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ABSTRACT 

PURSUIT OF ULTIMATE TOMOGRAPHIC IMAGE QUALITY: FROM 

CLASSICAL METHODS TO DEEP LEARNING 

Shiwei Zhou, PhD 

The University of Texas at Arlington, 2023 

Supervising Professor: Mingwu Jin 

Medical imaging plays a crucial role in modern healthcare, serving as a vital 

component in the realms of diagnosis and treatment. It encompasses a broad 

spectrum of techniques and technologies aimed at visualizing the internal 

structure, physiology and bio-chemical processes inside the human body. Medical 

imaging has revolutionized medical practice by enabling doctors to diagnose 

diseases and monitor treatments without resorting to invasive procedures. 

Computed Tomography (CT) is an important tool of medical imaging. A CT scan 

employs computer-processed combinations of multiple X-ray images taken from 

different angles to generate cross-sectional images, providing significantly more 

detailed structural information compared to 2D X-rays. However, CT relies on 

ionizing radiation and its image quality can deteriorate due to patient motion and 

reduced imaging dose. In this work, we aim to improve CT image quality (at lower 

radiation dose) using advanced methods ranging from traditional modeling to deep 

learning.  



 iii 

In this work, we first developed a general simultaneous motion estimation and 

image reconstruction (G-SMEIR) method for 4D cone-beam CT (CBCT) to capture 

and model lung motion for radiation therapy (Chapter 2). It can overcome the local 

trapping problem of motion estimation and achieve better 4D CBCT image quality 

and motion tracking for lung tumors. Secondly, we developed several deep 

learning methods for CT denoising: cycle generative and adversarial network 

(CycleGAN) and RecycleGAN for unpaired single low-dose CT image denoising 

and unpaired low-dose CT image sequences denoising, respectively (Chapter 3), 

and texture transformer for super-resolution (TTSR) for low-dose CT (Chapter 4). 

These methods yield unprecedented denoising performance compared to other 

state-of-the-art denoising methods. This dissertation work not only provides 

multiple tools to address important issues in CT, but also demonstrates that 

advanced modeling and deep learning methods are effective in solving challenging 

problems in medical imaging. 
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CHAPTER 1. INTRODUCTION 

The evolution of X-ray Computed Tomography (CT) technology represents a major 

breakthrough in the history of medical imaging. The development of CT from its 

conception to its current advanced forms is a journey marked by scientific curiosity, 

technological advancements, and innovative problem-solving. This part delves into 

the early beginnings and the key milestones of CT technology, exploring its 

genesis, development phases, and the pivotal moments that led to its wide use in 

contemporary clinical practice. 

1.1 Early beginnings and major milestones in CT technology 

X-ray Computed Tomography, more commonly known as CT, is an imaging 

technology that uses computer-processed combinations of many X-ray 

measurements taken from different angles to produce cross-sectional 

(tomographic) images of specific areas of a scanned object. This technology allows 

the visualization of internal structures within the human body in a non-invasive 

manner, which has greatly improved the diagnostic abilities of physicians 

worldwide. 

The origins of CT scan technology can be traced back to 1972, with the introduction 

of the first commercial CT scanner, the EMI-Scanner. Sir Godfrey Hounsfield, a 

British engineer working at EMI Laboratories in England, developed the EMI-

Scanner, for which he was awarded the Nobel Prize in Physiology or Medicine in 
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1979, along with American physicist Allan Cormack[1], who provided a solution for 

CT image reconstruction. 

Hounsfield’s initial device was limited to making images of the brain, but it marked 

a significant milestone in medical imaging. This pioneering model used a single X-

ray tube that revolved around the patient’s head, producing a single slice of the 

brain at a time[2]. The development from single-slice to multi-slice CT scanners 

represented a significant leap in CT technology. The first single-slice CT scanner, 

introduced in the early 1970s, took several minutes to acquire one slice of data 

and nearly five hours to reconstruct a single image. The introduction of multi-slice 

or multi-detector CT (MDCT) scanners in the late 1990s increased the speed and 

efficiency of CT imaging by acquiring multiple slices of data in a single rotation, 

resulting in a significant reduction in scanning and reconstruction time[3]. 

In 1989, spiral (or helical) CT scanning was introduced. This new scanning 

method, which involved the continuous rotation of the X-ray tube in a helical path 

around the patient, allowed for faster, more detailed imaging and was particularly 

useful for capturing structures such as blood vessels and organs that move with 

the body’s motion, such as the lungs and the heart[4]. 

The late 1990s and early 2000s saw further improvements with the introduction of 

cone-beam CT, which offered volumetric acquisition of data and improved 3D 

imaging capabilities. This method involved the X-ray beam shaping into a cone 

instead of a fan, which facilitated the acquisition of large volumes of data in a single 

rotation[5]. 
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Today, CT technology is continually evolving, with improvements in scanner 

technology, image reconstruction techniques, and the application of artificial 

intelligence for image enhancement and interpretation. Today’s CT scanners are 

faster, more accurate, and safer, leading to lower radiation dose for patients while 

maintaining high image quality. 

1.2 Fundamentals of CT 

 The mathematical foundation of CT imaging is to reconstruct a 2D or 3D image of 

an object by analyzing projections of the object in many different directions. The 

fundamental is an application of the Radon Transform and its inverse. The 

projection is the process of creating a 2D image (or a 1D line) of a 3D object (or a 

2D object). As shown in Figure 1.1 left, an X-ray tube irradiates X-ray beams 

through the body, which are collected by the detector create a projection [2].  

