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ABSTRACT

ASYMPTOTIC NORMALITY OF THE DECONVOLUTION KERNEL DENSITY

ESTIMATORS BASED ON INDEPENDENT AS WELL AS STRONG MIXING

RIGHT CENSORED DATA

Wenqing Zhu, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Shan Sun-Mitchell

We consider estimation of a density when observed lifetime from the convolution

model contaminated by additive measurement errors. A kernel type deconvolution

density estimator of the unknown distribution based on right censored data is pro-

posed by using the Inverse-Probability-of-Censoring Weighted Average. Further, we

discuss the asymptotic normality of the deconvolution kernel density estimators for

independent and strong mixing vectors when the error distribution function is either

ordinary smooth or supersmooth.

Our method is applied to the study conducted by UTSW medical center. The

research team at UTSW collected the data of women who underwent cystoscopy

fulguration for recurrent urinary tract infection (UTI) from 2004-2016. Using the

estimators and the asymptotic distributions of the estimators, we estimate the survival

probability of the time from infection to recurrent UTI.
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CHAPTER 1

INTRODUCTION

In various fields of biological, engineering and social sciences, our event of

interest is an undesirable one. For example, death of a patient (in biomedical science)

or failure of a component in a machine (reliability). The time until the occurrence

of the event is duration data or time to event data, which we know as the survival

data. Survival data are typically observed in an incomplete way, due to the presence

of a number of events which potentially censor the event of interest. We are going to

focus on the right censored data-respondents left the survey or haven’t achieved the

milestone at the time of survey, which is the more prevalent situation.

There’s a drawback when we collect the survival data, people may not accurately

report when event occurs. If the timing of events happened in the distant past, people

may tend up or down the year or time since the event occurred [4]. Under this

consideration, variables of interest are not directly observable but only through some

error contamination.

Suppose we have n observations x1, . . . , xn i.i.d from the convolution model

X = Z + E (1.1)

We are interested in estimating the distribution of Z that cannot be directly observed.

For example [7], in AIDs study, the survival data X we collect may be the time from

some starting point to the time that symptoms appear, the error term E could be the

time from some starting point to the time that infection occurs. Z is the incubation

period (the time from the occurrence of infection to the time of symptoms).
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1.1 Model Formulation

We consider the random censorship model from right, using X1, X2, . . . , Xn

as observed lifetime from an unknown common distribution function fX(·). Xi is

censored from the right by the censoring time Ci, Ci is from a distribution G(·).

Assume we have random censoring, Xi is independent of Ci. And both of them are

non-negative random variables.

Note that we are only able to observe Wi = min(Xi, Ci) and δi = I(Xi ≤ Ci),

δi is the indicator for the event that Wi is uncensored. Let H be the distribution

function of Wi, then H = 1 − (1 − fX)(1 − G). We assume censoring indicators

δ1, · · · , δn follow a Bernoulli distribution: for i = 1, · · · , n

P (δi = 1) = p, P (δi = 0) = 1− p (1.2)

where 0 < p < 1. Therefore the joint distribution of (Wi, δi) is:

fW,δ(w, δ) = PW |δ(w | δ = 1)P (δ = 1) + PW |δ(w | δ = 0)P (δ = 0)

= fX|δ=1(w) p+ gC|δ=0(w) (1− p) (1.3)

Zi is contaminated in model Xi = Zi + Ei, where Xi is an observable survival

time with an unknown density function fX in Wi = min(Xi, Ci), Ei is the error term.

We assume Ei is a random variable that is independent of Zi and δi, and Ei has known

density fE. We wish to estimate the unknown density fZ based on observations of

Xi.

To estimate fZ , note that we have the following convolution fX = fZ ∗ fE, and

ϕfZ (t) =
ϕfX (t)

ϕfE(t)
(1.4)

where ϕg is the characteristic function of g. By Fourier inversion theorem, we write

the estimator of fZ , f̂Z as

f̂Z(z) =
1

2π

∫
e−itz

ϕf̂X (t)

ϕfE(t)
dt (1.5)
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where ϕf̂X (t) =
∫

exp(itx) · f̂X(x)dx, and f̂X will be given by (1.7) and (1.10) as two

methods.

A kernel density estimator of fX can be motivated through the Kaplan-Meier

estimator of FX [12]

F̂KM(x) = 1− ŜKM(x) =



0, 0 ≤ x ≤ W(1)

1−
∏j−1

i=1

(
n−i
n−i+1

)δ[i] , W(j−1) < x ≤ W(j)

j = 2, . . . , n

1, x > W(n)

(1.6)

where (W(i), δ[i]), i = 1, . . . , n, denotes the (Wi, δi) ordered with respect to the Wi’s.

The kernel estimator of fX induced by Kaplan-Meier estimator F̂KM of FX is

then

f̂KMX (x) =
1

h

∫
K

(
x− y
h

)
dF̂KM(y)

=
1

h

n∑
j=1

K

(
x−W(j)

h

)
sj (1.7)

where sj is the size of the jump of F̂KM at W(j), h is a positive number, usually called

as the bandwidth or window width, and kernel K is a symmetric function satisfying∫
K(t)dt = 1,

∫
tK(t)dt = 0, and

∫
t2K(t)dt <∞

Thus f̂Z is described as follows: from (1.5) and (1.7), Chakrabarty [4] showed

that the deconvolution kernel density estimator of the target density f̂Z can be written

as

f̂KMZ (z) =
1

h

n∑
j=1

KZ

(
z −W(j)

h

)
sj (1.8)

where KZ
[
(z −W(j))/h

]
=
∫

exp(−iy(z −W(j))/h) · ϕK(y)/ϕfE(y/h)dy /(2π), and

ϕg denotes the characteristic function of a density g.

3



In this research, we discuss an alternative way of estimating fZ . Satten and

Datta [19] showed that the Kaplan-Meier estimator F̂KM in (1.6) is equivalent to

F̂IP (x) =
1

n

n∑
i=1

I(Wi ≤ x) · δi
1−G(Wi)

(1.9)

Therefore, application of the inverse-probability-of censoring weighted idea to estimate

fX leads to:

f̂ IPX (x) =
1

h

∫
K

(
x− y
h

)
dF̂IP (y)

=
1

nh

n∑
j=1

K

(
Wj − x
h

)
δj

1−G(Wj)
(1.10)

By using the symmetry of K, the characteristic function of f̂ IPX is

ϕf̂IPX
(t) =

∫
eitxf̂ IPX (x)dx

=

∫
eitx

1

nh

n∑
j=1

K

(
Wj − x
h

)
δj

1−G(Wj)
dx

=
1

nh

n∑
j=1

∫
eitxK

(
Wj − x
h

)
δj

1−G(Wj)
dx

=
1

nh

n∑
j=1

δj
1−G(Wj)

∫
eitxK

(
x−Wj

h

)
dx

=
1

n

n∑
j=1

δj
1−G(Wj)

∫
eit(hu+Wj)K(u)du

=
1

n

n∑
j=1

δj
1−G(Wj)

eitWjϕK(ht) (1.11)

Plug f̂ IPX (x) in (1.5), we obtain the deconvolution kernel density estimator of fZ as

f̂ IPZ (z) =
1

2π

∫
e−itz

ϕf̂IPX
(t)

ϕfE(t)
dt

=
1

2π

∫
e−itz

1
n

∑n
j=1

δj
1−G(Wj)

eitWjϕK(ht)

ϕfE(t)
dt

=
1

2πn

n∑
j=1

∫
eit(Wj−z)ϕK(ht)

ϕfE(t)
dt

δj
1−G(Wj)

4



=
1

nh

n∑
j=1

1

2π

∫
e−iy

z−Wj
h ϕK(y)

ϕfE
(
y
h

) dy
δj

1−G(Wj)

:=
1

nh

n∑
j=1

KE

(
z −Wj

h

)
δj

1−G(Wj)
(1.12)

where KE [(z −Wj)/h] =
∫

exp(−iy(z −Wj)/h) · ϕK(y)/ϕfE(y/h)dy /(2π).
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CHAPTER 2

APPLICATION OF THE ESTIMATE

2.1 RUTI Data

A urinary tract infection (UTI) is an infection of any part of the urinary system,

UTIs occur mainly in women. Out of 100 women, 50 will have a UTI at some point in

their life according to the United States Department of Health and Human Services

(HHS) [1].

UT Southwestern research team collected a group of 95 female patients infor-

mation from 2004 to 2016, who underwent cystoscopy with fulguration (CF). Note

when we cleaned the data, we didn’t count the first 6 months following the procedure,

as fulgurating the bladder can sometimes cause irritation which is confused for a

UTI. Thus we set the starting point of recording recurrent UTI (RUTI) as 6 months

after the CF, RUTI time we collected is the time from this starting point to the time

RUTI first appear. Considering the rate of recurrence following an initial UTI is high,

researchers defined RUTI as ”when a patient experienced two UTIs within 6 months

or three UTIs within 12 months”.

