we use

the approach described in Section 4.5.2, but replace x (in the determinant and trace

expressions of Section 4.5.2) with xg1.

With these F and T matrices,

R̃23 = ρ(F (I − T )−1) = R23 [(1− x∗g1)bx
∗g1

1 + k2(1− (1− x∗g1)bx
∗g1

1 )],

where x∗ is the unique solution to x(1 +
(1−g1)b

xg1
1

1−bxg11
) = 1. The factor by which R23 is

multiplied in the expression for R̃23 is a simplification of

[x∗(1− g1) + (1− x∗)]bx
∗g1

1 + k2[x∗g1 + (x∗(1− g1) + (1− x∗))(1− bx
∗g1

1 )].

In this expression, 1 is weighted by the sum of the proportion of people originally

infected with pathogen 1 who recovered and were not reinfected with the pathogen
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and the proportion of people who were originally uninfected with pathogen 1 and

remained uninfected during one time step. The parameter k2 is weighted by the sum

of the proportion of people originally infected with pathogen 1 who did not recover,

the proportion of people originally infected with pathogen 1 who recovered and were

re-infected, and the proportion of people originally uninfected with pathogen 1 but

who got infected with the pathogen during one time step. Infections are transmitted

by the proportion x∗g1 of people who do not recover from infection with pathogen 1.

The IRN when pathogen 2 is endemic is R̃13 = R13 [(1− y∗g2) + k1y
∗g2], where

y∗ is the unique root of y(1 +
(1−g2)b

yg2
2

1−byg22
) = 1. R13 is multiplied by a weighted average

of 1 and k1, with k1 weighted by the proportion of people originally infected with

pathogen 2 who did not recover in one time step and 1 is weighted by the rest of the

population. This R̃13 expression is similar to that of R̃12 and R̃11 except for the fact

that y∗ is multiplied by g2 in R̃13 (y∗g2 represents the proportion of people who do

not recover from infection with pathogen 2). The inclusion of the g2 factor is due to

recovery occurring first in the SEQ3 model, hence an individual must fail to recover

from infection with pathogen 2 in order to be counted in the IRN. Although the IRNs

for the SEQ1 and SEQ3 models appear to be different, they are in fact identical as

detailed in Appendix B.4. Lastly, notice that when k2 = 1, R̃23 = R23 and when

k1 = 1, R̃13 = R13 .

4.6 BRN/IRN Threshold Comparisons

Through the above computations, it is evident that there is great variation in the

IRN expressions for the SIM, SEQ1, SEQ2, and SEQ3 models. However, what remains

unclear is how the different models’ IRN thresholds compare (i.e. whether one model’s

threshold is more or less restrictive than another). To better analyze the IRNs, we

create IRN threshold curves for when R̃1 and R̃2 for the various models equal 1 and
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Model BRN R̃1 R̃2

SEQ1 max(
β1g1

1− g1
,
β2g2

1− g2
) R̃11 = R11 [(1− y∗) + k1y

∗] R̃21 = R21 [(1− x∗)bx
∗

1 + k2(1− (1− x∗)bx∗1 )]

SEQ2 same as SEQ1 same as SEQ1 R̃22 = R̃21g1 +R21(1− g1)

SEQ3 same as SEQ1 same as SEQ1 same as SEQ1

SIM max(
β1

1− g1
,

β2
1− g2

) R̃1s = A
′
+D

′
R̃2s = A+D

Table 4.2: Summary of BRNs and IRNs

Endemic Equilibria SEQ1, SEQ2 SEQ3 SIM

x∗ is unique root of x(1 +
1− g1

(1− bx1)g1
) = 1 x(1 +

(1− g1)bxg11

1− bxg11
) = 1 x(1 +

1− g1

1− bx1
) = 1

y∗ is unique root of y(1 +
1− g2

(1− by2)g2
) = 1 y(1 +

(1− g2)byg22

1− byg22
) = 1 y(1 +

1− g2

1− by2
) = 1

Table 4.3: Pathogen 1 & 2 Endemic Equilibria. In this table, x∗ is the proportion of people infected with pathogen
1 at the pathogen 1 endemic equilibrium and y∗ is the proportion of people infected with pathogen 2 at the pathogen 2
endemic equilibrium.
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begin by plotting these curves on the R1 vs. R2 axes in Mathematica. The R1 vs. R2

plane has been utilized in previous studies on co-circulating pathogens (e.g. [7, 8, 90])

and allows for a primarily epidemiological comparison of our different models. As

seen in Figures 4.2 and 4.3, the threshold curves divide the plane into four distinct

regions of possible model outcomes (extinction of both pathogens, E0, persistence of

only pathogen 1, E1, persistence of only pathogen 2, E2, and co-persistence of both

pathogens, E3).

As an example of how these curves were generated, consider the R̃1 = 1 curve.

We fixed the gi and ki parameters while varying β2. For each value of β2, we solved for

the pathogen 2 endemic equilibrium, and used this equilibrium value to numerically

solve for β1 in the equation R̃1 = 1. With this pair of β1 and β2 values, we calculated

R1 and R2 for the respective models. Generating the R̃2 = 1 curves was done in a

similar manner while varying β1 and solving for the pathogen 1 endemic equilibrium.