Figure 1.1 The form of CT projections (left) and Radon transform (right) [6] 
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Given the incident X-ray intensity I0, the detected intensity along a line at angle 𝜙𝜙 

along 𝑥𝑥𝑟𝑟 (Figure 1.1 middle) can be expressed as:   

𝐼𝐼(𝜙𝜙,𝑥𝑥𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐼𝐼0𝑒𝑒
−∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑(𝜙𝜙,𝑥𝑥𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  (1.1) 

where f(x,y) are linear attenuation coefficients at location x and y. Taking a 

normalized logarithm, the projection can be defined as: 

𝑝𝑝(𝑥𝑥𝑟𝑟 ,𝜙𝜙) = 𝑙𝑙𝑙𝑙 𝐼𝐼0
𝐼𝐼(𝜙𝜙,𝑥𝑥𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑(𝜙𝜙,𝑥𝑥𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . (1.2) 

Then, the Radon transform [7] (Figure 1.1 right) can be written as: 

𝑝𝑝(𝑥𝑥𝑟𝑟 ,𝜙𝜙) = ∫ ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝛿𝛿(𝑥𝑥𝑥𝑥𝑥𝑥𝑑𝑑𝜙𝜙 + 𝑦𝑦𝑑𝑑𝑦𝑦𝑙𝑙𝜙𝜙 − 𝑥𝑥𝑟𝑟)𝑑𝑑𝑥𝑥∞
−∞ 𝑑𝑑𝑦𝑦∞

−∞ . (1.3) 

The fundamental theorem of CT was introduced in the seminal paper by Radon in 

1917[8] and re-invented by Dr. Allan Cormack[1].The theorem can be stated as 

follows: 

If a function 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  is continuous and its Radon Transform 𝑝𝑝(𝑥𝑥𝑟𝑟 ,𝜙𝜙)is known for all 

𝑥𝑥𝑟𝑟 and 𝜙𝜙, then the function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be uniquely determined. 

This theorem states that if we know all the projections (i.e., the Radon transform) 

of an object from every possible direction, we can uniquely reconstruct a complete 

image of the object (via the inverse Radon transform, which can be used to 

reconstruct the image 𝑓𝑓(𝑥𝑥,𝑦𝑦) from the acquired projections 𝑝𝑝(𝑥𝑥𝑟𝑟 ,𝜙𝜙) [7]). 
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To implement this theorem practically in a CT scanner, projections are acquired 

from multiple angles around the object, and an algorithm is used to perform the 

inverse Radon transform (typically in a discrete form of inverse Radon transform 

with high-pass filtering, i.e. so called filtered backprojection (FBP)) to reconstruct 

the image. The procedures are shown in Figure 1.2. 

    

   

Figure 1.2 Radon transform and CT image reconstruction.(Top left: original 
image; Top right: Projection (“Sinogram”) from Radon transform; Bottom left: 
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direct inverse Radon transform; Bottom right: inverse Radon transform with high-
pass filtering (FBP)) 

It is important to note that the theorem assumes the object is perfectly sampled 

with an infinite number of projections, which is not possible in real-world CT 

imaging. Nevertheless, the theorem provides the mathematical basis for CT image 

reconstruction, and the computer algorithms work well with a finite number of 

projections (e.g. Figure 1.2 for 360 views over 360 degrees). 

1.3 Motion tracking in CT imaging 

One inherent challenge in thoracic CT imaging is patient's respiratory motion, 

which can potentially cause image artifacts and obscure diagnostic information. 

Respiratory motion causes blurred images, leading to misrepresentation of organ 

structures and potential misdiagnosis[9]. Tumors can appear smeared or 

displaced, impairing the accuracy of diagnosis, radiotherapy planning, and 

treatment assessment. Consequently, techniques for tracking and compensating 

for respiratory motion have emerged as crucial aspects in improving the quality 

and diagnostic value of CT images.[10, 11]  

Various motion-tracking techniques have been developed, such as retrospective 

and prospective gating, 4D-CT, and the use of surrogate signals[12]. In 

retrospective gating, the entire breathing cycle is scanned, and data are 

retrospectively sorted into different respiratory phases. In contrast, prospective 

gating only scans during a specific phase of the breathing cycle. These methods 

can significantly reduce motion artifacts but may also involve higher radiation 

doses or miss the respiratory motion as a whole[13].  
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4D-CT involves acquiring images at different phases of the respiratory cycle, 

providing a "4th dimension" of information – time. 4D-CT enables visualization of 

the organ's motion trajectory during breathing, which is valuable for radiation 

therapy planning[14]. 

Surrogate signals techniques use surrogate signals like chest surface motion or 

internal fiducial markers to predict the respiratory phase. The prediction can then 

be used to synchronize image acquisition with the respiratory cycle[15]. 

The implications and advantages of respiratory motion tracking in CT imaging are 

multifaceted, improving not only diagnostic accuracy and imaging dose, but also 

treatment efficacy and safety. Motion tracking compensates for respiratory motion, 

enabling a more accurate depiction of internal structures. This facilitates better 

detection and characterization of pathologies, thus significantly enhancing the 

diagnostic accuracy. In radiation therapy, the accurate targeting of the tumor while 

sparing healthy tissues is of utmost importance. By integrating motion tracking, the 

irradiated volume can be determined with precision, leading to safer and more 

efficacious treatment strategies. Respiratory motion tracking also allows the 

correlation of image acquisition with specific respiratory phases, minimizing 

unnecessary irradiation of CT imaging for patients. 

As we transition into the future of CT imaging, respiratory motion tracking 

technology continues to evolve, promising even greater accuracy and efficiency. 

Emerging techniques such as artificial intelligence (AI)-based algorithms offer the 

potential to further refine motion tracking, which can not only improve the 
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diagnostic value of CT imaging but also make radiation therapy more precise and 

patient-specific. Additionally, the advent of wearable devices for patient monitoring 

presents a new avenue for non-invasive and continuous tracking of respiratory 

motion. These technological advancements underscore the dynamic role and 

importance of respiratory motion tracking in the future of CT imaging. As these new 

methods and technologies are developed and refined, they have the potential to 

revolutionize the field, offering safer, more precise, and more efficient diagnostic 

and treatment options. 

