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ABSTRACT

Probabilistic Multivariate Time Series Forecasting and Robust Uncertainty

Quantification with Applications in Electricity Price Prediction

Jie Han, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Shouyi Wang

Electricity price forecasting (EPF) is a crucial task for market participants seek-

ing informed decisions in day-ahead electricity markets. The increasing penetration

of stochastic renewable energy and the deregulation of electricity markets pose chal-

lenges to electricity price forecasting. Given the dependence of electricity prices on

stochastic factors such as weather conditions, market dynamics, and customer behav-

iors, deterministic forecasting methods offer limited insight into the potential future

states of energy prices in highly stochastic markets.

In this study, a transformer-based electricity price forecasting (TDEPF) model

was developed, utilizing a two-step training process and demonstrating superior per-

formance compared to typical RNN models. Subsequently, three probabilistic fore-

casting models were introduced: quantile regression (QR-Transformer), transformer-

based composite quantile regression (TCQR), and Gaussian Process combined with

transformer (GP-Transformer). These models can produce multi-step ahead forecasts

using multivariate time series as inputs. The application of these models was demon-
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strated in the context of day-ahead electricity price forecasting, utilizing five years of

data from the Electric Reliability Council of Texas (ERCOT).

Among the probabilistic models, TCQR emerged as the most effective, as ev-

idenced by metrics such as CRPS, pinball loss, and Winkler score. To evaluate the

accuracy of peak time prediction, a novel metric called Winkler-peak score was intro-

duced. Additionally, to regulate the convergence of quantiles near the 0% or 100%

level, MSE-regularized pinball loss was proposed. Simultaneously, to prioritize peak

time prediction, Winkler-peak score regularized pinball loss was proposed. Both reg-

ularization methods on pinball loss were demonstrated to effectively achieve their

respective goals when applied in TCQR.

Given that deep learning methods operate as black boxes and lack a guarantee

of coverage rate, a deeper investigation into uncertainty quantification was under-

taken on probabilistic forecasting results. Conformal prediction has been established

as capable of constructing prediction intervals with statistically guaranteed coverage

rates. However, existing research has not explored applications in either multivariate

time series forecasting or multi-step ahead forecasting. Hence, in this study, adap-

tive quantile random forest (AQRF) and adaptive conformal residual fitting (ACRF)

were introduced. Both methods can attain the target coverage rate, and AQRF, in

particular, can achieve a narrower bandwidth compared to benchmark models such

as conformal prediction and quantile random forest methods. In conclusion, this re-

search can furnish reliable day-ahead electricity price forecasts, aiding decision-makers

in making informed decisions within the electricity market.
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CHAPTER 1

INTRODUCTION

As a state with the highest energy production in the U.S.[2] and abundant in

renewable energy resources[3], Texas adopts a deregulated market structure, which

“minimizes subsidy requirements for clean energy technologies with lower penetra-

tion rates”[4]. Thus, electricity prices of the Electricity Reliability Council of Texas

(ERCOT) in Texas are more sensitive to climate change and affected by the bidding

policy adopted by brokers. To be more competitive in a deregulated market, such as

ERCOT, accurate electricity price forecasting (EPF) models are needed in decision-

making. In this study, a multivariate time series model for EPF is built and tested

in the ERCOT market.

1.1 Multivariate Time Series (MTS)

A time series is sequential data observed over a period and can be continuous

or discrete as well as regularly or irregularly spaced [5]. When more than one related

time series is observed at the same time over a period, these time series are known

as multivariate time series (MTS) while only one time series observed over time is

univariate time series[6]. MTS is moreover extremely valuable while also being the

most common time series data since changes of the target variable are frequently

not only correlated with the variable’s historical values but also with other variables.

For instance, exploring simultaneous behaviors of energy demand, temperature, and

humidity over time will enable us to gain more insight into change patterns of en-

ergy demand compared to only observing the time series of energy demand itself.

1



Electricity prices are also correlated with multi variables, such as temperatures, wind

speeds, and load, so this study targeted models for multivariate time series. To better

describe the properties and analyze patterns of MTS, some basic concepts of MTS

are covered in Chapter 2.

1.2 Multistep Ahead Forecasting

Multi-step ahead forecasting, which predicts more than one value in the future,

is increasingly important and extensively used in energy forecasting. For instance,

as wind power has become the second-largest source of U.S. electricity generation

on March 29, 2022[7], accurate day ahead wind output forecasting helps operators

prepare for changes of wind power in next day and dispatch available electricity

generation from different sources[8]. Similarly, well-performed day-ahead or hours-

ahead electricity price forecasting can assist brokers with more beneficial bid in a

deregulated day-ahead electricity market[9], such as ERCOT.

Compared to one-step-ahead forecasting, multi-step-ahead forecasting has been

an arduous assignment. First, accumulated errors, increased uncertainties, and the

lack of information impair the accuracy of multi-step ahead forecasting[10]. Second,

different strategies are needed to produce multiple outputs, such as recursively gener-

ating one-step ahead prediction, directly generating each step ahead prediction with

different models and so on[11], which adds complexity to the modeling process. Our

work focused on generating multiple outputs with only one model, called multiple in-

put multiple outputs (MIMO) or sequence to sequence model, which has a relatively

concise modeling process and maintains the same level of or even higher accuracy.
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1.3 Probabilistic Time Series Forecasting

As mentioned in [12], probabilistic forecasting, which appeared as applications

of prediction intervals or prediction densities, became increasingly popular in 1980s

because the information provided by point predictions was confined to one exact value.

Nevertheless, probabilistic forecasting was employed in EPF rather late, until 2014,

according to the number of related publications[13]. [14] did a comprehensive review

of the advances of probabilistic EPF and offered a detailed tutorial to encourage

more applications of efficient and statistically sound probabilistic models in EPF

since EPF had become more crucial in the decision-making process in deregulated

energy markets. Our work is dedicated to developing a statistically sound and state-

of-the-art probabilistic model for EPF.

Electricity price forecasting (EPF) can be described as predicting the electricity

price of prediction timesteps with data collected during history timesteps, and there

is usually a lead time for conducting prediction and bidding. Prediction time length

is 24 hours in day-ahead forecasting and 15 minutes or 1 hour in real-time forecast-

ing. EPF has been a challenging task due to frequent occurrences of abrupt changes

in electricity prices which can be caused by extreme weather conditions, fuel prices,

sustainable energy outputs, maintenance plans, breakdown of generators, etc. Those

unexpectedly high values in a time series are called spikes. Compared to other elec-

tricity markets, such as Pennsylvania-New Jersey-Maryland Interconnection (PJM),

California Independent System Operator (CAISO), and Midcontinent Independent

System Operator (MISO), ERCOT market is more deregulated and competitive which

means higher variations in electricity prices.

Influences of spikes were not considered in many EPF research, and forecasting

models were built directly on original data[15, 16, 17, 18]. Nevertheless, the influences

cannot be ignored for EPF in the ERCOT market where the spikes of electricity prices
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can be as high as $9000, while 90% of electricity prices are below $40.5 according

to the hourly real-time settlement point prices (SPP) from 2017 to 2021. These

minority values exerted an enormous adverse influence on the models’ training process

and destroyed the models’ abilities to predict. [19] compared forecasting results of

omitting different levels of spikes of ERCOT SPP data, and the MAE was 4.528

when prices over 100 dollars were omitted, however, the MAE increased to 13.750

when prices over 500 dollars were omitted.

Some research handled spikes via classification or data-smoothing technologies

before building models. Both [20] and [21] decomposed the electricity price series to

sub-series with simpler patterns which were easier for models to catch using wavelet.

[21] further classified predicted electricity prices as spikes and non-spikes with a com-

pound classifier including relevance vector machine, decision tree, and probabilistic

neural network according to the preliminary forecasting results based on sub-series

from wavelet. Two different forecasting models were built for spike and non-spike

data individually.

Our methodology predicted the probabilities of spikes with a probabilistic neural

network and built another model for normal price based on the SPP transformed by

linear saturation function. The probability of spikes’ occurrence is more important

than accurate values of spikes, so once the price is predicted as a spike, there is no

need to predict the accurate value which is difficult to predict as well.

1.4 Uncertainty Quantification of Prediction Models

Since machine learning and deep learning models play more and more important

roles in decision-making [22], and these models are black-box and hard to interpret,

it is important to measure the reliability and efficiency of those models. Uncertainty
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quantification provides a statistically trustworthy measurement of the reliability of

machine learning and deep learning models.

Uncertainty quantification (UQ) encompasses the investigation of all sources

of error and uncertainty, such as systematic and stochastic measurement error, ig-

norance, limitations of theoretical models, numerical representations, accuracy and

reliability of computations, approximations, algorithms, and human error. In a more

precise sense, UQ involves a comprehensive examination of the reliability of scien-

tific inferences. In the realm of uncertainty quantification (UQ), it is imperative to

note that UQ does not ascertain the correctness or truthfulness of a model. Rather,

its role lies in affirming that, given the acceptance of a model’s validity, one must

consequently acknowledge the validity of specific conclusions, albeit to a quantifiable

extent [23].

Conformal prediction serves as an accessible framework for establishing statisti-

cally robust uncertainty sets or intervals for the predictions generated by these models

[24]. It is characterized as a distribution-free, non-parametric forecasting approach

grounded in minimal assumptions[25]. This method can straightforwardly generate

prediction sets that maintain statistical validity, even in finite sample cases. In this

manuscript, a hybrid approach comprising a conformal quantile regression model [26]

and an adaptively adjusted estimations online method [27] is introduced. Through

this method, there is an effective enhancement in both the coverage rates of the tar-

gets and the bandwidth. Additionally, an investigation into the amalgamation of

conformal residual fitting with an adaptively adjusted estimations online method is

conducted, leading to increased coverage rates of prediction intervals.
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1.5 Outline of Contributions

(1) A novel reversible spike transformation was developed, facilitating the learning

of continuous patterns in electricity time series by the deterministic forecasting

model. The original values can be derived through the reverse transformation.

(2) A two-step training procedure was employed to train a transformer –based

model, named transformer-based day-ahead electricity price forecasting (TDEPF)

model.

(3) The TDEPF model was compared to RNN, LSTM, and GRU and shows a better

performance.

(4) A case study was done on the ERCOT market settlement point prices (SPP)

day-ahead forecasting and an innovative spike transformation was applied, ef-

fectively enhancing the accuracy of prediction.

(5) The comparison between one-hot and sin-cos encoding methods was conducted,

and it was determined that the latter is more efficient.

(6) A Winkler-peak score was developed based on the Winkler score to assess the

accuracy of peak time predictions. The predictive accuracy increases as the

Winkler-peak score decreases.

(7) The effectiveness of incorporating resource nodes for predicting SPP of load

zone was evaluated.

(8) Integration of Gaussian Process and Transformer Model (GP-Transformer) to

assess prediction uncertainties.

(9) Developed a transformer-based quantile regression model (QR-Transformer) to

provide probabilistic forecasting.

(10) Propose the Winkler-peak score, a new performance metric for evaluating peak

time predictions.
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(11) Proposed Adaptive Quantile Random Forest (AQRF) calibration approach,

aiming to enhance the coverage rates of prediction intervals while achieving

a narrower bandwidth.

(12) Proposed Adaptive Conformal Residual Fitting (ACRF) approach, designed to

elevate the coverage rates of prediction intervals to the specified target rates.

7



CHAPTER 2

BACKGROUND

2.1 Basic Concepts of MTS

Before building an accurate forecasting model for multivariate time series, rela-

tionships between different time series and underlying structure and patterns of single

series should be studied as understanding features of time series is the foundation of

forecasting [28]. Stationarity and autocorrelation relationships of MTS are commonly

examined before building a forecasting model.

To describe the properties of MTS conveniently, representations of MTS are

introduced. If an observation of a k-dimensional multivariate time series at time

t is denoted by Yt, where Yt = (Y 1
t , Y

2
t , ..., Y

k
t ), observations from t1 to tn can be

represented by Yt1 , Yt2 , ..., Ytn and lagged observations would be Yt1+l, Yt2+l, ..., Ytn+l,

where n is a positive integer and l is an integer.

2.1.1 Stationarity

For any t1, t2, ..., tn and all l = 0, 1, 2, ..., if Yt1 , Yt2 , ..., Ytn and Yt1+l, Yt2+l, ..., Ytn+l

follow the same probability distribution, Yt is strictly stationary[6]. Therefore, E(Yt) =

µ and V ar(Yt) = E[(Yt − µ)(Yt − µ)′] are constant for all t provided that Yt is a sta-

tionary MTS. Here, the definition of stationarity is based on the assumption that Yt

is finite and has at least two moments. In practical applications, strict stationarity is

hard to prove. Therefore, [6, 29] define finite Yt with at least two moments as weakly

stationary MTS, which is more common, on conditions that E(Yt) = µ is constant

and E[(Yt − µ)(Yt+l − µ)′] depends only on l.

8



2.1.2 Autocorrelation

Autocorrelation is a characteristic of time series where the current value corre-

lates with the previous values. If a correlation only exists between the current value

and the previous value, the correlation is called the first order autoregressive, AR(1),

and if a correlation exists between the current and the two preceding values, the corre-

lation is called the second-order autoregressive, AR(2), and so on [30]. Assuming that

Yt represents the observation of the variable Y at time t, Yt−1 should be considered in

the regression model if a time series is the first-order autoregressive. Similarly, Yt−1

and Yt−2 should be used for predicting Yt if a time series is the second autoregressive.

Yt−1 is also called the first lagged value of Yt.

As one of the critical features of time series, autocorrelation makes time series

forecasting distinct from other regression tasks. A model’s ability to determine the

appropriate autoregressive order greatly affects the accuracy of forecasting. If a much

higher order of autoregression is considered, accuracy of short-term forecasting may be

impaired and reversely, long term patterns may be neglected. Accordingly, common

long-term and short-term patterns of time series should be identified before building

a model.

Features of univariate time series, such as seasonality, cyclic patterns, and trends

are also useful in multivariate time series analysis. These descriptive features should

be observed through graphs before building a forecasting model as well.

2.2 Statistical Models For MTS Forecasting

The vector autoregressive (VAR) model is one of the most widely used models[29,

31, 32] because it is easy to estimate whether by least-squares, maximum likelihood,

or Bayesian method, and it has been thoroughly studied over a long time. A simple
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bivariate VAR (1) model can be written as Yt = β0 + β1Yt−1 + ε [29], where Yt, β0,

and Yt−1 are k × 1 vectors, β1 is a k × k coefficient matrix and ε is a residual vector.

From the equation, we can see that VAR models only consider linear relationships

among time steps, and it is not applicable to complex MTS. Similarly, vector moving

average (VMA) models also only take linear relationships into account, but they as-

sume each time series has a constant mean, and linear relationships exist in residuals.

For instance, the equation of VMA (1), Yt = µ + at − β1at−1 [29], assumes a k × 1

constant mean vector µ and linear combination of k residuals at time t− 1 (residuals

are represented by a). Obviously, VMA models explain variations in MTS with linear

combinations of residuals from different time steps while VAR models explain linear

relationships among time steps. It is natural to combine them into one equation, that

is a vector autoregressive moving average (VARMA) model. VARMA (p, q) is the

combination of VAR(p) and VMA(q) which indicates p order autoregressive and q

time steps’ moving window. No matter which model, VAR, VMA, or VARMA, they

are models for stationary time series, but stationary time series are not so common

in reality, especially in the energy field. Furthermore, selecting suitable parameters

p, and q takes time.

There are many variants of VAR and VARMA dedicated to improving their per-

formances and expanding their scope of application. Vector autoregressive integrated

moving average (VARIMA) models expands the application context of VARMA by

differencing time series to achieve stationarity[33, 34]. Nevertheless, the order of dif-

ference needs to be decided through trial and error, and it is not guaranteed that

stationarity exists in time differences. Seasonal ARIMA(SARIMA) multiplies non-

stationary seasonal patterns with stationary patterns to fit seasonally changed time

series[35], but each quarter of a year needs a different model. To boost the computa-

tional efficiency of the parameter selection process in VAR, VAR-LASSO utilized the
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property of LASSO regression[36], selecting and estimating parameters at the same

time[37, 38]. On the other hand, for VAR models with lots of zero values in the coeffi-

cient matrix, sparse VAR (sVAR) identifies non-zero coefficients by estimating partial

spectral coherence at first and then refines results which accelerates computation as

well[39]. In addition, the generalized autoregressive conditional heteroskedasticity

(GARCH) model, a variant of autoregressive moving average (ARMA), fits time-

dependent error variances, instead of time series itself[40]. Multivariate GARCH

models can deal with nonstationary MTS with time-varying volatility and have been

successfully applied to the financial domain as a useful decision tool, such as risk man-

agement and asset pricing[41, 42]. Besides, exogenous factors that may contribute to

time series changes are introduced to ARIMA models to improve forecasting accuracy

and these models are known as ARIMAX models[43].

Other than models based on autocorrelations and moving averages, support

vector machine (SVM) is also a classic model for time series forecasting and achieved

excellent prediction results for non-linear time series[44]. Furthermore, a multioutput

SVM for multistep ahead forecasting (MM-SVM) was put forward to cover its instable

spatiotemporal forecasting deficiency [43]. Nevertheless, SVM is essentially designed

to solve a quadratic programming problem, so heavy computation becomes prominent

when the dimensionality of data expands[45].

As an explosive increase in data size and complexity of MTS, the forecasting

ability of most traditional MTS models is restricted due to correspondingly increased

computational cost and common assumptions of certain stationarity. Comparatively,

deep learning methods have gained popularity for their competence in modeling non-

linear relationships in MTS.
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2.3 Deep Learning Models For MTS Forecasting

As early as 1991, Park presented his research about electric load forecasting

with an artificial neural network (ANN)[46]. However, deep neural networks were not

even mentioned in a review of neural network methods for load forecasting in 2001 yet.

[47, 48] claimed that few of ANNs applied to time series forecasting had theoretical

support according to papers published between 2006 to 2016. But it is noticeable that

recurrent neural network (RNN) began to be used for time series forecasting[49, 50].

Actually, unlike convolutional neural network (CNN) or ordinary multilayer percep-

tron (MLP) networks, RNN are quite suitable for time series forecasting according to

its capability of learning and storing information of sequence data which is explicitly

exhibited by its structure[51].

2.3.1 RNN-type Models

A simple RNN model connects each time steps by hidden states ht, where

ht = g(Wxt + Uht−1 + b). xt is the input at time t, ht−1 is the hidden state at

previous time t − 1, b is bias, W , U are weights, and g is an activation function.

Through hidden states, RNN enables autocorrelation of time series to be learned,

but gradients vanish and explode especially when it comes to long sequences[52].

Thus, Long Short-Term Memory (LSTM)[53, 54] was developed to overcome this

issue. LSTM is still an RNN type of neural network and connects inputs from a

sequence. Whereas, each memory cell of LSTM contains three multiplicative gates,

input gate, output gate and forget gate. Forget gate tunes the ratio of input added

to the current cell, the input gate multiplies information from hidden states with

scaled input in the current cell, and the output gate produces the hidden state to be

passed and the output of the current state. So, LSTM is able to selectively remember

information from previous time steps. [55] presented a bidirectional LSTM (BiLSTM)
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that processes a sequence from both starting and ending directions accelerates the

processing speed and outperforms RNN and MLP. Furthermore, [56] proposed a deep

LSTM which stacked LSTM layers to forecast petroleum production. Different from

LSTM models, GRU models[57] only have two gates, update and reset gates. The

update gate calculates a linear combination of the current input and previous hidden

state and then activates the result by sigmoid function. The output from update

gate will be used to decide weights of the hidden state at the previous time step

and candidate hidden state at current time step. So, the update gate can decide to

keep history information to which extent. Reset gate follows the same procedure as

update gate to generate outputs, but reset gate is involved in candidate hidden state

calculation as an element-wise multiplier of the hidden state at previous time step.

