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ABSTRACT

A Bisection Method for the Banded Hyperbolic Quadratic Eigenvalue Problem

Ahmed T. Ali, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Ren-Cang Li

It is well-known that the eigenvalues of a Hermitian matrix in a given interval

can be approximated within a predefined error tolerance using the bisection method

as a direct application of the Sylvester’s Law of Inertia. In this thesis, we will develop

a bisection method for the hyperbolic quadratic eigenvalue problem (HQEP) which is

guaranteed to have 2n real eigenvalues for a problem of size n. A number of numerical

methods are available to solve HQEPs. Matlab’s polyeig uses the QZ algorithm on

the problem after linearizing it to a pencil of size 2n. Another approach is by finding

a solvent matrix. Both approaches ignore any banded structure of the problem. For

the tri-diagonal HQEPs, an approach to approximate the eigenvalues by efficiently

solving the characteristic equation was also proposed. The method can’t be applied to

higher banded HQEPs efficiently. Our method will avoid converting the HQEP to a

definite pencil of order 2n by working on the HQEP directly taking into consideration

any banded structure of the problem. Our method can be applied to large banded

HQEPs and produces more accurate eigenvalue approximations compared to the

approaches stated.
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CHAPTER 1

Introduction

The quadratic eigenvalue problem (QEP) is a nonlinear eigenvalue problem with

important applications in dynamic analysis of structures, non-linear vibration theory

and fluid dynamics. This thesis focuses on large scale banded hyperbolic quadratic

eigenvalue problem (HQEP) which is known to admit real eigenvalues, similar to

the definite generalized eigenvalue problem and the standard Hermitian eigenvalue

problem.

This thesis was organized to be as self contained as possible in introducing

HQEP. In chapter 1 we introduce HQEP, and the origins of the problem. We also

introduce some results concerning matrix polynomials and finally we introduce the

concept of eigenvalue curves which will be of great importance in our analysis of

HQEP and in the derivation of our algorithms.

In chapter 2, we dig deeper into the theory behind our understanding of the

problem, the properties of HQEP solutions, hyperbolicity and overdamping of HQEP,

the concept of symmetric matrix inertia which will be the basis of our algorithms, and

finally survey the available techniques to the solution of HQEP. Chapter 2 doesn’t

depend on chapter 1 except for section 1.1.

In Chapter 3, we begin implementing the bisection method on HQEP by first

understanding the bisection method application on the symmetric eigenvalue problem

(SEP) before extending the bisection method for HQEP. In this chapter, more analysis

and results of HQEP are introduced and examined.
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In chapter 4, we implement a stable and efficient algorithm for tri-diagonal

HQEPs and examine the difficulties of extending the same algorithm to the banded

HQEPs.

In chapter 5, we introduce a solution to the difficulties of extending a stable

and efficient bisection algorithm to banded HQEPs wider than tri-diagonal. Section

5.2 is also self contained as it has all the final versions of the procedures needed

to implement a complete solution using the bisection method on banded HQEPs.

Finally, in section 5.3 we illustrate the results of our approach compared to two other

approaches.

1.1 Definition

Definition 1.1.1 (HQEP). The hyperbolic quadratic eigenvalue problem (HQEP) is

to find scalars λ and nonzero vectors x satisfying

Q(λ)x = (λ2A+ λB + C)x = 0, (1.1)

where A,B,C are n× n symmetric matrices, A � 0 (positive definite), and

(xTBx)2 > 4(xTAx)(xTCx), ∀ 0 6= x ∈ Cn. (1.2)

An HQEP is algebraically different from the standard eigenvalue problem

Ax = λx,

and the generalized eigenvalue problem (GEP)

Ax = λBx,

in that HQEP has 2n real eigenvalues and 2n eigenvectors that are not linearly

independent in Rn. HQEP is a restricted eigenvalue problem of a larger class of

2



nonlinear eigenvalue problems called the symmetric quadratic eigenvalue problem

(QEP) where the only condition is that A,B,C are n×n Hermitian matrices. A QEP

will also have 2n eigenvalues (finite or infinite) and they may be complex. Throughout

this study, we will call, λ from the previous definition a quadratic eigenvalue , x a

quadratic eigenvector , and (λ, x) a quadratic eigenpair of the HQEP in (1.1).

The spectrum of Q(λ) is the set of all quadratic eigenvalues of the HQEP.

1.2 The Rise of HQEP

HQEP arises in many applications where solving a system of second order linear

differential equations is required,

Ay′′(t) +By′(t) + Cy(t) = 0, (1.3)

where the vector-valued function y(t) = [y1(t) y2(t) . . . yn(t)]T , and A,B,C ∈ Rn×n.

The general solution has the form

y(t) =
2n∑
i=1

κie
λitxi, (1.4)

where xi is the quadratic eigenvector associated with the quadratic eigenvalue λi

obtained from solving HQEP, and κi are scalar constants that can be determined

using initial conditions.

Example 1.2.1. Here is a simple example of dynamic analysis of structural system.

Consider a two mass damped system as in Figure 1.1 where mi is the mass, yi is the

displacement of the mass, ci is the damping coefficient, and ki is the spring constant.

Applying Newton’s second law to m1 and m2 respectively yields

m1y
′′
1 + (c1 + c2)y

′
1 − c2y′2 + (k1 + k2)y1 − k2y2 = 0,

m2y
′′
2 + (c2 + c3)y

′
2 − c2y′1 + (k2 + k3)y2 − k2y1 = 0,

3



which can be written asm1 0

0 m2


︸ ︷︷ ︸

A

y′′1
y′′2


︸ ︷︷ ︸
Y ′′(t)

+

c1 + c2 −c2

−c2 c2 + c3


︸ ︷︷ ︸

B

y′1
y′2


︸ ︷︷ ︸
Y ′(t)

+

k1 + k2 −k2

−k2 k2 + k3


︸ ︷︷ ︸

C

y1
y2


︸ ︷︷ ︸
Y (t)

= 0

and has the same form as (1.3). In case of n masses then we will get a tri-diagonal

system of order n.

Figure 1.1. Two Mass Spring Damped system.

1.3 Symmetric Matrix Polynomials

The Q(λ) of HQEP (and QEP in general) is a matrix polynomial of the second

degree and from there comes the word quadratic. The HQEP therefore inherits

many of the characteristics of matrix polynomial problems which themselves inherit

from the matrix analytic function problems. In this section, we will study how the

polynomial eigenvalues and eigenvectors behave as a function in λ and then apply

the results to the HQEP.

4



Consider n × n symmetric matrix whose elements are polynomials with the

highest degree d in the scalar parameter λ,

F (λ) =



f11(λ) f12(λ) f13(λ) . . . f1n(λ)

f21(λ) f22(λ) f23(λ) . . . f2n(λ)

...
...

...
. . .

...

fn1(λ) fn2(λ) fn3(λ) . . . fnn(λ)


, (1.5)

where fij(λ) is a polynomial in λ of degree d, or equivalently

F (λ) =
d∑
i=0

λiAi = λdAd + λd−1Ad−1 + ...+ λA1 + A0, (1.6)

where A0, A1, ..., Ad are n× n real symmetric matrices with constant elements, and

A0 is non-singular. This is a symmetric matrix polynomial of degree d and order n.

Definition 1.3.1 (Derivative of a matrix polynomial). The first derivative of a matrix

polynomial F ′(λ) is a matrix polynomial such that

F ′(λ) =



f ′11(λ) f ′12(λ) f ′13(λ) . . . f ′1n(λ)

f ′21(λ) f ′22(λ) f ′23(λ) . . . f ′2n(λ)

...
...

...
. . .

...

f ′n1(λ) f ′n2(λ) f ′n3(λ) . . . f ′nn(λ)


,

or equivalently

F ′(λ) =
d∑
i=1

iλi−1Ai = dλd−1Ad + (d− 1)λd−2Ad−1 + ...+ λA2 + A1.

For a given real value of λ, the symmetric matrix polynomial F (λ) is a real

symmetric matrix and hence there exist n eigenvalues, counting multiplicities, denoted

by µi(λ) and eigenvectors denoted by ui(λ) such that

F (λ)ui(λ) = µi(λ)ui(λ), for i = 1, 2, ..., n.

5



Note that µi(λ) is a scalar function in the parameter λ while ui(λ) is a vector-

valued function in λ.

A matrix polynomial of degree d and order n has d · n polynomial eigenvalues

λi counting multiplicities and d · n corresponding polynomial eigenvectors xi that are

linearly dependent in the space Rn if d > 1:

F (λi)xi = 0, for i = 1, 2, ..., d · n, (1.7)

and we will call the eigenpair (λi, xi) polynomial eigenpair.

Theorem 1.3.1. If (µ(λ̃),u(λ̃)) is an eigenpair of the matrix F (λ̃) for some λ = λ̃

and µ(λ̃) = 0 ,then (λ̃,u(λ̃)) is a polynomial eigenpair of the matrix polynomial F (λ).

Proof. F (λ̃)u(λ̃) = µ(λ̃)u(λ̃) = 0.

Theorem 1.3.2. µi(λ) is a continuous function in λ for i = 1, 2, ..., n.

Proof. Eigenvalues of a matrix are continuous functions of the matrix elements

from Proposition 4.4 [3]. But from (1.5), the elements of a matrix polynomial are

polynomials in λ and thus eigenvalues of a matrix polynomial are continuous in λ.

Theorem 1.3.3. Let ui(λ) be an eigenvector of a symmetric matrix polynomial F (λ)

and assume its corresponding eigenvalue µi(λ) is simple in an interval I : α < λ < β.

Then ui(λ) is a continuous function in λ in the interval I.

Proof. Since F (λ) is a compact, self-adjoint linear operator in Rn, and µi(λ) is simple

in I, from [4] ui(λ) is continuous in I.

In the next theorem we will show that µi(λ) is not only a continuous scalar

function in λ but also a smooth function for almost every value of λ.

6



Theorem 1.3.4. Consider a symmetric matrix polynomial F (λ). Let µ(λ) be a simple

eigenvalue of F (λ) in an interval I : α < λ < β, with corresponding eigenvector u(λ)

with ‖u‖2 = 1. Then

µ′(λ) = uT (λ)F ′(λ)u(λ). (1.8)

Proof. Since µ(λ) is a continuous function in λ from Theorem 1.3.2 and using the

Taylor series of (1.6) we get

F (λ+ t) = F (λ)u(λ+ t) + tF ′(λ)u(λ+ t) + t2H(λ, t),

where H is a matrix polynomial in the parameters λ and t, and λ + t ∈ I. For a

sufficiently small t, F (λ + t) has a simple eigenvalue µ(λ + t) with corresponding

eigenvector u(λ+ t). We get

F (λ+ t)u(λ+ t) = µ(λ+ t)u(λ+ t), (1.9)

but also we have

µ(λ+ t)uT (λ)u(λ+ t)

= uT (λ)F (λ+ t)u(λ+ t)

= uT (λ)

(
F (λ) + tF ′(λ) + t2H(λ, t)

)
u(λ+ t)

= µ(λ)uT (λ)u(λ+ t) + tuT (λ)F ′(λ)u(λ+ t) + t2uT (λ)H(λ, t)u(λ+ t).

Collecting µ on the left side and dividing by t we get

µ(λ+ t)− µ(λ)

t
=
uT (λ)F ′(λ)u(λ+ t)

uT (λ)u(λ+ t)
+ tH(λ, t).

Taking the limit as t→ 0 we get

µ′(λ) =
uT (λ)F ′(λ)u(λ)

uT (λ)u(λ)
= uT (λ)F ′(λ)u(λ).

7



Theorems 1.3.2 - 1.3.4 are the special cases of more general results on matrix

functions [5, 6, 7].