1.4 Aims of this work 

In the following chapters, we will present several methods, which could improve 

the image quality for CT. These methods can be separated into two categories: 1) 

conventional methods based on mathematical and physical modelling; and 2) deep 

learning methods. Although the deep learning methods emerge as a new trend, 

conventional methods are still effective to solve some problems in CT.  

• Chapter 2: To solve the respiratory motion problem in slow CBCT imaging, 

we proposed a numerical method named general simultaneous motion 

estimation and image reconstruction (G-SMEIR), which estimates the 

respiratory motion more accurately. Dr. Yujie Chi helped review the 

manuscript. Dr. Jing Wang helped review the manuscript and reconstructed 

images. Dr. Mingwu Jin helped code, analyse the result, and review this 

manuscript. 
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• Chapter 3: To denoise CT images using unpaired training, we proposed two 

deep learning methods, CycleGAN and ReCycleGAN, where the latter 

enforces temporal connections between cardiac phases to effectively 

denoise a low-dose CT image sequence. Dr. Jinyu Yang helped validate 

the phantom simulation, Krishnateja Konduri helped run cross-validation 

simulation and patient training, Dr. Junzhou Huang helped review the 

manuscript. Dr. Lifeng Yu helped collect patient data and review the 

manuscript. Dr. Mingwu Jin helped analyse the result, and review the 

manuscript. 

• Chapter 3: To achieve super-resolution of the CT images, we proposed a 

deep learning method named texture transformer super-resolution (TTSR), 

which converts noisy low-resolution CT images to clean high-resolution 

ones. Dr. Lifeng Yu helped review the manuscript. Dr. Mingwu Jin helped 

analyse the result, and review the manuscript. 

Overall, we aim to improve CT image quality using either conventional methods or 

deep learning. 

 

. 
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2.1 Introduction 

Motion-compensated tomographic image reconstruction for X-ray computed 

tomography (CT), single-photon emission computed tomography (SPECT), and 

positron emission tomography (PET) has been an active research topic for many 

years. There are three popular ways to apply motion compensation for improved 

image quality by suppressing noise and motion artifacts [16]: 1) single frame 

reconstruction with post-reconstruction motion correction (SF-PMC) [17-19]; 2) 

multi-frame reconstruction with motion-compensated temporal regularization (MF-

MTR) [20-24]; and 3) multi-frame reconstruction with the parametric motion model 

(MF-PMM) [25-37]. It has been shown that MF-MTR collapsed to a single frame 

reconstruction if the weight of the temporal regularization is zero and converged to 

MF-PMM if the weight of the temporal regularization becomes very large using 

penalized weighted least-square (PWLS) estimators with known nonrigid motion 

fields [16]. However, the large weight of the temporal regularizers may lead to slow 

convergence of MF-MTR. It also shows that MF-PMM can lead to a smaller 

variance than SF-PMC based on Maximum a Posteriori (MAP) estimators with 

Poisson likelihoods. Furthermore, the specially designed regularizers may improve 

the nonuniform and anisotropic spatial resolution of these methods at the expense 

of noise performance [38]. Even though MF-PMM may be preferable to SF-PMC 

and MF-MTR, the accurate motion estimation in practice is be a key factor to 

achieve these theoretical predictions of noise and spatial resolution performance 

and to improve reconstructed image quality.     
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Cone-beam CT (CBCT) has been widely used in image-guided radiation therapy. 

Traditionally, CBCT is performed to get 3D images for patient alignment. However, 

the acquisition of one 3D image is not sufficient for moving targets, such as tumors 

in the lungs [39]. 4D CBCT has been proposed to acquire a series of 3D images 

that can track the motion of tumors, e.g. respiratory motion for lung cancer patients 

[40, 41]. Several clinical studies have shown that 4D CBCT offers a more accurate 

target location as compared to 3DCBCT for motion-involved sites [42, 43]. 

Furthermore, 4D CBCT has been used to reconstruct and monitor the actual dose 

delivered to patients for adaptive radiation therapy [44, 45]. For 4D CBCT, if single 

frame 3D reconstruction methods are used, the radiation dose to image the patient 

would have to increase dramatically to keep the image quality since each of the 

3D image series needs a regular scan. Not only could the excessive ionizing 

radiation lead to harmful secondary diseases, especially for young patients [46], 

but also the acquisition time will be long, leading to reduced clinical workflow. The 

quality of 4D CBCT images can be greatly improved by using the aforementioned 

motion-compensated reconstruction methods. In our previous work, we developed 

a simultaneous motion estimation and image reconstruction (SMEIR) for 4D CBCT 

[36], which a type of MF-PMM method. In SMEIR, the motion estimation in the 

projection domain is alternatively updated with image reconstruction iterations. 

Although SMEIR can accurately reconstruct the tumor location and motion during 

patient breath for precise radiotherapy, it suffers a local optimum trapping problem 

for motion estimation conducted in the projection domain. We proposed a modified 

SMEIR method to alleviate this problem by adding one more step of image-domain 
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motion estimation [47]. In this work, we further develop a general SMEIR (G-

SMEIR) framework, which can flexibly combine SMEIR iterations with image-

domain motion estimation to improve estimated deformation vector fields (DVFs) 

for better 4D reconstruction. To tackle the problem of computational burden, CPU 

parallel computing is used for SMEIR with multi-reference frames and GPU 

computing is used for image-domain motion estimation [48]. The G-SMEIR 

framework can be readily extended to other tomographic modalities, such as CT, 

SPECT, and PET [34]. 

