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ABSTRACT 

 

MATHEMATICAL APPROACH OF LIUTEX CORE LINE AND LIUTEX CORE TUBE FOR 

VORTEX STRUCTURE VISUALIZATION 

 

Dalal Almutairi, Ph.D. 

The University of Texas at Arlington, 2021 

Supervising Professor: Chaoqun Liu 

 During the past decades, many vortex identification methods have been published to 

present a clear definition and identification of the vortex. However, all these methods are failed 

to offer a unique identification method, and they also cannot answer the six essential issues for 

vortex identification methods, which are: 1) absolute strength, 2) relative strength, 3) rotational 

axis, 4) vortex core center location, 5) vortex core size, and 6) vortex boundary. In this work, two 

vortex identification methods, which are never affected by the threshold, will be proposed. 

Moreover, this study will address two critical questions: 1) Where is the rotational axis? 2)what 

is vortex core size? Liutex as a new physical quantity concept opens an era of turbulence 

research because Liutex introduces a scalar form and provides vector and tensor forms too. The 

Liutex vector represents the rotation part of fluid motion in isolation of the shear contamination. 

Depending on a clear and reasonable mathematical approach, an exact Liutex core line 

and Liutex core tube algorithm will propose in this research. The results proved that the Liutex 

core line is the only vortex identification method unique so far. In addition, the result shows that 



 vi 

both the Liutex core line and Liutex core tube can expose the strength of the vortex, unlike the 

previous methods, which are iso-surface based. Since both methods, the Liutex core line and 

Liutex core tube, have been extracted by Liutex lines, they both get another advantage showing 

the vortex direction. Even though the Liutex core tube is not a unique vortex identification 

method, comparing the Liutex core tube and the iso-surface-based methods displays the 

superiority of the Liutex core tube in showing the strong and weak spots of the vortex structure 

clearly. The proposed algorithms have been implemented on the Direct Numerical Simulation 

(DNSUTA) data of flow transition in boundary layers, which is pre-processed and validated by 

researchers from UTA and NASA Langley.    
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CHAPTER 1 

INTRODUCTION 

 In fluid mechanics, the vortex is the essential part of formulating the turbulent flow 

where the turbulent flows have uncountable vortices of different sizes and strengths. Therefore, 

presenting an accurate and precise definition of vortices is extremely important. However, 

visualizing and defining vortices is an open challenge in fluid mechanics decades ago, which led 

to the development of three different generations of vortex identification methods. For this 

reason, turbulence research has faced significant confusion and false impression. 

 The vortex identification methods are classified as [27] the vorticity-based vortex 

identification methods and eigenvalue-based vortex identification methods as the first and the 

second generation, respectively. The third generation of the vortex identification methods has 

been introduced as Omega, Liutex (previously known as Rortex), Omega-Liutex methods. 

Several vortex identification methods have been proposed to produce an accepted mathematical 

definition in the last three decades, which all faced limitations, disadvantages, and failure to do 

so for many reasons. Based on the vorticity filaments and tubes, the first generation shows 

weakness in the near-wall turbulence; it is still used in many textbooks and research papers 

[35,40]. 𝑄, ∆, 𝜆'( , and 𝜆! are labeled as the second generation methods, which all can be 

considered rotational strength and iso-surfaces. That means the visualization of the vortical 

structures in flow fields depends on the thresholds that are selected by the users [13]. In 2014, 

Prof. Chaoqun Liu; is currently the Tenured and Distinguished Professor at UTA, has formed a 

research team at the University of Texas at Arlington focused on vortex and turbulence research. 

The team's great submitted effort has yielded to the Omega method, which considers the vortex a 
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connected region where the vorticity transcends the deformation. In 2018, Dr. Liu and his team 

had proposed the Liutex method, a mathematical tool-up of vortex identification methods that 

rigid the local rotation part of the fluid motion. Then in 2019, Omega-Liutex, which associates 

the benefit of both Liutex and Omega methods has introduced. Omega, Liutex, and Omega-

Liutex are classified as the third generation of vortex identification methods [27]. The third-

generation methods can address six main issues related to the vortex identification methods, 

which are: 1) absolute strength, 2) relative strength, 3) rotational axis, 4) vortex core center 

location, 5) vortex core size, and 6) vortex boundary [41]. 

 In this study, the main contribution is proposed an exact algorithm, dependent on clear 

and reasonable mathematical explanations, to answer two of the vortex definition and 

identification methods issues using the Omega-Liutex method as follows. 1) Finding the 

rotational axis (Liutex core line) after determining the core point's location. 2) Defining the 

vortex core size by finding the vortex core tube. The vortex core line's literature reviews and the 

vortex core tube will be described in the following sections. 

1.1 Vortex core line identification methods 

1.1.1 The first and second generations based definition of vortex core line (rotation axis) 

Vortex core line (rotation axis) identification methods show up the rotation vortices center 

using some algorithms. Sujudi and Haimes [38] presented their approach for detecting the center 

of rotation in individual cells based on the old-fashioned generation of vortex identification 

methods. Even though this method fails for the complex vortices, Roth [36] modified it in 

parallel vector operators to introduce a simplification of the vortex center. Roth combines the 

methods of Sujudi and Haimes [38], Levy et al. [26], Banks and Singer [5], Kida and Miura [23], 
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and Strawn et al. [37] into one algorithm implementation. However, since all of the previous 

methods are based on the velocity or the pressure, the first and second generations of vortex 

identification face several disadvantages. See chapter 2 for more details. 

 

1.1.2 The Liutex based definition of vortex core line (rotation axis) 

Since Liutex gives an extending meaning to include the direction beside the magnitude, 

as stated in chapter 2, the Liutex lines, which integrate the Liutex vector can find, are continuous 

in the vortex region uniquely. That has been applied to expound the skeleton of the hairpin 

vortices in [13, 33]. Gao et al.[14] introduce the manual method to extract the Liutex core line by 

combining the Liutex lines and the Liutex magnitude gradient lines. The rotation axis line 

concept was presented in [14] as the concentration of Liutex magnitude gradient lines. The 

concentration lines intersect on the plane perpendicular to the vortex rotation axis line via the 

local Liutex maxima point. This line is a Liutex vector that is only aligned with the direction of 

the Liutex magnitude gradient. 

Although Xu et al.[43] had presented an automatic method for finding the Liutex core 

line by the end of 2019, but the algorithm that was used is unclear for some somehow. According 

to the original paper, the vortex core line automated process was developed by fully 

implementing the definition of Liutex magnitude and  𝛻𝑅 × 𝑟 	= 0  into a computer program. 

However, applying only this condition does not lead to a unique Liutex core line in practice, 

especially in severely curved vortices. In chapter 3, more explanations in detail will be provided. 
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1.2 Vortex core tube identification methods: overview of the previous work 

1.2.1 The first and second generations based definition of vortex core tube  

 In 1858, Helmholtz [18] had introduced the concept of vortex tube and vortex filament 

for the first time. From on Helmholtz theorems, vortex filament can be defined as an imaginary 

curve within a rotating fluid surrounding its core center formulated by the vortex lines via all the 

points of this curve. There is a general belief based on what Helmholtz presented: vortices can be 

contained in small vorticity tubes. Moreover, the vortex strength is the magnitude of the 

vorticity; that is, the velocity curl. Even though these methods, which are based on the first 

generation, are failed, the vortex filament is still used as a visualization turbulence tool in many 

studies such as Hanninen et al.[17] in 2014.  

 
 In 2016, Dong et al. [11] have used two different methods from two different generations: 

𝜆!- method and vortex filaments method of the second generation and the first generation, 

respectively, to visualize the vortex structure turbulence. However, since both generations are 

faced several disadvantages, as will be stated in chapter 2, this mixture will have similar 

shortages. 

 

1.2.2 The Liutex based definition of vortex core tube 

 Since the vortex core tube can be stated as the central area where fluid has a rotation, the 

vortex core line is the cornerstone of creating the vortex core tube. In other words, the vortex 

core tube depends on the vortex core line accuracy that is used for tubing construction. 

 In 2021, Alvarez et al. [2] have proposed a manual method to visualize the Liutex core 

tube using the Liutex core line. First, Gao’s manual method has been used to extract the Liutex 

core line, introduced in [14]. Then, the Liutex core tube magnitude vector is defined concerning 
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an arbitrary percentage around the core line, resulting in the vortex core tube. See chapter 4 for 

more details. Although Alvarez et al. had presented a successful manual method for finding the 

Liutex core tube, creating Liutex core tube for complex and severely curved vortices manually 

seems impossible in this manual way. 

 

1.3 The DNSUTA of flow transition in boundary layers 

In 2009, the UTA team developed the DNSUTA; Direct Numerical Simulation (DNS) of 

flow transition in boundary layers, which was released by prof. Chaoqun Liu. UTA and NASA 

Langley researchers have validated the DNSUTA in [44, 29, 6]. Furthermore, the results of 

DNSUTA were also compared and other’s DNS results where the DNSUTA  shows a 

remarkable consistency over which means it is correct and accurate in [4,25].  

According to Yan, Y. et al. [44] and  Liu, C. et al. [29], the grid plane is  1920 × 128 × 241, 

which represents the number of grids in streamwise (𝑋) direction, spanwise (𝑌) direction, and 

wall-normal (𝑍) direction respectively, see Figure 1.1 and Figure 1.2.  

 

 

Figure 1.1.The DNS computation domain 
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Figure 1.2. The DNS domain decomposition with respect to the streamwise (𝑋) direction  
 

 

The grid is uniform in the streamwise (𝑋) and spanwise (𝑌) directions, but it is stretched in 

the normal direction (𝑍). The flow parameters are presented in Table 1.1; see [44, 29] for further 

details. 

