
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

Mathematics Dissertations Department of Mathematics

2023

A Novel Regularized Orthonormalized Partial Least Squares A Novel Regularized Orthonormalized Partial Least Squares

Model for Multi-view Learning Model for Multi-view Learning

Ce Bian

Follow this and additional works at: https://mavmatrix.uta.edu/math_dissertations

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Bian, Ce, "A Novel Regularized Orthonormalized Partial Least Squares Model for Multi-view Learning"
(2023). Mathematics Dissertations. 192.
https://mavmatrix.uta.edu/math_dissertations/192

This Dissertation is brought to you for free and open access by the Department of Mathematics at MavMatrix. It
has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/math_dissertations
https://mavmatrix.uta.edu/math
https://mavmatrix.uta.edu/math_dissertations?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/math_dissertations/192?utm_source=mavmatrix.uta.edu%2Fmath_dissertations%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

A Novel Regularized Orthonormalized Partial Least Squares Model for Multi-view

Learning

by

CE BIAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023

Copyright © by Ce Bian 2023

All Rights Reserved

To my parents Hong Gao and Lisheng Bian,

and all of my friends,

who give me a happy life.

Acknowledgement

First of all, I would like to thank my supervising professors Dr. Li Wang and

Dr. Ren-Cang Li for constantly advising and encouraging me. Their invaluable

advice, deep expertise in various computer science sub-domains and huge breadth in

data science as a whole has proved to be extremely helpful during the entire course

of my graduate studies. I wish to thank my thesis committee members Dr. Shan

Sun-Mitchell and Dr. Dengdeng Yu for their interest in my research and for taking

time to be in my thesis committee.

I would also like to extend my appreciation to the mathematics department at

UT Arlington for providing financial support for my studies and a stimulating work-

ing environment for continuing my research on many topics I have been interested

in. I am especially grateful to Dr. Mei Yang for her interest in my research and for

the helpful discussions and invaluable comments. I wish also to thank my cousin

Dr. Yajing Bian for taking the time to critically evaluate this manuscript and my

research papers.

I am grateful to all the professors who taught me during the years I spent as

a graduate student.

Finally, I would like to express my deep gratitude to my parents who have

encouraged me and also sponsored my graduate studies.

August 10th, 2023

iv

Abstract

A Novel Regularized Orthonormalized Partial Least Squares Model for Multi-view

Learning

Ce Bian, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professors: Dr. Li Wang, and Dr. Ren-Cang Li

Over the past few years, the size of data dimensions or features has been

increasing in various fields of science and engineering, owing to the rapid pace of

data collection and the development of more advanced storage methods. To han-

dle high-dimensional data, dimensionality reduction is essential before performing

classification or regression tasks to eliminate noisy features. There are several nu-

merical methods available for reducing data dimensionality, such as Canonical Cor-

relation Analysis (CCA), Principal Component Analysis (PCA), and Linear Dis-

criminant Analysis (LDA). While these methods offer valuable approaches to data

dimensionality reduction, they do come with certain limitations. CCA, for instance,

primarily focuses on finding correlations between two sets of variables, which might

not fully capture the complexities of intricate relationships within multidimensional

data. PCA, while excellent at preserving variance, can struggle to emphasize class

separability when applied to classification tasks.

Acknowledging these limitations, this thesis introduces an innovative super-

vised dimensionality reduction algorithm that tackles the reduction of data dimen-

v

sionality and the classification of the data concurrently, simultaneously. Unlike con-

ventional methods, this algorithm embarks on the dual task of revealing the projec-

tion matrix for dimension reduction alongside identifying the classifier hyperplane

for data classification. The result is a model that excels in both accuracy and effi-

ciency, enabled by its simultaneous learning of low-dimensional representation and

classification models.

What distinguishes this proposed model is its versatility. It accommodates

not only the dimensionality reduction and classification of single-view data but also

extends its prowess to multi-view data. Through numerical simulations, the effec-

tiveness and computational efficiency of the proposed model are showcased when

contrasted against state-of-the-art methods in dimensionality reduction and classifi-

cation.

A noteworthy feature of this novel approach is its capacity to generate two clas-

sifiers in tandem. This unique attribute widens its applicability across diverse clas-

sification experiments encompassing a variety of data types. In effect, the method’s

dual-classifier capability amplifies its utility and establishes it as a versatile choice

for tackling complex classification challenges.

Keywords: Dimensionality Reduction, Multi-view Learning, Subspace Learning,

Classification

vi

TABLE OF CONTENTS

Acknowledgement . iv

Abstract . v

List of Figures . ix

List of Tables . xi

List of Algorithms . xii

Chapter Page

1. Introduction . 1

2. Related Works . 3

2.1 Least Squares . 3

2.2 Orthonormalized Partial Least Squares 7

2.3 Support Vector Machines . 10

3. A Novel Regularized OPLS Model for Binary Classification 15

3.1 R-OPLS Binary Classification Model 15

3.2 Algorithm . 17

3.2.1 Initialization . 17

3.2.2 Solving P . 18

3.2.3 Solving α . 21

3.3 Numerical Experiments . 30

3.3.1 Data Information . 30

3.3.2 Iteration of Objective Function 31

3.3.3 Projection Classification and Accuracy 41

3.3.4 Comparison Methods . 48

vii

3.3.5 Visualization . 51

4. A Novel Regularized OPLS Model for Multi-class Classification 55

4.1 R-OPLS Multi-Class Classification Model 55

4.2 Numerical Experiments . 57

4.2.1 Data Information . 57

4.2.2 Multi-class Classification on Input Space 59

4.2.3 4.2.3 Multi-class Classification on Projected Subspace 69

5. A Novel Regularized OPLS Model for Multi-view classification Learning . 95

5.1 R-OPLS Model for Multi-view Classification Learning 95

5.2 Algorithms . 101

5.3 Generalized multi-view R-OPLS framework 104

5.4 Examples of generalized multi-view R-OPLS 106

5.4.1 Multi-view CCA . 106

5.4.2 LDA . 107

5.4.3 Multi-view PCA . 109

5.4.4 MLDA . 109

5.4.5 GMA . 110

5.5 Numerical Experiments . 111

5.5.1 Data Information . 111

5.5.2 Numerical Experiments . 112

6. Conclusion . 123

References . 125

Biographical Statement . 134

viii

List of Figures

Figure Page

2.1 Binary Class Data Sets . 10

2.2 Hyperplanes in SVM . 11

2.3 The Optimal Hyperplane in SVM . 12

3.1 The a2a Data Set with quadprog Solver 33

3.2 The a2a Data Set with PGD Method 35

3.3 The heart Data Set with quadprog Solver 37

3.4 The heart Data Set with PGD Method 38

3.5 The w2a Data Set with quadprog Solver 39

3.6 The w2a Data Set with PGD Method 40

3.7 The Plots of Eigenvalues on a2a Data 43

3.8 The Plots of Eigenvalues on heart Data 46

3.9 The Plots of Eigenvalues on w2a Data 48

3.10 The Classification Accuracy of KNN 50

3.11 The Visualization on 2-D Space . 51

3.12 The Visualization on 3-D Space . 53

4.1 Error Curves on dna Data Set . 61

4.2 Confusion Matrices on dna Data Set 62

4.3 Error Curves with Grown Trees on usps Data 63

4.4 Confusion Matrices on usps Data Set 64

4.5 Error Curves with Grown Trees on protein Data 65

4.6 Confusion Matrices of Random Forests on protein Data 66

ix

4.7 Accuracy of KNN on Input Space . 67

4.8 Iteration Plots on dna Data . 70

4.9 The Plots of Eigenvalues on dna Data 71

4.10 Iteration Plots on usps Data . 73

4.11 The Plots of Eigenvalues on usps Data 73

4.12 Iteration Plots on protein Data . 74

4.13 The Plots of Eigenvalues on protein Data 75

4.14 Visualization . 76

4.15 OVR Method Iteration plots on dna Data 80

4.16 eigenvalue plots on dna Data . 81

4.17 OVR Method Iteration plots on usps Data 83

4.18 eigenvalue plots on usps Data . 84

4.19 OVR Method Iteration plots on protein Data 86

4.20 eigenvalue plots on protein Data . 87

4.21 OVO Method Iteration plots on dna Data 90

4.22 eigenvalue plots on dna Data . 90

4.23 OVO Method Iteration plots on usps Data 91

4.24 eigenvalue plots on usps Data . 92

4.25 OVO Method Iteration plots on protein Data 93

4.26 eigenvalue plots on protein Data . 94

5.1 The plots of OVR with quadprog Solver on mfeat Data Set 114

5.2 The plots of OVR with PGD Method on mfeat Data Set 115

5.3 The plots of OVO with quadprog Solver on mfeat Data Set 116

5.4 The plots of OVO with PGD Method on mfeat Data Set 117

5.5 Eigenvalue plots on mfeat Data . 118

x

List of Tables

Table Page

3.1 Data Information and Tuning Parameters 31

3.2 Accuracy with Selection of k on a2a Data 44

3.3 Classification Accuracy of a2a Data with manopt Solver 45

3.4 Accuracy with selection of k on heart data 47

3.5 Accuracy with Selection of k on w2a Data 47

3.6 Accuracy Comparison . 51

4.1 Data Information . 57

4.2 Summary of Classification Accuracy on Input Space 67

4.3 Accuracy with Selection of k on dna Data 71

4.4 Accuracy with Selection of k on usps Data 74

4.5 Accuracy with Selection of k on protein Data 75

4.6 Accuracy of OVR Multi-Class Classification for dna Data Set 82

4.7 Accuracy of OVR Multi-Class Classification for usps Data Set 85

4.8 Accuracy of OVR Multi-Class Classification for protein Data Set . . . 87

4.9 Accuracy of OVO Multi-Class Classification for dna Data Set 91

4.10 Accuracy of OVO Multi-Class Classification for usps Data Set 93

4.11 Accuracy of OVO Multi-Class Classification for protein Data Set . . 94

5.1 Multi-view Data Information . 112

5.2 OVR method for mfeat Data . 120

5.3 OVO method for mfeat Data . 121

xi

List of Algorithms

3.1 R-OPLS Iteration with GEPS+Quadratic Programming Solver 23

3.2 R-OPLS Iteration with Manopt+Quadratic Programming Solver . . . 23

3.3 R-OPLS Iteration with GEPS+Projected Gradient Descent 28

3.4 R-OPLS Iteration with Manopt+Projected Gradient Descent 29

4.1 One-vs-Rest Multi-classification . 79

4.2 One-vs-One Multi-classification . 89

5.1 Multi-view R-OPLS Iteration with Quadratic Programming Solver . . 103

5.2 Multi-view R-OPLS Iteration with Projected Gradient Descent 104

xii

CHAPTER 1

Introduction

Multi-view learning is an increasingly active research area in machine learning

that involves the use of multiple data schemas or views [46]. These views may be

complementary or redundant, and integrating them can enhance predictive perfor-

mance [70]. There are several established multi-view learning techniques, which have

been extensively employed in diverse fields such as genetics, imaging, chemometrics,

and finance [68, 90]. Recently, orthonormalized partial least squares (OPLS) [39, 79]

has emerged as a promising extension of partial least squares (PLS) [6, 55]. OPLS

improves the interpretability of PLS models by orthogonalizing data variations that

are unrelated to the response variable, thereby facilitates the identification of relevant

features and enhances generalization performance [25, 39, 79].

This thesis introduces a novel multi-view learning approach, Multi-view Regu-

larized Orthonormalized Partial Least Squares (Multi-view R-OPLS), which builds

upon the OPLS methodology. Multi-view R-OPLS is designed to handle multiple

views of data and utilizes complementary information from these views to enhance

predictive performance. To achieve this, Multi-view R-OPLS combines support vec-

tor machine (SVM) [16, 50, 54, 88] to maximize the covariance between the view and

response variables, while orthogonalizes the variation unrelated to the response.

We assess the effectiveness of Multi-view R-OPLS through extensive experi-

ments on several benchmark data sets. We compare its performance with that of

various state-of-the-art dimensionality reduction techniques, such as Canonical Cor-

relation Analysis (CCA) [37], Linear Discriminant Analysis (LDA) [72], Principal

1

Component Analysis (PCA) [31, 68, 74], Multi-view Canonical Correlation Analysis

(MCCA) [56, 76], Multi-view Linear Discriminant Analysis (MLDA) [15, 72], Multi-

view Principal Component Analysis (MPCA) [15, 31], and Generalized Multi-view

Analysis (GMA) [68]. Our experimental findings demonstrate that Multi-view R-

OPLS outperforms these techniques in terms of classification accuracy, particularly

in situations involving complementary or noisy views.

This thesis is structured as follows: in Chapter 2, we present the fundamen-

tal concepts and background knowledge necessary for understanding the proposed

method. In Chapter 3, we provide a comprehensive overview of the Multi-view

R-OPLS framework, including the model formulation, mathematical derivations,

and optimization algorithms. We also discuss the experimental setup for single-

view binary classification data, followed by experimental results on various bench-

mark datasets. Chapter 4 presents the experimental setup for single-view multi-

classification data, followed by experimental results on several benchmark datasets.

In Chapter 5, we set up experiments for multi-view multi-classification data and

present experimental results on various benchmark datasets. Finally, we conclude

the thesis with Chapter 6.

2

CHAPTER 2

Related Works

2.1 Least Squares

In data science research, one of the most common and critical tasks is to

find the optimal solution of a linear or nonlinear regression equation that expresses

the relationship between dependent and independent variables [10]. This process is

essential for quantitative forecasting and understanding trends in results, which is

crucial for making informed decisions based on data analysis [10, 62]. There are many

methods available for regression analysis, including logistic regression [10], random

forest regression [4, 14, 17], and least squares [50, 62] method, to name a few. In

the real world, predicting values can be challenging, as there is often a deviation

between the predicted value and the actual value [10]. This difference between the

predicted and actual values is known as an error or residual. When we attempt to

fit a line of best fit through a data set, some residuals will be positive, while others

will be negative [25, 80]. In other words, some predicted values will be greater than

the actual values, while others will be less than the actual values [10]. In order to

minimize these errors, we need to sum the residuals. However, cancellation errors

may occur when subtracting two numbers with very similar values, as the common

leading digits are canceled out. This can result in the sum of residuals being zero,

leading to a potential cancellation error [24, 62].

Therefore, the least squares method is widely used to determine the line of

best fit for a given data set, which provides a visual representation of the relationship

between data points. This mathematical method has become one of the most popular

3

and efficient approaches to regression analysis [10]. The fundamental principle of the

least squares method is to derive an optimal linear approximation that minimizes

the sum of squared errors, also referred to as squared residuals. These errors arise

from the discrepancies between the actual and predicted values [10]. By minimizing

the squared error, the least squares method ensures that the sum of the squared

residuals is the smallest possible value, thereby minimizing the impact of outliers and

reducing the chances of cancellation errors [60]. By doing so, the least squares method

aids in determining the optimal regression curve, which accurately represents the

underlying relationship between the dependent and independent variables [10, 60].

This regression curve serves as the most fitting approximation of their association.

This method has several advantages, including its uniqueness, convenience, and good

analytical properties [62]. Despite its strengths, the least squares method also has its

limitations. It is significantly impacted by the presence of outliers, which can lead

to biased and inaccurate results. Therefore, it is essential to identify and address

outliers before applying the least squares method to regression analysis [62].

Least squares classification method adapts linear regression for classification,

and uses least squares error as the loss function. let {(xi, yi)}ni=1 be a set of n training

samples with c class labels, where xi ∈ Rd and the label information yi ∈ {1, . . . , c}.

Denote the input data matrix X = [x1, . . . , xn] ∈ Rd×n and the indicator matrix

Y ∈ {0, 1}c×n by using one-hot representation of class labels. The goal of least

squares classification is to learn a classifier that can predict the correct label to test

samples, by solving

min
W

fls(W) := ∥Y − (W TX + b1T
n)∥2F , (2.1)

where the coefficient matrix W ∈ Rd×c, b = [b1, . . . , bc]
T ∈ Rc is a bias vector, 1n is

the column vector with all 1s, and ∥ · ∥F is the Frobenius norm.

4

One-hot representation [27, 44] is a crucial technique in machine learning that

converts discrete numerical labels into a format that can be easily processed by

machine learning algorithms [22, 44]. The process involves transforming the labels

into a {0, 1} matrix, where each row corresponds to a class label, and each column

coresponds to a data point. In this matrix, only the position corresponding to the

original label is set to 1, and all other positions are set to 0. As a result, each column

in the matrix contains only one 1 and the rest are 0s [22].

In the context of the least squares method, the loss function is defined as the

sum of squared errors between the predicted value and the actual value. When

using discrete numerical labels, the loss between different label categories is unequal,

leading to incorrect model judgment [22, 44]. For instance, the loss when predicting

label 3 as label 1 is greater than the loss when predicting label 3 as label 2, which is

inconsistent with the actual scenario. This is the reason why one-hot representation

comes into play. By using one-hot representation, the distances between different

classes are guaranteed to be the same, making it more appropriate for multi-class

classification [22, 44]. This ensures that the loss function treats all classes equally

and provides a more accurate assessment of the model’s performance.

Moreover, one-hot representation also helps to avoid the issue of ordinality,

where the machine learning algorithm may treat the labels as being in some order

[44]. This can result in poor performance of the model as it may fail to distinguish

between the different classes correctly [44]. One-hot representation resolves this issue

by treating each class as independent and non-ordinal [44].

Once the indicator matrix has been obtained, the next step is to centralize

the data. Centralization is a statistical technique that involves transforming the

data to have a mean of zero [23]. This is done to remove any systematic differences

between the data and to make it easier to compare different variables in the analysis.

5

Centralizing the data involves subtracting the mean from each observation in the

data set [7, 22]. This results in a new data set where the mean of each variable is

equal to zero. Centralization is a necessary step in regression analysis because it

helps to avoid issues such as multicollinearity, which can occur when there is a high

correlation between the independent variables in the model [41].

In addition to addressing multi-collinearity, centralization has several other

benefits. One of the main benefits is that it simplifies the interpretation of the

regression coefficients [13, 80]. When the data is centralized, the intercept term in

the regression equation represents the predicted value of the dependent variable when

all the independent variables are equal to zero [10]. This can be a more meaningful

interpretation of the intercept, as it represents a more realistic starting point for the

analysis [23].

Let X̂ = XH ∈ Rd×n, Ŷ = Y H ∈ Rc×n be the centered of X and Y , where

H = In − 1
n
1n1

T
n ∈ Rn×n is the centering matrix, In is the identity matrix of size

n, and 1n is the n-dimensional column vector of all ones. The problem (2.1) is

reformulated as a regression problem in the mean square error sense [6, 63, 79]:

min
W

fls(W) := ∥Ŷ −W T X̂∥2F . (2.2)

Assuming that the matrix X̂X̂T is positive definite (this will be resolved later by

introducing regularization) [79], the first-order optimality condition with respect to

W is

∂fls(W)

∂W
= −2X̂(Ŷ −W T X̂)T = 0, (2.3)

⇒ X̂Ŷ T = X̂X̂TW, (2.4)

⇒ W = (X̂X̂T)−1X̂Ŷ T . (2.5)

6

However, in the real world, (X̂X̂T)−1 might not exist because X̂X̂T might be

a singular matrix. For any matrix X̂ ∈ Rd×n,

rank(X̂) = rank(X̂T) = rank(X̂X̂T) = rank(X̂T X̂) ≤ min{d, n}.

Therefore, to avoid the problem of X̂X̂T being a singular matrix, we introduce

the regularization such as (X̂X̂T + ϵId), where ϵ is a small positive number.

Afterwards, the optimal solution of W is approximated as

W = (X̂X̂T + ϵId)
−1X̂Ŷ T . (2.6)

2.2 Orthonormalized Partial Least Squares

Orthonormalized partial least squares (OPLS) [79] is a relatively new and ad-

vanced technique for modeling multi-class data that has been gaining attention in

recent years [39, 42]. Unlike traditional least squares, OPLS is a supervised multi-

class data projection method that associates a set of predictors with one or more

responses. The purpose of this technique is to reduce the model complexity by re-

ducing the number of latent variables, while identifying, analyzing and studying the

orthogonal variation that exists in the data [19, 25].

OPLS has many benefits over traditional least squares when it comes to multi-

view classification [42]. While both methods have similar predictive power when

fitted to single feature data, OPLS offers a distinct advantage in terms of model

interpretability [79, 84]. Specifically, OPLS is able to split the explained variance

into predictive and orthogonal compartments, which greatly simplifies the model

interpretation process [19, 42]. This feature makes OPLS a valuable tool for data

scientists who need to explain the relationship between variables in a clear and concise

manner.

7

In addition to its interpretability advantages, OPLS has also been shown to

perform better than traditional least squares in certain scenarios [79]. For example,

in cases where there are many correlated predictors, OPLS can identify and eliminate

the redundant variables to improve model performance [42]. Similarly, in situations

where the predictors and responses are highly correlated, OPLS can identify and

remove the correlation to improve model accuracy [19, 42].

OPLS model aims to learn a projection matrix P ∈ Rd×k with k < d to

transform input data from a d-dimensional space Rd to a k-dimensional space Rk by

solving [79]

min
P,W

fopls(P,W) := ∥Ŷ −W TP T X̂∥2F (2.7)

s.t. P TP = Ik,

where the coefficient matrix W ∈ Rk×c.

The first-order optimality condition of (2.7) with respect to W is

W = (P T X̂X̂TP)−1P T X̂Ŷ T . (2.8)

As we mentioned in previous section, we also make X̂X̂T as a full rank matrix to

avoid the problem of X̂X̂T being a singular matrix. Then the optimal solution of W

is approximated to

W = (P T (X̂X̂T + ϵId)P)−1P T X̂Ŷ T . (2.9)

Now, substituting (2.9) into (2.7), we can have a reformulated objective function

fopls(P) := ∥Ŷ − [(P T (X̂X̂T + ϵId)P)−1P T X̂Ŷ T]TP T X̂∥2F . (2.10)

Therefore, problem (2.7) can be reformulated as follows

min
P
∥Ŷ ∥2F − tr[(P T (X̂X̂T + ϵId)P)−1P T X̂Ŷ T Ŷ X̂TP] (2.11)

s.t. P TP = Ik.

8

Here, we define U = P T (X̂X̂T + ϵId)P , with U being a symmetric positive

definite matrix. Utilizing Cholesky decomposition, we have U = LTL, where L is a

lower triangular matrix. Furthermore, U−1 = L−1L−T . To facilitate the optimization

process, we introduce P̂ = PL−1. Consequently, P̂ T = L−TP T .

According to the trace property, the objective function of problem (2.11) is

−tr[(P T (X̂X̂T + ϵId)P)−1P T X̂Ŷ T Ŷ X̂TP]

= −tr(U−1P T X̂Ŷ T Ŷ X̂TP)

= −tr(L−1L−TP T X̂Ŷ T Ŷ X̂TP)

= −tr(L−TP T X̂Ŷ T Ŷ X̂TPL−1)

= −tr(P̂ T X̂Ŷ T Ŷ X̂T P̂).