Remark 1. We could have taken the first derivative of µ(λ) directly to get the same

result as follows. We have

‖u‖2 = 1 =⇒ uT (λ)u(λ) = 1 =⇒ d

dλ
(uT (λ)u(λ)) = u

′T (λ)u(λ) + uT (λ)u′(λ) = 0.

Now by taking the derivative of µ(λ) = uT (λ)F (λ)u(λ) directly we may get the

same result. But then we would have to deal with the issue of the differentiability of

the eigenvector u(λ) which was avoided in the proof.

1.4 Eigenvalue Function µ(λ)

Let A be a square symmetric matrix of size n with simple eigenvalues λi, and

corresponding eigenvector xi where i = 1, 2, · · · , n. Then to find the eigenvalues we

need to solve the characteristic equation det(A− λI) = 0 or in other words we need

to solve the eigenvalue problem for the linear pencil (matrix polynomial of degree 1),

P (λ) = A− λI.

Using Matlab we can plot for a fixed value of λ, the points (λ, µi(λ)) where

µi(λ) are the eigenvalues of the matrix P (λ) for i = 1, 2, · · · , n. If we repeat this

step while changing the value of λ using some convenient step and keep plotting the

eigenvalues, we will get the plot of all the eigenvalues of the pencil P (λ) as curves

like in Figure 1.2 which shows the eigenvalue functions µ(λ) of the matrix polynomial

P (λ) = A− λI where

A =


3 2 1

2 3 2

1 2 3

 .
8



Figure 1.2. Plot of Eigenvalue Function µ(λ).

The matrix A has the eigenvalues (0.6277, 2.0000, 6.3723) and these are exactly

the roots of the corresponding eigenvalue curves µ(λ) (the red dots on the λ-axis).

Furthermore, all the µ(λ) curves have the same slope as a direct application of

Theorem 1.3.4,

µ′(λ) = uT (λ)P ′(λ)u(λ) = −1.

The previous example may appear very trivial, but the same technique will be

used extensively in the next section where we will study the properties of HQEPs

and in general QEPs.
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Example 1.4.1. Now consider the HQEP defined by

A =

1 0

0 1

 , B =

5 0

0 9

 , C =

1
2

1

1 7

 .
The quadratic eigenvalues of this HQEP are (−8.1453,−4.8820,−0.9031,−0.0696)

using Matlab’s polyeig command. Note that these values are exactly where the µ(λ)

curves intersect the λ-axis as in Figure 1.3.

Figure 1.3. Plot of Eigenvalue Function µ(λ) of an HQEP.

The slope of the eigenvalue functions µ(λ) changes with λ, also we are only

concerned with the values of the functions around the λ-axis. If we restrict the plot
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to the values where |µ(λi)| ≤ 1, we may get a more meaningful plot in Figure 1.4

than in Figure 1.3.

Figure 1.4. Restricted Plot of Eigenvalue Function µ(λ) of an HQEP.

Now, we can see where the eigenvalue curves cross the λ-axis, and hence their

roots. We can also see the slope of each curve at its roots where we will use in the

theory of HQEP in the next chapter.
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CHAPTER 2

Properties of HQEP

HQEP has special properties that we will exploit when developing a numerical

solution to the problem.

2.1 Properties of HQEP

Theorem 2.1.1. The quadratic eigenvalues of an HQEP are real.

Proof. Consider (λ̂,x̂) a quadratic eigenpair of an HQEP such that Q(λ̂)x̂ = 0 then

we can form the Rayleigh Quotient for the HQEP to obtain

0 = x̂TQ(λ̂)x̂ = λ̂2x̂TAx̂+ λ̂x̂TBx̂+ x̂TCx̂.

Then by applying the quadratic formula, λ̂ will get one of the two values:

−x̂TBx̂±
√

(x̂TBx̂)2 − 4(x̂TAx̂)(x̂TCx̂)

2x̂TAx̂
. (2.1)

Hence λ̂ ∈ R by Definition 1.1.1.

Theorem 2.1.2 ([8, 9, 10]). The HQEP as defined in Definition 1.1.1 is equivalent

to the 1st degree symmetric matrix polynomial of order 2n

L(λ) =

B A

A 0


︸ ︷︷ ︸

M

λ+

C 0

0 −A


︸ ︷︷ ︸

N

, (2.2)

and if (λ̂,

x̂
y

) is an eigenpair of (2.2), then (λ̂, x̂) is a quadratic eigenpair of the

HQEP and y = λ̂x̂. Furthermore, L(λ) as defined in (2.2) is a definite pencil

(symmetric and ∃λ̂ ∈ R such that L(λ̂) ≺ 0).
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Proof. We haveI Iλ

0 −A−1


︸ ︷︷ ︸

E(λ)

Bλ+ C Aλ

Aλ −A


︸ ︷︷ ︸

L(λ)

 I 0

Iλ I


︸ ︷︷ ︸

F (λ)

=

Q(λ) 0

0 I

 . (2.3)

Since A is non-singular, det(E(λ)) 6= 0. Notice also det(F (λ)) 6= 0. Hence

det(Q(λ)) = 0 ⇐⇒ det(L(λ)) = 0,

i.e. both have the same zeros. Also,

0 = L(λ̂)

x̂
y

 =

Bλ̂+ C Aλ̂

Aλ̂ −A


 x̂
λ̂x̂

 =

Aλ̂2x̂+Bλ̂x̂+ Cx̂

Aλ̂x̂− Aλ̂x̂

 =

Q(λ̂)x̂

0

 ,
and this proves the equivalency.

Theorem 2.1.3 ([11]). A QEP where A,B,C are n × n Hermitian matrices and

A � 0 is hyperbolic if and only if Q(λ̂) ≺ 0 for some λ̂ ∈ R.

Proof. (⇐=)[12] Let Mx ≡ xTMx for any symmetric matrix M and a nonzero vector

x. We have

Q(λ̂) ≺ 0 for some λ̂ = λ ∈ R

=⇒ λ̂2A+ λ̂B + C ≺ 0

=⇒ λ̂2Ax + λ̂Bx + Cx < 0, ∀0 6= x ∈ Cn

=⇒ λ̂2Ax + Cx < λ̂Bx

=⇒ 2

√
λ̂2AxCx < λ̂Bx, (2

√
ab < a+ b, for 0 < a, b ∈ R)

=⇒ 4λ̂2AxCx < λ̂2B2
x

=⇒ B2
x − 4AxCx > 0.
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( =⇒ )[13] Q(λ) is equivalent to the definite pencil L(λ), hence according to Theorem

1.2 in [14] there exist α, β ∈ R and β > 0 such that

α

B A

A 0

− β
C 0

0 −A

 � 0.

But

α

B A

A 0

− β
C 0

0 −A

 =

αB − βC αA

αA βA


=

I α
β
I

0 I


αB − βC − α2

β
A 0

0 βA


 I 0

α
β
I I


=⇒ α2

β
A− αB + βC ≺ 0.

By choosing λ̂ = −α
β

we get L(λ̂) ≺ 0 which implies that Q(λ̂) ≺ 0.

Definition 2.1.1. The quadratic eigenpair (λ̂, x̂) is said to be of a positive (negative)

type if

x̂TQ′(λ̂)x̂ > 0 (x̂TQ′(λ̂)x̂ < 0), (2.4)

where Q′(λ) is the first derivative of Q(λ) with respect to λ.

Since Q′(λ) = 2λA + B, from Definition 2.1.1 a quadratic eigenvalue λ is of

positive (negative) type if

λ̂ > − x̂TBx̂

2x̂TAx̂
(λ̂ < − x̂TBx̂

2x̂TAx̂
).

Denote a quadratic eigenvalue of positive (negative) type by λ+ (λ−), the corre-

sponding quadratic eigenvectors of positive (negative) type by
+

x, and (
−
x) respectively.

Since all the quadratic eigenvalues will have the form (2.1), the principal (positive

type) quadratic eigenvalues will have the form

λ+

i =
− +

x
T

i Bxi +

√
(
+

x
T

i B
+

xi)2 − 4(
+

x
T

i A
+

xi)(
+

x
T

i C
+

xi)

2
+

x
T

i A
+

xi

,
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while the secondary (negative type) quadratic eigenvalues will have the form

λ−i =
− −
x
T

i Bxi +

√
(
−
x
T

i B
−
xi)2 − 4(

−
x
T

i A
−
xi)(

−
x
T

i C
−
xi)

2
−
x
T

i A
−
xi

.

Furthermore, if µj(λ
+

i ) = 0 then µ′j(λ
+

i ) > 0, also if µk(λ
−
i ) = 0 then µ′k(λ

−
i ) < 0 (see

Figure 2.1).

Example 2.1.1. Consider the HQEP defined by

A =


3 2 1

2 3 2

1 2 3

 , B =


−2 −1 −1

−1 −3 2

−1 2 −1

 , C =


−5 1 −2

1 −4 −3

−2 −3 −5

 ,
which has quadratic eigenvalues using Matlab’s polyeig

λ−1 -1.8856
λ−2 -1.0644
λ−3 -0.1242
λ+

1 1.2117
λ+

2 1.3772
λ+

3 6.6104

which agrees with Figure 2.1, and note the slope of µ(λ) curves as they cross the

λ-axis.
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Figure 2.1. Spectrum of an HQEP of order 3.

For a fixed λ, Q(λ) is a symmetric matrix of order n and has n real eigenvalues.

From Example 2.1.1 we can see that for a small enough fixed λ, say λ < λ−1 , we get

Q(λ) � 0 and hence all the eigenvalues of such symmetric matrix will be positive. If

we choose a large enough fixed λ, say λ > λ+

3 , all the eigenvalues of the symmetric

matrix Q(λ) will also be positive. For Q(λ) to be negative definite for some λ = λ̂,

we must have all the eigenvalues of the symmetric matrix Q(λ̂) negative. This

implies that positive eigenvalues of the matrix Q(λ) must decrease from the left of

λ−1 until we reach λ̂ when all the eigenvalues of the matrix Q(λ) are negative, and
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then increase again until all the eigenvalues are positive on the right of λ+

3 . If the

quadratic eigenvalue λ̃ is of a negative type then the matrix Q(λ) will have one less

positive eigenvalue passing through λ̃ from left to right, and the reverse happen if it

is of the positive type. This implies that all the secondary quadratic eigenvalues of

the negative type must be on the left of λ̂, and all the principle quadratic eigenvalues

of the positive type must be on the right of λ̂ [1]. In fact the symmetric matrix Q(λ)

is negative definite for all values of λ such that λ−i < λ < λ+

i for i = 1 . . . n.

Theorem 2.1.4 ([11]). All the quadratic eigenvalues of the HQEP are non-defective.

2.2 Inertia of Q(λ)

Here we will study how the inertia of Q(λ) changes as a function of λ but first

we need to define the inertia of a symmetric matrix which will be applied to the

symmetric matrix Q(λ) for a fixed λ. Then we will see that the inertia of a symmetric

matrix is invariant under congruence transformation.

Definition 2.2.1 (Inertia of a Symmetric Matrix). The inertia of a symmetric

matrix A is the triple integers i−, i0, i+, where i− is the number of negative eigenvalues

of A, i0 is the number of zero eigenvalues of A, and i+ is the number of positive

eigenvalues of A. It will be denoted as Inertia(A)=(i−, i0, i+).

Theorem 2.2.1 (Sylvester’s Inertia Theorem). Let A be symmetric and X be

nonsingular. Then A and XTAX have the same inertia.