 

Table 1.1: The DNS parameters definitions and values 

The parameter The value The detention of the parameter 

𝑀) 0.5 Mach number 

𝑅𝑒 1000 Reynolds number 

𝑥(* 300.79𝛿(* distance between leading edge of flat plate and 
upstream boundary of computational domain 

 
𝐿𝑥 798.03𝛿(* length of computational domain along 𝑥 direction 

𝐿𝑦 22𝛿(* length of computational domain along 𝑦 direction 

𝐿𝑧(* 40𝛿(* height at inflow boundary 

𝑇+ 273.15𝐾 wall temperature 

𝑇) 273.15𝐾 free stream temperature 
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Where 𝛿(*		denotes the inflow displacement thickness. In this dissertation, The DNSUTA  of 

flow transition in boundary layers is used for the test cases. 

 

 This dissertation is organized as follows. In Chapter 2, an overview of the first and 

second generations of vortex identification methods is given. The third generation of vortex 

identification methods is discussed in more detail. The modified Liutex-Omega method, which is 

used to extract the local maximum points in this work, is explained by introducing the reasons 

for using it. In Chapter 3, the Liutex core line is determined uniquely by an algorithm that 

depends on mathematical reasonable based. The core center points are selected first. Then Liutex 

line plotted through them after exclude the fake points. In Chapter 4, an algorithm to create a 

Liutex core tube, depending on the Liutex core line found in chapter 3, is proposed. The core 

tube that is found can show the structure size of the vortex. In Chapter 5, the study's conclusions 

are shown by demonstrating a summary of the results for the whole research. At the end of this 

chapter, some prospective studies have been provided based on this research. 
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CHAPTER 2 

VORTEX IDENTIFICATION METHODS: OVERVIEW OF THREE GENERATIONS 

For providing a clear definition of the vortex, there are three different generations 

classified as vortex identification methods. In this chapter, the first and second generations will 

be introduced in the beginning. The third-generation includes the Omega method, Liutex 

method, Liutex-Omega method will be described in the second section. Since this dissertation's 

primary methods are the Liutex and Liutex-Omega methods, the researcher will explain them in 

detail. The three generations of vortex identification methods will be discussed as follows. 

 

2.1 The first generation: vorticity-based of vortex identification methods 

In 1858, Helmholtz proposed vorticity filament and tube concepts. Based on his 

definition, there are three vortex theorems, which are considered as principles of vorticity 

dynamics, are obtained in [27] as the following: (1) The vortex filament strength is constant 

along its length, (2) In the fluid, the vortex filament never ends, so it has to form a closed path or 

prolong to the fluid boundaries, and (3) If there are no external rotational forces, a fluid that is at 

first irrotational remains irrotational. Even though there are some researchers have been applied 

vorticity filament and tube concepts introduced by Helmholtz to identify the vortex structures 

[24,17], the laminar boundary layer exemplifies the failure of this method where the average 

shear force created by the no-slip wall is strong while there are no rotation motions near-wall 

regions. In 2017, Wang et al. [40] show that for a transitional flow over a flat plate in the 

boundary layer's near-wall region,  the local vorticity vector can be misrepresented from the 

vortex structure. Also, the vortex may show up in a space where vorticity is smaller than the 
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surrounding area so that the vorticity is larger than the vorticity inside the vortex. See Figure 2.1 

and Figure 2.2. 

 

         a) With iso-surface                                              b)  Without iso-surface 

Figure 2.1:  Vorticity line is not aligned with the legs of Λ − vortex and Vorticity is 

smaller than surrounding of Λ − vortex 

 

 

             a) Without iso-surface                                b) With iso-surface  

Figure 2.2: Vorticity tube and vortex tube are not aligned and not correlated in vortex rings 

Vorticity is large but no vortex 

Vorticity is small at vortex 
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Liu et al. [30] have made several sensible arguments that refute allegations that 

Helmholtz’s vortex definition and three theorems are the foundation of modern vortex (vorticity) 

dynamics. Since the vortex cannot be ended inside the flow field, as Helmholtz stated, how does 

the vortex breakdown generate turbulence? However, a vortex can break down, which means the 

vortex is not vorticity tubes as assumed. By correlation analysis (fluid rotation), it is founded that 

there is no correlation between vortex and vorticity in general, which led us to say, "vortex is not 

vorticity." 

 

2.2 The second generation: eigenvalue-based vortex identification methods 

 The second generation of vortex identification methods is classified as Eulerian velocity-

gradient-based criteria. These criteria are common to use in research and engineering since they 

are Galilean invariant. Consider the velocity gradient decomposition; Cauchy-Stoke 

decomposition, like the following: 

𝛻𝑣 = #
!
(𝛻𝑣⃗ + 𝛻𝑣,) + #

!
(𝛻𝑣 − 𝛻𝑣⃗,) = 𝑨 + 𝑩                                                                         (2.1) 

where  𝑨 and 𝑩 represent symmetry and anti-symmetry parts, respectively. 𝑄-criterion, ∆-criterion, 

𝜆'(-criterion and 𝜆!-criterion are four eigenvalue-based criteria. Since the 𝑄 and 𝜆! criteria are the 

most popular used methods, they will be briefly addressed. 

2.2.1 𝑸-criterion:   

In 1988, Hunt et al.[20] proposed the 𝑄-criterion as a vortex identification method. 𝑄 

method can be defined as a measure of the local rotation rate over the strain rate and positive 

second invariant, which is expressed the balance between vorticity magnitude and shear strain 

rate.  𝑄 can be  inferred as: 

𝑄 = #
!
(‖𝑩‖-! − ‖𝑨‖-!)                                                                                                               (2.2) 
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where ‖∙‖-!   represents the Frobenius norm. 𝑨 and 𝑩 the symmetric and antisymmetric parts of 

the velocity gradient tensor respectively, expressed as follows: 

𝑨 = #
!
(∇𝑣⃗ + ∇𝑣⃗.) =

⎣
⎢
⎢
⎢
⎡
/0
/1
																															#

!
U/0
/2
+ /3

/1
V										#

!
U/0
/4
+ /+

/1
	V

#
!
U/3
/1
+ /0

/2
V																			/3

/2
																					#

!
U/3
/4
+ /+

/2
V

#
!
U/+
/1
+ /0

/4
V														#

!
U/+
/2
+ /3

/4
V																									/+

/4 ⎦
⎥
⎥
⎥
⎤

   and                      (2.3) 

𝑩 = #
!
(∇𝑣⃗ − ∇𝑣⃗.) =

⎣
⎢
⎢
⎢
⎡0																																

#
!
U/0
/2
− /3

/1
V										#

!
U/0
/4
− /+

/1
	V

#
!
U/3
/1
− /0

/2
V 																							0																				 #

!
U/3
/4
− /+

/2
V

#
!
U/+
/1
− /0

/4
V														#

!
U/+
/2
− /3

/4
V 																												0⎦

⎥
⎥
⎥
⎤

                                (2.4) 

After applying (2.3) and (2.4) in (2.2), 𝑄 can be rewritten as the following: 

𝑄 = #
!
(‖𝑩‖-! − ‖𝑨‖-!)                                                                                                               (2.5) 

				= − !
"
[%#$
#%
&
"
+ %#&

#'
&
"
+ %#(

#)
&
"
+ 2 #$

#'
#&
#%
+ 2 #$

#)
#(
#%
+ 2 #&

#)
#(
#'
]             

                                                

2.2.2 𝝀𝟐 criterion : 

 One of the most common eigenvalue-based vortex identification methods is 𝜆!- criterion, 

which had been proposed by Jeong & Hussain [21] in 1995. Let 𝜆#, 𝜆!, and 𝜆$ are the 

eigenvalues of the symmetric tensor  𝑨! + 𝑩!; Jeong & Hussain define the vortex core as a 

connected region if the eigenvalues are ordered as 𝜆# ≥ 𝜆! ≥ 𝜆$; which is equivalent to 𝜆! < 0. 

In general, 𝜆! can not be expressed in terms of the eigenvalues of the velocity gradient tensor. 

The only particular case to do so is when the eigenvectors are orthonormal. 
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Table 2.1: Eigenvalue-Based Vortex Identification Methods 

Name Authors Year 

𝑸 criterion[20] Hunt, Wray, Moin 1988 

∆ criterion[7] Chong, Perry 1990 

𝝀𝟐 criterion[21] Jeong, Hussain 1995 

𝝀𝒄𝒊 criterion[45] Zhou, Adrian, Balachandar 1999 

 

2.2.3 The limitations of the eigenvalue-based vortex identification methods 

 In 2021, Liu et al. [31] highlight the eigenvalue-based vortex identification methods 

disadvantages in three main points: threshold, rotation direction, and strength of vortex. The 

previous eigenvalue-based criteria require thresholds that the user specifies. The threshold is a 

sensitive issue for identifying the vortical structure where different thresholds will indicate 

different vortical structures. Figure 2.3.a) shows a vortex breakdown for applying a large 

threshold for the 𝜆! criterion, while Figure 2.3.b) shows a connected vortex when a small 

threshold is used. So the question here is: what is the appropriate threshold? Although no one 

knows whether the specified threshold is proper or improper, finding the appropriate threshold is 

related to empirical, sensitive, time step-related, and hard to adjust case by case and even time 

step by time step. Moreover, these vortex identification methods give iso-surface, which is 

contaminated by shear and stretch in different degrees, and they provide no information about 

the rotation axis and the direction of the vortex. 
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                      a)	𝜆	! = −0.017                                           b) 𝜆! 	= −0.003 

Figure 2.3: A large threshold of 𝜆	! = −0.017 leads to vortex breakdown in a) while a small 

threshold of 𝜆! 	= −0.003 leads to data connected (no vortex breakdown) in b) 

 

2.3 The Third Generation of Vortex Identification Methods: Omega, Liutex, Liutex-

Omega, and Modified Liutex-Omega methods 

Professor Chaoqun Liu, Distinguished Professor and Director of the Center for Numerical 

Simulation and Modeling, and his team at the University of Texas at Arlington initiated 

developing new vortex identification methods that can outdo the shortcomings of the first and 

second-generation identification methods in 2014. These serious researches produced the third 

generation of vortex identification methods based on the Omega and Liutex methods[30].  