2.2 Methods 

2.2.1 SMEIR 

Here we briefly introduce the image model and the simultaneous motion estimation 

and image reconstruction (SMEIR) method, one of MF-PMM methods, which 

utilizes all projections (for P phases) to reconstruct phase images by exploring the 

motion correlation of different phases in the projection domain [36]. The image 

model of P-phase images can be described as, 

𝑝𝑝𝑘𝑘 = 𝐴𝐴𝑘𝑘𝜇𝜇𝑘𝑘 + 𝜖𝜖𝑘𝑘,𝑓𝑓𝑥𝑥𝑓𝑓 𝑘𝑘 = 1, 2, …𝑃𝑃, (2.1) 

where 𝑝𝑝𝑘𝑘  is the projection data, 𝐴𝐴𝑘𝑘  is the projection matrix for phase 𝑘𝑘, whose 

element is the intersection length of a particular voxel with the ray reaching a 

particular detector bin, 𝜇𝜇𝑘𝑘is the image to be reconstructed for phase 𝑘𝑘, and 𝜖𝜖𝑘𝑘is 

the corresponding noise. Note that 𝐴𝐴𝑘𝑘  is different for different phases due to 
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different view angles. If the motion transform is available, an image at phase 𝑘𝑘 can 

be obtained from a reference phase, say phase 1 for example, 

𝜇𝜇𝑘𝑘 = 𝑇𝑇1,𝑘𝑘𝜇𝜇1, 𝑓𝑓𝑥𝑥𝑓𝑓 𝑘𝑘 = 1, 2, …𝑃𝑃, (2.2) 

where 𝑇𝑇1,𝑘𝑘 is the deformation matrix to transform the image at phase 1 to that at 

phase 𝑘𝑘 .  Given 𝒑𝒑 = [𝑝𝑝1′ ,𝑝𝑝2′ , … , 𝑝𝑝𝑃𝑃′ ]′  as the projections for all phases, 𝝐𝝐 =

[𝜖𝜖1′ , 𝜖𝜖2′ , … , 𝜖𝜖𝑃𝑃′ ]′ as the noise terms, and 𝑨𝑨 = ((𝐴𝐴1𝑇𝑇1,1)′, (𝐴𝐴2𝑇𝑇1,2)′, … , (𝐴𝐴𝑃𝑃𝑇𝑇1,𝑃𝑃)′)′ as the 

composite projection matrix, all projection data can be used jointly for phase 1 

image reconstruction, 

𝒑𝒑 = 𝑨𝑨𝜇𝜇1 + 𝝐𝝐 . (2.3) 

The constrained total variation (TV) minimization [36] can be used to solve for 𝜇𝜇1, 

whereas the other phase images can be obtained by using (2.2) given the 

deformation matrix 𝑇𝑇1,𝑘𝑘.  

In practice, the deformation matrices in (2.3) need to be estimated. The 

deformation vector field (DVF) 𝑣𝑣1→𝑘𝑘  is defined as the displacement vector from 

phase 1 to phase 𝑘𝑘 so that the following Eq. (2.4)  holds, 

𝑇𝑇1,𝑘𝑘𝜇𝜇1 = 𝜇𝜇1(𝑥𝑥 + 𝑣𝑣1→𝑘𝑘),𝑓𝑓𝑥𝑥𝑓𝑓 𝑘𝑘 = 1, 2, …𝑃𝑃. (2.4) 

The forward 𝑣𝑣1→𝑘𝑘 and backward 𝑣𝑣𝑘𝑘→1 DVFs in SMEIR are estimated as follows,  

𝑣𝑣1→𝑘𝑘∗ = arg min 𝑓𝑓1(𝑣𝑣1→𝑘𝑘) = arg min ‖𝑝𝑝𝑘𝑘 − 𝐴𝐴1𝜇𝜇1(𝑥𝑥 + 𝑣𝑣1→𝑘𝑘)‖22 + 𝛽𝛽𝛽𝛽(𝑣𝑣1→𝑘𝑘) 



 15 

𝑣𝑣𝑘𝑘→1∗ = arg min 𝑓𝑓2(𝑣𝑣𝑘𝑘→1) = arg min ‖𝑝𝑝1 − 𝐴𝐴𝑘𝑘𝜇𝜇𝑘𝑘(𝑥𝑥 + 𝑣𝑣𝑘𝑘→1)‖22 + 𝛽𝛽𝛽𝛽(𝑣𝑣𝑘𝑘→1) 

𝑑𝑑. 𝑡𝑡. 𝑣𝑣1→𝑘𝑘 ∘ 𝑣𝑣𝑘𝑘→1 = 𝑣𝑣𝑘𝑘→1 ∘ 𝑣𝑣1→𝑘𝑘 = 0, (2.5) 

where 𝛽𝛽(•)is the regularization on DVFs for this ill-posed problem, 𝛽𝛽 is used to 

balance the motion match and regularization, and ∘ is a composition operation in 

the last constraint to enforce the inverse consistency between the forward and 

backward DVFs. The initial DVFs can be obtained from motion estimation using 

images reconstructed by 3D phase-by-phase total variation minimization (3D TV). 

In SMEIR, the motion estimation step (2.5) is alternately updated with the joint 

reconstruction step of (2.3) until convergence (see yellow blocks in Figure 2.1). 

The pseudo-code of SMEIR and TV minimization can be found in the Appendix. 