Both LSTM and GRU are dedicated to solve the gradient vanish problem. It is hard

to tell which of LSTM and GRU is better in sequence modeling task[58] though deep

LSTM outperforms GRU in some application[56]. In general, LSTM and GRU are

still RNN type models, so they still suffer from gradients vanishing and exploding

issues though better than simple RNNs.

2.3.2 Transformer Neural Networks

There are some hybrid models of RNN-type models and traditional autore-

gressive models. For instance, Kim proposed a hybrid model that accepted multiple

GARCH-type models’ parameters together with other explanatory variables as inputs

for LSTM and proved improvements of the prediction accuracy of LSTM models[59].

After Vaswani et al. first proposed a novel NN structure with attention mechanism[60],

known as Transformer, for translation tasks, research into attention-based NN mod-

els booms for the attention mechanism’s capability of capturing global dependencies

between outputs and inputs. In [60], attention is a mapping function transforming a
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query(Q) and a set of key-value pairs to an output, and the output is the weighted

sum of values. The weights of values are calculated by scaled dot-product attention

as equation2.1,

Attention(Q,K, V ) = softmax(
QKT

√
dk
V ) (2.1)

whereK and V are used to represent matrices of keys and values, dk is the

dimension of K. The transformer neural network consists of several multi-head at-

tentions which are composed of scaled dot-product attentions individually.

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh) (2.2)

where each head represents a single attention defined in equation2.2.

Before the Transformer was invented, a typical attention mechanism used in

neural networks computes weights of historical time steps or of different time horizons

to improve forecasting but still based on existing RNN structures. In [61], an attention

mechanism was added before decoder layers in an LSTM-based encoder-decoder NN.

Hidden states hj, as outputs of the encoder layer, were assigned weights calculated

by the following attention mechanism.

ei,j = Align(si−1), hj) = sTi−1 � h′j (2.3)

α(i,j) =
exp (ei,j)∑T
k=1 exp (ei,k)

(2.4)

where j is the position in inputs, i is the position in outputs, T is the length of

time series, si−1 is the hidden state in the decoder, and αi,j is the weight of hj. The

alignment model used for calculating intermediate variable ei,j was proposed in [62].

Align(si−1, hj) = vT tanh(Wsi−1 + Uhj) (2.5)
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where v,W,U are weight matrices. [61] proved that LSTM with attention im-

proved standalone LSTM by experiments on five stocks data, but accuracy was cal-

culated on predicted one step ahead while the NN model was potentially capable of

forecasting multiple steps ahead. Moreover, higher variability in results was discov-

ered due to complexity of the attention-based model. [63] applied the same attention

mechanism to BiLSTM based encoder decoder network, but the model explicitly con-

sidered multivariate time series as input and was evaluated with 6-time-step-ahead

prediction tasks. Attention-based BiLSTM outperforms traditional forecasting mod-

els, such as ARIMA, SVR, RNN, LSTM, and so on. Other than adding a single

attention layer between encoder and decoder layers, [64] proposed multimodal at-

tention which concatenated weighted hidden states at different time horizons from

a RNN encoder and further passed combinations of weighted information to a Bi-

LSTM decoder and directly to output layer respectively. The structure was tested for

the day ahead forecast on the GEFCom2014 electricity price dataset and 3 months

ahead forecast on JD50K online-sales dataset. The results of a BiLSTM model with

multimodal attention were more accurate than results of either a BiLSTM encoder

decoder model with single attention or a BiLSTM encoder decoder model without

attention. Compared to scaled dot-product attention described in equation 2.1, this

attention mechanism is a linear combination, which is later activated by the tanh

function, of hidden states from the encoder and decoder. The typical attention mech-

anism mentioned above did not consider the interdependencies between time series

and multivariate time series was treated as univariate time series. So temporal pat-

tern attention (TPA) LSTM proposed in [65] defined another attention mechanism,

called scoring function, to not only extract dependencies among time steps but also

choose relevant time series. Supposing Hc
i to be the concatenated hidden states at
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time step i from multiple time series, the proposed scoring function calculates the

weights of Hc
i as defined below.

f(Hc
i , ht) = (Hc

i )
TWaht (2.6)

αi = sigmoid(f(Hc
i , ht)) (2.7)

Where Wa is a weight matrix, ht is the hidden state at time t, and αi is the weight

of Hc
i . Outputs of the TPA LSTM are h′t.

h′t = Whht +Wvvt (2.8)

vt =
n∑
i=1

αiH
c
i (2.9)

From equations 2.6, 2.7, 2.8, and 2.9, it is obvious that the scoring function in TPA

LSTM is quite similar to transformer’s attention mechanism. While Transformer’s

attention mechanism was first applied to translation tasks, it is also suitable for

time series forecasting since both sentences and time series are essentially ordered

sequences. Q, K and V are initialized as matrices of history times series in a time

series forecasting case. Weights calculated in attention can be used to present target

time steps’ dependencies of past time steps. Hence, global interdependencies among

time steps and time series can be captured.

Huang et al. [66] embedded dual scaled dot-product attention in a novel NN,

named as Dual Self-Attention Network (DSANet), to model interdependencies among

different time series for global and local convolutional layers. Experiment results of

DSANet were more promising than TPA. [67] adapted the original Transformer for

long-interval multivariate time series forecasting. First, soft max layer of output was

removed as it was used for classification task. Second, sine-cosine based positional

encoding was replaced by one-hot encoding because [67] thought positional encoding

impaired accuracy of continuous forecasting. Third, the log value of the conditional
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probabilistic distribution of outputs was set as additional cost function other than the

common mean squared error (MSE) function. The adapted model in [67] was proved

to be more accurate in multivariate time series forecasting than original Transformer

model. [68] put forward a Temporal Fusion Transformer (TFT) structure which was

similar to [64], but used multi-head attention to calculate weights of time steps and se-

ries instead, static covariates encoder for condition temporal dynamics and a variable

selection module named as Gated Residual Network (GRN) was implemented. As

stated in the paper, TFT is an interpretable model and can be used to detect regime

changes or important events by comparing averaged attention levels over forecasting

horizons.

As shown in the equation 2.1, the computational complexity of scaled dot-

product attention is O(n2 · d), where n is sequence length and d is the number of

time series, while the computational complexity of RNN is O(n · d2). Thus, when it

comes to long sequence forecasting and the dimension of features is relatively small,

which is typical for multivariate time series, the computational cost of the Trans-

former is much higher than RNN. To solve the problem, Zhou et al.[69] designed a

new transformer-based model, Informer, to overcome this issue. Informer reduced

computational complexity to O(n · ln(n)) by a prob sparse self-attention mechanism

and further accelerated the computation by self-attention distilling operation. More-

over, the Informer predicted long sequences in one step instead of a step-by-step way

by a generative decoder design, improving the inference speed of long sequence pre-

diction. These advantages were shown when tested on long sequence forecasting. On

the other hand, [70] also proposed a Residual Attention Layer Transformer (Real-

Former) model to make the attention matrix sparser for later layers and stabilize the

training. RealFormer just added a direct path between multi-head attention and the

next layer, skipping activation and norm transformation, which is simple and cheap.
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To specifically address long-term forecasting of time series, [71] created an in-

novative Auto-Correlation mechanism, inspired by scaled dot-product attention, to

decompose the time series as long-term trend-cyclical patterns and short-term sea-

sonal patterns with embedded fast Fourier transformation. This model, named Aut-

oformer, outperformed the original transformer in both efficiency and accuracy. [72]

adopted another strategy, combining typical attention 2.4 and scaled-dot product

attention 2.1 as a new attention mechanism, Pyramidal Attention Module (PAM).

PAM, which is the core of the model (Pyraformer) proposed in [72], is claimed to

be capable of obtaining temporal features at different scales, and it achieved higher

accuracies than Informer in long-time forecasting tasks.

In general, how to improve training efficiency, and capture temporal patterns

at different time horizons will be major topics for transformer-type models.

2.4 Probabilistic MTS Forecasting

Weron reckoned in 2014 that probabilistic forecasting would be one of the

hotspots in electricity price forecasting for the next decades [13], and this has al-

ready become true [14]. Probabilistic forecasts can be expressed as the regression in

equation 2.10 [14, 73],

yt = ŷt + εt (2.10)

where ŷt is the point prediction at time t, and εt is the error term. Common fore-

casting methods just provide the prediction of point value ŷt, while most probabilistic

forecasting models provide a prediction interval (PI) of ŷt. Methods to construct a

probabilistic forecasting problem can be classified into 4 categories [14],

(1) Calculating PIs based on historical data,

(2) Forecasting based on distributions,
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(3) Forecasting bootstrapped PIs,

(4) Quantile regression (QR),

The first category just calculates the PIs of historical data and is independent of

models [74, 75, 76, 77]. In the second category, it is often assumed that the error

term εt or variance follows a certain distribution, and two models are built for εt

and point values separately. Subsequently, PIs are generated by combining predicted

point values and PIs of error, which is often assumed to be Gaussian distribution

[14]. The second category was called distribution-based probabilistic forecasts, but it

can be easily mistaken as a distribution of observations. So, this category is renamed

as error density forecasts in this study. The third category, bootstrap PIs, is often

used in NN models to recursively update the forecasted values based on preliminary

guesses of parameters. The last category, QR, sets up a regression function for a

certain quantile of the target variable distribution. While the first category is an

empirical and simple method, literature and advances in the other three categories

are elaborated in detail. Bayesian approach is widely used in probabilistic forecasting

and it is often applied with deep learning methods to provide probabilistic forecasts

[78, 79, 80], a section for Bayesian inference was added in this study.

2.4.1 Error Density Forecasts

Normally, models in this category fit the distribution of deviations or errors

instead of point values. PIs of error are calculated according to the density function

of the distribution. Error density forecasts are usually complementary to point value

forecasts, especially to traditional time series forecasts where only time dependencies

are captured. For instance, [80] applied VAR to capture autocorrelations of time

series and proposed a model to fit noise with a skewed t distribution according to the

distribution of spikes in electricity prices. This method has some limitations. First,
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the choice of error distribution is crucial to the accuracy of forecasts, but the choice

depends on the researchers’ empirical knowledge and statistical analysis. Secondly, if

the regression model does not fit the data set well, the residuals of the model cannot

be treated as pure noise.

2.4.2 Bootstrapped Prediction Intervals

Bootstrapped prediction intervals were calculated through an error sampling

process. The process can be summarized as following[14, 81, 82, 83].

(1) Initialize a point value prediction model with parameters θ̂ and achieve true

residuals e∗.

(2) Sample e∗j from an empirical noise distribution and obtain b∗j = e∗ − e∗j .

(3) Repeat the second step for n times.

(4) Calculate prediction intervals with
∑B

j=1 b
∗
j

n

This method considers the uncertainty that cannot be parameterized in real data,

but computational cost increases with repetition number n, which should be close to

the sample size[81].

2.4.3 Quantile Regression

The response of traditional regression is a conditional mean of the target yt,

however, the response of quantile regression (QR) is a conditional quantile function

of target yt. Correspondingly, the parameters of QR are estimated by pinball loss

function (see section 2.5) which compares the actual value at a certain quantile of

distribution and the predicted value at the same quantile of the distribution. QR

has proved to be a robust regression method less sensitive to outliers and widely ap-

plied in economic and energy fields[78, 84, 85]. Quantile regression averaging (QRA)

proposed in [14] is one of the well-known QR methods. QRA is a simply weighted
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combination of more than one quantile regression model. [79] proposed Bayesian reg-

ularized quantile regression which outperformed pure QR by adding whether lasso or

elastic net penalty. To solve the problem of nearly constant intervals, conformalized

quantile regression (CQR) was put forward[26]. The data was split into two disjoint

sample sets at first, and then one of them was used for training quantile regressor for

upper and lower quantiles, and another for calibrating prediction intervals to meet the

predetermined threshold of interval length. Therefore, CQR achieved shorter inter-

vals than NN, ridge regression, quantile NN, and quantile random forest. [86] utilized

RNN to estimate the parameters of a predefined quantile function which consists of

a family of linear splines and the objective function is CRPS. This method made

quantile regression more flexible and easily adaptive to local changes.

2.4.4 Bayesian Approach

The Bayesian approach for MTS forecasting combines the principles of Bayesian

inference with models designed to capture the interdependencies and dynamics among

multiple time series. There are different ways to interpret the origins of uncertainty

in probabilistic time series forecasting problems, so various conditional distributions

were defined for probabilistic forecasting. Common ways to embed uncertainties

include (1) Bayesian Vector Autoregressive models; (2) Bayesian State Space Models;

(3) Multivariate Gaussian Process Regression; (4) Bayesian Multivariate time series

forecasting with Copulas and (5) Bayesian deep learning models.

Bayesian vector autoregressive (BVAR) and similar models, such as Bayesian

Vector Autoregressive moving average (VARMA), assume that prior knowledge is

reflected in the parameters of autoregressive time series models[87, 88]. In contrast

to traditional multivariate time series models like VAR and VARMA 2.2, where cor-

relations between variables are constant, Bayesian linear regression models consider
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parameters in these linear time series models to follow distinct distributions. Bayesian

linear regression models are particularly advantageous when there is existing prior in-

formation, allowing practitioners to gauge the credibility of the models. They also

offer flexibility as each parameter has the potential to adhere to a distinct distribu-

tion [89, 90]. However, when dealing with a large number of dependent variables,

the computational complexity increases. Moreover, the prior assumptions about pa-

rameter distributions play a crucial role. Finally, it’s important to note that BVAR

models are fundamentally based on linear relationships between variables, which may

not always hold in real-world scenarios.

A Bayesian state-space model characterizes the evolution of a system over time

using state variables. One of its strengths lies in the ability to independently model

different aspects of the series and then integrate them into an overarching model.

State-space models are highly adaptable and find applications in a wide range of

scenarios, from autoregressive integrated moving average models to models with un-

observed components and smoothing models incorporating penalties for irregularities

[91, 92, 93]. However, selecting appropriate state transition and observation equa-

tions can be challenging, and the modeling outcomes are influenced by the chosen

prior distributions for parameters. Additionally, assuming linear relationships be-

tween variables may not always be applicable in real-world contexts.

Gaussian Process (GP) regression, a well-known Bayesian nonparametric model,

relies on parameters such as mean and covariance functions (also known as kernels) for

multivariate normal distributed data [94, 95]. Multivariate Gaussian Process Regres-

sion offers a flexible and probabilistic framework for modeling intricate relationships

between input and output variables, capable of capturing dependencies across mul-

tiple output dimensions [96, 97]. The choice of different kernels in GP allows for

accommodating diverse correlation patterns in time series, enabling the handling of
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non-linear relationships between variables. However, as the volume of data increases,

the computation of covariates becomes computationally demanding. To address this,

scalable and variational methods have been developed to enhance GP efficiency by

approximating kernels rather than calculating exact values [98, 99, 100]. It’s worth

noting that Gaussian process regression is tailored for continuous variables, necessi-

tating additional steps for handling discrete variables.

Much like Gaussian process regression, the copula-based multivariate model

assumes a collective distribution of variables. This distribution can be broken down

into individual distributions, with the copula serving as the function that links these

individual distributions to the joint distribution [101]. This methodology incorporates

existing knowledge about the relationships between variables and is adaptable to

model various dependencies beyond simple linear correlations. Conversely, in cases

where prior information is unavailable, selecting appropriate copula models becomes

challenging, and the choices of associated parameters become crucial. Moreover,

copula models rely on the assumption of stationarity [102] and may face difficulty in

accurately modeling extreme values. They can also be prone to overfitting due to the

complexity of the models.

Among various Bayesian deep learning models, variational autoencoder (VAE)

is particularly suitable for probabilistic forecasting. VAE returns a posterior distri-

bution of a latent variable given the data and it can be used to provide probabilistic

forecasts by just setting the loss function for distributions, such as negative Gaus-

sian log-likelihood, and Kullback-Leibler (KL) divergence[103, 104]. Temporal latent

Auto encoder proposed a scalable matric factorization method to decompose latent

variables which boosts the model efficiency, and an LSTM layer was used to learn

nonlinear relationships of factors[103]. Using Variational Autoencoders (VAEs) for

time series forecasting comes with several challenges. VAEs may produce somewhat
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blurry outputs, limiting their ability to generate sharp predictions. These models

might struggle with capturing highly complex or multimodal data distributions, po-

tentially hindering their effectiveness in diverse datasets. The phenomenon of ”pos-

terior collapse” can occur, leading to less diversity in generated samples. VAEs are

also sensitive to hyperparameter choices, and achieving the right balance between

reconstruction accuracy and regularization terms can be challenging. Additionally,

VAEs may face difficulties in capturing long-term dependencies in sequential data,

and their probabilistic nature might introduce challenges in interpreting learned rep-

resentations. Despite their potential, VAEs demand careful consideration of these

limitations and thoughtful parameter tuning for effective application in time series

forecasting.

2.5 Performance Metrics of Probabilistic Forecasting

As probabilistic forecasting provides prediction intervals or values at specific

quantiles rather than single point estimates, the metrics used to assess probabilistic

prediction accuracy also differ. One widely used metric for quantile regression is

the Pinball loss [14, 105, 106]. The Pinball loss is defined as follows: yt represents

the actual value at the quantile α, while ŷt denotes the predicted value at the same

quantile α.

Qα(yt, ŷt) =


α(yt − ŷt) if yt − ŷt > 0

0 otherwise

(2.11)

[64] predicted different quantiles of JD50KSales or GEFCom2014 electricity

price with pinball loss. It calculates the difference between actual quantile values and

forecasted quantile values, so pinball can only be used for a certain quantile regres-

sion. If the quantile changes, a new quantile regression model should be built. TFT
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paper [68] applied a modified quantile loss (QL) function, which was proposed in [107]

and similar to pinball, that combined two segmented functions together and chose the

maximum value between 0 and loss. In this way, predicted quantile values below the

target quantile values are not considered. Unlike pinball or QL, Winkler score[108]

compares prediction intervals (PIs) for probability forecasting and selects the narrow-

est one by comparing differences between point values and lower, upper bounds. In

addition, the Continuous Ranked Probability Score (CRPS) is also a commonly com-

pared measurement[109]. CRPS derived from [110] calculates the differences between

cumulative distribution function (CDF) and indicator function directly, and it is the

same as mean absolute error (MAE) when applied to deterministic forecasting. CRPS

is one of the most popularly used metrics in probabilistic forecasting[86, 109, 103].

There are some other probabilistic evaluation methods, such as logarithmic score

(LogS) and variogram score (VarS) [111] as well, but LogS is very sensitive to tails

and VarS only evaluates correlation and variance, not the mean of a distribution.

2.6 Performance Metrics of Uncertainty Quantification

Following the derivation of prediction intervals from probabilistic forecasting, a

calibration process is undertaken to ensure a statistically guaranteed coverage rate.