Proof. [3] Let A be n× n matrix. Let N be the negative eigenspace of A spanned

by the eigenvectors corresponging to the negative eigenvalues of A. dim(N ) is the

number of negative eigenvalues of A. Let P be the nonnegative eigenspace of XTAX

where yTXTAXy ≥ 0, ∀y ∈ P. Let XP be the space of all vectors x = Xy where
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y ∈ P. Since X is nonsingular, dim(XP) = dim(P). Assume the dimension of the

negative eigenspace of XTAX is less than dim(N ) then dim(N ) + dim(XP) > n,

and ∃x ∈ N ∩XP, x 6= 0. But x ∈ N =⇒ xTAx < 0, and x ∈ XP =⇒ xTAx =

yTXTAXy ≥ 0 which is a contradiction. Hence dim(N ) = n− dim(P). Therefore,

the number of negative eigenvalues of A and XTAX are the same. The same argument

can be made for the number of positive eigenvalues and therefore must have the same

number of zero eigenvalues.

The next theorem gives the inertia of Q(λ).

Theorem 2.2.2 ([15]). Denote the 2n eigenvalues of an HQEP of order n by λ±i and

arrange in order such that:

λ−1 ≤ . . . ≤ λ−n︸ ︷︷ ︸
Secondary

< λ+1 ≤ . . . ≤ λ+n︸ ︷︷ ︸
Primary

. (2.5)

Then:

(a) Q(λ) ≺ 0 ∀ λ ∈ (λ−n , λ
+

1 );

(b) Q(λ) � 0 ∀ λ ∈ (−∞, λ−1 ) ∪ (λ+
n, +∞);

(c) Inertia(Q(λ))=(n − k, 0, k) for λ ∈ (λ+

k , λ
+

k+1) or λ ∈ (λ−n−k, λ
−
n−k+1) for k =

1, . . . , n.

The interval (λ−n , λ
+

1 ) is the gap between the principal and the secondary

quadratic eigenvalues.

2.3 Decomposition of HQEP

Since HQEP is quadratic, we may be able to factor it into two linear eigenvalue

problems the same as in quadratic polynomials in one variable. Indeed, Q(λ) can be

factorized.

Definition 2.3.1. A matrix U ∈ Rn×n is a right (left) solvent of Q(λ) if Q(U) = 0

(QT (U) = 0).
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Theorem 2.3.1. Q(λ) is right divisible by Iλ− U if and only if U is a right solvent

of Q(λ).

Proof. Q(λ) is right divisible by Iλ− U =⇒ Q(λ) = D(λ)(Iλ− U) =⇒ Q(U) = 0.

On the other hand,

Q(U) = 0 =⇒ Q(λ) = Q(λ)−Q(U)

= λ2A+ λB + C − (AU2 +BU + C)

= A(λ2I − U2) +B(λI − U)

= A(λI + U)(λI − U) +B(λI − U)

= [A(λI + U) +B](λI − U)

= (λA+ AU +B)(λI − U),

implying Q(λ) is right divisible by Iλ− U .

Note that QT (λ) = (Iλ− UT )DT (λ) and hence if U is a right solvent of Q(λ),

then UT is a left solvent of Q(λ).

Theorem 2.3.2. Let Λ = diag(λ1, λ2, . . . , λn) and X =

[
x1 x2 . . . xn

]
where

(λi, xi) for i = 1, . . . , n, is a quadratic eigenpair of the HQEP of order n for Q(λ),

and X is non-singular. Then the matrix S = XΛX−1 is a right solvent of Q(λ).

Proof. We have

Q(S) = AS2 +BS + C

= A(XΛX−1)2 +B(XΛX−1) + C

= AXΛ2X−1 +BXΛX−1 + CXX−1

= (AXΛ2 +BXΛ + CX)X−1

=
([

Ax1 Ax2 . . . Axn

]
Λ2 +

[
Bx1 Bx2 . . . Bxn

]
Λ
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+

[
Cx1 Cx2 . . . Cxn

])
X−1

=
([

λ21Ax1 λ22Ax2 . . . λ2nAxn

]
+

[
λ1Bx1 λ2Bx2 . . . λnBxn

]
+

[
Cx1 Cx2 . . . Cxn

])
X−1

=

[
Q(λ1)x1 Q(λ2)x2 . . . Q(λn)xn

]
X−1 = 0.

Hence S as defined is a solvent of Q(λ).

There are in fact two very special solvents namely the primary solvent and

the secondary solvent .

Definition 2.3.2 (Primary Solvent). Let Λ+ = diag(λ+

1 , λ
+

2 , . . . , λ
+
n) and X+ =[

+

x1
+

x2 . . .
+

xn

]
where

+

xi are the quadratic eigenvectors respectively. Then the

matrix U = X+Λ+X
−1
+ is called the primary solvent of Q(λ).

Definition 2.3.3 (Secondary Solvent). Let Λ− = diag(λ−1 , λ
−
2 , . . . , λ

−
n) and X− =[

−
x1

−
x2 . . .

−
xn

]
where

−
xi are the quadratic eigenvectors respectively. Then the

matrix V = X−Λ−X
−1
− is called the secondary solvent of Q(λ).

Theorem 2.3.3 ([15]). The matrices X+ and X− are non-singular.

Theorem 2.3.4. If U is a right solvent of Q(λ), then V = A−1U−TC is also a right

solvent of Q(λ), where U−T is the inverse transpose of U .

Proof. We have

AU2 +BU +C = 0 =⇒ A−1C = −U2−A−1BU =⇒ CA−1 = −(UT )2−UTBA−1.

Thus

Q(V ) = AV 2 +BV + C

= AA−1U−TCA−1U−TC +BA−1U−TC + C

= U−TCA−1U−TC +BA−1U−TC + C
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= U−T (−(UT )2 − UTBA−1)U−TC +BA−1U−TC + C

= −C −BA−1U−TC +BA−1U−TC + C = 0,

as was to be shown.

Theorem 2.3.5 (Decomposition of Q(λ)[16]). If matrix U is the right solvent of

Q(λ), then

Q(λ) = (Iλ− V T )A(Iλ− U), (2.6)

where V T = CU−1A−1.

Proof. From Theorem 2.3.1 We have

Q(λ) = (λA+ AU +B)(λI − U)

= (λA− CU−1)(λI − U)

= (λI − CU−1A−1)A(λI − U),

as expected.

Example 2.3.1. Consider the HQEP from Example 2.1.1. We have

Λ+=diag(1.2117, 1.3772, 6.6104), Λ−=diag(−1.8856,−1.0644,−0.1242),

X+ =


−0.2327 −0.7718 −0.3960

−0.6939 −0.2056 0.7646

−0.6814 0.6017 −0.5084

, and X− =


−0.7422 0.5926 0.4079

0.5935 −0.1087 0.6795

0.3115 0.7981 −0.6098

.

Now we can construct the primary and secondary solvents for the HQEP (shown

with up to 4 decimal places):

U =


2.5448 −1.4359 1.0070

−2.3232 4.0278 −2.0745

1.4759 −1.8844 2.6266

, and V =


−1.1705 0.7961 0.1871

0.6179 −0.8849 −0.4344

−0.1880 −0.6900 −1.0188

.
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We get ‖AU2 +BU + C‖2 = 8.3061e− 14, and ‖AV 2 +BV + C‖2 = 1.8178e− 14,

which implies that U and V are solvents of the HQEP.

2.4 Hyperbolicity of HQEP

The hyperbolicity of a QEP is only a sufficient condition that guarantees all

the quadratic eigenvalues are real. In the next example we will see a QEP that is not

hyperbolic but still have all real quadratic eigenvalues.

Example 2.4.1. Consider the QEP with

A =

1 0

0 1

 , B =

0.5 0

0 5.8

 , C =

0.01 1

1 8

 .
Matlab polyeig(C,B,A) reveals all the quadratic eigenvalues are real:

λ1 = −3.6065, λ2 = −2.0491, λ3 = −0.8000, λ4 = 0.1556

ordered as in (2.5). This QEP is not hyperbolic which can easily be tested by checking

that Q(λ2+λ3
2

) � 0 which violates the condition of Theorem 2.2.2 (see Figure 2.2). If

we label the quadratic eigenvalues of such QEP using Definition 2.1.1 then we will

get λ−2 > λ+1 which also contradicts Theorem 2.2.2.

22



Figure 2.2. Plot of Eigenvalue Function µ(λ) of a non-hyperbolic QEP.

In Example 2.4.1, all the quadratic eigenvalues were real because (xTBx)2 >

4(xTAx)(xTCx), for any quadratic eigenvector x of the QEP. On the other hand, hy-

perbolicity of a QEP requires the condition that ∀ 0 6= x ∈ Cn and hence hyperbolicity

is more restrictive.

We can test for the hyperbolicity of a given QEP by using the sufficient condition

(λmin
B )2 > 4λmax

A λmax
C , (2.7)

where λmax
M (λmin

M ) is the biggest (smallest) absolute values of the eigenvalues of a

given symmetric matrix M . But this condition will not catch all the HQEP problems
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because it’s more restrictive than the hyperbolicity condition of (1.2), as will be seen

in the next two examples.

Example 2.4.2. Consider the HQEP with

A =

1 0

0 1

 , B =

5.5 0

0 33

 , C =

1
2

1

1 7

 ,
with λmax

C = 7.1504 and λmin
B = 5.5. It is straightforward using (2.7) to conclude that

it is an HQEP.

But on the other hand

Example 2.4.3 (low degree of hyperbolicity HQEP). Consider the HQEP with

A =

1 0

0 1

 , B =

2 0

0 12

 , C =

1
2

1

1 7

 ,
which has quadratic eigenvalues:

λ−1 = −11.3860, λ−2 = −1.6318, λ+1 = −0.8176, λ+2 = −0.1646

and Q(
λ−2 +λ+1

2
) ≺ 0. But in this case we have λmax

C = 7.1504, λmin
B = 2 and hence

(λmin
B )2 ≯ 4λmax

A λmax
C . (2.8)

This HQEP failed (2.7) (see Figure 2.3).
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Figure 2.3. Plot of Eigenvalue Function µ(λ) of HQEP (low degree of Hyperbolicity).

We now present four procedure to test if a given QEP is hyperbolic:

1. If the QEP pass the sufficient condition (2.7) then it is hyperbolic.

2. Solve the one-dimensional global optimization problem min
µ

(max(λQ(µ))), where

λQ(µ) is the set of all eigenvalues of the symmetric matrix Q(µ). If it is negative

then it is hyperbolic.

3. Compute all 2n quadratic eigenvalues of the QEP. If all quadratic eigenvalues

are real, and Q(
λ−n+λ+1

2
) ≺ 0 then it is hyperbolic [1].

4. If L(λ) in (2.2) is a definite pencil then it is hyperbolic [11].
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However, none of these tests is cheap and definitive at the same time. Later

we will develop an algorithm that can test for the hyperbolicity of a QEP to a high

degree of accuracy using the bisection method without computing any quadratic

eigenvalues.

2.5 Overdamped HQEP

Definition 2.5.1. An HQEP is overdamped if B � 0, C � 0 [1].

An HQEP becomes an overdamped HQEP after the proper shift in λ [17, 1],

Q(λ+ θ) = λ2A+ λ(B + 2θA) + (C + θB + θ2A)

= λ2Ã+ λB̃ + C̃

=: Q̃(λ).

By choosing a large enough shift θ, we will have

B̃ = B + 2θA � 0, C̃ = C + θB + θ2A � 0. (2.9)

Theorem 2.5.1. Q(λ) is overdamped ⇐⇒ λ+n ≤ 0.

Proof. Let Mx ≡ xTMx for any symmetric matrix M and a nonzero vector x.

( =⇒ ) Assume Q(λ) is overdamped, i.e. , B � 0, C � 0. Then we have

−Bx −
√
B2
x − 4AxCx

2Ax
< 0.

and

−4AxCx ≤ 0 =⇒ B2
x − 4AxCx ≤ B2

x

=⇒
√
B2
x − 4AxCx ≤ (Bx)

=⇒ −Bx +
√
B2
x − 4AxCx ≤ 0

=⇒
−Bx +

√
B2
x − 4AxCx

2Ax
≤ 0.
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Hence

−Bx ±
√
B2
x − 4AxCx

2Ax
≤ 0.