To minimize the effect of parameter values on the threshold graphs, we keep k1 = k2

and g1 = g2 in Figures 4.2 and 4.3. We find that while the SEQ2 model predicts a

larger region of co-persistence of both pathogens than the other models for ki < 1, it

predicts a smaller region of co-persistence for ki > 1.

While the SEQ1 and SEQ3 IRN curves and the SEQ1 and SEQ2 R̃1 = 1

curves will always overlap due to the models’ identical R̃1 and/or R̃2 expressions, in

general, the ordering of the curves in Figures 4.2 and 4.3 is not always consistent. For

example, since R̃22 > R̃21 if and only if k2 < 1 (meaning that it is easier for strain

two to survive in SEQ2 than SEQ1 for k2 < 1), and vice versa for k2 > 1, we find

that the SEQ1 R̃2 threshold curve will be above that of SEQ2 for k2 < 1, with the

ordering switched for k2 > 1 (Appendix B.3). In addition, the position of the SIM

model curves relative to other curves varies with parameter values. For example, if
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Figure 4.2: BRN/IRN Threshold Curves ki > 1. In this graph, g1 = g2 = 0.4
and k1 = k2 = 2. In region E0, we see extinction of both pathogens, in E1, the
persistence of only pathogen 1, in E2, the persistence of only pathogen 2, and in E3,
co-persistence of both pathogens.

g1 = g2 = 0.05, β1 = 0.1, k1 = k2 = 1.01, we have R̃23 < R̃2s , but for a different set of

gi values, namely, g1 = g2 = 0.4, we have R̃23 > R̃2s .

In addition to focusing on the epidemiological variation between the models in

the R1 vs. R2 plane, we can observe how the behavior of each model changes with

respect to raw parameter values such as β1 and β2. Since the various models have

different BRN’s, viewing the IRN threshold curves on a β1 vs. β2 axis allows for the

visualization of an additional region where certain models predict disease extinction

while others do not. This is the case depicted in Figure 4.4. The region between

the gray and black boxes illustrates β1 and β2 values for which the sequential models

predict disease extinction but the SIM model does not. In fact, parts of that space

represent the E1, E2, and E3 regions predicted by the SIM models. In addition, the L

shaped region created by the two sets of R̃1 = 1 and R̃2 = 1 curves illustrates a space

where the SIM model predicts co-persistence of both pathogens but the sequential

models do not. The region of co-persistence predicted by the SIM model in this
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Figure 4.3: BRN/IRN Threshold Curves for ki < 1. In this graph, g1 = g2 = 0.4
and k1 = k2 = 0.7. In region E0, we see extinction of both pathogens, in E1, the
persistence of only pathogen 1, in E2, the persistence of only pathogen 2, and in E3,
co-persistence of both pathogens.

case is larger than that of the sequential models. This results from the fact that

recovery occurs after infection in the sequential models. Infected individuals must

escape recovery in order to be counted in the BRNs of these models, which reduces

the BRNs and thus makes it less likely to predict persistence of the pathogens.

Through numerical simulations, we are able to investigate how the different

model BRN/IRN threshold curves behave as the likelihood of coinfection approaches

zero or infinity. For all of the discrete-time models, we find that the region of co-

persistence of the two pathogens widens as ki, i = 1, 2 increases, but becomes smaller

as ki decreases (as illustrated in Figures 4.2 and 4.3). As the likelihood of coinfec-

tion increases, the interspecific competition between the two pathogens decreases.

This causes the relationship between the pathogens to become more and more mu-

tualistic, resulting in both strains aiding each other to become established within

the community. Surprisingly, when k1 = k2 = 0 (i.e. when the two strains exhibit

cross-immunity and interspecific competition is at its maximum), we see that for a

wide range of parameter values (one of which is shown in Figures 4.5 and 4.6), all
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of the sequential models predict a region of co-persistence of both pathogens, while

the simultaneous model predicts competitive exclusion. In fact, for the SIM model,

coexistence is only possible when the BRNs of both pathogens are equal. The proof of

this is essentially the same as that of Lemma 3.3 in [83] (except for the fact that the

SIM model has a constant total population, N, instead of an asymptotically constant

population T∞ and does not consider deaths). Since it is highly unlikely that two

pathogens in nature will have identical BRNs, the simultaneous model supports the

notion that only one pathogen can successfully invade the population.

To further explore the contradiction in competition dynamics between the SEQ

and SIM models under cross-immunity, we observe what happens in the limit as

∆t = T approaches zero (recall that in formulating the discrete-time models, we

assume ∆t = 1). In this scenario, we find that all of the models have the same

BRN and IRNs. The BRN in this case is max(R1, R2) =max (β1
γ1
, β2
γ2

), the pathogen

1 IRN (R̃1) is β1
γ1

(1− y∗), and pathogen 2 IRN (R̃2) is β2
γ2

(1− x∗), where y∗ = 1− 1
R2

and x∗ = 1 − 1
R1

. Notice that the BRN and IRN expressions are similar to what

one expects to find in a continuous-time formulation of the coinfection models. Co-

persistence of the two pathogen strains is possible if R1, R2, R̃1, and R̃2 are greater

than 1. As shown in Theorem 4.6.1, it is impossible for both IRNs to be greater than

1. This means that in the limit as T approaches 0, competitive exclusion occurs if R1

and R2 are greater than 1.