As outlined in [112], an effective prediction interval should encompass the anticipated

rate of targets while maximizing sharpness. In this investigation, the sharpness of

prediction intervals will be assessed through bandwidth measurement. The coverage

rate, also frequently refered to as prediction interval coverage probability (PICP)

[113] is computed using Equation 5.12. n is the number of samples, and θαi denotes
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whether the ith sample is covered by the prediction interval at 100(1−α)% level. θαi

equals 1 if ith sample is covered by PI, and 0 otherwise.

PICP =
1

n

n∑
i=1

θαi (2.12)

Bandwidth, or prediction interval average width (PIAW) [114], is determined by

Equation 5.13. n represents sample counts as well. Uα
i and Lαi denote the upper

bound and lower bound of the prediction interval at 100(1− α)% level.

PIAW =
1

n

n∑
i=1

(Uα
i − Lαi ) (2.13)

PICP and PIAW are used to measure the performances of conformal prediction.
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CHAPTER 3

DAY-AHEAD ELECTRICITY PRICE FORECASTING WITH MULTIVARIATE

TIME SERIES TRANSFORMER

3.1 Introduction

Electricity price forecasting (EPF) has been a prevalent research topic for years

[115, 116, 117, 118, 119] due to its potential to bring significant value to electric-

ity markets. According to statistics from U.S. Energy Information Administration

(EIA) [120], the revenue generated from the sale of electricity to ultimate customers

amounted to 393,639 million dollars in 2020 and increased by 7.3% to reach 422,323

million dollars in 2021. While there are tremendous benefits in electricity markets,

the growing volatility of electricity prices puts market participants at higher risks.

The emergence of renewable energy sources, such as wind and solar power, is one

of the contributing factors to this volatility. According to the U.S. Energy Informa-

tion Administration, renewable energy accounted for 13.7% of the total net electric

power generation in 2021, representing a 13.2% increase from the previous year [120].

Additionally, the deregulation of the electricity markets in the United States, which

began in the 1990s, has created a more competitive environment compared to reg-

ulated markets. While customers in deregulated markets may benefit from lower

electricity prices most of the time, supply shortages can lead to unexpectedly high

prices. Against this backdrop, this study focuses on the ERCOT market, a deregu-

lated market that is increasingly impacted by fluctuations in wind power as opposed

to electricity demand [121]. To assist market participants to hedge against fluctua-
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tions in electricity prices and make more knowledgeable decisions, a day-ahead EPF

model was created for the wholesale power market run by the ERCOT in this study.

A comprehensive review published by Weron divided EPF approaches into five

categories including game theory models, fundamental methods, reduced-form mod-

els, statistical models, and machine learning methods [13]. Nevertheless, in light of

potential application scenarios and advances in these approaches, this study mainly

discusses and compares three categories of state-of-the-art EPF methods as summa-

rized by Lago [119], namely statistical, machine learning, and hybrid methods.

Most statistical methods are dedicated to building linear regressions based on

correlations among time steps and usually assume that predictors are independent.

But factors contributing to the changes in electricity prices are complex and not nec-

essarily independent, such as factors in the form of multivariate time series (MTS). So,

typical deep learning methods for time series forecasting, such as RNN, LSTM, and

GRU, which can learn nonlinear relationships become popular nowadays [122, 123].

Nevertheless, RNN-type deep learning models face gradient vanishing or exploding

issues in long-sequence time series forecasting. Aside from RNN-type models, sup-

port vector machine (SVM) is also one of the classic machine learning methods and

it achieves excellent results for non-linear time series prediction [124, 125]. Howbeit,

SVM is essentially designed to solve quadratic programming problems, so heavy com-

putation becomes prominent when dimensions of data expand [45]. Hybrid methods

which normally consist of more than one algorithm are one of the popular EPF topics

in accord with the number of published papers as well [14]. Despite the popularity

of hybrid methods, it is hard to measure their accuracy against other state-of-the-art

methods since most of them either avoided the comparison or were compared with

outdated methods [119].
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To address these limitations, this work adopts a transformer neural network.

This network is particularly adept at modeling intricate multivariate time series and

forecasting multiple steps ahead. Transformer, a trendy neural network architecture,

was proven to outperform regular RNNs in multilingual neural machine translation

tasks[126] and it is a relatively new topic in the EPF field [127, 128, 129]. Even

though there are comparisons of transformer and RNN-type models in existing works

[127, 128], the hyperparameter optimization process is not mentioned and the datasets

they used are rather regular compared to electricity prices in the ERCOT market.

A fair comparison of the transformer with RNN-type neural networks based on hy-

perparameter optimization is presented in this work. Besides, supervised training

combined with unsupervised fine-tuning which was proved to be superior to single

training was applied in the study [130].

Furthermore, spikes, which are unexpectedly high values in electricity prices,

are much higher in the ERCOT market than in other markets such as Pennsylvania-

New Jersey-Maryland Interconnection (PJM), California Independent System oper-

ator (CAISO), and Midcontinent Independent System Operator (MISO). So, while

some research did not specifically address the issue of spikes [15, 16, 17, 18], many

case studies of the ERCOT market involved separate predictions of peak and off-

peak prices [131, 132] or decomposition of time series of electricity prices [133]. In

this study, the spikes are transformed into lower magnitudes which are still consid-

ered high relative to normal prices. By incorporating the transformed spikes into the

inputs, the model we developed can not only focus on normal price prediction but

also catch the pattern of continuous time series.
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3.1.1 Motivation and Contributions

As mentioned above, it is difficult for traditional statistical methods to handle

complex multivariate time series, and usually, more than one model is needed for

multiple-step-ahead forecasting. Meanwhile, RNN-type models have the problem of

gradient vanishing or exploding in long-sequence forecasting. So, our first motivation

is to apply the transformer structure which is able to capture complicated correlations

and avoids gradient vanishing or exploding problems by calculating the weight of each

data point in both time and feature dimensions. In addition, past works lack a fair

comparison of transformer and RNN-type models with hyperparameter optimization

on the models. Our work tried to provide comparisons between common RNN-type

models and transformer networks. Last but not the least, the number of case studies

on the ERCOT market for EPF is comparatively small, and most of them predicted

electricity prices with hybrid models due to frequent occurrences of challenging spikes

[131, 132, 133]. The spikes of electricity prices in ERCOT can be as high as $9000,

while 90% of electricity prices are below $40.5 according to the hourly real-time SPP

from 2017 to 2021.

In the consideration of above motivations, this study contributed to the follow-

ing aspects:

(1) A multivariate time series transformer for day-ahead Electricity Price Forecast-

ing (EPF) through a two-step process: unsupervised pretraining followed by

supervised finetuning was employed. The unsupervised pretraining phase en-

hances the convergence of the finetuned model, mitigates overfitting concerns,

and enables the model to capture more generalized data patterns. Moreover,

the pretraining process contributes to the efficiency of model updates.

(2) Fair comparisons of our model, RNN, LSTM, and GRU with a hyperparameter

optimization method, Bayesian Optimization Hyperband (BOHB) were done.

30



(3) A case study was conducted on the challenging electricity market, ERCOT. In

order to address the difficulty of modeling frequent spikes and maintaining con-

tinuous time series patterns simultaneously, an innovative spike transformation

was applied, effectively enhancing the accuracy of predictions.

(4) The incorporation of resource nodes’ SPP as predictors did not enhance the

prediction of the load zone’s SPP, potentially because spikes of resource nodes

and the load zone occurred nearly simultaneously.

3.1.2 Chapter Structure

The chapter is structured as follows: section 2 presents a comprehensive review

of state-of-the-art electricity price forecasting methods. Section 3 introduces the

studied problem and provides a detailed illustration of our proposed model. Section

4 presents and discusses the details of the ERCOT case study, including the data,

hyperparameter optimization, evaluation metrics, and results. Finally, in section 5,

we draw conclusions based on our findings.

3.2 Literature Review

3.2.1 Statistical Methods

Various statistical methods are available, such as vector autoregressive (VAR)

models, vector autoregressive moving average (VARMA) models, and their related

variants. These models are designed to enhance their performance and broaden their

scope of application. Vector autoregressive integrated moving average (VARIMA)

models expand the application context of VARMA by differencing time series to

achieve stationarity [33, 34]. Nevertheless, the order of difference needs to be decided

through trial and error, and it is not guaranteed that stationarity exists in time differ-

ences. Seasonal ARIMA(SARIMA) multiplies nonstationary seasonal patterns with
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stationary patterns to fit seasonally changed time series [35], but each quarter of a

year needs a different model. To boost the computational efficiency of the parameter

selection process in VAR, VAR-LASSO utilized the property of lasso regression [36],

selecting and estimating parameters at the same time [37, 38]. On the other hand,

for VAR models with lots of zero values in the coefficient matrix, sparse VAR (sVAR)

identifies non-zero coefficients by estimating partial spectral coherence at first and

then refines results which accelerates computation as well [39]. In addition, the gen-

eralized autoregressive conditional heteroskedasticity (GARCH) model, a variant of

autoregressive moving average (ARMA), fits time-dependent error variances, instead

of the time series itself [40]. Multivariate GARCH models can deal with nonsta-

tionary MTS with time-varying volatility and have been successfully applied to the

financial domain as useful decision tools, such as risk management and asset pricing

[41, 42]. Besides, exogenous factors which may contribute to time series changes are

introduced to ARIMA models to improve forecasting accuracy and these models are

known as ARIMAX models [43].

Due to the exponential growth of data size and complexity in MTS, the fore-

casting capabilities of many conventional MTS models are limited by the subsequent

increase in computational costs, the intricacy of multivariate time series, and the

underlying assumptions of stationarity. Comparatively, deep learning methods gain

popularity for their competence in modeling complicated nonlinear relationships in

MTS.

3.2.2 Machine Learning Methods

As early as 1991, Park presented his research about electric load forecasting

with an artificial neural network (ANN) [46]. However, deep neural networks were

not even mentioned in a review of neural network methods for load forecasting in
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2001 yet [47] and [48] claimed that few of ANNs applied to time series forecasting had

theoretical support according to papers published between 2006 to 2016. However,

it is noticeable that recurrent neural networks (RNNs) began to be used for time

series forecasting [49, 50]. Actually, unlike convolutional neural networks (CNNs) or

ordinary multilayer perceptron (MLP) networks, RNNs are quite suitable for time

series forecasting according to their capability of learning and storing information of

sequence data which is explicitly exhibited by their structure [51].

A simple RNN model connects each time step by hidden states. Through hidden

states, RNN enables autocorrelation of time series to be learned, but the information

in the history cells gradually disappears with the increase of inputs’ length[52]. Thus,

LSTM [53, 54] was developed to overcome this issue. LSTM is still an RNN-type

neural network, whereas, each memory cell of LSTM contains three multiplicative

gates, input gate, output gate, and forget gate. Forget gate tunes the ratio of input

added to the current cell, the input gate multiplies information from hidden states

with scaled input in the current cell, and the output gate produces the hidden state to

be passed and output of the current state. So, LSTM is able to selectively remember

information from previous time steps. [55] presented a bidirectional LSTM (BiLSTM)

that processes a sequence from both starting and ending directions and accelerates

the processing speed and outperforms RNN and MLP. Furthermore, [56] proposed a

deep LSTM that stacked LSTM layers to forecast petroleum production.

Different from LSTM models, GRU models [57] only have two gates, update

and reset gates. The update gate calculates a linear combination of the current input

and the previous hidden state and then activates the result by the sigmoid function.

The output from the update gate will be used to decide the weights of the hidden

state at the previous time step and the candidate hidden state at the current time

step. So, the update gate can decide to keep history information to which extent.
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The reset gate follows the same procedure as the update gate to generate outputs,

but the reset gate is involved in the candidate hidden state calculation as an element-

wise multiplier of the hidden state at the previous time step. Both LSTM and GRU

are dedicated to solving the gradient vanishing problem. It is hard to tell which

of LSTM and GRU is better in sequence modeling tasks [58] though deep LSTM

outperforms GRU in some applications [56]. In general, LSTM and GRU are still

RNN-type models, so they still suffer from gradients vanishing and exploding issues

though better than simple RNNs.

There are some hybrid models of RNN-type models and traditional autoregres-

sive models. For instance, Kim proposed a hybrid model which accepted multiple

GARCH-type models’ parameters together with other explanatory variables as in-

puts for LSTM and proved improvements in the prediction accuracy of LSTM models

[59]. But they are trapped in the limitation of RNN-type models.

Transformer neural networks are one of the most widely used neural network

structures recently. They jump out of the scope of CNNs or RNNs and rely on the

attention mechanism. After Vaswani et al. first proposed a novel NN structure with

the attention mechanism [60], known as transformer neural networks, for translation

tasks, research into attention-based NN models booms for the attention mechanism’s

capability of capturing global dependencies between outputs and inputs. While the

transformer’s attention mechanism was first applied to translation tasks, it is also

suitable for time series forecasting since both sentences and time series are essentially

ordered sequences.

Other than deep learning models, the support vector machine (SVM) is also

a classic model for time series forecasting and achieved excellent prediction results

for non-linear time series [44]. Furthermore, a multi-output SVM for multistep ahead

forecasting (MM-SVM) was put forward to cover its unstable spatiotemporal forecast-
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ing deficiency [134]. Nevertheless, SVM is primarily intended to address a quadratic

programming problem, and as the dimensionality of the data increases, significant

computation becomes necessary [45].

3.2.3 Hybrid Methods

Since variations in electricity prices are quite irregular and originate from com-

plicated factors, many hybrid methods were invented for the purpose of disintegrating

EPF problems into simpler sub-problems. These hybrid methods usually contain more

than one of the following modules [119]:

(1) data decomposition

(2) feature selection

(3) clustering

(4) one or more prediction models

(5) parameter or hyperparameter optimization

The complex EPF problem is decomposed into easier sub-tasks by those mod-

ules. For example, time series of electricity prices can be decomposed into simpler

signals by popular signal processing methods, such as variational mode decomposi-

tion, then forecasting results of each signal are combined together to generate final

forecasts[135, 136, 137]. A hybrid method can consist of different combinations of

modules corresponding to specific datasets. Thus, it is hard to find the most rep-

resentative hybrid methods and they are normally not compared to other SOTA

methods.
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3.3 Proposed Method

3.3.1 Problem Formulation

The objective of this study is to develop a model that can forecast the SPP for

the next p hours (from t to t+p−1) based on k observed features from the preceding

h hours (from t−h− l to t− l−1). This is illustrated in Figure 3.1, where l represents

the lead time.

If we denote yt as the SPP for the north load zone and xt as a set of features

with k dimensions observed at time t, the multi-step ahead electricity price forecasting

problem can be formulated as follows:

(yt, yt+1, . . . , yt+p−1) = f (xt−l−h, xt−l−h+1, ..., xt−l−1) + εt (3.1)

In this context, εt represents the random error term, p signifies the duration of the

prediction horizon, and h denotes the extent of historical time steps.

Figure 3.1. The problem definition.

3.3.2 Workflow

To address the issue outlined in the preceding section, we have put forth a

workflow depicted in Figure 3.2. The workflow incorporates a spike-focused contin-
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uous data transformation to minimize the impact of spikes on the SPP data. After

this transformation, the resulting SPP and other variables, such as date, time, and

temperature, were utilized as multivariate time series inputs for the TDEPF model.

Finally, the spikes were reverse-transformed to obtain the day-ahead hourly SPP

transformation.

Settlement Point 
Prices(SPP) of LZ_North
and of Resource Nodes 
in the north load zone 

Date & Time, 
Weather, Load, Wind 

Generations and 
DAM SPP Data in the 

Past N Days

Spike Focused 
Continuous Data 
Transformation

Transformer-based Day-
ahead EPF (TDEPF) model 

Spike Reverse 
Transformation

Prediction of Hourly 
Day-ahead SPP

Figure 3.2. Workflow of transformer-based day-ahead electricity price forecasting.

3.3.3 Spike Transformation

Spikes refer to sudden and significantly high values in electricity prices that

quickly return to their average levels. These spikes are inevitable due to the nature of

electricity and the regulatory framework governing price bidding. Typically, strategies

such as substituting with neighboring prices, using data from similar days, or applying

user-defined thresholds are employed to address spikes [76]. In order to maintain

the continuity of the time series data and reduce the impact of spikes, a logarithmic
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transformation, as demonstrated in Equation 3.2, was applied to the electricity prices.

If the initial electricity price yt surpasses the upper limit ub, it will be subjected to a

logarithmic adjustment and then multiplied by a factor that guarantees the adjusted

value remains higher than ub. The selection of ub will be discussed in the 3.4. This

transformation effectively dampened the effect of spikes, allowing normal prices to

remain within the same distribution. Consequently, the forecasting model for normal

prices remains unaffected by the presence of spikes.

y′t =


yt if yt ≤ ub

ub
log10(ub)

log10(yt) otherwise

(3.2)

The benefit of employing this transformation is that the original values yt can be

derived from the transformed values y′t using the inverse transformation equation 3.3.

yt =


y′t if y′t ≤ ub

10
y′t·log10(ub)

ub otherwise

(3.3)

The determination of ub value is essential to the spike transformation, and

two methods were explored. Two different approaches were experimented with for

setting this upper bound: spike transformation method 1 (ST1), which utilizes the

Interquartile Range (IQR) method, and spike transformation method 2 (ST2), which

involves using the mean and standard deviation.

ST1 defines the upper bound as 1.5 × (Q3 − Q1) + Q3 as shown in Equation

3.4, where Q3 is the third quartile and Q1 is the first quartile of training SPP. So, ub

defined by Equation 3.4 is 36.761$/MWh. ST2 defines the upper bound as Equation

3.5, where µ̂ and s represent the mean and standard deviation of training SPP. The

upper limit is set as 148.680$/MWh using ST2.

ub = 1.5(Q3−Q1) +Q3 (3.4)
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Figure 3.3. Comparisons of spike transformation with two upper bounds(the left with
the original SPP, the middle with SPP transformed by ST1, and the right with SPP
transformed by ST2).

ub = µ̂+ s (3.5)

In Figure 3.3, comparisons of the distributions of the original training SPP,

training SPP transformed by ST1, and transformed by ST2 are presented. The box-

plot of the original training SPP reveals numerous extremely high outliers, causing

the majority of normal values to be compressed. In contrast, the SPP transformed by

ST1 exhibits a relatively balanced distribution when compared to the original SPP

and the SPP transformed by ST2.

3.3.4 Base Model

The fundamental structure of the TDEPF base model is a typical transformer

structure which comprises an embedding layer, a positional encoding layer, multiple

encoder layers, and a linear transformation layer, akin to component (a) illustrated
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in Figure 3.4. However, during the fine-tuning stage, there is a modification made to

the final linear layer.

As shown in Figure 3.4 (b), the input and the output of the embedding layer

are x ∈ Rh×k and E ∈ Rh×d, where h is the number of historical time steps, k is

the number of features, and d is the number of embedded dimensions. Equation 3.6

describes the linear transformation in the embedding layer, where We ∈ Rk×d is a

weight matrix and be ∈ Rh×d is a bias matrix. The embedding layer transforms the

input x from k to d dimensions which is a hyperparameter that can be tuned.