2.2.2 G-SMEIR 

It is observed that the reference phase image reconstructed by SMEIR usually has 

better image quality than those of other phases transformed using the estimated 

DVFs, which change little after several iterations in SMEIR. To provide a general 

framework for 4D reconstruction and address the local optimum trapping problem, 

we propose a general SMEIR (G-SMEIR) framework to overcome this problem of 

SMEIR as shown in Figure 2.1, which is equivalent to solve Eq. (2.3) using each 

phase as the reference phase, 

𝒑𝒑𝒌𝒌 = 𝑨𝑨𝜇𝜇𝑘𝑘 + 𝝐𝝐,𝑓𝑓𝑥𝑥𝑓𝑓 𝑘𝑘 = 1, 2, … ,𝑃𝑃.  (2.6) 
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The rationale behind G-SMEIR is that SMEIR is applied on all phases, thus leading 

to better individual phase images. Then, these images are used to estimate the 

DVFs, which may jump out the local optimum trapped in SMEIR. Therefore, in G-

SMEIR, the image domain motion estimation is conducted after every N SMEIR 

iterations. In this work, we choose to use Demons non-rigid registration [49], where 

the DVF can be described as: 

𝒗𝒗 =
(𝑚𝑚 − 𝑑𝑑)𝜵𝜵𝑑𝑑

(𝜵𝜵𝑑𝑑)2 + (𝑚𝑚 − 𝑑𝑑)2  𝑥𝑥𝑓𝑓 𝟎𝟎 𝑦𝑦𝑓𝑓(𝜵𝜵𝑑𝑑)2 + (𝑚𝑚− 𝑑𝑑)2 < 𝜀𝜀 (2.7) 

where 𝑑𝑑 is the reference image and 𝑚𝑚  is the target image. A Gaussian filter is 

applied after each iteration to smooth the DVF. The smoothing parameter is 

defined as the standard deviation of the Gaussian smoothing kernel. The pseudo-

code of the Demons algorithm can be found in the Appendix. 

Although Demons non-rigid registration was used in this work, any other image 

domain motion estimation methods can be equally applied. The inner SMEIR 

iteration number N and the outer G-SMEIR iteration number M can be flexibly 

combined to achieve a trade-off between reconstruction quality and speed. The 

pseudo-code for G-SMEIR is listed in the Appendix along with the parameter 

selection. 

It can be seen from the G-SMEIR structure in Figure 2.1 that the SMEIR part for 

each phase image reconstruction can be easily computed in parallel using P 

CPUs. One of the computational bottlenecks of G-SMEIR is 3D image domain 

motion estimation since DVFs for each pair of phases need to be estimated. For 
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example, Demons registration for 7 pairs of 3D images (for one reference phase 

of P=8) takes 2 hours Intel(R) Xeon(R) CPU E5-2620 v4 CPU, which makes M 

iterations of G-SMEIR computationally impractical. In this regard, we investigated 

the acceleration of image domain motion estimation through both algorithms and 

GPU acceleration.  

 

Figure 2.1 Flow chart of G-SMEIR for N inner loops and M outer loops. 3D TV: 
3D TV minimization reconstruction; MEI: motion estimation in the image domain; 

DVFs: deformation vector fields; MEP: motion estimation in the projection 
domain. The projection data for all P phases are used for joint reconstruction in 
each SMEIR (connections not shown in the figure for conciseness).Simulation 

experiments 

A 4D extended cardiac-torso (XCAT) phantom [50] with respiratory motion (10 

phases) was used to evaluate the performance of G-SMEIR. The XCAT phantom 

images at two representative phases (Phase 1 and 4) are shown in Figure 2.2. The 

dimensions of the XCAT phantom were 256×256×100 with a voxel size of 2×2×2 

mm3. CBCT acquisition was simulated using 300 projections, i.e. 30 views/phase, 

distributed evenly over 360° by a fast ray-tracing algorithm [51]. The dimensions 

of each projection were 384×150 with a detector pixel size of 2×2 mm2. The 
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Poisson-distributed counting noise (1x105 photons/incident ray for regular dose, 

5x104 photons/incident ray for half dose, 104 photons/incident ray for 10% dose) 

and Normal-distributed electronic noise (variance of 10) were added to the original 

noise-free projections. The number of  photons per incident ray represents the 

number of photons that would reach the detector element if there is no any 

attenuation along the source and the detector. To evaluate the motion tracking 

performance of each method, a spherical 3D tumor with a diameter of 10 mm was 

also introduced. 

As for the image domain motion estimation methods, we compared both MRD and 

MSD for convergence and warped image quality to determined MRD as the choice 

for G-SMEIR in this work.  

For reconstruction, we compared the following four methods: 1) phase-by-phase 

3D total-variation minimization reconstruction (3D TV); (2) 4D reconstruction with 

image domain motion estimation (IM4D) (M=24 and N=0); 3) SMEIR (M=0 and 

N=24); and 4) G-SMEIR with different combinations of N and M (M+MxN = 24). In 

order to have a fair comparison, we fixed the number of joint reconstructions 

(Figure 2.1) to be 24 for 4D iterative reconstruction methods. When M=24 and 

N=0, G-SMEIR becomes IM4D, whereas when M=0 and N=24, G-SMEIR 

collapses into SMEIR with 24 iterations (10 projection/backprojection pairs for each 

iteration). For 3D TV, we ran additional 24 iterations (20 projection/backprojection 

pairs for each iteration) starting with the input images for initial DVF estimation. 

More projection/backprojection operations help 3D TV obtain improved image 

quality. For IM4D and SMEIR, Phase 1 was used as the reference phase and the 
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other phases were obtained by warping the reconstructed image of the reference 

phase to the target phase using the estimated DVFs, unless otherwise stated. The 

reconstruction performance is evaluated qualitatively by images and quantitatively 

by root mean squared error (RMSE) and structural similarity index (SSIM) 

calculated in the 3D image volume (256x256x100) for each phase, unless 

otherwise stated. In addition, the tumor motion recovery performance of different 

methods is measured by the maximum and mean deviations from the phantom 

tumor motion, which is averaged over the 3x3x3 volume at the tumor center. 

 

 

Figure 2.2 The XCAT phantom images for Phase1 (top) and Phase 4 (bottom) in 
transverse (left), coronal (middle) and sagittal (right) views. 

2.2.3 Patient experiments 

We also test our method on a real patient CBCT data with eight respiratory phases. 