Theorem 4.6.1. R̃1 and R̃2 cannot both be greater than 1 in the limit as T approaches

0.

Proof. Notice that limT→0 R̃1 = limT→0
R1

R2
, and limT→0 R̃2 = limT→0

R2

R1
. Conse-

quently limT→0 R̃1 · limT→0 R̃2 = 1. Since they are reciprocals of each other, they

cannot both exceed 1.
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Figure 4.4: BRN/IRN Threshold Curves β1 vs. β2. In this graph, g1 = 0.15,
g2 = 0.24, k1 = 0.7 and k2 = 1.5. In region E0, we see extinction of both pathogens,
in E1, the persistence of only pathogen 1, in E2, the persistence of only pathogen 2,
and in E3, co-persistence of both pathogens. The dotted gray box delineates the E0

region for the SIM model while the dotted black box delineates the E0 region for the
SEQ1, SEQ2, and SEQ3 models.

4.7 RV and RSV Coinfection

We now apply the above models to describe RV and RSV circulation within a

human population. RV and RSV are two of the main causes of common respiratory

tract infections such as pneumonia, bronchiolitis, and the common cold. Since there

are currently no vaccines for these viruses, reinfection by either pathogen, and even

co-infection by both pathogens have been reported [91, 92, 93]. During co-infections,

it is believed that RSV and RV behave in an antagonistic manner. This is supported

by numerous studies which show that infection by one virus is associated with a

reduced likelihood of infection by the other virus [92, 94, 95].

Most previous RV/RSV mathematical models have examined these viruses in-

dividually (e.g.[91, 96, 97]). The only model to consider RV and RSV coinfection

[96] focuses on the within-host competition dynamics of the two viruses. There is

currently no model that considers RV and RSV co-circulation at the population level.

In addition, although RV and RSV hospital case reports are given in daily, weekly,

88



E0 E1

E2

E3
SEQ1/3

SEQ2

0.5 1.0 1.5 2.0
R1

0.5

1.0

1.5

2.0

R2

Figure 4.5: Coexistence in SEQ Models. The parameter values used to generate
this figure are g1 = 0.15, g2 = 0.24, k1 = k2 = 0. With these parameter values, we
witness the possibility of coexistence of the two pathogen strains in the SEQ models.

or monthly intervals as mentioned in [98, 99, 100], none of the existing models are

situated in discrete time. Given the available viral infection data sets, it is natural

(and one may even argue more appropriate) to consider a discrete-time model of RV

and RSV as we do here.

In all of our models, pathogen 1 is taken to be RSV and pathogen 2 is RV. Most

of the parameter values used in the models were obtained from previously published

studies and are shown in Table 4.4. The transmission rate for RV is the average of

the estimated child to child, adult to child, and adult to adult transmission rates

found in [100]. Due to the inhibitory relationship between the two viruses, we take

ki < 1, i = 1, 2.

To illustrate the kind of variation in results that may occur when using the

discrete-time models to describe RV and RSV spread, we take k1 = k2 = 0.05. The

BRNs and IRNs obtained for this particular choice of ki are in Table 4.5. These

values place us within the E1 region of SEQ1 and SEQ3 and the E3 region of the

SEQ2 and SIM models. While all of the models predict that RV can spread in a
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Figure 4.6: Competitive Exclusion in SIM Model The parameter values used
to generate this figure are g1 = 0.15, g2 = 0.24, k1 = k2 = 0. With these parameter
values, we witness competitive exclusion in the SIM model.

Symbol Value/Range Source

β1 0.28 days−1 [101]
β2 0.36 days−1 [100]
γ1 0.1 days−1 [99]
γ2 0.14 days−1 [102]
k1,k2 (0, 1) Assumed

Table 4.4: RV & RSV Parameter
Values. RSV is taken to be pathogen
1 in the discrete-time models and RV
is pathogen 2.

Model R1 R2 R̃1 R̃2

SEQ1 2.66 2.40 1.29 0.91
SEQ2 2.66 2.40 1.29 1.05
SEQ3 2.66 2.40 1.29 0.91
SIM 2.94 2.76 1.16 1.03

Table 4.5: BRNs and IRNs for RV
(pathogen 1) and RSV (pathogen
2). Calculations use values from Table
4.4 and k1 = k2 = 0.05.

completely susceptible population, only the SEQ2 and SIM models predict that the

virus will spread in a population endemic with RSV. On the other hand, the SEQ1 and

SEQ3 models illustrate the unusual phenomenon that the presence of one virus (RSV)

actually protects against invasion by another (RV), a phenomenon also depicted in

[7] for two co-circulating HPV strains. Switching the order of RSV and RV, namely

letting RSV be pathogen 2 and RV be pathogen 1 while keeping k1 = k2 = 0.05,

shows that our discrete-time systems are sensitive to the order of each pathogen. In

this scenario (not depicted here), the IRN for both pathogens is greater than 1 in all
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of the models. Conflicting results such as these show how model assumptions about

the order of disease infection and recovery events impact epidemiological conclusions.