(⇐=) Since λ+n ≤ 0, Q(0) = C � 0. We also have

λ+n ≤ 0 =⇒ −Bx +
√
B2
x − 4AxCx ≤ 0

=⇒ Bx ≥
√
B2
x − 4AxCx > 0

=⇒ Bx > 0.

i.e.,B � 0.

2.6 Solving the HQEP

In this section, we survey methods and techniques to solve HQEPs and QEPs

in general.

2.6.1 Linearization

The HQEP in (1.1) can be solved by solving L(λ) as defined in (2.2) using the

QZ algorithm. Also by applying iterative algorithms like the subspace iteration, the

Arnoldi method, and the unsymmetric Lanczos method to the matrix M−1N from

(2.2) we may solve the underlying HQEP [18].

The same can be done with any equivalent generalized eigenvalue problem

which has the same eigenvalues as (1.1), for example

λ

In 0

0 A

−
 0 In

−C −B

 . (2.10)

The HQEP can also be converted into the companion block-matrix

C =

−A−1B −A−1C

In 0

 (2.11)
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which is analogous to changing a high-order ODE to a system of first-order linear

ODEs. Applying the QR algorithm to such matrix should reveal the spectrum of the

HQEP.

Solving L(λ) has the advantage of keeping the symmetry of the problem which

is destroyed by the other two approaches, but L(λ) may destroy the banded structure

of the HQEP which we will take advantage of in our algorithm later. Also solving

(2.11) may lead to loss of accuracy and to instability if A is ill-conditioned .

2.6.2 Finding a Solvent Matrix

We can find a solvent matrix S as defined in Theorem 2.3.2 using an efficient

algorithm introduced in [2] based on the Block Cyclic Reduction [1] that recursively

finds a solvent matrix of a given HQEP. The algorithm should converge to the primary

solvent matrix U if the HQEP is overdamped according to Lemma 6 in [1]. In the

case of a not overdamped HQEP, the algorithm will converge to a solvent matrix S

which has a subset spectrum of the HQEP. In both cases, another solvent can be

found using the relation in Theorem 2.3.4 which has the rest of the HQEP’s spectrum.
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Algorithm 2.1 Iteratively find a Solvent for an HQEP using BCR [1, 2]

Given matrices A,B,C representing an HQEP, the procedure will return a solvent

matrix S.
function ReturnSolvent(A,B,C, ε)

X̂0 ← 0

X̂ ← B

Â← A

B̂ ← B

Ĉ ← C

while
∥∥∥X̂0 − X̂

∥∥∥
2
< ε do

X̂ ← X̂ − ÂB̂−1Ĉ

Â0 ← Â

Â← ÂB̂−1Â

B̂0 ← B̂

B̂ ← B̂ − Â0B̂
−1Ĉ − ĈB̂−1Â0

Ĉ0 ← ĈB̂−10 Ĉ

end while

return −X̂−1C

end function

Example 2.6.1. Applying Algorithm 2.1 to the HQEP in Example 2.4.3 gives us

the primary solvent

U =

−0.3590 −0.9825

−0.0908 −0.6231

 ,
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which has the eigenvalues −0.1646 and −0.8176. Then we can get the secondary

solvent

V = A−1U−TC =

−1.6410 0.0908

0.9825 −11.3769

 ,
which has the eigenvalues −11.3860 and −1.6318, agreeing with Matlab’s polyeig

used before.

In the previous example the HQEP was overdamped and the algorithm converges

to the primary solver. In the next example we will see that the algorithm will converge

to a solvent that is not the primary solvent because the HQEP is not overdamped.

Example 2.6.2. Applying Algorithm 2.1 to the HQEP in Example 2.1.1 gives us a

solvent

X1 =


−1.0813 0.6674 0.1034

−0.5231 0.7615 0.6370

−1.6380 1.4025 0.3428

 ,
which has the eigenvalues −1.0644, −0.1242 and 1.2117. Then we can get another

solvent

X2 = A−1X−T1 C =


6.8030 6.1165 9.0490

−7.4281 −5.0263 −11.7155

2.3754 −0.2891 4.3254

 ,
which has the eigenvalues −1.8856, 1.3772 and 6.6104. The union of the spectrums

of X1 and X2 will give us the whole spectrum of the HQEP as in Example 2.1.1.

2.6.3 Iterative methods with Deflation for a Sparse HQEP

The HQEP as defined in Definition 1.1.1 can be transformed to the linear

symmetric eigenvalue problem

β(µ)Cx = −(Aµ+B)x (2.12)
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where β(µ) is an eigenvalue of the matrix pencil −(Aµ + B) − λC for any given

µ. It was shown in [18] that βj(µ), for j = 1, · · · , n, are strictly decreasing. Hence

the smallest positive eigenvalue of the HQEP is the smallest positive fixed point of

the function 1/β1(µ). In [18], they also introduced three algorithms to compute the

smallest positive quadratic eigenvalue namely, Basic, Tangent, and Newton’s iterative

methods. All the methods use the symmetric Lanczos algorithm to compute the

eigenpair in every iteration. Afterwards, a nonequivalence deflation technique is used

to produce a new HQEP that has the same spectrum as the original one except that

the smallest positive eigenvalue of the original problem becomes zero in the deflated

problem. Then they find the smallest positive eigenvalue of the deflated problem

and deflate again and so on. This approach can also be used to find all the negative

quadratic eigenvalues. The algorithm will converge linearly globally and quadratically

locally.

2.6.4 Solving the Characteristic Equation of Q(λ)

The zeros of the characteristic polynomial of an HQEP are exactly its eigenvalues.

Laguerre’s method and Ehrlich-Aberth method can approxiamte the roots of

the characteristic polynomial of Q(λ) but they require stable and efficient computation

of Inertia(Q(λ)), fQ(λ), f ′Q(λ)/fQ(λ), and f ′′Q(λ)/fQ(λ), where fQ(λ) = det(Q(λ))

[19]. Although these methods may converge faster than the bisection method, they

can only be applied to tri-diagonal HQEPs, and may not be efficient for banded

HQEPs beyond tri-diagonal.
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CHAPTER 3

Bisection for HQEP and Hyperbolicity Test

3.1 The Symmetric Eigenvalue Problem case

In this section we will introduce the algorithms in [3, pp.228-232] which we will

use latter in the thesis when dealing with HQEP but with some modifications. Let A

be a square symmetric matrix of size n with simple eigenvalues λi, and corresponding

eigenvector xi for i = 1, 2, ..., n. Then from Theorem 1.3.1 to find the eigenvalues of

A is equivalent to finding the eigenvalues of the matrix polynomial of degree 1:

P (λ) = A− λI.

This means we will have n µi(λ) curves that we need to find their roots assuming

all eigenvalues of the matrix A are simple. We know that the matrix A has at most

n eigenvalues and hence we know that each µi(λ) curve will have only one real root.

Now since we need to find the roots of n µi(λ) curves, we need to have a mechanism to

show if a given µi(λ) curve changes sign between 2 different values of λ and therefore

a root exist between those 2 values. Using Sylvester’s Inertia Theorem we can get

the inertia of P (λ) at different values of λ. If there is a change in say the number of

the negative eigenvalues of P (λ) between those two values, then we can deduce that

there are some roots for some µi(λ) curves within those two values, and the number

of roots is equal to the difference in the number of negative eigenvalues.

One of the readily available matrix decompositions for symmetric matrices

and which gives us the inertia is the LDLT decomposition at a cost of O(n3) using

Matlab’s ldl. The procedure Negcount is a procedure that returns the number

of eigenvalues less than λ of a symmetric matrix A as a function in λ. Note that
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Matlab’s ldl on line 4 of Algorithm 3.1 returns a block diagonal matrix D which has

1× 1 and 2× 2 blocks on its diagonal. In case of 2× 2 blocks, we need to compute

the eigenvalues of the 2× 2 blocks. In all our examples, D is a diagonal matrix and

computing its inertia is trivial.

Algorithm 3.1 Return the number of eigenvalues less than λ of a symmetric matrix

A
1: function Negcount(A, λ)

2: P (λ)← A− λI

3: num← 0

4: D ← ldl(P (λ))

5: for i = 1 to n do

6: if D(i, i) < 0 then

7: num← num+ 1

8: end if

9: end for

10: return num

11: end function
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Figure 3.1. Plot of the number of eigenvalues less than λ of a symmetric matrix A as
a step function.

Figure 3.1 shows the eigenvalues of the matrix

A =


3 2 1

2 3 2

1 2 3

 ,
which are (0.6277, 2.0000, 6.3723), and note the change of Negcount as λ varies.
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3.2 Fast Inertia Calculation

Negcount will help us decide if a section of the interval where we want to find

the eigenvalues has any eigenvalues or none (see Figure 3.1). The issue with such

algorithm is that we will need to apply Negcount a factor of n times making the total

cost of the procedure O(n4) flops. This is a factor of n times more expensive than the

QR algorithm which has a cost of only O(n3) flops. But if we compute the tri-diagonal

(Hessenberg) form of A to get T only once using Householder’s transformations at a

cost of O(n3), we get P̃ (λ) = T − λI which has the same spectrum as P (λ):

P̃ (λ) =



a1 − λ b1

b1 a2 − λ
. . .

. . . . . . bn−1

bn−1 an − λ


= LD(λ)LT

= L



d1(λ)

d2(λ)

. . .

dn(λ)


LT (3.1)

[3, p.230], where

d1(λ) = a1 − λ, di(λ) = (ai − λ)−
b2i−1
di−1

i = 2, ..., n. (3.2)

Now we have a linear recursion of the diagonal entries of the matrix D(λ) and

therefore Negcount will only cost O(n). We will call the new procedure FastNegcount

which takes T (the tri-diagonal form of A) and λ as inputs and outputs the same

values as the original Negcount procedure.
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Algorithm 3.2 Return the number of eigenvalues less than λ of a tri-diagonal

symmetric matrix T in linear time

1: function FastNegcount(T, λ)

2: num← 0

3: d← T (1, 1)− λ

4: if d < 0 then

5: num← num+ 1

6: end if

7: for i = 2 to n do

8: d← T (1, i)− λ− T (2,i−1)2
d

9: if d < 0 then

10: num← num+ 1

11: end if

12: end for

13: return num

14: end function

Algorithm 3.2 which is based on (3.2) was shown to be stable without any

pivoting in Lemma 5.3 in [3]. We will end this section by implementing the procedure

Bisect. The idea is to bisect the interval on-hand and to discard any sections where

the procedure FastNegcount doesn’t change, and keep bisecting sections that have

one or more eigenvalues. Until we get n sections with only one eigenvalue in each and

have a length within some tolerance. At that moment we may choose the midpoint

of a section as an approximation to the eigenvalue we need to find.
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Algorithm 3.3 Return the approximated eigenvalues of a symmetric matrix A using

Bisection
Given a symmetric matrix A, the procedure will return all the eigenvalues of A in

the interval (a, b) as a vector Eig in a descending order.
function Bisect(A, a, b, tol)

Declare stack Interval

Declare queue Eig

T ← ToTriDiag(A)

put.Interval(a, b)

while Interval not empty do

(a, b)← pop from Interval

c← FastNegcount(T, b)− FastNegcount(T, a)

if c > 1 or (c = 1 and b− a > tol ∗ abs(a+b
2

)) then

put (a, a+b
2

) into Interval

put (a+b
2
, b) into Interval

else if c = 1 and b− a < tol ∗ abs(a+b
2

) then

put (a+b
2

) into Eig

end if

end while

return Eig

end function

3.3 Analysis of the HQEP case

We will begin by introducing the procedure NegcountHQEP that counts the

number of negative eigenvalues of the symmetric matrix Q(λ) for a given fixed λ.
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Algorithm 3.4 Return the number of negative eigenvalues of Q(λ) for a specific λ

1: function NegcountHQEP(A,B,C, λ)

2: Q(λ)← Aλ2 +Bλ+ C

3: num← 0

4: D ← ldl(Q(λ))

5: for i = 1 to n do

6: if D(i, i) < 0 then

7: num← num+ 1

8: end if

9: end for

10: return num

11: end function

Now using Theorem 2.2.2 and the algorithm NegcountHQEP we may be able to

find the eigenvalues of the HQEP. The Bisect algorithm won’t succeed directly in

this case, and the reason is that NegcountHQEP(Q(λ)) is not monotonic with λ.