The use of anonymous projection data from this patient was approved by UTSW 

IRB (082013-008). The data were acquired using a Varian CBCT system. The 

acquisition protocol parameters were: 120 kVp and 1.6 mAs per projection, a total 

of 534 projection views (1024 × 768 pixels with a pixel size of 0.388 × 0.388 mm2 

for each view) evenly distributed in 360º, and acquisition time of 1 min. Each 
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projection was downsampled by a factor of 2 before reconstruction. The source to 

detector distance was 1500 mm and the source to isocenter distance was 1000 

mm. The projection data were sorted into ten phases based on the respiratory 

signal recorded by Real-time Position Management system (Varian, Inc.). Thirty 

views per each respiratory phase were selected, leading to a total of 300 projection 

views for 4D reconstruction. The dimensions of reconstructed images were 

150×150×100 with voxel size of 2×2×2 mm3. We compared the patient images 

reconstructed by 1) 3D TV; 2) IM4D; 3) SMEIR; and 4) G-SMEIR.  

2.3 Results 

2.3.1 Comparison of the original Demons, MRD, and MSD 

To speed up the image-domain motion estimation, particularly for large motions, 

we used the XCAT phantom images to compare the original demons (OD) 

algorithm, multi-resolution demons (MRD), and multi-step demons (MSD). The 

phase 1 image serves as the reference phase and the phase 3 and 4 images are 

used as the target phases. After the target images were registered to the reference 

image using different methods, the RMSE and SSIM values of the registered 

phase 1 images were calculated. 500 iterations of OD lead to the plateau of RMSE, 

while 100 iterations for MSD and MRD. In Figure 2.3, we plotted these values along 

with the changing smoothing parameter of DVF.  The best performance of MRD 

and MSD is similar for 100 and 500 iterations and better than 500 iterations of OD, 

indicating their improved convergence over OD. In addition, MSD is robust to a 

wide range of the smoothing parameter, while MRD works well for a narrower 
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range. However, MSD uses OD as the first-level estimate, which leads to 

registration performance inferior to MRD as shown in the registered images in 

Figure 2.4. In the rest of this work, MRD was used for G-SMEIR. 

 

 

Figure 2.3 The RMSE and SSIM values over different smooth parameters (the 
horizontal axis) (the legend shows the target phase and the number of iterations 

in different line styles). (a: OD; b: MRD; c: MSD). 

In order to shorten the computation time, the GPU acceleration was used. To 

achieve a similar performance of RMSE, OD needs 500 iterations at the original 

resolution (~10.05 s GPU computing averaged over 50 repetitions). MRD needs 

100 iterations at each resolution, which is equivalent to around 188 iterations 

(~3.72 s). MSD only needs 100 iterations (4.08 s = 2.98 s for demons plus 1.10 s 
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for the sum of DVF). The computation time of image domain motion estimation has 

been reduced from 17 minutes (CPU) to about 3.72 seconds (GPU) for each pair 

of 3D images, which makes M times of image-domain motion estimation of G-

SMEIR practical.   

 

 

Figure 2.4 Comparison of registered images. (a: Phase 1 image; b: Phase 4 
image; c: OD registered Phase 1 image from Phase 4 image; d: MRD registered 

Phase 1 image from Phase 4 image; e: MSD registered Phase 1 image from 
Phase 4 image.) 

2.3.2 Convergence of the motion estimation objective functions 

The average values of the forward and backward motion-estimation objective 

functions in Eq. (2.5) vs. the iteration number are shown in Figure 2.5, where the 

dashed lines for SMEIR and the solid lines for G-SMEIR (three cases: M=2, N=11; 

M=3, N=7; and M=4, N=5). Here we only showed the full dose results for 

conciseness whereas the half dose and 10% dose results followed a similar trend 

with larger values. As can be seen, the image domain motion estimation in all three 

G-SMEIR cases breaks the convergence pattern and leads to a smaller objective 

function value than SMEIR for the same number of iterations. It is worth noting that 

although there is an initial jump of the curve of G-SMEIR right after the image 
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domain motion estimation was applied, it drops quickly and becomes lower than 

SMEIR later on. These results confirm that G-SMEIR can jump out the local 

motion-estimation optimum trapped in SMEIR.  

 

Figure 2.5 Comparison of motion-estimation objective functions between SMEIR 
and G-SMEIR (M=2, N=11; M=3, N=7; and M=4, N=5). (a: Phase 1 to Phase 2; 

b: Phase 4 to Phase 5). 

2.3.3 Reconstruction results for individual phases 

 The quantitative results of Phase 1 and Phase 4 images at full dose for 3D 

TV, IM4D, SMEIR, and G-SMEIR with different combinations of M and N are shown 

in Figure 2.6. For IM4D and SMEIR, Phase 1 was used as the reference phase 

and Phase 4 was obtained by warping the phase 1 image to Phase 4 using the 

estimated DVFs. All methods improve RMSE and SSIM along with the iteration. 

3D TV is much worse than three motion-compensated reconstruction methods. 

Among motion-compensated reconstruction methods, SMEIR and G-SMEIR 

outperform IM4D and seem to have comparable performance in terms of RMSE 
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and SSIM for Phase 1. However, the superior performance of G-SMEIR over 

SMEIR and IM4D becomes obvious for Phase 4 images.  

 

 

Figure 2.6 Quantitative accuracy for different reconstruction methods at the full 
dose level for phase 1 (Top) and 4 (Bottom). M and N are combinations of G-

SMEIR.  