Figure 3.4. (a) TDEPF structure for unsupervised pretraining. (b) Inputs and out-
puts of the embedding layer. (c) Positional encoding of h time steps and d feature
dimensions. (d) The encoder structure..

ut = x ·We + be (3.6)

The positional encoding layer stores the positions of each data point with sine

and cosine functions as shown in Equation 3.7, where 2i and 2i+1 represent even and

odd positions in the feature dimension, t represents the index in the time dimension,

and n is the number of training samples. Meanwhile, i is an integer no less than 0
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and smaller than half the embedded feature dimension, d/2. c is a scalar and set as

10,000 in default. Figure 3.4 (c) illustrates the encoded matrix of positional encoding

where d is the feature dimension and h is the length of history time steps.

pos (t, 2i) = sin

(
t

c2i/d

)
pos (t, 2i+ 1) = cos

(
t

c2i/d

)
i, t are intgers, i ∈ [0, d/2), t ∈ [0, h− 1]

(3.7)

Each encoder is composed of multi-head attention, 2 add and norm layers, and

a feed-forward layer as illustrated in Figure 3.4 (d). The input of the first encoder, S,

is the sum of outputs from the positional encoding layer and embedding layer which

are P and E as shown in Equation 3.8. Thus, S is the same dimension as P and E.

Through three different linear transformation, S are transformed into Qi, Ki, and Vi

as in Equations 3.9 - 3.10 and they are inputs of attention head i(i = 1, 2, . . . ,m)

as shown in Figure 3.4 (d). The number of attention heads m is determined by the

hyperparameter tuning process. As in Equation 3.12, for each attention head, the

product of Qi and Ki
T is divided by the squared root of the number of embedded

features d. The scaled product matrix is converted into probabilities by the softmax

function (Equation 3.13) as weights for values Vi.

S = pos+ E, S, P,E ∈ Rh×d (3.8)

Qi = S ·WQi
+ bQi

, WQi
∈ Rd×d, bQi

∈ Rh×d (3.9)

Vi = S ·WVi + bVi , WVi ∈ Rd×d, bVi ∈ Rh×d (3.10)

Ki = S ·WKi
+ bKi

, WKi
∈ Rd×d, bKi

∈ Rh×d (3.11)

headi = softmax

(
Qi ·Ki

T

√
d

)
Vi, i = 1, 2, . . . ,m (3.12)

softmax (αi) =
eαi∑n
j=1 e

αj
(3.13)
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Multi-head attention is a linear combination of multiple attention heads as Equation

3.14, where Q, K, and V are ensembles of Qi, Ki, and Vi respectively and U is the

output of this layer. We use F to represent outputs of add and norm layer as Equation

3.15, and the sum of outputs of multi-head attention U and embedding layer S can be

normalized either within the layer (layer norm) or a batch (batch norm) in this layer.

The next layer in an encoder is a feed-forward layer. Negative values in the linear

transformed F are truncated as zeros and then linear transformation was conducted

again as in Equation 3.16. Dimension of G, noted as dff , is determined by the size

of weight matrix W2. G and F are inputs for the second add and norm layer as

described in Equation 3.17, and O is the final output of this encoder.

U = MultiHead(Q,K, V )

= Linear(Concat(head1, head2, . . . , headm))

(3.14)

F = LayerNorm(U + S) (3.15)

G = FFN(F ) = max(0, F ·W1 + b1) ·W2 + b2 (3.16)

O = LayerNprm(F +G) (3.17)

The final linear layer transforms hidden features O to the output and it is different

in the unsupervised pretraining and supervised fine-tuning process.

3.3.5 Two-step Training

Two-step training, including unsupervised pretraining and supervised fine-tuning,

achieved better performance compared to single supervised training in the natural

language processing (NLP) field [138]. So, two-step training was applied to the time

series forecasting field as well [130] and still outperformed purely supervised training.

In the unsupervised pretraining step, input is partially covered x and output is

uncovered x. Each feature vector was randomly covered 20% along the time dimension
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as shown in Figure 3.4. xt−h represents features observed during time t− h. Weights

and biases of the embedding layer, positional encoding layer, and encoders learned

in this step will be saved for the supervised learning step. This process enables the

model to learn more useful representative information of training data before the

training process.

[130] compared fixed weights and biases obtained in supervised training (Figure

3.4) and unfixed weights and biases, and found the fixed parameters tuned out to be

better. Therefore, in this study, the structure in Figure 3.5 was adopted. Input and

output of supervised finetune are uncovered x and prediction y. This step applies the

weights and biases trained in the first training step and the last linear transformation

layer will be designed to convert the output to the same dimension as the target.

Figure 3.5. Supervised training structure of TDEPF.

The flowchart depicted in Figure 3.6 illustrates the two-step training process.

Initially, the multivariate time series undergo transformation via an embedding layer

and are encoded using a positional encoding layer. Subsequently, the combined fea-
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tures traverse through the transformer encoder. During the pretraining step, the

layers preceding the latent feature matrix are trained. In the finetune step, only the

multiple linear perception (MLP) prediction head undergoes updates.

Figure 3.6. Flowchart of TDEPF.

3.4 Experiments

3.4.1 Data

The dataset employed in this research encompasses various variables including

electricity prices, load, day-ahead-market (DAM) prices, and weather information.

Specifically, the electricity price and load data were obtained from ERCOT, while

the weather data was sourced from the integrated surface dataset available on the

National Centers for Environmental Information website. In the case of intraday

electricity price forecasting (EPF), the response variable was derived from 5-minute

interval locational prices (LMP) in the real-time market. As for day-ahead EPF, the

hourly electricity price was determined by averaging the 15-minute interval settlement

point prices (SPP) in the real-time market. For instance, the SPP at 1:00 AM was

computed as the average value of SPP at 00:00 AM, 00:15 AM, 00:30 AM, and 00:45

AM.
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In ERCOT, there exists a diverse range of settlement points, numbering in the

hundreds and categorized by type. For the purposes of forecasting, the Settlement

Point Price (SPP) within the north load zone (LZ north) was chosen as a representa-

tive region. Each load zone’s SPP is determined by the weighted average of electricity

prices from resource nodes (RN) located within that particular region, prompting an

examination of the impact of including resource nodes’ SPP in the analysis. The

weather data encompasses temperature and dew points, providing an indication of

air humidity. The original load and weather data were recorded on an hourly basis.

Notably, while load data was provided in weather zones (see Figure 3.7), the SPP was

attributed to the load zone (see Figure 3.8). As depicted in Figure 3.8, the north load

zone is partially encompassed by the north-central, north, and east weather zones.

Consequently, weather and load information from these three weather zones were

considered as influential factors for SPP prediction within the north load zone. For

day-ahead forecasting, data spans from 1:00 AM on January 1st, 2017, to 24:00 PM

on December 31st, 2021. Any missing values within the time series were estimated

using the nearest neighbor interpolation method.

In the modeling phase, the training dataset was defined to encompass data

from 2017 to 2020, while the testing dataset consisted of data from the year 2021.

Continuous variables within the dataset were standardized using the mean and stan-

dard deviation derived from their respective training sets. Categorical attributes like

month, day of the year, and weekday were encoded for processing. We explored two

different encoding methods: one-hot encoding and sin-cos encoding.

One-hot encoding, a widely utilized technique, transforms categorical features

into a format suitable for machine learning models [139]. This approach assigns a bi-

nary column to each category of the variable, wherein all entries are set to zero except

for those corresponding to samples that fall into that category. Circular encoding,
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Figure 3.7. Weather zone map of ERCOT [1].

commonly referred to as sin-cos encoding, is a technique well-suited for representing

cyclical variables. The sin-cos encoding equations, as depicted in Equations 3.18 and

3.19, involve the use of xi to denote the ith sample of the feature x.

sin encoding(xi) = sin

(
2πxi

max(x)

)
(3.18)

cos encoding(xi) = cos

(
2πxi

max(x)

)
(3.19)

3.4.2 Experiment Settings

The objective of the prediction task is to utilize the historical 144 hours’ worth

of features to forecast the day-ahead (24 hours’) SPP of the north load zone, with

a lead time of 24 hours (as illustrated in Figure 3.1). This means that the input

x ∈ Rh×k and the output y ∈ Rp where h is 144, p is 24, and k can vary depending

on the specific experimental scenario.
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Figure 3.8. Load zone map of ERCOT [1].

3.4.3 Hyperparameter Optimization

Hyperparameters of each model were optimized by a SOTA method, Bayesian

optimization hyperband (BOHB) [140]. Searching space of hyperparameters for the

TDEPF model is set as in Table 3.3.

Two common optimization methods, Adam and RAdam, were tested. The

dropout rate is the ratio of information discarded after each training iteration and it

is normally set to be between 0 to 0.9. When there is only one layer, the dropout

rate is supposed to be 0. d is the dimension d of embedded features as mentioned in

section 3.3.4. dff is the dimension of features of outputs of the feed-forward layer.

The number of encoders is the number of stacked encoders in the TDEPF model. The

number of heads is the parameterm in the multi-head attention. Global regularization

can be either applied or not, correspondingly to ‘True’ or ‘False’. Learning rate

determines step size that weights change in every iteration. When the hyperparameter
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Table 3.1. Dimensions of continuous features

Continuous Features Dimensions
Temperatures, dewpoints, and wind speed of DFW, Wichita
Falls, and Athens

9

Load of North, East, and Ncent zones 3
SPP of LZ north 1
SPP of resource nodes inside LZ north 51
DAM SPP of LZ North 1
Total 65

Table 3.2. Dimensions of encoded categorical features

Features Dimensions with One-hot Dimensions with Sin-Cos
Month ID 12 2
Day of the year 366 2
Weekday 7 2
Hour ID 24 2
Total 409 8

global regularization is ‘True’, the weight of l2 regularization will be tuned, otherwise,

it will not be optimized. Common activation functions used in Transformer neural

network, ReLU and GeLU, were compared. Normalization methods, normalizing per

batch (batch norm) or per layer (layer norm) as described in section 3.3.4, were also

explored. The optimized hyperparameters for the TDEPF model using the BOHB

method are presented in Table 3.4.

The BOHB optimization was also utilized to optimize the hyperparameters of

RNN-type models. The search space for each hyperparameter of RNN-type models,

including ’num layers,’ which signifies the number of neural network layers, is illus-

trated in Table 3.5. Optimized hyperparameters of RNN models are listed in Table

3.6.
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Table 3.3. Searching space of hyperparameters of TDEPF in the unsupervised step

Hyperparameters Bounds
Optimizer {’Adam’, ’RAdam’}
Drop out rate [0, 0.9]
d {16,32,64,128}
dff {16,32,64,128}
Number of encoders {1,2,3,4,5,6}
Number of heads {1,2,4,6,8}
Global regularization {True, False}
Learning rate {0.0001, 0.001,0.01,0.1}
Weight of l2 reg {0,0.0001,0.001,0.01,0.1}
Activation {’ReLU’, ’GeLU’}
Normalization choice {’batch norm’,’layer norm’}

3.4.4 Performance Evaluation Metrics

The measurements used in this deterministic forecasting in this study were MAE

(mean absolute error), MAPE (mean absolute percentage error), MSE (mean squared

error), and RMSE (root of mean squared error). MAE is used to present absolute

residuals. MAPE measures relative error compared to original values. Compared to

RMSE, MSE is more sensitive to outliers in prediction. Deterministic forecasting is

more accurate when the values of these metrics are smaller. MAE, MAPE, MSE, and

RMSE are defined in Equations 3.20 to 3.23, where n is the number of observations,

yt is the observation of SPP at time t, and ŷt is the predicted value of SPP at time t.

MAE =
1

n

n∑
t=1

|yt − ŷt| (3.20)

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (3.21)

MSE =
1

n

n∑
t=1

(yt − ŷt)2 (3.22)
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Table 3.4. Optimized hyperparameters of TDEPF transformer model

Hyperparameters Values
Optimizer Adam
Drop out rate 0.6
d 64
dff 64
Number of encoders 2
Number of heads 4
Global regularization False
Weight of l2 reg 0
Learning rate 0.0006
Activation ReLU
Normalization choice layer norm

Table 3.5. Hyperparameter Search Space for RNN-type models

Hyperparameters Bounds
batch size 16, 32, 64, 128
drop out [0, 0.9]
hidden size 32, 64, 128, 256, 512
learning rate 0.0001, 0.001, 0.01, 0.1
num layers 1, 2, 3
optimizer ’Adam’, ’RAdam’

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (3.23)

3.4.5 Effects of Encoding Methods

Initially, the effect of two categorical encoding methods was investigated using

the basic transformer model, without an unsupervised pretraining process (Section

3.3.5), which is referred to as one-step training. In one-step training, the dimension

of the output from the final layer matches the targets and is R24.
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Table 3.6. Optimized Parameters of RNN-type models

Models LSTM GRU RNN
batch size 128 128 128
drop out 0.5 0.5 0.4
hidden size 256 64 64
learning rate 0.0285 0.0006 0.0004
num layers 3 1 3
optimizer Radam Adam Adam

A comparison between sin-cos encoding and one-hot encoding was conducted.

As indicated in Table 3.7, ”Sincos” and ”Onehot” in the settings column refer to

whether the categorical features listed in Table 3.2 were encoded using sin-cos or one-

hot methods. ’ST1’ and ’ST2’ refer to the spike transformation method ST1 and ST2

as described in section 3.3.3. As shown in Table 3.7, sin-cos encoding and one-hot

encoding yield similar accuracy in terms of MSE, RMSE, MAPE, and MAE values.

However, the computational time for sin-cos encoding settings is approximately one-

third of that for one-hot encoding.

Table 3.7. Assessments of day-ahead electricity price prediction with one-step training
evaluated on the original scale of electricity prices

Settings MSE RMSE MAPE MAE
Computational
time (min)

Sincos+ST1 961176.313 980.396 89.583 137.170 7.576
Onehot+ST1 960801.250 980.205 89.044 136.344 25.570
Sincos+ST2 960653.563 980.129 90.299 138.271 7.795
Onehot+ST2 960073.375 979.833 89.276 136.705 25.569
Sincos+no transformation 962002.750 980.817 104.825 160.512 7.606
Onehot no transformation 962548.625 981.096 107.039 163.903 25.227

Upon reviewing the results presented in 3.7, it was noted that spike transforma-

tion methods ST1 and ST2 exhibit no substantial difference when all the predictions
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were transformed back to the original scale. But it is noticeable that forecasts dis-

played overall low accuracy. This is evidenced by the fact that the lowest MAPE

remains close to 90, indicating that the error proportion relative to actual values is

approximately 90%. The similarity in the performances of the two spike transforma-

tions could be attributed to the presence of extreme SPP values in the testing set,

leading to errors being predominantly influenced by spike predictions. The prediction

performances of data without spike transformation are captured in the last two rows

of Table 3.7. Despite the generally low accuracy, the performances of experiments

with spike transformation remain significantly superior to those with untransformed

data.

Upon analyzing the results presented in Table 3.7, it can be deduced that sin-

cos encoding outperforms one-hot encoding, taking into account the trade-off be-

tween accuracy and computational cost. Furthermore, spike transformation enhances

prediction accuracy, although the determination of an optimal upper bound is still

pending experimentation.

3.4.6 Comparison of Spike Tramsformation Methods

On inspecting the original SPP data, it was observed that exceptionally high

spikes resulted from the Texas snowstorm in February 2021. As a result, we omit-

ted the test data for the timeframe spanning from February 11 to February 19, 2021,

during which there was an unusual surge in electricity prices. We subsequently reeval-

uated the metrics across various SPP data ranges, as illustrated in Table 3.8.

In Table 3.8, the performance of models trained using spike transformation ST1

and ST2 is depicted in the last two rows, with ST1 exhibiting superior performance

across all four metrics. To ensure a fair comparison between the two spike transfor-

mations, predictions were inversely transformed to the original scale and assessed,
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Figure 3.9. Settlement point prices of the north load zone from 01/08 to 12/31 in
2021 in the ERCOT.

as indicated in the first two rows. ST1 proves to be slightly more effective than

ST2. Nevertheless, when assessing the prediction of SPP below 36.761$/MWh, a

value that surpasses the majority of the target values based on the statistical defini-

tion of IQR outlier, ST1 demonstrates a clear superiority over ST2. Additionally, a

spike transformation method labeled ’Spike Truncation’, replacing original SPPs over

36.761$/MWh as 36.761$/MWh, was tested and results were included in the table.

From the metrics in the table, it can be observed that simple truncation at spikes

and replacement with the upper-bound value is not as effective as ST1.

3.4.7 One-step vs Two-step Training

As explained in Section 3.3.5, during the pretraining phase of the model, ran-

domly selected 20% of each feature is masked, and the model is designed to recon-

struct the original inputs. The parameters of the encoder layers are fixed after this

stage. This pretraining step is advantageous as it enhances convergence during the

53



Table 3.8. Assessments of two spike transformation methods with one-step training
and sin-cos encoding evaluated on different data ranges after removing abnormal days
from 2/11/2021 to 2/19/2021

Data Spike Transformation MSE RMSE MAPE MAE
Original scale SPP ST1 4293.620 65.526 54.798 19.213
Original scale SPP ST2 4301.299 65.584 58.153 20.390
Original scale SPP under 36.761 $/MWh ST1 103.289 10.163 34.605 7.511
Original scale SPP under 36.761 $/MWh ST2 169.016 13.001 45.627 9.903
Original scale SPP under 36.761 $/MWh Spike Truncation 133.012 11.533 38.512 8.124
SPP transformed with ST1 ST1 198.989 14.106 40.889 10.963
SPP transformed with ST2 ST2 793.694 28.173 53.887 17.146

fine-tuning phase and facilitates the model in capturing more robust and generalized

features. The outcomes presented in Table 3.9 indicate that the two-step training pro-

cess contributes to an improvement in predictions across all four metrics. Specifically,

the MAPE reduces from 40.889 to 27.376.

Table 3.9. One-step vs Two-step Training

Training Setting MSE RMSE MAPE MAE
One-step 198.989 14.106 40.889 10.963
Two-step 103.158 10.157 27.376 7.340

3.4.8 Inclusion of Resource Nodes

While the SPP of the north load zone is the weighted average of the SPP of

resource nodes inside the load zone, the effect of including the SPP of resource nodes

as inputs was examined as well. This test was done in order to find out if there

was a maintenance or shutdown of a generation, the SPP spike that happened on

the corresponding resource node could give a hint to the potential spike of the load

zone. As presented in Table 3.10, the inclusion of either original SPP of resources
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nodes (”RN included”) or respectively transformed by ST1 were tested. It seems

that the inclusion of resource nodes does not improve the performance of prediction

in terms of the metrics listed in the table. By checking the occurrence time of spikes

of resource nodes, it can be found that the occurrence time of spikes of resource nodes

and load zone is almost the same. So, adding resource nodes in the feature sets does

not enhance the accuracy of prediction. The predictive factors did not include the

SPPs of resource nodes within the northern load zone.

Table 3.10. Inclusion VS Exclusion of Resource Nodes

RN MSE RMSE MAPE MAE
No RN 103.158 10.157 27.376 7.340
RN included 119.470 10.930 29.331 7.864
Transformed RN included 163.019 12.768 34.295 9.195

3.4.9 Comparisons of Time Lags

In the preceding experiments, the default lag time was set at 7 days, encom-

passing one day as lead time, resulting in h being 144 hours. To investigate the

impact of incorporating more extended historical information as inputs, experiments

were conducted with 14 and 21 lag days, also including one day as lead time, leading

to h values of 312 and 480, respectively. As indicated in Table 3.11, without re-

source nodes, the accuracy of training with 7, 14, and 21 days as time lags is similar.