Le [14] found out Smoking (the patient who is a smoker), CoitalPre (using Coital

prophylaxis before CF procedure), FQ (having Fluoroquinolone resistance), ESBL

(Extended spectrum beta lactamase resistance) are the strongest risk factors which

likely increase the RUTI rate of UTI patients by using Cox Proportional-hazards

model. Considering Cox model doesn’t take the cure probability of the patients into

account, he extended the Cox model and applied it to the mixture cure model to

identify the effect of significant factors on the cure probability of the patients. First
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year success (no UTI in the first year after the first follow up appointment), EC (E.

Coli pathogen), MultBugs (at least two bacterial species grew in the urine culture),

ESBL (Extended spectrum beta lactamase resistance) are the strongest risk factors

that affect the cure rate of UTI patients by using the mixture cure model.

In this chapter, we are interested in investigating the time from infection to the

occurrence of RUTI, that is the time from exposure to the causative agent to when

RUTI first appear. Knowing the time from infection to the occurrence of RUTI can

provide important information during outbreak, including when the patient will have

the symptoms of RUTI and is most likely to spread it. Because the time to RUTI

reflects the growth of pathogen, copying rate and toxin discharge, time from infection

to the occurrence of RUTI will be helpful to provide some clues for identifying the

causative agent [18]. Time from infection to the occurrence of RUTI also offers

insights for the prognosis, like the expected duration of the disease and the severity

of it, which will be beneficial for doctors to develop the treatments.

In the study, denote the time from six months after CF to the time first RUTI

appear by the random variable X. The data we use contains the censoring time,

the percent of censoring in data is 61%. Censoring time here means the time when

patients left the survey before the survey ends, or if the patient doesn’t have any

RUTIs during the survey, then censoring time will be the end time of the survey. C is

a random variable representing the time from the six months after CF to a censoring

time.

2.1.1 Survival probability of the time from infection to the occurrence of RUTI

To estimate the survival probability of Z, recall that we are only able to observe

the survival time Wi = min(Xi, Ci) and δi = I(Xi ≤ Ci). {Xi, i = 1, · · · , n} denotes

the uncensored lifetime from an unknown common distribution function fX(·). Xi

7



is censored from the right by the censoring time Ci, where Ci is from an unknown

distribution G(·). Assume Xi is independent of Ci, and both of them are non-negative

random variables.

We now apply the deconvolution density estimators f̂ IPZ in (1.12), f̂KMZ in (1.8)

to the RUTI data, where the goal is to estimate the survival probability

S(t) =
∫∞
t
fZ(u)du of the time from infection to the occurrence of RUTI.

Recall our model (1.1), Z = X − E, Z is the time from infection to the

occurrence of RUTI, E is independent of Z, and we use sample variance s2X of X to

estimate σ2
X . The variance σ2

E of the error E is chosen so that the reliability ratio

[10]:

r =
VarZ

σ2
E + VarZ

=
σ2
X − σ2

E

σ2
X

≈ s2X − σ2
E

s2X
= 0.7 (2.1)

Fan [7] mentioned that the convergence rate of estimators in the presence of super-

smooth errors is slower than the case in the presence of ordinary smooth errors, and

considering E should have non-negative values, we assume E has a truncated double

exponential distribution, which belongs to the ordinary smooth case:

fE(u) =
1

σE
e
−u
σE (2.2)

where u ≥ 0. The characteristic function of E is

ϕfE(t) =

∫ ∞
0

eitufE(u) du

=
1

σE

∫ ∞
0

eitue
−u
σE du

=
1

σE

∫ ∞
0

cos(tu) e
−u
σE du+ i

1

σE

∫ ∞
0

sin(tu) e
−u
σE du

=
1

σE

1
σE(

1
σE

)2
+ t2

+ i
1

σE

t(
1
σE

)2
+ t2

=
1

1− iσE t
(2.3)

8



From (1.12), we get

KE(x) =
1

2π

∫ ∞
−∞

e−iyx
ϕK(y)

ϕfE( y
h
)
dy

=
1

2π

∫ ∞
−∞

e−iyx ϕK(y)
(

1− iσE
y

h

)
dy

=
1

2π

∫ ∞
−∞

e−iyx ϕK(y)dy +
σE
h

1

2π

∫ ∞
−∞

e−iyx (−iy)ϕK(y)dy

= K(x) +
σE
h
K
′
(x) (2.4)

Since the distribution G of C is unknown, one way to overcome this is to use

the smooth kernel density estimator, therefore, G can be estimated as

Ĝ(x) =
∑l

i=1KC [(x−Ci)/h]/(lh), where l is the count number of δi = 0 (i = 1, · · · , n),

we choose KC as the normal kernel: KC(x) = φ(x) = exp(−x2/2)/
√

2π. And we set

the bandwidth h = 0.4. For kernel function K in (2.4), we use 3 different kernel

functions as in Table 2.1.

Table 2.1: Kernel functions and their characteristic functions.

Name Kernel K(x)
Characteristic
Function ϕK(t)

de la Vallée- 1−cosx
πx2

(1− |t|)I[−1,1](t)Poussin (K1)

Triweight Ft 48(1−15x−2) cosx
πx4

−
(1− t2)3I[−1,1](t)

(K2)
144(2−5x−2) sinx

πx5

Tricube Ft 648(−3x4+90x2−560) sinx
x9π

+
(1− |t|3)3I[−1,1](t)(K3)

162(x6−80x4+1120x2−2240) cosx
x10π

+
18(20160−x6)

x10π

When we graph the survival probability estimator, we set the grid of z to

be equispaced, where the distance between two neighbour points is equal to 1.

Furthermore, we need to consider rescaling the estimated probability density function

f̂Z by using f̂Z(zi)/
(∑N

i=1 f̂Z(zi) · dz
)

so that it integrates to 1 after the negative

9



ones have been dropped. The estimated curves, shown in below (Figure 2.1 to 2.3),

used 3 different kernels in Table 2.1. Dashed line KMfdec in each plot is the estimated

survival probability ŜKMZ of Z by using the rescaled f̂KMZ (z), solid line IPfdec is ŜIPZ

by using the rescaled f̂ IPZ (z).
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Figure 2.1: Estimated Survival Probability of Z by using K1
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Figure 2.2: Estimated Survival
Probability of Z by using K2
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Figure 2.3: Estimated Survival
Probability of Z by using K3

In these plots, we see that there’s no big difference between 3 figures based on

3 kernels we choose (K1, K2, K3), which implies that the choice of kernel function

10



doesn’t play an important role in the estimator. The survival probability estimator

of Z derived by f̂ IPZ has lower survival probability than the one derived by f̂KMZ .

2.2 Confidence Interval

By using f̂ IPZ (z) in (1.12), we obtain a point estimate of EZ: θ̂Z =
∫
zf̂ IPZ (z) dz.

But we don’t know the distribution of θ̂Z , thus we use the percentile bootstrap

confidence interval [13] of EZ, which is a nonparametric version. The procedures of

obtaining confidence interval are as follows:

(1) Draw B samples W ∗
i1, · · · ,W ∗

in from the observations W1, · · · ,Wn with replace-

ment:

W ∗
11, · · · ,W ∗

1n

· · · · · · · · · · · · (2.5)

W ∗
B1, · · · ,W ∗

Bn.

(2) Find the density estimator f̂ ∗iZ (z) =
∑n

j=1 δjK
E
(
(z −W ∗

ij)/h
)
/(nh(1−G(W ∗

ij))),

(i = 1, · · · , B) based on the bootstrap sample, where KE is given in (1.12).

Thus the bootstrap estimated mean is θ̂∗i =
∫
zf̂ ∗iZ (z) dz, from which we obtain

θ̂∗1, · · · , θ̂∗B.

(3) Order the estimates θ̂∗(1), · · · , θ̂∗(B) to find the approximate (1 − α) ∗ 100%

percentile bootstrap confidence interval (θ̂∗(A), θ̂
∗
(B−A)) of EZ, where

A = [α/2 ∗B].

11



CHAPTER 3

INDEPENDENT CASE

We now are going to discuss the asymptotic normality of f̂ IPZ (z) when {(Wi, δi) =:

ξi, i ≥ 1} is a sequence of independent random vectors.

Fan [7] pointed out the rates of convergence depend strongly on the smoothness

of error distributions. Similar to Fan’s results, we separate our results into two cases

as well: when the smoothness of error distribution is ordinary smooth and when it is

supersmooth. In model X = Z + E, the examples of ordinary smooth distributions

are gamma, exponential, uniform with non-negative support, and their mixtures;

examples of supersmooth error distributions include truncated normal, truncated

Cauchy, and truncated mixture normal whose supports are all non-negative. Hence

we assume that ϕfE satisfies either:

Assumption 3.0.1.