4.8 Discussion and Concluding Remarks

Discrete-time systems are sensitive to ordering and are more prone to chaotic

and other complex behavior than continuous-time models, but may nevertheless be

more appropriate to describe scenarios where the biology of a system demands discrete

representation. However, it is important to note that the conclusions obtained from

these models depend on underlying assumptions about the sequencing of events. In

this paper, we develop multiple formulations of a novel two-pathogen discrete-time

coinfection model and provide a detailed analysis of how differences in the ordering

of infection and recovery events impact two critical quantities, the BRN and IRN, for

each pathogen. Our work is the first to extend the derivation of IRNs to discrete-time

systems and to introduce a discrete-time model that assumes simultaneous occurrence

of disease events.

Our results show that whether events in a discrete-time model are sequenced

or not impacts the BRN and simplification of the model. Due to the order of events

in the sequential models, a gi term appears in their BRNs. This occurs because an

individual must fail to recover during a time step in order to be counted in the BRN.

Since events occur simultaneously in the SIM model, an infected individual does not

need to evade recovery in order to be counted in the BRN, hence the lack of a gi

term in the SIM model’s BRN expression. This difference in BRNs makes it possible

to find parameter values such that the sequential models predict disease extinction

(R0 < 1) while the SIM model predicts disease invasion (R0 > 1), a contradiction that

can be especially alarming from a public health standpoint. In addition, the natural

simplifications observed with the SEQ models and their IRNs for ki = 1, i = 1, 2 are
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not observed with the SIM model. Although interesting, we note that this may affect

how biologically reasonable the results of the SIM model may be.

One peculiar finding of this research is the potential for the SEQ and SIM models

to predict drastically different coexistence results. While all of the sequential models

indicate that a region of coexistence for the two pathogen strains will always exist, the

SIM model indicates that competitive exclusion occurs when the pathogens exhibit

cross-immunity. The result of the SIM model under the assumption of cross-immunity

is typical of autonomous continuous-time models (e.g. [103]) and resembles that of

the partially ordered model in [83], where only infection events occur simultaneously.

The fact that competitive exclusion is seen in both the Perez-Velazquez model and our

SIM model indicates that simultaneity of infection alone is sufficient for competitive

exclusion to occur. Thus, even the slightest inclusion of simultaneously occurring

events is key in formulations of discrete-time models and should be explored in greater

detail. Although the SIM model does not naturally simplify under certain special

cases (i.e. ki = 1, i = 1, 2), and analysis of the model is more complex than that of the

sequential models (as seen in the IRN calculations), this formulation is important in

that it preserves the competitive exclusion principle and has important consequences

for disease prevention and control strategies. For example, assuming cross-immunity,

the SIM model suggests that control strategies should target the pathogen that is

more likely to spread, while the sequential models suggest that control aimed at both

pathogens may be needed.

A possible explanation for the difference observed between the SIM and SEQ

models under the assumption of complete cross-immunity can be found in the ecolog-

ical framework of character displacement. This framework describes the divergence

of similar species in regions where they co-exist. In order for similar species to co-

exist, the theory of character displacement states that there must be some degree of
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variation between them (e.g. in resource use or reproduction) [104]. This variation

lessens the competition between the species and makes coexistence possible [105]. In

our particular case, we believe that the ordering of events in the SEQ models results

in enough variation between the two pathogens for there to be coexistence. However,

due to the the simultaneous infection and recovery events in the SIM model, there

is no clear distinguishing factor between the pathogens, and as a result competitive

exclusion occurs.

As shown in Theorem 4.6.1, the apparent contradiction in competition dynamics

between the various models is resolved in the limit as ∆t = T approaches 0. Under

this scenario, all of the discrete-time models predict competitive exclusion and have

BRN and IRN expressions similar to those of a continuous-time formulation of the

coinfection model. This result shows that it becomes more difficult for both IRNs to

exceed 1 for small time steps, and that the region of co-persistence in the R1 vs. R2

graphs constricts for small T . Furthermore, the result illustrates that time steps are

crucial in the study of discrete-time systems since different time steps can produce

fundamentally different model conclusions. In addition, the fact that all of the models

behave in a similar manner in the limit as ∆t approaches 0 supports the argument of

character displacement as a justification for the variation observed when ∆t = 1. As

the time step becomes small, it is harder to separate infection and recovery events,

and in turn to differentiate between the two pathogens. Therefore, the principle of

competitive exclusion prevails.

Given that events in the coinfection model are ordered, our work illustrates

that ordering affects the IRN but not the BRN of the two pathogens. As seen in

Table 4.2, the IRN (especially the pathogen 2 IRN) is more sensitive to assumptions

on the sequence of events than the BRN. This is because many factors are involved

in calculating the IRN that are not needed for the BRN, factors such as whether
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an individual was infected with the endemic strain at the beginning of a time step,

whether he or she recovered from the endemic strain, became infected with the in-

vading strain, etc. It is common knowledge in discrete-time mathematical modeling

that ordering of events can affect important epidemiological quantities such as the

BRN [74]. However, since IRNs have not been studied in discrete time until now, this

research shows that ordering has implications that mathematical biologists working

with discrete-time models may not previously have been aware of.