The RMSE and SSIM values for Phase 1 and 4 of the final reconstruction images 

at full dose are listed in Table 1. Motion-compensated methods (IM4D, SMEIR, 

and G-SMEIR) outperform 3D-TV by large margins (10~25% reduction in terms of 

RMSE). G-SMEIR (M=2 and N=11) achieves the best performance on both RMSE 

and SSIM. For Phase 1 (i.e. the reference phase) SMEIR seems to have better 

RMSE than the other G-SMEIR combination and worse SSIM than G-SMEIR. 
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However, the performance of G-SMEIR for Phase 4 becomes notably better than 

SMEIR for both RMSE (0.89x10-3 vs 0.92x10-3) and SSIM (0.9653 vs. 0.9621). In 

Table 2.1, the larger SSIM and lower RMSE in Phase 1 than Phase 4 were only 

observed for 3D TV, IM4D, and G-SMEIR, but not for SMEIR. This was caused by 

the variation of XCAT phantom at different respiratory phases. For SMEIR, 

although its RMSE and SIMM were better than 3D TV, their values in the reference 

phase (Phase 1) were indeed better than Phase 4. This indicates that a large 

motion error may exist to produce the worse warped image at Phase 4. These 

results show that G-SMEIR can effectively solve this problem of SMEIR. 

Table 2.1 The RMSE and SSIM values of different reconstruction methods at full 
dose for Phase 1 and Phase 4. (M, N) is for G-SMEIR. 

 Phase 1 Phase 4 

 RMSE SSIM RMSE SSIM 
3D TV 1.27x10-3 0.9365 1.19x10-3 0.9403 
IM4D 1.13x10-3 0.9461 1.07x10-3 0.9477 
SMEIR 1.01x10-3 0.9601 1.08x10-3 0.9540 
(2,11) 1.00x10-3 0.9618 0.89x10-3 0.9648 
(3,7) 1.01x10-3 0.9617 0.89x10-3 0.9652 
(4,5) 1.02x10-3 0.9614 0.89x10-3 0.9653 

For the reconstruction image comparison, we used the combinations for G-SMEIR 

that achieved the best RMSE (i.e. M=2 and N=11). The reconstructed images for 

four methods in three orthogonal views for Phase 1 and Phase 4 are shown in 

Figure 2.7 and Figure 2.8, respectively. For phase 1 images in Figure 2.7, All three 

motion-compensated reconstruction methods greatly reduce the streak artifacts in 

3D TV. IM4D seems to suffer the motion artifacts, e.g. the boundary of the 

diaphragm. Both SMEIR and G-SMEIR achieve image quality superior to 3D TV 
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and IM4D. Although the difference between SMEIR and G-SMEIR is small in 

general, G-SMEIR seems to suffer fewer artifacts than SMEIR, e.g. the liver in the 

sagittal view. For phase 4 images in Figure 2.8, the overall image quality can be 

observed similar to phase 1 images. However, both IM4D and SMEIR suffer some 

motion blur, particularly at the tumor location, due to imperfect DVFs used for 

image warping. SMEIR seems to perform inferior to IM4D in terms of the tumor 

recovery (red circles in Figure 2.8). Such deterioration is successfully eliminated 

by G-SMEIR. 

 

 

 

 

Figure 2.7 Reconstructed XCAT images for different methods for Phase 1 at full 
dose. From left to right: transverse, coronal, and sagittal; from top to bottom: 3D 

TV, IM4D, SMEIR, and G-SMEIR. (HU range is [-1000, 1427]). 
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Figure 2.8  Reconstructed XCAT images for different methods for Phase 4 at full 
dose. From left to right: transverse, coronal, and sagittal; from top to bottom: 3D 

TV, IM4D, SMEIR, and G-SMEIR. (HU range is [-1000, 1427]). 

The results of half dose and 10% dose are similar to that of full dose. For 

conciseness, here we only show the RMSE and SSIM values of final reconstructed 

images for Phase 1 and 4 in Table 2.2 and Table 2.3 for half dose and 10% dose, 

respectively. Again, the performance is in the ascent order for 3D TV, IM4D, 

SMEIR, and G-SMEIR. The performance is similar between the full dose case and 

the half dose case, whereas a large degradation is observed from half dose to 10% 

dose. However, motion-compensated reconstruction methods degrade less than 

3D TV (~5% increase in RMSE for the former vs ~10% increase in RMSE for the 

latter). Although SMEIR works well for the reference phase (Phase 1), its 
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performance on the non-reference phase (Phase 4) is substantially worse than G-

SMEIR. 

Table 2.2 The RMSE and SSIM values of different reconstruction methods at half 
dose for Phase 1 and Phase 4. (M, N) are for G-SMEIR. 

 Phase 1 Phase 4 

 RMSE SSIM RMSE SSIM 
3D TV 1.28x10-3 0.9346 1.20x10-3 0.9387 
IM4D 1.13x10-3 0. 9451 1.08x10-3 0.9468 
SMEIR 1.02x10-3 0. 9591 1.08x10-3 0.9530 
(2,11) 1.01x10-3 0. 9609 0.90x10-3 0.9643 
(3,7) 1.02x10-3 0. 9608 0.89x10-3 0.9647 
(4,5) 1.02x10-3 0. 9606 0.89x10-3 0.9648 

Table 2.3 The RMSE and SSIM values of different reconstruction methods at 
10% dose for Phase 1 and Phase 4. (M, N) are for G-SMEIR. 

