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ABSTRACT

A Bisection Method for the Banded Hyperbolic Quadratic Eigenvalue Problem

Ahmed T. Ali, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Ren-Cang Li

It is well-known that the eigenvalues of a Hermitian matrix in a given interval
can be approximated within a predefined error tolerance using the bisection method
as a direct application of the Sylvester’s Law of Inertia. In this thesis, we will develop
a bisection method for the hyperbolic quadratic eigenvalue problem (HQEP) which is
guaranteed to have 2n real eigenvalues for a problem of size n. A number of numerical
methods are available to solve HQEPs. Matlab’s polyeig uses the QZ algorithm on
the problem after linearizing it to a pencil of size 2n. Another approach is by finding
a solvent matrix. Both approaches ignore any banded structure of the problem. For
the tri-diagonal HQEPs, an approach to approximate the eigenvalues by efficiently
solving the characteristic equation was also proposed. The method can’t be applied to
higher banded HQEPs efficiently. Our method will avoid converting the HQEP to a
definite pencil of order 2n by working on the HQEP directly taking into consideration
any banded structure of the problem. Our method can be applied to large banded
HQEPs and produces more accurate eigenvalue approximations compared to the

approaches stated.
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CHAPTER 1
Introduction

The quadratic eigenvalue problem (QEP) is a nonlinear eigenvalue problem with
important applications in dynamic analysis of structures, non-linear vibration theory
and fluid dynamics. This thesis focuses on large scale banded hyperbolic quadratic
eigenvalue problem (HQEP) which is known to admit real eigenvalues, similar to
the definite generalized eigenvalue problem and the standard Hermitian eigenvalue
problem.

This thesis was organized to be as self contained as possible in introducing
HQEP. In chapter 1 we introduce HQEP, and the origins of the problem. We also
introduce some results concerning matrix polynomials and finally we introduce the
concept of eigenvalue curves which will be of great importance in our analysis of
HQEP and in the derivation of our algorithms.

In chapter 2, we dig deeper into the theory behind our understanding of the
problem, the properties of HQEP solutions, hyperbolicity and overdamping of HQEP,
the concept of symmetric matrix inertia which will be the basis of our algorithms, and
finally survey the available techniques to the solution of HQEP. Chapter 2 doesn’t
depend on chapter 1 except for section 1.1.

In Chapter 3, we begin implementing the bisection method on HQEP by first
understanding the bisection method application on the symmetric eigenvalue problem
(SEP) before extending the bisection method for HQEP. In this chapter, more analysis

and results of HQEP are introduced and examined.



In chapter 4, we implement a stable and efficient algorithm for tri-diagonal
HQEPs and examine the difficulties of extending the same algorithm to the banded
HQEPs.

In chapter 5, we introduce a solution to the difficulties of extending a stable
and efficient bisection algorithm to banded HQEPs wider than tri-diagonal. Section
5.2 is also self contained as it has all the final versions of the procedures needed
to implement a complete solution using the bisection method on banded HQEPs.
Finally, in section 5.3 we illustrate the results of our approach compared to two other

approaches.

1.1 Definition

Definition 1.1.1 (HQEP). The hyperbolic quadratic eigenvalue problem (HQEP) is

to find scalars A and nonzero vectors x satisfying
Q\)z = (NA+ B+ C)x =0, (1.1)
where A, B, C are n X n symmetric matrices, A > 0 (positive definite), and
(z"Bz)? > 4(2" Az) (27 Cz), V0 #z€C (1.2)
An HQEP is algebraically different from the standard eigenvalue problem
Ar = Az,
and the generalized eigenvalue problem (GEP)
Ar = \Bux,

in that HQEP has 2n real eigenvalues and 2n eigenvectors that are not linearly

independent in R". HQEP is a restricted eigenvalue problem of a larger class of
2



nonlinear eigenvalue problems called the symmetric quadratic eigenvalue problem
(QEP) where the only condition is that A, B, C' are n x n Hermitian matrices. A QEP
will also have 2n eigenvalues (finite or infinite) and they may be complex. Throughout
this study, we will call, A from the previous definition a quadratic eigenvalue, x a
quadratic eigenvector, and (), x) a quadratic eigenpair of the HQEP in (1.1).

The spectrum of Q()\) is the set of all quadratic eigenvalues of the HQEP.

1.2 The Rise of HQEP

HQEP arises in many applications where solving a system of second order linear

differential equations is required,
Ay"(t) + By'(t) + Cy(t) = 0, (1.3)

where the vector-valued function y(t) = [y1(t) y2(t) ... y.(¢)]7, and A, B,C € R™*",

The general solution has the form

2n
y(t) = Z ki€, (1.4)
=1

where z; is the quadratic eigenvector associated with the quadratic eigenvalue \;
obtained from solving HQEP, and k; are scalar constants that can be determined
using initial conditions.

Example 1.2.1. Here is a simple example of dynamic analysis of structural system.
Consider a two mass damped system as in Figure 1.1 where m; is the mass, y; is the
displacement of the mass, ¢; is the damping coefficient, and k; is the spring constant.

Applying Newton’s second law to m; and my respectively yields

mayy + (c1 + c2)yy — oty + (k1 + ka)yr — kaye = 0,
maysy + (c2 + c3)ys — oty + (k2 + k3)ys — kayn = 0,

3



which can be written as

m; O Yy cg+c —co Y1 ki+ky —ko Y1
- + =0
0 meo yg’ —C9 (&) + C3 yé —]{72 kz + /{73 Y2
~ ~ e~ ~- ~——
A Y7 (t) B Y/(t) e, Y (t)

and has the same form as (1.3). In case of n masses then we will get a tri-diagonal

system of order n.

Figure 1.1. Two Mass Spring Damped system.

yl y2
' k 1 = k 2 i k 3 i
—Wh— W —h—
e | p— 2 S—
] ] ]
= 5 : —_

€y ) O €2 () () €3

1.3 Symmetric Matrix Polynomials

The Q(A) of HQEP (and QEP in general) is a matrix polynomial of the second
degree and from there comes the word quadratic. The HQEP therefore inherits
many of the characteristics of matrix polynomial problems which themselves inherit
from the matrix analytic function problems. In this section, we will study how the
polynomial eigenvalues and eigenvectors behave as a function in A and then apply

the results to the HQEP.



Consider n X n symmetric matrix whose elements are polynomials with the

highest degree d in the scalar parameter A,

a2 fisN) e ()

A A AL n(A
FO) = le'( ) f22'( ) f23'( ) fo '( ) | (L.5)
where f;;(\) is a polynomial in A of degree d, or equivalently
d
F(A) =) NA;=XNAg+ M Agy + .+ M+ A, (1.6)
i=0

where Ay, Ay, ..., Ay are n X n real symmetric matrices with constant elements, and
Ap is non-singular. This is a symmetric matrix polynomial of degree d and order n.
Definition 1.3.1 (Derivative of a matrix polynomial). The first derivative of a matrix

polynomial F’(\) is a matrix polynomial such that

L) FoN) FsN) e T

b1 (A Jo (A a(A) oo fa (A
F()) = f51(A) - foo(A) fo3(N) f3,(A) 7
| fin(A) FraQA) - fas(A) - fan (A
or equivalently
d
F'(\) = ZMHA,- = A\ A+ (d = DATEA L AA F AL
i=1

For a given real value of A, the symmetric matrix polynomial F'(\) is a real
symmetric matrix and hence there exist n eigenvalues, counting multiplicities, denoted

by p;(A) and eigenvectors denoted by wu;(A) such that

FN)u;(A) = pi(Nug(N), fori=1,2,...,n.

5



Note that y;()) is a scalar function in the parameter A while u;(\) is a vector-
valued function in A.

A matrix polynomial of degree d and order n has d - n polynomial eigenvalues
A; counting multiplicities and d - n corresponding polynomial eigenvectors x; that are

linearly dependent in the space R™ if d > 1:
F(\)x; =0, fori=1,2,...,dn, (1.7)

and we will call the eigenpair (\;, z;) polynomial eigenpair.
Theorem 1.3.1. If (u(\),u())) is an eigenpair of the matriz F(\) for some A = A

and (X)) = 0 ,then (\u(\)) is a polynomial eigenpair of the matriz polynomial F(X).
Proof. F(Nu(\) = p(Nu(X) = 0. O
Theorem 1.3.2. p;(A\) is a continuous function in A fori=1,2,....,n.

Proof. Eigenvalues of a matrix are continuous functions of the matrix elements
from Proposition 4.4 [3]. But from (1.5), the elements of a matrix polynomial are

polynomials in A and thus eigenvalues of a matrix polynomial are continuous in A\. [

Theorem 1.3.3. Let u;(\) be an eigenvector of a symmetric matriz polynomial F(X\)
and assume its corresponding eigenvalue p;(X) is simple in an interval T : oo < A < 5.

Then u;(\) is a continuous function in A in the interval Z.

Proof. Since F(\) is a compact, self-adjoint linear operator in R™, and p;(\) is simple

in Z, from [4] w;(\) is continuous in Z. O
In the next theorem we will show that p;(A) is not only a continuous scalar

function in A but also a smooth function for almost every value of \.



Theorem 1.3.4. Consider a symmetric matriz polynomial F'(X). Let pu(\) be a simple
eigenvalue of F(X) in an interval Z : o < X < 3, with corresponding eigenvector u(\)
with ||ulla = 1. Then

W) = )P (A u(). (18)

Proof. Since u()) is a continuous function in A from Theorem 1.3.2 and using the

Taylor series of (1.6) we get
FA+1t) = FO\)u(\+t) + tF' (Nu(A+t) + P H(\, 1),

where H is a matrix polynomial in the parameters A and ¢, and A+t € Z. For a
sufficiently small ¢, F'(A 4 t) has a simple eigenvalue u(A + t) with corresponding

eigenvector u(A +t). We get
FA+tuN+t) = p(A+ t)u(X + 1), (1.9)
but also we have
pA + Hu" (Nu(\ + 1)
= u"(NF\+tu(\+1)
= u'(\) (F(A) +tF'(\) + 2 H (), t))u()\ +1)
= Nt Nu\ + 1) + tut V) F'(Nu(X + 1) + 2u (V) H O Du(\ +t).

Collecting i on the left side and dividing by t we get

PO+ 1) = p) _ a')F () + )
/ T Ou(h + 1)

FH(M ).

Taking the limit as t — 0 we get

_ wT(VF(Nu(N)




Theorems 1.3.2 - 1.3.4 are the special cases of more general results on matrix
functions [5, 6, 7].
Remark 1. We could have taken the first derivative of () directly to get the same

result as follows. We have

lulp =1 = v Nu(\) =1 = di)\(uT()\)u()\)) = ulT()\)u()\) +ul (A (\) = 0.

Now by taking the derivative of p(\) = v (A\)F(X\)u(\) directly we may get the
same result. But then we would have to deal with the issue of the differentiability of

the eigenvector u(\) which was avoided in the proof.