Additionally, the augmentation of the time dimension results in prolonged training

time and increased computational cost, without yielding any noticeable advantage in

incorporating longer lags.
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Table 3.11. Comparisons of Time Lags for Day-Ahead Electricity Price Forecasting

Time Lags (days) MSE RMSE MAPE MAE
7 103.158 10.157 27.376 7.340
14 107.713 10.378 27.559 7.412
21 112.254 10.595 28.416 7.669

3.4.10 Comparisons with RNN-type Models

After identifying the optimal configurations for day-ahead electricity price fore-

casting in the preceding experiments, a comparative analysis was conducted with

RNN-type models, specifically RNN, GRU, and LSTM. The predictions of each model

underwent evaluation, and the outcomes are presented in Table 3.12. Across all four

metrics, whether assessed in terms of the transformed SPP or the original scale of

SPP, the TDEPF model outperformed the other three models. Notably, the accura-

cies of the four models exhibit minimal differences when assessed on the transformed

SPP. However, upon evaluation on the reverse-transformed SPP (the original scale),

the MAPE of the TDEPF model is significantly smaller than that of the other three

models. This suggests that the TDEPF model excels in capturing spikes compared

to the alternative models.

Table 3.12. Comparisons of Proposed TDEPF and RNN-type Models

Evaluation Scale Method MSE RMSE MAPE MAE

Original SPP

GRU 4157.748 64.481 72.013 18.057
LSTM 4092.868 63.976 71.234 17.129
RNN 4168.973 64.568 76.315 18.160
TDEPF 4026.019 63.451 44.293 15.530

Transformed SPP

GRU 147.711 12.154 39.314 9.106
LSTM 130.403 11.419 37.138 8.600
RNN 156.684 12.517 41.793 9.470
TDEPF 103.158 10.157 27.376 7.340
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Figure 3.10, 3.11, 3.12, and 3.13 illustrate the predictions of four models against

the original scale of the targets. The RNN-type models exhibit varying levels of

overfitting, noticeable in their predictions. In contrast, TDEPF produces smoother

predictions that demonstrate resilience against spikes. The TDEPF model effectively

captures cyclic patterns within the time series, evident in its close alignment with

the target values. Importantly, while predicting the precise values of spikes may be

challenging, forecasting the timing of their occurrences remains feasible.

Figure 3.10. Settlement Point Prices Day-ahead Prediction by TDEPF.
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Figure 3.11. Settlement Point Prices Day-ahead Prediction by GRU.

Figure 3.12. Settlement Point Prices Day-ahead Prediction by LSTM.
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Figure 3.13. Settlement Point Prices Day-ahead Prediction by RNN.
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3.5 Conclusions

In this chapter, the challenges associated with sudden spikes in electricity prices

and the intricacies of modeling multivariate time series data were tackled. To address

spikes in time series data, a new technique called ST1 was introduced, providing a

novel spike transformation method. This method proved effective in directing the

model’s attention toward the accurate prediction of normal prices.

A transformer model with a two-step training process, the TDEPF model, was

applied, designed to effectively handle the learning and forecasting of patterns in

multivariate time series data. The inclusion of a pretraining step enhances model

convergence and mitigates overfitting concerns.

The experiments included a comparison between Sin-cos encoding and one-hot

encoding for representing time information. Sin-cos encoding demonstrated compara-

ble performance to one-hot encoding but with fewer dimensions, resulting in reduced

computational time compared to one-hot encoding.

The case study, utilizing ERCOT market data, demonstrated that the TDEPF

model surpassed the performance of other widely used models such as LSTM, RNN,

and GRU in the task of day-ahead electricity price forecasting. The experimental

findings highlighted the effectiveness of the proposed spike transformation approach

in mitigating spikes in electricity prices. Moreover, the model exhibited proficiency

in capturing predictive patterns.

The proposed forecasting model bears significant potential to assist market

participants in making more informed decisions regarding bidding on day-ahead elec-

tricity prices. Its capabilities contribute to fostering a more efficient and stable dereg-

ulated market.
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CHAPTER 4

PROBABILISTIC DAY-AHEAD ELECTRICITY PRICE FORECASTING

4.1 Introduction

As discussed in the previous chapters, research into electricity price forecasting

(EPF) can bring immense value to electricity markets. While there are tremendous

benefits in electricity markets, the growing volatility of electricity prices puts mar-

ket participants at higher risks. For one thing, the rise of renewable energy, such as

wind and solar energy, leads to more dynamic electric power generation which further

causes volatility in electricity prices. For another, the United States started deregula-

tion in the 1990s, and deregulated electricity markets are naturally more competitive

than regulated markets. The Electric Reliability Council of Texas (ERCOT) market,

being one of the deregulated markets and gradually influenced more by changes in

wind power than by electricity demand [2], was studied in this chapter. To assist

market participants in hedging against fluctuations in electricity prices and make

more knowledgeable decisions, probabilistic day-ahead EPF models were created for

the wholesale power market run by ERCOT in this study.

Compared to deterministic EPF models, probabilistic EPF models developed

later but gradually became prevailing [13, 14]. Unlike deterministic forecasting meth-

ods which just provide predictions of point values, probabilistic forecasting mod-

els provide prediction intervals (PIs) that offer more information and better assist

decision-making. As summarized in 2.4, probabilistic modeling methods include Er-

ror density forecasts, bootstrapped prediction intervals, quantile regression, Bayesian

approach. However, most of the probabilistic methods are based on certain distri-
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bution assumptions or preliminary knowledge of the parameter distributions. For

the error density forecasting methods, complexity is increased due to modeling the

error term and point values separately and the assumption of the error distribution

depends on researchers’ empirical knowledge and statistical analysis. Bootstrapped

PIs repeatedly re-samples from the original data set to get the distribution of the

variable. It is especially useful for small data sets when not enough data can be used

for modeling, but computational cost increases with repetition number. Quantile

regression is free of distribution assumptions and flexible to be combined with deep

learning methods. In this study, a method combining quantile regression and the

transformer neural network, QR-Transformer, was proposed. In addition, the widely

used method, the Gaussian Process, is applied to estimate the prediction intervals

based on the deterministic forecasting of electricity prices, the method is named

GP-Transformer. Furthermore, composite quantile regression, which is designed to

promote the efficiency of quantile regression, was combined with a transformer neural

network as well. The comparisons of three models will be discussed in this study.

Two modifications of the pinball loss function were explored to achieve different

prediction outcomes, aside from the model structure. The first modification is the

Mean Squared Error (MSE) regularized pinball loss, and the second is the winkler-

peak score, a metric proposed for measuring the accuracy of peak time prediction,

regularized pinball loss. The MSE regularized pinball loss was formulated to impose

constraints on the extreme quantiles which are close to 0% or 100%. The winkler-

peak score regularized pinball loss was formulated to direct the model’s focus toward

peak time prediction. Discussion of these regularization methods will be presented in

Section 4.4 as well.
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4.1.1 Contributions

In this chapter, contributions are made to the following aspects.

1. The integration of Gaussian Process and Transformer Model (GP-Transformer)

was suggested for evaluating prediction uncertainties.

2. A transformer-based quantile regression model (QR-Transformer) and a transformer-

based composite quantile regression (TCQR) were formulated to offer proba-

bilistic forecasting.

3. The Winkler-peak score, a novel performance metric for assessing peak time

predictions of electricity prices, was proposed.

4. MSE regularized pinball loss was proposed to compel the convergence of quan-

tiles near 0 and 1 boundaries.

5. A Winkler-peak score penalty was incorporated into the pinball loss to ensure

that the TCQR model focuses on the timing of peaks in time series.

4.2 Problem Formulation

This study aims to find a model to predict the conditional distribution of next

p (from t to t + p − 1) hours’ real-time settlement point prices (SPP) with k fea-

tures observed during previous h (from t − l − h to t − l − 1) hours. Let yt rep-

resent the target SPP and xt represent k-dimension features observed at time t.

Deterministic p-step ahead EPF problem can be expressed as yt, yt+1, . . . , yt+p−1 =

f(xt−l−h, xt−l−h+1, . . . , xt−l−1)+εt where εt is the noise term, p is the length of predic-

tion horizon, and h is the length of historical time steps. Probabilistic forecasting is to

find the conditional distribution of P (yt, yt+1, . . . , yt+p−1 | xt−l−h, xt−l−h+1, . . . , xt−l−1)

instead of f(yt, yt+1, . . . , yt+p−1). As shown in Figure 4.1, the targets are m quantiles

of the conditional probability over 24 hours. Qq1 to Qqm represents m quantiles, and
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X denotes the inputs of the model. The prediction interval band, as shown in Figure

4.2, is formed by these quantiles.

Figure 4.1. Definition of Probabilistic Forecasting.

Figure 4.2. Probabilistic vs Deterministic Forecasting.

4.3 Related Works

A comprehensive examination of probabilistic forecasting methods for electricity

price forecasting was conducted by [14] and [119]. It was observed, as reported in

[14], that in the influential Global Energy Forecasting Competition (GEFCom2014),

three out of the four winners employed quantile regression (QR). QR is proved to
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be a robust probabilistic regression method and less sensitive to outliers [141]. It is

widely applied in economic and energy fields [142, 143, 144, 145, 146]. QR sets up

a regression function for a certain quantile of the target variable distribution instead

of a conditional mean of the target variable. Correspondingly, the parameters of

QR are estimated by the pinball loss function which compares the actual value at a

certain quantile of distribution and the predicted value at the same quantile of the

distribution. What’s more, QR is independent of distribution assumption, so it is

flexible to model different data sets.

Bayesian approach is also widely used in probabilistic forecasting, and it is

often combined with deep learning methods to provide probabilistic forecasts [78, 79,

80]. Bayesian approaches are classified as parametric and nonparametric methods

corresponding to finite parameters and infinite parameters[147]. With the increase in

data size and complexity of time series, it is harder to define a parametric probabilistic

model. Bayesian nonparametric methods [148] are data-driven and the number of

parameters increases with the data size, which sets practitioners free from model

selection and parameter design. Gaussian process (GP) regression is one of the well-

known Bayesian nonparametric models[94]. So, GP-based probabilistic forecasting

was implemented for the comparison in this work.

The state-of-the-art (SOTA) deep learning structure, the transformer, was cho-

sen as the foundational regression model for probabilistic forecasting. Traditional

statistical methods such as VAR, VARMA, and GARCH are incapable of handling

intricate relationships in multivariate time series. Conversely, common deep learning

models for multivariate time series (MTS), including RNN, LSTM, and GRU, en-

counter issues of gradient vanishing or explosion as the forecasting sequence length-

ens. The transformer computes weights in both time and feature dimensions, making

it an excellent choice for MTS modeling. In this study, the transformer was combined
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independently with GP and QR, and their performance was compared with other

RNN-type models in probabilistic MTS forecasting.

To effectively determine the parameters of various quantile regression mod-

els, [149] introduced the concept of composite quantile regression (CQR), allowing

for the simultaneous estimation of parameters across multiple quantile regression

models. Building upon this, [150] introduced the composite quantile regression neu-

ral network (CQRNN), a hybrid model merging CQR with a neural network. The

CQRNN model proves to be adaptable and proficient in uncovering potential nonlin-

ear associations among variables. Consequently, in this investigation, we delved into

the combination of composite quantile regression with a transformer neural network,

named transformer-based composite quantile regression (TCQR) as well.

When integrated with deep learning models, the quantile regression (QR) faces

a challenge known as the quantile cross-over problem, as underscored by [151] and

[152]. Additionally, the need to tailor quantile regression to focus on specific subsets

of interest is emphasized by [153]. In this investigation, the utilization of Mean

Squared Error (MSE) regularized pinball loss is explored to promote the convergence

of quantiles close to 0 and 1. Furthermore, the Winkler-peak score is introduced as a

metric for assessing the prediction of peak occurrence time. To enhance the QR-based

model’s ability to predict peak occurrence time, an exploration of Winkler-peak score

penalized pinball loss is also conducted.

4.4 Proposed Methods

To generate probability predictions instead of deterministic values, we con-

structed two models: a Gaussian Process-based transformer and a quantile regression-

based transformer. Prior to modeling, the SPP underwent preprocessing through a

spike transformation, as detailed in Equation 3.2. The transformed SPP, along with
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other features (which will be discussed in Section 4), constitute the inputs for our

models. The spike transformation is defined using the upper bound determined in

Chapter 3, with spikes identified as values exceeding $36.761/MWh, as established

in Chapter ??. The foundational structure of the two-step training process has been

introduced in Chapter 3. The focus of this section will be on elucidating the modifi-

cations implemented in the model to enable probabilistic forecasting.

To achieve the probabilities of prediction instead of deterministic values, two

models, a Gaussian Process-based transformer and a quantile regression-based trans-

former were built. Before modeling, SPP was preprocessed by a spike transformation.

Then the transformed SPP and other features which will be mentioned in section 4

make up inputs for our models. The transformation of SPP is presented as Equation

3.2. ub is the upper bound decided in Chapter 3. After trials in chapter ??, spikes

were defined as values exceeding 36.761 $/MWh. As the basic structure of two-step

training has already been introduced in the Chapter 3, we will focus on introducing

the modification of the model for producing probabilistic forecasting in this section.

4.4.1 Base Model Structure

The core structure of the model remains in line with the description provided

in Section 3.3. The subsequent experiments adopt a two-step training methodology.

In these trials, the probabilistic model leverages the identical pre-trained model em-

ployed in deterministic forecasting. Modifications are introduced to the fine-tuned

model structures to accommodate probabilistic forecasting. Two distinct structures

for probabilistic forecasting are explored: one involving a Gaussian process trans-

former (GP Transformer) and the other utilizing a Quantile regression transformer

(QR Transformer).
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4.4.2 Gaussian Process-based Transformer Model

To enable the transformer-based model to furnish the distribution for each

prediction, the Gaussian Process (GP) was applied to quantify the uncertainties of

the point value predictions generated by the TDEPF model in Section 3.3. The

structure of GP-Transformer prediction is illustrated in Figure 4.3, where predictions

of training predictions ŷtrain, training targets ytrain and testing predictions ŷtest are

the inputs for GP model. To derive the conditional multivariate normal distribution

of p(ytest|ytrain, ŷtrain, ŷtest), the mean and variance of the probability function can

be computed using Equations 4.1 and 4.2, where ŷtest denotes testing inputs, ŷtrain

represents training inputs, and the error of the model is assumed to adhere to a

Gaussian distribution ε ∼ N [0, σ2
obs]. Here, ytrain and µ denote targets and mean

targets in the training set, respectively. Kŷtrainŷtrain represents the kernel matrix of

inputs ŷtrain and ŷtrain, k(ŷtest, ŷtest)
T denotes the transposed kernel matrix of ŷtest

and ŷtest. Additionally, I denotes the identity matrix.

µ∗ = µ(ŷtest) + kTŷtrainŷtest(Kŷtrainŷtrain + σ2
obsI)−1(ytrain − µ(ytrain)) (4.1)

V ar∗ =k(ŷtest, ŷtest) + σ2
obs

− kTŷtrainŷtest(Kŷtrainŷtrain + σ2
obsI)−1kŷtrainŷtest

(4.2)

GP-Transformer structure is shown in Figure 4.4. The outputs from TDEPF

model will be the inputs for GP model and the parameters of GP are estimated by

marginal log likelihood (MLL) loss.

4.4.3 Quantile Regression-based Transformer Model

The pinball loss, also referred to as the quantile loss, is a commonly used loss

function in quantile regression. It is utilized for training machine learning models like

linear regression or gradient boosting to estimate different quantiles of a target vari-
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Figure 4.3. Gaussian process-based transformer (GP-Transformer) forecasting model.

able’s distribution. Quantiles are statistical metrics that partition a data distribution

into equally sized sections, offering valuable insights into the distribution’s spread

and central tendency. In the context of quantile regression (QR), which is illustrated

in Figure 4.5, the same transformer structure as depicted in Figure 1 is employed.

However, the objective is no longer centered on minimizing the mean squared error

(MSE) of predictions; instead, it aims to minimize the Pinball loss, as defined in

Equation 4.3.

Lq(θ) =


q(yi − f(θ, xi)) if yi ≥ f(θ, xi)

(1− q)(f(θ, xi)− yi) if yi < f(θ, xi)

(4.3)

In this equation, θ represents the model parameters, yi is the actual observed target

value, and f(θ, xi) is the predicted value by the model for input xi. The parameter

q is a quantile level between 0 and 1 that determines the quantile of interest. The

equation consists of two cases: (1) When yi is greater than or equal to the predicted
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Figure 4.4. GP-Transformer Structure.

value f(θ, xi), the loss is q times the positive difference between yi and f(θ, xi). (2)

When yi is less than the predicted value f(θ, xi), the loss is (1− q) times the positive

difference between yi and f(θ, xi).

This loss function is used in quantile regression to optimize models that esti-

mate different quantiles of the conditional distribution of the target variable. The

choice of q determines the specific quantile being estimated, with smaller values of

q corresponding to lower quantiles (e.g., median for q = 0.5), and larger values cor-

responding to higher quantiles. Figure 4.5 shows the structure of QR-Transformer,

where 100 · (1 − α)% quantile prediction at time t are denoted as Q1−α(t). Here,

q = 1− α.

4.4.4 Transformer-based Composite Quantile Regression Model

Transformer-based Composite Quantile Regression (TCQR) is a statistical method

that enables the concurrent estimation of various quantiles, allowing for a more com-

prehensive exploration of the impact of predictors on distinct segments of the con-
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Figure 4.5. Quantile regression transformer (QR-Transformer) forecasting model.

ditional distribution. This simultaneous estimation feature contributes to a holistic

understanding of how variables influence different parts of the distribution. One no-

table advantage of CQR is its robustness to outliers, surpassing mean-based regression

models in this aspect. The incorporation of multiple quantiles in the estimation pro-

cess enhances the model’s resilience, providing a more thorough perspective on the

relationship between variables, especially when faced with extreme observations. A

composite quantile regression transformer framework (Composite QR-Transformer)

was devised based on the existing transformer structure. The structure, depicted in

Figure 4.6, features a final layer comprising several linear output layers identical to

those in the linear layer of Figure 4.5. The loss function of CQR-Transformer, which

predicts quantiles at intervals of 10% from 10% to 90%, is provided in Equation

4.4. The structure of the composite quantile regression is demonstrated in Fig-
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Figure 4.6. Composite quantile regression transformer (CQR-Transformer) forecast-
ing model.

ure 4.7, where only the parameters of the multilayer Perceptron (MLP) are updated

according to the composite pinball loss function as shown in Equation 4.4.

Lmean =
1

M

M∑
i=1

Lqi(θ) , qi ∈ {0.1, 0.2, 0.3, ..., 0.9} and M = 9 (4.4)

The function Lmean is defined as the mean of quantile loss functions Lqi(θ) for a

set of quantiles qi ranging from 10 to 90, where M represents the number of quantiles

(in this case, M = 9). The overall goal of this function is to compute the average

quantile loss over the specified quantiles for a given parameter set θ.
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Figure 4.7. Composite QR-Transformer Structure.