2.3.1 Omega vortex identification method 

 Liu et al. [32] had proposed the Omega method based on the physical meaning, which is 

vortex is the area that vorticity exceeded the deformation in 2016. So, it is sensible to consider 

the ratio of vorticity and deformation when setting a definition of the vortex. According to the 
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original paper [32], the Omega method is defined as a ratio of vorticity tensor norm squared over 

the sum of vorticity tensor norm squared and deformation tensor norm squared: 

Ω = ‖𝑩‖!
"

‖𝑨‖!
";‖𝑩‖!

" =
𝑏

𝑎+𝑏+𝜀
					                                                                                                           (2.6)  

Where 𝑨 and 𝑩 are given in equations (2.3) and (2.4) respectively, 𝑎 = 𝑡𝑟(𝑨,𝑨), 𝑏	 = 𝑡𝑟(𝑩,𝑩), 

and 𝜀 is a small positive number used to avoid division by zero.  

Many researchers [1], [8], [10], [12], [32], and [40] are compared the Ω method with the 

previous vortex identification methods, and they are found that the Ω method is very successful 

in capturing the strong vortices as well as the weak ones. Besides capturing the vortices well and 

easy to perform, the Ω method has a clear physical meaning on the contrary to 𝜆! and 𝑄 methods 

that provide an obscure interpretation by the iso-surface values them. Chosen  𝛺	 = 0.51 or  

𝛺	 = 0.52 as the fixed threshold is investigated quantity that can always capture the vortices in 

different statuses and at different time steps while 𝜆!and 𝑄 need several thresholds to capture the 

vortex structure. 

 The designation of 𝜀 value in (2.6) is sensitive. In ref. [9], Dong defined 𝜀 in terms of the 

maximum of 𝑏 − 𝑎 , which is a fixed parameter at each time step in each case, as the following: 

𝜀 = 0.001	(𝑏 − 𝑎)<=1 = 0.002	𝑄<=1                                                                                      (2.7) 

The second equality in (2.7) is obtained by apply (2.5). 𝜀 's settlement, in many cases, becomes 

unnecessary by determining 𝜀 in the previous equation, but users still need to adjust 𝜀 for their 

computations. 
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2.3.2 Liutex based vortex identification methods 

 Liutex (previously known as Rortex) is a new concept that can be defined as a vector 

with direction, magnitude (scalar), and tensor forms which is proposed in 2018 by Professor 

Chaoqun Liu [15], [27], and [28]. The basic idea of the Liutex method is isolating the fluid 

rotation apart from other extraneous properties like shearing, which lets to determine the pure 

rotation of an incompressible fluid and allows for accurate interpretations of a vortex structure. 

Since vorticity can be decomposed into a rotational part and non-rotating part, vorticity can be 

expressed as: 

𝜔aa⃗ = ∇ × 𝑣⃗ 	= 	𝑅a⃗ + 𝑆                                                                                                                              (2.8) 

Where 𝑅a⃗  is Liutex and 𝑆 is the antisymmetric shear. That means the Liutex vector is the 

rotational part of vorticity without shear contamination. The physical meaning of Liutex is 

introduced as Liutex is a vector, the direction of Liutex is the local rotation axis, and the 

magnitude of Liutex is twice the angular speed of local rigid rotation.   

 

2.3.2.1 Liutex iso-surface 

The iso-surface of Liutex magnitude can visualize the vortex structure since Liutex 

magnitude is a scalar value. However, the main difference between the Liutex iso-surface and the 

second generation methods iso-surface, such as 𝜆! iso-surface, is that the rigid rotation is isolated 

of stretching and shearing contamination.    

Definition 2.1. Liutex is defined as a rigid rotation part of fluid motion.   

𝑅a⃗ = 𝑅	𝑟                                                                                                                                      (2.9) 

and Liutex magnitude 𝑅 explicitly expressed in [27] as: 
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𝑅 = (𝜔aa⃗ ∙ 𝑟) − c(𝜔aa⃗ ∙ 𝑟)! − 4𝜆'(
!                                                                                             (2.10) 

where, 𝑟 is the real eigenvector of 𝛻𝑣⃗,  𝜔aa⃗ = ∇ × 𝑣⃗ is vorticity, and 𝜆'( is the imaginary part of 

the conjugate complex eigenvalues of 𝛻𝑣⃗. Since the normalized eigenvector is unique concerning 

the positive or negative sign, the condition 𝜔aa⃗ ∙ 𝑟⃗ > 0 maintains the definition's uniqueness and is 

consistent if the fluid motion is pure rotation. Based on the previous information, Liutex is 

reasonable because it is local, accurate, unique, systematical, and Galilean invariance.  

 Similar to the eigenvalues based methods, the Liutex iso-surface needs a threshold to be 

selected. That means the vortex structure depends on the user selection of the threshold: applying 

different threshold values will result in different vortex structures for the same data set, which is 

unacceptable; see Figure 2.4. As a result, the iso-surface is not sufficient to describe the vortex 

structure in the flow field.  

 

                           a)|𝑅| = 0.005                                                b)	|𝑅| = 0.05 
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                         c)	|𝑅| = 0.5                                                        d)	|𝑅| = 0.95 

Figure 2.4: Liutex iso-surfaces with different thresholds for flow transition 

2.3.2.2 Liutex core line 

The vortex core line (or the vortex rotation axis) is the unique line that identifies the 

vortex's skeleton instead of using the iso-surface, which is highly affected by users' choice of the 

threshold. In [16], the Liutex core line's mathematical definition line is introduced as a line that 

satisfies that the Liutex magnitude gradient vector is aligned with the Liutex vector. The 

definition of the Liutex core line can be expressed as follows.  

Definition 2.2.  The Liutex core line (or the vortex rotation axis) can be defined as a Liutex line 

passing the points that satisfy the condition: 

∇𝑅 × 𝑟 = 0,												𝑅 > 0                                                                                                         (2.11) 
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where ∇𝑅 represents the Liutex magnitude gradient vector and 𝑟 represents the direction of the 

Liutex vector.  

This definition of the Liutex core line will be applied in Chapter 3 to find an automatic 

vortex structure identification method. 

2.3.2.3 Liutex core tube 

A bundle of Liutex lines is called a Liutex tube. If a Liutex Lines family is encircling the 

Liutex core line, they will take the same behavior and the vortex, which gives a prominent 

structure for the vortex that shows the strength or size. 

Definition 2.3. The Liutex Core Tube can be defined as a collection of Liutex lines  (finite or 

infinite amount) surrounding the Liutex core line. 

The size of the Liutex core tube is decided by arbitrary percentage forms the radius of the 

tube. This percentage is chosen by the user, which means the Liutex core line is not unique 

because it depends on the users' choice of the tube size. 

This definition of Liutex core tube will be applied in Chapter 4 to find an automatic 

vortex structures identification method. 

 

2.3.3 Liutex-	𝜴 vortex identification method 

 In 2019, Dong et al. [9] have combined the benefits of both Omega and Liutex methods 

in one method called the Liutex-Omega method. The Liutex-	Ω method, Ω", is defined as the 

ratio of 𝛽 squared over the sum of 𝛽 squared and 𝛼 squared as follows. 
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Ω" =
>"

?";>";@
                                                                                                                           (2.12) 

Where  

𝛼 = #
!
cU/3

/2
− /0

/1
V
!
+ U/3

/1
+ /0

/2
V
!

,                                                                                                            (2.13) 

𝛽 = #
!
U/3
/1
− /0

/2
V,        and                                                                                                                               (2.14) 

𝜀 = 𝑏 ∗ (𝛽! − 𝛼!)<=1                                                                                                              (2.15) 

where b is a small positive number around 0.001~0.002. 

 Dr. Liu's team found that the iso-surface of  Ω" = 0.52	 is the best choice to visualize the 

vortex structures clearly, see ref. [9] for more details. If Ω" set as 0.52, Ω" can simultaneously 

capture both weak and strong vortex structures compared with others vortex identification 

methods. Also, Ω" can be applied for incompressible flow as well as compressible flow. 

 

2.3.4 Modified Liutex-Omega method 

 In Liu et al. [27] (2019), the Liutex eigenvalue decomposition and Galilean invariance of 

Ω method revealed that 

∇𝒗aa⃑ 𝜽𝐦𝐢𝐧 = l 𝜆'E −(𝛽 − 𝛼)
𝛽 + 𝛼 𝜆'E

m = l𝜆'E 𝛼
𝛼 𝜆'E

m + l0 −𝛽
𝛽 0 m = 𝑨 + 𝑩                                     (2.16) 

Where 𝑨 and 𝑩  are given in (2.3) and (2.4) respectively. Also, 𝛽 and 𝛼 are given in (2.13) and 

(2.14), respectively, in the last section. By applying (2.16) in (2.6), the following equation given. 

Ω!F =
G

=;G;H
= >"

>";?";I#$" ;H
                                                                                                    (2.17) 

Similarly, 
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∇𝒗aa⃑ 𝜽𝐦𝐢𝐧 = n
𝜆'E −(𝛽 − 𝛼) 0
𝛽 + 𝛼 𝜆'E 0
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= 𝑨 + 𝑩       (2.18) 

Then, 

Ω$J =
>";%&(L

";M")

>";%"(L
";M");?";I#$" ;%"I#$

" ;H
                                                                                             (2.19) 

From (2.17) and (2.19), the Ω method is different than what is defined in section 2.3.3. Based on 

this idea, Liu, Jianming and Liu, Chaoqun [34] have proposed the modified normalized 

Liutex/vortex identification method. 