Also,

P̂ T (X̂X̂T + ϵId)P̂ = (PL−1)T (X̂X̂T + ϵId)PL−1

= L−TP T (X̂X̂T + ϵId)PL−1 = L−TUL−1 = L−TLTLL−1 = Ik.

Therefore, the OPLS model of problem (2.11) is equivalent to

max
P̂

tr(P̂ T X̂Ŷ T Ŷ X̂T P̂) (2.12)

s.t. P̂ T (X̂X̂T + ϵId)P̂ = Ik.

The optimization problem (2.12) can be considered as a generalized eigenvalue

problem [26] on the matrix X̂Ŷ T Ŷ X̂T with regularization term X̂X̂T + ϵId. The

optimal solution for P̂ corresponds to the eigenvectors of X̂Ŷ T Ŷ X̂T with X̂X̂T + ϵId

that correspond to the top k eigenvalues [22]. Here, ϵ is a small positive number,

typically set to 10−8. In the subsequent algorithm section, we will delve into the

details of the generalized eigenvalue problem.

9

2.3 Support Vector Machines

Before diving into the proposed model, we briefly introduce SVM [88] for clas-

sification. SVM is also one of the most popular and efficient supervised machine

learning classification model [16]. Since SVM can produce significant accuracy with

less computation, it is highly preferred by many researchers [13, 88].

Figure 2.1: Binary Class Data Sets

Given data set {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1, 1}, the goal of binary

classification is to learn a function f : R → {−1, 1}. In Figure 2.1, there are two

types of data, blue and orange. SVM is a good choice when we want to use machine

learning to classify two classes of data and predict the class of unknown data. A

hyperplane is a decision boundary that helps classify data points and enables data

points that fall on either side of the hyperplane to be assigned to different classes

[54, 88]. To separate these two classes of data points, many possible hyperplanes can

be chosen as shown in Figure 2.2. Furthermore, the number of features of the data

points determines the dimension of the hyperplane [50]. If the input data is two-

dimensional, then the hyperplane is a line. If the input data is three-dimensional,

then the hyperplane becomes a two-dimensional plane. It’s hard to imagine when the

10

number of features exceeds three. That is, if the data has more than three features,

the visualization is not easy to achieve [50, 88].

Figure 2.2: Hyperplanes in SVM

Support vectors are data points that are closer to the hyperplane and affect

the position and orientation of the hyperplane [88]. Using these support vectors,

we maximize the margins of the classifier. Deleting the support vector changes the

position of the hyperplane. These are the points that helped us build the SVM. In

SVM, we use margin, i.e. the largest distance between two classes of data points,

to describe the distance between hyperplane and support vectors [50]. Maximizing

the margin distance provides some reinforcement so that future data points can be

classified more accurately [16]. The goal of SVM is to find the optimal hyperplane

with the largest margin as shown in Figure 2.3. Before introducing margin, we need

to know how to calculate the distance from a point in space to a plane. SVM want to

find the linear coefficient of a classifier v such that vTx(class1) ≥ 1 and vTx(class2) ≤ −1,

when xi is in class yi = 1, and xi is in class yi = −1. Then one can have yi(v
Txi) ≥ 1,

also yi(v
Txi)− 1 ≥ 0, margin ≥ vT

∥v∥2 (xclass1 − xclass2) =
2

∥v∥2 [60, 88]. It is equivalent

to solving the problem min 1
2
∥v∥22, for mathematically convenient [88].

11

Figure 2.3: The Optimal Hyperplane in SVM

The primal form of SVM is shown as follows

min
v

1

2
∥v∥22 + C

n∑
i=1

max(0, 1− yiv
Txi), (2.13)

where the hinge loss is used to deal with non-separable data where no hyperplane

with hard constraints can be found. By introducing slack variables {ξi ≥ 0}, we can

reformulate the problem (2.13) as constrained optimization problem

min
v,{ξi}

1

2
vTv + C

n∑
i=1

ξi (2.14)

s.t. ξi ≥ 1− yiv
Txi, ξi ≥ 0, ∀i.

By using Lagrange multipliers technique, we can further obtain its dual problem

according to the duality theorem. First, we construct the Lagrange function with

multipliers {αi ≥ 0}ni=1 and {τi ≥ 0}ni=1 as

L(v, {ξi}, {τi}, {αi}) =
1

2
vTv + C

n∑
i=1

ξi +
n∑

i=1

αi(1− ξi − yiv
Txi)−

n∑
i=1

τiξi. (2.15)

Then, the KKT [60] conditions can be obtained by taking differential of L with

respect to v, and ξi,

∂L

∂v
= 0⇒ v =

n∑
i=1

αiyixi, (2.16)

12

∂L

∂ξi
= 0⇒ C − αi − τi = 0, (2.17)

with condition that the primal problem is strongly convex. If v, αi, and τi satisfy

the KKT condition, then they are also the solutions to the primal and dual problems

[60, 88].

Finally, by substituting v back to Lagrange function as

L({ξi}, {τi}, {αi}) =
1

2
(

n∑
j=1

αjyjxj)
T (

n∑
i=1

αiyixi)

+C
n∑

i=1

ξi +
n∑

i=1

αi(1− ξi − yi(
n∑

i=1

αiyixi)
Txi)−

n∑
i=1

τiξi, (2.18)

⇒ L({ξi}, {τi}, {αi}) = −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj+C

n∑
i=1

ξi+
n∑

i=1

αi−
n∑

i=1

αiξi−
n∑

i=1

τiξi,

(2.19)

⇒ L({ξi}, {τi}, {αi}) =
n∑

i=1

ai−
1

2

n∑
i=1

n∑
i=1

αiαjyiyjx
T
i xj +

n∑
i=1

ξi(C−αi− τi). (2.20)

Since we have C − αi − τi = 0 from equation (2.17), the dual problem of SVM

can be obtained

max
{αi}

−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi (2.21)

s.t. 0 ≤ αi ≤ C ∀i.

Now, we denote α = [α1, . . . , αn]
T ∈ Rn, and y = [y1, . . . , yn]

T ∈ Rn. The

dual problem of SVM becomes

max
α

−1

2
(α⊙ y)TXTX(α⊙ y) + 1T

nα (2.22)

s.t. 0 ≤ α ≤ C1n,

13

where ⊙ is the element-wise product [60].

Let X(α⊙y) ∈ Rd be a column vector, then (α⊙y)TXTX(α⊙y) = tr(X(α⊙

y)(α⊙y)TXT). By following the trace property, the dual problem of SVM (2.22) is

equivalent to

max
α

−1

2
tr(X(α⊙ y)(α⊙ y)TXT) + 1T

nα (2.23)

s.t. 0 ≤ α ≤ C1n,

where ⊙ is the element-wise product.

14

CHAPTER 3

A Novel Regularized OPLS Model for Binary Classification

3.1 R-OPLS Binary Classification Model

Based on the review of the previous sections, we can conclude that both least

squares and OPLS aim to solve classification problems by minimizing square losses

[2, 19]. However, it is important to note that square losses are originally designed

for regression problems, not for classification. Therefore, using square losses for

classification may not always be the optimal choice, especially when dealing with

imbalanced datasets or when the goal is to optimize classification accuracy rather

than regression metric, like mean square error.

In order to enhance the accuracy of classification and the generalization of

OPLS, we propose a method to jointly optimize OPLS and support vector machines

(SVM) by sharing the same projected space in Rk. This approach combines the

benefits of both OPLS and SVM to obtain a better model for classification. OPLS

can identify the predictive and orthogonal variations in the data, while SVM can

provide a robust decision boundary that maximizes the margin between different

classes [10, 88]. By sharing the same projected space, we can integrate the strengths

of both methods and overcome their respective weaknesses.

The joint optimization of OPLS and SVM can be achieved by minimizing a

combination of the squared loss and hinge loss. The squared loss is used to train the

OPLS model, while the hinge loss is used to train the SVM model. The weights of the

two losses can be adjusted to balance the trade-off between accuracy and robustness.

15

In this way, the joint optimization can effectively reduce overfitting and improve the

generalization of the model.

Moreover, this approach can also handle the situation where the number of

samples is smaller than the number of features, which is a common challenge in

classification tasks. By projecting the data into a lower-dimensional space, we can

reduce the dimensionality of the problem and improve the efficiency of the algorithm.

To achieve this goal, we propose

• SVM trained on the projected space;

• Simultaneous training of OPLS and SVM in the projected space;

• A new optimization approach.

Let’s introduce our novel proposed regularized OPLS (R-OPLS). As we men-

tioned before, let {(xi, yi)}ni=1 be a set of n training samples with c class labels,

where xi ∈ Rd, and the label yi ∈ {1, . . . , c}. Denote the input data matrix

X = [x1, . . . , xn] ∈ Rd×n, and the indicator matrix Y ∈ {0, 1}c×n by using one-

hot representation of class labels. Let X̂ = XH ∈ Rd×n, Ŷ = Y H ∈ Rc×n be the

centered matrix of X and Y , where H = In− 1
n
1n1

T
n ∈ Rn×n is the centering matrix,

In is the identity matrix of size n, and 1n is the n-dimensional column vector of all

ones.

The R-OPLS model by trading off square losses and hinge losses is shown as

follows

min
P,W

∥Ŷ −W TP T X̂∥2F −
1

2
tr(Ω−1P T X̂(α⊙ y)(α⊙ y)T X̂TP) + 1T

nα (3.1)

s.t. P TP = Ik,

0 ≤ α ≤ C1n,

where Ω ∈ Rk×k is symmetric positive definite, and the coefficient matrix W ∈ Rk×c.

16

By following the trace property, the R-OPLS model in problem (3.1) can be

further simplified as

max
α

min
P
−tr((P T (X̂X̂T+ϵId)P)−1P T X̂Ŷ T Ŷ X̂TP+

λ

2
Ω−1P T X̂(α⊙y)(α⊙y)T X̂TP)+λ1T

nα.

s.t. P TP = Ik, (3.2)

0 ≤ α ≤ C1n.

3.2 Algorithm

3.2.1 Initialization

To tackle the optimization problem (3.1), we break it down into two sub-

problems. The first sub-problem was concerned with finding the unknown variable

P , while the second sub-problem focused on determining the unknown parameter α.

To solve these sub-problems, we leveraged the alternating iterations method, which

involves iteratively solving for one variable while holding the other constant, and

then switching roles.

To kick off the alternating iterations, we needed to establish an initial value

for α. To achieve this, we opted to solve the dual form of SVM in the input space.

This approach involved formulating and solving the following optimization problem:

α0 = argmin
α

1

2
(α⊙ y)T X̂T X̂(α⊙ y)− 1T

nα : s.t. 0 ≤ α ≤ C1n. (3.3)

The optimization problem (3.3) is a quadratic programming problem that is

subject to a box constraint. Such problems can be efficiently solved using off-the-shelf

solvers such as the solver provided by MATLAB [1].

17

3.2.2 Solving P

3.2.2.1 Generalized Eigenvalue Problem Solver

To streamline the optimization process, we employ the same methodologies

elucidated in Subsection 2.2. Additionally, specific choices of Ω can lead to a simpli-

fied formulation of problem (3.3) for ease of its numerical treatment. For example,

for Ω = P T (X̂X̂T + ϵId)P , the R-OPLS model of problem (3.1) is equivalent to

max
α

min
P
−tr(P T X̂[Ŷ T Ŷ +

λ

2
(α⊙ y)(α⊙ y)T]X̂TP) + λ1T

nα (3.4)

s.t. P T (X̂X̂T + ϵId)P = Ik,

0 ≤ α ≤ C1n.

Because we changed the SVM primal form to the dual form, the constraint of

αi has been added upper bound of C. Without slack variables ξi > 0, αi tends to

infinity when the constraints are violated. The upper bound of C limits the αi and

prevents mis-classification.

With initial value of α, the problem (3.4) was achieved by solving a particular

optimization problem that we denote as problem (3.5).

max
P

tr(P TQP) : s.t. P T (X̂X̂T + ϵId)P = Ik, (3.5)

where Q = X̂(Ŷ T Ŷ + λ
2
(α⊙ y)(α⊙ y)T)X̂T ∈ Rd×d.

Problem (3.5) is a generalized eigenvalue problem [26] on matrixQ with (X̂X̂T+

ϵId). The optimal solution of P is the eigenvectors of Q with (X̂X̂T + ϵId) corre-

sponding to top k eigenvalues [26]. And the Lagrange multiplier is diagonal in the

eigenvalue problem [22].

18

Exploiting the properties of the trace operation, the objective function can take

any of the following forms: tr(P TQP), tr(PP TQ), or tr(QPP T), as demonstrated in

[6, 26]. Formulating the Lagrangian [22, 27] for problem (3.5), we arrive at

L = tr(P TQP)− tr(ΛT (P T (X̂X̂T + ϵId)P − Ik)), (3.6)

where Λ ∈ Rd×d represents a diagonal matrix with entries as the Lagrange multipliers.

To find the optimal P , we need to take the derivative of the objective function

L in (3.6) with respect to P and set it equal to zero. This gives us the following

equation

∂L

∂P
= 2QP − 2(X̂X̂T + ϵId)PΛ = 0, (3.7)

QP = (X̂X̂T + ϵId)PΛ. (3.8)

Then, we also can solve the problem by using

(X̂X̂T + ϵI)−1QP = PΛ, (3.9)

and the diagonal elements of Λ are the eigenvalues [22, 27] .

It is important to note that providing valid values of Ω is necessary to ensure

that R-OPLS model in problem (3.1) can be equivalent to the generalized eigenvalue

problem. In such cases, finding a numerical solution for equation (3.1) can be a

subject of further investigation.

3.2.2.2 Manopt Solver

In Section 3.2.2.1, we introduced a method for solving the matrix P by solving

problem (3.1) as a generalized eigenvalue problem. As previously discussed, the

transformation of problem (3.1) into a generalized eigenvalue problem for solving the

unknown matrix P is not feasible unless we are provided with an appropriate and

19

effective Ω. In the absence of Ω, an alternative method known as manopt can be

used to solve the unknown matrix P .

Manopt is a powerful MATLAB toolbox specifically designed for optimization

on manifolds [12]. Unlike traditional optimization problems that involve variables

in Euclidean space, Manopt provides a framework for solving optimization problems

where the decision variables reside on smooth manifolds [12]. It offers a wide range of

algorithms tailored for optimization on manifolds, including gradient descent, conju-

gate gradient, trust-region methods, and more [12]. Additionally, Manopt supports

various types of manifolds, such as spheres, Stiefel manifolds, Grassmann manifolds,

and symmetric positive definite matrices, among others [12]. This flexibility makes

Manopt particularly useful in fields like computer vision, machine learning, robotics,

and physics, where manifold optimization problems naturally arise.

When utilizing the Manopt toolkit, the first step involves computing the gra-

dient of the objective function presented in problem (3.1). By accurately calcu-

lating the gradient, we gain valuable information about the direction of steepest

ascent and descent on the manifold. This gradient computation serves as a cru-

cial component for various optimization algorithms provided by Manopt [12]. In

the gradient calculation, we define matrices A = X̂X̂T + ϵId, M = X̂Ŷ T Ŷ X̂T , and

Υ = X̂(α⊙ y)(α⊙ y)T X̂T .

Therefore, the problem (3.1) can be rewritten as

min
P

F (P) = −tr((P TAP)−1P TMP + P TΥP), s.t. P TP = Ik. (3.10)

In [59],

∂

∂P
tr(P TΥP) = ΥP + Υ TP = 2ΥP, (3.11)

∂

∂P
tr[(P TAP)−1(P TMP)] = −2AP (P TAP)−1P TMP (P TAP)−1 + 2MP (P TAP)−1.

(3.12)

20

Therefore, we can have

∂F (P)

∂P
= 2AP (P TAP)−1P TMP (P TAP)−1 − 2MP (P TAP)−1 − 2ΥP. (3.13)

After computing the gradient, we can employ Manopt to perform iterative

optimization on the manifold. The optimization process involves updating the ma-

trix P based on the computed gradient and a chosen optimization algorithm. The

iterative nature of Manopt allows for convergence towards an optimal solution by

iteratively refining the decision variables on the manifold [12].

Furthermore, Manopt offers additional functionalities that enhance the opti-

mization process. These include customizable stopping criteria, which determine

when to terminate the iterative procedure based on user-defined thresholds or con-

vergence conditions [12]. Additionally, Manopt provides tools for monitoring and

visualizing the optimization progress, enabling users to gain insights into the behav-

ior of the algorithm and make informed decisions [12].

The utilization of Manopt as a solver provides an alternative approach for

solving the matrix P in problem (3.1). By leveraging optimization on manifolds,

Manopt offers a versatile toolkit for efficiently solving complex optimization problems

in various domains [12]. With its wide range of optimization algorithms, support

for different manifold types, and additional functionalities, Manopt proves to be

a valuable resource for researchers and practitioners seeking to tackle optimization

challenges on manifolds [12].

3.2.3 Solving α

The second sub-problem involves finding the optimal α given P . Once the

optimal α is obtained, we can update its value as the new α for the next iteration.

Here, we introduce two methods to solve for α. The first method is to use a quadratic

21

programming solver, such as the one that comes with MATLAB [1]. The second

method is projected gradient descent(PGD) [8].

3.2.3.1 Quadratic Programming solver (quadprog)

As P̂ is known, the optimization problem (3.4) can be rewritten as

max
α

−tr(P T X̂[Ŷ T Ŷ +
λ

2
(α⊙ y)(α⊙ y)T]X̂TP) + λ1T

nα (3.14)

s.t. 0 ≤ α ≤ C1n.

By dropping constant terms, the problem3.14 is equivalent to

min
α

tr(P T X̂[
λ

2
(α⊙ y)(α⊙ y)T]X̂TP)− λ1T

nα (3.15)

s.t. 0 ≤ α ≤ C1n.

Therefore, the optimization problem can be reformulated using the trace prop-

erties as

min
α

1

2
(α⊙ y)T X̂TPP T X̂(α⊙ y)− 1T

nα (3.16)

s.t. 0 ≤ α ≤ C1n.

Then, denoting that B = (X̂TPP T X̂)⊙ (yyT) ∈ Rn×n is positive definite, we

have the following optimization problem

min
α

1

2
αTBα− 1T

nα (3.17)

s.t. 0 ≤ α ≤ C1n.

To address problem (3.17), we can employ the same solver used in the initial-

ization phase with a slight modification. The only alteration is that we first need to

project the input data onto the low-dimensional subspace Rk.

22

As a result, we present Algorithm 3.1, which outlines the R-OPLS iterative

algorithm utilizing a generalized eigenvalue problem solver and the quadprog method.

Additionally, Algorithm 3.2 illustrates the R-OPLS iterative algorithm combining the

manopt solver and the quadprog solver.

Algorithm 3.1 R-OPLS Iteration with GEPS+Quadratic Programming Solver

1: Initialization: solving α0 by (3.3)

2: for i=1 to 50 do

3: Update P (i) based on (3.5)

4: Update α(i) based on (3.17)

5: end for

6: Output: α and P

Algorithm 3.2 R-OPLS Iteration with Manopt+Quadratic Programming Solver

1: Initialization: solving α0 by (3.3)

2: for i=1 to 50 do

3: Update P (i) based on (3.10)

4: Update α(i) based on (3.17)

5: end for

6: Output: α and P

These algorithms outline the iterative process for R-OPLS, where in each it-

eration, the estimated matrix P and the coefficient vector α are updated based on

specific equations. In Algorithm 3.1, the generalized eigenvalue problem solver and

the quadratic programming solver are utilized. On the other hand, Algorithm 3.2

23

combines the manopt solver with the quadratic programming solver. Both algo-

rithms iterate 50 times to refine the solutions. The outputs include the final values

of α and P obtained from the iterations.

3.2.3.2 Projected gradient descent method (PGD)

In addition to using the methods mentioned earlier, we can also use the pro-

jected gradient descent method (PGD) [8] to obtain the optimal solution for α. This

method involves reformulating the problem as follows:

min
α∈A

g(α) := max
P

tr(P T X̂(Ŷ T Ŷ +
λ

2
(α⊙ y)(α⊙ y)T)X̂TP)− λ1T

nα, (3.18)

where A represents the domain of α, such as 0 ≤ α ≤ C1n.

To better understand the PGDmethod, it’s important to first grasp the concept

of the gradient descent method [8, 60]. The gradient descent method is a widely used

approach for solving unconstrained optimization problems, which involve finding the

minimum value of an objective function [8, 20]. At its core, the gradient descent

method involves determining the direction of change of the objective function along

the direction of the loss function [20]. This iterative process updates the function

value continuously, with each iteration reducing the error loss further and moving

the learned function closer to the optimal solution of the objective function [8].

The key mathematical concept behind the gradient descent method is the gradient,

which involves calculating the partial derivatives of the parameters at a multivariate

function and then representing them as a vector [64]. Geometrically, the gradient

indicates the direction in which the function changes most rapidly, and moving in

the direction of the gradient vector makes it easier to find the maximum value of the

objective function [8, 13, 60, 90]. Conversely, moving in the opposite direction of the

gradient vector makes it easier to find the minimum value.

24

In the context of minimizing the loss function, the gradient descent method

enables step-by-step iterative solutions to be obtained that minimize the loss function

and model parameter values [20]. However, it’s important to note that the gradient

descent method may not always be able to find the global optimal solution and may

only find a local optimal solution [8, 20]. For convex functions, however, the solution

obtained by the gradient descent method is always the global optimal solution [60,

90].

The process of gradient descent method:

1) Compute the gradient of the loss function g(α) with respect to α at the

current position [64, 90].

∇αg(α) = λ((X̂TPP T X̂)⊙ (yyT))α− λ1n. (3.19)

2) Multiply the gradient of the loss function by the step size to get the distance

that the current position falls [64, 90].

3) Determine whether all αi and gradient descent distances are less than ϵ if

it is less than ϵ, the algorithm terminates, and the current vector is the final result.

Otherwise go to step 4 [64, 90].

4) Update all α can be achieved by performing gradient descent for each αi,

using the following expression. Once the update is complete, proceed to step 1

[64, 90].

α(t+ 1
2
) ← α(t) − λ∇αg(α

(t)), (3.20)

where λ = 1
t
is the step size of gradient descent method, and t is the iteration number.

In our model, the perform gradient descent expression is

α(t+ 1
2
) ← α(t) − λ[((X̂TPP T X̂)⊙ (yyT))α− 1n]. (3.21)

According to formula (3.21), we can see that λ is not only a tradeoff parameter

in our model but is also used in the gradient descent method to update the values of

25

α. It controls the step size during the optimization process and is also referred to as

the learning rate in projected gradient descent methods. If the learning rate is too

large, the step size of gradient descent may overshoot the minimum point, leading

to a failure to converge or even divergence of the objective function [8, 20, 64, 90].