Results obtained from our various model formulations are analogous to the find-

ings of [85] and [1] which are situated in the context of population ecology. In [85],

Hilker and Liz investigate whether hydra effect, the unusual increase in a species’

population size in response to an increase in its mortality rate, is impacted by the

timing of harvesting and reproduction in discrete-time models of standard harvesting

strategies. Through rigorous mathematical proofs, they find no qualitative distinc-

tions between two models that differ in the ordering of harvesting and reproduction

because the models essentially describe the same process (harvesting, reproduction,

harvesting, reproduction, etc.). This result is further echoed in the predator-prey

models of [1], where switching the order of density-dependent prey regulation and

predation results in identical qualitative conclusions. In our study, we also find that

when the general order of events is preserved between models, as seen in SEQ1 and

SEQ3, which simply take census at different points in the process, there is no differ-

ence in the BRN or IRN of the models. However, differences become apparent when

we consider the SEQ2 model which describes a completely different order than SEQ1

and SEQ3. This illustrates that the order of events in discrete-time models matters

when more than two interacting events are involved, as altering the order of a subset

of events can result in distinct disease cycles.
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Our application of the different formulations of the discrete-time coinfection

model to RSV and RV co-circulation provides a concrete illustration of the wide

array of results that can be obtained from these models. Under certain assumptions,

only the SEQ1 and SEQ3 models show the potential for the presence of RSV to

protect a population from invasion of RV. This conclusion, however, changes with the

order of each pathogen, indicating that the protective ability of RSV is only observed

when it is given the advantage of infecting the population first since infection with

pathogen 2 is then applied to a less receptive population. This conclusion stresses

the importance of the biological assumptions embedded in mathematical models.

While this current work provides valuable insight into the dynamics of various

formulations of discrete-time coinfection models, we acknowledge that the model that

we propose is simplistic in nature. In reality, the dynamics of co-circulating pathogen

strains can lead to complex mathematical systems, some examples of which are de-

scribed in [7, 75, 106]. In our future work, we will extend this discrete-time coinfection

model to incorporate various transmission routes, such as vector-borne transmission,

so that it can be applicable to a wider range of diseases. We hope that this initial

exploration of IRNs in discrete-time systems, and the simultaneous formulation of

such systems, will serve as a catalyst for other researchers to contribute to the study

of multiple-pathogen discrete-time models, paying careful attention to how model

assumptions on the order of events (or the lack thereof) affect key epidemiological

conclusions.
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CHAPTER 5

Conclusion

In this dissertation, we analyze ZIKV transmission and multiple pathogen in-

teractions from a mathematical modeling perspective. Our work is the first to in-

corporate several secondary transmission pathways of Zika, examine the dengue-Zika

interplay, and extend IRNs to discrete-time models. We illustrate how some of the

complexities of Zika (particularly secondary transmission pathways and cocirculation

with dengue) impact the spread and control of the disease. In addition, through the

coinfection models of Chapters 3 and 4, we highlight the importance of IRNs in the

study of multiple interacting pathogens and their sensitivity to model assumptions

(assumptions such as ADE and altered vector infectivity in Chapter 3 and ordering

of discrete-time models in Chapter 4).

Although transmission via mosquito bites is known to drive Zika outbreaks,

we argue that the effects of Zika’s additional transmission pathways, as discussed

in Chapter 2, should not be overlooked. When compared to the vector-only model,

these additional pathways increase Zika’s BRN by 5%, cause an outbreak to occur two

weeks sooner, and result in up to 2.5 times more ZIKV infections at the peak of an

outbreak. Fitting the vector-only model to initial disease incidence data, reveals that

the qualitative changes on the course of an outbreak caused by secondary transmission

pathways can result in an overestimation of Zika’s BRN. Furthermore, neglecting these

transmission mechanisms when determining the timing of control strategies may cause

public health officials to delay the enactment of controls and ultimately risk increasing

ZIKV infections by approximately 30%.
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In Chapter 3, ADE is identified as a critical component of the dengue-Zika

interplay. When comparing IRN threshold curves for these diseases, we find that

ADE has a greater impact on the persistence of each disease than altered vector

infectivity. Furthermore, as the effect of ADE on human infectivity increases, the

region of copersistence of dengue and Zika widens dramatically. Our research also

shows that ADE can be used to determine threshold conditions for when the endemic

presence of one disease promotes the spread of the other. While ADE will always

facilitate invasion of Zika in a dengue endemic population, its effect must be high

enough (i.e. kd > 5.2) for strong Zika presence to facilitate dengue spread. These

results support the need for experimental studies that focus on the true impact of

ADE on human dengue and Zika infectivity.

The discrete-time coinfection models in Chapter 4 show that the IRN, BRN,

and competition dynamics of two cocirculating pathogens are sensitive to the order

of events. It is a well-known fact that different sequences of events in discrete-time

models can result in different conclusions. However, our work is the first to address the

effect of sequencing on IRNs. Given that infection and recovery events are ordered,

we discover that these variations do not change the BRN but do alter the IRN.