Ω%" =
>"

>";?";I#$" ;%"I$
";H

                                                                                                              (2.20) 

According to [34], setting Ω%" = 0.52	as the fixed threshold is always appropriate and can 

capture both solid and weak vortices. Moreover, Ω%" can keep the ring structures of the threshold 

is increased with the high relative strength of vortex structures in different places. Thus, the 

modified Liutex-Omega method, Ω%", is the best iso-surface-based vortex identification method 

until now; see Figure 2.5 and Figure 2.6. 
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                 a)Ω" method                                                             b) Ω%" method 

Figure 2.5: The iso-surfaces of hairpin vortex structures for both Ω" and	Ω%" methods 

Since the modified Liutex-Omega method is the best vortex identification method that 

can capture both strong and weak vortices at the same time very well, the modified Liutex-

Omega with Ω%" = 0.52 will be used to extract the local maximum points in this dissertation; see 

chapter 3. 

 

Figure 2.6: The iso-surfaces of modified Liutex-Omega  with Ω%" = 0.52  

|Ω# '
| =
0.5
2 
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2.3.5 The Liutex method advantages 

Liutex method provides enough information that solves many problems related to vortex 

identification. Unlike the first and second generations methods, the Liutex method is the only 

method that can answer six essential issues of vortex definition and identification which 

are:1)What is the absolute strength of a vortex? 2)What is the relative strength of a vortex? 

3)What is the rotation axis? 4)Where is the vortex core center? 5)What is the size of the vortex 

core? 6)Where is the vortex core boundary? The answers to the previous questions can be stated 

as follows[41]. 

2.3.5.1 The absolute strength of the vortex 

Based on Gao et al.[13], Liutex magnitude is the absolute strength. Since the definition of 

Liutex magnitude is stated as twice the angular speed of the rigid rotation part of the fluid 

motion,  Liutex magnitude is the best measurement of the rigid rotation part because it is not 

contaminated by shearing like others methods. 

2.3.5.2 The relative strength of the vortex 

The relative strength means here the Liutex density or the fluid motion solidity.  It can be 

addressed by Liutex-Omega\ modified Liutex-Omega methods since they can capture both the 

strong and weak vortices simultaneously, unlike Liutex, which is absolute strength; so it may fail 

to capture the weak vortices. For this reason, Liutex-Omega is the best iso-surfaces visualization 

method of vortex based on many user reviews. 
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2.3.5.3 The vortex core center 

The Liutex vector direction is in the local rotational axis. From the definition of Liutex, it 

is known that the local rotational axis is in the local real eigenvector of velocity gradient tensor 

direction, where the other two corresponding eigenvalues are complex conjugate. This 

information about the local axis direction allows us to create smooth Liutex lines, which have an 

essential role in extracting the vortex cores.  

2.3.5.4 The rotation axis 

From definition 2.2, both the Liutex vector and the gradient of Liutex magnitude have the 

same direction. That means vortex cores can be determined where Liutex magnitude is locally 

maximum in the plane normal to r. In chapter 3, this condition will be used to find an exact 

algorithm that produces the Liutex core line. 

2.3.5.5 The size of the vortex core 

From section 2.3.2.3, the vortex core size directly depends on the Liutex core line and the 

vortex core center, which region is the central region where fluid rotation happens. In chapter 4, 

an exact algorithm to create a Liutex core tube, which shows the vortex's size, will be presented 

in detail. 

2.3.5.6 The vortex core boundary 

The separation line (or separation surface) between the rotation and non-rotation area in 

the vortex is called the vortex boundary, so this area combines rotation and shearing. The 

second-generation vortex identification methods use a non-zero threshold to define the boundary 
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of vortices which is arbitrary and subjective selection depends on the users. Therefore, applying 

the iso-surface of  Ω" = 0.52( or Ω%" = 0.52) can guarantee a clear appearance to various flows 

without changing of thresholds each time. 

In this dissertation, the researcher will answer two profound questions: (1) Where is the 

rotation axis? Furthermore, (2) What is the size of the vortex core? In chapter 3, the researcher will 

propose an algorithm to find the Liutex core center points, i.e., the local maxima points, and 

determine the Liutex core line. In chapter 4, the researcher will introduce an algorithm to locate a 

Liutex core tube that shows the vortex structure and strength. 

2.4 Summary: 

 This chapter discusses the three different generations of vortex identification methods. 

The first generation that based on vorticity that established by Helmholtz and his three vortex 

theorems. However, several sensible arguments refute allegations of Helmholtz's vortex 

definition and his theorems have been explained. The second generation of vortex identification 

methods that are eigenvalue-based includes 𝑄-criterion, ∆-criterion, 𝜆'(-criterion, and 𝜆!-

criterion was discussed in the next section. Since 𝑄-criterion and 𝜆!-criterion are the most 

commonly used in the second generation, the researcher covered them in minor detail. The 

limitations of the second-generation methods are underlined clearly. Finally, the third generation 

of vortex identification methods that include Omega, Liutex, Liutex-Omega, and modified 

Liutex-Omega methods are presented. The power of the Liutex method was highlighted by 

providing the answer for the six essential issues of vortex identification methods that are: 1)The 

absolute strength of a vortex, 2) The relative strength of a vortex, 3) The vortex core center, 4) 

The rotation axis, 5) The size of the vortex core, and 6) The vortex core boundary. 
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CHAPTER 3 

AN AUTOMATIC METHOD FOR FINDING THE LIUTEX CORE LINE  

 

This chapter will propose an automatic method to find the Liutex core line to visualize 

the vortices structure. Therefore, it is organized as follows. First, the Liutex lines will be defined, 

and the difference between Liutex lines and the vorticity lines will be clarified. The Liutex core 

line will then be introduced automatically by determining the local maxima points using the 

modified Liutex-Omega method; Ω%", then draw the Liutex line through these points. The critical 

step to do so is finding the best local maxima points, which need to satisfy several conditions. 

Some conditions will apply to nominate the number of the seed points in the following sections. 

After that, the automatic Liutex core line algorithm will be outlined dependent on clear and 

reasonable mathematical explanations. Finally, the summary of finding the core line's automated 

method is given in the last section. 

 

3.1 Liutex lines vs vorticity lines 

 Liutex being a vector allows to defined Liutex lines everywhere. Liutex line is a line that 

is tangent to the local Liutex vector. In Chapter 2, It has been shown that vorticity cannot 

represent vortex. It has been found that: near the wall of a laminar boundary layer, vorticity is 

very large where there is no fluid rotation or vortex. Figure 3.1 shows vorticity lines and Liutex 

lines have been drawn through Λ-vortex [41] with and without iso-surfaces. It is clear to see that 

the vorticity lines penetrate vortex structures, but they are not aligned along while the Liutex 

lines are covered by the Λ-vortex iso-surface almost precisely. 
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                   (a)            with iso-surface                                    without iso-surface 

 

                (b)              with iso-surface                                     without iso-surface 

Figure 3.1: Vorticity lines and Liutex lines through the Λ-vortex 

 

Figure 3.2 shows a similar case to the hairpin vortex. Also, It can be noticed that the 

vorticity concentration does not follow the vortex location most of the time. The next section will 

propose an exact algorithm to construct the unique Liutex core line, dependent on clear and 

reasonable mathematical explanations [30]. 

 

vorticity lines 

Liutex lines 
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               (a)             with iso-surface                                    without iso-surface 

 

          (b)                 with iso-surface                                    without iso-surface 

Figure 3.2: Vorticity lines and Liutex lines through the hairpin vortex 

 

3.2 An automatic method for finding Liutex core line 

 This section answers one of the essential issues, as stated in chapter 2, to identify the 

vortex, the rotation axis(Liutex core line) location. First, find the best local maximum points 

using the modified Liutex-Omega, which is the most tricky and sensitive step. Then, draw the 

Liutex line through these points. 
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 One of the advantages of Liutex is being a vector instead of just a scalar. That allows 

finding the center axis of the vortex rotation, which can help set the vortex structure. All Liutex 

gradient lines converge to one concentration line by observation, which is judged to be the vortex 

rotation axis line as the local Liutex maxima on the plane perpendicular to the vortex rotation 

axis line. So, starting the automated method by finding the local maximum points will be the first 

step. To do so, we need to find all the seed points, even for weak vortices. Then, filter the 

unnecessary seed points, which could make noises everywhere. The following subsections show 

all steps in details: 

 

3.2.1 Setting the modified Liutex-Omega method; 𝛀%𝑹 

 According to the discussion in chapter 2, the modified Liutex-Omega method has several 

advantages over other methods. Without shear contamination, the modified Liutex-Omega 

method can capture both weak and robust vortices simultaneously. The modified Liutex-Omega 

method is insensitive to the threshold change; setting Ω%" = 0.52	is the best choice; see figure 

2.6. The modified Liutex-Omega with Ω%" = 0.52	is applied as the first rule in this algorithm. 

This condition is used to exclude the non-vortex points. 

 

3.2.2  Finding the core center-points (the local maximum points) 

Definition 3.1. The vortex core center-point can be defined as the concentration of gradient of 

Liutex lines, i.e., the local maxima [16]. 

The critical point of any function 𝑓 is the value 𝑝 that belongs to the function's domain 

and satisfies that 𝑓	 is not differentiable at 𝑝 or its differentiable at 𝑝 is zero.  



 29 

Local minimum point Local maximum point Saddle point 
 

Definition 3.2. Consider 𝑝 be an interior point in the domain of the function 𝑓. 𝑝 is a critical 

point of 𝑓 if 𝑓′(𝑝) = 0 or 𝑓′(𝑝) is undefined [19]. 