(i) Ordinary smooth case:

ϕfE(t) tβ → c as t→∞ (3.1)

with some constant c 6= 0 and β ≥ 0. Moreover we assume ϕfE(t) 6= 0, for all t.

Or

(ii) Supersmooth case:

c1 |t|β0 exp (−|t|β/γ) ≤ |ϕfE(t)| ≤ c2 |t|β0 exp (−|t|β/γ) as t→∞ (3.2)

with β, γ, c1, c2 > 0 and some real number β0. ϕfE(t) 6= 0 for all t.
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Write ϕfE(t) = RE(t) + iIE(t), where RE(t) and IE(t) denote the real and the

imaginary part of the characteristic function ϕfE(t). Assume furthermore that

either IE(t) = o(RE(t)) or RE(t) = o(IE(t)) as t→∞.

In this chapter, we will consider two different cases: E follows an ordinary

smooth distribution and a supersmooth distribution when {(Wi, δi) =: ξi, i ≥ 1} is a

sequence of independent random vectors.

We assume supx 1/[1−G(x)] ≤ B0 <∞, B0 is a positive constant.

3.1 Case I: Ordinary Smooth Distribution

First we consider f̂ IPZ (z) under ordinary smooth error distribution, which

satisfies Assumption 3.0.1 (i). Following assumptions on the characteristic function

ϕK of kernel function K are also needed.

Assumption 3.1.1.

(i) ϕK(t) is a symmetric function, having s + 2 bounded integrable derivatives,

ϕK(0) = 1.

(ii)

∫ ∞
−∞

[|ϕK(t)|+ |ϕ′K(t)|] |t|βdt <∞,

∫ ∞
−∞
|t|2β|ϕK(t)|2dt <∞.

(iii)

∫ ∞
−∞

fX|δ=1(x)/[1−G(x)]2+ν dx <∞ for some ν > 0.

The following theorem gives the asymptotic normality of the estimator f̂ IPZ (z).

Theorem 3.1.1. Use Assumption 3.1.1, if h = hn → 0, and nh→∞, then

f̂ IPZ (z)− Ef̂ IPZ (z)√
Var(f̂ IPZ (z))

d−→ N(0, 1). (3.3)

In order to check (3.3), we need the following lemma, which generalizes the

Theorem 1A of Parzen [17].

Lemma 3.1.1. Suppose that Kn(·) is a sequence of Borel functions satisfying

Kn(x)→ K̃(x) and sup
n
|Kn(x)| ≤ K∗(x)

13



where K∗(x) satisfies
∫∞
−∞K

∗(x) dx < ∞, limx→∞ |xK∗(x)| = 0. Let m(x) satisfy∫∞
−∞ |m(x)| dx < ∞, if z is a continuity point of m(·), then for any sequence h =

hn → 0,

lim
n→∞

1

h

∫ ∞
−∞

Kn

(
z − x
h

)
m(x) dx = m(z)

∫ ∞
−∞

K̃(x) dx

Proof. Let b > 0, and split the region of integration into two parts: |x| ≤ b and

|x| > b, we get∣∣∣∣1h
∫ ∞
−∞

Kn

(
z − x
h

)
m(x) dx−m(z)

∫ ∞
−∞

K̃(x) dx

∣∣∣∣
=

∣∣∣∣1h
∫ ∞
−∞

Kn

(x
h

)
m(z − x) dx−m(z)

∫ ∞
−∞

K̃(x) dx

∣∣∣∣
≤
∣∣∣∣1h
∫ ∞
−∞

Kn

(x
h

)
[m(z − x)−m(z)] dx

∣∣∣∣+ |m(z)|
∣∣∣∣∫ ∞
−∞

(
1

h
Kn

(x
h

)
− K̃(x)

)
dx

∣∣∣∣
≤ max
|x|≤b
|m(z − x)−m(z)|

∫ ∞
−∞

K∗(x) dx+

∫
|x|≥b

|m(z − x)|
x

x

h
Kn

(x
h

)
dx

+ |m(z)|
∫
|x|≥b

1

h
Kn

(x
h

)
dx+ |m(z)|

∣∣∣∣∫ ∞
−∞

(
Kn(x)− K̃(x)

)
dx

∣∣∣∣
≤ max
|x|≤b
|m(z − x)−m(z)|

∫ ∞
−∞

K∗(x) dx+
1

b
sup
|y|≥ b

h

|yK∗(y)|
∫ ∞
−∞
|m(x)| dx

+ |m(z)|
∫
|y|≥ b

h

K∗(y) dy + |m(z)|
∣∣∣∣∫ ∞
−∞

(
Kn(x)− K̃(x)

)
dx

∣∣∣∣ (3.4)

When n→∞, the last three terms tend to 0 by the assumptions and Lebesgue’s

dominated convergence theorem. Let b→ 0, the first term also tends to 0.

We now are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1:

Proof. To discuss the asymptotic normality of the estimator f̂ IPZ (z), we first rewrite

f̂ IPZ (z) in (1.12) as:

f̂ IPZ (z) =
1

nh

n∑
j=1

KE

(
z −Wj

h

)
δj

1−G(Wj)
:=

1

n

n∑
j=1

Uj (3.5)

14



where Uj = δjK
E((z −Wj)/h)/(h(1 − G(Wj)). Note that f̂ IPZ (z) is the sum of an

independent sequence and

f̂ IPZ (z)− Ef̂ IPZ (z)√
Var(f̂ IPZ (z))

=
n f̂ IPZ (z)− E

(∑n
j=1 Uj

)
√

Var
(∑n

j=1 Uj

)
=

∑n
j=1 (Uj − EUj)∑n

j=1 VarUj
(3.6)

Hence it’s equivalent to show (3.6)
d−→ N(0, 1), for which a sufficient condition is that

Lyapunov’s condition holds, i.e. for some ν > 0∑n
j=1E|Uj − EUj|2+ν[∑n
j=1 Var(Uj)

]1+ν/2 → 0 (3.7)

Therefore we proceed the proof of (3.7).

First, we evaluate the limit of EUj
2 by (1.3).

EUj
2 = E

[
1

h
KE

(
z −Wj

h

)
δj

1−G(Wj)

]2
=

1

h2

{∫ ∞
−∞

[
KE

(
z − w
h

)]2
1

[1−G(w)]2
fX|δ=1(w) p dw

+

∫ ∞
−∞

[
KE

(
z − w
h

)]2
0

[1−G(w)]2
gC|δ=0(w) (1− p) dw

}

=
p

h2

∫ ∞
−∞

[
KE

(
z−w
h

)
1−G(w)

]2
fX|δ=1(w) dw

=
p

h2+2β

∫ ∞
−∞

[
hβKE

(
z−w
h

)
1−G(w)

]2
fX|δ=1(w) dw (3.8)

Now we need to check whether [hβKE(w)]2 satisfies Lemma 3.1.1’s conditions before

we apply Lemma 3.1.1 to (3.8). By Assumption 3.0.1 (i) and Lebesgue’s dominated

convergence theorem,

hβKE(w)→ 1

2πc

∫ ∞
−∞

e−iyw yβϕK(y)dy

15



Applying Plancherel’s theorem and by Assumption 3.1.1 (ii),∫ ∞
−∞

[hβKE(w)]2dw → 1

(2πc)2

∫ ∞
−∞

[∫ ∞
−∞

e−iyw yβϕK(y)dy

]2
dw

=
1

2πc2

∫ ∞
−∞
|yβϕK(y)|2dy <∞ (3.9)

Fan [7] has proved [hβKE(w)]2 ≤ C1/w
2 for some constant C1, which leads to

limw→∞ |w · (C1/w
2)| = 0. Using Assumption 3.1.1 (iii), we now are ready to apply

Lemma 3.1.1 to (3.8). By (3.9),

lim
n→∞

h1+2β EUj
2 =

p fX|δ=1(z)

[1−G(z)]2

∫ ∞
−∞

[hβKE(w)]2dw (3.10)

|EUj| can be expressed as

|EUj| =
∣∣∣∣E [1

h
KE

(
z −Wj

h

)
δj

1−G(Wj)

]∣∣∣∣
=
p

h

∣∣∣∣∫ ∞
−∞

KE

(
z − w
h

)
fX|δ=1(w)

1−G(w)
dw

∣∣∣∣
≤ p

h
B0

∣∣∣∣∫ ∞
−∞

KE

(
z − w
h

)
fX|δ=1(w) dw

∣∣∣∣
=
p

h
B0

∣∣∣∣E [KE

(
z −Xj

h

)∣∣∣∣ δj = 1

]∣∣∣∣ (3.11)

From [21], [7], and recall Ei is independent of Zi and δi, apply Lemma 3.1.1 we know