1.4 Eigenvalue Function u(\)

Let A be a square symmetric matrix of size n with simple eigenvalues \;, and
corresponding eigenvector x; where ¢ = 1,2, --- ,n. Then to find the eigenvalues we
need to solve the characteristic equation det(A — AI) = 0 or in other words we need

to solve the eigenvalue problem for the linear pencil (matrix polynomial of degree 1),
P(\) =A—- )\l

Using Matlab we can plot for a fixed value of A, the points (A, 11;(\)) where
wi(A) are the eigenvalues of the matrix P(X) for i = 1,2,---  n. If we repeat this
step while changing the value of A using some convenient step and keep plotting the
eigenvalues, we will get the plot of all the eigenvalues of the pencil P()\) as curves
like in Figure 1.2 which shows the eigenvalue functions p(A) of the matrix polynomial

P(\) = A — Al where



Figure 1.2. Plot of Eigenvalue Function p(A).
1.(2) Plots for P(1) = A-Al

T T T T

8f ]
— A

6 KM |
s ()

4+ ]

The matrix A has the eigenvalues (0.6277,2.0000,6.3723) and these are exactly
the roots of the corresponding eigenvalue curves p(\) (the red dots on the A-axis).
Furthermore, all the p()) curves have the same slope as a direct application of
Theorem 1.3.4,

1 (A) = ul (AP (MNu()) = —1.

The previous example may appear very trivial, but the same technique will be
used extensively in the next section where we will study the properties of HQEPs

and in general QEPs.



Example 1.4.1. Now consider the HQEP defined by

S —
— e}
S (S8
Ne} e}
— N[
~J —

The quadratic eigenvalues of this HQEP are (—8.1453, —4.8820, —0.9031, —0.0696)
using Matlab’s polyeig command. Note that these values are exactly where the p(\)

curves intersect the A\-axis as in Figure 1.3.

Figure 1.3. Plot of Eigenvalue Function u()\) of an HQEP.
w(A) Plots for Q(x) = A*+BA+C
60 T T T T T

_20 I I I ] ]
-10 -8 -6 -4 -2 0 2

The slope of the eigenvalue functions u(\) changes with A, also we are only

concerned with the values of the functions around the A-axis. If we restrict the plot

10



to the values where |u();)| < 1, we may get a more meaningful plot in Figure 1.4

than in Figure 1.3.

Figure 1.4. Restricted Plot of Eigenvalue Function p(A) of an HQEP
Restricted pi(k) Plots for Q(\) = AXZ+BA+C

Now, we can see where the eigenvalue curves cross the A-axis, and hence their

roots. We can also see the slope of each curve at its roots where we will use in the

theory of HQEP in the next chapter.

11



CHAPTER 2
Properties of HQEP

HQEP has special properties that we will exploit when developing a numerical

solution to the problem.

2.1 Properties of HQEP
Theorem 2.1.1. The quadratic eigenvalues of an HQEP are real.
Proof. Consider (;\,i) a quadratic eigenpair of an HQEP such that Q(S\)i = 0 then
we can form the Rayleigh Quotient for the HQEP to obtain
0=2"Q(\ & = N Az + AT Bi + 27 Ci.

Then by applying the quadratic formula, A will get one of the two values:

—#TBi + \/(iTB#)? — 4(iTA2) (27 C%)
23T A '

Hence A € R by Definition 1.1.1. O

Theorem 2.1.2 ([8, 9, 10]). The HQEP as defined in Definition 1.1.1 is equivalent

to the 15t degree symmetric matriz polynomial of order 2n

B A c 0
LO\) = A+ : (2.2)
A0 0 —A

M N
and if (), ) is an eigenpair of (2.2), then (X, 2) is a quadratic eigenpair of the
Y
HQEP and y = A\&. Furthermore, L(\) as defined in (2.2) is a definite pencil

(symmetric and I\ € R such that L(\) < 0).
12



Proof. We have

I IN | |Brx+C Ax||T o Q) 0

= . (2.3)
0 —A1 AN —A| [IXN 1 0 I
P S ~ N
E(\) L)) F(X)
Since A is non-singular, det(F(\)) # 0. Notice also det(F'(\)) # 0. Hence
det(Q(N\)) =0 <= det(L(\)) =0,
i.e. both have the same zeros. Also,
K BA+C AM| | & AN 4+ BAi + Ci QN
0 — L(}\) = . R = A R = ,
Y AN —A| |z ANT — ANz 0
and this proves the equivalency. O

Theorem 2.1.3 ([11]). A QEP where A, B,C are n x n Hermitian matrices and

A = 0 is hyperbolic if and only if Q(\) < 0 for some X € R.

Proof. (<=)[12] Let M, = x* Mz for any symmetric matrix M and a nonzero vector

z. We have

Q(\) < 0 for some A = X € R

NA+AB+C <0

NA, +AB, +C, <0,Y0#£z€C"

NA, +C, < \B,

2/ N2A4,C, < AB,, (2Vab<a+b, for 0 < a,beR)

AN?A,C, < \’B?

e

B? —4A,C, > 0.

13



(= )[13] Q()) is equivalent to the definite pencil L(\), hence according to Theorem

1.2 in [14] there exist o, € R and > 0 such that

B A c 0
a - =0
A 0 0 —A
But
B A C 0 aB — (C aA
« - p =
A 0 0 —A aA BA
|1 gt aB—-BC—%A 0| |1 0
0 I 0 BA| |51 1
042_
_— EA—QB+BC-<O.
By choosing \ = —3 we get L(\) < 0 which implies that Q(\) < 0. O

Definition 2.1.1. The quadratic eigenpair (5\, ) is said to be of a positive (negative)
type if
QN >0 @TQ' (N <0), (2.4)
where @'(\) is the first derivative of Q(\) with respect to A.
Since '(A\) = 2AA + B, from Definition 2.1.1 a quadratic eigenvalue A is of
positive (negative) type if

. 2T Bi : " B#
A> ——— (A< ———).
2T Az ( 2chA:i’)

Denote a quadratic eigenvalue of positive (negative) type by A* (A7), the corre-
sponding quadratic eigenvectors of positive (negative) type by 9?;, and (z) respectively.
Since all the quadratic eigenvalues will have the form (2.1), the principal (positive

type) quadratic eigenvalues will have the form

T T T
— 1, Bz + \/(:T;l. B ;)2 — 4z, Az;)(z
T
21, A,
14




while the secondary (negative type) quadratic eigenvalues will have the form

T T _ T _ T __
-z Bxl-—i—\/(xi B ;)2 —4(x, Az;)(z, Cx;)

_T _

AT =

(2

Furthermore, if 1;(Af") = 0 then p}(\]) > 0, also if px(A;) = 0 then (A7) <0 (see
Figure 2.1).

Example 2.1.1. Consider the HQEP defined by

3 21 -2 -1 -1 -5 1 =2
A=12 3 21,B=|-1 -3 2|, C=11 —4 -3|,
1 2 3 -1 2 -1 —2 -3 -5

which has quadratic eigenvalues using Matlab’s polyeig

A, || -1.8856
X, || -1.0644
s || -0.1242
A [ 12117
N, || 1.3772
X || 6.6104

which agrees with Figure 2.1, and note the slope of u(\) curves as they cross the

A-axis.
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Figure 2.1. Spectrum of an HQEP of order 3.

Restricted y(A) Plots for Q() = MA2+Br+C
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For a fixed A, Q()) is a symmetric matrix of order n and has n real eigenvalues.
From Example 2.1.1 we can see that for a small enough fixed A, say A < A7, we get
Q(A) = 0 and hence all the eigenvalues of such symmetric matrix will be positive. If
we choose a large enough fixed A, say A > A}, all the eigenvalues of the symmetric
matrix Q(\) will also be positive. For Q()) to be negative definite for some A = A,
we must have all the eigenvalues of the symmetric matrix Q(\) negative. This

implies that positive eigenvalues of the matrix Q(\) must decrease from the left of

A7 until we reach A when all the eigenvalues of the matrix Q(A) are negative, and

16



then increase again until all the eigenvalues are positive on the right of Aj. If the
quadratic eigenvalue Mis of a negative type then the matrix Q(\) will have one less
positive eigenvalue passing through A from left to right, and the reverse happen if it
is of the positive type. This implies that all the secondary quadratic eigenvalues of
the negative type must be on the left of 5\, and all the principle quadratic eigenvalues
of the positive type must be on the right of A [1]. In fact the symmetric matrix Q(\)
is negative definite for all values of X such that \; <A< A/ fori=1...n.

Theorem 2.1.4 ([11]). All the quadratic eigenvalues of the HQEP are non-defective.

2.2 Inertia of Q(\)

Here we will study how the inertia of Q)(\) changes as a function of A but first
we need to define the inertia of a symmetric matrix which will be applied to the
symmetric matrix () for a fixed A. Then we will see that the inertia of a symmetric
matrix is invariant under congruence transformation.

Definition 2.2.1 (Inertia of a Symmetric Matrix). The inertia of a symmetric
matrix A is the triple integers i_, iq, i, , where ¢_ is the number of negative eigenvalues
of A, iy is the number of zero eigenvalues of A, and i, is the number of positive
eigenvalues of A. It will be denoted as Inertia(A)=(i_, g, iy ).

Theorem 2.2.1 (Sylvester’s Inertia Theorem). Let A be symmetric and X be

nonsingular. Then A and XTAX have the same inertia.

Proof. [3] Let A be n X n matrix. Let A/ be the negative eigenspace of A spanned
by the eigenvectors corresponging to the negative eigenvalues of A. dim(N) is the
number of negative eigenvalues of A. Let P be the nonnegative eigenspace of X7 AX

where y" XTAXy > 0, Vy € P. Let XP be the space of all vectors x = Xy where

17



y € P. Since X is nonsingular, dim(XP) = dim(P). Assume the dimension of the
negative eigenspace of X7 AX is less than dim(A') then dim(N) + dim(XP) > n,
and Jr e NNXP,2#0. Btz e N = 27Ar <0,and 2 € XP = 27TAz =
y" XTAXy > 0 which is a contradiction. Hence dim(N') = n — dim(P). Therefore,
the number of negative eigenvalues of A and X7 AX are the same. The same argument
can be made for the number of positive eigenvalues and therefore must have the same

number of zero eigenvalues. [

The next theorem gives the inertia of Q(\).
Theorem 2.2.2 ([15]). Denote the 2n eigenvalues of an HQEP of order n by A\ and

arrange in order such that:

A< S <AL <A (2.5)

Vv Vv
Secondary Primary

Then:
(a) QIAN) <0V X e (N, A);
(b)) Q(X) =0V A€ (-00,A7) U (X}, +00);
(c) Inertia(Q(N))=(n — k,0,k) for X € (A, Niq) or A € (A, A _ppq) for k =
1,...,n.
The interval (A, A7) is the gap between the principal and the secondary

quadratic eigenvalues.

2.3 Decomposition of HQEP
Since HQEP is quadratic, we may be able to factor it into two linear eigenvalue
problems the same as in quadratic polynomials in one variable. Indeed, Q(\) can be

factorized.

Definition 2.3.1. A matrix U € R™" is a right (left) solvent of Q(\) if Q(U) =0

(QT(U) =0).
18



Theorem 2.3.1. Q(\) is right divisible by IX — U if and only if U is a right solvent
of Q(N).