Furthermore, the lack of sequencing in the SIM model results in a lower BRN than

the SEQ models. This allows for the possibility of the SIM model to predict disease

invasion while the SEQ models predict disease extinction. In addition, while the

SEQ models predict copersistence under the assumption of complete cross-immunity,

the SIM model preserves the principle of competitive exclusion. As the time step

approaches zero however, we show that the SEQ models predict competitive exclusion

(under cross immunity), a phenomenon that can be explained through the ecological

framework of character displacement.
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Combining the various chapters of this dissertation leads to two resounding

conclusions on the study of Zika and use of IRNs to examine multiple pathogen

interactions. From Chapters 2 and 3, it is clear that to have a better understanding

of the spread of Zika, one must study the pathogen from multiple angles. Individually,

these various angles reveal important aspects of the disease. For example, we find

that secondary transmission pathways can be used to inform Zika control and that

ADE is critical in determining how Zika fares in the presence of dengue (and vice

versa). Chapters 3 and 4 illustrate the usefulness of IRNs in identifying key factors

that foster invasion of a disease into areas endemic with another disease(s) and reveal

the variation of IRNs with model assumptions. In Chapter 3, the IRN played a

significant role in determining the impact of ADE and altered vector infectivity on

dengue and Zika interactions. In addition to this, the discrete-time models in Chapter

4 show that IRNs can vary drastically with ordering assumptions.

Future extensions of this work include validating the Zika models of Chapters

2 and 3 using epidemiological data. Validation of these models will strengthen their

conclusions and potentially allow them to be used to inform disease prevention and

control in various countries. In addition, we hope to incorporate multiple dengue

strains in studying the dengue-Zika interplay. Since there are five dengue serotypes,

many of which cocirculate within the same regions, this will enable us to investigate

how competition dynamics between Zika and dengue are altered by the presence

of multiple dengue strains. Similar to [84], we hope to extend the discrete-time

coinfection model of Chapter 4 to incorporate n pathogens (n > 2) so that the

model can be used to describe disease transmission in regions with more than two

cocirculating pathogens.
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[87] R. Bravo de la Parra, M. Marvá, E. Sánchez, and L. Sanz, “Discrete models of

disease and competition,” Discrete Dynamics in Nature and Society, vol. 2017,

2017.

[88] C. Castillo-Chavez and A.-A. Yakubu, “Dispersal, disease and life-history evo-

lution,” Mathematical Biosciences, vol. 173, no. 1, pp. 35–53, 2001.

[89] F. Brauer and C. Kribs, Dynamical systems for biological modeling: An intro-

duction. CRC Press, 2015.

[90] C. M. Kribs and C. Mitchell, “Host switching vs. host sharing in overlapping

sylvatic Trypanosoma cruzi transmission cycles,” Journal of Biological Dynam-

ics, vol. 9, no. 1, pp. 247–277, 2015.

[91] A. B. Hogan, K. Glass, H. C. Moore, and R. S. Anderssen, “Exploring the

dynamics of respiratory syncytial virus (RSV) transmission in children,” The-

oretical Population Biology, vol. 110, pp. 78–85, 2016.

[92] R. M. Greer, P. McErlean, K. E. Arden, C. E. Faux, A. Nitsche, S. B. Lam-

bert, M. D. Nissen, T. P. Sloots, and I. M. Mackay, “Do rhinoviruses reduce

the probability of viral co-detection during acute respiratory tract infections?,”

Journal of Clinical Virology, vol. 45, no. 1, pp. 10–15, 2009.

[93] K. T. Zlateva, J. J. de Vries, F. E. Coenjaerts, A. M. van Loon, T. Verheij,

P. Little, C. C. Butler, H. Goossens, M. Ieven, and E. C. Claas, “Prolonged

shedding of rhinovirus and re-infection in adults with respiratory tract illness,”

European Respiratory Journal, pp. erj01721–2013, 2014.

110



[94] S. Karppinen, L. Toivonen, L. Schuez-Havupalo, M. Waris, and V. Peltola,

“Interference between respiratory syncytial virus and rhinovirus in respiratory

tract infections in children,” Clinical Microbiology and Infection, vol. 22, no. 2,

pp. 208–e1, 2016.

[95] E. T. Martin, M. P. Fairchok, Z. J. Stednick, J. Kuypers, and J. A. Englund,

“Epidemiology of multiple respiratory viruses in childcare attendees,” The Jour-

nal of Infectious Diseases, vol. 207, no. 6, pp. 982–989, 2013.

[96] L. Pinky and H. M. Dobrovolny, “Coinfections of the respiratory tract: viral

competition for resources,” PLOS ONE, vol. 11, no. 5, p. e0155589, 2016.

[97] F. R. Adler and P. S. Kim, “Models of contrasting strategies of rhinovirus

immune manipulation,” Journal of Theoretical Biology, vol. 327, pp. 1–10, 2013.

[98] M. Leecaster, P. Gesteland, T. Greene, N. Walton, A. Gundlapalli, R. Rolfs,

C. Byington, and M. Samore, “Modeling the variations in pediatric respiratory

syncytial virus seasonal epidemics,” BMC Infectious Diseases, vol. 11, no. 1,

p. 105, 2011.