4.4.5 Pinball Loss Regularized By MSE

As can be observed in Equation 4.3, when the quantile parameter q is 0 or 1,

the prediction is only one-side bounded. For example, when q = 0, as long as f(θ, xi)

is less than yi, the loss is the constant 0, no matter how small the prediction f(θ, xi)

is. On the opposite, when q = 1, f(θ, xi) could be extremely large since the loss is

0 as long as f(θ, xi) > yi. In order to make the prediction interval bands smaller, a

regularization term is added to the Pinball loss as Equation 4.5.

Lreg =
1

M

M∑
i=1

(ω · Lqi(θ) + βiMSEi) , qi ∈ {0.1, 0.2, 0.3, ..., 0.9} and M = 9 (4.5)

The regularized pinball loss function Lreg is a combination of two terms. The

first term involves the weighted mean of quantile loss functions Lqi . The weight is

given by the coefficient ω. This part of the loss function measures the deviations

between the predicted values and the actual values at different quantiles of interest.

The second term in the loss function is a regularization term, represented as

βiMSEi, where MSEi represents the mean squared error associated with each quan-

tile qi, and βi are coefficients associated with each mean squared error term. This

regularization term penalizes the model for deviations from the mean squared error
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at various quantiles. In summary, Lreg combines quantile loss terms weighted by ω to

capture the quantile-specific errors and a regularization term based on mean squared

errors with βi coefficients.

4.4.6 Pinball Loss Regularized by Winkler-peak Score

Besides applying regularization using Mean Squared Error (MSE), we also in-

corporated regularization using Winkler-peak score into the pinball loss, as specified

in Equation 4.6. The parameters remain consistent with those in Equation 4.5, except

for Wpi, which denotes the Winkler-peak score of the ith sample. The winkler-peak

score was created to measure the peak time prediction and it will be explained in

Section 4.5. The development of the pinball loss regularized by Winkler-peak score

aimed to incentivize the quantile regression model to prioritize accurate peak time

predictions.

Lw =
1

M

M∑
i=1

(ω · Lqi(θ) + βiWpi , qi ∈ {0.1, 0.2, 0.3, ..., 0.9} and M = 9 (4.6)

4.5 Performance Evaluation Metrics

To assess the uncertainty of probabilistic forecasting outcomes, one of the com-

monly used metrics is the Winkler score [154]. The 100(1 − α)% prediction interval

(PI) at time t represented as [Lαt , U
α
t ]. In this context, the Winkler score is defined

by Equation 4.7. If the observation yt falls within the 100(1 − α)% PI, the Winkler

score is the distance between the predicted upper and lower bounds. Conversely, if

yt is outside the PI, the distance between yt and the closest bound of the PI is added

to the width of the PI. Therefore, a smaller Winkler score indicates observations that

are closer to the PIs.
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Winkler Score =


Uα
t − Lαt if Lαt ≤ yt ≤ Uα

t

(Uα
t − Lαt ) + 2(Lαt − yt)/α if yt < Lαt

(Uα
t − Lαt ) + 2(yt − Uα

t )/α if yt > Uα
t

(4.7)

As previously discussed, while the Winkler score typically gauges the distance

between observations and prediction intervals (PIs), it can be modified to measure

the temporal difference between predicted spikes and actual spikes. In this scenario,

the modified Winkler score, referred to as Winkler Peak, is expressed by Equation

4.8. The final scores of day-ahead probabilistic forecasting Winkler Score or Winklear

Peak are the averages of total testing Winkler Score and Winklear Peak respectively.

Winkler Peak =


| t− t̂ | if t− e1 ≤ t̂ ≤ t+ e2

e1 + β1(t− e1 − t̂) if t̂ < t− e1

e2 + β2(t̂− t− e2) if t̂ > t+ e2

(4.8)

The Continuous Ranked Probability Score (CRPS) serves as a widely employed

statistical metric for assessing the accuracy of probabilistic predictions, particularly

within the realm of probabilistic forecasting and prediction models [155]. In con-

trast to traditional point-wise evaluations that concentrate on individual predictions,

CRPS evaluates the entire predictive distribution. It quantifies the disparity between

the predicted cumulative distribution function (CDF) and the observed outcome,

providing a holistic evaluation of a model’s predictive performance across the entire

range of potential outcomes. A lower CRPS value indicates better alignment between

predicted and observed distributions.

Mathematically, CRPS is defined as the integral of the squared difference be-

tween the predicted cumulative distribution function and the Heaviside step function,
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representing the actual outcome, over the entire real line. Widely utilized in fields

such as meteorology and hydrology, CRPS serves as a valuable tool for gauging the

reliability and calibration of predictive models, offering insights into their ability to

capture inherent uncertainty in predictions. Therefore, CRPS is employed to evaluate

the probability distribution predicted by the CQR-Transformer model and multiple

QR-transformer models. The CRPS calculation is expressed in Equation 4.9, where

F (x) denotes the cumulative distribution function of the prediction ŷ, y represents

the observed value, and 1 is an indicator function, signifying that 1(ŷ ≥ y) = 1 if

ŷ ≥ y and 0 otherwise.

CRPS(F, y) =

∫ ∞
−∞

(F (ŷ)− 1(ŷ ≥ y))2 dŷ (4.9)

Because CRPS assesses the predicted cumulative distribution, the presence of

cross-over quantiles in the predictions leads to a larger CRPS value. Therefore, if the

cross-over quantile problem exists and the quantiles are manually sorted based on the

predicted values, the CRPS value will experience a significant reduction. The CRPS

calculated after sorting the quantiles is referred to as CRPS sorted in the experiments.

Likewise, the pinball loss computed after sorting the quantiles is denoted as pinball

loss sorted.

Additionally, the metrics employed to assess the coverage and width of the

prediction intervals, namely PICP in Equation 5.12 and PIAW in Equation 5.13, are

utilized to quantify the uncertainties.
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4.6 Experiments

4.6.1 Experiment Settings

The experiments in probabilistic forecasting utilize the optimal configuration

derived from deterministic forecasting. The pretrained model employed in this phase

was the model previously trained in deterministic forecasting. Simultaneously, the

case study focused on day-ahead settlement point price forecasting in the ERCOT

market. Therefore, the identical dataset (see 3.4.1) and the same training and testing

split were employed in this context.

Continuous features utilized in probabilistic forecasting are detailed in Table 3.1,

excluding the SPP of resource nodes within the LZ north load zone, as their inclusion

was confirmed not to enhance the final predictions. Meanwhile, categorical features

(3.2) are encoded using sin-cos encoding after comparing with one-hot encoding (refer

to Section 3.4.5). The prediction scenario is set in line with Chapter 3, involving the

prediction of day-ahead SPP for the north load zone with 7 lagged days, including a

lead time of one day.

4.6.2 Results and Discussion

Tests were conducted to evaluate the model architectures mentioned earlier and

to contrast the pinball loss function with its regularized counterpart. This evaluation

encompassed the examination of QR models, composite QR models, and the GP-

transformer model, focusing on their performance regarding prediction intervals, peak

time estimation, and predicted probability distributions.

4.6.3 Evaluation of Prediction Intervals at Different Quantiles

The table presents the evaluation results of different models based on Winkler

scores, with a focus on various percentile ranges (10-90%, 20-80%, 30-70%, and 40-
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60%). The performance metrics are influenced by different loss functions and model

architectures. Notably, the QR-LSTM model with the pinball loss function stands

out, achieving the lowest scores across the majority of percentile ranges, especially ex-

celling in the 20-80% and 30-70% intervals. This suggests that the QR-LSTM model

with pinball loss effectively captures the desired quantile regression characteristics.

On the other hand, the Composite QR-Transformer with pinball regloss also demon-

strates competitive performance, particularly with the lowest scores in the 30-70%

and 40-60% ranges. The GP-transformer, despite using the MLL loss function, ex-

hibits relatively higher scores across all percentile ranges. The results underscore the

importance of the choice of loss function and model architecture in quantile regression

tasks, with QR-LSTM showing promise in this evaluation. Additionally, the Com-

posite QR-Transformer with pinball regloss provides a compelling alternative with

strong performance in specific percentile ranges.

Table 4.1. Evaluating Models Based on Winkler Scores

PI Loss Function 10-90% 20-80% 30-70% 40-60%
GP-Transformer MLL 169.416 105.587 30.715 22.514
QR-GRU pinball loss 100.818 53.355 31.105 22.632
QR-LSTM pinball loss 95.168 48.725 30.750 23.967
QR-RNN pinball loss 104.731 61.007 27.346 24.057
QR-Transformer pinball loss 117.134 67.335 26.644 21.658
Composite QR-Transformer pinball loss 111.651 64.849 24.763 19.741
Composite QR-Transformer pinball regloss 97.391 53.436 23.825 19.514

In summary, QR models generally outperform the GP-transformer, in terms

of the Winkler score, which indicates the distance between targets and prediction

intervals of QR models are smaller than the GP-transformer. RNN-type models

based on quantile regression perform well in estimating larger prediction intervals,
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such as 10-90% and 20-80%, but exhibit lower accuracy in narrower intervals, like 30-

70% and 40-60%. The composite QR-transformer model shows slight improvement

over multiple QR-transformer models. Additionally, the use of pinball regloss reduces

the width of the prediction interval compared to the basic pinball loss.

4.6.4 Evaluation of Peak Time Prediction Performance

The Winkler peak score, defined by Equation 4.8, was utilized to measure the

timing of peak occurrences. Parameters e1 = e2 = β1 = β2 = 1 were set, indicating

no preference for early or late peak predictions. Peaks were defined as the highest

daily System Marginal Price (SPP) surpassing the upper bound of 36.761 $/MWh

specified in the spike transformation. The Winkler peak scores for each quantile in

Table 4.2 reveal that the GP-transformer has the lowest score. Since the quantiles

for the GP-transformer were derived from the same distribution, the score remains

constant. The QR-transformer emerges as the second-best model for predicting spike

times. In general, transformer-based models exhibit higher accuracy in predicting

peak times

Table 4.2. Evaluating Models Based on Winkler Peak

Quantiles GP-Transformer QR-transformer QR-GRU QR-LSTM QR-RNN Composite QR-
Transformer

Composite QR-
Transformer (re-
gloss)

Q10 3.365 3.433 3.996 3.928 3.379 3.267 3.617
Q20 3.365 3.350 3.827 3.726 3.773 3.722 3.531
Q30 3.365 3.426 3.874 3.751 4.177 3.747 3.505
Q40 3.365 3.531 3.599 3.780 3.614 3.650 3.466
Q50 3.365 3.469 3.823 3.372 3.949 3.711 3.408
Q60 3.365 3.390 3.975 3.773 4.585 3.588 3.487
Q70 3.365 3.249 4.036 3.679 3.444 3.415 3.408
Q80 3.365 3.231 3.859 4.090 4.386 3.422 3.430
Q90 3.365 3.343 4.227 3.953 4.300 3.596 3.310
Average 3.365 3.380 3.913 3.783 3.956 3.569 3.462
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4.6.5 Evaluation of Probabilistic Prediction Performance in terms of CRPS and

Pinball Loss

Table 4.3 provides an assessment of different models using the Pinball loss met-

ric. The models evaluated include GP-transformer, QR-GRU, QR-LSTM, QR-RNN,

QR-Transformer, Composite QR-Transformer with Pinball loss, and Composite QR-

Transformer with Pinball regloss. The results are organized into columns specifying

the model, loss function employed, Pinball loss values, Pinball loss values sorted, and

the difference between sorted and unsorted Pinball losses.

The pinball loss values are recorded for each model, with the QR-Transformer

model achieving the lowest Pinball loss at 3.508. The Composite QR-Transformer

with Pinball loss and GP-Transformer follow closely with values of 3.517 and 3.559,

respectively. The table provides insights into the performance of each model based

on the Pinball loss metric, highlighting the differences between unsorted and sorted

Pinball losses.

Sorted pinball loss involves arranging quantiles based on prediction values to

address the crossed quantiles issue. As the GP-Transformer’s quantile predictions

are derived from a multivariate normal distribution, the order of quantiles remains

consistent. Consequently, the Pinball loss is identical, whether the quantile predic-

tions are sorted or unsorted for the GP-Transformer. While the Pinball loss values

for quantile regression models may not exhibit substantial differences, transformer-

based quantile regression models demonstrate notably minor discrepancies between

sorted and unsorted results. This suggests that transformer-based quantile regression

models are capable of generating more organized quantile predictions.

Table 4.4 presents an evaluation of various models using the Continuous Ranked

Probability Score (CRPS) metric. The CRPS values for each model are recorded, with

the Composite QR-Transformer achieving the lowest CRPS at 6.333, closely followed
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Table 4.3. Evaluating Models Based on Pinball Loss

Models Loss Function Pinball loss Pinball loss sorted Difference
GP-Transformer MLL 3.559 3.559 0.000
QR-GRU pinball loss 4.606 3.866 0.740
QR-LSTM pinball loss 4.581 3.895 0.687
QR-RNN pinball loss 4.194 3.672 0.522
QR-Transformer pinball loss 3.508 3.496 0.012
Composite QR-Transformer pinball loss 3.517 3.506 0.011
Composite QR-Transformer pinball regloss 3.612 3.599 0.013

by the QR-Transformer at 6.351. GP-Transformer maintains its ranking as the third-

best predictor based on the CRPS score, and this score remains unaffected by the

sorting operation. Both QR-Transformer and composite QR-Transformer exhibit rel-

atively small differences between sorted and unsorted CRPS results. This suggests

that the Composite QR-Transformer and QR-Transformer are effective in generating

consistent and accurate probabilistic forecasts, as indicated by the small discrepancies

in CRPS values between sorted and unsorted outcomes. The utilization of Pinball

regloss does not enhance the predictive performance in comparison to the standard

Pinball loss, as indicated by the CRPS value.

Table 4.4. Evaluating Models Based on CRPS

Models Loss Function CRPS CRPS sorted Difference
GP-Transformer MLL 6.476 6.476 0.000
QR-GRU pinball loss 7.765 7.001 0.764
QR-LSTM pinball loss 7.823 7.050 0.773
QR-RNN pinball loss 6.995 6.647 0.347
QR-Transformer pinball loss 6.351 6.342 0.009
Composite QR-Transformer pinball loss 6.333 6.327 0.005
Composite QR-Transformer pinball regloss 6.525 6.516 0.010
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4.6.6 Evaluation of Uncertainty Quantification Performance

The PICP (see Equation 5.12) is defined as the ratio of the number of targets

covered by prediction intervals to the total number of targets. PIAW (see Equation

5.13) is defined as the average distance between the upper bound and the lower bound.

As shown in Table 4.5, GP-Transformer exhibits the highest coverage rate at the 80%

prediction interval, but the corresponding prediction interval is excessively wide. An

effective probabilistic forecasting model should cover a proportion of targets close to

the expected prediction interval. In this context, the QR-Transformer falls short of

achieving the anticipated 80% coverage rate.

Table 4.5. Evaluating Models Based on PICP and PIAW

Models Loss Function PI PICP PIAW
GP-transformer MLL 80% 0.903 34.755
QR-GRU pinball loss 80% 0.162 2.410
QR-LSTM pinball loss 80% 0.077 0.844
QR-RNN pinball loss 80% 0.332 7.839
QR-Transformer pinball loss 80% 0.703 17.801
Composite QR-Transformer pinball loss 80% 0.696 14.688
Composite QR-Transformer pinball regloss 80% 0.525 8.400

The 80% prediction intervals for a subset of the testing set, generated by the

aforementioned models, are depicted in Figure 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, and

4.14. The 20% prediction intervals are represented by red bands, while the 80%

prediction intervals are denoted by blue bands. Targets are represented by black

lines. Similar observations can be made from these figures as those derived from

the results presented in the previous tables. GP-Transformer covers a substantial

portion of targets, but its prediction band is excessively wide, impacting accuracy.
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In contrast, the prediction bands of RNN-type models are too narrow to encompass

most targets, leading to pronounced boundary issues. While the prediction intervals

of QR-Transformer do not cross as frequently as RNN models, the peaks are higher.

The composite QR-Transformer model mitigates the peaks but widens the bands.

Although Pinball regloss penalizes the width of prediction intervals, it simultaneously

compromises accuracy.

Figure 4.8. Prediction Intervals Comparison Between GP-Transformer Predictions
and Targets for 80% and 20% Intervals.

4.6.7 Visualization of Probabilistic Predictions by Different Models

In Figure 4.15, 4.16, and 4.17, the composite QR-Transformer model predicts

quantiles for various scenarios. In Figure 4.15, the prediction reflects a situation

without spikes, successfully capturing the cyclic pattern of SPP. The majority of the

targets (represented by the blue line) are covered by the predicted 90th quantile.
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Figure 4.9. Prediction Intervals Comparison Between QR-GRU Predictions and Tar-
gets for 80% and 20% Intervals.

Regarding Figure 4.16, it depicts quantile predictions in the presence of spikes.

As discussed in Chapter 3, the spike transformation method 1 is employed to handle

spikes, making the actual spike values potentially higher than those visible in the

figure. Quantile prediction encounters challenges in adequately covering these spikes.

Figure 4.17 showcases the quantile prediction for February 2021, marked by a

hike due to a snowstorm. Despite the quantile prediction not fully capturing the SPP

during hikes, a discernible upward trend is evident in the predictions during such

events.

4.6.8 Evaluation of Prediction Performance by Winkler-Peak Score Regularized Pin-

ball Loss

Table 4.6 displays the Winkler-peak scores for composite quantile regression

using both pinball loss and Winkler-score penalized pinball loss. The table indicates

that the regularization term effectively encourages the model to approach peak time
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Figure 4.10. Prediction Intervals Comparison Between QR-LSTM Predictions and
Targets for 80% and 20% Intervals.

predictions. However, it is crucial to optimize the regularization weight for optimal

performance.

4.6.9 Evaluation of Prediction Performance by MSE Regularized Pinball Loss

The composite QR-Transformer can also be employed for load forecasting, with

tests conducted on four sites: Amity, Donalsonville, San Antonio, and Waianae.

Training data, gathered from 1 AM on January 1, 2022, to 11 PM on April 30,

2023, in their respective local time zones, were utilized. The model underwent test-

ing on load data spanning from 1 AM on May 1, 2023, to 11 PM on May 30, 2023. In

this particular application, the calculation of two extreme quantiles at 0% and 100%

levels may encounter the issue of an unbounded boundary, as per the definition of

pinball loss. As indicated in Table 4.7, pinball loss regularized by MSE (referred to

as pinball regloss) resulted in more accurate outcomes based on CRPS and pinball

loss metrics. Furthermore, upon comparing the disparities between CRPS and CRPS
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Figure 4.11. Prediction Intervals Comparison Between QR-RNN Predictions and
Targets for 80% and 20% Intervals.

sorted, as well as pinball loss and pinball loss sorted, it is evident that the pinball

regloss estimated quantiles exhibit fewer cross-over issues, as indicated by smaller

differences.

The model performances were additionally evaluated during local daytime hours,

specifically from 1 PM to the next day’s 3 AM UTC time for Amity, 11 PM to the

next day’s 0 AM UTC time for Donalsonville, 12 AM to the next day’s 1 AM for San

Antonio, and 5 PM to the next day’s 5 AM for Waianae. The composite quantile

regression estimated with pinball regloss continued to demonstrate superior perfor-

mance compared to the model estimated with pinball loss.