Proof. Q(\) is right divisible by IA —U = Q(\) = D(A\)(IAN—-U) = Q(U) =0.
On the other hand,

QU)=0 = Q1) = Q) -QU)
= MNA+AB+C — (AU? 4+ BU +0)
= ANI—-U*+ B\ -U)
— AN +U)N =U) + B(M - U)
= [A\N +U) + B|(\ - U)

= (M+ AU+ B)(M - U),

implying Q(\) is right divisible by I\ — U. O

Note that QT(\) = (IA — UT)DT()) and hence if U is a right solvent of Q(\),
then U7 is a left solvent of Q(\).
Theorem 2.3.2. Let A = diag(A, Ag, ..., \,) and X = [ggl To ... xn] where
(N, ;) fori=1,... ,n,is a quadratic eigenpair of the HQEP of order n for Q()\),

and X is non-singular. Then the matriz S = XAX ™1 is a right solvent of Q(\).

Proof. We have

Q(S) = AS*+BS+C
= AXAX ')+ BXAX ) +C
= AXAX' 4 BXAX '+ COXXT!
= (AXA*+BXA+CX)X !

= ({Axl Axy ... Amn}fﬁ—f'{Bxl Bzy ... Bx,|A
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- [Oml Cry ... cxnbxl
= ({A%A% NAxy ... )\ﬁAxn}ﬂL{/\le XoBzs ... A,Bz,
+ {le Cry ... an} )X_l
= {Q(Al)xl QN\)wy ... Q(An)xn] X 1t=o.
Hence S as defined is a solvent of Q(\). =

There are in fact two very special solvents namely the primary solvent and
the secondary solvent.
Definition 2.3.2 (Primary Solvent). Let A, = diag(A7,As,...,\}) and X, =
[}1 }2 }n} where 331 are the quadratic eigenvectors respectively. Then the
matrix U = X, A, X! is called the primary solvent of Q(X).
Definition 2.3.3 (Secondary Solvent). Let A_ = diag(A{, A5,...,\,) and X_ =
|:(1;1 Ty ... q;n:| where x; are the quadratic eigenvectors respectively. Then the
matrix V = X_A_X"1! is called the secondary solvent of Q(N).
Theorem 2.3.3 ([15]). The matrices X, and X_ are non-singular.
Theorem 2.3.4. If U is a right solvent of Q(\), then V.= AT'U~TC is also a right

solvent of Q(N\), where U™T is the inverse transpose of U.
Proof. We have
AU +BU+C =0 = A'C=-U*-A"'"BU = CA'=—-(U")?-U"BA™".
Thus
QV) = AV’4+ BV +C

= AA'UTTCcA'UTTC + BAT'UTC + C

= vfca'vtc+BA'UTTC+ O
20



= U TN(—Uh?-u'BAhYUTC+BA'UTTC +C
= —C—-BA'UTC+BA ' U TC+C =0,
as was to be shown. OJ

Theorem 2.3.5 (Decomposition of Q(N)[16]). If matriz U is the right solvent of
Q(N), then
Q\) = (IXN=VA(IXN-T), (2.6)
where VI = CUTA™L,
Proof. From Theorem 2.3.1 We have
Q) = NM+AU+ B)(M -U)

= M-CUH -D)

= (M —-CU A HAWN -U),
as expected. ]

Example 2.3.1. Consider the HQEP from Example 2.1.1. We have
A, =diag(1.2117,1.3772,6.6104), A_=diag(—1.8856, —1.0644, —0.1242),

—0.2327 —0.7718 —0.3960 —0.7422  0.5926  0.4079
Xy =1-0.6939 —0.2056 0.7646 |, and X = | 0.5935 —0.1087 0.6795
—0.6814 0.6017 —0.5084 0.3115  0.7981  —0.6098

Now we can construct the primary and secondary solvents for the HQEP (shown

with up to 4 decimal places):

2.5448 —1.4359 1.0070 —1.1705 0.7961  0.1871
U=1-23232 4.0278 —2.0745|,and V = | 0.6179 —0.8849 —0.4344 -
1.4759 —1.8844  2.6266 —0.1880 —0.6900 —1.0188
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We get ||AU? + BU + C||, = 8.3061e — 14, and ||[AV? + BV + (|, = 1.8178¢ — 14,

which implies that U and V' are solvents of the HQEP.

2.4 Hyperbolicity of HQEP

The hyperbolicity of a QEP is only a sufficient condition that guarantees all
the quadratic eigenvalues are real. In the next example we will see a QEP that is not
hyperbolic but still have all real quadratic eigenvalues.

Example 2.4.1. Consider the QEP with

Matlab polyeig(C, B, A) reveals all the quadratic eigenvalues are real:
A1 = —3.6065, Ay = —2.0491, A3=—-0.8000, A, =0.1556

ordered as in (2.5). This QEP is not hyperbolic which can easily be tested by checking
that Q(22123) > 0 which violates the condition of Theorem 2.2.2 (see Figure 2.2). If
we label the quadratic eigenvalues of such QEP using Definition 2.1.1 then we will

get A\, > A which also contradicts Theorem 2.2.2.
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Figure 2.2. Plot of Eigenvalue Function p(A) of a non-hyperbolic QEP.
Restricted pi(k) Plots for Q(A) = AX2+BA+C
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In Example 2.4.1, all the quadratic eigenvalues were real because (z” Bx)? >
4(zT Az) (2T Cz), for any quadratic eigenvector x of the QEP. On the other hand, hy-
perbolicity of a QEP requires the condition that V 0 # x € C™ and hence hyperbolicity
is more restrictive.

We can test for the hyperbolicity of a given QEP by using the sufficient condition
(ABI)2 > g \Tax \max (2.7)

where AP (A%") is the biggest (smallest) absolute values of the eigenvalues of a

given symmetric matrix M. But this condition will not catch all the HQEP problems
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because it’s more restrictive than the hyperbolicity condition of (1.2), as will be seen
in the next two examples.

Example 2.4.2. Consider the HQEP with

10 2.5 0
A: ’B: C:

01 0 33

N[ —=
-

—_
EN |

with AB** = 7.1504 and AB™ = 5.5. Tt is straightforward using (2.7) to conclude that
it is an HQEP.
But on the other hand

Example 2.4.3 (low degree of hyperbolicity HQEP). Consider the HQEP with

which has quadratic eigenvalues:
AT = —11.3860, Ay = —1.6318, A} = —0.8176, A = —0.1646
and Q(@) < 0. But in this case we have AE* = 7.1504, %" = 2 and hence
(NB™)* # ANZ=AE™. (2.8)

This HQEP failed (2.7) (see Figure 2.3).

24



Figure 2.3. Plot of Eigenvalue Function p(\) of HQEP (low degree of Hyperbolicity).
Restricted pi(k) Plots for Q(A) = AX2+BA+C
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We now present four procedure to test if a given QEP is hyperbolic:

1. If the QEP pass the sufficient condition (2.7) then it is hyperbolic.

2. Solve the one-dimensional global optimization problem mgn(max()\Q(”))), where
AQ(u) is the set of all eigenvalues of the symmetric matrix Q(u). If it is negative
then it is hyperbolic.

3. Compute all 2n quadratic eigenvalues of the QEP. If all quadratic eigenvalues

An AT

are real, and Q(=*5~) < 0 then it is hyperbolic [1].

4. If L(A) in (2.2) is a definite pencil then it is hyperbolic [11].
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However, none of these tests is cheap and definitive at the same time. Later
we will develop an algorithm that can test for the hyperbolicity of a QEP to a high
degree of accuracy using the bisection method without computing any quadratic

eigenvalues.

2.5 Overdamped HQEP
Definition 2.5.1. An HQEP is overdamped if B > 0,C = 0 [1].
An HQEP becomes an overdamped HQEP after the proper shift in A [17, 1],

QAN+0) = NA+ANB+20A)+ (C+60B+06%A)
= NA+AB+C
— Q0.
By choosing a large enough shift 6, we will have
B=B+20A~0, C=C+0B+6*A=0. (2.9)
Theorem 2.5.1. Q(\) is overdamped <= X' <0.

Proof. Let M, = 2 Mz for any symmetric matrix M and a nonzero vector x.

(=) Assume Q(A) is overdamped, i.e., B > 0,C = 0. Then we have

—B, — /B2 —-4A,C,
< 0.

24,
and

VB2 — 14,0, < (B,)

—B, ++/B?—4A,C, <0
- B 2 _
.+ /B2 —4A,C, <0
2A, -
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Hence
—B, +\/B?—-4A,C,
<0.
2A, -

(«<=) Since \f <0, Q(0) = C = 0. We also have

M<0 = —-B,++/B2—4A,C, <0
= B, >/B2-4A,C, >0

= B, >0.

i.e., B> 0. 0

2.6 Solving the HQEP

In this section, we survey methods and techniques to solve HQEPs and QEPs

in general.

2.6.1 Linearization

The HQEP in (1.1) can be solved by solving L()) as defined in (2.2) using the
QZ algorithm. Also by applying iterative algorithms like the subspace iteration, the
Arnoldi method, and the unsymmetric Lanczos method to the matrix M !N from
(2.2) we may solve the underlying HQEP [18].

The same can be done with any equivalent generalized eigenvalue problem

which has the same eigenvalues as (1.1), for example

I, 0O 0o I,
- . (2.10)
0 A -C -B
The HQEP can also be converted into the companion block-matrix
-A7'B —-A7IC
C= (2.11)
I, 0
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which is analogous to changing a high-order ODE to a system of first-order linear
ODEs. Applying the QR algorithm to such matrix should reveal the spectrum of the
HQEP.

Solving L(\) has the advantage of keeping the symmetry of the problem which
is destroyed by the other two approaches, but L(\) may destroy the banded structure
of the HQEP which we will take advantage of in our algorithm later. Also solving

(2.11) may lead to loss of accuracy and to instability if A is ill-conditioned .

2.6.2 Finding a Solvent Matrix

We can find a solvent matrix S as defined in Theorem 2.3.2 using an efficient
algorithm introduced in [2] based on the Block Cyclic Reduction [1] that recursively
finds a solvent matrix of a given HQEP. The algorithm should converge to the primary
solvent matrix U if the HQEP is overdamped according to Lemma 6 in [1]. In the
case of a not overdamped HQEP, the algorithm will converge to a solvent matrix S
which has a subset spectrum of the HQEP. In both cases, another solvent can be

found using the relation in Theorem 2.3.4 which has the rest of the HQEP’s spectrum.
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Algorithm 2.1 Iteratively find a Solvent for an HQEP using BCR [1, 2]
Given matrices A, B, C' representing an HQEP, the procedure will return a solvent

matrix S.
function RETURNSOLVENT(A, B, C,¢)

XO ~—0

X<« B

A A

B+« B

C«C

while HXO - XH2 <cdo
X« X - AB7IC
Ag+ A
A+ ABA
By« B
B+« B— AB'C — CB4,
Co+ CB;'C

end while

return —X'C

end function

Example 2.6.1. Applying Algorithm 2.1 to the HQEP in Example 2.4.3 gives us

the primary solvent

—0.3590 —0.9825
U = )

—0.0908 —0.6231
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which has the eigenvalues —0.1646 and —0.8176. Then we can get the secondary

solvent
—1.6410  0.0908

V=A"UTC= :
0.9825 —11.3769
which has the eigenvalues —11.3860 and —1.6318, agreeing with Matlab’s polyeig
used before.
In the previous example the HQEP was overdamped and the algorithm converges
to the primary solver. In the next example we will see that the algorithm will converge
to a solvent that is not the primary solvent because the HQEP is not overdamped.