Example 3.3.1. Consider the HQEP with

A =

1 0

0 1

 , B =

6 0

0 36

 , C =

1
2

1

1 7

 .
Matlab’s polyeig(C,B,A) reveals the quadratic eigenvalues of the HQEP:

(−35.8045,−5.9145,−0.2296,−0.0514) ordered as in (2.5) (see Figure 3.2).
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Figure 3.2. Plot of the number of negative eigenvalues of Q(λ) as a step function.

From Figure 3.2 we can see that NegcountHQEP(Q(λ)) = 0 when λ < λ−1 or λ >

λ+n . Then it increases from λ−1 to λ−n . Between λ−n and λ+1 NegcountHQEP(Q(λ)) = n,

it decreases from λ+1 to λ+n to 0. For example, if λα < λ−1 and λβ > λ+n then

NegcountHQEP(Q(λβ)) =NegcountHQEP(Q(λα)) = 0 and the Bisect algorithm will

discard the interval [λα,λβ] thinking that there are no eigenvalues in that interval

even though all the 2n eigenvalues of the HQEP are in that interval.

We may be able to avoid such difficulty if we can partition the interval [λα,λβ]

into [λα,λc] and [λc,λβ] where λ−n < λc < λ+1 , then apply the Bisect algorithm to

each partition separately. Later we introduce the procedure CenterHQEP to find λc.
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It will use Negcount with bisection and is guaranteed to converge if [λ−n , λ
+
1 ] ∩ [a, b]

is not empty, otherwise it may not converge. Therefore, we need to be able to find an

interval for CenterHQEP to converge.

Example 3.3.2. Consider again Example 3.3.1. Here we will see an example where

the eigenvalue curves µ(λ) of Q(λ) are parabolic-like curves facing up, while the

eigenvalue curves µ′(λ) of Q′(λ) are nearly linear.

Figure 3.3. Eigenvalue curves of Q(λ) and Q′(λ).

In fact, if we apply Theorem 1.3.4 to Q(λ) = Aλ2 +Bλ+ C we get

µ′(λ) = uT (λ)Q′(λ)u(λ) = 2λuT (λ)Au(λ) + uT (λ)Bu(λ), (3.3)
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and if we assume uT (λ)Au(λ) and uT (λ)Bu(λ) are almost constant for small changes

in λ then the slope of the eigenvalue curve is almost linear in λ and hence parabolic-

like function in λ. In case A � 0 and assume u(λ) is almost constant for small changes

of λ then the derivative of µ′(λ) with respect to λ is positive and hence the curve of

µ(λ) is facing up.

Observation 3.3.1. The eigenvalue curve µ(λ) of Q(λ) is parabolic-like curve and

its vertex occurs near some λ = ω, where ω is a Rayleigh quotient to the pencil Q′(λ).

In fact,

0 = µ′(ω) = uT (ω)Q′(ω)u(ω)

= 2ωuT (ω)Au(ω) + uT (ω)Bu(ω)

then

ω =
−uT (ω)Bu(ω)

2uT (ω)Au(ω)
. (3.4)

Example 3.3.3. Consider the HQEP from Example 3.3.1. We have

Q′(λ) = 2λA+B,

and by using eig(B,-2A), we get the eigenvalues of Q′(λ): ω1 = −18 and ω1 = −3.

Note that ωi is where the vertex occurs on the λ-axis of the parabolic-like curve µi(λ)

which has λ±i as its roots (see Figure 3.4).
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Figure 3.4. Plot of eigenvalue curves of Q(λ) with eigenvalues of Q′(λ) .

3.4 Hyperpolicity Test and Finding the Gap of the HQEP

The CenterHQEP algorithm to be introduced is essential to finding the eigen-

values of an HQEP using bisection as well as a test for the QEP hyperbolicity. The

algorithm is guaranteed to converge to some value in the gap of Q(λ) if the QEP is

hyperbolic or in other words the interval (λ−n , λ
+

1 ) is not empty. Therefore if

[λ−n , λ
+
1 ] ∩ [a, b] 6= ∅,
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the algorithm will find a value in the gap of the HQEP in the interval [a, b]. The

next theorem will give the range of the quadratic eigenvalues of the HQEP which

will contain the interval (λ−n , λ
+

1 ).

Theorem 3.4.1. All the quadratic eigenvalues of an HQEP is contained in the

interval,

(−λ
max
B

λmin
A

,
λmax
B

λmin
A

). (3.5)

Proof. Define Mx = xTMx for any symmetric matrix M and a nonzero vector x.

Then we have

0 ≤
√
B2
x − 4AxCx ≤ |Bx| ≤ λmax

B ,

and Ax > 0. Therefore we get

λ =
−Bx ±

√
B2
x − 4AxCx

2Ax

≤
−Bx +

√
B2
x − 4AxCx

2Ax

≤ −Bx + λmax
B

2λmin
A

≤ 2λmax
B

2λmin
A

=
λmax
B

λmin
A

.

The same can be applied to the lower bound and hence we get

−λ
max
B

λmin
A

≤ λ ≤ λmax
B

λmin
A

,

where λmax
B is the maximum absolute value of the eigenvalues of the symmetric matrix

B, while λmin
A is the minimum eigenvalue of the symmetric matrix A.

We may use Theorem 3.4.1 to determine the interval that the procedure Cen-

terHQEP uses to find a value in the gap of HQEP but a tighter range may be found

to speedup the procedure.
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Observation 3.4.2. Consider a hyperbolic Q(λ) and the eigenvalues ωi of its first

derivative Q′(λ) = 2λA+B are ordered as follows:

ω1 ≤ ω2 ≤ . . . ≤ ωn−1 ≤ ωn. (3.6)

Then usually

[λ−n , λ
+
1 ] ∩ [ω1, ωn] 6= ∅. (3.7)

In fact, ω1 is close to the vertex of the eigenvalue curve µ1(λ) which has left

(right) roots at λ−1 (λ+1 ). Also, ωn is close to the vertex of µn(λ) with left (right) roots

at λ−n (λ+n ) (see Figure 3.4).

Then we have

ω1 < λ+1 and λ−n ≤ λ+1 =⇒ [λ−n , λ
+
1 ] ∩ [ω1, λ

+
1 ] 6= ∅,

also

ωn > λ−n and λ+1 ≥ λ−n =⇒ [λ−n , λ
+
1 ] ∩ [λ−n , ωn] 6= ∅.

So

[ω1, λ
+
1 ] ∪ [λ−n , ωn] = [ω1, ωn],

and hence

[ω1, ωn] ∩ [λ−n , λ
+
1 ] 6= ∅.

The procedure will begin by solving the positive definite pencil 2λA+B which

is equivalent to a symmetric eigenvalue problem (SEP) since Ax > 0 for all nonzero

vectors x. Taking the smallest (largest) pencil eigenvalues as the left (right) range to

find the center, the procedure will use a level mechanism to find the gap by choosing

the first value where the negative inertia of Q(λ) equal to n.
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Algorithm 3.5 Return a value in the gap interval of an HQEP

Given a Q(λ) representing an HQEP as in (1.1), the procedure will return some λc

where λ−n < λc < λ+1 .
1: function CenterHQEP(A,B,C)

2: a← smallest eigenvalue of the pencil 2Aλ+B

3: b← largest eigenvalue of the pencil 2Aλ+B

4: Na ← NegcountHQEP(A,B,C, a)

5: if Na = n then

6: return a

7: end if

8: Nb ← NegcountHQEP(A,B,C, b)

9: if Nb = n then

10: return b

11: end if
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12: Level← max(Na, Nb)

13: Declare Stack Interval

14: while Interval not empty do

15: for index=size.Interval : 1 do

16: (a, b)← pop from Interval

17: Nmid ← NegcountHQEP(A,B,C, a+b
2

)

18: if Nmid = n then

19: return a+b
2

20: else if Nmid > Level then

21: Level← Nmid

22: empty Interval

23: end if

24: put (a, a+b
2

) into Interval

25: put (a+b
2
, b) into Interval

26: end for

27: end while

28: end function

In the following example we will test the sensitivity of the algorithm to an

HQEP with low degree of hyperbolicity.

Example 3.4.1. Consider the HQEP with

A =

1 0

0 1

 , B = ε

1 0

0 6

 , C =

1
2

1

1 7

 . (3.8)

For ε ≥ 1.797789047 the HQEP is overdamped as was shown in [1], and hence

has 2n real nonpositive eigenvalues. The closest value of ε to 1.797789047 that
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the algorithm was able to converge was ε = 1.79779 which has 2 inner eigen-

values of λ−2 = −1.152510604112638 and λ+1 = −1.150828354812121, and hence

the hyperbolicity degree |λ−2 − λ+1 | = 0.001682249300517. CenterHQEP returned

λc = −1.150979047272038.

3.5 Implementing The Bisection Method for the HQEP

Now the Bisect algorithm can be modified for the HQEP case. The new

algorithm will be called BisectHQEP. It will begin by calling CenterHQEP to find

λc for a Q(λ). If λc is contained in the interval then the interval will be initially

partitioned by λc. Once that step is done, the procedure should behave more or less

like Bisect.
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Algorithm 3.6 Return the approximated quadratic eigenvalues of an HQEP using

Bisection Method
Given a symmetric matrices A, B, C representing an HQEP, the procedure will return

all its eigenvalues in the interval (a, b) as a vector Eig in a descending order.
1: function BisectHQEP(A,B,C, a, b)

2: Declare stack Interval

3: Declare queue Eig

4: λc ← CenterHQEP(A,B,C)

5: if a > λc and b < λc then

6: put (a, λc) into Interval

7: put (λc, b) into Interval

8: else

9: put (a, b) into Interval

10: end if

11: while Interval not empty do

12: (a, b)← pop from Interval

13: m← |NegcountHQEP(A,B,C, a)− NegcountHQEP(A,B,C, b)|

14: if m > 1 or (m = 1 and b− a > tol ∗
∣∣a+b

2

∣∣) then

15: put (a, a+b
2

) into Interval

16: put (a+b
2
, b) into Interval

17: else if m = 1 and b− a < tol ∗
∣∣a+b

2

∣∣ then

18: put (a+b
2

) into Eig

19: end if

20: end while

21: return Eig

22: end function
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Example 3.5.1. Consider the HQEP with

A = In, B =



20 −10

−10 30
. . .

. . . . . . . . .

. . . 30 −10

−10 20


n×n

, C =



15 −5

−5 15
. . .

. . . . . . . . .

. . . 15 −5

−5 15


n×n

.

We will set tol = 1.0e − 014 and run BisectHQEP with different values of n and

measure the runtime sensitivity as n grows.

Figure 3.5. BisectHQEP Runtime Plot.
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The fitted curve in Figure 3.5 is

T (n) = (1.647× 10−07)n4 − (1.638× 10−05)n3 + (0.004543)n2 − (0.01681)n+ 0.1399.

(3.9)

T (n): the runtime of BisectHQEP acts quadratically for small n while for very large

n has a cost of O(n4). The reason that BisectHQEP is so time expensive is because

of the procedure NegcountHQEP which cost O(n3) and has to be executed an order of

n times.