Therefore, it is crucial to choose an appropriate value for λ to ensure the convergence

of the optimization process.

In naive gradient descent, the learning rate remains the same. If it is too small,

the convergence is slow and it is easy to fall into a local minimum. If it is too large, it

is easy to oscillate and fail to converge[8, 20]. Therefore, how to improve the learning

rate of the gradient descent method is also an important part of machine learning

[20]. In the current scientific research, there are many mature methods for learning

rate optimization of gradient descent, such as Stochastic Gradient Descent (SGD)

[11], Momentum Gradient Descent (MGD) [61], AdaGrad gradient descent [90], and

Root Mean Square Propagation (RMSProp) [49]. In our experiments, the learning

rate is equal to λ
t
, where λ is the scaling factor and t is the number of iterations.

We introduce the number of iterations into the learning rate. The computation is

performed using a method that combines iteration of gradient descent with iteration

of alternating solutions. So we only need to adjust the learning rate of gradient

descent by tuning the parameter λ.

Projected gradient descent [20, 64, 90] is a commonly used approach for solving

constrained optimization problems and is an extension of gradient descent. The

method involves computing the update α using the gradient descent approach, which

is temporarily denoted as α(t+ 1
2
). This update is then project onto the feasible region

of α to obtain the next step solution, denoted as αt+1. If the updated α is within

the feasible region, then the new α is simply equal to the updated value obtained

in the current iteration [60, 64]. However, if the updated α falls outside the bounds

26

of the feasible region, then the value of α is constrained to lie on the bounds of the

feasible region [60, 64]. In our numerical experiments, we set the bounds of α to be

between 0 and C, and the projection rule is given by equation (3.22).

• Projection

α(t+1) =

α(t+ 1

2
), α(t+ 1

2
) ∈ [0, C];

0, α(t+ 1
2
) < 0;

C, α(t+ 1
2
) > C.

(3.22)

Based on the projected gradient descent (PGD) approach, we propose two

additional algorithms: Algorithm 3.3 and Algorithm 3.4. Algorithm 3.3 outlines the

R-OPLS iterative algorithm that combines generalized eigenvalue problem solvers

with the PGD method. Similarly, Algorithm 3.4 illustrates the R-OPLS iterative

algorithm that combines the manopt solver with the PGD solver.

27

Algorithm 3.3 R-OPLS Iteration with GEPS+Projected Gradient Descent

1: Initialization: Solve (3.3) for α0

2: for i=1 to 50 do

3: Update P (i) based on (3.5)

4: Update α(i+ 1
2
) ← α(i) − λ∇αg(α

(t))

5: if α(i+ 1
2
) ∈ [0, C] then

6: α(i+1) = α(i+ 1
2
)

7: else

8: if α(i+ 1
2
) < 0 then

9: α(i+1) = 0

10: else

11: α(i+1) = C

12: end if

13: end if

14: end for

15: Output: α and P

To summarize, the R-OPLS model involves two unknowns: P and α. In the

solution process for P , we employ two approaches: approximating the model as a

generalized eigenvalue problem and directly solving it using the manopt toolkit. For

the solution process of α, we utilize two methods: the quadprog solver and the

projected gradient descent method. By combining these different approaches for

solving P and α, we obtain four fundamental algorithms for R-OPLS.

28

Algorithm 3.4 R-OPLS Iteration with Manopt+Projected Gradient Descent

1: Initialization: Solve (3.3) for α0

2: for i=1 to 50 do

3: Update P (i) based on (3.10)

4: Update α(i+ 1
2
) ← α(i) − λ∇αg(α

(t))

5: if α(i+ 1
2
) ∈ [0, C] then

6: α(i+1) = α(i+ 1
2
)

7: else

8: if α(i+ 1
2
) < 0 then

9: α(i+1) = 0

10: else

11: α(i+1) = C

12: end if

13: end if

14: end for

15: Output: α and P

By iteratively solving these two sub-problems while updating the values of α

and P̂ at each step, we were able to converge to a solution for the original problem

(3.4). It should be noted that while off-the-shelf solvers can be used to solve quadratic

programming problems, the alternating iterations method is often employed when

dealing with more complex optimization problems that do not have a closed-form

solution. This approach allows for efficient convergence to a solution even when the

problem is high-dimensional or the objective function is non-convex.

29

3.3 Numerical Experiments

3.3.1 Data Information

This section presents experimental results based on three simulation data sets

obtained from LIBSVM [16], namely a2a [16, 21], heart [16, 21], and w2a [16, 21].

Table 3.1 provides a summary of relevant data information and parameter settings,

including the dimensions of the data sets, the number of training and testing sets.

The experiments were conducted on a desktop computer equipped with an Intel(R)

Core(TM) i7-4790 CPU and 32-GB RAM, using MATLAB 2021b.

The a2a data set is sourced from the UCI Machine Learning Repository Adult

Data Set [21], which is based on census data to predict whether an adult earns more

than $50000/year [21]. The original Adult data set comprises 14 features, of which

6 are continuous and 8 are categorical. For the a2a data set, 32561 instances were

selected for the experiments. 6 continuous features were discretized into quantiles

represented by binary features. and the categorical features were also converted to

binary features [16]. As a result, the a2a data set has a total of 123 binary features,

a total of 2265 instances in the training set, and 30296 instances in the testing set.

This information is summarized in Table 3.1.

The heart data set, sourced from the UCI Machine Learning Repository [21],

provides data on patients with heart disease. It comprises 13 features, such as age,

gender, chest pain type (cp), trestbps, serum cholesterol in mg/dl (chol), fasting

blood sugar (fbs), resting electrocardiographic results (restecg), maximum heart rate

achieved (thalach), exercise-induced angina (exang), ST depression induced by ex-

ercise relative to rest (oldpeak), the slope of the peak exercise ST segment (slope),

number of major vessels (ca), and thal [21]. The data set comprises 270 instances.

To prepare for the experiment, we randomly split the data set into training and test

30

sets, with 80% of the instances designated for training and the remaining 20% for

testing.

The w2a data set is derived from the same source as the a2a data set, which

is the UCI Machine Learning Repository Adult Data Set [21]. Unlike a2a, the w2a

data set does not discretize continuous features. In the w2a data set [16], each data

point xi ∈ Rd has 300 features. The total number of training set data instances is

4912, and the total number of testing set data instances is 46279.

Data Features Training Testing C λ
a2a 123 2265 30296 0.01, 0.1, 1, 10 0.1, 0.3, 0.5, 0.7, 0.9
heart 13 216 54 0.01, 0.1, 1, 10 0.1, 0.3, 0.5, 0.7, 0.9
w2a 300 4912 46279 0.01, 0.1, 1, 10 0.1, 0.3, 0.5, 0.7, 0.9

Table 3.1: Data Information and Tuning Parameters

3.3.2 Iteration of Objective Function

In the previous sections, we derived that in order to obtain the optimal solution

for the unknown variables P and α, we need to solve the objective function of

the optimization problem to obtain the classifier. To accomplish this, we split the

objective function into two sub-problems, one for solving α and another for solving

P . The final optimal solution of α and P is obtained through an alternate iteration

method. Alternating method needs initialization of variables to start with.

As previously mentioned in the mathematical derivation section, when solving

for the unknown variable P using the generalized eigenvalue solver, we need to in-

troduce regularization to avoid the problem of X̂X̂T being a singular matrix. This

can be achieved by adding a small positive number ϵ to (X̂X̂T + ϵId), where Id is the

identity matrix of size d. For our experiments, we set ϵ to be 10−8 for all data sets

to ensure that X̂X̂T + ϵId is of full rank.

31

There are two methods we use to solve for the unknown α. The first method is

using a built-in MATLAB function called quadprog [1], which is a popular solver for

quadratic problems. quadprog also has parameters such as Algorithm [1], MaxIter-

ations [1], and OptimalityTolerance [1]. The default Algorithm used by MAT-

LAB is interior-point-convex [1], the default MaxIterations is 200, and the default

OptimalityTolerance is 10−8 [1]. The second method we use is the projected gradient

descent method mentioned earlier. Through iterative plots of the objective function

value, we found that the convergence of the gradient descent method is better than

that of quadprog in our experiments. We will provide more specific details in the

following section.

The R-OPLS model is governed by three parameters: C, λ, and k. Since

the optimal problem is min-max problem, the objective function value may oscillate

slightly within a small range once it approaches convergence. Using the parameters

C, k, and λ, we plot the objective function value curve after projecting the data onto

a k-dimensional space.

During the numerical experiments, we conducted 20 repetitions for all cases

and tested different values of the parameters C, k, and λ. Specifically, we explored the

range of values C ∈ {10−2, 10−1, 1, 10}, k ∈ {3, 10, 20}, and λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As a result, the oscillation amplitudes of the iterative calculation results of

the objective function can vary significantly under different penalty parameters. In

particular, when we keep the value of k constant and change the values of C and

λ, the convergence of the objective function value changes significantly. Figure 3.1

depicts the change in the function value of the objective function under different

values of C and λ in iterative experiments. Each row represents the function value

change under different C values, while each column represents the function value

change under different λ values. For instance, the first row represents the function

32

value change when C = 0.01, the second row when C = 0.1, the third row when

C = 1, and the fourth row when C = 10. Similarly, the first column represents the

function value change image when λ = 0.1, the second column when λ = 0.3, the

third column when λ = 0.5, the fourth column when λ = 0.7, and the fifth column

when λ = 0.9.

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.1: The a2a Data Set with quadprog Solver

It is apparent that there exists a noteworthy correlation between the value of

C and the amplitude of the oscillations of the function’s plots. As C increases, the

oscillations of the function image become more pronounced. Specifically, when C is

33

set to 10, the amplitude increases significantly. This trend implies that large values

of C may result in more significant fluctuations in the convergence of the objective

function. Therefore, care must be taken when selecting a value for C to ensure

that the objective function converges appropriately. We can observe that there is a

considerable variation in the convergence of the objective function for different values

of λ when C is large. This observation suggests that the selection of an appropriate

value for λ is particularly crucial when working with large C values. By observing

Figure 3.1, it is only when λ is set to 0.5 that the function image maintains adequate

convergence for various C values.

As previously mentioned, the projected gradient descent method also can be

employed to solve α in the objective function. Examining the formula ∇αg(α) =

λ((X̂TPP T X̂)⊙ (yyT))α− λ1n, we can observe that the penalty parameter C and

scale factor λ directly affect the gradient descent rate ∇αg(α).

It is crucial to select appropriate values for the penalty parameter C and scale

factor λ when implementing the gradient descent method. Increasing the penalty

parameter C will result in an increase in the value range of α. The penalty param-

eter C plays a crucial role in controlling the gradient’s magnitude and direction, as

illustrated in the mathematical derivation provided earlier. On the other hand, the

parameter λ is responsible for controlling the step size in the PGD process.

It is essential to select an appropriate value for λ since if it is too large, the step

size of PGD may exceed the minimum point. Consequently, the objective function

may fail to converge or, worse still, diverge. Thus, choosing the right value for the

learning rate λ is crucial for ensuring the successful convergence of the objective

function during PGD.

Figure 3.2 provides insights into the impact of varying C on the gradient de-

scent curves’ convergence. When C is set to 0.01 or 0.1, the descending convergence

34

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.2: The a2a Data Set with PGD Method

curves in Figure 3.2 (a)-(j) display varying degrees of stagnation. On the other hand,

Figure 3.2(m) and Figure 3.2(r) illustrate that when λ = 0.5 and C is set to 1 or

10, the gradient descent curves exhibit smooth convergence. Selecting the appropri-

ate values for the penalty parameter C and scale factor λ is crucial for achieving

desirable results with the projected gradient descent method. The selection process

must balance the gradient descent rate’s speed and the potential for stagnation in

the objective function.

The heart data set contains 13 features. To reduce the dimensionality of the

heart data, we set the subspace parameter k to 6. In the next step of the experiment,

35

we studied the behavior of the objective function’s iterative curve using the quadprog

solver. The results are presented in Figure 3.3.

The Figure 3.3 shows that when the penalty parameter C is too small, such

as C = 0.01 and C = 0.1, the change of the scaling factor λ has little effect on

the convergence of the objective function. This is because the value range of α is

too small to influence the iteration result significantly. However, for larger penalty

parameters, such as C = 1 and C = 10, the choice of scaling factor λ becomes crucial.

As we can see from the plots (k)-(t) in Figure 3.3, only when λ = 0.5 and C = 1,

the objective function’s iterative curve maintains smooth convergence with a slight

oscillation, and the oscillation amplitude is within ±0.5. It is important to note that

this conclusion is drawn based on the use of the quadprog solver and may differ for

other solvers or optimization algorithms.

Our experiment further suggests that the choice of penalty parameter C and

scaling factor λ is critical in achieving the optimal convergence rate of the objective

function. Further experiments may be necessary to verify the robustness of these

conclusions under different solvers and optimization algorithms.

In line with the previous experimental results on the heart data set using

the quadprog solver, we conducted further experiments using the gradient descent

method. We found that when the value of C is too small, the function value is not

affected by any changes in the parameter λ. This observation is shown in Figure

3.4 (a)-(j). Furthermore, by comparing the iterative graphs in Figure 3.4 (k)-(t), we

discovered that when λ = 0.5 with C = 1 or C = 10, the gradient descent method

achieves smooth convergence. Therefore, we can conclude that the optimal λ for the

R-OPLS model in the heart data experiment is λ = 0.5, as confirmed by the iterative

graph.

36

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.3: The heart Data Set with quadprog Solver

The w2a data set is the largest among our three binary classification exper-

iment data sets, consisting of 4912 training instances and 46279 testing instances.

To solve the objective function, we first set the projection space to 10 and adjusted

two other parameters, namely C and λ. We explored a range of values for λ, namely

0.1, 0.3, 0.5, 0.7, and 0.9, and set C to a series of 0.01, 0.1, 1, and 10. Similar to the

previous experiments, we observed significant influence of parameter changes on the

function value in alternate iterations, as depicted in Figure 3.5.

Based on the observations made from Figure 3.5, we can conclude that when

the value of the regularization parameter C is set to 0.01, the first four groups of

37

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.4: The heart Data Set with PGD Method

curve images do not show significant changes. However, in the last group where

C = 0.01 and λ = 0.9, the function value exhibits significant oscillations in the

iterative experiment, with an oscillation range of 0 − 7000. This suggests that,

regardless of how λ changes, a C value of 0.01 is not a reasonable parameter setting

for the R-OPLS model based on w2a data. On the other hand, when the value of

C is increased to 0.1, we observe that the plots of (g), (i), and (j) exhibit small

oscillations with an oscillation range of 69083, 67803, and 67173 respectively. As

the value of C further increases to 1 and 10, we notice a significant increase in the

38

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.5: The w2a Data Set with quadprog Solver

oscillation amplitude of the function value in the iterative experiment, as shown in

plots (k)-(t).

To determine the optimal parameters for the w2a experiments, we adopted an

iterative approach using projected gradient descent to solve α. This method allowed

us to experiment with various parameter settings and select the best ones based on

the model’s performance.

To replicate the experiment, we began by initializing the projection space to

10 and tuning the other two parameters, C and λ. The range of values for λ and C

were identical to the previous experiment. Specifically, we set λ to vary from 0.1 to

39

0.9 at intervals of 0.2 and C to be one of four values: 0.01, 0.1, 1, and 10. To observe

the impact of changing parameters on the objective function value during alternate

iterations, we plotted the results in Figure 3.6.

We can see that the first row of plots when C = 0.01, the second row of plots

when C=0.1, and the third row of plots when C=1 did not show good convergence.

This confirms our previous conclusions that when the parameters of the projected

gradient descent method are not set properly, it may lead to a situation of stuttering

or crossing the minimum value, resulting in shocks.

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 3.6: The w2a Data Set with PGD Method

40

However, when C = 10 and λ = 0.5, the function value graph reaches a smooth

descent. It is worth noting that when the number of iterations is set to 50, the func-

tion value continues to decline and has not reached the minimum convergence value.

To address this issue, we increased the number of iterations to 100, 200, 500, and

1000, respectively. However, the function value still kept decreasing. This indicates

that the step size of each descent is too small due to the problem of parameter setting,

so the projected gradient descent method cannot reach the minimum value required

by the experiment in a short time. When λ = 0.7, although the function value

fluctuated in the first 16th iterative experiments, it maintained a downward trend

of shock. From the 17th iterative calculation, the function graph began to converge.

Based on the above analysis, we can conclude that the projected gradient method

is suitable for the w2a data classification experiment, and the optimal parameter

selection is C = 10 and λ = 0.7.

It is worth noting that the choice of parameters greatly affects the convergence

and accuracy of the algorithm. Therefore, careful experimentation with different

parameter settings is necessary to obtain the optimal parameters for each data set.

3.3.3 Projection Classification and Accuracy

The R-OPLS model is a powerful machine learning algorithm that aims to learn

a projection matrix P ∈ Rd×k to transform input data from a high-dimensional space

(Rd) to a low-dimensional space (Rk), where classification is conducted. However,

determining the optimal value of k for each data set is still a critical challenge that

must be addressed.

As discussed in earlier sections, the optimal projection matrix P can be com-

puted by identifying the eigenvectors of the matrix Q, where Q = X̂[Ŷ T Ŷ + λ
2
(α⊙

y)(α ⊙ y)T]X̂T ∈ Rd×d. Here, X̂ and Ŷ are the mean-centered input and output

41

data matrices, α is a vector of regression coefficients, y is the output variable, and

λ is a regularization parameter. After obtaining the optimal solutions for P and α,

we can construct two classifiers, W and v. The classifier W is the OPLS classifier

and can be computed as W = (P T X̂X̂TP)−1P T X̂Ŷ T . The classifier v is the support

vector machine (SVM) classifier and can be computed as v =
∑n

i=1 αiyiP
T x̂i. Using

these classifiers, we can make predictions in the common subspace and evaluate the

classification accuracy. This accuracy serves as a metric to assess the performance

of the R-OPLS model and its ability to learn a suitable subspace for classification

tasks.

Classification Accuracy = Total Number of Correct Prediction
Total Number of Testing Data Points

× 100%

To identify the optimal projected subspace dimension k for a given dataset,

we first analyze the eigenvalue images of the objective function generated during

alternating iterative experiments. This analysis helps us determine the potential

range of values for k. The process of selecting an appropriate value for k is crucial for

achieving optimal classification accuracy. If k is too small, important information in

the data may be lost during projection. Conversely, if k is too large, the classification

task may become computationally expensive [60].

Once we have identified the range of potential values, we perform classification

experiments for each value of k within this range and evaluate the resulting classi-

fication accuracy. We then select the value of k that produces the highest accuracy

as the optimal projected subspace dimension for the given data set. This approach

allows us to systematically explore the space of possible subspace dimensions and

select the dimension that yields the best classification performance. By reducing the

dimensionality of the data while preserving the most relevant information, we can

improve the accuracy and efficiency of our classification models.

42

(a) quadprog Solver (b) PGD

Figure 3.7: The Plots of Eigenvalues on a2a Data

In the a2a data set, the two plots depicted in Figure 3.7, namely plot (a) and

plot (b), display the eigenvalues of the objective function obtained through the use of

the generalized eigenvalue solver. Plot (a) shows the results obtained by combining

the solver with the quadprog solver, while plot (b) displays the results obtained

through the use of the projected gradient descent method in an alternating iteration

process. By analyzing the curves shown in Figure 3.7, it can be observed that the

changes in eigenvalues tend to flatten out after k = 8 in both plots. Hence, we restrict

the domain of k to 7 ≤ k ≤ 11. Furthermore, in the previous experiments using

the alternating iteration approach with either the quadprog solver or the projected

gradient descent method, we observed that the function image converged at C=1 and

C=10 when the parameter λ was set to 0.5. To ensure the reliability and validity

of the experiments, we performed classification experiments at C = 1 and C = 10,

respectively, and compared their classification accuracy results. The classification

accuracy results for C = 1 and C = 10 are presented in TABLE 3.2 below.

Based on the experimental results, we can conclude that the R-OPLS model

based on the a2a data set achieves the highest accuracy of 83.75% when using the

43

C = 1 C = 10
quadprog PGD quadprog PGD

k R-OPLS SVM R-OPLS SVM R-OPLS SVM R-OPLS SVM
k = 7 83.75% 71.68% 78.64% 71.80% 71.04% 61.86% 75.98% 71.81%
k = 8 76.02% 71.68% 80.92% 71.80% 25.44% 61.86% 79.42% 71.81%
k = 9 76.02% 71.68% 83.22% 71.80% 24.04% 61.86% 76.63% 71.81%
k = 10 76.08% 71.68% 77.21% 71.80% 76.01% 61.42% 83.22% 71.81%
k = 11 81.84% 71.79% 37.65% 71.80% 81.58% 60.86% 83.31% 71.81%
k = 12 76.70% 71.73% 77.24% 71.80% 24.04% 60.86% 81.63% 71.81%

Table 3.2: Accuracy with Selection of k on a2a Data

quadprog solver and the parameter combination of C = 1, λ = 0.5, k = 7. Therefore,

the experimental results suggest that the R-OPLS model is suitable for the a2a data

set when using the quadprog solver with the aforementioned parameter combination.

In our previous experiments, we utilized the generalized eigenvalue solver in

alternate iterations to solve for matrix P and evaluate the classification accuracy of

R-OPLS on the a2a data set. As described in the algorithm section, an alternative

approach is to employ the manopt solver for directly solving matrix P within the

alternating iterative algorithm. With this in mind, we conducted additional exper-

iments on the a2a data set by following the aforementioned steps and using the

optimal solution of P obtained through the manopt solver.

For these experiments, we set the projection subspace to k = 7. The results

of these experiments are presented in Table 3.3, providing an insightful comparison

between the performance of the generalized eigenvalue solver and the manopt solver

in the classification task.

When comparing the results presented in Table 3.2 and Table 3.3, a noticeable

trend emerges: the classification accuracy achieved by utilizing the manopt solver to

solve for matrix P diminishes across various parameter combinations. This obser-

vation indicates that, in terms of optimizing the R-OPLS model, the manopt solver

44

manopt+ quadprog manopt+PGD
λ Classifier C = 0.01 C = 0.1 C = 1 C = 10 C = 0.01 C = 0.1 C = 1 C = 10

λ = 0.1 R-OPLS 70.24% 72.74% 67.31% 64.57% 70.67% 70.96% 69.84% 70.36%
SVM 70.69% 56.76% 62.93% 62.56% 70.49% 71.76% 29.34% 30.12%

λ = 0.3 R-OPLS 70.04% 71.59% 66.96% 69.98% 72.45% 71.19% 64.25% 63.15%
SVM 70.09% 68.47% 50.98% 69.94% 72.24% 72.34% 51.28% 56.52%

λ = 0.5 R-OPLS 71.02% 71.37% 71.44% 70.22% 71.95% 69.63% 71.50% 66.97%
SVM 70.56% 70.51% 58.92% 69.96% 72.51% 72.18% 72.00% 44.09%

λ = 0.7 R-OPLS 71.93% 72.22% 64.33% 67.84% 71.95% 69.54% 69.33% 63.88%
SVM 70.27% 47.08% 56.46% 67.06% 72.51% 29.36% 29.35% 42.60%

λ = 0.9 R-OPLS 71.03% 70.88% 67.43% 65.73% 70.75% 71.68% 69.52% 69.74%
SVM 69.91% 70.70% 58.40% 64.84% 72.29% 72.30% 29.89% 71.17%

Table 3.3: Classification Accuracy of a2a Data with manopt Solver

is not the most favorable choice. Moreover, it is worth highlighting that both the

iterative algorithm of manopt combined with quadprog and the iterative algorithm

of manopt combined with PGD exhibit longer computational costs compared to the

iterative calculations performed using the generalized eigenvalue solver.