Example 2.6.2. Applying Algorithm 2.1 to the HQEP in Example 2.1.1 gives us a

solvent
—1.0813 0.6674 0.1034

X1=1-0.5231 0.7615 0.6370]
—1.6380 1.4025 0.3428
which has the eigenvalues —1.0644, —0.1242 and 1.2117. Then we can get another

solvent
6.8030 6.1165 9.0490

Xo=AT'X;TC = | —7.4281 —5.0263 —11.7155| ,
23754 —0.2891  4.3254
which has the eigenvalues —1.8856, 1.3772 and 6.6104. The union of the spectrums

of X; and X, will give us the whole spectrum of the HQEP as in Example 2.1.1.

2.6.3 Iterative methods with Deflation for a Sparse HQEP
The HQEP as defined in Definition 1.1.1 can be transformed to the linear
symmetric eigenvalue problem
B(p)Cx = —(Ap + B)x (2.12)
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where 5(p) is an eigenvalue of the matrix pencil —(Au + B) — AC' for any given
p. It was shown in [18] that §;(u), for j =1,--- ,n, are strictly decreasing. Hence
the smallest positive eigenvalue of the HQEP is the smallest positive fixed point of
the function 1/8;(p). In [18], they also introduced three algorithms to compute the
smallest positive quadratic eigenvalue namely, Basic, Tangent, and Newton’s iterative
methods. All the methods use the symmetric Lanczos algorithm to compute the
eigenpair in every iteration. Afterwards, a nonequivalence deflation technique is used
to produce a new HQEP that has the same spectrum as the original one except that
the smallest positive eigenvalue of the original problem becomes zero in the deflated
problem. Then they find the smallest positive eigenvalue of the deflated problem
and deflate again and so on. This approach can also be used to find all the negative
quadratic eigenvalues. The algorithm will converge linearly globally and quadratically

locally.

2.6.4 Solving the Characteristic Equation of Q(\)

The zeros of the characteristic polynomial of an HQEP are exactly its eigenvalues.
Laguerre’s method and Ehrlich-Aberth method can approxiamte the roots of
the characteristic polynomial of Q)(A) but they require stable and efficient computation
of nertia(Q(\)), fo(N), fo(N)/fa(N), and f4(N)/ fa(N), where fo(A) = det(Q(N)
[19]. Although these methods may converge faster than the bisection method, they
can only be applied to tri-diagonal HQEPs, and may not be efficient for banded
HQEPs beyond tri-diagonal.
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CHAPTER 3
Bisection for HQEP and Hyperbolicity Test

3.1 The Symmetric Eigenvalue Problem case

In this section we will introduce the algorithms in [3, pp.228-232] which we will
use latter in the thesis when dealing with HQEP but with some modifications. Let A
be a square symmetric matrix of size n with simple eigenvalues \;, and corresponding
eigenvector x; for ¢ = 1,2,...,n. Then from Theorem 1.3.1 to find the eigenvalues of

A is equivalent to finding the eigenvalues of the matrix polynomial of degree 1:
P(\) =A—- )\l

This means we will have n y;(A) curves that we need to find their roots assuming
all eigenvalues of the matrix A are simple. We know that the matrix A has at most
n eigenvalues and hence we know that each p;(\) curve will have only one real root.
Now since we need to find the roots of n p;(A) curves, we need to have a mechanism to
show if a given 1;(\) curve changes sign between 2 different values of A and therefore
a root exist between those 2 values. Using Sylvester’s Inertia Theorem we can get
the inertia of P(\) at different values of A. If there is a change in say the number of
the negative eigenvalues of P(\) between those two values, then we can deduce that
there are some roots for some p;(\) curves within those two values, and the number
of roots is equal to the difference in the number of negative eigenvalues.

One of the readily available matrix decompositions for symmetric matrices
and which gives us the inertia is the LDL” decomposition at a cost of O(n?) using
Matlab’s 1d1. The procedure Negcount is a procedure that returns the number

of eigenvalues less than A\ of a symmetric matrix A as a function in A\. Note that
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Matlab’s 1d1 on line 4 of Algorithm 3.1 returns a block diagonal matrix D which has
1 x 1 and 2 x 2 blocks on its diagonal. In case of 2 x 2 blocks, we need to compute
the eigenvalues of the 2 x 2 blocks. In all our examples, D is a diagonal matrix and

computing its inertia is trivial.

Algorithm 3.1 Return the number of eigenvalues less than A of a symmetric matrix

A
1: function NEGCOUNT(A, \)

2: P\) <~ A=\
3: num < 0
4: D < 1d1(P(\))

5: fori=1ton do

6: if D(i,i) < 0 then
7 num $— num + 1
8: end if

9: end for

10: return num

11: end function
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Negcount (A, A) plot of A for P(A) = A-Al
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Figure 3.1. Plot of the number of eigenvalues less than A of a symmetric matrix A as
a step function.

Figure 3.1 shows the eigenvalues of the matrix

3 2 1
A:2327
1 2 3

which are (0.6277, 2.0000, 6.3723), and note the change of Negcount as A varies.
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3.2 Fast Inertia Calculation

Negcount will help us decide if a section of the interval where we want to find
the eigenvalues has any eigenvalues or none (see Figure 3.1). The issue with such
algorithm is that we will need to apply Negcount a factor of n times making the total
cost of the procedure O(n*) flops. This is a factor of n times more expensive than the
QR algorithm which has a cost of only O(n?) flops. But if we compute the tri-diagonal
(Hessenberg) form of A to get T' only once using Householder’s transformations at a

cost of O(n?), we get P(\) = T — Al which has the same spectrum as P(\):

a; — A b1
~ b as— A .
PO = b — LDOV)LT
e b
bn—l Ay — A
di(N)
do (A
_ () LT (3.1)
dn(N)
(3, p.230], where
by
d1(>\) :al—)\, dz()\> = (al_)\)_d_ 122,...777,. (32)
i1

Now we have a linear recursion of the diagonal entries of the matrix D()\) and
therefore Negcount will only cost O(n). We will call the new procedure FastNegcount
which takes T (the tri-diagonal form of A) and A as inputs and outputs the same

values as the original Negcount procedure.
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Algorithm 3.2 Return the number of eigenvalues less than A\ of a tri-diagonal

symmetric matrix 7" in linear time

1: function FAsTNEGCOUNT(T, \)
2: num < 0

3: d«T(1,1) =X

4: if d < 0 then

5: num < num + 1

6: end if

7: for : =2 ton do

§: d T(1,i) — A — T2
9: if d < 0 then

10: num < num + 1

11: end if

12: end for

13: return num

14: end function

Algorithm 3.2 which is based on (3.2) was shown to be stable without any
pivoting in Lemma 5.3 in [3]. We will end this section by implementing the procedure
Bisect. The idea is to bisect the interval on-hand and to discard any sections where
the procedure FastNegcount doesn’t change, and keep bisecting sections that have
one or more eigenvalues. Until we get n sections with only one eigenvalue in each and
have a length within some tolerance. At that moment we may choose the midpoint

of a section as an approximation to the eigenvalue we need to find.
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Algorithm 3.3 Return the approximated eigenvalues of a symmetric matrix A using

Bisection
Given a symmetric matrix A, the procedure will return all the eigenvalues of A in

the interval (a,b) as a vector Eig in a descending order.
function Bisect(A, a, b, tol)

Declare stack Interval
Declare queue Eig
T < ToTriDiag(A)
put./nterval(a,b)
while Interval not empty do
(a,b) < pop from Interval
¢ < FastNegcount(7,b) — FastNegcount (T a)
if ¢>1or (c=1andb—a > tol xabs(*$2)) then
put (a, $2) into Interval
put (42, b) into Interval
else if c =1 and b — a < tol x abs(“f?) then
put (%) into Eig
end if
end while
return Eig

end function

3.3 Analysis of the HQEP case

We will begin by introducing the procedure NegcountHQEP that counts the

number of negative eigenvalues of the symmetric matrix Q(\) for a given fixed A.
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Algorithm 3.4 Return the number of negative eigenvalues of Q(\) for a specific A
1. function NEccouNTHQEP(A, B, C, \)

2 Q(\) + AN+ BA+C
3: num < 0

4 D+ 1d1(Q\N)

5: for i =1ton do

6: if D(i,7) <0 then
7 num < num + 1
8: end if

9: end for
10: return num

11: end function

Now using Theorem 2.2.2 and the algorithm NegcountHQEP we may be able to
find the eigenvalues of the HQEP. The Bisect algorithm won’t succeed directly in
this case, and the reason is that NegcountHQEP(Q(A)) is not monotonic with .

Example 3.3.1. Consider the HQEP with

s
I
(e
—_
oy
I
(e
w0
(@]
Q
I
— NI
\]

Matlab’s polyeig(C, B, A) reveals the quadratic eigenvalues of the HQEP:
(—35.8045, —5.9145, —0.2296, —0.0514) ordered as in (2.5) (see Figure 3.2).
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Figure 3.2. Plot of the number of negative eigenvalues of Q(\) as a step function.
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From Figure 3.2 we can see that NegcountHQEP(Q(\)) = 0 when A < A] or A >
A, Then it increases from A] to A . Between A\, and \{ NegcountHQEP(Q())) = n,
it decreases from A to A} to 0. For example, if \, < A] and Az > A then
NegcountHQEP(Q()\s)) =NegcountHQEP(Q()\,)) = 0 and the Bisect algorithm will
discard the interval [A,,\g] thinking that there are no eigenvalues in that interval
even though all the 2n eigenvalues of the HQEP are in that interval.

We may be able to avoid such difficulty if we can partition the interval [A,,\g]
into [As,Ac] and [A.,\g] where A, < A. < AT, then apply the Bisect algorithm to

each partition separately. Later we introduce the procedure CenterHQEP to find A..
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It will use Negcount with bisection and is guaranteed to converge if [\, A\{] N [a, V]
is not empty, otherwise it may not converge. Therefore, we need to be able to find an
interval for CenterHQEP to converge.

Example 3.3.2. Consider again Example 3.3.1. Here we will see an example where
the eigenvalue curves p(A) of Q(\) are parabolic-like curves facing up, while the

eigenvalue curves p/(\) of Q'(\) are nearly linear.

Figure 3.3. Eigenvalue curves of Q(A) and Q'(A).
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In fact, if we apply Theorem 1.3.4 to Q(\) = AX?> + BA + C we get

(A = uT(N)Q' (MNu(N) = 22 u” (M) Au(\) + u” () Bu()), (3.3)
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and if we assume u” (\)Au()) and u”(\)Bu()\) are almost constant for small changes
in A then the slope of the eigenvalue curve is almost linear in A and hence parabolic-
like function in A. In case A > 0 and assume u(\) is almost constant for small changes
of A then the derivative of p/(\) with respect to A is positive and hence the curve of
p(A) is facing up.

Observation 3.3.1. The eigenvalue curve p(X) of Q(XN) is parabolic-like curve and
its vertex occurs near some X\ = w, where w is a Rayleigh quotient to the pencil Q'(\).