Our goal is to apply BisectHQEP to large HQEP as in Example 3.5.1. For

n = 1000 the runtime estimate using T (n) would be

T (1000) ≈ 1.5× 105 seconds ≈ 42 hours, (3.10)

for n = 10000, the algorithm will take around 53 years to finish. These are unac-

ceptable time costs as n = 1000 and larger are very common in HQEPs. It is hard

to make a dense HQEP tridiagonal but as in Example 3.5.1, the HQEP is already

tri-diagonal and hence we may be able to take advantage of the banded structure to

reduce the cost of NegcountHQEP.
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CHAPTER 4

Bisection Method for Banded HQEP

In this chapter, we will develop a negative inertia procedure that will take

advantage of the banded structure of the banded HQEP by beginning with the tri-

diagonal HQEP. The negative inertia algorithm for the tri-diagonal to be introduced is

based on Algorithm 3.2 which was shown to be stable without any pivoting in Lemma

5.3 in [3]. Then we will extend the same logic to the banded HQEPs beginning with

the penta-diagonal HQEPs and analyse its efficiency and stability.

4.1 The Tri-diagonal HQEP

4.1.1 Fast Inertia Calculation

We can write the tri-diagonal HQEP as a tridiagonal matrix polynomial:

Q(λ) =



g1(λ) h1(λ)

h1(λ) g2(λ)
. . .

. . . . . . . . .

. . . gn−1(λ) hn−1(λ)

hn−1(λ) gn(λ)


, (4.1)

where

gi(λ) = A(i,i)λ
2 +B(i,i)λ+ C(i,i),

hi(λ) = A(i+1,i)λ
2 +B(i+1,i)λ+ C(i+1,i).
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Then

Q(λ) = L(λ)D(λ)L(λ)T = L(λ)



d1(λ)

d2(λ)

. . .

dn(λ)


L(λ)T , (4.2)

where

d1(λ) = g1(λ),

di(λ) = gi(λ)− hi−1(λ)2

di−1(λ)
, i = 2, ..., n. (4.3)

Now the new negative inertia counter procedure NegcountTHQEP will be O(n)

in time, making the whole bisection algorithm cost O(n2). The new CenterTHQEP

and BisectTHQEP algorithms are exactly the same as the original ones except they

will call NegcountTHQEP instead of NegcountHQEP for the inertia calculation.
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Algorithm 4.1 Return the number of negative eigenvalues of a tri-diagonal Q(λ) for

a specific λ
.
1: function NegcountTHQEP(A,B,C, λ)

2: num← 0

3: d← (A(i,i)λ+B(i,i))λ+ C(i,i)

4: if d < 0 then

5: num← num+ 1

6: end if

7: for i = 2 to n do

8: h← (A(i,i−1)λ+B(i,i−1))λ+ C(i,i−1)

9: g ← (A(i,i)λ+B(i,i))λ+ C(i,i)

10: d← g − h2

d

11: if d < 0 then

12: num← num+ 1

13: end if

14: end for

15: return num

16: end function

4.1.2 A Numerical Example

Example 4.1.1. In this example we will see that BisectTHQEP will have a cost

of O(n2) flops. Consider the tri-diagonal HQEP from Example 3.5.1. We set

tol = 1.0e − 014 and run BisectTHQEP with different values of n to test for time

cost.
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Figure 4.1. BisectTHQEP Runtime Plot for Large Tri-diagonal HQEP.

The fitted curve in Figure 4.1 is

T (n) = (4.66× 10−05)n2 − (0.02363)n+ 4.219. (4.4)

4.1.3 Stability Analysis

Algorithm 4.2.1 basically computes the inertia of the symmetric tri-diagonal

matrix Q(λ) for a fixed value of λ by computing the diagonal entries of the diagonal

matrix D in the LDLT decomposition. In the process the algorithm counts the

number of negative entries of the diagonal of D to determine the negative inertia

of the symmetric matrix Q(λ). The concern here is about the error that may be

54



embedded in the entries of D and hence changing the sign of one or more entries

making the inertia calculation inaccurate. Therefore, some kind of pivoting may be

needed to compute the LDLT decomposition which is based on Gaussian Elimination.

Algorithm 4.2.1 is almost identical to algorithm 3.2 that was shown to be stable

without pivoting in Lemma 5.3 [3]. The other concern may be of computing the

entries of the symmetric matrix Q(λ) given a fixed value of λ in Algorithm 4.2.1 in

lines 3, 8,and 9. If we use Horner’s algorithm to compute the required values of gi(λ)

and hi(λ) then the overall method will be backward stable [20].

4.1.4 Cost Analysis

A single call of NegcountTHQEP will cost 11n flops and hence to find k quadratic

eigenvalues using BisectTHQEP we will needO(kn) flops. BisectTHQEP will costO(n2)

flops to find all the quadratic eigenvalues vs O(n4) of the original bisection algorithm

BisectHQEP using NegcountHQEP. In the case of memory requirement, the tri-diagonal

matrices of the underlying Q(λ) can be stored in (3(2(n − 1) + 1)) ≈ 6n memory

locations and 2n memory locations to store the computed quadratic eigenvalues.

4.1.5 Convergence

If the QEP is hyperbolic and the gap between the primary and the secondary

quadratic eigenvalues is large enough, then CenterTHQEP will converge and will find

a value in the gap of the HQEP as was seen in Example 3.4.1. Otherwise, either the

QEP is not hyperbolic or has a very low degree of hyperbolicity. BisectTHQEP will

always return all the quadratic eigenvalues of an HQEP within some interval. In

case that two or more quadratic eigenvalues are so close and hence they fall inside

a partition with length less than the tolerance ε then the algorithm will return all

the quadratic eigenvalues approximated in a uniform distribution fashion within the
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partition on hand. The convergence of BisectTHQEP to a quadratic eigenvalue is

linear. To accelerate convergence we may use the Newton’s method and the roots of

the characteristic polynomial as in [19].

4.1.6 Quadratic Eigenvectors and Residuals

Once a quadratic eigenvalue λ is computed then we can find the associated

quadratic eigenvector x by solving the following equation for x using the null

procedure of Matlab which returns the non-zero kernel of a matrix,

Q(λ)x = 0.

If λ is a computed quadratic eigenvalue and x is the computed quadratic

eigenvector then the relative residual

R(λ) =
‖(λ2A+ λB + C)x‖

(λ2 ‖A‖+ |λ| ‖B‖+ ‖C‖) ‖x‖

can be used to measure the quality of the approximate quadratic eigenpair (λ, x). In

case that λ and x are exact, we should get a residual zero but as long as the residual

is small, we can accept the eigenpair as a good approximation. The closer the residual

is to zero the better the approximate eigenpair. Now we will compare the residuals

for the calculated quadratic eigenpairs using BisectTHQEP, Matlab’s Polyeig, and

the Solvent approach procedure ReturnSolvent from Section 2.6.2 for the HQEP in

Example 3.5.1 for n = 100 (see Figure 4.2).
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Figure 4.2. Comparison of Relative Residual for a tri-diagonal HQEP solved by
BisectTHQEP, Polyeig, and ReturnSolvent.

The implemented bisection algorithm is about 6 bits more accurate than

Matlab’s Polyeig while more accurate by about 3 bits compared to the solvent

approach. This difference in accuracy is more visible if the size of the problem gets

bigger as will be seen later. Looking at the right of Figure 4.2, as the eigenvalues

get very close in value, the bisection method shows even more superiority over the

compared approaches.
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4.2 The Penta-diagonal HQEP

Now that we have a procedure to compute the quadratic eigenvalues of a tri-

diagonal HQEP for Q(λ) = Aλ2 +Bλ+ C, we will take the next step in developing

our solution for penta-diagonal HQEPs and further.

4.2.1 Fast Inertia Calculation

In the case of Penta-diagonal HQEP, the bisection procedure won’t change.

We only need to adapt the inertia calculation to take into consideration the extra

diagonals in the problem. Now consider the penta-diagonal symmetric matrix



a1 b1 c1 0 · · · 0

b1 a2 b2 c2
. . .

...

c1 b2 a3 b3
. . . 0

0 c2 b3 a4
. . . cn−2

...
. . . . . . . . . . . . bn−1

0 · · · 0 cn−2 bn−1 an


= LDLT

where

L =



1 0 0 0 · · · 0

l1 1 0 0
. . .

...

m1 l2 1 0
. . . 0

0 m2 l3 1
. . . 0

...
. . . . . . . . . . . . 0

0 · · · 0 mn−2 ln−1 1


, and D = diag(d1, d2, · · · , dn).

So we get

d1 = a1

d2 = a2 − d1l21
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...

di = ai −
c2i−2
di−1

− di−1l2i−1, i = 3, · · · , n, (4.5)

where

l1 =
b1
d1

...

li =
bi − li−1ci−2

di
, i = 2, · · · , n− 1.

Define

ai = A(i,i)λ
2 +B(i,i)λ+ C(i,i),

bi = A(i+1,i)λ
2 +B(i+1,i)λ+ C(i+1,i),

ci = A(i+2,i)λ
2 +B(i+2,i)λ+ C(i+2,i).

Now we can implement the procedure NegcountPentaHQEP to compute the

inertia of Q(λ).
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Algorithm 4.2 Return the number of negative eigenvalues of a penta-diagonal Q(λ)

for a specific λ

1: function BisectPentaHQEP(A,B,C, λ)

2: num← 0

3: ai := (A(i,i)λ+B(i,i))λ+ C(i,i)

4: bi := (A(i+1,i)λ+B(i+1,i))λ+ C(i+1,i)

5: ci := (A(i+2,i)λ+B(i+2,i))λ+ C(i+2,i)

6: d1 ← a1

7: if d1 < 0 then

8: num← num+ 1

9: end if

10: l1 = b1
d1

11: d2 = a2 − d2L(1)2

12: if d2 < 0 then

13: num← num+ 1

14: end if

15: for i = 3 to n do

16: li−1 = bi−1−li−2ci−2

di−1

17: di = ai −
c2i−2

di−2
− di−1l2i−1

18: if di < 0 then

19: num← num+ 1

20: end if

21: end for

22: return num

23: end function
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4.2.2 A Numerical Example

Example 4.2.1. Consider a penta-diagonal HQEP with n = 100

A = In, B =



20 −10 −3

−10 30
. . . . . .

−3
. . . . . . . . . −3

. . . . . . 30 −10

−3 −10 20


n×n

, C =



15 −5 −1

−5 15
. . . . . .

−1
. . . . . . . . . −1

. . . . . . 15 −5

−1 −5 15


n×n

.

We will compute the relative residual of the bisection procedure BisectPen-

taHQEP compared to the other two algorithms as in Figure 4.3.
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Figure 4.3. Comparison of Relative Residual for a Penta-diagonal HQEP solved by
BisectTHQEP, Polyeig, and ReturnSolvent.

4.2.3 Stability Analysis

We saw in Section 4.1.3 that calculating the inertia of a tri-diagonal symmetric

matrix is backward stable even without any pivoting. In the case of the Penta-diagonal,

we can’t make such claim and hence calculating the LDLT decomposition using (4.6)

without pivoting may be unstable. The issue with pivoting is that it doesn’t conserve

the congruency and therefore changes the inertia of the matrix. In [21], a method
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was introduced to apply pivoting while conserving congruency at the same time as

follow. If M is a symmetric matrix and Π is a permutation matrix then we get

ΠMΠT =

E CT

C B

 =

 Is 0

CE−1 In−s


E 0

0 B − CE−1CT


︸ ︷︷ ︸

M̂

 Is 0

CE−1 In−s


T

,

where the inertia of M̂ and M are the same by Theorem 2.2.1, and the matrix E

is 1 × 1 or 2 × 2. The choice of the permutation matrix Π depends on the rows

and columns to be permuted according to the pivot location, size, and the pivoting

technique to be used. Although calculating the inertia of M̂ is stable compared to

calculating the inertia of M directly, the permutation doesn’t conserve the banded

structure of M . If the matrix M is penta-diagonal then there is no guarantee that

the matrix B − CE−1CT is still penta-diagonal.