There are three different types of the critical point of any function: local maximum point, 

local minimum point, and saddle point. The local maximum point is a point 𝑝 in the function's 

domain such that all other points in a neighborhood near to 𝑝 produce smaller values when all 

these points are implemented through the function. See figure 3.3 [3], which shows the physical 

meaning of the three different types. 

 

 

 

 

 

 

 

 
 

Figure 3.3: Three different types of the critical point 
 

 In practice, to find a local maximum point at some neighborhood of a function, we need 

to select all extrema points in this region first then test them to find the highest value after the 

function has effectuated. The second derivative test will be used in the current case, ref.[22]. 
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3.2.2.1 The second derivative test 

From the definition of the modified Liutex-Omega, it has been known that Ω%" is 

differentiable; the second partial derivative of  Ω%" exists and continuous on its domain; see 

chapter 2. Let 𝑝 = (𝑥, 𝑦, 𝑧) be a point belong to Ω%" domain. If : 

 

• ∇Ω%" = 0                , i.e.: since ∇Ω%" =	

⎣
⎢
⎢
⎢
⎡
/PQ(
/1
/PQ(
/2
/PQ(
/4 ⎦
⎥
⎥
⎥
⎤

= n
0
0
0
q . So, it is needed to set:        

     /P
Q(
/1

= 0, /P
Q(
/2

= 0,		and /P
Q(
/4

= 0   , and                                                                   (3.1) 

• Hessian matrix, 𝐻, of the second partial derivatives with respect to Ω%" 	is negative definite 

at the same point , i.e.:     𝑝,𝐻	𝑝	 < 	0,			∀	𝑝 ≠ 0.                                                         (3.2) 

are satisfied. Then, 𝑝 = (𝑥, 𝑦, 𝑧) is a local maximum point of  Ω%". 

For simplified the previous condition, it is needed to answer the question: How will it 

check whether 𝐻 is negative definite at the critical point 𝑝 or not? There are many ways to do so, 

such as if all the Hessian matrix eigenvalues are negative at 𝑝, then 𝑝 is a local maximum point. 

Even though the eigenvalue test is useful theoretically, it is not easy to apply in practice because 

computing eigenvalues is expensive somehow while it is needed to reduce the cost of the 

competition as possible for more accurate and faster results. So, the following steps will show a 

more painless technique to check that. 
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Assume that the Hessian matrix,  𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡
/"PQ(
/1"

/"PQ(
/1/2

/"PQ(
/1/4

/"PQ(
/1/2

/"PQ(
/2"

/"PQ(
/2/4

/"PQ(
/1/4

/"PQ(
/2/4

/"PQ(
/4" ⎦

⎥
⎥
⎥
⎥
⎤

 is symmetric, i.e.: 𝐻, = 𝐻. 

Notice that the Hessian matrix is not symmetric in general. Consider the principal minor 

method of 𝐻 as follows. Let 𝐻 be an 𝑛 × 𝑛	 symmetric matrix and let 𝐻R be the submatrix of 𝐻 

obtained by taking the upper left-hand corner 𝑘 × 𝑘 submatrix of 𝐻. Furthermore, let Δ𝑘 =

det(𝐻R)  the 𝑘ST principal minor of 𝐻. Then, 𝐻 is negative definite if and only if  (−1)RΔ𝑘 > 0  

for 𝑘 = 1,2, … , 𝑛. That means; in the current case, if the following : 

• det U	/
"PQ(
/1"

	V < 0       , i.e.:   /
"PQ(
/1"

	< 0 ,                                                                          (3.3) 

• det �

/"PQ(
/1"

/"PQ(
/1/2

/"PQ(
/1/2

/"PQ(
/2"

� > 0                      , and                                                                      (3.4) 

• det

⎣
⎢
⎢
⎢
⎢
⎡
/"PQ(
/1"

/"PQ(
/1/2

/"PQ(
/1/4

/"PQ(
/1/2

/"PQ(
/2"

/"PQ(
/2/4

/"PQ(
/1/4

/"PQ(
/2/4

/"PQ(
/4" ⎦

⎥
⎥
⎥
⎥
⎤

< 0                                                                                        (3.5) 

are satisfied, then 𝑝 = (𝑥, 𝑦, 𝑧) is a local maximum point.  

The second derivative test calculates all the local maximum points even for the weak 

vortices, which will result from a massive bunch of local maximum points. The result never 

gives the unique Liutex core line that needed to find. So there is a needs to move away from the 

weak local max points and keep only the core line points. 
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3.2.3  Using the definition of Liutex core line (rotation axis) 

 Recalling the definition of Liutex core line, definition 2.2 in chapter 2, the Liutex core 

Line (rotation axis) is a Liutex line where all the points belonging to it satisfy the equation 

(2.11). The vortex's rotation axis definition based on the Liutex vector allows the best way to 

represent the vortices by Liutex core lines that are colored according to the vortex strength. The 

equation (2.11) means that the gradient of Liutex has the same direction as the local Liutex 

vector, which is 𝑟. Moreover, ∇𝑅 is perpendicular to any line element 𝑑𝑙aaa⃗ . The next theorems 

explain the idea behind definition (2.11) [43]. 

Definition 3.3: A Liutex (vortex) rotation axis line is defined as the local maxima of Liutex, 

which is a line without iso-surface. 

Theorem 3.1:  If ∇𝑅 ≠ 0, then any small element of a line; say 𝑑𝑙aaa⃗ , on the Liutex iso-surface 

must be orthogonal to the gradient of Liutex.  

Proof: On the Liutex iso-surface, 𝑑𝑅 = ∇𝑅 ∙ 𝑑𝑙aaa⃗ = 0, that means 𝑑𝑙aaa⃗  and ∇𝑅 are orthogonal.	∎ 

Theorem 3.2: If ∇𝑅 × 𝑑𝑙aaa⃗ = 0 at a point 𝑝, then 𝑝 must belong to the Liutex rotation axis. 

Proof: Consider the point 𝑠 that is not located in the Liutex rotation core axis. Then 𝑠 has to be on 

some Liutex iso-surface. If 𝑑𝑙aaa⃗  is also on a Liutex iso-surface, then dR = ∇𝑅 ∙ 𝑑𝑙aaa⃗ = 0 must hold at 

𝑠	 and then ∇𝑅 × 𝑑𝑙aaa⃗ ≠ 0. On the other hands, if ∇𝑅 × 𝑑𝑙aaa⃗ = 0, 𝑑𝑙aaa⃗  not on any Liutex iso- surface, 

which is the Liutex rotation axis because according to Definition 3.3, the Liutex rotation axis is a 

local maxima and has no Liutex iso-surface.                                                                                 ∎ 
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To apply (2.11) in practice, it is need to set the result of the cross product of ∇Ω%" and 𝑟 to 

be zero. That means, if 𝑟 = n
𝑟#
𝑟!
𝑟$
q is the real eigenvector of  ∇𝑣⃗ and ∇Ω%" =	

⎣
⎢
⎢
⎢
⎡
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/1
/PQ(
/2
/PQ(
/4 ⎦
⎥
⎥
⎥
⎤

 is the gradient of 

the modified Liutex-Omega, then  

∇Ω%" × 𝑟 = 
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⎢
⎡
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/4 ⎦
⎥
⎥
⎥
⎤
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q = det �
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/1
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𝑟# 𝑟$
� 	𝚥̂ + det �
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)*+(
)-

𝑟# 𝑟!
�	𝑘�  

																																					= U)*+()- 		𝑟$ −	
)*+(
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)*+(
). 		𝑟$ −	

)*+(
), 		𝑟#�𝚥̂ + U

)*+(
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)*+(
)- 		𝑟#V 𝑘�     (3.6) 

The equation (2.11) can be rewritten using the expression (3.6) as the follows. 

∇Ω%" × 𝑟 = 	

⎣
⎢
⎢
⎢
⎡
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/2

		𝑟$ −
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/4
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)*+(
),

		E%V
)*+(
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⎤
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0
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i.e:     �
										)*+()- 		𝑟$ −

)*+(
), 		𝑟! = 0

)*+(
), 		E%V	

)*+(
). 		E0W%	

)*+(
). 		E"V	

)*+(
)- 		E%W%

									 

So that : 

         	)*+()- 		𝑟$ =
)*+(
), 		𝑟!                                                                                                                (3.7)   

         	)*+(), 		𝑟# =
)*+(
). 		𝑟$                                                                                                                (3.8) 

        		)*+(). 		𝑟! =
)*+(
)- 		𝑟#                                                                                                                (3.9) 
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That means, all the points that belong to the Liutex core line are satisfy the equations 

(3.7), (3.8), and (3.9). Even though the equation (2.11) has been proved mathematically as stated 

above, ref. [43], in practice, it is possible to find some points that satisfy (2.11) and do not 

belong to the Liutex core line for many reasons, which will be discussed later in this chapter. So, 

to filter the fake maximum points, the expression of the convective derivative of modified 

Liutex-Omega will be used in the following condition. 

 

3.2.4  Using the convective derivative  

 The material derivative is a mathematical relationship that relates the time rate of change 

of a physical quantity, which is Liutex in our case, as observed from the Lagrangian viewpoint to 

the time rate of changing the same physical quantity as observed from the Eulerian viewpoint. So 

based on this meaning, the full derivative expression from the Eulerian point of view is 

UJP
Q(
JS
V
X
= /PQ(

/S
+ 𝑢 /PQ(

/1
+ 𝑣 /P

Q(
/2

+𝑤 /PQ(
/4

                                                                                 (3.10)          

where JP
Q(
JS

 is the total rate of change in Ω%" observed by a fluid element 𝑝, /P
Q(
/S

 it is called the 

unsteady term, which is the rate of change in Ω%" with respect to the time, and 𝑣⃗ ∙ ∇Ω%" is called 

the convective term, which is the rate of change in 𝑅 with respect to the space.  