In fact,

0=1(w) = u"(@Q wuw)

= 2wu” (w)Au(w) + u” (w) Bu(w)

then
_ —u"(w)Bu(w)
Y T (W) Au(w) (34)

Example 3.3.3. Consider the HQEP from Example 3.3.1. We have

Q'(\) = 2\A + B,

and by using eig(B,-2A), we get the eigenvalues of @’'(\): w3 = —18 and wy; = —3.
Note that w; is where the vertex occurs on the A-axis of the parabolic-like curve p;(\)

which has A\ as its roots (see Figure 3.4).
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Figure 3.4. Plot of eigenvalue curves of () with eigenvalues of Q'(\) .
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3.4 Hyperpolicity Test and Finding the Gap of the HQEP

The CenterHQEP algorithm to be introduced is essential to finding the eigen-
values of an HQEP using bisection as well as a test for the QEP hyperbolicity. The
algorithm is guaranteed to converge to some value in the gap of Q()\) if the QEP is

hyperbolic or in other words the interval (A, A7) is not empty. Therefore if

s AT [a, 0] # 0,
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the algorithm will find a value in the gap of the HQEP in the interval [a,b]. The
next theorem will give the range of the quadratic eigenvalues of the HQEP which
will contain the interval (A, , A]).

Theorem 3.4.1. All the quadratic eigenvalues of an HQEP is contained in the

interval,
max max
_ AR A
min ’ ) min
Y Y

( ). (3.5)

Proof. Define M, = " Mz for any symmetric matrix M and a nonzero vector x.

Then we have
0<+/B2—-4A,C, <|B,| < \5*,
and A, > 0. Therefore we get

—B, + /B2 — 4A,C,

24,
< —B, + /B2 —4A,C,
- 2A,
< —Be + ApT .Agax
-2
S 2)\1&1&){ B )\gax

2)\glin - )\rlilin'
The same can be applied to the lower bound and hence we get

\max \max
- )\flin S S )\ﬁin ’
A A

where N5** is the maximum absolute value of the eigenvalues of the symmetric matrix

B, while A§™ is the minimum eigenvalue of the symmetric matrix A. O]

We may use Theorem 3.4.1 to determine the interval that the procedure Cen-
terHQEP uses to find a value in the gap of HQEP but a tighter range may be found

to speedup the procedure.

43



Observation 3.4.2. Consider a hyperbolic Q(X\) and the eigenvalues w; of its first

derivative Q'(X\) = 2AA + B are ordered as follows:
wi <wy << wpeg < wpye (3.6)
Then usually
A AT 0w, wn] # 0. (3.7)

In fact, w; is close to the vertex of the eigenvalue curve p;(\) which has left
(right) roots at AT (A]). Also, w, is close to the vertex of p,,(A\) with left (right) roots
at A, (A\F) (see Figure 3.4).

Then we have

wi <A and A, < AT = [\ A\ N [w, AT] # 0,

also
wy, >\, and AT > A0 = A AN w] # 0.
So
[wi, ATTU A wnl = (w1, wal,
and hence

[wr, wa] N AL AT 0.

The procedure will begin by solving the positive definite pencil 2AA + B which
is equivalent to a symmetric eigenvalue problem (SEP) since A, > 0 for all nonzero
vectors z. Taking the smallest (largest) pencil eigenvalues as the left (right) range to
find the center, the procedure will use a level mechanism to find the gap by choosing

the first value where the negative inertia of () equal to n.
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Algorithm 3.5 Return a value in the gap interval of an HQEP

Given a Q(\) representing an HQEP as in (1.1), the procedure will return some A,

where A, < A\, < A\,

1: function CENTERHQEP(A, B, C)

2: a < smallest eigenvalue of the pencil 2A\ + B
3: b < largest eigenvalue of the pencil 2A\ + B
4: N, < NegcountHQEP(A, B, C, a)

5: if N, = n then

6: return a

7: end if

8: Ny, < NegcountHQEP(A, B, C,b)

9: if N, = n then

10: return b

11: end if
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12: Level < max(N,, Ny)
13: Declare Stack Interval

14: while Interval not empty do

15: for index=size.Interval : 1 do
16: (a,b) < pop from Interval
17: Nyia < NegcountHQEP(A, B, C, ‘ITH’)
18: if N,,;q = n then

19: return “Ter

20: else if N,,;q > Level then
21: Level < N,q

22: empty Interval

23: end if

24: put (a, %) into Interval
25: put (%2, b) into Interval
26: end for

27: end while

28: end function

In the following example we will test the sensitivity of the algorithm to an
HQEP with low degree of hyperbolicity.
Example 3.4.1. Consider the HQEP with

1

D
!
W
I
Q
I
N[

(3.8)

e}
—_
e}
(=}
—_

7

For e > 1.797789047 the HQEP is overdamped as was shown in [1], and hence

has 2n real nonpositive eigenvalues. The closest value of € to 1.797789047 that
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the algorithm was able to converge was ¢ = 1.79779 which has 2 inner eigen-
values of \; = —1.152510604112638 and A\ = —1.150828354812121, and hence
the hyperbolicity degree |\, — A{| = 0.001682249300517. CenterHQEP returned

Ae = —1.150979047272038.

3.5 Implementing The Bisection Method for the HQEP

Now the Bisect algorithm can be modified for the HQEP case. The new
algorithm will be called BisectHQEP. It will begin by calling CenterHQEP to find
Ae for a Q(N). If A\, is contained in the interval then the interval will be initially
partitioned by A.. Once that step is done, the procedure should behave more or less

like Bisect.
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Algorithm 3.6 Return the approximated quadratic eigenvalues of an HQEP using

Bisection Method
Given a symmetric matrices A, B, C representing an HQEP, the procedure will return

all its eigenvalues in the interval (a,b) as a vector Fig in a descending order.
1: function BisecTHQEP(A, B, C,a,b)

2: Declare stack Interval
3: Declare queue Eig
4: Ac < CenterHQEP(A, B, ()

5: if a > A, and b < A\, then

6: put (a, ;) into Interval
7 put (A, b) into Interval
8: else

9: put (a,b) into Interval

10: end if

11: while Interval not empty do

12: (a,b) < pop from Interval

13: m 4— |NegcountHQEP(A, B, C, a) — NegcountHQEP(A, B, C, b)|
14: if m>1or (m=1andb—a> tol|“"]) then

15: put (a, £ into Interval

16: put (42, b) into Interval

17: else ifmzlandb—a<t0l*|“7+b}then

18: put (%) into Eig

19: end if

20: end while
21: return Fig

22: end function
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Example 3.5.1. Consider the HQEP with

20 —10 15
~10 30 - —5
A=1, B= ,C =
30 —10
~10 20

L 4 nXn -

15

15
)

We will set tol = 1.0e — 014 and run BisectHQEP with different values

measure the runtime sensitivity as n grows.

BisectHQEP Runtime sensitivity to n

-5
15

d nXn
of n and

40 ............... .......

O

data
fitted curve

Runtime in seconds

Figure 3.5. BisectHQEP Runtime Plot.
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The fitted curve in Figure 3.5 is

T(n) = (1.647 x 107°)n* — (1.638 x 107%)n® 4 (0.004543)n? — (0.01681)n 4 0.1399.

(3.9)

T'(n): the runtime of BisectHQEP acts quadratically for small n while for very large

n has a cost of O(n?). The reason that BisectHQEP is so time expensive is because

of the procedure NegcountHQEP which cost O(n?) and has to be executed an order of
n times.

Our goal is to apply BisectHQEP to large HQEP as in Example 3.5.1. For

n = 1000 the runtime estimate using 7'(n) would be
T(1000) ~ 1.5 x 10° seconds = 42 hours, (3.10)

for n = 10000, the algorithm will take around 53 years to finish. These are unac-
ceptable time costs as n = 1000 and larger are very common in HQEPs. It is hard
to make a dense HQEP tridiagonal but as in Example 3.5.1, the HQEP is already
tri-diagonal and hence we may be able to take advantage of the banded structure to

reduce the cost of NegcountHQEP.
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CHAPTER 4
Bisection Method for Banded HQEP

In this chapter, we will develop a negative inertia procedure that will take
advantage of the banded structure of the banded HQEP by beginning with the tri-
diagonal HQEP. The negative inertia algorithm for the tri-diagonal to be introduced is
based on Algorithm 3.2 which was shown to be stable without any pivoting in Lemma
5.3 in [3]. Then we will extend the same logic to the banded HQEPs beginning with

the penta-diagonal HQEPs and analyse its efficiency and stability.

4.1 The Tri-diagonal HQEP
4.1.1 Fast Inertia Calculation

We can write the tri-diagonal HQEP as a tridiagonal matrix polynomial:

g1(A)  ha(X)
hi(A)  g2(N)

In-1(A) hn1(A)
hn—l()\) Qn(/\)

where

g(N) = Aup N+ Buo + Clui,

hi(A) = A(i+1,i))‘2 + Blit1,) A + Clit1,)-
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Then

-d1(>\) -
dy (A
Q(\) = LNDN LN = L()) W ' LN, (4.2)
_ ()]
where
di(A) = a1(N),
(N = g\ — }Zi_ll((i))’ =2,..,n. (4.3)

Now the new negative inertia counter procedure NegcountTHQEP will be O(n)
in time, making the whole bisection algorithm cost O(n?). The new CenterTHQEP
and BisectTHQEP algorithms are exactly the same as the original ones except they

will call NegcountTHQEP instead of NegcountHQEP for the inertia calculation.
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Algorithm 4.1 Return the number of negative eigenvalues of a tri-diagonal Q(\) for

a specific A
1: function NEGcoUNTTHQEP(A, B, C, \)

2: num < 0

3: d < (A + B + Cligy
4: if d < 0 then

5: num < num + 1

6: end if

7: for i =2 ton do

8: h < (Agi—yA + Bii—1) A + Cliiz1y
9: g < (AaaA + Bua)A + Coy

10: d<g-— %2

11: if d < 0 then

12: num < num + 1

13: end if

14: end for

15: return num

16: end function

4.1.2 A Numerical Example

Example 4.1.1. In this example we will see that BisectTHQEP will have a cost
of O(n?) flops. Consider the tri-diagonal HQEP from Example 3.5.1. We set
tol = 1.0e — 014 and run BisectTHQEP with different values of n to test for time

cost.
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BisectTHQEP Runtime sensitivity to n
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Figure 4.1. BisectTHQEP Runtime Plot for Large Tri-diagonal HQEP.

The fitted curve in Figure 4.1 is

T(n) = (4.66 x 107%)n* — (0.02363)n + 4.219. (4.4)

4.1.3 Stability Analysis

Algorithm 4.2.1 basically computes the inertia of the symmetric tri-diagonal
matrix Q(\) for a fixed value of A\ by computing the diagonal entries of the diagonal
matrix D in the LDLT decomposition. In the process the algorithm counts the
number of negative entries of the diagonal of D to determine the negative inertia

of the symmetric matrix (). The concern here is about the error that may be
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embedded in the entries of D and hence changing the sign of one or more entries
making the inertia calculation inaccurate. Therefore, some kind of pivoting may be
needed to compute the LDLT decomposition which is based on Gaussian Elimination.
Algorithm 4.2.1 is almost identical to algorithm 3.2 that was shown to be stable
without pivoting in Lemma 5.3 [3]. The other concern may be of computing the
entries of the symmetric matrix Q(\) given a fixed value of A in Algorithm 4.2.1 in
lines 3, 8,and 9. If we use Horner’s algorithm to compute the required values of g;(\)

and h;(\) then the overall method will be backward stable [20].