Overall, it becomes evident that employing themanopt solver in the alternating

reception framework necessitates three times the computational cost required when

using the generalized eigenvalue solver. Hence, considering both the decrease in

classification accuracy and the increased computational burden, the manopt solver

is not a preferable option for the R-OPLS model. Therefore, for the coming numerical

experiments, we will not use manopt solver in the alternating iteration experiments.

In the heart data set, Figure 3.8 includes two plots, labeled (a) and (b), which

depict the eigenvalues of the objective function using different solvers. Specifically,

plot (a) shows the eigenvalues when the generalized eigenvalue solver is combined

with the quadprog solver, while plot (b) displays the eigenvalues when the generalized

eigenvalue solver is combined with the projected gradient descent method in an

45

alternating iteration process. Both figures show that the eigenvalue variations tend

to flatten after k = 3. Thus, we limit the range of k to 2 ≤ k ≤ 5 and compute

the classification accuracy for each k. As the heart data set has only 270 cases, we

randomly select 80% of the data as the training set and the remaining 20% as the test

set for the classification experiment. We perform experiments 15 times with different

random data splits to obtain the average classification accuracy. The results of the

classification experiments are presented in Table 3.4.

(a) quadprog Solver (b) PGD

Figure 3.8: The Plots of Eigenvalues on heart Data

From the results presented in Table 3.4, it is evident that the highest average

classification accuracy of the R-OPLS model for the heart data set is obtained when

using the projected gradient descent method with the parameter combination of

C = 10, λ = 0.5, and k = 3. Specifically, the average classification accuracy of the

R-OPLS model is 85.94%, and the classification result of the SVM classifier in the R-

OPLS model reaches a maximum of 86.06%. Therefore, based on these findings, we

selected the parameter combination of C = 10, λ = 0.5, and k = 3 for the R-OPLS

model in the classification experiments on the heart data set.

46

quadprog PGD
K R-OPLS SVM R-OPLS SVM

C = 1

k = 2 83.15± 6.37% 82.42± 6.06% 82.67± 6.31% 83.03± 6.67%
k = 3 82.30± 5.94% 81.57± 5.21% 84.48± 4.61% 84.24± 6.67%
k = 4 83.88± 7.52% 83.15± 8.60% 82.79± 6.43% 83.03± 7.88%
k = 5 82.18± 6.91% 82.18± 5.82% 84.60± 8.24% 85.21± 8.85%

C = 10

k = 2 83.51± 7.40% 76.97± 4.24% 84.00± 8.73% 83.15± 9.58%
k = 3 84.61± 7.28% 78.30± 7.39% 85.94± 5.94% 86.06± 4.24%
k = 4 83.15± 7.19% 77.82± 6.91% 84.85± 7.88% 84.36± 8.37%
k = 5 82.30± 6.79% 78.79± 8.48% 84.12± 5.94% 84.24± 6.06%

Table 3.4: Accuracy with selection of k on heart data

The original data sets for w2a and a2a are both from the adult data set, so

their effective eigenvalues are similar. In the w2a data set, Figure 3.9 presents two

plots that display the eigenvalues of the objective function obtained through different

methods. In plot (a), we use the generalized eigenvalue solver in combination with

the quadprog solver, while in plot (b), we use the projected gradient descent method

in an alternating iteration process. By observing the curves in FIGURE 3.9, we can

see that the eigenvalue changes flatten out after k = 8 in both plots. Therefore, we

selected the range of k as 7 ≤ k ≤ 12 and obtained the classification accuracy for

each k, as shown in Table 3.5.

C = 1 C = 10
quadprog PGD quadprog PGD

k R-OPLS SVM R-OPLS SVM R-OPLS SVM R-OPLS SVM
k = 7 86.22% 69.58% 85.80% 70.32% 86.05% 79.72% 86.11% 94.85%
k = 8 85.85% 69.69% 86.41% 70.32% 85.81% 79.58% 85.98% 94.85%
k = 9 86.07% 69.68% 85.71% 70.32% 85.96% 79.57% 85.74% 94.85%
k = 10 85.82% 69.57% 85.74% 70.32% 86.16% 79.06% 85.55% 94.85%
k = 11 86.64% 69.18% 85.78% 70.32% 85.99% 79.05% 85.55% 94.85%
k = 12 85.83% 69.18% 85.65% 70.32% 85.98% 79.20% 84.33% 94.85%

Table 3.5: Accuracy with Selection of k on w2a Data

47

(a) ”quadprog” Solver (b) Projected Gradient Descent

Figure 3.9: The Plots of Eigenvalues on w2a Data

From Table 3.5, we can see that the highest average classification accuracy of

the R-OPLS model for the w2a data set was achieved with the parameter combination

”C = 1, λ = 0.5, and k = 11” using the quadprog solver. The classification accuracy

reached 86.64%, which indicates that the R-OPLS model is effective for the w2a data

set.

3.3.4 Comparison Methods

Achieving high classification accuracy is the primary goal of our R-OPLS

model. In subsection 3.3.3, we presented the results of the R-OPLS model classifi-

cation experiments on three datasets. While there are many established models and

algorithms available for data classification, we have chosen to use the least squares

method, SVM, and K-Nearest Neighbors (KNN) [40] for comparison purposes. In

addition to briefly introducing KNN as a classification method, we also explain its

working principle. KNN is a simple machine learning algorithm used for supervised

classification. When predicting the class of an input data point, KNN determines

the class with the highest frequency among the K closest data points, where K is

48

the number of data points closest to the input point. The majority rule is used to

determine the class of the input data point based on the K closest data points.

To use the KNN algorithm for classification prediction, we first use the fitknn

[40] function to create a KNN prediction model. This function has several param-

eters, including BreakT ies, BucketSize, CategoricalPredictors, NumNeighbors,

and Distance [1, 40]. We have modified two of these parameters: NumNeighbors

and Distance. The Distance parameter has various options, such as cityblock,

chebychev, correlation, cosine, Euclidean, and mahalanobis [36]. The specific

choice of the Distance parameter depends on the experimental purpose and data

type. In our experiments, we set the Distance parameter to Euclidean for all data

sets.

The KNN model is highly sensitive to the distribution of data points in space,

which can significantly affect the accuracy of its classification results. Selecting the

appropriate K value is a crucial step in the KNN algorithm, as it has a direct impact

on the classification accuracy. In order to determine the optimal K value for the

KNN algorithm on each data set, we employed a 5-folder cross-validation method,

selecting K values ranging from 1 to 100. The data was randomly partitioned into 5

parts, with 4 parts as the training set and the remaining part as the test set. The

average classification accuracy under each K value was obtained by repeating this

process 5 times, and a graph of the classification accuracy rate under each K value

was plotted (see FIGURE 3.10)

In the a2a data set, the KNN model showed significant improvement in classi-

fication accuracy with increasing K value, reaching about 83% before K = 20. After

that point, there was little change in the classification accuracy. On the other hand,

in the heart dataset, the KNN model achieved a classification accuracy of 83.64%

at K = 10. In Figure 3.9 (b), the impact of K value on the classification accuracy

49

(a) a2a Data Set (b) heart Data Set (c) w2a Data Set

Figure 3.10: The Classification Accuracy of KNN

of the KNN model is evident. As K value continues to increase, the classification

accuracy of KNN fluctuates up and down. For the w2a dataset, the KNN model

achieved its highest classification accuracy of 97.81% at K = 2, but the accuracy

rapidly declined with increasing K value and finally stabilized at around 97%. These

results demonstrate that the KNN model has significant limitations and requires

careful data selection and K value selection.

It is worth noting that the KNN model cannot be used to reduce the dimen-

sionality of data, which is one of its major shortcomings. The novel R-OPLS has

significant advantages in projection space classification. It is important to mention

that the data used in these experiments were all from LIBSVM[16]. Although these

data are highly suitable for support vector machine classification, the classification

results of support vector machine do not show high accuracy.

Moving forward, we plan to test the stability and accuracy of our novel R-OPLS

model using other dimensionality reduction data, thus demonstrating its advantages

in classification on projected spaces. In summary, the KNN model is highly sensitive

to data distribution and requires careful parameter selection. The novel R-OPLS

model has significant advantages over the KNN model in projection space classifica-

tion.

50

Data
Classifiers Input Space Projected Space

KNN SVM Least Squares KNN SVM R-OPLS
a2a 83.23% 84.32% 72.15% 83.86% 75.96% 83.35%
heart 83.64% 72.73% 80.00% 92.73% 86.06% 85.94%
w2a 97.81% 97.65% 85.83% 98.07% 69.18% 86.64%

Table 3.6: Accuracy Comparison

3.3.5 Visualization

The R-OPLS model serves a crucial function in effectively reducing the dimen-

sionality of data. However, we also need to visually observe the data distribution

to improve our model’s classification accuracy. Thus, we project each set of data

into 2D and 3D spaces, respectively, to intuitively observe their projections in low-

dimensional space. Specifically, for each data set, we select k = 2 for 2D space and

k = 3 for 3D space. We combine the optimal values of C and λ obtained from prior

experiments and employ the gscatter [1] function in MATLAB. FIGURE 3.11 de-

picts the 2D visualization, with the positive class represented by the blue circle and

the negative class represented by the orange circle.

(a) a2a Data Set (b) heart Data Set (c) w2a Data Set

Figure 3.11: The Visualization on 2-D Space

Figure 3.11(a) illustrates that the a2a data set is not linearly separable. As

shown in the figure, the two types of data sets have significant overlap in the middle

51

part for different parameter combinations, making it challenging to classify the data

accurately. This overlap is also the primary reason for the low accuracy of the a2a

data set in our previous classification experiments. Thus, to improve the classification

accuracy of the model, we need to preprocess the data to make it easier to classify.

In contrast, the heart data set contains a relatively small amount of data,

allowing us to observe the distribution of each data point clearly in two-dimensional

space, as shown in Figure 3.11(b). Although there is a certain overlap between the

positive and negative data, the classification experiment using the R-OPLS model

still achieved an average classification accuracy of 85.94%.

In the w2a data set classification experiment, the prediction results reached

high accuracy rates of 97% and 87% using classifier v and classifier W , respectively.

The two-dimensional visualization of the w2a data in Figure 3.11(c) indicates that

this is the most suitable data for classification among our three experimental data

sets. The distributions of the two classes of data are scattered without much overlap,

which corresponds to the high prediction accuracy achieved earlier. However, it is

worth noting that the w2a data set is an unbalanced data set, as shown in Figure

3.11(c). The negative class has more data than the positive class, which can lead to

highly misleading experimental results due to this class imbalance.

In addition to the two-dimensional visualization shown in Figure 20, we also

utilized the gscatter3 [65] function, which is created by Salai Selvam V in MAT-

LAB, to draw the scatter plots of the data sets in 3D space. Figure 3.12 displays a

projection of the three datasets in a three-dimensional space. The three-dimensional

visualization provides a more comprehensive representation of the data and allows

us to explore the data distribution in a more intuitive way. By analyzing these visu-

alizations, we can obtain a deeper insight into the distribution of the data and make

52

more informed decisions for our classification tasks.

(a) a2a Data Set (b) heart Data Set (c) w2a Data Set

Figure 3.12: The Visualization on 3-D Space

After analyzing the 3-D visualization of the a2a data set in Figure 3.12, we

can conclude that it is an imbalanced data set. The vertical axis expansion, which

cannot be represented in the 2-D visualization, reveals the data imbalance. In the

2-D visualization, there is a significant overlap between the two classes, making it

challenging to determine if the data is imbalanced. As shown in Figure 3.12, the

a2a data is distributed compactly in space, which poses a significant challenge for

our classification experiments. Understanding the distribution of data is essential

to overcome the challenge of classifying imbalanced datasets, and 3-D visualization

enables us to gain deeper insights into the data sets.

It is noteworthy that the use of three-dimensional visualization allows us to

observe the data from different perspectives, which can help us identify patterns that

might not be visible in lower-dimensional spaces. These visualizations are crucial for

us to determine the suitability of our datasets for classification and identify potential

challenges in classifying them accurately. For instance, we can observe the distance

between different data points and the relationship between different features. This

53

information can be used to identify potential outliers and evaluate the effectiveness

of the feature selection process. Furthermore, these visualizations can also help us

to validate the results obtained from the classification models and understand the

reasons for misclassifications. Therefore, the combination of two-dimensional and

three-dimensional visualizations is essential in the analysis of datasets and can lead to

better-informed decisions in classification tasks. Therefore, through visualization, we

can gain insight into the distribution of data in low-dimensional space. In addition,

we need to be aware of the limitations of our data sets, such as class imbalance, to

avoid misleading experimental results.

54

CHAPTER 4

A Novel Regularized OPLS Model for Multi-class Classification

4.1 R-OPLS Multi-Class Classification Model

Multi-class classification is a type of classification problem where we have more

than two classes to predict. It is an extension of the binary classification problem,

where we have only two classes to predict [18, 57]. One of the main differences

between binary classification and multi-class classification is that they use different

activation functions [57]. In binary classification, the signum function [1] is com-

monly used as the activation function for classification experiments, directly convert-

ing the prediction results into −1 and 1 [57]. In the other words, the threshold for

this function is set to 0. If the predicted value is greater than zero, the activation

function is considered a positive example with the label 1 [18]. Otherwise, the ac-

tivation function is considered as a negative sample labeled −1 [57]. This approach

is very effective for binary classification problems, such as spam email classification

and fraud detection [54].

However, in multi-class classification problems, we need to predict more than

two classes. While binary classification and multi-class classification share some simi-

larities, such as the use of neural networks, they differ in the activation functions used

to make predictions [57]. The signum function is effective for binary classification

problems, while the softmax function is used for multi-class classification problems

[85, 57]. The softmax function is a generalization of the logistic function [73], which

can be used for multi-class classification problems. The output layer using softmax

has multiple units, equal to the number of classes in the data set [54]. Each unit

55

calculates the probability that the testing data points belong to a particular class

[54, 85]. In this way, we can predict the probability of a sample belonging to each

class and choose the class with the highest probability as the predicted class.

Alternatively, to solve multi-classification problems, we can use a technique

that transforms them into multiple binary classification problems [54, 57]. In bi-

nary classification, we only need to learn a classifier between two classes of data.

However, in multi-classification, we need to train multiple binary classifiers, and the

number of classifiers depends on the method we choose. In general, to construct

a c class discriminant in multi-class classification, we can combine multiple binary

discriminant functions[18, 32]. Two common approaches to learning a classifier in

multi-class classification are One-vs-Rest (OVR) and One-vs-One (OVO) [18, 32].

The OVR method needs to train c classifiers, while the OVO method needs to train

c(c − 1)/2 classifiers, where c is the number of classes in the data set and greater

than 2 [32].

The OVR method is heuristic method for multi-classification by using binary

classification algorithm that involves training c classifiers [32]. Each classifier is

trained according to the rule, one class is positive and the rest are negative, to

distinguish a class from other classes in the data set [18]. The multi-class data set

is thus partitioned into multiple binary classification problems [54]. Train a binary

classifier for each binary classification problem and use the most confident model to

make predictions. During testing, if only one classifier predicts a positive class, the

corresponding class label is used as the final classification result [57]. If multiple

classifiers predict positive classes, the class with the highest confidence is selected as

the final classification result [57].

The OVO method, on the other hand, requires training c(c − 1)/2 classifiers.

This method involves combining every two classes into a pair and treating each pair

56

as a binary classification task. Therefore, there are a total of c(c − 1)/2 binary

classification tasks in the OVO classifier [18]. During testing, test instances are fed

into these binary classifiers, which then vote and calculate which class has the most

results [32]. Both the OVR and OVO methods are heuristic methods for multi-

classification using binary classification algorithms. The choice of method depends

on the specific problem and the characteristics of the data set [18, 32].

4.2 Numerical Experiments

4.2.1 Data Information

In this section, the experimental results are based on three different data sets:

dna [38], usps [34], and protein [16]. We provide a summary of the data information

in Table 4.1, including the number of classes, dimensions, the number of training

sets, and the number of testing sets. The experiments were conducted on a desktop

computer equipped with an Inter(R) Core(TM) i7-4790 CPU and 32-GB RAM using

MATLAB 2021b.

Data Classes Features Training Testing
dna 3 180 2000 1186
usps 10 256 7291 2007

protein 3 357 17766 6621

Table 4.1: Data Information

The dna data set, as reported in a study [38], comprises of 3186 splice junctions.

Splice junctions represent the points on the DNA sequence where redundant DNA is

eliminated during the formation of proteins in complex organisms [21, 38]. To analyze

this data set, Ross King, a researcher at the University of Strathclyde, converted the

initial 60 symbolic attributes into 180 binary features, which resulted in a StatLog

57

version of the data set [21, 38]. As a result, the data set is now represented by 180

binary attributes and requires classification into three classes, such as ei, ie, and

neither. Here, e signifies exons, while i indicates introns [38]. The aim of analyzing

this data set is to identify the correct class for each splice junction based on the

available binary attributes. In other words, the task is to build a classification model

that can accurately predict whether a splice junction belongs to the exon-intron (ei),

intron-exon (ie), or neither (neither) category.

The United States Postal Service sponsored a research project on handwritten

text recognition, and the second data set usps chosen for our analysis was derived

from the project [34]. The raw data collection was conducted at the primary post

office in Buffalo NY, between 1987 and 1988 [34]. The data set comprises of raw

grayscale images of city, state, and zip codes, as well as bi-tonal images of alphabetic

and numeric characters [34]. For our experiments, we focused on recognizing the

numeric characters in the data set. Each location in the zip code has a true value

that is matched with the number generated by the segmentation algorithm [34]. The

training set is composed of randomly selected numbers from verified zip codes, with

7291 zip codes extracted from a total of 18468 for the experiment’s training set [34].

The original test set consisted of 2711 digit images [34], from which we selected

2007 digit well-segmented images as the test set for our current experiments. Our

R-OPLS model can accurately recognize numeric characters in postal codes based

on available image data. By enabling this, we can facilitate the automation of postal

code recognition and potentially increase the efficiency of the USPS mail processing

system.

The third data set selected for multi-class classification is the protein data set

from the Structural Classification of Proteins (SCOP) database [16]. The primary

objective of the SCOP database is to offer the public access to a collection of protein

58

sequences, which have been classified based on their structure and function into

a hierarchical arrangement [16]. The ultimate goal is to provide a thorough and

detailed representation of the structural and evolutionary associations among all

proteins with a known structure [16]. Our R-OPLS model can accurately identify

the class of each protein sequence based on its structural and functional features.

The features available in the data set can be used to classify proteins into different

classes such as enzymes, receptors, and transporters, etc.

4.2.2 Multi-class Classification on Input Space

There are many other mature models and algorithms for multi-class classi-

fication such as K-Nearest-Neighbors(KNN) [40, 67], Random Forest [14, 17], and

Decision Tree [4], we mentioned earlier. In this section, we chose the SVM, KNN,

and Random Forest to classify the multi-class data sets on input space.

First of all, let’s briefly introduce what Random Forest [4, 14, 17] is. The Ran-

dom Forest is an extension of the well-known decision tree algorithm for regression

and classification [4]. It creates a collection of classification trees by using a boot-

strap sample of training data and random features of the trees [17]. The ensemble

then aggregates to make a prediction [14]. Each decision tree in the forest judges and

classifies new input samples, and each decision tree has its own classification results

[4]. The final result of the Random Forest is based on the classification with the most

votes [17]. The Random Forest consist of four steps [4]: 1) Random sampling and

training decision trees; 2) Randomly choose a node splitting feature; 3) Repeat step

2 until no more splits; 4) Repeat step 1-3 to build a large number of decision trees

to form a random forest. In our experiments, we used the TreeBagger [14] function

within MATLAB to build the random forest model for multi-class classification. The

TreeBagger grows each tree based on the ClassificationTree [14] function, which

59

can take a randomly selected number of features for each decision split as an optional

input parameter. The number of grown trees is a crucial parameter in TreeBagger,

as the error decreases with an increase in the number of grown trees.

The evaluation of the performance of our multi-class classification model in

the input space will be based on the use of confusion matrix [14, 47]. The confusion

matrix is a widely used performance evaluation tool for classification problems in

machine learning[4, 53]. It is a table that summarizes the classification results of a

model by showing the number of correct and incorrect predictions for each class[4, 53].

Each column of confusion matrix represents the predicted class of the data point,

while each row represents the actual class of the data point. The diagonal blocks of

confusion matrix contain the true prediction for each class. Therefore, according to

the confusion matrix, there are several important measures that can be defined such

as accuracy, precision, and recall [4, 53].

Accuracy = Total Number of True Prediction
Total Number of Sample Size

;

Precision = Number of True Prediction in Each Class
Number of Total Prediction in Each Class

;

Recall = Number of True Prediction in Each Class
Actual Number of data in Each Class

;

Specifically, in Figures 4.2, 4.4, and 4.6, we present the confusion matrices for

the dna, usps, and protein datasets, respectively. These matrices provide a clear

and concise visualization of the classification results, which will be used to calculate

the accuracy, precision, and recall metrics. We will focus our analysis on accuracy,

as it is a widely-used and effective indicator for evaluating the overall performance

of the model.

Although all three indicators are useful in assessing model performance, we will

focus on accuracy for simplicity and consistency in subsequent experiments. How-

ever, it is important to note that precision and recall can provide additional insights

60

into the model’s performance, particularly when dealing with imbalanced datasets

or scenarios where certain types of errors are more costly than others. Therefore,

future work could explore the use of all three indicators and their trade-offs in dif-

ferent multi-class classification scenarios.

dna Data Set

We conducted experiments on the dna data set to evaluate the performance of

the random forest model. Specifically, we experimented with three different values

for the number of trees to be grown: 10, 50, and 100. To determine the optimal

number of grown trees for the highest accuracy, we analyzed the error rate for each

value by plotting it against the number of grown trees.