1

h
E

[
KE

(
z −Xj

h

)∣∣∣∣ δj = 1

]
=

1

h
E

[
K

(
z − Zj
h

)∣∣∣∣ δj = 1

]
=

1

h

∫ ∞
−∞

K

(
z − x
h

)
fZ|δ=1(x) dx

→ fZ|δ=1(z)

∫ ∞
−∞

K(x)dx = fZ|δ=1(z) (3.12)

Thus we conclude

|EUj| = O(1). (3.13)

Similarly, by |hβ ·KE(w)| ≤ min(C2, C1/w) in [7] and Lemma 3.1.1, we show

that

E|Uj|2+ν = E

∣∣∣∣1h KE

(
z −Wj

h

)
δj

1−G(Wj)

∣∣∣∣2+ν
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=
p

h(2+ν)(1+β)

∫ ∞
−∞

[
hβKE

(
z−w
h

)
1−G(w)

]2+ν
fX|δ=1(w) dw

=
p

h(2+ν)(1+β)

∫ ∞
−∞

[
hβKE

(
z − w
h

)]2+ν fX|δ=1(w)

[1−G(w)]2+ν
dw

note that
∫
R |h

βKE(u)|2+νdu ≤ C(1 + o(1)), C is some positive constant by [15]

(Lemma 2), hence

lim
n→∞

h(2+ν)(1+β)−1E|Uj|2+ν =
p fX|δ=1(z)

[1−G(z)]2+ν

∫ ∞
−∞

[hβKE(w)]2+νdw, (3.14)

which implies

E|Uj|2+ν = O(h−(2+ν)(1+β)+1) (3.15)

Thus, by cr-inequality [6], Lyapunov’s condition (3.7) follows from∑n
j=1E|Uj − EUj|2+ν[∑n
j=1 Var(Uj)

]1+ν/2 ≤ 21+ν

∑n
j=1 (E|Uj|2+ν + |EUj|2+ν)[∑n

j=1 Var(Uj)
]1+ν/2 (3.16)

= O(1/(nh)ν/2)→ 0

3.2 Case II: Supersmooth Distribution

Supersmooth error models will be considered in this subsection, and we assume

that ϕfE satisfies Assumption 3.0.1 (ii) and ϕK satisfies the following assumptions.

Assumption 3.2.1.

(i) ϕK(t) is a symmetric function, supported with [−1, 1] and having the first s+ 2

continuous derivatives, ϕK(t) > c3(1− t)s+3, for t ∈ [1− ψ, 1) for some ψ > 0,

and c3 > 0.

(ii)

∫ ∞
−∞

fX|δ=1(x)/[1−G(x)]2+ν dx <∞ for some ν > 0.
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Following theorem states the limiting distribution of f̂ IPZ (z) when the error

distribution is supersmooth.

Theorem 3.2.1. Under Assumption 3.2.1, we have

f̂ IPZ (z)− Ef̂ IPZ (z)√
Var(f̂ IPZ (z))

d−→ N(0, 1). (3.17)

provided h = hn = a(lnn)−1/β, for some a > 0.

Before we proceed with the proof of Theorem 3.2.1, we need the following

lemma from Fan [7].

Lemma 3.2.1. Under Assumption 3.2.1, as n→∞,

|KE(x)| ≥ c4 q(x) exp

(
(1− bn)β

γhβ

)
hβ0 bs+4

n (3.18)

uniformly over x ∈ [0, π/2], where h = hn, bn = h
β/(2(s+5))
n and c4 is a positive

constant, and

q(x) =


| cosx|, if IE(t) = o(RE(t))

| sinx|, if RE(t) = o(IE(t))

where RE(t) and IE(t) denote the real and the imaginary part of the characteristic

function ϕfE(t).

Now, by using Lemma 3.2.1, we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1:

Proof. We will check (3.7) holds, which is the sufficient condition of (3.17).

By Lemma 3.2.1, when n is sufficiently large, we first find the lower bound of

EUj
2.

EUj
2 = E

[
1

h
KE

(
z −Wj

h

)
δj

1−G(Wj)

]2
=

p

h2

∫ ∞
−∞

[
KE

(
z−w
h

)
1−G(w)

]2
fX|δ=1(w) dw
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=
p

h

∫ ∞
−∞

[
KE(t)

]2 fX|δ=1(z − ht)
[1−G(z − ht)]2

dt

≥ p

h

∫ π
2

0

[
c4 q(x) exp

(
(1− bn)β

γhβ

)
hβ0 bs+4

n

]2
fX|δ=1(z − ht)

[1−G(z − ht)]2
dt

=
p

h

[
c4 exp

(
(1− bn)β

γhβ

)
hβ0 bs+4

n

]2 ∫ π
2

0

q2(t)
fX|δ=1(z − ht)

[1−G(z − ht)]2
dt

≥ c5 h
c6

fX|δ=1(z)

[1−G(z)]2
exp

(
2(1− bn)β

γhβ

)
(3.19)

Recall bn = h
β/(2(s+5))
n , h = a(lnn)−1/β, we obtain bn = aβ/(2s+10)(lnn)−1/(2s+10) → 0

(as n → ∞). According to Taylor’s theorem, (1 − bn)β = 1 − βbn + R(bn), where

R(bn) = o(bn). It follows that (1− bn)β → 1− βbn ≥ 1− 2βbn. Thus,

EUj
2 ≥ c5

fX|δ=1(z)

[1−G(z)]2
hc6 exp

(
2− 4βbn
γhβ

)
(3.20)

for some constant c5 > 0 and c6 = 2β0 − 1 + β(s+ 4)/(s+ 5).

Next we will find the upper bound of EUj and E|Uj|2+δ by using the upper

bound for |KE| provided in [7]: |KE(t)| ≤ O(exp (1/(γhβ))cn), where h = hn,

cn =


1, β0 ≥ 0

hn
β0 , β0 < 0

(3.21)

Note that |EUj| is bounded as shown in (3.13). Moreover,

E|Uj|2+ν = E

∣∣∣∣1h KE

(
z −Wj

h

)
δj

1−G(Wj)

∣∣∣∣2+ν
=

p

h2+ν

∫ ∞
−∞

[
KE

(
z−w
h

)
1−G(w)

]2+ν
fX|δ=1(w) dw

=
p

h2+ν

∫ ∞
−∞

[
KE

(
z − w
h

)]2+ν fX|δ=1(w)

[1−G(w)]2+ν
dw

≤ p

h2+ν
O
(

exp (
2 + ν

γhβ
) cn

2+ν

)∫ ∞
−∞

fX|δ=1(w)

[1−G(w)]2+ν
dw

= O(h−(2+ν) exp (
2 + ν

γhβ
) cn

2+ν) (3.22)
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In consequence, by (3.16),∑n
j=1E|Uj − EUj|2+ν[∑n
j=1 Var(Uj)

]1+ν/2 ≤ 21+ν

∑n
j=1 (E|Uj|2+ν + |EUj|2+ν)[∑n

j=1EU
2
j

]1+ν/2 → 0 (3.23)

by choosing h = a(lnn)−1/β, for some a such that a > (2/γ)1/β.
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CHAPTER 4

STRONG MIXING CASE

Based on the work of Masry [16], we are also interested in finding the asymptotic

normality of estimator f̂ IPZ (z) when {(Wi, δi) =: ξi, i ≥ 1} is a sequence of strong

mixing (α mixing) random vectors, i.e.

α(p) := sup
i≥1
{|P (A ∩B)− P (A)P (B)| : A ∈ F i1, B ∈ F∞p+i} (4.1)

converges to 0 as p −→∞, where F ba denotes the σ-algebra generated by {ξi, a ≤ i ≤ b}.

We assume supx 1/[1 − G(x)] ≤ B0 < ∞, B0 is a positive constant. Let

P (δi = 1, δj = 1) = p∗ (1 ≤ i < j ≤ 1).

In order to introduce the main results under two different cases of error distri-

butions, we need the following Lemma 4.0.1 [11] and Lemma 4.0.2 [22].

Lemma 4.0.1. For random variable variables U and V which are F i1, F∞p+i measur-

able, respectively, with E|U |ν <∞, E|V |ν <∞, for ν > 2,

|Cov(U, V )| ≤ 8 [α(p)]1−
2
ν {E|U |ν E|V |ν}

1
ν (4.2)

Lemma 4.0.2. Let V1, . . . , VL be random variables measurable with respect to the

σ-algebra F j1i1 , · · · ,F
jL
iL

, respectively, with 1 ≤ i1 < j1 < i2 < · · · < jL ≤ n,

il+1 − jl ≥ χ ≥ 1 and |Vj| ≤ 1 for j = 1, · · · , L. Then∣∣∣∣∣E
(

L∏
j=1

Vj

)
−

L∏
j=1

E(Vj)

∣∣∣∣∣ ≤ 16 (L− 1)α(χ) (4.3)

For the remainder of this section, we will follow the framework Masry used in

[16].
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4.1 Case I: Ordinary Smooth Distribution

We first present the case when the smoothness of error distribution is ordinary

smooth of order β, we need the Assumption 3.0.1 (i) on the tail of characteristic

function ϕfE and following assumptions on ϕK and the process {Zi, Ei}ni=1.