4.1.4 Cost Analysis

A single call of NegcountTHQEP will cost 11n flops and hence to find k quadratic
eigenvalues using BisectTHQEP we will need O(kn) flops. BisectTHQEP will cost O(n?)
flops to find all the quadratic eigenvalues vs O(n?*) of the original bisection algorithm
BisectHQEP using NegcountHQEP. In the case of memory requirement, the tri-diagonal
matrices of the underlying Q(\) can be stored in (3(2(n — 1) + 1)) &~ 6n memory

locations and 2n memory locations to store the computed quadratic eigenvalues.

4.1.5 Convergence

If the QEP is hyperbolic and the gap between the primary and the secondary
quadratic eigenvalues is large enough, then CenterTHQEP will converge and will find
a value in the gap of the HQEP as was seen in Example 3.4.1. Otherwise, either the
QEP is not hyperbolic or has a very low degree of hyperbolicity. BisectTHQEP will
always return all the quadratic eigenvalues of an HQEP within some interval. In
case that two or more quadratic eigenvalues are so close and hence they fall inside
a partition with length less than the tolerance € then the algorithm will return all

the quadratic eigenvalues approximated in a uniform distribution fashion within the
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partition on hand. The convergence of BisectTHQEP to a quadratic eigenvalue is
linear. To accelerate convergence we may use the Newton’s method and the roots of

the characteristic polynomial as in [19].

4.1.6 Quadratic Eigenvectors and Residuals
Once a quadratic eigenvalue A is computed then we can find the associated
quadratic eigenvector x by solving the following equation for x using the null

procedure of Matlab which returns the non-zero kernel of a matrix,

Q(N)z =0.

If X\ is a computed quadratic eigenvalue and z is the computed quadratic

eigenvector then the relative residual

|(AN2A + AB + C)z||
(A LA[ -+ MBI+ (IC) Nl

R(A) =

can be used to measure the quality of the approximate quadratic eigenpair (A, z). In
case that A and x are exact, we should get a residual zero but as long as the residual
is small, we can accept the eigenpair as a good approximation. The closer the residual
is to zero the better the approximate eigenpair. Now we will compare the residuals
for the calculated quadratic eigenpairs using BisectTHQEP, Matlab’s Polyeig, and
the Solvent approach procedure ReturnSolvent from Section 2.6.2 for the HQEP in

Example 3.5.1 for n = 100 (see Figure 4.2).
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. Residual Plot for Tri-diagonal HQEP
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Figure 4.2. Comparison of Relative Residual for a tri-diagonal HQEP solved by
BisectTHQEP, Polyeig, and ReturnSolvent.

The implemented bisection algorithm is about 6 bits more accurate than
Matlab’s Polyeig while more accurate by about 3 bits compared to the solvent
approach. This difference in accuracy is more visible if the size of the problem gets
bigger as will be seen later. Looking at the right of Figure 4.2, as the eigenvalues
get very close in value, the bisection method shows even more superiority over the

compared approaches.
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4.2 The Penta-diagonal HQEP
Now that we have a procedure to compute the quadratic eigenvalues of a tri-
diagonal HQEP for Q(A\) = AX? + B\ + C, we will take the next step in developing

our solution for penta-diagonal HQEPs and further.

4.2.1 Fast Inertia Calculation
In the case of Penta-diagonal HQEP, the bisection procedure won’t change.
We only need to adapt the inertia calculation to take into consideration the extra

diagonals in the problem. Now consider the penta-diagonal symmetric matrix

ag by o 0 - 0
by as by e
ci by az b3 a 0 = LDL"
0 ¢y by Q4 . Cpo
bp—1
0 0 ¢ bpo1  an
where - -
(1 0 0 o 0
b 1 0 0
L™ lh 1 0 0 ,and D = diag(dy, ds, -+ ,dy).
0 my I3 1 0
0
0 0 mpo L1 1
So we get
d = a
dy = ay—dl}
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di = a;j— 2 —d;i_4I>,,i=3,---,n, (4.5)
di—y
where
by
L = —
1 a4
b, — li_1c;—
l’L = dilc 27 :27' 777/_1
Define

a; = 14(271)/\2 + B(H)/\ ‘I’ C(m),
bi = A(i+1,i))\2 + B(i+1,i))‘ + C(iJrl,i)a
¢ = A(z’+2,i))\2 + Blivo,nA + Cliva,i).-

Now we can implement the procedure NegcountPentaHQEP to compute the

inertia of Q(\).
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Algorithm 4.2 Return the number of negative eigenvalues of a penta-diagonal QQ(\)

for a specific A
1. function BiSecTPENTAHQEP(A, B, C, \)

2: num <— 0

3: a; = (AunA + Buai) A+ Cy

4: bi = (Aps1.9A + Bis1,0)A + Clit1,)
5: Ci = (Apiy2,0)A + Biga,)A + Clita,)
6: dy < aq

7 if d; < 0 then

8: num < num + 1
9: end if

. — b
10: =g

11: dy = ay — dyL(1)?
12: if dy < 0 then

13: num < num + 1
14: end if

15: for : =3 ton do

16: li_1 = e
c?,Q 2
17: dz = a; — di o di—llifl
18: if d; < 0 then
19: num < num + 1
20: end if
21: end for
22: return num

23: end function
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4.2.2 A Numerical Example

Example 4.2.1. Consider a penta-diagonal HQEP with n = 100

20 —10 -3 15 —5 —1
~10 30 . - —5 15
A=1I,B=1|_3 . . . _3 L C= =1 . o
30 —10 .. 15 -5
—3 —10 20 -1 =5 15

We will compute the relative residual of the bisection procedure BisectPen-—

taHQEP compared to the other two algorithms as in Figure 4.3.
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5 Residual Plot for Penta—diagonal HQEP
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Figure 4.3. Comparison of Relative Residual for a Penta-diagonal HQEP solved by
BisectTHQEP, Polyeig, and ReturnSolvent.

4.2.3 Stability Analysis

We saw in Section 4.1.3 that calculating the inertia of a tri-diagonal symmetric
matrix is backward stable even without any pivoting. In the case of the Penta-diagonal,
we can’t make such claim and hence calculating the LD LT decomposition using (4.6)
without pivoting may be unstable. The issue with pivoting is that it doesn’t conserve

the congruency and therefore changes the inertia of the matrix. In [21], a method
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was introduced to apply pivoting while conserving congruency at the same time as

follow. If M is a symmetric matrix and II is a permutation matrix then we get

T
E C7T I, 0 E 0 I, 0
IMIIT = = ,
C B CE™ I, ,||0 B-—CET| |CE?! I,
P

where the inertia of M and M are the same by Theorem 2.2.1, and the matrix F
is 1 x 1 or 2 x 2. The choice of the permutation matrix Il depends on the rows
and columns to be permuted according to the pivot location, size, and the pivoting
technique to be used. Although calculating the inertia of M is stable compared to
calculating the inertia of M directly, the permutation doesn’t conserve the banded
structure of M. If the matrix M is penta-diagonal then there is no guarantee that
the matrix B — CE~1C7 is still penta-diagonal.

Since calculating the LDLT decomposition of the tri-diagonal matrix and hence
inertia is inherently stable even without any pivoting, reducing the penta-diagonal
matrix to a tri-diagonal in a stable algorithm and then computing the inertia of the
resulting matrix will make the procedure overall stable. In the next chapter we will
implement such approach for the penta-diagonal matrix and the banded matrix, in

general.
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CHAPTER 5
Bisection for the Banded HQEP by Tridiagonalization

Applying (4.6) to a penta-diagonal HQEP to calculate the negative inertia is
unstable without some pivoting, but pivoting will destroy the banded structure of the
problem and with it the advantage of the bisection procedure that we implemented in
this study. Another approach was suggested in Schwarz [22], and that to reduce the
band of a banded matrix to a tri-diagonal matrix. Once this is done then we can use
the tri-diagonal negative inertia calculation Algorithm 4.2.1 to compute the inertia.
The reduction must have these characteristics to be a viable solution to the problem,
namely:

1. Must conserve congruency.
2. Must be stable.

3. Must be efficient.

5.1 The Givens Rotations

We will begin by applying tridaigonalization to the penta-diagonal case. Later
in the section we will introduce an algorithm for the general banded case. The
tridaigonalization will be implemented using the Givens rotation.

Givens Rotations are used in the triangularization process where a symmetric
matrix is reduced to an upper triangular matrix to compute the QR-factorization.
They are also used in the tridiagonalization of a symmetric matrix to a tri-diagonal
form for the purpose of computing the eigenvalues using the QR algorithm. The

purpose of Givens rotations are to annihilate elements in the outer bands of the
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matrix beginning from the outermost band and working inward until it annihilates
all bands except the first, leaving the matrix in a tri-diagonal form [22].

A single Givens rotation consists of a similarity transformation:
M =UTMU, (5.1)

where M is a symmetric matrix and U is an orthogonal matrix different from the

identity matrix in the elements
Upp = Ugg = COSO,  Upy = —Ug, = sind,

and 6 is the angle of rotation in the pg-plane.
Example 5.1.1. Consider the symmetric matrix M € R3*3 which happens also to

be penta-diagonal

2 3 4
M=13 56
4 6 7

To eliminate the elements M, 3 = M3, = 4, we need to have

M 5cos60 4 My osing =0,

giving
0 = tan ' (— 1’3),
1,2
giving
—M
cosf = 1’3, sinf = 1’2,
r r
where r = /M7 3 + M?,. Therefore we get
1 0 0 1 0 0

U= 10 cosh sinf| = |0 0.4160 —0.5547

0 —siné cosd 0 0.5547 0.4160
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and
2 3.4669 0

M =U"MU = |3.4669 5.7885 —0.3462

0 —0.3462 —0.0192
In the previous example, to eliminate the elements M 3(M5;) we chose p = 2
and ¢ = 3. In general to eliminate the elements M, ;(M;;) with j > 4, we choose
p=7—1and g = j. Note that the only rows (columns) that changed are the 2nd
and the 3rd, while the element M, ; retained its value. In general, the transformation
(5.1) changes only the rows (columns) of M with the indices p and ¢, while leaving the
other elements unchanged. In the case that the matrix is large enough (for example if
the matrix is penta-diagonal with size n > 5) the transformation (5.1) will introduce

non-zero elements outside the band in locations where elements were initially zero.

Example 5.1.2. Consider the penta-diagonal matrix M € R>*5

23400
3 5 6

-3
)

M=146 7 8 1
078 39
00196

To eliminate the elements M; 3(M;5,) we form the rotation matrix

1 0 0 00
0 04160 —-0.5547 0 O
0

U= 10 05547 0.4160 0f>
0 0 0 10
0 0 0 01
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and get

2 3.4669 0 0 0

3.4669 5.7885 —0.3462 7.3498 0.5547

M=U"MU = 0 —0.3462 —0.0192 —0.5547 0.4160
0 7.3498  —0.5547 3 9
0 0.5547  0.4160 9 1

The transformation did indeed eliminate M; 5(M3 ;) but in the process it changed Mo 5
and symmetrically M5, to a nonzero value outside the 2nd band, as can be seen in
]\7]275 = ]\715,2 = 0.5547, and hence another rotation is needed to eliminate M2,5(]\}[5,2).

In general, the transformation while eliminating the elements M; ;(M;;) with
j =1+ 2 on the 2nd band of the penta-diagonal matrix, will change the elements
M;_1 j+2(Mjt2-1) to a nonzero value, assuming j + 2 < n. The same happened in
Example 5.1.1 except that the elements lied outside the matrix.