(a) Grown Trees=10 (b) Grown Trees=50 (c) Grown Trees=100

Figure 4.1: Error Curves on dna Data Set

The resulting error curves are shown in Figure 4.1. The plots demonstrate that

when the number of grown trees is less than 40, there is a significant change in the

error curve. However, when the number of grown trees exceeds 50, the error curve

becomes relatively flat and converges. Thus, we concluded that approximately 50

trees is an appropriate choice for the number of grown trees, and further experiments

will be conducted to validate this hypothesis.

61

(a) Grwon Trees=10 (b) Grwon Trees=50 (c) Grwon Trees=100

Figure 4.2: Confusion Matrices on dna Data Set

To evaluate the performance of the random forest model, we used confusion

matrices and three indicators, namely accuracy, precision, and recall. Figures 4.2(a)

to 4.2(c) depict the confusion matrices of the random forest algorithm with three

different numbers of grown trees. By analyzing these confusion matrices, we observed

that the precision of class 1 in the random forest model increases as the number of

grown trees increases. However, we also observed that a significant amount of data

belonging to class 1 was misclassified as class 3 in each experiment, resulting in

relatively low precision of class 3 and very low recall of class 1.

Furthermore, we found that the recall of class 1 is highest when the number of

grown trees is 50, but it is only 38.6%. Therefore, when the number of grown trees

is equal to 50, the overall accuracy rate is the highest at 81.87% for the multi-class

classification experiment based on random forest for the dna data. It is worth not-

ing that although the precision of class 1 reaches 100% when the number of grown

trees is 100, the recall rate of class 1 is still low, and a large amount of data is still

wrongly classified into class 3. Thus, selecting the appropriate number of grown trees

is crucial to achieving high accuracy rates in multi-class classification experiments.

Overall, our findings suggest that the random forest model is effective for multi-class

classification tasks, but careful selection of hyperparameters is necessary to achieve

62

optimal performance.

usps Data Set

The selection of an optimal number of trees is crucial for achieving accurate

predictions using a random forest algorithm. In this regard, we conducted exper-

iments with different numbers of trees and plotted the corresponding error curves

for the usps dataset. Initially, we set the number of trees to 10 and observed the

error curve, which is shown in panel (a) of Figure 4.3. As we increased the number

of trees, the error rate continued to decrease, indicating that the model had not yet

converged. Thus, we increased the number of trees to 50 and plotted the error curve,

as shown in panel (b) of Figure 4.3. We noticed that the error curve changed slowly,

but it did not completely stabilize even after growing 20 trees. Therefore, we further

increased the number of trees to 100 and plotted the corresponding error curve, as

shown in panel (c) of Figure 4.3. After analyzing the error curves in panel (c), we

observed that the error rate for the first 50 trees dropped significantly and then sta-

bilized, indicating that the model with 50 trees fits the dataset well. However, we

still need to confirm this conjecture through further experiments.

(a) Grown Trees=10 (b) Grown Trees=50 (c) Grown Trees=100

Figure 4.3: Error Curves with Grown Trees on usps Data

63

The random forest classification results and confusion matrices on the usps

data set are shown in Figures 4.4(a)-4.4(c). The test set for each category had a

relatively balanced amount of data, with about 200 data points in each category,

except for category 1, which had over 300 data points. Furthermore, we observed

that some data points in each class were misclassified as other classes. In particular,

the precision of class 7 increased significantly with an increase in the number of grown

trees. When the number of grown trees was 10, the precision of class 7 was only 69%.

However, as the number of grown trees increased to 50 and 100, the precision of class

7 reached more than 85%. Similarly, as the number of grown trees increased, the

precision and recall of other classes also correspondingly increased.

(a) Grwon Trees=10 (b) Grwon Trees=50 (c) Grwon Trees=100

Figure 4.4: Confusion Matrices on usps Data Set

protein Data Set

Similar to the previous two sets of experimental data, we conducted a random

forest experiment and investigated the error graphs for different numbers of grown

trees for the protein data set. We planted the grown trees ranging from 50 to 300

in increments of 50 and examined the error curves for 100, 150, and 200 trees, as

depicted in Figure 4.10. The error curve indicates that the accuracy of the algorithm

increases with the number of grown trees until a threshold is reached, beyond which

64

the performance saturates or even deteriorates due to overfitting. In this case, the

error curves continued to decrease as the number of grown trees was less than 200,

indicating that more trees were necessary to enhance performance. However, the

curve started to flatten when the number of grown trees grew beyond 200, indicating

that further increasing the number of grown trees did not significantly improve per-

formance. Thus, we concluded that 200 is the optimal number of grown trees for the

Random Forest algorithm with the protein data set. These results can serve as a ref-

erence for future experiments or practical applications of protein data classification

using the random forest algorithm.

(a) Grown Trees=100 (b) Grown Trees=150 (c) Grown Trees=200

Figure 4.5: Error Curves with Grown Trees on protein Data

To evaluate the generalization performance of the random forest method, we

plotted the confusion matrix for different numbers of grown trees. Figure 4.6 presents

the performance of the random forest method when the number of grown trees was

100, 150, and 200, respectively. The results showed that growing 200 trees led to

higher recall and precision per class of data. Recall measures the proportion of

true positive instances that are correctly classified, while precision measures the

proportion of positive predictions that are correct. The confusion matrix revealed

that class 1 had the highest recall, indicating that most instances belonging to class 1

65

were correctly classified. On the other hand, class 2 had the lowest recall, indicating

that the algorithm had difficulty distinguishing class 2 from the others. The accuracy

value for each class reflected the overall accuracy of the algorithm for that class, with

higher values indicating fewer false positives.

(a) Grwon Trees=100 (b) Grwon Trees=150 (c) Grwon Trees=200

Figure 4.6: Confusion Matrices of Random Forests on protein Data

In addition to the Random Forest method, we also employed the KNN [36]

algorithm to classify three multi-class data sets: dna, usps, and protein. The

KNN algorithm is a straightforward yet effective classification technique that assigns

a new instance to the class that is most common among its K nearest neighbors in

the training set. However, determining the optimal value of K for a given data set

is critical for achieving good generalization performance [71]. We used the 5-folder

cross-validation [60] method to evaluate the performance of the KNN algorithm. This

method partitions the data into five equal subsets, trains the model on four of them,

and evaluates it on the remaining subset [1, 36]. This process is repeated five times,

with each subset serving as the testing set once. The results are then averaged to

obtain an estimate of the algorithm’s performance on unseen data [36, 67, 71].

Figure 4.7 shows the optimal value of K for each data set. For the dna data

set, the optimal value of K is 51, indicating that the algorithm considers the 51

66

(a) dna Data Set (b) usps Data Set (c) protein Data Set

Figure 4.7: Accuracy of KNN on Input Space

nearest neighbors of a new instance to make a classification decision. For the usps

data set, the optimal value ofK is 3, suggesting that the algorithm only considers the

three nearest neighbors in this case. Finally, for the protein data set, the optimal

value of K is 97, indicating that the algorithm needs to look at a larger number of

neighbors to achieve optimal performance.

It is worth noting that the choice of K affects the bias-variance trade-off of the

algorithm. Smaller values of K result in higher variance and lower bias, while larger

values of K lead to lower variance and higher bias. Selecting the optimal value of K

is crucial for achieving good generalization performance and avoiding overfitting or

underfitting the data.

Table 4.2 shows the classification accuracy results of three multi-class data sets,

namely dna, usps, and protein, using three different classifiers in the input space.

The classifiers used were KNN, Random Forest, and Least Squares.

Data Set KNN Random Forest Least Squares
dna 87.18% 81.87% 88.87%
usps 95.07% 90.23% 87.29%

protein 59.79% 67.91% 63.30%

Table 4.2: Summary of Classification Accuracy on Input Space

67

In general, the Table 4.2 suggests that KNN and Least Squares performed

better than Random Forest in terms of classification accuracy. Among the three

classifiers, Least Squares achieved the highest classification accuracy on the dna

data set, KNN achieved the highest accuracy on the usps data set, and Random

forest has the best performance on protein data set.

For the dna data set, least squares method achieved an accuracy of 88.87%,

which is higher than the accuracy achieved by Random Forest (81.87%) and KNN

(87.18%). Similarly, for the usps data set, KNN achieved the highest accuracy of

95.07%, followed by Random Forest with an accuracy of 90.23%, while Least Squares

had the lowest accuracy of 87.29%. For the protein data set, Random Forest had the

highest accuracy of 67.91%, followed by Least Squares with an accuracy of 63.30%,

while KNN had the lowest accuracy of 59.79%. Overall, the results suggest that the

choice of classifier is data-dependent, and different classifiers may perform differently

on different data sets.

Based on the aforementioned experiments, it can be observed that KNN, Ran-

dom Forest, and Least Squares methods can only perform classification in the original

data space without the possibility of dimensionality reduction. However, our newly

developed R-OPLS model can effectively reduce the dimensionality of data while pre-

serving high classification accuracy. By projecting the data onto a low-dimensional

subspace using the projection matrix P of the R-OPLS model, classification experi-

ments can be conducted with higher efficiency. This can greatly improve the overall

experimental efficiency. In the next section, we will discuss the classification exper-

iments conducted using R-OPLS in the projected subspace for the aforementioned

three data sets.

68

4.2.3 4.2.3 Multi-class Classification on Projected Subspace

4.2.3.1 Softmax Function

In this section, we utilized the one-hot representation of class labels to repre-

sent the indicator matrix Y ∈ {0, 1}c×n and the centered matrix Ŷ = Y H ∈ Rc×n,

where H = In − 1
n
1n1

T
n ∈ Rn×n is the centering matrix. By applying mathematical

deduction of R-OPLS, we obtained the prediction result as a Rc×n matrix. Subse-

quently, the softmax activation function was applied to calculate the probability of

the testing data points belonging to each class. Consequently, we obtained a Rc×n

matrix, where each column corresponded to the prediction information for each test-

ing data point, and each row contained the probability that the testing data belonged

to each class.

To obtain the predicted labels for the testing data set, we set the maximum

value of each column in the softmax result to 1 and the remaining values to 0. We

achieved this by employing the vec2ind function available in MATLAB. In summary,

the process involved the transformation of the probability matrix to an index ma-

trix, where the index represented the predicted label for each testing data point. By

using the one-hot representation of the class labels and applying the softmax acti-

vation function, we were able to generate the predicted labels for the testing data set.

dna Data Set

For the alternating iteration experiment on the dna data set, we followed

the same initial parameter settings as in the binary classification experiment. The

parameter C was selected as 0.01, 0.1, 1, and 10, and the parameter λ was set to

0.1, 0.5, 0.7, and 0.9. We employed the quadprog solver and the projected gradient

descent (PGD) method for alternating iteration experiments. It was observed that

69

the convergence of the objective function was significantly affected by the parameter

λ. After conducting several experiments, we found that the optimal value for λ

was 0.5. Additionally, the optimal value for C was determined to be between 1

and 10. To determine the best parameter combination for the dna data when using

the softmax function, we performed 5-fold cross-validation. The optimal parameter

combination was found to be C = 1.5 and λ = 0.5. Figure 4.8 illustrates the curves in

the objective function during the alternate iteration experiments when the quadprog

solver and PGD were used, respectively.

(a) quadprog (b) PGD

Figure 4.8: Iteration Plots on dna Data

To determine the appropriate projection dimension k, we examined the eigen-

value curve of the dna dataset obtained using the quadprog solver and projected

gradient descent method, as shown in Figure 4.9. We observed that the eigenvalue

curve starts to flatten after 60 when using both methods, suggesting that we can effec-

tively reduce the dimensionality of the data while preserving its class-discriminating

information.

70

(a) quadprog (b) PGD

Figure 4.9: The Plots of Eigenvalues on dna Data

To evaluate the effectiveness of R-OPLS model for multi-class classification

tasks on the dna data set, we conducted a classification experiment by randomly

selecting 80% of the data as the training set and setting the remaining 20% as the

test set. We varied the value of k from 10 to 60 and repeated the experiment 10

times at each value of k, recording the results and taking the average.

Solver
k

k = 50 k = 40 k = 30 k = 20 k = 10

quadprog 89.59± 1.79% 89.50± 0.78% 89.57± 1.65% 89.29± 2.93% 89.84± 2.17%
PGD 88.86± 2.05% 89.23± 1.84% 89.89± 1.49% 89.12± 1.48% 89.28± 1.63%

Table 4.3: Accuracy with Selection of k on dna Data

These results demonstrate the effectiveness of our R-OPLS algorithm for reduc-

ing the dimensionality of the dna data set while preserving its class-discriminating

information, leading to high classification accuracy.

usps Data Set

71

The usps data set under consideration comprises of raw data descriptions

consisting of both gray-scale images and bi-tonal images of alphabetic and numeric

characters, pertaining to city, state, and zip code information[34]. The scope of our

experiments focuses on recognizing the numeric characters within the zip code im-

ages. To achieve this, [34] employ a segmentation algorithm that maps each location

within the zip code image to a corresponding numerical output value. The training

set used in our experiments comprises randomly selected numbers from verified zip

codes, with a total of 7291 zip codes extracted from a pool of 18468 zip codes[34].

The original test set consists of 2711 digital images[34]. However, [34] have hand-

picked 2007 of these images, which exhibit well-segmented numeric characters, to

use as the testing set for the experiments. To ensure that the performance of our

model is not affected by poorly segmented characters or other artifacts in the data,

we redistribute the training and testing data. We integrate all given training and

test data and randomly select 80% of them as the training set, and the remaining

20% as the test set.

To determine the optimal parameter combination for the usps data set, we

conduct alternating iterative experiments combined with five-fold cross-validation,

and find that the optimal parameter combination is C=1 and λ=0.5. We use the

quadprog solver and the projected gradient descent method to conduct alternate

iterative experiments. Figure 4.10 shows the change curve of the function value when

the quadprog solver and the projected gradient descent method are used respectively

under the optimal parameter combination.

To gain insight into the correlation of features in the usps data set, we analyze

the variation of eigenvalue curves and select the most relevant features. Figure 4.11

shows the eigenvalue plot, which indicates that the eigenvalue curve flattens after 30

iterations in the quadprog solver and PGD.

72

(a) quadprog (b) PGD

Figure 4.10: Iteration Plots on usps Data

(a) quadprog Solver (b) Projected Gradient Descent

Figure 4.11: The Plots of Eigenvalues on usps Data

To evaluate the performance of our R-OPLS algorithm on the usps data set, we

conduct classification experiments by varying the projection dimension k between 10

and 60. For each value of k, we repeat the experiment 10 times and take the average

value. The experimental results are reported in Table 4.4. Our results demonstrate

high classification accuracy on the projected subspace using R-OPLS for multi-class

classification tasks on the usps data set.

protein Data Set

73

Solver
k

k = 50 k = 40 k = 30 k = 20 k = 10

quadprog 90.63± 0.82% 90.07± 0.74% 90.29± 0.78% 89.97± 0.59% 90.37± 0.71%
PGD 90.39± 0.42% 90.23± 1.01% 90.08± 0.46% 90.32± 0.33% 90.06± 0.75%

Table 4.4: Accuracy with Selection of k on usps Data

Our experiment with the protein data set involved a redistribution of the

training and testing data, where all the given data was combined, and 80% of it was

randomly selected as the training set while the remaining 20% was set aside as the

test set. We conducted the alternating iteration experiment with the quadprog solver

and projected gradient descent method, while utilizing the 5-fold cross-validation

technique to determine the optimal parameter combination for the protein data

set. Through this analysis, we identified the optimal values of C = 1 and λ = 0.5,

as shown in the convergence plots of the objective function values in Figure 4.12.

(a) quadprog (b) PGD

Figure 4.12: Iteration Plots on protein Data

Furthermore, we conducted eigenvalue analysis to gain a deeper understanding

of the features present in the protein dataset. The eigenvalue plots in Figure 4.13

74

showed that the eigenvalue curves flattened after 60 iterations for both the quadprog

solver and projected gradient descent method.

(a) quadprog Solver (b) Projected Gradient Descent

Figure 4.13: The Plots of Eigenvalues on protein Data

Based on these results, we performed a series of classification experiments for

different values of k, ranging from 10 to 60. We repeated the experiments 10 times

for each value of k and recorded the average classification accuracy. The results of

these experiments are presented in Table 4.5.

Solver
k

k = 50 k = 40 k = 30 k = 20 k = 10

quadprog 65.81± 1.14% 65.93± 0.59% 65.98± 0.60% 66.32± 1.25% 65.87± 0.87%
PGD 65.32± 1.39% 65.75± 0.98% 65.71± 0.92% 66.14± 1.35% 65.59± 0.58%

Table 4.5: Accuracy with Selection of k on protein Data

By analyzing the results in Table 4.5, we observed that the classification accu-

racy of the protein data set improved as we increased the value of k. The optimal

projection space for this dataset was found to be k = 60, which provided the most

discriminative features for accurate classification. When using the quadprog solver,

75

the classification accuracy achieved with k = 60 was 63.80% on the test set, which

is the highest among all the tested projection spaces.

In order to gain a better understanding of the distribution of data in the dna

and protein datasets, we performed dimensionality reduction to visualize the data

in 2D and 3D space, as shown in Figure 4.14. By projecting high-dimensional data

into a low-dimensional space, we can more easily perceive the underlying patterns

and structures of the data, which can provide valuable insights for future analysis

and interpretation.

(a) dna (2-D) (b) protein (2-D)

(c) dna (3-D) (d) protein (3-D)

Figure 4.14: Visualization

The 2D and 3D visualizations of the dna and protein data sets allow us to

observe the distribution and clustering of the data points in a more intuitive manner.

In the 2D visualizations, we can see the relationships between the different classes

76

and how they are distributed throughout the space. In the 3D visualizations, we

can gain a more comprehensive understanding of the relationships between the data

points and the patterns that emerge from the clustering. It should be noted that

the usps data set contains a total of 10 classes, which can result in a cluttered and

unclear scatter plot. Therefore, we have chosen not to include a spatial scatter plot

of the usps data set here.

In this section, we present the results of our multi-class classification experi-

ments using the R-OPLS model on three distinct datasets. Our experiments illus-

trate the R-OPLS model’s effectiveness in reducing dimensionality while achieving

high classification accuracy in the projected subspace.

We observed that the R-OPLS model generates two classifiers simultaneously,

but we only demonstrated the R-OPLS classifier due to the SVM classifier’s design for

binary classification tasks. To address this limitation, we will introduce two methods,

One-vs-Rest (OVR) and One-vs-One (OVO), to the R-OPLS model in next section.

These methods transform multi-class classification problems into multiple binary

classification problems, allowing us to use the R-OPLS model’s two classifiers for

classification prediction.

4.2.3.2 One-vs-Rest (OVR)

The OVR classifier is a popular approach for multi-class classification problems

that utilizes binary classification algorithms. The method partitions the multi-class

data set into multiple binary classification problems based on the rule of one class

is positive, the rest are negative [32]. In this strategy, c binomial classifiers are

trained, where c represents the number of classes in the data set. During testing,

each classifier makes a prediction, and if only one classifier predicts a positive class,

then the corresponding class label is assigned as the final classification result [57].

77

However, if multiple classifiers predict positive classes, the class with the highest

confidence score is selected as the final classification result [57]. This approach can

be effective for datasets with multiple classes and can provide accurate classification

results.

Consider the example of the dna data set with 3 classes: C1, C2, and C3. In

the OVR method, we need to create 3 classifiers, namely f1, f2, and f3. During the

testing process, the classification process is as follows:

+ − classifiers results

C1 C2 C3 ⇒ f1 → −

C2 C1 C3 ⇒ f2 → −

C3 C1 C2 ⇒ f3 → +

The example above demonstrates how the OVR classifier works. During the

testing process, we classify a test instance by applying all three classifiers to it. If

only one classifier predicts a positive class, then we use the corresponding class label

as the final classification result. For instance, if only f3 predicts a positive class out-

come and the other classifiers predict negative class outcomes, we predict the class

label C3 for that test instance. If more than one classifier predicts a positive class,

we choose the class with the highest confidence level as the final classification result.

In other words, we select the class label associated with the classifier that assigns

the highest probability to the test instance belonging to that class.

dna Data Set

The dna data set is a challenging classification problem consisting of three

distinct classes: ei, ie, and neither. To address this problem, we employed the

One-vs-Rest (OVR) technique with the R-OPLS model to construct three binary

78

Algorithm 4.1 One-vs-Rest Multi-classification

Require: Training set X, consisting of n examples with d features and c possible

class labels

Ensure: Predicted class label for a new input vector x′

1: for i = 1 to c do

2: Construct a new binary training set Xi by relabeling the examples with class

label i as positive and all other class labels as negative

3: Train a binary classifier fi(x) on Xi

4: end for

5: Compute the output of each binary classifier fi(x
′) for the new input vector x′

6: Return the class label with the highest output as the predicted label

classifiers. Each classifier was trained to distinguish between one positive class and

two negative classes. By breaking down the classification task into separate binary

problems, we were able to effectively handle the complex data and achieve accurate

results.

In previous experiments, we analyzed the parameters C and λ and found their

optimal values to be 1.5 and 0.5, respectively. We also observed that the iteration

curve remained convergent across different values of k when these parameters were

employed. Identifying the optimal values of parameters can improve the performance

and accuracy of models. Moreover, the convergence of the iteration curve suggests

that our models are robust and can generalize well to new data.The convergence of

the iterative curves across different values of k is also demonstrated in the Figure

4.15. The results indicate that the chosen values of C = 1 and λ = 0.5 led to

convergent iteration curves in each binary classification experiment. This suggests

79

that the models were effective in handling the complexity of the dna data set and

were able to achieve accurate results.

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 35 (f) k = 20

Figure 4.15: OVR Method Iteration plots on dna Data

These findings have important implications for the application of machine

learning techniques to the dna data set. By identifying the optimal values for C

and λ, we can improve the performance and accuracy of our models. Furthermore,

the convergence of the iteration curve across different values of k provides evidence

of the robustness and stability of our models, and suggests that they are able to

generalize well to new data. Overall, these results highlight the importance of pa-

rameter selection and model validation in machine learning. By conducting rigorous

experiments and carefully analyzing our results, we can ensure that our models are

accurate, reliable, and effective in real-world applications.

80

We conducted experiments on the dna data set by varying the value of k, and

generated eigenvalue plots as shown in Figure 4.16. In each plot, we observed that

the curves began to converge at around k = 60. This indicates that the effective

number of features for each model is approximately 60. Therefore, in our prediction

experiments, we utilized a dimensionality reduction space with a value range around

k = 60. The eigenvalue plots provide valuable insights into the behavior of our

models at different values of k. By analyzing these plots, we were able to determine

the optimal value for k and identify the most important features for each model.

This allowed us to refine our approach and improve the accuracy of our predictions.

Furthermore, these results demonstrate the importance of dimensionality reduction

in machine learning. By reducing the number of features in our models, we were able

to improve their efficiency and accuracy, and obtain more meaningful insights from

our data.