Assumption 4.1.1.

(i)

∫ ∞
−∞
|t|β−2 |ϕK(t)|dt <∞ for β > 1;

∫ ∞
−∞
|t|2β|ϕK(t)|2dt <∞.

(ii) ϕK(t) is twice differentiable with bounded derivative such that∫ ∞
−∞
|t|β−1 |ϕ′K(t)|dt <∞;

∫ ∞
−∞
|t|β |ϕ′′K(t)|dt <∞.

(iii) sup
x
fX|δ=1(x) ≤M1 <∞; sup

xi,xj

f(Xi,Xj)|(δi=1,δj=1)(xi, xj) ≤M2 <∞ (f(Xi,Xj)|(δi=1,δj=1)

is the conditional probability density function of joint distribution (Xi, Xj), given

that δi = 1, δj = 1. 1 ≤ i < j ≤ n). M1 and M2 are positive constants.

(iv)

∫ ∞
−∞

fX|δ=1(x)/[1−G(x)]2 dx <∞.

(v)
∞∑
j=1

jρ [α(j)]1−2/ν <∞ for some ν > 2 and ρ > 1− 2/ν.

Following theorem states the asymptotic normality of f̂ IPZ (z) when the ordinary

smooth error is involved.

Theorem 4.1.1. Suppose that Assumption 4.1.1 is satisfied and assume h = hn → 0

such that nh2β+1
n →∞, α(p) satisfies (n/h)1/2 α(rn)→ 0 as n→∞. Let {rn} be a

sequence of positive integers, rn →∞, such that rn = o(nh1/2) as n→∞. Then

√
nh2β+1

[f̂ IPZ (z)− Ef̂ IPZ (z)]

σ0(z)

d−→ N(0, 1) (4.4)

where

σ2
0(z) =

p

2πc2

∫ ∞
−∞

∣∣yβ ϕK(y)
∣∣2 dy fX|δ=1(z)

[1−G(z)]2
(4.5)

In order to prove Theorem 4.1.1, we need the following lemma whose proof is

similar to the work of Masry [15].
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Lemma 4.1.1. Under Assumptions 4.1.1, we have

lim
n→∞

nh2β+1 Var[f̂ IPZ (z)] = σ2
0(z) (4.6)

at points of continuity of fX|δ=1/[1−G]2.

Proof. We first evaluate the variance of the estimator by separating it into two parts:

In,0 and S0. By (3.5),

Var[f̂ IPZ (z)] =
1

n2

n∑
j=1

Var(Uj) +
2

n2

∑
1≤i<j≤n

Cov(Ui, Uj) := In,0 + S0 (4.7)

We obtain |EUj| = O(1) from (3.13), hence In,0 can be written as:

In,0 =
1

n2

n∑
j=1

[E(Uj)
2 − (EUj)

2]

=
1

n2h2

n∑
j=1

E

[
KE

(
z −Wj

h

)
δj

1−G(Wj)

]2
−O(n−1)

=
p

nh2

∫ ∞
−∞

[
KE

(
z − w
h

)]2 fX|δ=1(w)

[1−G(w)]2
dw +O(n−1) (4.8)

By Lemma 3.1.1 and Assumption 4.1.1 (iv), the proof is similar to (3.9) and (3.10),

h2β

h

∫ ∞
−∞

[
KE

(
z − w
h

)]2 fX|δ=1(w)

[1−G(w)]2
dw →

fX|δ=1(z)

[1−G(z)]2

∫ ∞
−∞

[hβKE(w)]2 dw (4.9)

therefore

lim
n→∞

nh2β+1 In,0 =
p fX|δ=1(z)

[1−G(z)]2
1

2πc2

∫ ∞
−∞

∣∣yβ ϕK(y)
∣∣2 dy +O(h2β+1) (4.10)

Recall
∫∞
−∞ |y

β ϕK(y)|2 dy <∞ by Assumption 4.1.1 (i), we have as h = hn → 0,

lim
n→∞

nh2β+1 In,0 =
p

2πc2

∫ ∞
−∞

∣∣yβ ϕK(y)
∣∣2 dy fX|δ=1(z)

[1−G(z)]2
= σ2

0(z) (4.11)

at points of continuity of fX|δ=1/[1−G]2.
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Next consider the covariance term S0, we will show S0 = o(n−1 h−2β−1) as

follows.

S0 =
2

n2

∑
1≤i<j≤n

Cov(Ui, Uj) ≤
2

n2

∣∣∣∣∣ ∑
1≤i<j≤n

Cov(Ui, Uj)

∣∣∣∣∣ ≤ 2

n2

∑
1≤i<j≤n

|Cov(Ui, Uj)|

(4.12)

We will then separate the right side of (4.12) into two parts:

2

n2

∑
1≤i<j≤n

|Cov(Ui, Uj)|

=
2

n2

∑
1≤i<j≤n
j−i≤ln

|Cov(Ui, Uj)|+
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

|Cov(Ui, Uj)| := S1 + S2 (4.13)

where ln →∞ and ln h→ 0 as n→∞.

Now show S1 = o(n−1 h−1−2β).

S1 =
2

n2

∑
1≤i<j≤n
j−i≤ln

|Cov(Ui, Uj)|

≤ 2

n2

∑
1≤i<j≤n
j−i≤ln

|E(Ui Uj))|+
2

n2

∑
1≤i<j≤n
j−i≤ln

|E(Ui) E(Uj)|

≤ 2

n2h2

∑
1≤i<j≤n
j−i≤ln

∣∣∣∣E [KE

(
z −Wi

h

)
δi

1−G(Wi)
KE

(
z −Wj

h

)
δj

1−G(Wj)

]∣∣∣∣
+

2

n2

∑
1≤i<j≤n
j−i≤ln

O(1) :=
2

n2h2

∑
1≤i<j≤n
j−i≤ln

|Ii,j|+
2

n2

∑
1≤i<j≤n
j−i≤ln

O(1) (4.14)

where

Ii,j =
∑
δ∗i=0,1
δ∗j=0,1

∫ ∞
−∞

∫ ∞
−∞

KE

(
z − wi
h

)
KE

(
z − wj
h

)
f(Wi,Wj)|(δi=δ∗i ,δj=δ∗j )(wi, wj)

[1−G(wi)][1−G(wj)]

· δ∗i δ∗j P (δi = δ∗i , δj = δ∗j ) dwi dwj

=

∫ ∞
−∞

∫ ∞
−∞

KE

(
z − wi
h

)
KE

(
z − wj
h

)
f(Xi,Xj)|(δi=1,δj=1)(wi, wj)

[1−G(wi)][1−G(wj)]

24



· P (δi = 1, δj = 1) dwi dwj (4.15)

By Assumption 4.1.1 (iii),

supwi, wj f(Xi,Xj)|(δi=1,δj=1)(wi, wj)/{[1−G(wi)][1−G(wj)]} ≤M2B
2
0 and note that

||KE||1 ≤ C/hβ, C is some positive constant, provided in [15] (Lemma 3) and

0 ≤ P (δi = 1, δj = 1) = p∗ ≤ 1, using (4.15) we get

|Ii,j| ≤ C

[
h

∫ ∞
−∞
|KE(u)|du

]2
≤ Ch2

h2β
(4.16)

Hence by ln h→ 0 as n→∞,

nh2β+1 S1 ≤ nh2β+1 (2n− ln − 1) ln
2

(
2

n2h2
Ch2

h2β
+

2

n2
O(1)

)
= O(2ln h)→ 0

(4.17)

Next we consider S2 and show S2 = o(n−1 h−1−2β). Apply Lemma 4.0.1, for

ν > 2,

S2 =
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

|Cov(Ui, Uj)|

≤ 2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

8 [α(j − i)]1−
2
ν {E|Ui|ν E|Uj|ν}

1
ν

=
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

8

h2
[α(j − i)]1−

2
ν

{∫ ∞
−∞

∣∣∣∣KE

(
z − w
h

)∣∣∣∣ν fX|δ=1(w) p

[1−G(w)]ν
dw

} 2
ν

(4.18)

From Assumption 4.1.1 (iii), we get supw fX|δ=1(w)/[1−G(w)]ν ≤M1B
ν
0 for ν > 2.