[99] A. Weber, M. Weber, and P. Milligan, “Modeling epidemics caused by respira-

tory syncytial virus (RSV),” Mathematical Biosciences, vol. 172, no. 2, pp. 95–

113, 2001.

[100] R. M. Eggo, J. G. Scott, A. P. Galvani, and L. A. Meyers, “Respiratory virus

transmission dynamics determine timing of asthma exacerbation peaks: evi-

dence from a population-level model,” Proceedings of the National Academy of

Sciences, p. 201518677, 2016.

[101] H. C. Moore, P. Jacoby, A. B. Hogan, C. C. Blyth, and G. N. Mercer, “Modelling

the seasonal epidemics of respiratory syncytial virus in young children,” PLOS

ONE, vol. 9, no. 6, p. e100422, 2014.

111



[102] J. M. Gwaltney, J. O. Hendley, G. Simon, and W. S. Jordan, “Rhinovirus

infections in an industrial population: Ii. characteristics of illness and antibody

response,” JAMA, vol. 202, no. 6, pp. 494–500, 1967.

[103] P. Pelosse and C. M. Kribs, “The role of the ratio of vector and host densities

in the evolution of transmission modes in vector-borne diseases. the example of

sylvatic Trypanosoma cruzi,” Journal of Theoretical Biology, vol. 312, pp. 133–

142, 2012.

[104] W. L. Brown and E. O. Wilson, “Character displacement,” Systematic Zoology,

vol. 5, no. 2, pp. 49–64, 1956.

[105] K. S. Pfennig and D. W. Pfennig, “Character displacement: ecological and

reproductive responses to a common evolutionary problem,” The Quarterly Re-

view of Biology, vol. 84, no. 3, pp. 253–276, 2009.

[106] C. M. Kribs and A. Mubayi, “The role of adaptations in two-strain competition

for sylvatic Trypanosoma cruzi transmission,” Journal of Biological Dynamics,

vol. 6, no. 2, pp. 813–835, 2012.

112



APPENDIX A

113



A.1 Proof of Lemma 3.3.1

Proof. A brief inspection of the dengue-only equilibrium reveals that this equilibrium

point exists (i.e. consists of nonnegative terms) iff I∗d > 0. Notice that

I∗d > 0 ⇐⇒
µNh(βhdβvdNv−µvNh(γd+µ))
βvd(γd+µ)(µNh+βhdNv)

> 0 ⇐⇒

µNh(βhdβvdNv − µvNh(γd + µ)) > 0 ⇐⇒

µNhβhdβvdNv > µµvN
2
h(γd + µ) ⇐⇒

µNhβhdβvdNv

µµvN2
h(γd+µ)

> 1 ⇐⇒
Nv

Nh

βvd
µv

βhd
µ+γd

> 1 ⇐⇒√
Nv

Nh

βvd
µv

βhd
µ+γd

> 1.

Thus, a unique dengue-only equilibrium exists iff Rd > 1.
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B.1 Formulation of SEQ1 Model

For the SEQ1 model, let t1, t2, t3, and t4 = t + 1 represent the time when

infection with pathogen 1, infection with pathogen 2, recovery from pathogen 1, and

recovery from pathogen 2 occur respectively, with t < t1 < t2 < t3 < t4. In addition,

let y(ti) = I2(ti)+I12(ti)
N

. The system of difference equations obtained after infection

with pathogen 1 is

S(t1) = S(t)b
x(t)
1

I1(t1) = S(t)(1− bx(t)
1 ) + I1(t)

I2(t1) = I2(t)b
k1x(t)
1

I12(t1) = I2(t)(1− bk1x(t)
1 ) + I12(t).

After infection with pathogen 2 we have,

S(t2) = S(t1)b
y(t1)
2

I1(t2) = I1(t1)b
k2y(t1)
2

I2(t2) = I2(t1) + S(t1)(1− by(t1)
2 )

I12(t2) = I12(t1) + I1(t1)(1− bk2y(t1)
2 ).

After recovery from pathogen 1, we obtain

S(t3) = S(t2) + I1(t2)(1− g1)

I1(t3) = I1(t2)g1

I2(t3) = I2(t2) + I12(t2)(1− g1)

I12(t3) = I12(t2)g1.

After recovery from pathogen 2, we have

116



S(t4) = S(t3) + I2(t3)(1− g2)

I1(t4) = I1(t3) + I12(t3)(1− g2)

I2(t4) = I2(t3)g2

I12(t4) = I12(t3)g2.