Since calculating the LDLT decomposition of the tri-diagonal matrix and hence

inertia is inherently stable even without any pivoting, reducing the penta-diagonal

matrix to a tri-diagonal in a stable algorithm and then computing the inertia of the

resulting matrix will make the procedure overall stable. In the next chapter we will

implement such approach for the penta-diagonal matrix and the banded matrix, in

general.
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CHAPTER 5

Bisection for the Banded HQEP by Tridiagonalization

Applying (4.6) to a penta-diagonal HQEP to calculate the negative inertia is

unstable without some pivoting, but pivoting will destroy the banded structure of the

problem and with it the advantage of the bisection procedure that we implemented in

this study. Another approach was suggested in Schwarz [22], and that to reduce the

band of a banded matrix to a tri-diagonal matrix. Once this is done then we can use

the tri-diagonal negative inertia calculation Algorithm 4.2.1 to compute the inertia.

The reduction must have these characteristics to be a viable solution to the problem,

namely:

1. Must conserve congruency.

2. Must be stable.

3. Must be efficient.

5.1 The Givens Rotations

We will begin by applying tridaigonalization to the penta-diagonal case. Later

in the section we will introduce an algorithm for the general banded case. The

tridaigonalization will be implemented using the Givens rotation.

Givens Rotations are used in the triangularization process where a symmetric

matrix is reduced to an upper triangular matrix to compute the QR-factorization.

They are also used in the tridiagonalization of a symmetric matrix to a tri-diagonal

form for the purpose of computing the eigenvalues using the QR algorithm. The

purpose of Givens rotations are to annihilate elements in the outer bands of the
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matrix beginning from the outermost band and working inward until it annihilates

all bands except the first, leaving the matrix in a tri-diagonal form [22].

A single Givens rotation consists of a similarity transformation:

M̂ = UTMU, (5.1)

where M is a symmetric matrix and U is an orthogonal matrix different from the

identity matrix in the elements

upp = uqq = cos θ, upq = −uqp = sin θ,

and θ is the angle of rotation in the pq-plane.

Example 5.1.1. Consider the symmetric matrix M ∈ R3×3 which happens also to

be penta-diagonal

M =


2 3 4

3 5 6

4 6 7

 .
To eliminate the elements M1,3 = M3,1 = 4, we need to have

M1,3 cos θ +M1,2 sin θ = 0,

giving

θ = tan−1(−M1,3

M1,2

),

giving

cos θ =
−M1,3

r
, sin θ =

M1,2

r
,

where r =
√
M2

1,3 +M2
1,2. Therefore we get

U =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 =


1 0 0

0 0.4160 −0.5547

0 0.5547 0.4160
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and

M̂ = UTMU =


2 3.4669 0

3.4669 5.7885 −0.3462

0 −0.3462 −0.0192

 .
In the previous example, to eliminate the elements M1,3(M3,1) we chose p = 2

and q = 3. In general to eliminate the elements Mi,j(Mj,i) with j > i, we choose

p = j − 1 and q = j. Note that the only rows (columns) that changed are the 2nd

and the 3rd, while the element M1,1 retained its value. In general, the transformation

(5.1) changes only the rows (columns) of M with the indices p and q, while leaving the

other elements unchanged. In the case that the matrix is large enough (for example if

the matrix is penta-diagonal with size n ≥ 5) the transformation (5.1) will introduce

non-zero elements outside the band in locations where elements were initially zero.

Example 5.1.2. Consider the penta-diagonal matrix M ∈ R5×5

M =



2 3 4 0 0

3 5 6 7 0

4 6 7 8 1

0 7 8 3 9

0 0 1 9 6


.

To eliminate the elements M1,3(M3,1) we form the rotation matrix

U =



1 0 0 0 0

0 0.4160 −0.5547 0 0

0 0.5547 0.4160 0 0

0 0 0 1 0

0 0 0 0 1


,
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and get

M̂ = UTMU =



2 3.4669 0 0 0

3.4669 5.7885 −0.3462 7.3498 0.5547

0 −0.3462 −0.0192 −0.5547 0.4160

0 7.3498 −0.5547 3 9

0 0.5547 0.4160 9 1


.

The transformation did indeed eliminate M1,3(M3,1) but in the process it changed M2,5

and symmetrically M5,2 to a nonzero value outside the 2nd band, as can be seen in

M̂2,5 = M̂5,2 = 0.5547, and hence another rotation is needed to eliminate M̂2,5(M̂5,2).

In general, the transformation while eliminating the elements Mi,j(Mj,i) with

j = i + 2 on the 2nd band of the penta-diagonal matrix, will change the elements

Mj−1,j+2(Mj+2,j−1) to a nonzero value, assuming j + 2 ≤ n. The same happened in

Example 5.1.1 except that the elements lied outside the matrix.

The whole process of transforming a penta-diagonal matrix into tri-diagonal

will begin by eliminating the first element in the 2nd band symmetrically and then

with additional rotations subsequent non-zero elements which appear outside the

band will be eliminated, until the nonzero value is beyond the border of the matrix.

Then the process will do the same for the 2nd element then the 3rd, until all the

elements outside the 2nd band are eliminated (see Figure 5.1).
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Figure 5.1. Tridiagonalization of a Penta-diagonal Matrix.

The Givens rotation doesn’t only conserve congruency. In fact it is a similarity

transformation that also conserve the matrix spectrum (spectrum of M̂ is identical

to the spectrum of M). Therefore the tri-diagonal matrix formed from a sequence of

transformations of a penta-diagonal matrix using Givens rotations is not only having

the same inertia as the original penta-diagonal matrix, but it also have identical set

of eigenvalues. In addition, the Givens rotation is an orthogonal transformation and

applying a sequence of orthogonal transformations is known to be backward stable

according to Theorem 3.5 in [3]. For a penta-diagonal symmetric matrix with size n,

we have n− 2 entries in the 2nd band (one on each side of the symmetry) that we

need to eliminate. For each element to eliminate we need O(n) rotations which make

the overall cost of transforming a penta-diagonal into tri-diagonal cost O(n2).
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5.1.1 BandSymmToTriArr

Here we will extend the idea of tridiagonalization into band reduction for any

banded symmetric matrix and even a dense symmetric matrix. BandSymmToTriArr

will take the symmetry and the banded structure into consideration when storing the

matrix, and when performing the calculations implicitly. We will store the entries of a

banded symmetric matrix of k bands in an array storing only the diagonal and the k

bands as columns, therefore saving the storage requirement from n2 memory locations

for a matrix of size n into kn memory locations only. The procedure will perform the

calculations implicitly on the array and hence saving unnecessary memory storage

and access operations.

Example 5.1.3. In this example we will illustrate storing a penta-diagonal symmetric

matrix,

M =



2 3 4 0 0

3 5 6 7 0

4 6 7 8 1

0 7 8 3 9

0 0 1 9 6


−→ Arr =



2 3 4

5 6 7

7 8 1

3 9 0

6 0 0


.

BandSymmToTriArr will take the symmetric banded matrix as an array (Arr)

as in Example 5.1.3, the size of the matrix (Size) and the band size (BandSize).

For example a tridiagonal matrix will have BandSize = 1, penta-diagonal will have

BandSize = 2, and so on. Note that

0 ≤ BandSize ≤ Size− 1,

and the matrix is diagonal if BandSize = 0, and dense if BandSize = Size − 1.

The output will be an array (Arr) of size (Size× (BandSize+ 1)) representing the

banded matrix. The procedure to be presented here is due to [22]. We will present it
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here for reference purposes only. No changes were made to the procedure except that

the indexing in the original procedure began with 0 for referencing the columns of

the array, our procedure here will adjust the indexing to begin with 1.

Algorithm 5.1 Tridiagonalizing a Symmetric Banded Matrix

1: function BandSymmToTriArr(Arr, Size, BandSize)

2: g ← 0

3: for k = 1 to Size− 2 do

4: maxr ← min(Size− k,BandSize);

5: for r = maxr to 2 step -1 do

6: for j = k + r to Size step BandSize do

7: if j = k + r then

8: if Arr(k, r) = 0 then

9: break

10: end if

11: b← −Arr(k, r)/Arr(k, r + 1)

12: ugl← k

13: else

14: if g == 0 then

15: break

16: end if

17: b← Arr(j −BandSize− 1, BandSize+ 1)/g

18: ugl← j −BandSize

19: end if
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20: s← 1/
√

1 + b2

21: c← b ∗ s

22: c2← c2

23: s2← s2

24: cs← c ∗ s

25: u← c2 ∗ Arr(j − 1, 1)− 2 ∗ cs ∗ Arr(j − 1, 2) + s2 ∗ Arr(j, 1)

26: u1← s2 ∗ Arr(j − 1, 1) + 2 ∗ cs ∗ Arr(j − 1, 2) + c2 ∗ Arr(j, 1)

27: Arr(j−1, 2)← cs∗(Arr(j−1, 1)−Arr(j, 1))+(c2−s2)∗Arr(j−1, 2)

28: Arr(j − 1, 1)← u

29: Arr(j, 1)← u1

30: for l = ugl to j − 2 do

31: u← c ∗ Arr(l, j − l)− s ∗ Arr(l, j − l + 1)

32: Arr(l, j − l + 1)← s ∗ Arr(l, j − l) + c ∗ Arr(l, j − l + 1)

33: Arr(l, j − l)← u;

34: end for

35: if j 6= k + r then

36: Arr(j −BandSize− 1, BandSize+ 1)

37: ← c ∗ Arr(j −BandSize− 1, BandSize+ 1)− s ∗ g

38: end if
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39: maxl← min(Size− j, BandSize− 1)

40: for l = 1 to maxl do

41: u← c ∗ Arr(j − 1, l + 2)− s ∗ Arr(j, l + 1)

42: Arr(j, l + 1)← s ∗ Arr(j − 1, l + 2) + c ∗ Arr(j, l + 1)

43: Arr(j − 1, l + 2)← u

44: end for

45: if j +BandSize ≤ BandSize+ 1 then

46: g ← −s ∗ Arr(j, BandSize+ 1)

47: Arr(j, BandSize+ 1) = c ∗ Arr(j, BandSize+ 1)

48: end if

49: end for

50: end for

51: end for

52: Arr ← Arr(1 : Size, 1 : 2)

53: return Arr

54: end function

5.2 Implementing Bisection for Banded HQEP

Here we introduce the complete solution for approximating the quadratic

eigenvalues for the HQEP using the bisection method. Given three symmetric banded

matrices A,B,C of size n and A � 0, we construct the quadratic matrix polynomial

in λ

Q(λ) = Aλ2 +Bλ+ C.

The procedure that will check for the hyperbolicity CenterBandedHQEP will

simultaneously return a value in the gap of the HQEP (center) that will partition
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the interval of the search into two partitions; the primary partition on the right of

(center) where the n primary quadratic eigenvalues lie and the secondary partition on

the left where the n secondary quadratic eigenvalues lie. The procedure Negcount-

BandedHQEP will return the number of negative eigenvalues of the symmetric matrix

Q(λ) for a given λ, which will be used by the main procedure BisectBandedHQEP to

search for the roots of the eigenvalue curves and hence finding the quadratic eigen-

values. CenterBandedHQEP will also use NegcountBandedHQEP to find the (center).

NegcountBandedHQEP will check if the matrix needs band reduction (BandSize > 1)

by calling BandSymmToTriArr before using an implicit LDLT decomposition on the

matrix array to calculate the number of negative eigenvalues of the matrix. All the

procedures in this solution will be applied to an array version of the matrices A,B,C,

as was seen in Example 5.1.3 to save memory storage and access operations for the

solution. The quadratic eigenvectors will be calculated using Matlab’s procedure

null.