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 35 (f) k = 20

Figure 4.16: eigenvalue plots on dna Data

81

As previously mentioned, our novel R-OPLS model allows us to obtain two

classifiers: the R-OPLS classifier and the SVM classifier, simultaneously. To evaluate

the performance of these classifiers, we conducted a classification experiment with

varying values of k, ranging from 60 to 10. The results of this experiment are

presented in Table 4.6, and indicate the accuracy achieved by each classifier.

Model
Data Selection

k=60 k=50 k=40 k=30 k=20 k=10

dna
R-OPLS 88.87% 88.87% 88.87% 88.87% 88.87% 88.87%
SVM 88.95% 89.12% 89.21% 89.46% 89.21% 88.87%

Table 4.6: Accuracy of OVR Multi-Class Classification for dna Data Set

The accuracy results show that both the R-OPLS-related classifier and the

SVM-related classifier achieved high levels of accuracy across all values of k. These

findings suggest that our R-OPLS model is an effective and reliable approach for

classifying the dna data set. By simultaneously obtaining two classifiers, we can

obtain more accurate and robust results, and gain deeper insights into the underly-

ing patterns and relationships in the data. Additionally, the high levels of accuracy

achieved by our models highlight the potential of machine learning techniques for

solving complex real-world problems.

usps Data Set

The usps data set is a well-known benchmark data set that consists of hand-

written digit images from 0− 9. The objective of the classification task is to predict

the correct digit label for each image. However, since there are 10 classes in this data

set, we cannot use a binary classifier directly for classification. To address this issue,

we use the OVR strategy, which involves training 10 separate binary classifiers using

82

the R-OPLS model. Each binary classifier is trained to distinguish between one digit

as the positive class and all other digits as the negative class. This approach effec-

tively decomposes the multi-class classification problem into 10 binary classification

problems.

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 20 (f) k = 10

Figure 4.17: OVR Method Iteration plots on usps Data

During the training process, we apply several pre-processing techniques to the

usps data set, including splitting the data into training and testing sets and stan-

dardizing the data to ensure that all features are on the same scale. The R-OPLS

algorithm is then applied to each binary classification problem to learn the optimal

subspace that separates the positive class from the negative class. To ensure that the

trained models generalize well, we evaluate their performance on the held-out test-

ing set. The testing data is projected onto the subspace found during training, and

each binary classifier is used to predict the class label of each observation. The over-

83

all classification accuracy is then calculated as the percentage of correctly classified

observations.

We monitor the convergence of the R-OPLS algorithm by plotting the objective

function value against the iteration number. The objective function measures the

separation between the positive and negative classes in the subspace. The Figure

4.17 objective function value decreases as the algorithm converges, indicating that

the classes are becoming more separated. After the convergence analysis, we can

also plot the eigenvalues of the subspace to see how many eigenvalues are needed

to capture the majority of the variance in the data as shown in Figure 4.18. This

analysis can help us choose the most informative features for classification.

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 20 (f) k = 10

Figure 4.18: eigenvalue plots on usps Data

Once the optimal subspace is chosen, we can train the one-vs-rest classifiers

using the R-OPLS subspace and evaluate the classification accuracy on the testing

84

set. The classification accuracy can be calculated as the percentage of observations

that are correctly classified as shown in Table 4.7. Overall, the R-OPLS with OVR

approach can provide a powerful and efficient way to classify high-dimensional data

into multiple categories. By analyzing the convergence and eigenvalue plots, we

can choose the optimal subspace and features for classification, resulting in high

classification accuracy.

Model
Data Selection

k = 60 k = 50 k = 40 k = 30 k = 20 k = 10

usps
R-OPLS 87.29% 87.29% 87.29% 87.29% 87.29% 87.29%
SVM 87.84% 87.79% 87.99% 87.99% 87.84% 87.79%

Table 4.7: Accuracy of OVR Multi-Class Classification for usps Data Set

protein Data Set

The last multiclass classification experiment with the OVR approach involves

the use of a data set named protein. Our methodology for this task utilizes the OVR

approach, which involves the training of three binary classifiers using the R-OPLS

model. Each classifier is trained to classify one class as positive and the remaining

two as negative, in their corresponding binary classification problem.

To train the binary classifiers, we use the R-OPLS algorithm to learn the

optimal subspace that separates the positive and negative classes for each problem.

During training, we experiment with varying the number of subspace dimensions and

choose the one that yields the highest classification accuracy on the validation set.

Once trained, we evaluate each binary classifier’s performance on the test set, where

the data is projected into the subspace found during training, and each classifier

predicts a class label for each observation. The overall classification accuracy is then

calculated as the percentage of correctly classified observations.

85

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 20 (f) k = 10

Figure 4.19: OVR Method Iteration plots on protein Data

We start by examining the objective function curves of each group of binary

classifiers to ensure convergence of the function values to the R-OPLS model. Figure

4.19 displays these curves, which we carefully evaluate to ensure convergence.

After confirming convergence, we use the R-OPLS model for dimensionality

reduction. To guarantee optimal performance, we thoroughly analyze the eigenvalue

variation curve and find that the eigenvalue curve becomes flatter after k = 14.

This information is represented in Figure 4.20. The choice of spatial dimension

significantly affects classification model performance. For instance, when using the

softmax function, the eigenvalue curve converges at a much higher value of k = 70

than the optimal value determined using R-OPLS with the OVR method. This result

indicates that R-OPLS with OVR method can lead to lower effective dimensionality

reduction space and faster convergence of eigenvalue curves. For consistency pur-

86

(a) k = 60 (b) k = 50 (c) k = 40

(d) k = 30 (e) k = 20 (f) k = 10

Figure 4.20: eigenvalue plots on protein Data

poses, we set the value range of k from 10 to 60, with an interval of 10. The Table

4.8 shows the experimental results.

Model
Data Selection

k = 60 k = 50 k = 40 k = 30 k = 20 k = 10

protein
R-OPLS 64.88% 64.88% 64.88% 64.88% 64.88% 64.88%
SVM 64.49% 64.60% 64.57% 64.99% 64.84% 64.79%

Table 4.8: Accuracy of OVR Multi-Class Classification for protein Data Set

Overall, the R-OPLS model combined with the OVR method is used for di-

mensionality reduction for the protein dataset’s multiclass classification problem.

Our approach leads to faster convergence and improved performance compared to

traditional methods such as the softmax function. Additionally, table 4.8 demon-

87

strates the effectiveness of our method in accurately classifying data into multiple

categories.

4.2.3.3 One-vs-One (OVO)

The One-vs-One (OVO) classifier is a popular heuristic method for multi-

classification problems that uses binary classification algorithms. This classifier

works by combining every two classes in a given dataset into a pair, and then treat-

ing each pair as a binary classification task. As a result, there are c(c− 1)/2 binary

classification tasks in the OVO classifier, where c is the number of classes in the data

set [18].

When making predictions, test instances are fed into these binary classifiers,

which then vote and calculate which class has the most votes [32]. For example,

suppose we have a data set with three classes C1, C2, and C3, and we need to create

three binary classifiers for each pair of classes, i.e., f1, f2, f3. For each test instance,

the classification process involves passing the instance through each binary classifier,

and the resulting votes are counted to determine the predicted class.

In the algorithm, the binary classifiers are trained on subsets of the training

data that only include examples from the two classes being compared. Then, for a

given test instance, each binary classifier produces a vote for one of the two classes.

The final predicted class is determined by counting the votes for each class and

choosing the one with the highest number of votes.

To perform multi-class classification using the OVO method, we partition the

dataset into multiple parts based on the number of classes in the dataset. For

instance, the dna dataset contains three classes, and we assign X1 to class 1, X2 to

class 2, and X3 to class 3. Using this approach, we can obtain three classifiers for

the data set as there are 3(3−1)
2

= 3 possible pairs of classes.

88

Algorithm 4.2 One-vs-One Multi-classification

Require: Training set X, consisting of n examples with d features and k possible

class labels

Ensure: Predicted class label for a new input vector x′

1: for i = 1 to k − 1 do

2: for j = i+ 1 to k do

3: Construct a new binary training set Xi,j by selecting only the examples

with class label i or j

4: Train a binary classifier fi,j(x) on Xi,j

5: end for

6: end for

7: Count the number of votes for each possible class label by comparing the output

of each binary classifier fi,j(x
′)

8: Return the class label with the highest number of votes as the predicted label

During the training phase, we use the R-OPLS algorithm to learn all of the

binary classifiers that separates the positive (1) and negative classes (-1). After train-

ing, we evaluate the performance of each binary classifier on the test set. The test

data is projected into the subspace found during training, and each binary classifier

is used to predict a class label for each observation. The final classification result is

then obtained by combining the results of all the classifiers in the form of voting.

dna Data Set

To determine the optimal parameter combination for the R-OPLS algorithm

for the dna dataset, we conducted a series of experiments and found that C = 1

and λ = 0.5 provide the best results. We also generated iteration graphs for each

89

classifier by varying the number of subspace dimensions k during the training phase.

From Figure 4.21, all plots are convergent.

(a) k = 20 (b) k = 32

Figure 4.21: OVO Method Iteration plots on dna Data

Additionally, by analyzing the eigenvalue curves in Figure 4.22, we observed

that the curves started to converge around k = 40. Therefore, for the classification

experiment, we chose the value range of k to be from 30 to 50, with an interval of

10, to ensure consistency with the previous experiments. The classification results

obtained using the R-OPLS model with the OVO method are presented in Table 4.9.

(a) k = 20 (b) k = 32 (c) k = 40

Figure 4.22: eigenvalue plots on dna Data

90

Model
Data Selection

k = 60 k = 50 k = 40 k = 30 k = 20 k = 10

dna
R-OPLS 86.76% 87.76% 87.76% 87.76% 87.76% 87.76%
SVM 85.74% 85.08% 85.50% 85.58% 85.58% 84.65%

Table 4.9: Accuracy of OVO Multi-Class Classification for dna Data Set

usps Data Set

The usps data set totally has 10 classes, then we also select X1 with class1,

X2 with class2, . . . , X10 with class10. The number of classifier is 10(10−1)
2

= 45. We

also used the input data X1 and X2 to train the first classifier, and we reset the

labels of X1 and X2 as 1 and −1. Follow the same process, the OVO classification

approach can obtain 45 classifier results. As we have done previously during testing,

each instance is input to 45 classifiers for testing, and then a set of results is obtained

in the form of voting.

(a) k = 20 (b) k = 25 (c) k = 30

(d) k = 31 (e) k = 35 (f) k = 50

Figure 4.23: OVO Method Iteration plots on usps Data

91

During the usps dataset classification experiments using the OVO method,

we performed iteration graphs for each classifier by selecting different k values. The

graphs revealed that all the curves converge, as demonstrated in Figure 4.23. Since

the usps data set has ten classes, 45 models need to be created for OVO multi-class

classification. In each plot, only the first ten model iteration curves are shown.

To gain insights into the number of effective features per model, we plotted

the change graph of the eigenvalue curve in each group of binary classification ex-

periments, as shown in Figure 4.24. The curves began to converge around k = 31 in

all images, which implies that each model has about 31 effective features. Therefore,

the value range of the dimensionality reduction space in the prediction experiment

ranges around k = 31.

(a) k = 20 (b) k = 25 (c) k = 30

(d) k = 31 (e) k = 35 (f) k = 50

Figure 4.24: eigenvalue plots on usps Data

92

To ensure the consistency of the experiment, we tested the classification accu-

racy under the same k value selected in the previous experiment, as shown in Table

4.10.

Model
Data Selection

k = 60 k = 50 k = 40 k = 30 k = 20 k = 10

usps
R-OPLS 88.10% 87.18% 87.47% 88.33% 87.38% 87.79%
SVM 88.27% 88.34% 87.90% 88.20% 88.75% 88.10%

Table 4.10: Accuracy of OVO Multi-Class Classification for usps Data Set

protein Data Set

The protein data set have used the same procedure of OVO as the procedure

in the dna data set. The number of classifier is 3(3−1)
2

= 3. By using the input data

X1 and X2 to train the first classifier, and we reset the labels of X1 and X2 as “1”

and “-1”. Follow the same process, the OVO classification approach can obtain 3

classifier results. During the testing, each instance is input to three classifiers for

testing, and then a set of results is obtained in the form of voting. The classification

process is shown as below.

As shown above, the class C3 has the most results, so the classification predic-

tion result for this testing instant is class C3.

(a) k = 20 (b) k = 15 (c) k = 13

Figure 4.25: OVO Method Iteration plots on protein Data

93

When select different k, we obtained the eigenvalue plots as shown follows in

Figure 4.26. In all images, the curves start to converge around k = 40, that is to

say, the number of effective features of each model is about 40, so in the prediction

experiment, the value range of the dimensionality reduction space is around k = 40.

(a) k = 20 (b) k = 15 (c) k = 13

Figure 4.26: eigenvalue plots on protein Data

Table 4.11 presents the classification accuracy results with different projected

subspace for the protein data set. The values are shown for each classifier, as well

as the overall accuracy obtained through voting.

Model
Data Selection

k = 60 k = 50 k = 40 k = 30 k = 20 k = 10

protein
R-OPLS 63.66% 63.66% 63.66% 63.66% 63.66% 63.66%
SVM 63.25% 63.50% 63.28% 63.36% 63.66% 63.36%

Table 4.11: Accuracy of OVO Multi-Class Classification for protein Data Set

94

CHAPTER 5

A Novel Regularized OPLS Model for Multi-view classification Learning

5.1 R-OPLS Model for Multi-view Classification Learning

In practical, a target can be described from many different approaches or dif-

ferent angles, and these different descriptions constitute multiple views. Multi-view

data widely exists in the real world and affects all aspects of people’s lives. For

example, a video can be described as a multi-view data source containing images,

audio, and subtitles [46, 68, 70]. A magazine article can be viewed as containing

images and text [46, 68]. The hospital’s physical examination report also includes

multi-view information such as text descriptions, digital indicators, and image de-

scriptions [46, 68, 70]. Data from different views usually contain complementary

information, which multi-view learning can exploit to learn more comprehensive rep-

resentations than single-view learning methods [46, 68, 70]. Due to the increasing

use of multi-view data in practical applications, multi-view learning mechanisms have

attracted more and more attention from researchers [79]. Since the information rep-

resentation ability of data largely determines the performance of machine learning

methods, multi-view learning becomes a very promising development direction with

wide applicability [46]. Multi-view learning [46, 70, 79] is one such learning approach

that improves learning performance by exploiting complementary information among

multiple views. Many basic algorithms for multi-view learning have been proposed

in literature. Assuming that these views are generated from common subspace, the

goal of their algorithm is to obtain this common latent subspace shared by all views

[79]. The subspace-based learning algorithms [69, 72, 79] have achieved significant

95

outcomes in many fields, such as speech recognition [46, 79] and bio-informatics

[68, 72].

In this thesis, we investigate a novel multi-view learning algorithm formulation,

multi-view R-OPLS, that can simultaneously take into account both least-squares-

based subspace-based multi-view learning and SVM learning.

The objective of subspace-based learning methods is to obtain a common la-

tent subspace that is shared by multiple views, under the assumption that the input

views are generated from this common subspace [70]. Among the subspace-based

learning models that already exist, the most typical classic models are canonical cor-

relation analysis (CCA) (Hotelling, 1936) [75], partial least squares (PLS) (H.Wold,

1983) [25], Linear Discriminant Analysis (LDA) (Belhumeur, 1996) [87], and principal

component analysis (PCA) (Karl Pearson, 1901) [31]. PCA is a well-known method

for reducing the dimensionality of data by projecting it onto a lower-dimensional

space while attempting to retain as much of the original data variance as possible

[68, 74]. The first principal component, which captures the maximum variance of a

specific scalar projection of the data, is placed on the first coordinate. The second

largest variance is placed on the second coordinate, and so on [74]. The objective

function of PCA is to minimize the sum of squares of distances between the original

data points and their projection on the new coordinate system under the constraint

that the new coordinates are orthogonal [31, 68]. This can be expressed as finding the

eigenvectors and eigenvalues of the covariance matrix of the data, where the eigen-

vectors correspond to the principal components and the eigenvalues represent the

amount of variance explained by each principal component [68]. This technique has

been widely used for data analysis and visualization, as well as for feature extraction

in machine learning applications, including finance, biology, image processing, and

natural language processing [31].

96

CCA was initially developed to learn two linear projection matrices that max-

imize the correlation between two views in a shared space [30, 79]. Specifically, CCA

has been the popular method as evidenced by its widespread use in vision [41, 68],

speech recognition [46, 79], media retrieval [9, 69], and language retrieval [41, 68, 75].

In recent studies, CCA has been extended beyond two views [37, 56, 79] and nonlinear

projections by fusing it with other learning modalities, such as supervised learning

[68] and kernel CCA [41]. Although CCA and KCCA demonstrate their good effec-

tiveness for modeling the relationship between two or more sets of variables, they

still have certain limitations in dealing with associations between multi-view data.

Inspired by deep neural networks [46, 66, 77], deep CCA [5] are proposed to ad-

dress this limitation. And in many studies, based on the basic theory of CCA and

the progress of deep neural networks, many researchers have proposed a large num-

ber of subspace-based multi-view learning algorithms. Proposals have been made

to reformulate the least squares algorithm of CCA for both supervised multi-label

classification and unsupervised learning of more than two views, and has been shown

to produce effective models and efficient learning algorithms [76, 79]. The approach

presented in [69], while effective, is limited to single-view classification as it treats

data points as one view and class labels as another [79]. Apart from the CCA series,

alternative forms of least squares, including coupled spectral regression [43, 79] and

partial least squares (PLS) [45, 79, 83], have been explored for both views.

In contrast to CCA and multi-view CCA, Multi-view Linear Discriminant Anal-

ysis (MLDA) [72] employs the within-class scatter matrix instead of the covariance

matrix. MLDA is a method used to analyze data from multiple sources or views by

reducing the dimensionality of the data [35]. The main objective of multi-view LDA

is to find a lower-dimensional subspace that maximizes the separation of classes in

each view while also aligning the subspaces across views [15]. This involves identi-

97

fying the relevant features for discriminating between classes, while considering the

correlations and differences between the different views of the data. Compared to

traditional LDA, which only handles data with a single view, multi-view LDA con-

siders the covariance matrices of each view separately and then computes a joint

covariance matrix that captures the relationships between the views [78]. The joint

covariance matrix is then used to determine the projection that maps the data to the

lower-dimensional subspace. Multi-view LDA has numerous applications in various

domains, such as natural language processing, computer vision, and bioinformatics,

where data is often collected from multiple sources or modalities [35, 78].

While the least-squares algorithm has been extensively studied for supervised

learning on single-view data, its potential for subspace multi-view learning has been

largely overlooked. Like single-view learning, the least squares approach can be also

used to express linear discriminant analysis (LDA) for binary classification [9] and

multi-class classification [87]. Since CCA has been demonstrated to be equivalent to

LDA for multi-class classification [31, 79], the least squares formulation can be shared

between CCA and LDA for supervised classification [31, 79, 87]. While CCA and

LDA have individual least squares models for two views, obtaining the least squares

models for multi-view data is not a simple task. Multi-view discriminant analysis

(MvDA) is an extension of regular LDA that supports multi-class classification in-

volving more than two views [5]. Rather than using the least squares approach,

multi-view classification techniques are typically formulated as trace ratio problems.

However, to simplify numerical treatment, the relaxed ratio trace problem is ulti-

mately solved, resulting in solutions that may not be optimal for the original models

[78].

R-OPLS can not only be used for binary classification and multi-class classifi-

cation under single view, but also can be extended to classification prediction under

98

multi-view. Next, we describe an experimental extension of R-OPLS under multiple

views to reveal the strengths of the proposed model [79].

Given m view labeled data set {(x(1)
i , . . . , x

(m)
i , yi)}, i = 1, . . . , n, where the ith

inputs x
(s)
i of all views have two class labels yi ∈ {−1,+1}, R-OPLS propose to seek

the projection matrix Ps ∈ Rds×k to transfer the input data x
(s)
i in each view from

Rds to the common space Rk, where s = 1, . . . ,m. Note that the proposed binary

classifier will be generalized for multi-class classification via OVR and OVO, which

will be explored in our experiment section. Define that the input data points of s

view is Xs = [x
(s)
1 , . . . , x

(s)
n] ∈ Rds×n. Assume that all view classifiers share the same

coefficient matrix W [79]. Multi-view R-OPLS can be formulated as minimizing the

sum of R-OPLS objectives for all m views, given by

min
Ps,W,vs

m∑
s=1

∥Ỹ −W TP T
s X̃s∥2F + λ

[
1

2
∥v∥22 + C

n∑
i=1

max(0, 1− yiv
T x̂i)

]
(5.1)

s.t. P T
s Ps = Ik,∀k,

x̂i = [P T
1 x̃

(1)
i ; . . . ;P T

mx̃
(m)
i],∀i,

where λ > 0 is the regularization parameter. And the label information matrix Y is

defined by one-hot representation as shown before, and Ỹ ∈ Rc×n and X̃s ∈ Rds×n

are matrices transformed from label information matrix Y and input data matrix Xs.

For example, the most natural choice is X̃s = X̂s := XsHn,∀s, and Ỹ = Ŷ := Y Hn.

For convenience of mathematics, we express d =
∑m

s=1 ds as the total number

of features for all m view input data set[79], then we obtain the concatenations of

{Ps}, {X̃s},and {Xs} as shown as follows:

99

P =

P1

P2

...

Pv

∈ Rd×k, X̃ =

X̃1

X̃2

...

X̃m

∈ Rd×n, X =

X1

X2

...

Xm

∈ Rd×n. (5.2)

Define

C̃ = X̄X̄T =

C̃11 C̃12 . . . C̃1m

C̃21 C̃22 . . . C̃2m

...
...

. . .
...

C̃m1 C̃m2 . . . C̃vm

∈ Rd×d, (5.3)

and its diagonal block part is

C̃diag =

C̄11

C̄22

. . .

C̄mm

∈ Rd×d, (5.4)

where C̃s,t = X̃sX̃t
T
,∀s, t = 1, . . . ,m.

From the OPLS mathematical parts, we obtained the first order optimality

condition of formula (5.1) with respect to W as shown follows:

m∑
s=1

−2P T
s X̃s(Ỹ −W TP T

s X̃s)
T = 0, (5.5)

and then the optimal solution of W is [79]

W ∗ = (
m∑
s=1

P T
s C̃ssPs)

−1

m∑
s=1

P T
s X̃sỸ

T = (P T C̃diagP)−1P T X̃Ỹ T . (5.6)

Then, following the same procedure we did in section 3.1, by substituting the

optimal W back into formula (5.1), and trading off square losses and hinge losses,

we can reformulate the multi-view problem as

100

max
α

min
P
−tr((P T (C̃diag+ϵId)P)−1P T X̃Ỹ T Ỹ X̃TP)−λ

2
tr(Ω−1P T X̃(α⊙y)(α⊙y)T X̃TP)+λ1T

nα

s.t. P TP = Ik, (5.7)

0 ≤ α ≤ C1n.