Since y(t1) = y(t), the system of equations for the SEQ1 model can be written

as

S(t+ 1) = S(t3)b
x(t)
1 b

y(t)
2 + (I1(t) + S(t)(1− bx(t)

1 ))b
k2y(t)
2 (1− g1)

+ [I2(t)b
k1x(t)
1 + S(t)b

x(t)
1 (1− by(t)

2 ) + (I12(t) + I2(t)(1− bk1x(t)
1 )

+ (I1(t) + S(t)(1− bx(t)
1 ))(1− bk2y(t)

2 ))(1− g1)](1− g2)

I1(t+ 1) = (I1(t) + S(t)(1− bx(t)
1 ))b

k2y(t)
2 g1

+ [(I12(t) + I2(t)(1− bk1x(t)
1 ) + (I1(t) + S(t)(1− bx(t)

1 ))(1− bk2y(t)
2 ))g1](1− g2)

I2(t+ 1) = [I2(t)b
k1x(t)
1 + S(t)b

x(t)
1 (1− by(t)

2 ) + (I12(t) + I2(t)(1− bk1x(t)
1 )

+ (I1(t) + S(t)(1− bx(t)
1 ))(1− bk2y(t)

2 ))(1− g1)]g2

I12(t+ 1) = [(I12(t) + I2(t)(1− bk1x(t)
1 ) + (I1(t) + S(t)(1− bx(t)

1 ))(1− bk2y(t)
2 ))]g1g2.

(B.1)

The system of difference equations for the SEQ2 and SEQ3 models can be

obtained step-by-step in a similar fashion.

B.2 Endemic Equilibrium

To find the pathogen 1 endemic equilibrium for the SIM model, we set I1 =

I12 = 0. With this, the system of equations for the SIM model becomes

I1(t+ 1) = (N − I1(t))(1− b
I1(t)
N

1 ) + I1(t)g1.
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The fixed point condition

I∗1 = (N − I∗1 )(1− b
I∗1
N
1 ) + I∗1g1

can be rewritten as

(N − I∗1 ) = I∗1
1− g1

(1− b
I∗1
N
1 )

(or else I∗1 = 0). Adding I∗1 to both sides and dividing by N yields

f(x) = x

(
1 +

1− g1

(1− bx1)

)
= 1,

where x =
I∗1
N

.

Differentiating with respect to x, we have

f ′(x) = 1 +
(1− g1)

(1− bx1)2
[1− bx1 + bx1 log bx1 ].

The last term, h(bx1) where h(y) = 1 − y + y log y, is positive since h′(y) =

log y < 0 on (0,1) and h(1) = 0 (note 0 < bx1 < 1)). Thus, f ′(x) > 0 on (0, 1),

meaning that f is monotone increasing within that interval.

Since f is positive and increasing on (0,1) and f(1) > 1, f(x) = 1 has a

unique solution in (0,1) if and only if limx→0+ f(x) = 1−g1
− log b1

< 1. Thus, a unique

pathogen 1 endemic equilibrium (and hence a unique root of f) exists if and only if

1− g1 < − log b1 = β1, which is equivalent to R1s = β1
1−g1 > 1.

Proof of a unique pathogen 2 endemic equilibrium for the SIM model as well

as of a unique pathogen 1 and pathogen 2 endemic equilibria for the SEQ1, 2, and 3

models (and their simplified versions (4.5), (4.6), (4.9), and (4.10)) can be obtained

using a similar approach.
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B.3 SEQ1 & SEQ2 R̃2 Threshold Curve

To prove that R̃22 > R̃21 iff (if and only if) k2 < 1, notice the following sequence

of inequalities which follow iff the previous inequality is satisfied:

R̃22 > R̃21

R21 > R̃21

R21 − R̃21 > 0

R21 −R21 [(1− x∗)b1x
∗(1− k2) + k2] > 0

R21 [(1− k2)− (1− x∗)b1x
∗(1− k2)] > 0

R21 [(1− k2)(1− (1− x∗)b1x
∗] > 0

1− k2 > 0

k2 < 1.

A similar proof can be given to show R̃22 < R̃21 iffk2 > 1

B.4 SEQ1 & SEQ3 IRN Expressions

Since R11 = R13 , we will prove that the SEQ1 and SEQ3 R̃1 equations are identi-

cal by showing that y∗1 = y∗3g2, where y∗1 ∈ (0, 1) is the unique root of y
(

1 + (1−g2)
(1−by2)g2

)
=

1 and y∗3 ∈ (0, 1) is the unique root of y
(

1 +
(1−g2)b

yg2
2

(1−byg22 )

)
= 1 (uniqueness of these roots

is discussed in Appendix B.2).
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To see this, note that

1 = y∗3

(
1 +

(1−g2)b
y∗3g2
2

(1−b
y∗3g2
2 )

)

= y∗3

(
(1−by

∗
3g2

2 g2)

(1−b
y∗3g2
2 )

)

= y∗3

(
(g2−b

y∗3g2
2 g2+1−g2)

(1−b
y∗3g2
2 )

)

= y∗3

(
g2 + (1−g2)

(1−b
y∗3g2
2 )

)

= y∗3g2

(
1 + 1−g2

(1−b
y∗3g2
2 )g2

)
.

This shows that y∗3g2 is a root of f(y) = y
(

1 + 1−g2
(1−by21 )g2

)
= 1. Since y∗1 is the unique

root of f(y), we have y∗1 = y∗3g2.

An analogous proof showing that x∗1 = x∗3g1 , where x∗1 ∈ (0, 1) is the unique

root of x
(

1 + (1−g1)
(1−bx1 )g1

)
= 1 and x∗3 ∈ (0, 1) is the unique root of x

(
1 +

(1−g1)b
xg1
1

(1−bxg11 )

)
= 1,

can be used to show that the two models’ R̃2 equations are identical.
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