 In 2020, Wang et al. [42] has proposed an expression of the convective derivative of 

(3.10) given as follows. 

JPQ(
JS

= /PQ(
/S

+ Ω%"∇ ∙ 𝑣⃗ + 𝑣 ∙ ∇Ω%" − ∇ × �𝑣 × Ω%"�                                                           (3.11) 

where:  

• Ω%"∇ ∙ 𝑣⃗  is Liutex stretching term (LST), which represents the normal strain of vortex 

axis. 
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• 𝑣⃗ ∙ ∇Ω%"  is Liutex dilatation term (LDT), which represents the effects of Liutex 

divergence in the convection process. 

• −∇ × �𝑣⃗ × Ω%"�  is Liutex curl term  (LCT), which represents the effects of shearing 

motion and local acceleration. 

Since the Liutex core line is in isolation of the effects of Liutex divergence in the convection 

process and shearing motion and local acceleration, LDT and LCT are needs to vanished, which 

means the only term that is remained in (3.11) is the LST. In practice, there is a needs to simplify 

the following. Since there is nothing special with p, (3.11) can be written as 

JPQ(
JS

= /PQ(
/S

+ Ω%"∇ ∙ 𝑣⃗                                                                                                         (3.12) 

By apply (3.10),  

𝜕Ω%"
𝜕𝑡 + 𝑢

𝜕Ω%"
𝜕𝑥 + 𝑣

𝜕Ω%"
𝜕𝑦 + 𝑤

𝜕Ω%"
𝜕𝑧 =

𝜕Ω%"
𝜕𝑡 + Ω%"∇ ∙ 𝑣⃗ 

𝑢
𝜕Ω%"
𝜕𝑥 + 𝑣

𝜕Ω%"
𝜕𝑦 + 𝑤

𝜕Ω%"
𝜕𝑧 = Ω%"∇ ∙ 𝑣⃗ 

i.e: 𝑣⃗ ∙ ∇Ω%" = Ω%"∇ ∙ 𝑣⃗                                                                                                      (3.13) 

So for filtering the local max points, it could be apply (3.13) or set LDT and LCT to be zero.  

 

3.3 Algorithm of the automatic method for finding the unique Liutex core line 

In this section, the algorithm of extraction the unique Liutex core line automatically will 

be summarized as follows. 

 

Algorithm 3.1: Finding the Liutex core line 

Rule 1: Set the modified Liutex-Omega threshold to be 0.52; Ω%" = 0.52 to exclude the non-  

             vortex points when Ω%" < 0.52. 
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Rule 2: Find all the core center points (the local maxima points) for both strong and weak 

            vortices using the second derivative test by apply (3.1), (3.3), (3.4), and (3.5). 

Rule 3: Filter these local maximum points using the definition of Liutex core line by apply (3.7), 

            (3.8), and (3.9). 

Rule 4:  Force more conditions on these local maxima points to exclude fake points as much as  

             possible, using the convective derivative decomposition by apply (3.13). 

Rule 5: Draw the Liutex lines through the points that are obtained from the previous steps 

            to extract the Liutex core line. 
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Figure 3.4: An algorithm of finding the Liutex core line 
 

Algorithm of extract the Liutex core line 

Set the modified Liutex-Omega threshold 
to be Ω%" = 0.52 

Finding all the local maxima points for both strong 
and weak vortices; apply (3.1), (3.3), (3.4), and 

(3.5) 

Filter the local maximum points using the condition 
∇𝑅 × 𝑟 = 0; apply (3.7), (3.8), and (3.9) 

To exclude more fake points as much as possible, use 
the convective derivative decomposition; apply (3.13).  

Extract the Liutex core line by drawing the Liutex 
lines through the points that are obtained via the 

previous steps. 
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3.4 The numerical result: testing case 

 In this section, the proposed automatic method is applied to find the Liutex core line for 

the data obtained from a Direct Numerical Simulation (DNSUTA) of flow transition in boundary 

layers validated by researchers from UTA and NASA Langley, see chapter 1.  

 Figure 3.5 and Figure 3.6 show the local maximum points before and after drawing the 

Liutex line. It is clear to see that the Liutex core line passes through the local maximum points, 

which have been calculated by algorithm 3.1. 

 

 

   

 

Figure 3.5: The local maximum points before drawing Liutex line 

 

The local maximum points 

a) with iso-surface                                                                         b) without iso-surface 
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Figure 3.6: The local maximum points after drawing Liutex line 

 

Figure 3.7 and Figure 3.8 show the Liutex core line extracted for the early transition stage. The 

Liutex core line shows Λ-vortex structure the same as the modified Liutex-Omega iso-surface.  

 

 

Figure 3.7: The Liutex core line of Λ-vortex 

 

b) with iso-surface                                                                         a) without iso-surface 

  

b) without iso-surface a) with iso-surface                                                                         

The local maximum points 

Liutex core line 
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 While Figure 3.9 compares the Liutex core line with and without iso-surface for the late 

transition stage. The extracted Liutex core line succeeds in following the same vorticities 

structure as the modified Liutex-Omega iso-surface. 

 

                 a) without iso-surface                                           b) with iso-surface     
                                                                     

Figure 3.8: A side view of the Liutex core line for early transition stage

 

                  a) without iso-surface                                           b) with iso-surface     
                                                    

Figure 3.9: A top view of the Liutex core line for late transition stage 
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 Figure 3.10 and Figure 3.11 show top and side views of the Liutex core line for the very 

late transition stage. It may notice some noise in this late stage. Moreover, Figure 3.12 shows a 

top view of the Liutex core line of flow transition in boundary layers comparing with the iso-

surface. The Liutex core line always follows the same structure as the modified Liutex-Omega 

iso-surface. 

 

                 a) without iso-surface                                           b) with iso-surface     
 

Figure 3.10: A top view of the Liutex core line for the very late transition stage 

  



 42 

 

                        a) without iso-surface                                           b) with iso-surface     
                   

Figure 3.11: A side view of the Liutex core line for the very late transition stage 

 

 

                 a) without iso-surface                                           b) with iso-surface     
 

Figure 3.12: A top view(zoom out) of the Liutex core line 
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    a)early transition stage                                         b)late transition stage 

Figure 3.13: A front view of the Liutex core line 

 

 The Liutex core line in the early transition stage shows the vortex structure clearly with 

almost no noises. However, in the late transition stage, when turbulence becomes stronger and 

vortices are severely curved, the noise appears little by little for several reasons. One of the 

reasons behind that is that the connection between the maximum points may be difficult due to 

the previously established coordinate grid, which may cause duplication of the Liutex line 

several times. Also, the numerical errors allow many fake maximum points to be calculated. 

Figure 3.14 shows that the Liutex core line structure has much noise and losing symmetry in the 

late transition stage. 
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Figure 3.14: The Liutex core line structure with a lot of noise and losing symmetry in the late 

transition stage 

3.5 The conclusion of the numerical results: Liutex core line method advantages 

The Liutex core line method to visualize the vortex structure is the best vortex 

identification method for several reasons. The Liutex core line is the only method that gives a 

unique vortex structure, which is never affected by the threshold; see Figure 3.15 and Figure3.16. 

Unlike iso-surface-based methods, which produce an iso-surface structure, the Liutex core line 

has used the great benefit of Liutex to be a vector, so it is made of Liutex lines are defined 

everywhere. Also, the Liutex core line shows the strength of the vortex, and it can show the 

direction of the vortex as well, see Figure 3.17 and Figure 3.18. 
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            (a)Q-method with 𝑄 = 0.005                      (b)Q-method with 𝑄 = 0.05 

 

(c)Liutex Core Line never changes by threshold 

Figure 3.15: Comparison between Q-method and Latex core line(zoom out) 

𝑄 = 0.005 𝑄 = 0.05 
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            (a)Q-method with 𝑄 = 0.005                      (b)Q-method with 𝑄 = 0.05 

 

(c)Liutex Core Line never changes by threshold 

Figure 3.16: Comparison between Q-method and Latex core line(zoom in) 
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Ω#' = 0.50 Ω#' = 0.53 Ω#' = 0.56 

Ω#' = 0.59 Ω#' = 0.61 Ω#' = 0.64 

Ω#' = 0.67 Ω#' = 0.70 Ω#' = 0.71 

Ω#' = 0.73 Ω#' = 0.75 Ω#' = 0.76 
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Figure 3.17: Proving the unique vortex structure of the Liutex core line, never changed in 

different thresholds 

 

Figure 3.18: Liutex core line shows the direction of the fluid rotation axes  

Ω#' = 0.78 Ω#' = 0.80 Ω#' = 0.82 

Ω#' = 0.84 Ω#' = 0.86 Ω#' = 0.88 
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3.6 Summary: 

This chapter intends to find the Liutex core line automatically. The differences between 

Liutex lines and vorticity lines have been discussed in the first section, which is found that 

Liutex lines can represent the vortex while the vorticity lines can not. The following sections, 

determining the local maxima points. The local maxima points have calculated by the second 

derivative test. These local maxima points have been filtered by apply the Liutex core line 

definition. The automatic method for finding the unique Liutex core line is the summarized 

section. Finally, the numerical result of applying this algorithm on the DNS data of flow 

transition in boundary layers is proposed. 

 

 

 

 

 

 

 

 

 

 

 

 



 50 

CHAPTER 4 

AN AUTOMATIC METHOD FOR FINDING A LIUTEX CORE TUBE  

 

 In this chapter, an automatic method to create a Liutex core tube to visualize the vortices 

structure will be shown. First, the manual method of finding a Linux core tube will discuss 

briefly to understand the idea of creating a tube out of Liutex lines. Then, an automatic method 

for finding Liutex core tube in detail will be proposed. The algorithm of the automatic method 

will be summarized in the following section. Finally, on the DNS data of flow transition in 

boundary layers, the numerical result of this automatic method will be shown in detail. 