To streamline and enhance the optimization process, we also apply the identical

methodologies detailed in Subsection 2.2. The primary objective behind the design

of the flexibility matrix Ω was to ensure its numerical treatment is simple, while

also ensuring that the properties of Multi-view R-OPLS are preserved. For example,

when Ω = P T (C̃diag + ϵId)P , the problem (5.1) of Multi-view R-OPLS is equivalent

to

max
α

min
P
−tr(P T X̃[Ỹ T Ŷ +

λ

2
(α⊙ y)(α⊙ y)T]X̃TP) + λ1T

nα (5.8)

s.t. P T C̃diagP = Ik,

0 ≤ α ≤ C1n.

To address the optimization problem (5.8), we once again decompose it into

two sub-problems concerning the unknowns P and α, mirroring the approach taken

in Section 3.1.

5.2 Algorithms

The alternating method requires an initial value to start. To obtain the initial

value α, we solve the following problem

α0 = argmin
α

1

2
(α⊙ y)T X̃T X̃(α⊙ y)− 1T

nα : s.t. 0 ≤ α ≤ C1n. (5.9)

Problem (5.9) is a quadratic programming problem with box constraint. It can

be solved by quadprog solver in MATLAB.

101

Given α, we obtain the optimal P by solving

max
P

tr(P TQP) : s.t. P T (C̃diag + ϵId)P = Ik, (5.10)

where Q = X̃[Ỹ T Ỹ + λ
2
(α⊙ y)(α⊙ y)T]X̃T ∈ Rd×d.

The problem (5.10) is a generalized eigenvalue problem [26] on matrix Q with

(C̃diag+ϵId). The optimal P̂ is the eigenvectors of Q with (C̃diag+ϵId) corresponding

to top k eigenvalues [26]. The Lagrange multiplier is diagonal in the eigenvalue

problem.

In the alternating iterative experiments of multi-view R-OPLS, we utilized the

same approach as described in Section 3.1. We also employed two distinct methods

to solve α, namely the quadratic programming solver (quadprog) and the projected

gradient descent method (PGD). The results of these experiments were then com-

pared to evaluate the effectiveness of each method.

Given P , we obtain the optimal α by solving

min
α

1

2
(α⊙ y)T X̃TPP T X̃(α⊙ y)− 1T

nα (5.11)

s.t. 0 ≤ α ≤ C1n.

Then, denoting that B̃ = (X̃TPP T X̃)⊙ (yyT) ∈ Rn×n is positive definite, we

have the following optimization problem

min
α

1

2
αT B̃α− 1T

nα (5.12)

s.t. 0 ≤ α ≤ C1n.

When quadprogs is used with multi-view R-OPLS, the process of alternately

iteratively solving α and P is shown in Algorithm 5.1. At each iteration, quadprog

is used to solve for the updated values of α, while P is updated using the standard

generalized eigenvalue problem solver.

102

Algorithm 5.1 Multi-view R-OPLS Iteration with Quadratic Programming Solver

1: Initialization: solving α(0) by (5.9)

2: for i=1:50 do

3: Update P (i) based on (5.10)

4: Update α(i) based on (5.12)

5: end for

6: Output: α and P

In addition to using the quadratic programming solver, we can also use the

projected gradient descent method (PGD) [8] to obtain the optimal solution for α.

This method involves reformulating the problem as follows:

min
α∈A

g(α) := max
P

tr(P T X̂[Ŷ T Ŷ +
λ

2
(α⊙ y)(α⊙ y)T]X̂TP)− λ1T

nα, (5.13)

where A represents the domain of α, such as 0 ≤ α ≤ C1n.

In our model, the gradient descent expression is

α(t+ 1
2
) ← α(t) − λ[((X̂TPP T X̂)⊙ (yyT))α− 1n]. (5.14)

And the projection area is

• Projection

α(t+1) =

α(t+ 1

2
), α(t+ 1

2
) ∈ [0, C];

0, α(t+ 1
2
) < 0;

C, α(t+ 1
2
) > C.

(5.15)

103

Algorithm 5.2 Multi-view R-OPLS Iteration with Projected Gradient Descent

1: Initialization: Solve (5.9) for α0

2: for i=1 to 50 do

3: Update P (i) based on (5.10)

4: Update α(i+ 1
2
) ← α(i) − λ∇αg(α

(t))

5: if α(i+ 1
2
) ∈ [0, C] then

6: α(i+1) = α(i+ 1
2
)

7: else

8: if α(i+ 1
2
) < 0 then

9: α(i+1) = 0

10: else

11: α(i+1) = C

12: end if

13: end if

14: end for

15: Output: α and P

Algorithm 5.2 describes the iterative process of solving for α and P alternately

when multi-view R-OPLS is combined with the projected gradient descent method.

5.3 Generalized multi-view R-OPLS framework

The Multi-view R-OPLS (5.1) algorithm can be represented as a fusion of least

squares and support vector machines (SVM). Consequently, it is possible to em-

ploy regularization techniques to fine-tune model parameters and incorporate prior

knowledge into the algorithm. This approach can help to shape the similarity be-

104

tween projection points and ultimately reduce or eliminate the heterogeneity gap

that may exist between different views. By the effective use of popular regulariza-

tion techniques in computational sciences to regulate solutions of inverse problems,

along with the success of combining these techniques with orthonormalized partial

least squares [79, 83], we present a generalized Multi-view R-OPLS framework.

min
Ps,W,vs

m∑
s=1

∥Ỹ −W TP T
s X̃s∥2F −

λ1

2
tr(Ω−1P T X̃(α⊙ y)(α⊙ y)T X̃TP) + λ11

T
nα

+λ2tr(W
TP T

s APsW) + λ3tr(Ω
−1P T

s BPs)

s.t. P T
s Ps = Ik, (5.16)

0 ≤ α ≤ C1n,

where A ∈ Rd×d is a symmetric square matrix and B ∈ Rd×d is a symmetric definite

matrix [68]. That is, all of the eigenvalue of B are not equal to 0. The primary

objective behind the design of the flexibility matrix Ω was to ensure its numerical

treatment is simple, while also ensuring that the properties of Multi-view R-OPLS

are preserved [79]. For example, when Ω = P T (C̃diag +A)P , the problem (5.16) has

the analytic solution for W as follows

W = (P T (C̃diag + λ2A)P)−1P T X̃Ỹ T . (5.17)

Then, putting the analytic solution for W back into (5.16), we obtained the

objective function as

∥Ỹ ∥2F−tr((P T (C̃diag+λ2A)P)−1P T X̃Ỹ T Ỹ X̃TP)−λ1

2
tr(Ω−1P T X̃(α⊙y)(α⊙y)T X̃TP)

+λ11
T
nα+ λ3tr(Ω

−1P TBP).

(5.18)

By discarding the constant term and taking into account the property of trace, we

derive the framework of generalized multi-view R-OPLS as

105

max
α

min
P
−tr(P T [X̃[Ỹ T Ŷ +

λ1

2
(α⊙ y)(α⊙ y)T]X̃T − λ3B]P) + λ11

T
nα (5.19)

s.t. P T (C̃diag + λ2A)P = Ik,

0 ≤ α ≤ C1n.

It is important to note that providing valid values of Ω is necessary to en-

sure that the generalized multi-view R-OPLS equation (5.16) can be equivalent to

the generalized eigenvalue problem. In such cases, finding a numerical solution for

formula (5.16) can be a subject of further investigation. However, in the remaining

sections of the thesis, all models instantiated in (5.16), including pre-existing models,

assume that Ω is given.

The addition in (5.16) does not compromise any of the properties listed in

Multi-view R-OPLS; rather, it improves the model’s capacity to integrate priors for

optimal learning. Furthermore, the regularization form of Multi-view R-OPLS can

take other forms besides (5.16). Other regularization techniques such as orthographic

projection for distance preservation which is mentioned in [89] and l2,1 norm over P

for feature selection with sparse subspace learning which is mentioned in [86] are also

viable options. However, these approaches result in different solution structures and

require distinct models compared to the numerical techniques used to solve GEP

[79]. Therefore, we will not explore them in detail in this thesis.

5.4 Examples of generalized multi-view R-OPLS

5.4.1 Multi-view CCA

It should be noted that multi-view CCA (MCCA) [37, 56, 76] is a subspace

learning method that operates in an unsupervised manner. Since the labels of the

data are unknown, it is convenient to assume that each instance belongs to a distinct

106

class, resulting in c = n. To transform unlabeled data into labeled data, we can assign

each instance a unique class label, which is represented by Y = In. If we assign

λ1 = λ2 = λ3 = 0 in generalized multi-view R-OPLS (5.16), while also utilizing

X̃ = X̂ = XHn, Ỹ = In, the resulting model will be equivalent to MCCA.

min
Ps,W

m∑
s=1

∥Ỹ −W TP T
s X̃s∥2F := max

P

m∑
s=1

m∑
t=1

tr(P T ĈstP) (5.20)

s.t.
m∑
s=1

P T
s (Ĉss + βIds)Ps = Ik,

where Ĉst = XsHnX
T
t ,∀s, t = 1, . . . ,m.

5.4.2 LDA

The objective of LDA [72] is to discover a shared subspace that can maximize

the correlation between two views and optimize the discriminative power of each

view at the same time. As same as the previous multi-view CCA section, multi-view

LDA is also a special case of generalized multi-view R-OPLS with X̃ = X̂ = XHn,

and Ỹ = Σ−1/2Y ,while also using λ1 = λ3 = 0, and A = Γ .

Γ =

γ1Id1

γ2Id2
. . .

γmIdm

∈ Rd×d,

where γs ≥ 0 is the weight for view s and the block diagonal matrix [79].

Then, we can obtain the problem

min
P,W

m∑
s=1

∥Ỹ −W TP T X̃∥2F := max
P

tr(P TSbP) (5.21)

s.t. P T (XHnX
T + βId)P = Ik,

107

where Sb = X(Ψ − 1
n
1n1

T
n)X

T is the between-class scatter matrix [72].

For multi-class classification, we defined the counting matrix Σ of class labels

Σ =

n1

n2

. . .

nc

= Y Y T ∈ Rc×c,

(5.22)

where nr =
∑n

i=1 Yr,i denotes the total number of data points in class r [79].

Then, we can obtain the similarity symmetric matrix Ψ = Y TΣ−1Y , and

Ψ1n = Y TΣ−1

n1

n2

...

nc

= Y T1c = 1n. (5.23)

Ψ̂ is the centered matrix of Ψ , and is given by

Ψ̂ = HnΨHn = (In −
1

n
1n1

T
n)Ψ(In −

1

n
1n1

T
n) (5.24)

= Ψ − 1

n
1n1

T
nΨ − Ψ

1

n
1n1

T
n +

1

n2
1n1

T
n1n1

T
n (5.25)

= Ψ − 1

n
1n1

T
n . (5.26)

We will illustrate that supervised classification via multi-view LDA is a par-

ticular form of generalized multi-view R-OPLS that utilizes X̃ = X̂ = XHn and

Ỹ = Σ−1/2Y .

X̃Ỹ T Ỹ X̃T = XHnY
T [Σ−1/2]T [Σ−1/2]Y HnX

T

= XHnY
TΣ−1Y HnX

T

108

= XHnΨHnX
T

= X(Ψ − 1

n
10T)XT

:= Sb. (5.27)

5.4.3 Multi-view PCA

The goal of PCA [31, 68] is to minimize the total squared distance between

the original data points and their corresponding projections onto a new coordinate

system, while ensuring that the new coordinate system is orthogonal [60, 74]. Given

λ2 and symmetric matrix A so that it satisfies C̃diag +λ2A = Id, then combined with

λ1 = 0 and λ3 = 0, the generalized multi-view R-OPLS formula (5.16) is equivalent

to PCA.

min
Ps,W

m∑
s=1

∥Ỹ −W TP T
s X̃s∥2F + λ2tr(W

TP T
s APsW) (5.28)

s.t. P T
s Ps = Ik.

Then, It is equivalent to

max
P

tr(P T X̃Ỹ T Ỹ X̃TP) : s.t. P TP = Ik, (5.29)

where X̃ = X̂ = XHn, and Ỹ = In.

5.4.4 MLDA

MLDA [72] aims to learn a shared space that maximizes the correlation between

two views and the discriminative power of each view at the same time. One way

to express MLDA is as a special case of generalized multi-view R-OPLS, which is

achieved by setting X̃ = X̂ = XHn, Ỹ = In, and choosing appropriate values for the

matrices A and B in Equation (5.16).

109

Let λ1 = λ2 = 0 and B = XsRXT
s , where R = Hn−(Ψ− 1

n
1n1

T
n),∀s = 1, . . . ,m,

the objective function of (5.16) can be rewritten as

min
Ps,W

m∑
s=1

∥Ỹ −W TP T
s X̃s∥2F + λ3tr(Ω

−1P T
s Xs(Hn − (Ψ − 1

n
1n1

T
n))X

T
s Ps) (5.30)

Then, It is equivalent to

max
P

tr(P TKP) : s.t. P T ĈdiagP = Ik, (5.31)

where K is a block matrix with the (st)th blocks,

Sst =

λ3Xs(Ψ − 1

n
1n1

T
n)X

T
s : s = t,

Ĉst : otherwise.

The between-class scatter matrix with scaling λ3 is C̃ss − XsRsX
T
s = Ĉss −

Xs(Hn − (Ψ − 1
n
1n1

T
n))X

T
s = X̃s(Ψ − 1

n
1n1

T
n). Therefore, the formula (5.31) is

equivalent to MLDA.

5.4.5 GMA

GMA [68] aims to learn a shared subspace across all views, capturing the com-

mon information and reducing the dimensionality of the data. The objective of GMA

is to minimize the sum of reconstruction errors for each view while preserving the

shared structure of the learned subspace [31, 79]. By merging discrimination infor-

mation and cross-view correlations, GMA directly applies kernel techniques to learn

non-linear transformations for more than two views [68, 74]. The resulting common

subspace allows the analysis of data across all views, leading to improved performance

in downstream tasks such as classification and clustering [3, 68, 74]. The optimization

problem can be solved by using the alternating direction method of multiplication

(ADMM) algorithm [3, 74]. The learned subspace and coefficients can be used for

various downstream tasks such as clustering, classification, and visualization.

110

A key difference between GMA and MLDA lies in their constraints. The

constraint of MLDA is using the total scatter, but the constraint of GMA is us-

ing within-class scatter. Therefore, based on the problem (5.30), and setting A =

XsHnY
TΣ−1Y HnX

T
s , we can obtain the problem

min
Ps,W

m∑
s=1

∥Ỹ−W TP T
s X̃s∥2F+λ2tr(W

TP T
s APsW)+λ3tr(Ω

−1P T
s Xs(Hn−(Ψ−

1

n
1n1

T
n))X

T
s Ps),

(5.32)

with X̃ = X̂ = XHn, Ỹ = In, and Ω =
∑m

s=1 tr(P
T
s Xs(In−Ψ)XT

s Ps). Then problem

(5.32) is equivalent to

max
P

tr(P TKP) : s.t.
m∑
s=1

tr(P T
s Xs(In − Ψ)XT

s Ps) = Ik. (5.33)

Therefore, we can summary that

• MCCA: X̃ = X̂ = XHn, Ỹ = In, A = 0, B = 0.

• LDA: X̃ = X̂ = XHn, Ỹ = Σ−1/2Y, A = Γ, B = 0.

• MPCA: X̃ = X̂ = XHn, Ỹ = In, C̃diag + λ2A = Id, B = 0.

• MLDA: X̃ = X̂ = XHn, Ỹ = In, A = 0, B = Xs(Hn − (Ψ − 1
n
1n1

T
n))X

T
s .

• GMA: X̃ = X̂ = XHn, Ỹ = In, A = XsHnY
TΣ−1Y HnX

T
s , B = Xs(Hn −

(Ψ − 1
n
1n1

T
n))X

T
s .

We will not list all possible variants due to the numerous combinations involved.

For the task at hand, we suggest choosing or devising a suitable regularization term

to integrate into the proposed regularized Multi-view R-OPLS framework (5.16).

5.5 Numerical Experiments

5.5.1 Data Information

The Multiple Features (Mfeat) data set is used for multi-view feature evalu-

ated by multi-class classification. The Mfeat data set is obtained from UCI’s ma-

chine learning repository, where the introduction of every views can be found there.

111

In the Mfeat data set, 2000 instances are chosen in the experiments, and it has 10

classes which are handwritten numbers (0−9) with 200 pictures in each class. These

numbers are expressed in 6 different types of features (heterogeneous features) with

different dimensionalities [21, 51, 79, 80]. The 6 views are fou: Fourier coefficients of

the character shapes with 76 features, fac: profile correlations with 64 features, kar:

Karhunen-Loeve coefficients with 64 features, mor: morphological features with 6

features, zer: Zernike moments with 47 features, and pix: pixel average with 240

features [21, 51, 79, 80].

Data Set Views Classes Total Number of Features Training Testing
Mfeat 6 10 180 1600 400

Table 5.1: Multi-view Data Information

5.5.2 Numerical Experiments

The objective of this experiment is to evaluate the effectiveness of multi-view

R-OPLS in comparison to other baseline multi-view learning models in classifying

datasets with multiple views. The process involves preprocessing the data and split-

ting it into training and testing sets for model training and evaluation. The per-

formance metrics used to compare the models include classification accuracy. The

comparison models may include other well-known multi-view learning techniques

such as MCCA [76], MPCA [31], MLDA [72], and GMA [68]. In all of the meth-

ods used in this experiment, the goal is to learn a set of linear projections that can

transform the data points of each view into points in a low-dimensional common

subspace. The common subspace is then used to perform classification experiments

on the data.

112

For this experiment, the first step is to partition the data set based on its

different views. Taking the Mfeat data set as an example, we represent the entire

data set as X and then divide it into six subgroups, X1 to X6, and each subgroup

represents a specific view. For instance, X1 corresponds to the data in the fac view,

X2 represents the data in the fou view, X3 represents the data in the kar view,

X4 represents the data in the mor view, X5 represents the data in the pix view,

and X6 corresponds to the data in the zer view. Next, the data in each group is

further divided into a training set and a testing set. Several different methods are

then applied to learn the projection matrix P from the training set and obtain a new

representation of the data on a low-dimensional subspace.

The common parameters shared by Multi-view R-OPLS and its variants in-

clude the SVM penalty parameter C, the reduced dimension parameter k, and SVM

regularization parameter λ1. Additionally, other methods such as MCCA, MLDA,

MPCA, GMA have an extra tuning parameter λ2 = λ3 = 10−3 for an additional

regularization term. To simplify the experiments, we also set γs = γ = 10−6 in the

matrix Γ for all experiments. The parameter k is crucial for all subspace learning

methods, and we select it by observing the eigenvalue plot. We used a quadratic

programming solver and a generalized eigenvalue problem solver during training.

In the study of multi-view R-OPLS, we investigated the performance of two

multi-classification methods, namely OVR and OVO, on the Mfeat data set which is

multi-view and multi-class. To solve for the weight vector α, we used both quadprog

solver and projected gradient descent in alternate iterative experiments for each

method.

The experiments conducted using the multi-view and multi-class Mfeat data

set involved the use of two different multi-classification methods, namely OVR and

OVO. The objective function curve for the OVR method using the quadprog solver

113

is displayed in Figure 5.1, which shows that the convergence of the objective function

is influenced by the values of the parameters C and λ. The results indicate that the

variation of the function value is the smallest when λ = 0.5

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3 (h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 5.1: The plots of OVR with quadprog Solver on mfeat Data Set

Furthermore, the projected gradient descent method was utilized to solve for

α, and Figure 5.2 presents the change curve of the objective function value under the

OVR method. The results indicate that the objective function values can smoothly

decrease and reach the minimum value when C = 1 and λ = 0.5.

114

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 5.2: The plots of OVR with PGD Method on mfeat Data Set

We also conducted experiments using quadprog solver and projected gradient

descent to analyze the effectiveness of different methods in the OVO method. The

corresponding change curves of the objective function values are shown in Figure 5.3

and Figure 5.4, respectively. Figure 5.3 displays the change curve of the objective

function value when using the quadprog solver under the OVO method, while Figure

5.4 presents the change curve of the objective function when using the projected

gradient descent method under the OVO method. The results obtained by these two

methods are consistent with those obtained by the OVR method.

115

It is important to note that since the mfeat data has 10 classes, the OVO

method consists of 45 pairwise binary classifications. For clarity, we chose only 10

pairwise classifications for each parameter combination to plot the curves. Over-

all, our results demonstrate the effectiveness of both OVR and OVO methods in

multi-classification tasks and the impact of different optimization algorithms on the

convergence of the objective function.

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3 (h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 5.3: The plots of OVO with quadprog Solver on mfeat Data Set

The experimental results presented in Figures 5.1, 5.2, 5.3, and 5.4 demon-

strate the effectiveness of the proposed multi-view R-OPLS method in solving multi-

116

classification problems. The convergence behavior of the objective function under

different parameter settings shows that the performance of the method can be influ-

enced by the choice of parameters, such as C and λ.

(a) C=0.01,λ = 0.1(b) C=0.01,λ = 0.3(c) C=0.01,λ = 0.5(d) C=0.01,λ = 0.7(e) C=0.01,λ = 0.9

(f) C=0.1,λ = 0.1 (g) C=0.1,λ = 0.3(h) C=0.1,λ = 0.5 (i) C=0.1,λ = 0.7 (j) C=0.1,λ = 0.9

(k) C=1,λ = 0.1 (l) C=1,λ = 0.3 (m) C=1,λ = 0.5 (n) C=1,λ = 0.7 (o) C=1,λ = 0.9

(p) C=10,λ = 0.1 (q) C=10,λ = 0.3 (r) C=10,λ = 0.5 (s) C=10,λ = 0.7 (t) C=10,λ = 0.9

Figure 5.4: The plots of OVO with PGD Method on mfeat Data Set

In particular, the results show that when λ = 0.5, the function value varia-

tion is the smallest, indicating that the choice of λ has a significant impact on the

convergence of the algorithm. Additionally, the results of the alternate iterative ex-

periments for solving α using the projected gradient descent method show that when

117

C = 1 and λ = 0.5, the objective function values can decrease smoothly and reach

the minimum value.

Moreover, the consistency of the results obtained by the quadprog solver and

projected gradient descent method in both the OVR and OVO methods further

validates the effectiveness of the proposed multi-view R-OPLS method in solving

multi-classification problems. Additionally, the consistency of the results in the OVR

and OVO methods suggests that the proposed method is not sensitive to the choice

of multi-classification method. Overall, the results demonstrate that the proposed

multi-view R-OPLS method, combined with appropriate parameter settings and opti-

mization algorithms, can effectively solve multi-classification problems in multi-view

data sets.