The whole process of transforming a penta-diagonal matrix into tri-diagonal
will begin by eliminating the first element in the 2nd band symmetrically and then
with additional rotations subsequent non-zero elements which appear outside the
band will be eliminated, until the nonzero value is beyond the border of the matrix.
Then the process will do the same for the 2nd element then the 3rd, until all the

elements outside the 2nd band are eliminated (see Figure 5.1).
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Figure 5.1. Tridiagonalization of a Penta-diagonal Matrix.
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The Givens rotation doesn’t only conserve congruency. In fact it is a similarity
transformation that also conserve the matrix spectrum (spectrum of M is identical
to the spectrum of M). Therefore the tri-diagonal matrix formed from a sequence of
transformations of a penta-diagonal matrix using Givens rotations is not only having
the same inertia as the original penta-diagonal matrix, but it also have identical set
of eigenvalues. In addition, the Givens rotation is an orthogonal transformation and
applying a sequence of orthogonal transformations is known to be backward stable
according to Theorem 3.5 in [3]. For a penta-diagonal symmetric matrix with size n,
we have n — 2 entries in the 2nd band (one on each side of the symmetry) that we
need to eliminate. For each element to eliminate we need O(n) rotations which make

the overall cost of transforming a penta-diagonal into tri-diagonal cost O(n?).
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5.1.1 BandSymmToTriArr

Here we will extend the idea of tridiagonalization into band reduction for any
banded symmetric matrix and even a dense symmetric matrix. BandSymmToTriArr
will take the symmetry and the banded structure into consideration when storing the
matrix, and when performing the calculations implicitly. We will store the entries of a
banded symmetric matrix of £ bands in an array storing only the diagonal and the k

2 memory locations

bands as columns, therefore saving the storage requirement from n
for a matrix of size n into kn memory locations only. The procedure will perform the
calculations implicitly on the array and hence saving unnecessary memory storage

and access operations.

Example 5.1.3. In this example we will illustrate storing a penta-diagonal symmetric

matrix, ) ) ) )
2 3400 2 3 4

35670 56 7
M=1|46 78 1| —Ar=17 8 1

078309 390

0196 6 00

BandSymmToTriArr will take the symmetric banded matrix as an array (Arr)
as in Example 5.1.3, the size of the matrix (Size) and the band size (BandSize).
For example a tridiagonal matrix will have BandSize = 1, penta-diagonal will have

BandSize = 2, and so on. Note that

0 < BandSize < Size — 1,

and the matrix is diagonal if BandSize = 0, and dense if BandSize = Size — 1.
The output will be an array (Arr) of size (Size x (BandSize + 1)) representing the

banded matrix. The procedure to be presented here is due to [22]. We will present it
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here for reference purposes only. No changes were made to the procedure except that
the indexing in the original procedure began with 0 for referencing the columns of

the array, our procedure here will adjust the indexing to begin with 1.

Algorithm 5.1 Tridiagonalizing a Symmetric Banded Matrix

1: function BANDSYMMTOTRIARR(ArT, Size, BandSize)
2: g+« 0

3 for k=1 to Size — 2 do

4: maxr < min(Size — k, BandSize);

5: for r = mazr to 2 step -1 do

6: for j = k+r to Size step BandSize do
T: if j =k +r then

8: if Arr(k,r) =0 then

9: break

10: end if

11: b+ —Arr(k,r)/Arr(k,r +1)

12: ugl < k

13: else

14: if g == 0 then

15: break

16: end if

17: b < Arr(j — BandSize — 1, BandSize +1)/g
18: ugl < j — BandSize

19: end if
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20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

s 1/v/1+02
cbxs
2 + c?
s2 + s?

CS < C*S

w2 Arr(j —1,1) — 2xcsx Arr(j — 1,2) + s2 % Arr(j,1)
ul = 2% Arr(j — 1,1) + 2% cs* Arr(j — 1,2) + c2 % Arr(j,1)

Arr(j—1,2) < csx(Arr(j—1,1)—Arr(j,1))+(c2—s2)x Arr(j—1,2)

Arr(j —1,1) «+u
Arr(j,1) < ul

for [ = ugl to j — 2 do

u<cxArr(l,j—1) —sx Arr(l,7 —1+1)

Arr(l,j —1+1) «
Arr(l,j — 1) < u;
end for

if j #k+r then

Arr(j — BandSize — 1, BandSize + 1)

«— cx Arr(j — BandSize — 1, BandSize + 1) — s * g

end if

sx Arr(l,7 — 1) +cx Arr(l,j —1+1)

71



39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

maxl < min(Size — j, BandSize — 1)
for [ =1 to mazl do
u<cxArr(j — 1,14+2) —sx Arr(j,l + 1)
Arr(j, 14+ 1) <= sx Arr(j — 1,1+ 2) + cx Arr(j,1 + 1)
Arr(j —1,14+2) < u
end for
if 7 + BandSize < BandSize 4+ 1 then
g < —s* Arr(j, BandSize + 1)
Arr(j, BandSize + 1) = ¢ x Arr(j, BandSize + 1)
end if
end for
end for
end for
Arr < Arr(l: Size,1: 2)

return Arr

54: end function

5.2 Implementing Bisection for Banded HQEP

eigenvalues for the HQEP using the bisection method. Given three symmetric banded
matrices A, B, C of size n and A > 0, we construct the quadratic matrix polynomial

in A

simultaneously return a value in the gap of the HQEP (center) that will partition

Here we introduce the complete solution for approximating the quadratic

Q(\) = AN+ BA+C.

The procedure that will check for the hyperbolicity CenterBandedHQEP will
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the interval of the search into two partitions; the primary partition on the right of
(center) where the n primary quadratic eigenvalues lie and the secondary partition on
the left where the n secondary quadratic eigenvalues lie. The procedure Negcount-
BandedHQEP will return the number of negative eigenvalues of the symmetric matrix
Q(A) for a given A\, which will be used by the main procedure BisectBandedHQEP to
search for the roots of the eigenvalue curves and hence finding the quadratic eigen-
values. CenterBandedHQEP will also use NegcountBandedHQEP to find the (center).
NegcountBandedHQEP will check if the matrix needs band reduction (BandSize > 1)
by calling BandSymmToTriArr before using an implicit LDL? decomposition on the
matrix array to calculate the number of negative eigenvalues of the matrix. All the
procedures in this solution will be applied to an array version of the matrices A, B, C,
as was seen in Example 5.1.3 to save memory storage and access operations for the
solution. The quadratic eigenvectors will be calculated using Matlab’s procedure

null.

5.2.1 NegcountBandedHQEP

The final version of the negative inertia counter algorithm will be suitable for
any banded HQEP. If the HQEP is not tri-diagonal, the procedure BandSymmToTriArr
will first reduce it to tri-diagonal and return the array back to NegcountBandedHQEP,
otherwise NegcountBandedHQEP will calculate the number of negative eigenvalues right
away. It will be using array versions of A, B, C' and will calculate the matrix Q()) as an
array as well. The process of tridiagonalization will cost O(kn?) where k = BandSize,
while calculating the number of negative eigenvalues will cost O(n), overall the calling
of NegcountBandedHQEP will cost at most O(n?) if k& < n. NegcountBandedHQEP
will accept as inputs the matrices A, B, C' as arrays, A, the size of the matrix (Size)
and the band size (BandSize).
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Algorithm 5.2 Return the number of negative eigenvalues of a Banded Q(\)
1: function NEGCcOUNTBANDEDHQEP (A, Barr, Corr, A, Size, BandSize)

2 Qarr — (Aa,rr * A+ Ba7«7-) * A+ Car'r

3: if BandSize > 1 then

4: Qarr < BandSymmToTriArr(Qy,., Size, BandSize)
5: end if
6: num < 0

7 d Qur(1,1)

8: if d < 0 then

9: num < num + 1
10: end if

11: for ¢ = 2 to Size do

B d e Quli1) - Qe
13: if d <0 then

14: num < num + 1

15: end if

16: end for
17: return num

18: end function

5.2.2 CenterBandedHQEP

The procedure CenterBandedHQEP is of great importance in this work. It
checks for the hyperbolicity of a QEP which is not a straightforward task as was
seen in Section 2.4. CenterBandedHQEP uses the concept of levels to narrow the

search intervals using bisection until a value X is found such that Q(\) < 0. If
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CenterBandedHQEP converges to such A\ then the QEP is actually an HQEP and the
hyperbolicity condition was met. It also returns that A value to the main bisection
procedure to partition the interval of search into 2 partitions, namely the primary and
the secondary partitions. In each partition the procedure NegcountBandedHQEP will
be monotonic as was seen in Section 3.3. CenterBandedHQEP will accept as inputs
the matrices A, B, C' as arrays, the beginning of the search interval (a), the end of
the search interval (b), the size of the matrix (Size) and the band size (BandSize).
a and b will be chosen using Observation 3.4.2, and will be passed on from the main
bisection procedure. For CenterBandedHQEP to be effective in detecting hyperbolicity,
we must have a stop mechanism to stop the procedure before the partitions gets too
small and further partitioning won’t be successful. If the partition size is too small
then the machine will treat a and b as the same number and NegcountBandedHQEP
may enter an infinite loop. We know that after n bisections the partition size will

reach a length of %2, Therefore the maximum number of partitions should not exceed

b—a
MazCounter = |logy —————
rotmter {OgQ minPartSizeJ ’

where minPartSize is the minimum partition size that terminates NegcountBanded-
HQEP if a value in the gap in not found prior to that. From Example 3.4.1, CenterHQEP
didn’t converge for partitions smaller than 0.001682249300517 ~ 0.0017 even if the
problem was an HQEP. We will use minPartSize = 0.0017 in our numerical example
as a convenient minimum partition size.

Finally, CenterBandedHQEP will be modified to simulate the stack mechanism
used in procedure CenterHQEP, to decrease memory space and computation require-

ments.
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Algorithm 5.3 Check for hyperbolicity and return the center of an HQEP

1: function CENTERBANDEDHQEP(A,,,, Byyr, Corr, a, b, Size, BandSize)

2:

3:

10:

11:

12:

13:

14:

15:

Select minPartSize
N, < NegcountBandedHQEP(A,,, Burr, Cupr, a, Size, BandSize)
if N, = Size then
return a
end if
N, < NegcountBandedHQEP(A,,,, By, Curr, b, Size, BandSize)
if N, = Size then
return b
end if
Level < max(N,, Ny)
Declare Interval (2 x 2) Array
Imarker <0
Imarker < Imarker 4+ 1

b_
MaxCounter + UOgQ WZSWJ
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16: for i = 1 to MaxCounter do

17: for index = Imarker to 1 step —1 do
18: a < Interval(l,index)

19: b < Interval(2,index)

20: Npnia < NegcountBandedHQEP( A, Burry Carrs “T*b, Size, BandSize)
21: if N,,;q = Size then

22: return %’

23: end if

24: if N,,iq > Level then

25: Imarker < 0

26: Level < N4

27: end if

28: Imarker < Imarker 4+ 1

29: Interval(:, Imarker) « [a %3]

30: Imarker < Imarker + 1

31: Interval(:, Imarker) < [*2 b]

32: end for

33: end for
34: Print "Not hyperbolic or weakly hyperbolic’
35: Return NaN

36: end function

5.2.3 BisectBandedHQEP

The final version of the main bisection procedure BisectBandedHQEP accepts

as inputs the matrices A, B, C, the beginning of the interval of the search (a), the

7



ending of the interval of the search (b), the search tolerance which dictate how small a
partition may get (tol), the size of the problem (Size) and the band size (BandSize).
This version is modified from the previous version BisectHQEP by simulating the
stack mechanism to decrease memory space and computation requirements. The
procedure begins by converting all the matrices into array form using algorithm
MatToArr. BisectBandedHQEP will call CenterBandedHQEP to find the center of the
HQEP, if the center is included in the interval [a,b], then it will partition it into two
partitions namely [a, center| and [center, b] and add these two partition into the stack
of partitions Interval, otherwise it will add [a, b] to the stack Interval. The number
of quadratic eigenvalues in a partition will be equal to the absolute difference in the
output of the procedure NegcountBandedHQEP at the beginning and the ending of a
partition [line 25]. It will keep discarding any partitions where there are no quadratic
eigenvalues, and keep partitioning the remaining partitions until we get up to 2 x Size
partitions of length within tol and each partition has at least one quadratic eigenvalue.
In case that a partition is within tolerance and hence no further partitioning can be
made and at the same time the number of quadratic eigenvalues are greater than one,
the algorithm will return approximated quadratic eigenvalues within the partition by
dividing the partition length and returning the approximated quadratic eigenvalues

in a uniform distribution fashion [line 31].