 

4.1 The manual method of Liutex Core tube 

 The vortex core line has an essential role in creating the vortex core tube since the core 

tube can be defined as the central area where fluid has a rotation, the area around the vortex core 

line. That means the vortex core tube structure depends on the vortex core line accuracy. In 

2021, The manual method to find Liutex core tube using Liutex core line has been presented by 

Alvarez et al.[2]. In this section, Alvarez's manual method will be summarized to grasp the main 

idea of extract a tube using Liutex lines. See Chapter 2 and Chapter 3 for more information about 

Liutex lines. The DNS, early transition data of a flat plate, has been used in the original paper to 

construct the Liutex core line and Liutex core tube. It should be noted here that Alvarez used 

Liutex magnitude in his original paper. However, the researcher preferred to apply Alvarez's 

manual method on modified Liutex-Omega to obtain more precise and accurate figures. 
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4.1.1 Extract the Liutex core line manually: 

 First, pick a slice on the x-axis, which intersects with the leg of the hairpin vortex; see 

Figure  4.1. Near the intersection of the vortex region and the x-slice, take a sample of Liutex 

gradient lines. The Liutex gradient lines indicate the core line, which lets to locate the exact 

location of the Liutex core line.  

 

(a)       Ω%" = 0.52                                                  (b)     X-slice at  𝑋	 ≈ 419 
 

Figure 4.1: DNS of the flat plate boundary layer with iso-surfaces drawn using Modified Liutex-

Omega of 0.52 in the early transition phase 

 
 

The intersection of the Liutex gradient lines and the X-slice exists at a local maximum 

point. Now, draw the Liutex core line, as in ref.[16], which pass through the intersection point of 

the Liutex gradient lines with the reference x-slice, the local maximum point. In Figure 4.2 and 

Figure 4.3, a Liutex line has been created at the intersection point. 
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Figure 4.2: The intersection area of the iso-surface and the reference X-slice 

 

 

Figure 4.3.a: Liutex line drawn at the intersection point of the X-slice and Liutex gradient lines, 

which creates the Liutex core line without the iso-surface 

Liutex core line 
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Figure 4.3.b: Liutex line drawn at the intersection point of the X-slice and Liutex gradient lines, 

which creates the Liutex core line with the iso-surface 

 

4.1.2 Create a Liutex core tube manually: 

Definition 4.1 The Liutex Core Tube Magnitude Vector is a vector lying on a plane that 

intersects with the Liutex core line were its initial point at the Liutex core line, the local 

maximum point, and its terminal point at an arbitrary percentage between 0 and 1. 

 So, the size of the tube can be decided via the Liutex core tube magnitude vector by 

chosen the percentage of terminal point, which is the length of this vector, see Figure 4.4. 

 

Liutex core line 
Liutex core line 
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Figure 4.4: Liutex core tube magnitude vector 𝑝 
 

In Figure 4.4, the point 𝑝 is an arbitrary percentage of the local maximum point 𝑐 where         

0 < 𝑎 < 1. The condition that forces 𝑎	to be between 0 and 1 is applied because of the following 

cases:  

• If 𝑎	 ≤ 	0 : so 𝑝	is located where Ω%" 	≤ 	0.52. That means there is no fluid rotation;  in 

other words, there is no vortex anymore. 

• If 𝑎	 = 1: so 𝑝	 = 	𝑐,	which means the Liutex core tube magnitude vector has a length of 

0. That happens only at the local maximum point itself. 

• If 𝑎	 > 	1: that means there exist higher values than the local maximum point 𝑐,	that is a 

contradiction of the existence of 𝑐. 

𝑐 

𝑝 
𝑝 

Point 𝑝 is an arbitrary percentage of the 
local maximum value 𝑐 

Liutex core tube magnitude  
vector 

The Liutex core line and the X-slice 
intersection point 

𝑎 

The length of 𝑝 
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After defining the Liutex core tube magnitude vector, plot Liutex lines through the terminal 

points around the Liutex core line to create the Liutex core tube; see Figure 4.5.  

 

Figure 4.5: Liutex core tube magnitude vectors 𝑝#, 𝑝⃗!, and 𝑝$ 

 

Then, the Liutex core tube is introduced as a collection of Liutex lines passed through some 

terminal points of a discrete or infinite amount of Liutex core tube magnitude vectors on a plane 

intersecting the Liutex core line. The manual method that is proposed by Alvarez et al. is 

successful; see Figure 4.6. However, in complex and severely curved vortices, the manual 

method of finding Liutex core tube seems not able to occur. 

𝑝#  

𝑝$ 

𝑝! 

Liutex lines 

Liutex core line 

𝑐 

Liutex core tube magnitude vectors 
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Figure 4.6: Liutex core tube creating manually by one local maximum point  

 

In the next section, an algorithm to create a Liutex core tube will be proposed, dependent 

on the unique Liutex core line introduced in chapter 3. The importance of finding the Liutex tube 

is answering one of the significant issues, as stated in chapter 2, to identify any vortex, which is” 

What is the size of the vortex core?”. 

 

4.2 An automatic method for finding Liutex core tube 

 In this section, an algorithm to create a Liutex core tube will be presented, dependent on 

the unique Liutex core line introduced in chapter 3.  

           First, at every local maximum point found by algorithm 3.1, consider the X- slice, i.e., 

2D-Plane (YZ-plane), as shown in Figure 4.7.  

Liutex core tube 
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          (a)without X-slice                                      (b) with X-slice 

Figure 4.7: Liutex core line creating by algorithm 3.1 in the early transition phase 

 

So, if 	𝑝% = (𝑥%, 𝑦%, 𝑧%) is the intersection point between the Liutex core line and the 

reference X-slice, which is the local maximum point, then  𝑝% can be considered as 𝑝% = (𝑦%, 𝑧%) 

in the YZ-plane, the reference X-slice, see Figure 4.8.  

 

Liutex core line 
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Figure 4.8: The intersection point of the Liutex core line and the reference X-slice; the local 

maximum point 𝑝% 

 

Now, the goal is finding finite or infinitely many points surrounding 𝑝% with a fixed 

distance; say 𝑎, of it. Notice that a represent the size of the tube and satisfies 0 < 𝑎 < 1. All 

these points satisfy the following equation. 

(𝑦 − 𝑦%)! + (𝑧 − 𝑧%)! = 𝑎!                                                                                               (4.1) 

In Figure 4.9, it is easy to figure out the points 𝑝# = (𝑦% + 𝑎, 𝑧%), 𝑝! = (𝑦%, 𝑧% + 𝑎),             

𝑝$ = (𝑦% − 𝑎, 𝑧%),	and 𝑝& = (𝑦%, 𝑧% − 𝑎). These points can be used as pre-conditions while 

equation (4.1) is solved to ensure that there are some points everywhere around 𝑝%.  

 

𝑝! 𝑌 

𝑍 

Liutex core line 

The intersection point of Liutex  
core line and X-slice; the local  

maximum point 

Y-axis and Z-axis 
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Figure 4.9: The pre-conditions points 𝑝#, 𝑝!, 𝑝$, and 𝑝& 

After determining enough points surrounding 𝑝%; see Figure 4.10, draw Liutex line 

through these new points to extract the Liutex core tube, see Figure 4.11. 

             

Figure 4.10: Determining the points that are between the pre-conditions points by solving (4.1) 
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   (a)Liutex core tube; black color                            (b)Liutex core tube; multi-color to show the strength 

Figure 4.11: Liutex core tube with the reference X-slice 

 

4.3 Algorithm of the automatic method for finding the Liutex core tube 

In this section, an algorithm of extraction of a Liutex core tube automatically will be 

summarized as follows.  

Algorithm 4.1: Finding a Liutex core tube 

Rule 1: Consider a local maximum point, 𝑝% = (𝑥%, 𝑦%, 𝑧%), that is obtained by Step 5 at  

             algorithm 3.1, and select a value of 𝑎 where 0 < 𝑎 < 1. 

Rule 2: Calculate the following points: 

            

⎩
⎨

⎧
𝑝# = (𝑥%, 𝑦% + 𝑎, 𝑧%),
𝑝! = (𝑥%, 𝑦%, 𝑧% + 𝑎),
𝑝$ = (𝑥%, 𝑦% − 𝑎, 𝑧%),
𝑝& = (𝑥%, 𝑦%, 𝑧% − 𝑎).

                                                                                                  (4.2) 

Rule 3: Solve the following problem: 

                        Find 𝑦 and 𝑧 s.t: (𝑦 − 𝑦%)! + (𝑧 − 𝑧%)! = 𝑎!                                                  (4.3) 

             In the following four cases: 

Liutex core tube 

Liutex core tube 
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             Case1:    𝑦% < 𝑦 < 𝑦% + 𝑎     and     𝑧% < 𝑧 < 𝑧% + 𝑎 

             Case2:    𝑦% − 𝑎 < 𝑦 < 𝑦%     and     𝑧% < 𝑧 < 𝑧% + 𝑎 

             Case3:    𝑦% − 𝑎 < 𝑦 < 𝑦%     and     𝑧% − 𝑎 < 𝑧 < 𝑧% 

             Case4:    𝑦% < 𝑦 < 𝑦% + 𝑎     and     𝑧% − 𝑎 < 𝑧 < 𝑧%. 

             The output points have the form: 𝑝* = (𝑥%, 𝑦*, 𝑧*) , for  𝑛 = 1,2,3, ….	for each case. 

Rule 4: Draw the Liutex lines through the new points that are obtained from the previous steps 

            to extract the Liutex core tube. 

Rule 5: Repeat the previous steps for all local maximum points that are obtained by Step 5 at  

             algorithm 3.1. 