By [15] (Lemma 2), we have
∫
R |K

E(u)|νdu ≤ C(1 + o(1))/hβν , thus,

S2 ≤
C

n2h2

n−1∑
j=ln+1

(n− j) [α(j)]1−
2
ν

[
h

∫ ∞
−∞
|KE(u)|νdu

] 2
ν

≤ C

nh2

n−1∑
j=ln+1

[α(j)]1−
2
ν

(
h

hβν

) 2
ν
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≤ C

nh2β+2− 2
ν

1

lρn

n−1∑
j=ln+1

jρ [α(j)]1−
2
ν (4.19)

C is some positive constant, ρ > 1− 2/ν. By choosing ln = h(2/ν−1)/ρ, ln h→ 0 is also

satisfied. Then using (4.19) and Assumption 4.1.1 (v), when ln →∞ and n→∞ we

have

nh2β+1S2 ≤
C

h1−
2
ν lρn

n−1∑
j=ln+1

jρ[α(j)]1−
2
ν → 0 (4.20)

Combining (4.17) with (4.20), and using (4.11) we conclude that Lemma 4.1.1

follows:

lim
n→∞

nh2β+1Var[f̂ IPZ (z)] = lim
n→∞

nh2β+1(In,0 + S0) = lim
n→∞

nh2β+1In,0 = σ2
0(z) (4.21)

We now are ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1:

Proof. In order to establish the asymptotic normality of f̂ IPZ (z) for the dependent

sequence, a standard method is using the classical big block-small block argument [3].

The procedure is as follows: define

Ũj =
h

2β+1
2

σ0(z)
(Uj − EUj) (4.22)

recall Uj = δjK
E[(z −Wj)/h]/[h (1−G(Wj))] and f̂ IPZ (z) =

∑n
j=1 Uj/n. It will be

equivalent to show

1√
n

n∑
j=1

Ũj
d−→ N(0, 1) (4.23)

First, we need to partition the set {1, 2, · · · , n} into 2k + 1 subsets with large

blocks of size qn and small blocks of size rn, such that k = kn = [n/(qn + rn)]. And

the remaining block has size n− k(qn + rn). Thus,

1√
n

n∑
j=1

Ũj =
1√
n

k∑
j=1

ηj +
1√
n

k∑
j=1

η′j +
1√
n
η′′k (4.24)
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where

ηj =

(j−1)(qn+rn)+qn∑
i=(j−1)(qn+rn)+1

Ũi (j = 1, 2, · · · , k) (4.25)

η′j =

j(qn+rn)∑
i=(j−1)(qn+rn)+qn+1

Ũi (4.26)

η′′k =
n∑

i=k(qn+rn)+1

Ũi (4.27)

To prove the main theorem, we need to check the following conditions of big

block-small block procedure.

1

n
E

(
k∑
j=1

η′j

)2

→ 0,
1

n
E(η′′k)2 → 0 (4.28)∣∣∣∣∣E (eit∑k

j=1 ηj
)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣→ 0 (4.29)

1

n

k∑
j=1

E(η2j )→ 1 (4.30)

1

n

k∑
j=1

E
[
η2j I{|ηj| > ε

√
n}
]
→ 0 (4.31)

for every ε > 0.

In the big block-small block procedure, (4.28) implies
∑k

j=1 η
′
j/
√
n, η′′k/

√
n

are asymptotic negligible; (4.29) states ηj is asymptotic independent in the sense of

characteristic function; (4.30) and (4.31) are the standard Lindeberg-Feller conditions

for asymptotic normality of
∑k

j=1 ηj/
√
n under independence.

Now follow the big block-small block procedure, we first need to find the

block size. By assumption rn = o(nh1/2), there exist integers sn → ∞ such that

sn rn = o(nh1/2), sn(n/h)1/2α(rn)→ 0 as n→∞. Now let qn = [nh1/2/sn], we obtain

the following relationships as n→∞:

rn
qn
→ 0 (4.32)
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qn
n
→ 0 (4.33)

qn

(nh)
1
2

→ 0 (4.34)

n

qn
α(rn)→ 0 (4.35)

Next we will check the big block-small block procedure (4.28)-(4.31).

Step 1 (1). Check for the first part of (4.28): E
(∑k

j=1 η
′
j

)2
/n→ 0.

Notice EŨj = 0, thus Eηj = Eη′j = Eη′′k = 0. Observe that

E

(
k∑
j=1

η′j

)2

= Var

(
k∑
j=1

η′j

)
=

k∑
j=1

Varη′j + 2
∑

1≤i<j≤k

Cov(η′i, η
′
j) := J1 + J2 (4.36)

To simplify the following proof, we let ζj = (j − 1)(qn + rn) + qn, therefore each term

of J1 is

Varη′j =

ζj+rn∑
i=ζj+1

VarŨi + 2
∑

1≤i1<i2≤rn

Cov(Ũζj+i1 , Ũζj+i2) (4.37)

Similar to the proof of In,0 and S0 in (4.7) in Lemma 4.1.1, the variance and the

covariance part are:

ζj+rn∑
i=ζj+1

VarŨi =

ζj+rn∑
i=ζj+1

EŨi
2

=
h2β+1

σ2
0(z)

ζj+rn∑
i=ζj+1

VarUi = rn(1 + o(1)) (4.38)

2
∑

1≤i1<i2≤rn

Cov(Ũζj+i1 , Ũζj+i2) =
2h2β+1

σ2
0(z)

∑
1≤i1<i2≤rn

Cov(Uζj+i1 , Uζj+i2)

=
1

σ2
0(z)

o(r2n h
2β+1/(rn h

2β+1)) =
rn

σ2
0(z)

o(1) (4.39)

Hence Varη′j = rn(1 + o(1) + o(1)/σ2
0(z)), and

J1 = k rn(1 + o(1)) (4.40)

follows from (4.36).
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Now check J2,

J2 = 2
∑

1≤i<j≤k

Cov(η′i, η
′
j) = 2

∑
1≤i<j≤k

rn∑
l1=1

rn∑
l2=1

Cov(Ũζi+l1 , Ũζj+l2) (4.41)

Notice i < j, |ζj + l2 − ζi − l1| ≥ qn, then by (4.22) and similar to the proof of S0 in

Lemma 4.1.1 we have

|J2| ≤
2h2β+1

σ2
0(z)

∑
1≤i<j≤k

rn∑
l1=1

rn∑
l2=1

∣∣Cov(Uζi+l1 , Uζj+l2)
∣∣

=
2nh2β+1

σ2
0(z)

o(h−1−2β) =
o(n)

σ2
0(z)

(4.42)

As a result, by (4.36), (4.40), (4.42) and (4.32),

1

n
E

(
k∑
j=1

η′j

)2

=
1

n
(J1 + J2) ≤

1

n

(
k rn(1 + o(1)) +

o(n)

σ2
0(z)

)
→ 0 (4.43)

Step 1 (2). After that, we consider the second part of (4.28): E(η′′k)2/n→ 0.

Similar to the proof of J1, when n→∞,

1

n
E(η′′k)2 =

1

n
Var(η′′k) =

1

n
Var

 n∑
i=k(qn+rn)+1

Ũi


=

1

n

n∑
i=k(qn+rn)+1

VarŨi +
2

n

∑
k(qn+rn)+1≤i1<i2≤n

Cov(Ũi1 , Ũi2) (4.44)

=
n− k(qn + rn)

n
(1 + o(1))→ 0

Step 2. Check for (4.29):
∣∣∣E (eit∑k

j=1 ηj
)
−
∏k

j=1E
(
eitηj

)∣∣∣→ 0.

Using Lemma 4.0.2, we have ηj is F jlil -measurable with il = (l− 1)(qn + rn) + 1,

jl = (l − 1)(qn + rn) + qn, and note that il+1 − jl = rn + 1. Hence by (4.35),∣∣∣∣∣E (eit∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣ ≤ 16 (k − 1)α(rn + 1) ≤ 16 k α(rn) (4.45)

< 16
n

qn
α(rn)→ 0
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Step 3. Check for (4.30):
∑k

j=1E(η2j )/n→ 1.

Similar to the proof of J1 in (4.36), we have by (4.32),

1

n

k∑
j=1

E(η2j ) =
1

n

k∑
j=1

Varηj →
k

n
qn (1 + o(1))→ 1 (4.46)

Step 4. It remains to check (4.31):
∑k

j=1E
[
η2j I{|ηj| > ε

√
n}
]
/n→ 0.

Recall Uj = δjK
E[(z −Wj)/h]/[h (1−G(Wj))] and

Ũj = h(2β+1)/2 (Uj − EUj)/σ0(z). The upper bound of |Ũj| can be found as

|Ũj| ≤
h

2β+1
2

σ0(z)

{
1

h
sup
z

∣∣∣∣KE

(
z −Wj

h

)
δj

1−G(Wj)

∣∣∣∣+ |EUj|
}

(4.47)

From [7] (Proof of Theorem 2.1), we know |KE(u)| ≤ C/hβ, C is some positive

constant. And by the assumption supx 1/[1 − G(x)] ≤ B0 and |EUj| = O(1) from

(3.13),

|Ũj| ≤
h

2β+1
2

σ0(z)

(
B0C

hhβ
+O(1))

)
≤ C

h
1
2

(4.48)

uniformly in j. By the definition of ηj in (4.25) and using (4.34),

max
1≤j≤k

|ηj|√
n
≤ Cqn√

nh
→ 0 (4.49)

which implies that P (|ηj| > ε
√
n) = 0. Hence (4.31) is verified by

1

n

k∑
j=1

E[η2j I{|ηj| > ε
√
n}] ≤ 1

n

k∑
j=1

(
Cqn

h
1
2

)2

P (|ηj| > ε
√
n)→ 0 (4.50)

We conclude the asymptotic normality of f̂ IPZ (z) holds since all the conditions

(4.28)-(4.31) of big block-small block are proved.