78



Algorithm 5.4 Return the approximated quadratic eigenvalues of a Banded HQEP

using Bisection Method

Given symmetric matrices A, B, C representing an HQEP, the procedure will return

all its eigenvalues in the interval (a,b) as a vector Eig in a descending order.

1: function B1secTBANDEDHQEP(A, B, C, a, b, tol, Size, BandSize)

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

Wynin < smallest eigenvalue of the pencil 2A\ + B
Wynae < largest eigenvalue of the pencil 2A\ + B
Ay < MatToArr(A, BandSize)
By < MatToArr (B, BandSize)
Courr < MatToArr(C, BandSize)
center < CenterBandedHQEP(A,.,, Burr, Carry Winin, Winaz, Size, BandSize)
Declare Interval (2 x 2 * Size) Array
Declare Eig (2 % Size) Vector
Imarker <0
Emarker <0
if a < center and center < b then
Imarker < Imarker + 1
Interval(:, Imarker) < |a center]
Imarker < Imarker 4+ 1
Interval(:, Imarker) < [center D]
else
Imarker < Imarker 4+ 1
Interval(:, Imarker) < [a]

end if
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21: while Imarker > 0 do

22: a « Interval(1, Imarker)

23: b < Interval(2, Imarker)

24: Imarker < Imarker 4 1

25: m < NegcountBandedHQEP(A,.,, Buyr, Corr, @, Size, BandSize)

—NegcountBandedHQEP( Ay, Burr, Carr, b, Size, BandSize)

26: m < |m|

27: if m # 0 then

28: ifb—a<tol>|<‘“7+b{then

29: for ) =1tomdo

30: Emarker < Emarker + 1
31: Eig(Emarker) < a+ j * I;—‘f
32: end for

33: else

34: Imarker < Imarker + 1

35: Interval(:, Imarker) < [a “t2]
36: Imarker < Imarker + 1

37: Interval(:, Imarker) + [4£2 b]
38: end if

39: end if

40: end while
41: return Eig

42: end function
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Although BisectBandedHQEP expects (Size) and (BandSize) as inputs, the
procedure can be modified to compute these values at the beginning of the algorithm.

Size can be computed using Matlab’s size function as follows,

Size <—size(A, 1)

while BandSize can also be computed using,

Bands < [returnBandSize(A) returnBandSize(B) returnBandSize(C')]

BandSize < max(Bands);

and the algorithm

Algorithm 5.5 Return the band size of a symmetric matrix M

1: function RETURNBANDSIZE(M)
2: Size <size(M,1)

3: for j =1 to Size — 1 do

4: if norm(diag(M,j —1),1) < € then
5: Break

6: end if

7: end for

8: Return j — 2

9: end function

Now we will introduce the algorithm MatToArr
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Algorithm 5.6 Return the array form of a symmetric matrix M
1: function MATTOARR(M, BandSize)

2: Size <—size(M, 1)

3: Declare Arr (Size x (BandSize + 1)) Array
4: for 7 =1 to BandSize + 1 do

5: Arr(1: Size —j+1,j) <—diag(M,j — 1)
6: end for

7: Return Arr

8: end function

5.3 Numerical Examples

If (A, z) is a computed quadratic eigenpair of the HQEP then the relative

residual
|[(N2A + AB + C)z||
A2 JAI A+ ALIBI ) [l

R(\) =

In this section we will compare the residuals for the calculated quadratic
eigenpairs using BisectBandedTHQEP, Matlab’s Polyeig, and the Solvent approach
procedure ReturnSolvent on HQEPs of different sizes to study the effect of size on
the residual of different approaches and specially BisectBandedTHQEP. The band
structure of the introduced HQEPs will vary from tri-diagonal and up, and the purpose
is to study the effect of introducing more bands on the residual. The HQEPs will
be produced randomly such that the entries of the symmetric A, B, C' are uniformly
distributed random numbers in the interval (0, 1) using Matlab’s rand procedure.
We will make sure that A, B, C' will form an HQEP according to Definition 1.1.1 by
performing eigenvalue shifts on them such that A is positive definite and the sufficient

condition (2.7) is met.
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5.3.1 Banded HQEPs of size 100
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Residual Comparison Plot for Banded HQEP with size = 100, bands = 1
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Relative Residual (log scale)

Relative Residual (log scale)

Residual Comparison Plot for Banded HQEP with size = 100, bands = 3
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Relative Residual (log scale)

Relative Residual (log scale)

Residual Comparison Plot for Banded HQEP with size = 100, bands = 5
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2.3.2

Banded HQEPs of size 1000
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Relative Residual (log scale)

Relative Residual (log scale)
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1012 Residual Plot for Banded HQEP with size = 1000, bands = 5
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As can be seen the bisection approach is more accurate and stable for large

banded HQEPs even if when the number of bands is growing.

5.3.3 Banded HQEPs of size 2000

In this case we only plot the residual of BisectBandedTHQEP since the size of
the problem prevented the other 2 approaches from executing due to lack of computer
memory. We are trying to show here that due to the procedure’s conservation of
memory requirements, it can solve large banded HQEPs where the other approaches
may fail to execute, and the solutions are still accurate. In fact the residual doesn’t

grow as the size of the problem grows.
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Relative Residual (log scale)

Relative Residual (log scale)

Residual Plot for Banded HQEP with size = 2000, bands =1
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CHAPTER 6
Conclusion

We have shown in this study that the bisection method has many advantages over
the other approaches in solving hyperbolic quadratic eigenvalue problems especially
when the problem is banded. The bisection approach is more accurate and stable
when it comes to the size of the problem and the number of bands in the banded
HQEPs. It requires less memory storage to produce the approximated quadratic
eigenvalues. The method worked on the problem directly and without introducing
a linear pencil with double size. The method can be easily parallelized for parallel

computing.

90



REFERENCES

[1] C.-H. Guo and P. Lancaster, “Algorithms for hyperbolic eigenvalue problems,”
Mathematics Of Computation, vol. 74, no. 252, pp. 1777-1791, 2005.

2] B. Meini, “Efficient computation of the extreme solutions of X + AX 1A = Q
and X — AX'A = Q,” Mathematics of Computation, vol. 71, no. 239, pp.
1189-1204, 2002.

3] J. W. Demmel, Applied Numerical Linear Algebra, 1st ed. SIAM, 1997.

[4] A. F. ACKER, “Absolute continuity of eigenvectors of time-varying operators,”
American Mathematical Society, vol. 42, no. 1, pp. 198-201, January 1974.

[5] H. Baumgartel, Analytical Perturbation Theory for Matrices and Operators.
Basel: Birkhauser, 1985.

6] K. R. Parthasarathy, “Eigenvalues of matrix-valued analytic maps.”

[7] T. Kato, Perturbation Theory for Linear Operators, 2nd ed. Berlin: Springer-
Verlag, 1970.

[8] P. L. I. Gohberg and L. Rodman, Matriz Polynomials, 1982.

[9] N. J. Higham, D. S. Mackey, and F. Tisseur, “Definite matrix polynomials and
their linearization by definite pencils,” SIAM Journal on Matriz Analysis and
Applications, vol. 31, no. 2, pp. 478-502, 2009.

[10] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. New York:
Academic Press, 1985.

[11] A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils.
AMS, 1988.

91



[12]

[15]

[16]

[17]

[20]

A. M. Farah, “Generalized and Quadratic Eigenvalue Problems with Hermitian
Matrices,” Master’s thesis, School of Mathematics and Statistics The University
of Birmingham, Birmingham B15 2TT U.K., 2 2012, e-theses repository.
Barkwell and Lancaster, “Overdamped and gyroscopic vibrating systems,” Jour-
nal of Applied Mechanics, vol. 59, no. 1, pp. 176-181, 1992.

P. Lancaster and Q. Ye, “Variational properties and rayleigh quotient algorithms
for symmetric matrix pencils,” in The Gohberg Anniversary Collection, ser. Op-
erator Theory: Advances and Applications, H. Dym, S. Goldberg, M. Kaashoek,
and P. Lancaster, Eds. Birkh&user Basel, 1989, vol. 40/41, pp. 247-278.

X. LIANG and R.-C. LI, “The hyperbolic quadratic eigenvalue problem,” Forum
of Mathematics, Sigma, vol. 3, p. el3 (93 pages), 2015.

P. Lancaster, Lambda-matrices and Vibrating Systems. Mineola, New York:
Dover Publications, Inc., 2002.

N. J. Higham, F. Tisseur, and P. M. V. Dooren, “Detecting a definite hermitian
pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated
nearness problems,” LINKEAR ALGEBRA AND ITS APPLICATIONS, vol. 351,
2002.

“Numerical solutions for large sparse quadratic eigenvalue problems,” Linear
Algebra and its Applications, vol. 225, pp. 57 — 89, 1993.

B. Plestenjak, “Numerical methods for the tridiagonal hyperbolic quadratic
eigenvalue problem,” SIAM Journal on Matriz Analysis and Applications, vol. 28,
no. 4, pp. 1157-1172, 2006.

C. S. Burrus, J. W. Fox, G. A. Sitton, and S. Treitel, “Horner’s method for
evaluating and deflating polynomials,” DSP Software Notes, Rice University,
Now, vol. 26, 2003.

92



[21] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Society
for Industrial and Applied Mathematics, 2002, ch. 11, pp. 213-229.
[22] H. R. Schwarz, Linear Algebra. Berlin, Heidelberg: Springer Berlin Heidelberg,

1971, ch. Tridiagonalization of a Symmetric Band Matrix, pp. 273-283.

93



BIOGRAPHICAL STATEMENT

Ahmed T, Ali was born in Alexandria, Egypt, in 1976. He received his B.S. ,
M.A. in Computer Science, and M.A. in Economics from Brooklyn College in 2003,
2005, and 2009 respectively, and Ph.D. degrees from The University of Texas at

Arlington in 2016 in Mathematics.

94



	A Bisection Method for the Banded Hyperbolic Quadratic Eigenvalue Problem
	Recommended Citation

	tmp.1725996242.pdf.6RusA