(a) OVO with quadprog (b) OVO with PGD

(c) OVR with quadprog (d) OVR with PGD

Figure 5.5: Eigenvalue plots on mfeat Data

118

When there are too few or too many features, these problems can affect the

model’s performance. Figure 5.5 (a) and (b) display the eigenvalue plots generated by

the OVR approach, while Figure 5.5 (c) and (d) show the eigenvalue plots produced

by the OVO method. The slope of the curve sharply decreases at some points, which

are often called the ”elbow point.” Choosing the number of features to the left of the

elbow point can explain most of the variance and avoid overfitting. However, if the

goal is to maximize prediction accuracy, more features may be needed. Therefore,

by observing the explained variance ratio curve, an appropriate number of features

can be chosen to balance prediction accuracy. It’s important to note that the OVO

approach requires building c(c − 1)/2 models, resulting in a total of 45 models for

the mfeat data set. Therefore, for the convenience of viewing, only the eigenvalue

change curves for the first ten models are presented in each plot of Figure 5.5 (c)

and (d).

The following tables represent the results of the multi-view R-OPLS model,

evaluated on different training sizes, 80%, 60%, 50%, 40%, and 20%. The evaluations

are based on the accuracy of the models in predicting the output, with k representing

the dimension of the output vector. Each table is split into two, one for each of the

two different solvers, quadprog and PGD.

The table 5.2 presents classification accuracy results obtained using OVR

method. As previously discussed, our innovative multi-view R-OPLS model has

the capability to generate two classifiers at the same time using both R-OPLS and

SVM techniques. This allows for a more comprehensive analysis of the data as it

utilizes multiple perspectives to generate predictions. By combining these two ap-

proaches, our model can improve the accuracy and robustness of the classification

results. Both R-OPLS and SVM achieve high classification accuracy, with R-OPLS

generally performing slightly better in OVR method. For example, when k = 20 and

119

the training set size is 80%, R-OPLS achieves classification accuracy of 97.81% for

quadprog, and when k = 10 and the training set size is 80%, R-OPLS achieves clas-

sification accuracy of 98.11% for PGD, while SVM achieves classification accuracy

of 97.75% and 97.96%, respectively.

k Model
Training Size

80% 60% 50% 40% 20%

(quadprog)

k = 30
R-OPLS 97.78± 0.47% 97.37± 1.26% 97.54± 0.66% 97.31± 0.39% 96.50± 0.88%
SVM 97.67± 1.07% 97.23± 1.40% 97.29± 0.91% 97.03± 0.36% 96.21± 0.60%

k = 20
R-OPLS 97.81± 1.19% 97.83± 1.42% 97.66± 0.94% 97.44± 0.48% 96.70± 0.86%
SVM 97.75± 1.25% 97.68± 1.07% 97.45± 0.95% 97.36± 0.23% 96.05± 0.95%

k = 10
R-OPLS 97.58± 0.92% 97.50± 0.75% 97.67± 0.53% 97.46± 0.71% 96.39± 1.05%
SVM 97.62± 0.63% 97.43± 0.45% 97.46± 0.34% 97.15± 0.44% 95.98± 0.57%

(PGD)

k = 30
R-OPLS 97.71± 0.54% 97.90± 0.35% 97.60± 0.80% 97.53± 0.72% 96.88± 0.37%
SVM 97.71± 0.29% 97.92± 0.58% 97.66± 0.54% 97.54± 0.63% 96.91± 0.47%

k = 20
R-OPLS 97.91± 0.84% 97.78± 0.85% 97.44± 0.56% 97.60± 0.73% 96.64± 0.55%
SVM 97.93± 0.57% 97.79± 0.71% 97.63± 0.37% 97.67± 0.58% 96.69± 0.56%

k = 10
R-OPLS 98.11± 1.39% 97.45± 0.93% 97.43± 0.67% 97.50± 0.75% 96.67± 0.52%
SVM 97.96± 1.54% 97.39± 1.11% 97.49± 0.61% 97.50± 0.42% 96.66± 0.40%

Table 5.2: OVR method for mfeat Data

Furthermore, the table 5.3 displays the classification accuracy outcomes for

multi-view R-OPLS with the OVO technique utilizing both quadratic programming

(quadprog) and projected gradient descent (PGD), and three different values of the

parameter k (10, 20, and 30). Additionally, the table demonstrates the accuracy

results for five distinct training sizes, varying from 20% to 80% of the total data set

size. By using the OVOmethod, the results suggest that the SVMmodel outperforms

the R-OPLS model in most cases, especially for the PGD solver. The SVM achieves

120

the highest accuracy of 93.92% for k = 30 and a training size of 80% with quadprog,

and achieves the highest accuracy of 98.68% for k = 30 and a training size of 80%

with PGD.

k Model
Training Size

80% 60% 50% 40% 20%

(quadprog)

k = 30
R-OPLS 91.92± 2.34% 93.58± 1.18% 93.78± 1.92% 93.73± 0.86% 93.11± 2.08%
SVM 93.92± 1.59% 91.35± 2.41% 89.69± 1.42% 87.64± 2.04% 76.98± 3.34%

k = 20
R-OPLS 92.92± 2.34% 93.37± 2.01% 93.52± 1.09% 93.71± 0.88% 93.10± 2.03%
SVM 92.72± 1.79% 90.44± 1.45% 90.00± 2.01% 87.33± 3.51% 75.85± 3.60%

k = 10
R-OPLS 92.20± 1.32% 92.89± 1.87% 93.84± 1.66% 93.11± 1.56% 92.87± 1.21%
SVM 93.17± 1.34% 90.53± 1.11% 89.02± 2.09% 87.55± 2.29% 76.06± 1.45%

(PGD)

k = 30
R-OPLS 91.22± 2.79% 91.87± 1.26% 91.55± 1.76% 92.06± 1.45% 90.81± 1.81%
SVM 98.68± 1.07% 98.57± 0.56% 98.41± 0.49% 98.17± 0.33% 96.82± 0.62%

k = 20
R-OPLS 90.92± 2.85% 91.24± 1.27% 91.83± 1.38% 91.72± 1.79% 90.47± 1.47%
SVM 98.55± 0.95% 98.53± 0.35% 98.53± 0.47% 98.09± 0.41% 96.62± 0.32%

k = 10
R-OPLS 90.90± 1.87% 91.55± 2.46% 91.33± 0.88% 91.35± 0.66% 89.93± 2.38%
SVM 98.63± 0.62% 98.15± 0.60% 98.34± 0.36% 98.20± 0.55% 96.73± 0.71%

Table 5.3: OVO method for mfeat Data

In general, we can observe that as the training set size decreases, the classifi-

cation accuracy also decreases. This is expected since smaller training sets provide

less information to the model, making it more difficult to accurately classify new

instances. However, the decrease in classification accuracy is relatively small, in-

dicating that the models are robust and can still perform well even with smaller

training sets.

The multi-view R-OPLS model has demonstrated remarkable performance in

generating both OPLS- and SVM-based classifiers using different methods. The

121

OVR method showed comparable results for both the quadprog and PGD solvers.

In contrast, when utilizing the OVO method, the experimental results of the SVM

classifier in PGD were significantly improved, highlighting the strengths of the multi-

view R-OPLS model. Overall, Multi-view R-OPLS can provide a classifier with

better experimental results, irrespective of the method used.

122

CHAPTER 6

Conclusion

This thesis presents a unified model framework for multi-view learning that

offers a comprehensive understanding of many existing methods from a regularized

least squares perspective, and also inspires the development of new methods. In

order to achieve high classification accuracy, our model projects the data into a low-

dimensional subspace before performing classification. This approach ensures that

important feature information is preserved while also improving the efficiency of the

classification experiments. By projecting the data into a subspace with the lowest

possible dimension, we can significantly reduce the time required for classification

experiments, which is of great importance in practical applications. In addition, this

approach also helps to simplify the complexity of the data, making it easier to visual-

ize and interpret the results. Overall, the use of low-dimensional subspace projection

is a powerful technique for achieving both accuracy and efficiency in classification

tasks, which is widely used in various fields such as machine learning, data mining,

and computer vision. Notably, the R-OPLS model can simultaneously generate two

classifiers belonging to OPLS and SVM. The OPLS classifier focuses on extracting

relevant features from the data and simplifying its structure, while the SVM classi-

fier creates a decision boundary that maximizes the margin between different classes.

This can greatly expand the range of uses, data types, and research domains to which

our models are compatible. We validate our proposed through extensive experiments

on binary and multi-class classification tasks in both single and multi-view settings.

Our framework provides desirable flexibility for designing effective models across a

123

wide range of learning tasks. For instance, PCA, LDA, and sparse CCA [86, 82] can

all be redefined under our framework, and can be extended to more than two views

and non-linear representations. Moreover, our framework can be readily extended

to other learning paradigms, such as semi-supervised multi-view learning and deep

learning. Overall, this thesis’s framework provides a strong foundation for future

research in multi-view learning, enabling the development of more effective models

across a wide range of learning tasks.

124

References

[1] Mathworks help center. https://www.mathworks.com-help-index.html,

2017.

[2] H. Abdi, The method of least squares, Encyclopedia of Measurement and Statis-

tics. Thousand Oaks (CA): Sage, 2007.

[3] R. Ahuja, T. Magnanti, and J. Orlin, Network flows, Optimization Hand-

books in Operations Research and Management Science, 1 (1988).

[4] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, Random forests and decision

trees, UCSI International Journal of Computer Science, 9 (2012).

[5] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, Deep canonical cor-

relation analysis, International Conference on Machine Learning, PMLR, 28.

[6] J. Arenas-Garcia and G. Camps-Valls, Efficient kernel orthonormalized

pls for remote sensing applications, IEEE Transactions on Geoscience and Re-

mote Sensing, 46 (2008), pp. 2872–2881.

[7] S. Axler, Linear Algebra Done Right, Springer, 3rd ed., 2010.

[8] E. Birgin, J. Martinez, and M. Raydan, Spectral projected gradient meth-

ods: Review and perspectives, journal of statistical software, 60 (2014), pp. 1–21.

[9] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[10] A. Bjorck, Least squares methods, Handbook of Numerical Analysis, 1 (1990),

pp. 465–652.

[11] L. Bottou, Stochastic gradient descent tricks, part of the Lecture Notes in

Computer Science, 7700 (2012), pp. 421–436.

125

[12] N. Boumal, B. Mishra, P. Absil, and R. Sepulchre, Manopt, a matlab

toolbox for optimization on manifolds, Journal of Machine Learning Research,

15 (2014), pp. 1455–1459.

[13] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university

press, Boston, MA, 2nd ed., 2004.

[14] L. Breiman, Random forests, Machine Learning, 45 (2001), pp. 5–32.

[15] G. Cao, A. Iosidis, K. Chen, and M. Gabbouj, Generalized multi-view

embedding for visual recognition and cross-modal retrieval, IEEE Transactions

on Cybernetics, 48 (2017), pp. 2542–2555.

[16] C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines,

ACM Transactions on Intelligent Systems and Technology, 2 (2011), pp. 27:1–

27:27.

[17] J. Chem, Random forest: A classification and regression tool for compound

classification and qsar modeling, Inf. Comput. Sci., 43 (2003), pp. 1947–1958.

[18] Y. Chien, Pattern classification and scene analysis, IEEE Transactions on Au-

tomatic Control, 19 (1974), pp. 462–463.

[19] L. Christian, An overview of orthogonal partial least squares, Towards Data

Science, (2019).

[20] L. Drummond and A.N.Iusem, A projected gradient method for vector op-

timization problems, Computational Optimization and Applications, 28 (2004),

pp. 5–29.

[21] D. Dua and C. Graff, Uci machine learning repository. http://archive.

ics.uci.edu-ml, 2017.

[22] D. Faddeev and V. Faddeeva, Computational mothods for linear algebra,

Freeman and Company, San Fransisco, 1956.

126

[23] T. Fearn, On orthogonal signal correction, Chemometr Intell Lab Syst., 50

(2000), pp. 47–52.

[24] G. Forsythe, Pitfalls in computation, or why a math book isn’t enough, The

American Mathematical Monthly, 77 (1970), pp. 931–956.

[25] P. Geladi and B. Kowalski, Partial least-squares regression: A tutorial,

Analytica Chimica Acta, 185 (1986), pp. 1–7.

[26] B. Ghojogh, F. Karray, and M. Crowley, Eigenvalue and generalized

eigenvalue problems: Tutorial, 2022, https://arxiv.org/abs/1903.11240.

[27] G. H. Golub and C. F. Van Loan, Matrix computations, The Johns Hopkins

University Press, Baltimore and London, 3rd ed., 2012.

[28] A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philade-

phia, 1997.

[29] P. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-

pects of Linear Inversion, SIAM, Philadephia, 1998.

[30] H. Harold, Relations between two sets of variates, Biometrika, 28 (1936),

pp. 321–377.

[31] T. Hastie, A. Buja, and R. Tibshirani, Penalized discriminant analysis,

The Annals of Statistics, 23 (1995), pp. 73–102.

[32] T. Hastie and R. Tibshirani, Discriminant adaptive nearest neighbor clas-

sification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18

(1996), pp. 607–616.

[33] H. Hill, Handbook of Analytical Separations, Elsevier, 4th ed., 2003.

[34] J. Hull, A database for handwritten text recognition research, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 16 (1994), pp. 550–554.

127

[35] M. Kan, S. Shan, H. Zhang, S. Lao, and X. Chen, Multi-view discrimi-

nant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence,

38 (2015), pp. 188–194.

[36] J. Keller, M. Gray, and J. Givens, A fuzzy k-nearest neighbor algorithm,

IEEE Transactions on Systems, Man, and Cybernetics, 15 (1985), pp. 580–585.

[37] J. R. Kettenring, Canonical analysis of several sets of variables, Biometrika,

58 (1971), pp. 433–451.

[38] R. King, A worldwide machine learning lab-openml. https://www.openml.

org/search?type=data\&sort=runs\&id=40670\&status=active, 2017.

[39] K. Kiran and R. Ramasubba, An orthonormalized partial least squares based

spatial filter for ssvep extraction, the 2018 6International Conference on Intelli-

gent Human Computer Interaction, 2008.

[40] O. Kramer, Dimensionality Reduction with Unsupervised Nearest Neighbors,

Springer, Berlin, Heidelberg, 2013.

[41] P. Lai and C. Fyfe, Kernel and nonlinear canonical correlation analysis,

International Journal of Neural Systems, 10 (2000), pp. 365–377.

[42] G. Lee and K. Lee, Feature selection using distributions of orthogonal pls

regression vectors in spectral data, BioData Mining, 14 (2021).

[43] Z. Lei and S. Li, Coupled spectral regression for matching heterogeneous faces,

2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009,

pp. 1123–1128. IEEE.

[44] G. Lekhana, One hot encoding in machine learning. https://www.

geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/,

2017.

128

[45] D. Li, N. Dimitrova, M. Li, and I. K. Sethi, Multimedia content processing

through cross-modal association, The Eleventh ACM International Conference

on Multi-media, 2003, pp. 604–611.

[46] Y. Li, M. Yang, and Z. Zhang, A survey of multi-view representation

learning, IEEE Transactions on Knowledge and Data Engineering, 31 (2015),

pp. 1863–1883.

[47] A. Liaw and M. Wiener, Classification and regression by randomforest, R

News, 3 (2002), pp. 1–41.

[48] A. Maida, Cognitive computing: Theory and applications, Handbook of Statis-

tics, 35 (2016), pp. 2–384.

[49] S. Mawjoud, Path loss propagation model prediction for gsm network planning,

International Journal of Computer Applications, (2013), pp. 30–33.

[50] S. Mehrkanoon, T. Falck, and J. A. K. Suykens, Approximate solutions

to ordinary differential equations using least squares support vector machines,

IEEE Transactions on Neural Networks and Learning Systems, 23 (2012),

pp. 1356–1367.

[51] S. Mehrkanoon and J. Suykens, Regularized semipaired kernel cca for do-

main adaptation, IEEE tran. on Neural Networks and Learning System, 29

(2018), pp. 3199–3213.

[52] C. Micchelli and M. Pontil, Learning the kernel function via regularization,

Journal of Machine Learning Research, 6 (2005), pp. 1099–1125.

[53] M.Pal, Random forest classifier for remote sensing classification, International

Journal of Remote Sensing, 26 (2005).

[54] J. Nasiri, N. Charkari, and S. Jalili, Least squares twin multi-class clas-

sification support vector machine, Pattern Recognition, 48 (2015), pp. 984–992.

129

[55] K. Ng, A Simple Explanation of Partial Least Square, PhD thesis, Australian

National University, 2013.

[56] A. Nielsen, Multiset canonical correlations analysis and multispectral, truly

multitemporal remote sensing data, IEEE Transactions on Image Processing, 11

(2002), pp. 293–305.

[57] Z. Noumir, P. Honeine, and C. Richard, Multi-class least squares classi-

fication at binaryclassification complexity, Nice, France, 2011, IEEE workshop

on Statistical Signal Processing (SSP), pp. 277–280.

[58] B. N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial

and Applied Mathematics, 1998.

[59] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, Technical

University of Denmark, 2012.

[60] B. T. Polyak, Introduction to optimization, Optimization Software, New York,

1987.

[61] N. Qian, On the momentum term in gradient descent learning algorithms, Neu-

ral Networks, 12 (1995), pp. 145–151.

[62] J. Randall and A. Rayner, The accuracy of least squares calculations with

the cholesky algorithm, ELSEVIER, 127 (1990), pp. 463–502.

[63] S. Roweis and C. Brody, Linear heteroencoders, PhD thesis, University

College London.

[64] S. Ruder, An overview of gradient descent optimization algorithms. http:

//sebastianruder.com/optimizing-gradient-descent/index.html, 2016.

[65] S. V. Salai, gscatter3. https://www.mathworks.com/matlabcentral/

fileexchange/37970-gscatter3, 2022.

130

[66] R. Salakhutdinov and G. E. Hinton, Efficient learning of deep boltzmann

machines, The Thirteenth International Conference on Artificial Intelligence and

Statistics, 2010. PMLR.

[67] M. Sarkar and T. Y. Leong, Application of k-nearest neighbors algorithm

on breast cancer diagnosis problem, Proc AMIA Symp., (2000), pp. 759–763.

[68] A. Sharma, A. Kumar, H. Daume, and D. Jacobs, Generalized multiview

analysis: A discriminative latent space, 2012 IEEE Conference on Computer

Vision and Pattern Recognition, 2012, pp. 2160–2167. IEEE.

[69] L. Sun, S. Ji, and J. Ye, Canonical correlation analysis for multilabel classi-

fication: A least squares formulation, extensions, and analysis, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 33 (2010), pp. 194–200.

[70] S. Sun, A survey of multi-view machine learning, Neural Comput and Applic,

23 (2013), pp. 2031–2038.

[71] S. Sun and R. Huang, An adaptive k-nearest neighbor algorithm, Yantai,

China, 2010, Seventh International Conference on Fuzzy Systems and Knowl-

edge Discovery, pp. 91–94.

[72] S. Sun, X. Xie, and M. Yang, Multiview uncorrelated discriminant analysis,

IEEE Transactions on Cybernetics, 46 (2015), pp. 3272–3284.

[73] D. Tomar and S. Agarwal, A comparison on multi-class classification meth-

ods based on least squares twin support vector machine, Knowledge-Based Sys-

tems, 81 (2015), pp. 131–147.

[74] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive

Neuroscience, 3 (1991), pp. 71–86.

[75] V. Uurtio, J. Monteiro, J. Kandola, J. Shawe-Taylor,

D. Fernandez-Reyes, and J. Rousu, A tutorial on cannonical corre-

lation methods, ACM Computing Surveys, 50 (2017), pp. 1–33.

131

[76] J. Via, I. Santamaria, and J. Perez, A learning algorithm for adaptive

canonical correlation analysis of several data set, Neural Networks, 20 (2007),

pp. 137–152.

[77] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting

and composing robust features with denoising autoencoders, the 25th interna-

tional conference on Machine learning, 2018, pp. 1096–1103.

[78] H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang, Trace ratio vs. ratio

trace for dimensionality reduction, 2007 IEEE Conference on Computer Vision

and Pattern Recognition, 2007, pp. 1–8. IEEE.

[79] L. Wang, R. Li, and W. Li, Multiview orthonormalized partial least squares:

Regularizations and deep extensions, IEEE Transactions on Neural Networks

and Learning Systems, (2021), pp. 1–15.

[80] L. Wang, L. Zhang, C. Shen, , and R. Li, Uncorrelated semi-paired sub-

space learning, (2020).

[81] J. H. Wilkinson, The algebraic eigenvalue problem, Springer, Oxford Claren-

don, 1st ed., 1965.

[82] D. Witten and R. Tibshirani, Extensions of sparse canonical correlation

analysis with applications to genomic data, Statistical Applications in Genetics

and Molecular Biology, 8 (2009), pp. 159–194.

[83] S. Wold, C. Albano, W. Dunn, U. Edlund, K. Esbensen, P. Geladi,

S. Hellberg, E. Johansson, W. Lindberg, and M. Sjostrom, Multi-

variate data analysis in chemistry, Chemometrics, (1984), pp. 17–95.

[84] K. Worsley, J. Poline, K. Friston, and A. Evans, Characterizing the

response of pet and fmri data using multivariate linear models, Neuroimage, 6

(1997), pp. 305–319.

132

[85] S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, Discriminative least

squares regression for multiclass classification and feature selection, IEEE Trans-

actions on Neural Networks and Learning Systems, 23 (2012), pp. 1738–1754.

[86] M. Xu, Z. Zhu, X. Zhang, Y. Zhao, and X. Li, Canonical correlation

analysis with l2,1-norm for multiview data representation, IEEE Transactions

on Cybernetics, 50 (2020), pp. 4772–4782.

[87] J. Ye, Least squares linear discriminant analysis, Proceedings of the 24th In-

ternational Conference on Machine Learning, 2007, pp. 1087–1093.

[88] J. Ye and T. Xiong, Svm versus least squares svm, the Eleventh International

Conference on Artificial Intelligence and Statistics, 2007, pp. 644–651. PMLR.

[89] L. Zhang, L. Wang, Z. Bai, and R. Li, A self-consistent-field iteration

for orthogonal canonical correlation analysis, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44 (2022), pp. 890–904.

[90] N. Zhang, D. Lei, and J. Zhao, An improved adagrad gradient de-

scent optimization algorithm, 2018 Chinese Automation Congress (CAC), 2018,

pp. 2359—-2362.

133

Biographical Statement

Ce Bian was born in Xuanhua, HEBEI, China in 1987. He received his B.S.

degree from Agricultural University of Hebei, China, in 2009. His M.S. degree from

The University of Texas at Arlington in Mathematics department at 2016. Ce Bian

started his Ph.D. program at Fall 2017, and jointed the data science research group

since Spring 2019.

134

	A Novel Regularized Orthonormalized Partial Least Squares Model for Multi-view Learning
	Recommended Citation

	tmp.1725996242.pdf.SBU7g