5.2.1 NegcountBandedHQEP

The final version of the negative inertia counter algorithm will be suitable for

any banded HQEP. If the HQEP is not tri-diagonal, the procedure BandSymmToTriArr

will first reduce it to tri-diagonal and return the array back to NegcountBandedHQEP,

otherwise NegcountBandedHQEP will calculate the number of negative eigenvalues right

away. It will be using array versions of A,B,C and will calculate the matrix Q(λ) as an

array as well. The process of tridiagonalization will cost O(kn2) where k = BandSize,

while calculating the number of negative eigenvalues will cost O(n), overall the calling

of NegcountBandedHQEP will cost at most O(n2) if k � n. NegcountBandedHQEP

will accept as inputs the matrices A,B,C as arrays, λ, the size of the matrix (Size)

and the band size (BandSize).
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Algorithm 5.2 Return the number of negative eigenvalues of a Banded Q(λ)

1: function NegcountBandedHQEP(Aarr, Barr, Carr, λ, Size, BandSize)

2: Qarr ← (Aarr ∗ λ+Barr) ∗ λ+ Carr

3: if BandSize > 1 then

4: Qarr ← BandSymmToTriArr(Qarr, Size, BandSize)

5: end if

6: num← 0

7: d← Qarr(1, 1)

8: if d < 0 then

9: num← num+ 1

10: end if

11: for i = 2 to Size do

12: d← Qarr(i, 1)− Qarr(i−1,2)2
d

13: if d < 0 then

14: num← num+ 1

15: end if

16: end for

17: return num

18: end function

5.2.2 CenterBandedHQEP

The procedure CenterBandedHQEP is of great importance in this work. It

checks for the hyperbolicity of a QEP which is not a straightforward task as was

seen in Section 2.4. CenterBandedHQEP uses the concept of levels to narrow the

search intervals using bisection until a value λ is found such that Q(λ) ≺ 0. If
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CenterBandedHQEP converges to such λ then the QEP is actually an HQEP and the

hyperbolicity condition was met. It also returns that λ value to the main bisection

procedure to partition the interval of search into 2 partitions, namely the primary and

the secondary partitions. In each partition the procedure NegcountBandedHQEP will

be monotonic as was seen in Section 3.3. CenterBandedHQEP will accept as inputs

the matrices A,B,C as arrays, the beginning of the search interval (a), the end of

the search interval (b), the size of the matrix (Size) and the band size (BandSize).

a and b will be chosen using Observation 3.4.2, and will be passed on from the main

bisection procedure. For CenterBandedHQEP to be effective in detecting hyperbolicity,

we must have a stop mechanism to stop the procedure before the partitions gets too

small and further partitioning won’t be successful. If the partition size is too small

then the machine will treat a and b as the same number and NegcountBandedHQEP

may enter an infinite loop. We know that after n bisections the partition size will

reach a length of b−a
2n

. Therefore the maximum number of partitions should not exceed

MaxCounter =

⌊
log2

b− a
minPartSize

⌋
,

where minPartSize is the minimum partition size that terminates NegcountBanded-

HQEP if a value in the gap in not found prior to that. From Example 3.4.1, CenterHQEP

didn’t converge for partitions smaller than 0.001682249300517 ≈ 0.0017 even if the

problem was an HQEP. We will use minPartSize = 0.0017 in our numerical example

as a convenient minimum partition size.

Finally, CenterBandedHQEP will be modified to simulate the stack mechanism

used in procedure CenterHQEP, to decrease memory space and computation require-

ments.
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Algorithm 5.3 Check for hyperbolicity and return the center of an HQEP

1: function CenterBandedHQEP(Aarr, Barr, Carr, a, b, Size, BandSize)

2: Select minPartSize

3: Na ← NegcountBandedHQEP(Aarr, Barr, Carr, a, Size, BandSize)

4: if Na = Size then

5: return a

6: end if

7: Nb ← NegcountBandedHQEP(Aarr, Barr, Carr, b, Size, BandSize)

8: if Nb = Size then

9: return b

10: end if

11: Level← max(Na, Nb)

12: Declare Interval (2× 2) Array

13: Imarker ← 0

14: Imarker ← Imarker + 1

15: MaxCounter ←
⌊
log2

b−a
minPartSize

⌋
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16: for i = 1 to MaxCounter do

17: for index = Imarker to 1 step −1 do

18: a← Interval(1, index)

19: b← Interval(2, index)

20: Nmid ← NegcountBandedHQEP(Aarr, Barr, Carr,
a+b
2
, Size, BandSize)

21: if Nmid = Size then

22: return a+b
2

23: end if

24: if Nmid > Level then

25: Imarker ← 0

26: Level← Nmid

27: end if

28: Imarker ← Imarker + 1

29: Interval(:, Imarker)← [a a+b
2

]

30: Imarker ← Imarker + 1

31: Interval(:, Imarker)← [a+b
2
b]

32: end for

33: end for

34: Print ’Not hyperbolic or weakly hyperbolic’

35: Return NaN

36: end function

5.2.3 BisectBandedHQEP

The final version of the main bisection procedure BisectBandedHQEP accepts

as inputs the matrices A,B,C, the beginning of the interval of the search (a), the
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ending of the interval of the search (b), the search tolerance which dictate how small a

partition may get (tol), the size of the problem (Size) and the band size (BandSize).

This version is modified from the previous version BisectHQEP by simulating the

stack mechanism to decrease memory space and computation requirements. The

procedure begins by converting all the matrices into array form using algorithm

MatToArr. BisectBandedHQEP will call CenterBandedHQEP to find the center of the

HQEP, if the center is included in the interval [a, b], then it will partition it into two

partitions namely [a, center] and [center, b] and add these two partition into the stack

of partitions Interval, otherwise it will add [a, b] to the stack Interval. The number

of quadratic eigenvalues in a partition will be equal to the absolute difference in the

output of the procedure NegcountBandedHQEP at the beginning and the ending of a

partition [line 25]. It will keep discarding any partitions where there are no quadratic

eigenvalues, and keep partitioning the remaining partitions until we get up to 2 ∗Size

partitions of length within tol and each partition has at least one quadratic eigenvalue.

In case that a partition is within tolerance and hence no further partitioning can be

made and at the same time the number of quadratic eigenvalues are greater than one,

the algorithm will return approximated quadratic eigenvalues within the partition by

dividing the partition length and returning the approximated quadratic eigenvalues

in a uniform distribution fashion [line 31].
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Algorithm 5.4 Return the approximated quadratic eigenvalues of a Banded HQEP

using Bisection Method

Given symmetric matrices A, B, C representing an HQEP, the procedure will return

all its eigenvalues in the interval (a, b) as a vector Eig in a descending order.
1: function BisectBandedHQEP(A,B,C, a, b, tol, Size, BandSize)

2: wmin ← smallest eigenvalue of the pencil 2Aλ+B

3: wmax ← largest eigenvalue of the pencil 2Aλ+B

4: Aarr ← MatToArr(A,BandSize)

5: Barr ← MatToArr(B,BandSize)

6: Carr ← MatToArr(C,BandSize)

7: center ← CenterBandedHQEP(Aarr, Barr, Carr, wmin, wmax, Size, BandSize)

8: Declare Interval (2× 2 ∗ Size) Array

9: Declare Eig (2 ∗ Size) Vector

10: Imarker ← 0

11: Emarker ← 0

12: if a < center and center < b then

13: Imarker ← Imarker + 1

14: Interval(:, Imarker)← [a center]

15: Imarker ← Imarker + 1

16: Interval(:, Imarker)← [center b]

17: else

18: Imarker ← Imarker + 1

19: Interval(:, Imarker)← [a b]

20: end if
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21: while Imarker > 0 do

22: a← Interval(1, Imarker)

23: b← Interval(2, Imarker)

24: Imarker ← Imarker + 1

25: m← NegcountBandedHQEP(Aarr, Barr, Carr, a, Size, BandSize)

−NegcountBandedHQEP(Aarr, Barr, Carr, b, Size, BandSize)

26: m← |m|

27: if m 6= 0 then

28: if b− a < tol ∗
∣∣a+b

2

∣∣ then

29: for j = 1 to m do

30: Emarker ← Emarker + 1

31: Eig(Emarker)← a+ j ∗ b−a
c+1

32: end for

33: else

34: Imarker ← Imarker + 1

35: Interval(:, Imarker)← [a a+b
2

]

36: Imarker ← Imarker + 1

37: Interval(:, Imarker)← [a+b
2
b]

38: end if

39: end if

40: end while

41: return Eig

42: end function

80



Although BisectBandedHQEP expects (Size) and (BandSize) as inputs, the

procedure can be modified to compute these values at the beginning of the algorithm.

Size can be computed using Matlab’s size function as follows,

Size←size(A, 1)

while BandSize can also be computed using,

Bands← [returnBandSize(A) returnBandSize(B) returnBandSize(C)]

BandSize← max(Bands);

and the algorithm

Algorithm 5.5 Return the band size of a symmetric matrix M

1: function returnBandSize(M)

2: Size←size(M, 1)

3: for j = 1 to Size− 1 do

4: if norm(diag(M, j − 1), 1) < ε then

5: Break

6: end if

7: end for

8: Return j − 2

9: end function

Now we will introduce the algorithm MatToArr

81



Algorithm 5.6 Return the array form of a symmetric matrix M

1: function MatToArr(M,BandSize)

2: Size←size(M, 1)

3: Declare Arr (Size× (BandSize+ 1)) Array

4: for j = 1 to BandSize+ 1 do

5: Arr(1 : Size− j + 1, j)←diag(M, j − 1)

6: end for

7: Return Arr

8: end function

5.3 Numerical Examples

If (λ, x) is a computed quadratic eigenpair of the HQEP then the relative

residual

R(λ) =
‖(λ2A+ λB + C)x‖

(λ2 ‖A‖+ |λ| ‖B‖+ ‖C‖) ‖x‖
.

In this section we will compare the residuals for the calculated quadratic

eigenpairs using BisectBandedTHQEP, Matlab’s Polyeig, and the Solvent approach

procedure ReturnSolvent on HQEPs of different sizes to study the effect of size on

the residual of different approaches and specially BisectBandedTHQEP. The band

structure of the introduced HQEPs will vary from tri-diagonal and up, and the purpose

is to study the effect of introducing more bands on the residual. The HQEPs will

be produced randomly such that the entries of the symmetric A,B,C are uniformly

distributed random numbers in the interval (0, 1) using Matlab’s rand procedure.

We will make sure that A,B,C will form an HQEP according to Definition 1.1.1 by

performing eigenvalue shifts on them such that A is positive definite and the sufficient

condition (2.7) is met.
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5.3.1 Banded HQEPs of size 100
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5.3.2 Banded HQEPs of size 1000
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As can be seen the bisection approach is more accurate and stable for large

banded HQEPs even if when the number of bands is growing.

5.3.3 Banded HQEPs of size 2000

In this case we only plot the residual of BisectBandedTHQEP since the size of

the problem prevented the other 2 approaches from executing due to lack of computer

memory. We are trying to show here that due to the procedure’s conservation of

memory requirements, it can solve large banded HQEPs where the other approaches

may fail to execute, and the solutions are still accurate. In fact the residual doesn’t

grow as the size of the problem grows.

88



89



CHAPTER 6

Conclusion

We have shown in this study that the bisection method has many advantages over

the other approaches in solving hyperbolic quadratic eigenvalue problems especially

when the problem is banded. The bisection approach is more accurate and stable

when it comes to the size of the problem and the number of bands in the banded

HQEPs. It requires less memory storage to produce the approximated quadratic

eigenvalues. The method worked on the problem directly and without introducing

a linear pencil with double size. The method can be easily parallelized for parallel

computing.
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