4.7 Conclusions

In this chapter, a comparison is made between probabilistic forecasting methods

based on quantile regression and Gaussian processes. Building upon the deterministic

multivariate time series forecasting structure proposed in Chapter 3, the second step
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Figure 4.12. Prediction Intervals Comparison Between QR-Transformer Predictions
and Targets for 80% and 20% Intervals.

of the two-step training structure was adjusted to predict different quantiles, replacing

the mean squared error (mse) loss with the pinball loss for electricity prices.

Through comparisons of prediction intervals from QR-Transformer, QR-GRU,

QR-LSTM, and QR-RNN models, QR-Transformer consistently demonstrates stable

and accurate performance. The potential overfitting issue observed in RNN-type

models persists in probabilistic forecasting, evidenced by narrow deviated intervals.

GP-Transformer model achieved better peak prediction in terms of Winkler-

Peak score. However, its uncertainty quantification is less accurate and reliable with

a very large bandwidth. Although GP-Transformer effectively covers a majority of

the targets, the reliability of probabilistic predictions is compromised by wider bands

compared to quantile regression models.

The prediction intervals generated by the composite structure of quantile regres-

sion were compared with intervals composed of multiple quantile regression models.

The Composite QR-Transformer, which considers the loss of all quantiles simultane-
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Figure 4.13. Prediction Intervals Comparison Between Composite QR-Transformer
Predictions and Targets with Pinball Loss for 80% and 20% Intervals.

ously, demonstrated superior probabilistic prediction performance in CRPS compared

to all other methods.

The Winkler-peak regularized pinball loss proved effective in directing model

attention to the timing of time series peaks, thereby enhancing peak prediction per-

formance. The MSE-regularized pinball loss was found effective in controlling predic-

tion intervals of quantile regression. Optimizing the regularization parameters during

training, monitored by validation CRPS, holds the potential to further enhance the

probabilistic forecasting performance of the proposed Composite QR-Transformer

method.

Analysis of PICP and PIAW for prediction intervals reveals that existing method-

ologies face challenges in providing precise uncertainty quantifications for target pre-

diction intervals with specified probabilities (e.g., 80%). This underscores the clear

need for improved methods that can deliver more accurate uncertainty quantification.
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Figure 4.14. Prediction Intervals Comparison Between Composite QR-Transformer
with Pinball Regloss Loss Predictions and Targets for 80% and 20% Intervals.

Figure 4.15. Day-ahead Quantile Prediction on Settlement Point Prices With No
Spikes.
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Figure 4.16. Day-ahead Quantile Prediction on Settlement Point Prices With Spikes.

Figure 4.17. Day-ahead Quantile Prediction on Settlement Point Prices With Hikes.

90



Table 4.6. Winkler-peak Score of Composite Quantile Regression Estimated by
Winkler-peak Score Regularized Pinball Loss

Quantiles Composite QR-transformer regweight=7 regweight=1
Q10 3.267 3.592 3.509
Q20 3.722 3.621 3.617
Q30 3.747 3.437 3.661
Q40 3.650 3.433 3.560
Q50 3.711 3.426 3.119
Q60 3.588 3.397 3.361
Q70 3.415 3.440 3.487
Q80 3.422 3.455 3.556
Q90 3.596 3.390 3.404
Average 3.569 3.466 3.475

Table 4.7. Evaluation of Load Forecasting With Composite QR-Transformer

Site Objective function CRPS CRPS (sorted) Pinball Loss Pinball Loss (sorted)
Amity Pinball loss 0.114 0.087 0.02 0.018
Amity Pinball regloss 0.042 0.043 0.022 0.018
Donalsonville Pinball loss 0.063 0.059 0.023 0.022
Donalsonville Pinball regloss 0.045 0.044 0.021 0.02
San Antonio Pinball loss 0.071 0.053 0.019 0.016
San Antonio Pinball regloss 0.038 0.038 0.02 0.017
Waianae Pinball loss 0.152 0.145 0.035 0.034
Waianae Pinball regloss 0.083 0.082 0.036 0.036

Table 4.8. Evaluation of Daytime Load Forecasting With Composite QR-Transformer

Site Objective function CRPS of Daytime CRPS of Daytime (sorted)
Amity Pinball loss 0.116 0.099
Amity Pinball regloss 0.048 0.05
Donalsonville Pinball loss 0.072 0.066
Donalsonville Pinball regloss 0.051 0.05
San Antonio Pinball loss 0.073 0.052
San Antonio Pinball regloss 0.039 0.04
Waianae Pinball loss 0.213 0.207
Waianae Pinball regloss 0.124 0.124
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CHAPTER 5

IMPROVING UNCERTAINTY QUANTIFICATION of PROBABILISTIC

MULTIVARIATE TIME SERIES FORECASTING WITH CONFORMAL

PREDICTION

5.1 Introduction

In applications of probabilistic modeling and forecasting, it is important not

only to predict accurately but also to quantify prediction uncertainty accurately.

This is especially important in situations involving high-stakes decision making, such

demand response decisions, healthcare decisions, financial risk management, natural

disaster prediction and response planning, and autonomous vehicle navigation. In

many real-world decision-making scenarios, understanding the range of potential out-

comes and their probabilities with accurate uncertainty quantification can be crucial

for making informed, safe, and effective decisions. Quantifying prediction uncertainty

helps in assessing risks, preparing for various scenarios, and choosing actions that are

robust against a wide range of possible futures.

For major probabilistic forecasting methods, such as quantile regression and

Gaussian Process based methods, the prediction uncertainty can be quantified using

a prediction interval, giving lower and upper bounds between which, the response

variable lies with a target probability. The quantile regression methods estimate

the prediction interval directly using the pinball loss at different quantiles. The GP

based methods estimate the prediction intervals of a desired probability by assuming a

Gaussian distribution with the predicted mean and standard deviation of the response
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variable. However, it is noted that most of the probabilistic forecasting methods have

limitations on accurate uncertainty quantification in practical applications.

For quantile regression methods, while it is valuable for estimating different

quantiles in the distribution of a response variable, often face challenges in accurately

predicting quantiles in practice. The accuracy of quantile regression in predicting

quantiles can be seriously impacted by several factors:

• Model Specification Issues: If the quantile regression model is not correctly

specified — for example, if important predictors are omitted or nonlinear rela-

tionships are not properly accounted for — it may not capture the true under-

lying relationship between the variables. This can lead to inaccurate quantile

predictions.

• Data Limitations: The quality and quantity of data available for training can

significantly impact the model’s accuracy. Insufficient data, especially for ex-

treme quantiles, can lead to unreliable estimates. Also, if the training data is

not representative of the population or the situation where the model is applied,

it can lead to inaccuracies.

• High Variability in Extreme Quantiles: Estimating extreme quantiles (e.g., 5th

or 95th percentile) can be challenging because these are often based on less data

(i.e., the tails of the distribution), leading to higher variability and potentially

less accurate predictions.

• Impact of Outliers: Quantile regression can be sensitive to outliers, especially

for the extreme quantiles. Outliers can disproportionately influence the model

estimates, leading to skewed results.

• Data Distribution Drift in Non-Stationary Data: If there is a drift or change

in the data distribution between the training phase and testing/application

phase, the quantile estimates may become inaccurate. This drift can happen
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due to various factors like changing market conditions, evolving patient profiles

in healthcare, or environmental changes. Such distribution drifts mean that the

patterns learned during training may no longer apply in the same way, leading

to less reliable quantile predictions in practice.

On the other hand, GP methods, while powerful in many respects, also face

challenges in accurately predicting quantiles in practice due to several reasons:

• Assumption of Gaussian Distribution: GP methods generally assume that data

follow a Gaussian distribution. However, real-world data can exhibit non-

Gaussian characteristics like skewness, heavy tails, kurtosis, or multimodality.

When the true distribution of data deviates significantly from the Gaussian

assumption, GP methods may struggle to accurately capture the underlying

distribution, leading to inaccuracies in quantile prediction.

• Computational Intensity and Scalability: GP methods are known for their com-

putational intensity, especially as the size of the dataset grows. For very large

datasets, the computational requirements can become prohibitive, potentially

leading to compromises in model complexity or precision. This can affect the

model’s ability to accurately estimate quantiles.

• Sensitivity to Hyperparameters and Kernel Choice: The performance of GP

methods is highly dependent on the choice of kernels and hyperparameters.

Incorrect choices can lead to poor model fit and inaccurate quantile predictions.

In practice, finding the optimal configuration can be challenging and time-

consuming.

• Difficulty in Handling Non-Stationary Data: GP methods assume stationary

processes. In real-world scenarios, where data might exhibit non-stationary

behaviors due to trends, seasonality, or regime shifts, GPs might not perform

well, affecting their ability to predict quantiles accurately.
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Due to these limitations, there is a motivation to investigate uncertainty quan-

tification accuracy and develop new methods to calibrate and improve the perfor-

mance of uncertainty quantification for probabilistic forecasting models, which can

be critical in practical decision-making processes. In recent years, conformal pre-

diction methods have emerged as a powerful tool for uncertainty quantification in

machine learning and statistical predictions [24]. Its reliability in quantifying pre-

diction uncertainties has led to widespread applications in diverse domains such as

decision support systems [156], safe navigation for self-driving cars [157], and drug

discovery [158].

Conformal prediction provides a layer on top of existing models (like quantile

regression) to offer a more reliable measure of prediction uncertainty. It does so by

using past data to determine how well predictions would have worked in practice,

thus providing empirically valid confidence intervals or prediction intervals. This

approach can be particularly useful in high-stakes decision-making scenarios where

understanding and quantifying uncertainty is crucial. Conformal prediction helps in

addressing some of the limitations of quantile regression by providing a framework

for assessing and guaranteeing the accuracy of prediction intervals. In particular, the

concept of conformal prediction was introduced to address several key aspects:

• Need for Reliable Uncertainty Estimation: traditional probabilistic forecasting

models face challenges to quantify prediction uncertainties accurately due to

various model and practical factors. Conformal prediction methods is aimed to

quantify prediction uncertainty in a reliable and theoretically sound manner.

• Coverage Guarantee: one of the most appealing aspects of conformal prediction

is its coverage guarantee. This means that the prediction intervals generated by

conformal methods are guaranteed to contain the true outcome with a specified
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probability (e.g., 95%). This guarantee holds under very general conditions,

making conformal methods widely applicable.

• Non-Parametric and Distribution-Free: Conformal prediction methods do not

rely on specific assumptions about the underlying data distribution. This non-

parametric and distribution-free nature makes them robust and applicable to a

wide range of problems, including those with complex or unknown data distri-

butions.

• Adaptability to Different Models: Conformal prediction methods can be applied

on top of any existing predictive model, whether it’s a simple linear regression

or a complex deep neural network. This adaptability allows for the integration

of conformal prediction into existing prediction pipelines with minimal changes.

With the rise of complex machine learning models and the availability of large

and diverse datasets, the need for robust uncertainty quantification has become more

pronounced. However, despite its importance, robust uncertainty quantification us-

ing conformal prediction concept is still an underdeveloped research direction and

has not been adopted by many machine learning studies in practice. In Chapter 4,

a transformer-based composite quantile regression (TCQR) model was proposed for

multi-step multivariate time series forecasting. Compared to existing methods, the

proposed method achieved promising performance of prediction accuracy in terms

of RMSE, MAE, MAPE, and achieved the promising performance in probabilistic

prediction metrics in terms of pinball loss and CRPS. However, we notice that the

quality of uncertainty quantification can not be guaranteed at different quantiles. As

shown in Table 5.1, the target prediction bands of 80%, 60%, 40%, 20% were defined

by the predicted quantiles of (10% - 90%), (20% - 80%), (30% - 70%), (40% - 60%),

respectively, by the TCQR model on the testing dataset (the last one year of energy

prices). The actual coverage rates were 63.9%, 47.6%, 31.5%, 13.9%, respectively,
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which were significantly deviated from the target coverage rates. The big difference

between target and actual coverage rates shows that the existing models have is-

sues to provide accurate and reliable uncertainty quantification. There is an pressing

need to develop new probabilistic forecasting methods with more accurate and ro-

bust uncertainty quantification, which can be critical in real-world decision-making

applications.

Table 5.1. Coverage Rate and Bandwidth of Composite QR-Transformer Before Cal-
ibration

80% 60% 40% 20%
Bandwidth 14.927 8.821 5.125 2.388
Coverage Rate 0.639 0.476 0.315 0.139

In Chapter 5, we specifically investigated the problem of model uncertainty

quantification. In particular, we develop a new adaptive conformal prediction method

to improve uncertainty quantification for probabilistic forecasting models. The devel-

oped new method is promising to generate accurate prediction intervals with guaran-

teed coverage and is highly valuable to be used for various data-driven decision-making

applications.

5.1.1 Motivation and Contributions

In this chapter, conformal prediction was implemented to enhance probabilistic

prediction results and offer a statistically robust uncertainty quantification. Existing

methods, including conformalized quantile regression and conformal residual fitting

methods, were found to overlook the application in multivariate time series and multi-

step ahead forecasting. Moreover, these methods do not adapt to the latest data,

97



suggesting that existing methods cannot be applied to datasets with the data shift

issue. Therefore, contributions are made in the following aspects.

(1) Proposed the integration of adaptive online updates with quantile random

forest-based conformal prediction (AQRF) to achieve narrow bandwidth and

guarantee the coverage rate at the same time.

(2) Proposed the combination of adaptive online updates with the conformal resid-

ual fitting method (ACRF) to update calibration using the latest available data.

(3) Adjusted AQRF and ACRF methods to multivariate time series and multi-step

ahead forecasting application.

(4) Conducted a comparison between the proposed AQRF and ACRF methods and

the original QRF and CRF methods.

5.2 Related Work

Conformal prediction utilizes historical data to establish accurate confidence

levels for new predictions [159]. As a general method to generate prediction intervals

without distribution assumption, conformal prediction has a general procedure as

follows [24].

(1) Establish a heuristic measure of uncertainty based on the pre-trained model.

(2) Specify the score function, where larger scores indicate poorer agreement be-

tween prediction and target.

(3) Determine the quantile of the calibration score.

(4) Utilize this quantile to construct prediction sets for new instances.

The majority of research is concentrated on either defining score functions, deter-

mining quantiles, or establishing methods for constructing prediction sets for new

instances.
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Conformal Prediction There are different ways to define the score functions

in the second step. The most straightforward way is using nonconformity score which

is the absolute error as defined in Equation 5.1 [160]. µ̂(Xi) is the predicted point

value of ith sample (Xi, Yi), and Dcal denotes the calibration dataset.

Ei = |Yi − µ̂(Xi)|, where Xi, Yi ∈ Dcal (5.1)

The prediction interval at 100(1−α)% confidence level for conformal prediction

using the nonconformity score for a new data point is represented by Equation 5.2

[24].

C(Xt+1) = [µ̂(Xt+1)−Q(1− α,E ∈ Ical), µ̂(Xt+1) +Q(1− α,E ∈ Ical)] (5.2)

where Q(1−α,Ei ∈ Ical) is an empirical 100(1−α)-th quantile of errors of calibration

setE ∈ Ical.

Conformalized Quantile Regression (CQR) However, the effectiveness of

conformal calibration using the mentioned nonconformity score diminishes when ap-

plied to heteroskedastic errors. To address this issue, conformalized quantile regres-

sion (CQR) [26] was introduced as a solution to the heteroskedasticity problem. As-

suming the boundary of the prediction interval at the 100(1−α)% confidence level de-

rived from the calibration dataset of probabilistic forecasting is given by {q̂αlow
, q̂αhi
},

the conformity score for CQR is defined by Equation 5.3. The coverage rate would

be guaranteed by this maximum function.

Ei = max{q̂αlow
(Xi)− Yi, Yi − q̂αhi

(Xi)}

Xi, Yi ∈ Dcal

(5.3)
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The boundaries of the prediction interval at α level, C(Xt+1), is denoted as Equation

5.4 [26].

C(Xt+1) = [q̂αlow
(Xt+1)−Q(1− α,E ∈ Ical), q̂αhi

(Xt+1) +Q(1− α,E ∈ Ical)]

Ical = {Et, Et−1, ..., Et−n}
(5.4)

where Q1−α(E ∈ Ical) = (1− α)(1 + 1/|Ical|)-th empirical quantile of Ical. |Ical| is the

number of samples in the calibration datasets.

Conformal predictions can be categorized into two types, namely Inductive

Conformal Prediction (ICP) and Transductive Conformal Prediction (TCP), based

on how they construct prediction intervals [161].

TCP vs ICP In TCP, the initial step of creating a general ”rule” is omitted.

Consequently, there is no preprocessing applied to the training set beforehand, and all

computations rely on each individual test example. The predictions are derived using

the actual training set for each specific test example. The process of ICP involves

using a training set to formulate a general rule, model, or theory about the data.

This generated rule is then applied to individual test patterns to make predictions.

The information from the training set is integrated into the general rule, and there is

no direct reliance on the training examples during the prediction process [161]. This

study will primarily concentrate on the ICP method, which is designed to create a

rule using training data.

Given that the research emphasis is on ICP methods, and conformal prediction

is employed to calibrate probabilistic forecasting in this chapter, the model utilized for

predicting the quantiles should be lightweight and computationally efficient. There-

fore, opting for a quantile random forest would be a suitable choice[162].

Conformal Residual Fitting (CRF) Nevertheless, according to [163], ICP

was found to be inefficient in capturing the local patterns of individual samples.
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Consequently, CRF was introduced to create locally adaptive intervals by employing

a normalized nonconformity score, as illustrated in Equation 5.5. In this equation, σ

represents a conformal normalization model.

γ(x) =
|y − f(x)|
σ(x)

(5.5)

Adaptive Conformal Inference (ACI) Considering the problem of data

shift in the real world, Gibbs and Candes (2021) [164] introduced Adaptive Con-

formal Inference, which accommodates an unspecified number of shifts in the joint

distribution. This approach involves retraining the predictive model and dynamically

adjusting the quantile level through an online update mechanism, utilizing a learning

rate parameter.

Recognizing the sequential characteristics present in time series data, a frame-

work known as Sequential Predictive Conformal Inference (SPCI) was introduced

by Xu and Xie (2023) [165], incorporating autoregressive updates. In this section, a

model akin to SPCI was developed, employing a quantile random forest to predict the

quantiles of the nonconformity score for each new data point. Additionally, adaptive

conformal inferences were integrated to dynamically adjust and update the prediction

intervals.

5.3 Proposed Methods

5.3.1 Multi-Step Multivariate Time Series Conformal Prediction

Hourly Conformal Prediction For day-ahead electricity price forecasting,

where the prediction spans multiple time steps and the residual distribution may

vary for each hour, the hourly nonconformity scores were formulated as detailed in

Equation 5.6. Here, µ̂(Xi) represents the 50th quantile prediction from probabilistic
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forecasting. Yi denotes the ith observation. Dh constitutes the calibration dataset

specific to hour h. Ih is used to denote nonconformity scores specific to hour h.

Ei = |Yi − µ̂(Xi)|, where Xi, Yi ∈ Dh

Ical = {I1, I2, ..., I24}, Ei ∈ Ih
(5.6)

Thus, the boundary for predictions at the hour h is as Equation 5.7.

C(Xt+1) = [µ̂(Xt+1)−Q(1− α,E ∈ Ih), µ̂(Xt+1) +Q(1− α,E ∈ Ih)] (5.7)

CQR Hourly As discussed in Section 5.2, CQR does not necessitate ho-

moskedastic data for the conformity score function (refer to Equation 5.3), considering

the maximum distance between targets and the two boundaries. Consequently, the

prediction interval of CQR is better suited to fit distributions of targets compared to

conformal prediction. The prediction interval at the level 100(1 − α)% is expressed

in Equation 5.4.