 It needs to highlight that problem (4.3) has infinitely many solutions. However, finding a 

finite number of solutions is enough in this case. To show that, let us consider the problem (4.3), 

solve it for z: 

(𝑧 − 𝑧%)! = −(𝑦 − 𝑦%)! + 𝑎! 

𝑧! − (2𝑧%)𝑧 = −𝑦! + (2𝑦%)𝑦 + (𝑎! − 𝑦%! − 𝑧%!)                                                                     (4.4) 

Assume it wants to find 50 different solutions. For case1, it is known that 𝑦 belongs to the 

interval (𝑦%, 	𝑦% + 𝑎), so it is could be partition this interval into 50 equally spaces to know 𝑦 

values. By replace these values in (4.4), we get a quadratic equation with only one variable, 𝑧, 

which is so easy to solve, similarly for the rest cases.  
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Figure 4.12: An algorithm of finding a Liutex core tube 
 

Algorithm of extract a Liutex core tube 

Consider 𝑝% that is obtained by algorithm 3.1, select a 
value of 𝑎 where 0 < 𝑎 < 1 

 
Calculate 𝑝#, 𝑝!, 𝑝$, and 𝑝& as equation (4.2) 

Solve problem (4.3) in the four cases; find a finite 
number of solutions for each case; the output points 
have the form: 𝑝( = (𝑥%, 𝑦( , 𝑧(), for 𝑖 = 1,2,3, . . , 𝑛	for 

each case 

Extract the Liutex core tube by draw the Liutex lines 
through the new points that are obtained from the 

previous steps 

 
Repeat the previous steps for all 𝑝% that are obtained 

by algorithm 3.1 
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4.4 The numerical result: testing case 

In this section, the proposed automatic method is applied to find the Liutex core tube for 

the data obtained from a Direct Numerical Simulation (DNSUTA) of flow transition in boundary 

layers, which researchers from UTA and NASA Langley validated, see chapter 1. 

 

 

                        (a)Liutex core tube                                            (b) Liutex core line 

Figure 4.13: Liutex core tube and Liutex core line for early transition stage 

 

                           (a)Liutex core tube                                         (b) Liutex core line 

Figure 4.14: Liutex core tube and Liutex core line for the hairpin vortex 

Liutex core line Liutex core tube 
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Figure 4.13 and Figure 4.14 show the Liutex core tube and Liutex core line, which were 

extracted, for the early transition stage. The Liutex core line shows the skeleton of the vortex, 

while the Liutex core tube shows the strength of the vortex clearly. 

 

 

                        (a)Liutex core tube                                            (b) Liutex core line 

Figure 4.15: Liutex core tube and Liutex core line for late transition stage 

 

Figure 4.15 compares the Liutex core tube and the Liutex core line for the late transition 

stage. The extracted Liutex core tube and Liutex core line always follow the same vorticities 

structure. While Figure 4.16 shows a top view of the Liutex core tube and the Liutex core line for 

the late transition stage. In the late stage, the noise may be noticed clearly. Moreover, Figure 

4.17 shows a top view of the Liutex core tube of flow transition in boundary layers comparing 

with the Liutex core line for the same snapshot. 
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                            (a)Liutex core tube                                            (b) Liutex core line 

Figure 4.16: Liutex core tube and Liutex core line for very late transition stage 

 

 

                            (a)Liutex core tube                                            (b) Liutex core line 

Figure 4.17: A top view(zoom out) of Liutex core tube and Liutex core line  
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Like the Liutex core line, the Liutex core tube in the early transition stage clearly shows 

the vortex structure with almost no noises. However, in the late transition stage, when turbulence 

becomes stronger, and vortices are severely curved, the noise appears little by little for the same 

reasons stated in Chapter 3. 

4.5 The conclusion of the numerical results: Liutex core tube method advantages 

 Even though the Liutex core tube is never affected by the threshold, the Liutex core tube 

is not unique. The reason behind that is back to the size which is setting by the user. However, 

one of the advantages of the Latex core tube is showing the strength of the vortices structure very 

clearly, unlike the iso-surface methods, see Figure 4.18. Besides showing some size of the vortex 

structure, the Liutex core tube can show the vortex direction like the Liutex core line because 

both are made by Liutex lines. Figure 4.19 shows the direction of the vortex. 

  

Figure 4.18: Comparison between Liutex core tube and the iso-surface where the iso-surface 

never shows any strength of the vortex 

(a)Liutex core tube                                    (b) the iso-surface of Ω%" = 0.52 
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(a) Multi-color                                                      (b) One color (Green) 

Figure 4.19: Liutex core tube shows the direction of the vortex 

4.6 Summary:  

In this chapter, the main goal is to find the Liutex core tube automatically. The manual method 

of finding the Liutex core tube has discussed in the first section. The result of the manual method 

is successful. However, creating a Liutex core tube for complex and severely curved vortices is 

difficult. In the following section, an automatic method for finding Liutex core tube has proposed 

in detail. Since the Liutex core tube depends on the Liutex core line, the automatic method 

started from the local maximum points obtained by algorithm 3.1. Finally, the numerical result of 

applying this automatic method on the DNS data of flow transition in boundary layers is 

presented. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE STUDIES 

 

Liutex and related Liutex methods (Ω" and 	Ω%") excel the first and second generations of 

vortex identification methods. Liutex method can be defined as the rotation part of fluid motion. 

Liutex method also provides a vector, scalar, and tensor forms. So it has been efficiently used to 

identify the vortex structures in this study and extract the Liutex core line and tube. In this study, 

the answer to two essential issues of vortex definition and identification has presented: (1) What 

is the rotation axis? (2) What is the size of the vortex core? An algorithm to locate the Liutex 

core line has been introduced in chapter 3. While an algorithm to find a Liutex core tube has 

been presented in chapter 4. In this dissertation, the researcher uses the modified Liutex-Omega 

to extract the points because it can capture both weak and strong vortex at the same time. The 

data obtained from a Direct Numerical Simulation (DNSUTA) of flow transition in boundary 

layers, which researchers from UTA and NASA Langley validated, has been used to show the 

result in this dissertation. 

Liutex lines have compared with vorticity lines, and it turns out that vorticity lines cannot 

identify the vortex, unlike Liutex lines. The automatic method of finding the Liutex core line is 

started by setting the threshold of the modified Liutex-Omega to be Ω%" = 0.52. Finding the local 

maxima points using the second derivative test was the second step. Liutex core line definition: 

∇𝑅 × 𝑟 = 0 has been applied after that with the convective derivative decomposition that is 

proposed by Wang [42]. has been applied after that with the convective derivative decomposition 

proposed by Wang [42]. The automatic method for finding the unique Liutex core line has 

summarized in the next section. The numerical results have shown after applying the previously 
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presented algorithm. It can be concluded that the Liutex core line method is the best method to 

visualize the vortex structure for three reasons: (1) It is unique, (2) showing the strength, and (3) 

showing the direction of the rotation axis. 

The manual method of creating a Liutex core tube has introduced using the modified 

Liutex-Omega instead of Liutex magnitude in the original paper. The manual method starts by 

extracting the Liutex core line manually, then Creates a Liutex core tube after selecting the tube 

size, a value between 0 and 1, by the user. The manual method that is proposed that proposed in 

Chapter 4 [2] seems a successful method, but adopting this method is impossible in complex and 

severely curved vortices. Hence the need to find an algorithm that presents a Liutex core tube. 

An algorithm to create a Liutex core tube has been presented after depending on the unique 

Liutex core line, which is introduced in Chapter 3. The algorithm of the automatic method for 

finding the Latex core tube has been summarized next. After applying the previously presented 

algorithm, the numerical results have shown in the next section. As a conclusion of the Liutex 

core tube method to visualize the vortex structure, it can be point the following:(1)  Liutex core 

tube is not unique because the different choice of a value produces different tube with different 

size. However, the Liutex core tube is unique concerning the threshold because it is not affected 

by changing the threshold since it is made of Liutex lines. (2)Liutex core tube is the only method 

of vortex identification method that shows the vortex size. (3) Like the Liutex core line, the 

Liutex core tube shows the strength and the direction of the vortex. 

In this dissertation, two essential issues of the vortex identification method are addressed 

in detail. The first issue is: What is the rotation axis? In chapter 3 the researcher has provided an 

algorithm of the Liutex core line based on clear and reasonable mathematical explanations to 

answer the first issue. The second issue is: What is the size of the vortex core? Chapter 4 has 
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been presented an algorithm to answer this issue as well. The importance of both the Liutex core 

line and Liutex core tube is that they are not affected by changing of the threshold, unlike the 

previous methods of the first, second, and third, such as Liutex, Liutex-Omega as they all are iso-

surface identification methods presentations. So, they are affected by the threshold changing. 

depending on the intensity of the In the late transition stage,  the noise appears little by little 

depending on the intensity of the turbulence, and vortices strength. there are many reasons such 

as the previously established coordinate grid that caused some difficulty in the connection 

between the maximum points. the other reason is the numerical errors, which permit a lot of fake 

maximum points to be calculated. As future studies, it may be suggested to study these problems 

deeply and solve them. as an improvement the established coordinate grid and reduce the 

numerical errors values.  

Table 5.1 presents a comparison between some vortex identification methods, which 

shows the superiority of the Liutex core line method on others. Since the Liutex core Line 

method is free of threshold and produces a unique vortex structure, the Liutex core line method 

is the best vortex identification method so far. 
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Table 5.1: Comparison between some vortex identification methods 

 The method name iso-surface 

structure 

Threshold Uniqueness show 

vortex 

strength 

show 

vortex 

direction 

𝑄-method Yes Very 

sensitive 

No No No 

𝜆1-method Yes Very 

sensitive 

No No No 

 Liutex iso-surface Yes Sensitive No No No 

Modified Liutex Omega Yes Insensitive No No No 

Liutex core line No No needed Yes Yes Yes 

Liutex core tube No No needed No Yes Yes 
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