4.2 Case II: Supersmooth Distribution

Under this part we will establish the asymptotic normality of f̂ IPZ (z) when the

smoothness of error distribution is supersmooth of order β, for which ϕfE satisfies

Assumption 3.0.1 (ii), and we also assume that:
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Assumption 4.2.1.

(i) ϕK(t) has a finite support (−d, d). Moreover, |ϕK(t)| ≤ B1(d− t)s and ϕK(t) ≥

B2(d− t)s for t ∈ (d− ψ, d), where s and ψ are some positive constants.

(ii)

∫ ∞
−∞

fX|δ=1(x)/[1−G(x)]ν dx <∞ for some ν > 2.

(iii)
∞∑
j=1

jλ [α(j)]1−2/ν <∞ for some ν > 2 and λ > 0.

Let σ2(z) = Varf̂ IPZ (z), σ̄2
n(z) = Var(Uj). Main theorem is listed below:

Theorem 4.2.1. Suppose Assumption 4.2.1 is satisfied. Assume h = hn → 0 such

that nhω → ∞ as n → ∞ for some ω > 1. If rn = [(nhω)]1/2 and α(p) satisfies

(n/hω)1/2 α(rn)→ 0 as n→∞, then

√
n
[
f̂ IPZ (z)− Ef̂ IPZ (z)

]
σ̄n(z)

d−→ N(0, 1) (4.51)

as n→∞.

Before we proceed the proof of Theorem 4.2.1, we need the following lemmas:

Lemma 4.2.1 is to find the bounds of KE(x) [8], Lemma 4.2.2 finds the lower bound

of σ̄2
n(z), and Lemma 4.2.3 provides the asymptotic relationship between σ2(z) and

σ̄2
n(z).

Lemma 4.2.1. Under Assumption 4.2.1, as n→∞,

‖KE‖∞ = O(h(s+1)β+β0 [ln (1/h)]s e(d/h)
β/γ) (4.52)

|KE(x)| ≥ B3 H̃(x)h(s+1)β+β0 e(
d
h)

β
/γ (4.53)

uniformly in x on a bounded interval, where B3 is a positive constant, and

H̃(x) =


| cos dx|, if IE(t) = o(RE(t))

| sin dx|, if RE(t) = o(IE(t))

RE(t) and IE(t) denote the real and the imaginary part of the characteristic function

ϕfE(t).
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Lemma 4.2.2. Under Assumption 4.2.1, we have as n→∞

σ̄2
n(z) ≥ B4 h

2[(s+1)β+β0− 1
2
] e2(

d
h)

β
/γ (4.54)

for some positive constant B4. Let h = hn = d (2/(γθ lnn))1/β, where θ ∈ (0, 1).

Proof. We have shown |EUj| is bounded in (3.13), therefore

σ̄2
n(z) = VarUj =

1

h2
E

[
KE

(
z −Wj

h

)
δj

1−G(Wj)

]2
+O(1)

=
p

h2

∫ ∞
−∞

[
KE

(
z − w
h

)]2 fX|δ=1(w)

[1−G(w)]2
dw +O(1)

≥ p

h

∫ 1

−1

[
KE(u)

]2 fX|δ=1(z − hu)

[1−G(z − hu)]2
du+O(1) (4.55)

By Lemma 4.2.1 and fX|δ=1/[1−G]2 is continuous, as h→ 0,

σ̄2
n(z) ≥ B2

3 h
2[(s+1)β+β0− 1

2
] e2 ( dh)

β
/γ fX|δ=1(z)

[1−G(z)]2

∫ 1

−1

[
H̃(u)

]2
du (1 + o(1))

≥ B4 h
2[(s+1)β+β0− 1

2
] e2 ( dh)

β
/γ (4.56)

for some positive constant B4.

Lemma 4.2.3. Under Assumption 4.2.1, let h take the same value in Lemma 4.2.2,

we have

∑
1≤i<j≤n

|Cov(Ui, Uj)| = o(n σ̄2
n(z)) (4.57)

σ2(z) =
1

n
σ̄2
n(z)(1 + o(1)) (4.58)

Proof. First consider σ2(z),

σ2(z) = Varf̂ IPZ (z)

=

∑n
j=1 VarUj

n2
+

2

n2

∑
1≤i<j≤n

Cov(Ui, Uj)
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≤
∑n

j=1 VarUj

n2
+

2

n2

∣∣∣∣∣ ∑
1≤i<j≤n

Cov(Ui, Uj)

∣∣∣∣∣
≤
∑n

j=1 VarUj

n2
+

2

n2

∑
1≤i<j≤n

|Cov(Ui, Uj)| (4.59)

Variance part can be expressed as∑n
j=1 VarUj

n2
=

VarUj
n

=
σ̄2
n(z)

n
(4.60)

Before continuing, we separate the summation of covariance terms into two parts:

2

n2

∑
1≤i<j≤n

|Cov(Ui, Uj)|

=
2

n2

∑
1≤i<j≤n
j−i≤ln

|Cov(Ui, Uj)|+
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

|Cov(Ui, Uj)|

:= J3 + J4 (4.61)

where ln = e(d/h)
β/γ.

We now show J3 → o(σ̄2
n(z)/n).

J3 =
2

n2

∑
1≤i<j≤n
j−i≤ln

|Cov(Ui, Uj)|

≤ 2

n2

∑
1≤i<j≤n
j−i≤ln

|E(Ui Uj)|+
2

n2

∑
1≤i<j≤n
j−i≤ln

|E(Ui)| |E(Uj)| (4.62)

By (4.15) and similar to the proof Zu used in [24], using the assumption supx 1/[1−

G(x)] ≤ B0 <∞, P (δi = 1, δj = 1) = p∗, we have

|E(Ui Uj)|

=
1

h2

∣∣∣∣E [KE

(
z −Wi

h

)
δi

1−G(Wi)
KE

(
z −Wj

h

)
δj

1−G(Wj)

]∣∣∣∣
=

1

h2

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

KE

(
z − wi
h

)
KE

(
z − wj
h

)
f(Xi,Xj)|(δi=1,δj=1)(wi, wj)

[1−G(wi)][1−G(wj)]
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·P (δi = 1, δj = 1) dwi dwj|

=
p∗

h2

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

KE

(
z − wi
h

)
KE

(
z − wj
h

)
f(Xi,Xj)|(δi=1,δj=1)(wi, wj)

[1−G(wi)][1−G(wj)]
dwi dwj

∣∣∣∣
≤ B2

0 p
∗

h2

∣∣∣∣E [KE

(
z −Xi

h

)
KE

(
z −Xj

h

)∣∣∣∣ δi = 1, δj = 1

]∣∣∣∣
=
B2

0 p
∗

(2π)2
1

h2

∣∣∣∣E [∫ d

−d

∫ d

−d

ϕK(u) ϕK(v)

ϕfE(u
h
) ϕfE( v

h
)
eiu

Xi−z
h eiv

Xj−z
h du dv

∣∣∣∣ δi = 1, δj = 1

]∣∣∣∣
(4.63)

Note that for random variables R, S, T , E{E[R|S, T ]|S} = E[R|S] and recall

Xi = Zi + Ei, Ei is independent of Zi and δi, using ϕfE(u/h) = E(exp (iuEi/h)),

(4.63) becomes

|E(Ui Uj)|

≤ B2
0 p
∗

(2π)2
1

h2

∣∣∣∣∫ d

−d

∫ d

−d

ϕK(u) ϕK(v)

ϕfE(u
h
) ϕfE( v

h
)

· E
{
E
[
eiu

Zi+Ei−z
h eiv

Zj+Ej−z
h

∣∣∣ (Zi, Zj, δi = 1, δj = 1)
]∣∣∣ δi = 1, δj = 1

}
du dv

∣∣∣
≤ B2

0 p
∗

(2π)2
1

h2

∣∣∣∣∫ d

−d

∫ d

−d

ϕK(u) ϕK(v)