In the context of day-ahead forecasting, CQR is designed to calibrate 24-hour

predictions simultaneously. Consequently, the construction of CQR hourly mirrors the

process of hourly conformal prediction. A distinct conformity score set is computed for

each hour, utilizing historical conformity scores from the same hour. The prediction

interval is independently constructed for each hour.

5.3.2 Adaptive Quantile Random Forest (AQRF)

According to SPCI framework, the calibration score is defined as Equation 5.8.

Ei = Yi − µ̂(Xi), where Xi, Yi ∈ Ih (5.8)

Then the 100(1− α)% prediction interval can be expressed as Equation 5.9.

C(Xt+1) = [µ̂(Xt+1) +Q(α/2, E ∈ Ih), µ̂(Xt+1) +Q(1− α/2, E ∈ Ih)] (5.9)
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Utilizing the definition of hourly nonconformity scores as outlined in section ??, the

errors were tailored to each respective hour h.

Quantile Random Forest (QRF) The quantiles of calibration errors are

calculated by the QRF algorithm. Input features of the QRF can be:

(1) historical errors Et, Et−1, ....

(2) historical errors Et, Et−1, ... and PCA transformed features Ft+1.

(3) historical errors Et, Et−1, ... and encoded hour and weekday Ft+1.

(4) historical errors Et, Et−1, ..., PCA transformed features Ft+1 and encoded hour

and weekday Ht+1.

(5) PCA transformed features Ft+1.

(6) encoded hour and weekday Ht+1.

To build a QRF model for forecasting error quantiles on a daily basis using

historical errors, the sampling procedure is illustrated in Figure 5.1.

Figure 5.1. Error Sampling Process for QRF-based Model.

In this chapter, Xt+1 is the input for predicting yt+ 1. Xt+1 in the probabilistic

forecasting is in the dimension of R144×22 which is transformed to X ′t+1 by PCA to
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reduce the dimension of features. Ht+1 is the sin-cos encoded hour and weekday

information of yt + 1.

Adaptively Adjust Uncertainty Estimation In the QRF-based calibration

model, α is set as a constant value for each prediction interval. However, a proposal by

Gibbs [164] suggested adjusting α based on the most recent prediction to enhance the

results of conformal prediction. Consequently, the adaptive conformal inference was

incorporated into both models. For the prediction of 100(1−α)% prediction interval

bounds, αt+1 will be modified in accordance with the value of αt using Equation 5.10.

The indicator function 1 is utilized, being equal to 1 if yt is not within the prediction

interval C(Xt), and 0 otherwise.

αt+1 = αt + γ(α− 1{yt /∈C(Xt)}) (5.10)

The adaptive quantile random forest method introduced in this chapter will be

denoted as AQRF.

5.3.3 Adaptive Conformal Residual Fitting (ACRF)

Split the calibration data set Dcal into two parts, a half as Dcal1 and another

half as Dcal2. Then the ratio of actual errors to the predicted errors r can be derived

in the process described in Figure 5.2.

Utilizing calibration data Dcal1, a random forest model ferr is constructed, and

this model ferr is employed to forecast the errors of Dcal2 as Êcal2. The ratio of the

true error Ecal2 to the predicted error Êcal2 is represented as r. Subsequently, the

q-th quantile of r, denoted as e, is utilized to compute the calibrated boundaries as

specified in Equation 5.11.

As illustrated in Figure 5.2, the model ferr can undergo training with various

inputs to anticipate errors. In this context, features such as PCA-transformed features
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F , historical errors E, encoded hour and weekday H, and their combinations were

taken into account, as indicated in Table 5.5.3.

Figure 5.2. Flowchart of Calculating Conformal Residual Fitting Parameter r For
Each New Data Point.

Then the prediction interval for the data point Xt+1 is as in Equation 5.11,

where e is the empirical qth quantile of r.

C(Xt+1) = [µ̂(Xt+1)− e · ferr(Ft+1), µ̂(Xt+1) + e · ferr(Ft+1)] (5.11)

The α value in CRF updated with adaptive inference in Equation 5.10 will be

abbreviated as ACRF.
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5.4 Performance Metrics

Reliability Prediction Interval Coverage Probability (PICP) is employed to

assess the likelihood that the actual target values fall within the prediction intervals

provided by the predictions. As shown in the Equation 5.12, n denotes the number

of samples, θαi is an indicator function and it equals 1 if the target i is covered by the

prediction interval, otherwise 0. Thus, the higher the PICP is, the more targets are

covered by the prediction interval which means the prediction is more reliable.

PICP =
1

n

n∑
i=1

θαi (5.12)

Sharpness Prediction Interval Average Width (PIAW) measures the average

width of the prediction interval. Equation 5.13 shows the average of n samples’ band-

width, where Uα
i and Lαi represents the upper and lower bounds of ith prediction at

100(1−α)% level. When employing sharpness to assess prediction intervals, the goal

is to minimize the value of PIAW. However, in the context of probabilistic forecasts,

it is crucial to ensure that the uncertainties of the forecasts are adequately quantified.

Therefore, it is essential to meet reliability requirements, and efforts should be made

to minimize the width between the upper and lower bounds of the prediction interval.

PIAW =
1

n

n∑
i=1

(Uα
i − Lαi ) (5.13)

5.5 Experiments

Conformal predictions were employed to calibrate the probabilistic forecasting

outcomes produced by the composite QR-Transformer model in Chapter 4.

5.5.1 Dataset

As this chapter builds upon the findings of Chapter 4, the same dataset is

utilized. This dataset encompasses predictors presented as multivariate time series,
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covering information on weather, time, load, and electricity prices, while the labels

correspond to day-ahead electricity prices. The probabilistic model underwent train-

ing using data from the years 2017 to 2020. The testing set encompasses the last 245

days of 2021, while the initial approximately 100 days are employed for constructing

conformal prediction models.

5.5.2 Prediction Performance of Benchmark Conformal Prediction Models

As illustrated in Table 5.5.2 and 5.5.2, the 80% prediction interval of original

probabilistic forecasting from the composite QR-Transformer only covered 63.9% of

observations and the bandwidth is 14.927. Similar low coverage rates occur in other

prediction intervals as well. The conformal prediction rows in Table 5.5.2 and 5.5.2

refer to conformal prediction with nonconformity scores. Hourly conformal prediction

refers to the conformal prediction with nonconformity scores with hourly calibration

data in Section ??. CQR denotes conformal quantile regression. N refers to the length

of the calibration dataset.

According to the results shown in Table 5.5.2 and 5.5.2, calibration with errors

collected in the past 7 days are long enough to achieve decent coverage rates and

bandwidth for each PI which are similar to using errors in the past 35 or 112 days.

So, the following results are based on the moving window size 7. The benchmark

methods have already achieved coverage rates close to the expected confidence level.

5.5.3 Prediction Performance of AQRF Prediction Method

Various input configurations were experimented with for the quantile random

forest-based method, and the corresponding outcomes are presented in Table 5.5.3.

As indicated in the table, the coverage rates, especially for 80% prediction intervals,

do not reach the levels observed with benchmark methods, although they surpass
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Table 5.2. Benchmark: PICP for Prediction Intervals Through Conformal Prediction
With Non-Conformity Score and Conformal Quantile Regression

Caliberation Method N 80% PI 60% PI 40% PI 20% PI
Conformal prediction 7 0.782 0.597 0.422 0.226
Hourly conformal prediction 7 0.800 0.638 0.482 0.334
CQR 7 0.791 0.610 0.425 0.226
CQR hourly 7 0.801 0.634 0.483 0.335
Conformal prediction 35 0.788 0.586 0.397 0.204
Hourly conformal prediction 35 0.786 0.600 0.414 0.226
CQR 35 0.790 0.600 0.402 0.199
CQR hourly 35 0.798 0.599 0.411 0.220
Conformal prediction 112 0.757 0.549 0.359 0.182
Hourly conformal prediction 112 0.752 0.556 0.370 0.190
CQR 112 0.785 0.590 0.382 0.180
CQR hourly 112 0.793 0.576 0.389 0.183
Before calibration 0.639 0.476 0.315 0.139

the coverage rate before calibration. When incorporating error terms E(t), E(t −

1), . . . , E(t − s) and transformed features Ft, the QRF method exhibits the highest

PICP. Furthermore, the PICP with only Ft as inputs is comparable to the best-

performing model, suggesting that the transformed features alone adequately capture

the variance in errors.

Here are two demonstrations displaying the 80% prediction interval bounds cali-

brated by QRF for two periods in 2021. As depicted in Figure 5.3, the QRF-calibrated

bounds effectively encompass the majority of targets in the absence of spikes. In the

second demonstration Figure 5.4, while the upper bound of the prediction interval

increases following spikes, the adjustment occurs several days later and is not prompt.

Upon integration with adaptive conformal inference, the QRF method attains

coverage rates that are comparable to benchmark methods, albeit with a narrower
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Table 5.3. Benchmark: PIAW for Prediction Intervals Through Conformal Prediction
With Non-Conformity Score and Conformal Quantile Regression

Caliberation Method N 80% PI 60% PI 40% PI 20% PI
Conformal prediction 7 21.943 15.197 10.644 6.284
Hourly conformal prediction 7 24.934 17.312 12.717 8.744
CQR 7 22.453 15.141 10.224 5.864
CQR hourly 7 24.318 16.625 12.305 8.423
Conformal prediction 35 22.446 15.150 10.148 5.537
Hourly conformal prediction 35 23.047 16.048 10.945 6.198
CQR 35 22.525 14.715 9.746 5.282
CQR hourly 35 22.355 15.468 10.467 5.934
Conformal prediction 112 23.647 13.809 8.286 4.000
Hourly conformal prediction 112 23.796 14.328 8.683 4.235
CQR 112 23.325 13.872 8.690 4.158
CQR hourly 112 23.271 14.302 8.950 4.280
Before calibration 14.927 8.821 5.125 2.388

bandwidth, as illustrated in Table 5.5. This implies that the AQRF method more

precisely enhances the coverage rate of probabilistic forecasting.

As the calibration of AQRF was performed on an hourly basis, the alpha values

were adjusted hourly in response. The alpha updates for 6 AM, 12 PM, 18 PM, and

0 AM over the prediction days are illustrated in Figure 5.5 below. In accordance with

Equation 5.10, the alpha values decrease when the previous target lies outside the

prediction interval and increase when the previous target falls within the prediction

interval.

Figure 5.6 illustrates the contrast between the boundaries of QRF and AQRF.

As depicted in the figure, when the targets extend beyond the QRF boundaries (indi-

cated by the red dashed line and green dashed line), the adjusted AQRF boundaries

(represented by the red solid line and green solid line) expand. The AQRF boundaries

effectively adapt to cover a higher percentage of targets.
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Table 5.4. Enhancing Precision: PICP and Bandwidth For 80% Prediction Interval
Through Quantile Random Forest Based Method

Inputs Settings PICP PIAW
Et, Et−1, . . . , Et−s 24 models for 24 hours 0.696 17.527
Et, Et−1, . . . , Et−s, Ht+1 1 model for 24 hours 0.737 17.899
Et, Et−1, . . ., Et−s, Ft+1 1 model for 24 hours 0.755 16.280
Et, Et−1, . . . , Et−s,Ht+1, Ft+1 1 model for 24 hours 0.753 16.946
Ht+1, Ft+1 1 model for 24 hours 0.725 15.594
Ht+1 1 model for 24 hours 0.729 19.740
Ft+1 1 model for 24 hours 0.747 15.614

Figure 5.3. Day-ahead Quantile Prediction of Electricity Prices Using QRF Method
Demo 1.

5.5.4 Prediction Performance of ACRF Prediction Method

Conformal Residual Fitting (CRF) involves several decisions in terms of set-

tings, such as the size of two datasets Dcal1 and Dcal2, and specifying the number

of components in PCA transformation. Preliminary experiments were conducted to

identify the optimal settings for CRF, as outlined in Table 5.6. The table demon-

strates that the best settings, based on PICP and PIAW, involve 70 samples in Dcal1,

30 samples in Dcal1, and 20 components (explaining 90.5% variance) in PCA trans-

formation. Subsequent CRF experiments utilized these settings accordingly.
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Figure 5.4. Day-ahead Quantile Prediction of Electricity Prices Using QRF Method
Demo 2.

Table 5.7 presents the outcomes of conformal residual fitting, while Table 5.8

displays the outcomes of adaptive conformal residual fitting. Upon comparing the

two tables, it becomes evident that the results are remarkably similar, and there are

no substantial improvements observed after integrating adaptive conformal inference.

One plausible explanation for this observation is that the quantiles of the CRF method

were defined based on the empirical quantiles of the parameter r. Consequently,

updating the α may not exert a significant influence on the prediction interval, as is

the case in the QRF method where quantiles are directly modeled with α.
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Table 5.5. PICP and PIAW of AQRF Calibration

Inputs γ PICP PIAW
Et, Et−1, . . ., Et−s, Ft+1 0.001 0.719 16.110
Et, Et−1, . . ., Et−s, Ft+1 0.005 0.747 17.298
Et, Et−1, . . ., Et−s, Ft+1 0.010 0.764 18.446
Et, Et−1, . . ., Et−s, Ft+1 0.020 0.781 19.525
Et, Et−1, . . ., Et−s, Ft+1 0.030 0.788 19.785
Et, Et−1, . . ., Et−s, Ft+1 0.040 0.791 19.809
Et, Et−1, . . ., Et−s, Ft+1 0.050 0.789 19.631
Ft+1 0.030 0.788 19.597
Ft+1 0.040 0.790 19.724
Ft+1 0.050 0.789 19.549

Figure 5.5. Adaptive α Values of AQRF.

112



Figure 5.6. Comparisons of AQRF and QRF Bounds..

Table 5.6. PICP and PIAW of Conformal Residual Fitting under Different Settings

PI Samples in Dcal1 Samples in Dcal2 PCA n components Variance Explanation PICP PIAW

80% 50 50 20 0.922 0.809 25.436

60% 50 50 20 0.922 0.614 17.082

40% 50 50 20 0.922 0.430 11.422

20% 50 50 20 0.922 0.226 6.221

80% 50 50 30 0.960 0.807 25.119

60% 50 50 30 0.960 0.616 16.993

40% 50 50 30 0.960 0.431 11.396

20% 50 50 30 0.960 0.231 6.233

80% 50 50 40 0.985 0.757 25.294

60% 50 50 40 0.985 0.549 13.787

40% 50 50 40 0.985 0.346 7.429

20% 50 50 40 0.985 0.163 3.445

80% 70 30 20 0.905 0.792 24.212

60% 70 30 20 0.905 0.609 16.616

40% 70 30 20 0.905 0.425 11.306

20% 70 30 20 0.905 0.229 6.458
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Table 5.7. PICP and PIAW of Conformal Residual Fitting

PI PICP PIAW
80% 0.792 24.212
60% 0.609 16.616
40% 0.425 11.306
20% 0.229 6.458

Table 5.8. PICP and PIAW of Adaptive Conformal Residual Fitting

Quantiles PICP PIAW
80% 0.802 25.355
60% 0.608 16.680
40% 0.410 11.138
20% 0.207 6.140

114



5.6 Conclusion

In this chapter, the effectiveness of conformal prediction in enhancing the cov-

erage rate of probabilistic forecasts generated by deep learning methods is demon-

strated. The proposed Adaptive CRF (ACRF) conformal prediction method is shown

to achieve the target coverage rate, even though the uncertainty bandwidth is not

minimized.

The utilization of PCA-transformed multivariate time series features proves

effective in modeling prediction errors and quantifying prediction uncertainties. No-

tably, historical prediction errors are found to be insignificant in predicting future

errors. Additionally, the proposed AQRF conformal prediction method ensures the

target coverage rate with the smallest bandwidth compared to existing methods.

The chapter introduces AQRF as a means of calibrating the boundaries of pre-

diction intervals derived from probabilistic forecasting. Through comparative analysis

with benchmark methods, specifically conformal prediction with nonconformity scores

and conformal quantile regression, AQRF demonstrates a coverage rate comparable

to that of benchmark models, but with reduced bandwidth. This method serves as

a general approach applicable on top of any existing predictive models, providing

robust and accurate uncertainty quantifications with desired prediction intervals at

specified probabilities.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In addressing the challenges associated with sudden spikes in electricity prices

and the complexities of modeling multivariate time series data, a transformer model

employing a two-step training process was applied in this manuscript. This design

effectively manages the learning and forecasting of patterns in multivariate time se-

ries data, with the inclusion of a pretraining step enhancing model convergence and

mitigating overfitting concerns.

The case study, utilizing ERCOT market data, showcased the superiority of the

TDEPF model over other widely used models such as LSTM, RNN, and GRU in day-

ahead electricity price forecasting. Experimental findings underscored the efficacy

of the proposed spike transformation approach in mitigating price spikes, while also

demonstrating the model’s proficiency in capturing predictive patterns.

The forecasting model holds significant potential to assist market participants

in making more informed decisions regarding bidding on day-ahead electricity prices,

contributing to a more efficient and stable deregulated market.

Additionally, a comparison was conducted between probabilistic forecasting

methods based on quantile regression and Gaussian processes. Adapting the two-

step training structure proposed in Chapter 3, the second step was adjusted to pre-

dict different quantiles, replacing mean squared error (mse) loss with pinball loss for

electricity prices.

Comparisons of prediction intervals from various models revealed that QR-

Transformer consistently demonstrated stable and accurate performance. However,
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potential overfitting issues observed in RNN-type models persisted in probabilistic

forecasting, evident in narrow deviated intervals.

The effectiveness of GP-Transformer in covering a majority of targets was noted,

but the reliability of probabilistic predictions was compromised by wider bands com-

pared to quantile regression models. The composite structure of quantile regression

models, considering the loss of all quantiles simultaneously, resulted in milder peaks

compared to separate QR-Transformer models. Although modifications to the Pin-

ball loss narrowed prediction bands, balancing the coverage rate and bandwidth of

prediction intervals remains a promising challenge.

Concluding this study, the introduction of an adaptive QRF-based method

for calibrating prediction interval boundaries was presented. Comparative analy-

sis with benchmark methods, specifically conformal prediction with nonconformity

scores and conformal quantile regression, confirmed that the adaptive QRF-based

method ensures a comparable coverage rate with reduced bandwidth. Additionally,

it was demonstrated that PCA-transformed features, without past errors, effectively

account for prediction errors.

In the future, with the availability of more extensive electricity and weather

data, there is potential for enhancing forecasting accuracy through the implementa-

tion of a cluster-based model. This approach becomes particularly beneficial due to

the seasonal variations in the pattern of electricity prices. It is worth noting that in

this study, the consideration was limited to weather and load information. In reality,

electricity prices are significantly influenced by the transmission of electricity, and

disruptions in the operation of a generator can lead to spikes in prices. Integrating

transmission-related data or conducting simulations to incorporate these factors into

the forecasting process has the potential to further improve prediction results. A sim-

ilar forecasting framework could also be extended to load forecasting. If predictions
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of day-ahead load are included as factors in the regression, there is an opportunity to

enhance the forecasting results. This study showed promising experimental results of

the proposed AQRF method. Further theoretical analysis will be performed to prove

the convergence and conditional coverage of the proposed AQRF method.
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