ϕfE(u
h
) ϕfE( v

h
)
ϕfE

(u
h

)
ϕfE

(v
h

)
·E
(
eiu

Zi−z
h eiv

Zj−z
h |δi = 1, δj = 1

)
du dv

∣∣∣
≤ B2

0 p
∗

(2π)2
1

h2

∣∣∣∣∫ d

−d

∫ d

−d
|ϕK(u) ϕK(v)|

∫ ∞
−∞

∫ ∞
−∞

∣∣∣eiu zi−zh eiv
zj−z
h

∣∣∣
· f(Zi,Zj)|(δi=1,δj=1)(zi, zj) dzi dzj du dv

∣∣
≤ C

h2

∣∣∣∣∫ d

−d

∫ d

−d
|ϕK(u) ϕK(v)| du dv

∣∣∣∣ ≤ C

h2
(4.64)

where C is some positive constant, (4.64) follows from Assumption 4.2.1 (i),

|ϕK(t)| ≤ B1(d− t)s. Now (4.62) becomes J3 ≤ 2 ln(C/h2 +O(1))/n = O(ln/(nh
2))

by |EUj| = O(1) in (3.13). Using the lower bound of σ̄2
n(z) in Lemma 4.2.2, we have

nJ3
σ̄2
n(z)

≤ C ln

B4 h2 h
2[(s+1)β+β0− 1

2
] e2 ( dh)

β
/γ

= O(h−2[(s+1)β+β0+1/2] e−(d/h)
β/γ)→ 0 (4.65)
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Next, it remains to show J4 → o(σ̄2
n(z)/n). By Lemma 4.0.1 and Assumption

4.2.1 (ii),

J4 =
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

|Cov(Ui, Uj)|

≤ 2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

8 [α(j − i)]1−
2
ν {E|Ui|ν E|Uj|ν}

1
ν

=
2

n2

n−ln−1∑
i=1

n∑
j=i+ln+1

8

h2
[α(j − i)]1−

2
ν

{∫ ∞
−∞

∣∣∣∣KE

(
z − w
h

)∣∣∣∣ν fX|δ=1(w) p

[1−G(w)]ν
dw

} 2
ν

≤ C

n2h2

n−1∑
j=ln+1

(n− j)[α(j)]1−
2
ν ‖KE‖2∞

≤ C

nh2
‖KE‖2∞

1

lλn

n−1∑
j=ln+1

jλ [α(j)]1−
2
ν (4.66)

Using the upper bound of ‖KE‖∞ in Lemma 4.2.1 and the lower bound of σ̄2
n(z) in

Lemma 4.2.2, we obtain

nJ4
σ̄2
n(z)

≤
C h2[(s+1)β+β0]

[
ln
(
1
h

)]2s
e2(

d
h)

β
/γ

h2 lλn h
2[(s+1)β+β0− 1

2
] e2(

d
h)

β
/γ

n−1∑
j=ln+1

jλ [α(j)]1−
2
ν

=
C

h lλn

[
ln

(
1

h

)]2s n−1∑
j=ln+1

jλ [α(j)]1−
2
ν → 0 (4.67)

which follows from Assumption 4.2.1 (iii) as n→∞.

Consequently, we conclude that (4.57) holds and combine with (4.60), (4.58) is

proved.

We now are ready to prove the asymptotic normality of f̂ IPZ (z) for supersmooth

case.

Proof of Theorem 4.2.1:

Proof. Recall Uj = δjK
E((z −Wj)/h)/(h(1−G(Wj))), f̂

IP
Z (z) =

∑n
j=1 Uj/n, let

Ũj = (Uj − EUj)/σ̄n(z). By Lemma 4.2.3,

VarŨj = 1 (4.68)
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∑
1≤i<j≤n

∣∣∣Cov(Ũi, Ũj)
∣∣∣ = o(n) (4.69)

we obtain

Var

(
n∑
j=1

Ũj

)
=

n∑
j=1

VarŨj + 2
∑

1≤<i<j≤n

Cov(Ũi, Ũj) = n (1 + o(1)) (4.70)

Note that

√
n

[
f̂ IPZ (z)− Ef̂ IPZ (z)

]
σ̄n(z)

=

√
n
[
1
n

∑n
j=1 Uj − E

(
1
n

∑n
j=1 Uj

)]
σ̄n(z)

=

√
n 1

n

∑n
j=1 (Uj − EUj)
σ̄n(z)

=
1√
n

n∑
j=1

Uj − EUj
σ̄n(z)

=

∑n
j=1 Ũj√
n

(4.71)

Thus it’s equivalent to show
∑n

j=1 Ũj/
√
n

d−→ N(0, 1), we will still apply the big

block-small block procedure as discussed before in ordinary smooth case in Theorem

4.1.1 to prove it. Let ηj, η
′
j and η′′K defined same as in (4.25)-(4.27), but with

Ũj = (Uj − EUj)/σ̄n(z).

Before we check the big block-small block procedure (4.28)-(4.31), let the large

block size qn = [nhω1 ]1/2, where 1 < ω1 < ω, as n→∞

rn
qn
→ 0,

qn
n
→ 0 (4.72)

qn

(nh)
1
2

[
ln

(
1

h

)]s
→ 0 (4.73)

n

qn
α(rn)→ 0 (4.74)

Step 1 (1). Check for the first part of (4.28): E
(∑k

j=1 η
′
j

)2
/n→ 0.

As in (4.37), using (4.69) we know

Var(η′j) ≤
ζj+rn∑
i=ζj+1

VarŨi + rn o(1) = rn (1 + o(1)) (4.75)
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By (4.36) we get J1 =
∑k

j=1 Varη′j ≤ k rn (1 + o(1)). In (4.41), note that we now have

(4.69), thus |J2| ≤ o(n), which leads to

1

n
E

(
k∑
j=1

η′j

)2

=
1

n
(J1 + J2) ≤

1

n
[k rn (1 + o(1) + o(n)]→ 0 (4.76)

as n→∞ by (4.72).

Step 1 (2). Next check the second part of (4.28): E(η′′k)2/n→ 0.

Similarly, by (4.44), using (4.68) and (4.69), it can be established as

1

n
E(η′′k)2 ≤ 1

n
[n− k(qn + rn)] +

1

n
[n− k(qn + rn)] o(1)

=
1

n
[n− k(qn + rn)](1 + o(1))→ 0 (4.77)

as n→∞.

Step 2. Check for (4.29):
∣∣∣E (eit∑k

j=1 ηj
)
−
∏k

j=1E
(
eitηj

)∣∣∣→ 0.

As in (4.45), using (4.74),∣∣∣∣∣E (eit∑k
j=1 ηj

)
−

k∏
j=1

E
(
eitηj

)∣∣∣∣∣ ≤ 16 k α(rn) < 16
n

qn
α(rn)→ 0 (4.78)

Step 3. Check for (4.30):
∑k

j=1Eη
2
j/n→ 1.

By (4.75), with rn replaced by qn and using (4.72),

1

n

k∑
j=1

Eη2j =
1

n

k∑
j=1

Varηj ≤
1

n
k qn (1 + o(1))

=
1

n

[
n

qn + rn

]
qn(1 + o(1))→ 1 (4.79)

Step 4. Finally, we verify the Lindeberg-Feller condition (4.31):∑k
j=1E

[
η2j I{|ηj| > ε

√
n}
]
/n→ 0.

From (3.13) we know |EUj| = O(1) and recall the assumption supx 1/[1 −

G(x)] ≤ B0, we derive

|Ũj| ≤ B0
‖KE‖∞
h σ̄n(z)

+
O(1)

σ̄n(z)
(4.80)
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uniformly in j, so that

|ηj| ≤ C qn
‖KE‖∞
h σ̄n(z)

(4.81)

where C is some positive constant. Moreover, using the upper bound of ‖KE‖∞ in

Lemma 4.2.1 and the lower bound of σ̄n(z) in Lemma 4.2.2, we have from (4.73)

|ηj|√
n
≤
C qn h

(s+1)β+β0
[
ln
(
1
h

)]s
e(

d
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β
/γ

√
nhh(s+1)β+β0− 1

2 e(
d
h)

β
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=
C qn

[
ln
(
1
h

)]s
(nh)

1
2

→ 0 (4.82)

Thus P (|ηj|/
√
n > ε) = 0 for sufficient large n, (4.31) follows from (4.73)

1

n

k∑
j=1

E
[
η2j I{|ηj| > ε

√
n}
]
≤ C

k∑
j=1

q2n
[
ln
(
1
h

)]2s
nh

P

(
|ηj|√
n
> ε

)
→ 0 (4.83)

By summary, conditions (4.28)-(4.31) are satisfied, we conclude (4.51) holds,

which completes the proof.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

Overall, knowing distribution is crucial for statistical inference, we find sufficient

conditions for the asymptotic normality of f̂ IPZ (z) under independence and strong

mixing when the error distribution is either ordinary smooth or supersmooth.

The work in this dissertation could possibly be used to extend the necessary

conditions for the Central Limit Theorem to hold for f̂ IPZ (z) and the asymptotic

normality of the estimator f̂KMZ (z).
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