 Phase 1 Phase 4 

 RMSE SSIM RMSE SSIM 
3D TV 1.42x10-3 0.9121 1.33x10-3 0.9191 
IM4D 1.18x10-3 0.9385 1.11x10-3 0.9408 
SMEIR 1.07x10-3 0.9556 1.12x10-3 0.9506 
(2,11) 1.06x10-3 0.9565 0.95x10-3 0.9599 
(3,7) 1.07x10-3 0.9565 0.94x10-3 0.9603 
(4,5) 1.07x10-3 0.9563 0.94x10-3 0.9604 

 

2.3.4 Reconstruction accuracy across all phases 

From the results of individual phases, G-SMEIR seems to gain only a marginal 

advantage over SMEIR for the reference phase and a greater advantage for the 

non-reference phase. This confirms our hypothesis that SMEIR’s performance 

may deteriorate for other phases due to the local optimal trap of DVF. In this part, 
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we evaluated the quantitative measures for all phases. For G-SMEIR (M=1 and 

N=12), images for all phases were reconstructed simultaneously. For SMEIR, the 

reference phase was reconstructed directly, whereas the other phases were 

warped using the estimated DVF. Two phases, Phase 1 and Phase 4, were used 

as the reference phase as shown in the top row and the bottom row in Figure 2.9, 

respectively. As can be seen, SMEIR works similar to G-SMEIR in terms of RMSE 

and a little worse than G-SMEIR in terms of SSIM for the reference phase. 

However, for the phases other than the reference phase, G-SMEIR performs much 

better than SMEIR, usually more than 10% on RMSE. It is also interesting to note 

that the performance of full dose and half dose is comparable, which indicates that 

SMEIR and G-SMEIR are robust to increased noise and can be used to lower the 

radiation dose.  
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Figure 2.9  Quantitative results for different phases for SMEIR using Phase 1 
(Top) and Phase 4 (Bottom) as the reference phase and G-SMEIR.  

To further verify that the above behavior is general for using any phase as the 

reference phase, we used each phase of 10 phases as the reference phase for 

SMEIR and summarized RMSE and SSIM for each case at different dose levels. 

Since there are 10 phases, we calculated the mean and standard deviation values 

and listed them in Figure 2.10. As can be seen, the mean RMSE for SMEIR is 

always higher than that for G-SMEIR, and the mean SSIM for SMEIR is lower than 

that for G-SMEIR at all dose levels. The mean RMSE averaged over all ten cases 

for SMEIR are 1.02x10-3 at full dose, 1.02x10-3 at half dose, and 1.07x10-3 at 10% 

dose. In contrast, the mean RMSE for G-SMEIR is much lower: 0.9x10-3 at full 

dose, 0.91x10-3 at half dose, and 0.95x10-3 at 10% dose. In terms of SSIM, the 

corresponding values are 0.9577 at full dose, 0.9569 at half dose, and 0.9537 at 

10% dose for SMEIR, and 0.9648 the full dose, 0.9641 at half dose, and 0.9598 at 

10% dose for G-SMEIR. For both SMEIR and G-SMEIR, the performance at full 

dose and half dose is comparable and notable degradation occurs at 10% dose 
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This result demonstrates that G-SMEIR can reconstruct better images than SMEIR 

for all phases. The differences between SMEIR and G-SMEIR on RMSE and SSIM 

are statistically significant using a two-sample t-test.  

 

 

 

Figure 2.10 RMSE and SSIM for all phases for SMEIR (when varying the 
reference phase) and G-SMEIR. (Error bar represent standard deviation) (Top: 

full dose; middle: half dose; bottom: 10% dose) 

2.3.5 Tumor motion recovery 

The maximum (“MAX”) and mean deviations (in voxels) from the tumor phantom 

motion obtained from DVFs are listed in Table 2.4. It can be seen that G-SMEIR 

usually achieves the smallest maximum and mean deviations compared to SMEIR 

and IM4D. It is also worth noting that although SMEIR has smaller maximum 
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improvement of G-SMEIR over SMEIR in terms of mean deviation is 42%~47% at 

different dose levels. The motion displacements of the tumor in Anterior-Posterior 

(A-P), Left-Right (L-R), and Superior-Inferior (S-I) at full dose are shown in Figure 

2.11, where the ordinate axis is the displacement (in voxels) and the abscissa axis 

is the number of phases. IM4D seems to recover the motion well in A-P and L-R 

directions, where the motion is small, but to become incapable of capturing the 

large motion in the S-I direction. In comparison, G-SMEIR not only recovers best 

the large motion in the S-I direction, but also improves the motion estimation in the 

other two directions over SMEIR. Note that the L-R motion was set as zero in the 

simulation. An abrupt transition around Phase 6 may be caused by residuals from 

the A-P motion for SMEIR and G-SMEIR. However, the amplitudes of these 

artificial L-R motions are small (less than ±1 voxel). 

Table 2.4 The maximum and mean deviations (voxel) from the phantom tumor 
motion for different reconstruction methods. (M, N) is for G-SMEIR. 

  MAX Mean 

Full 
dose 

IM4D 2.6785 0.5915 
SMEIR 2.2684 0.7220 
(2,11) 2.1405 0.5071 
(3,7) 2.0782 0.4354 
(4,5) 2.0771 0.4211 

Half 
dose 

IM4D 2.6642 0.5864 
SMEIR 2.3128 0.7316 
(2,11) 2.1553 0.5127 
(3,7) 2.0827 0.4449 
(4,5) 2.0730 0.4237 

10% 
dose 

IM4D 2.6679 0.5767 
SMEIR 2.3929 0.8079 
(2,11) 2.1784 0.5288 
(3,7) 2.0926 0.4480 
(4,5) 2.0778 0.4288 
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Figure 2.11 Motion trajectories in different directions for different reconstruction 
methods. (From left to right: A-P, L-R, and S-I). 

2.3.6 Patient results 

The reconstructed patient images for two phases are shown in Figure 2.12 (Phase 

1) and Figure 2.13 (Phase 7) (with HU range of [-1000 4434]), respectively. IM4D, 

SMEIR, and G-SMEIR show much better image quality than 3D TV, which suffers 

more noise and blocky artifacts due to the limited views for each phase. For the 

reference phase (Figure 2.12, Phase 1), all three motion-compensated methods 

achieve a similar image quality, which is consistent with the findings in the phantom 

study. However, for Phase 7 in Figure 2.13, G-SMEIR not only maintains the 

contents in the lunges better (yellow arrows), but also suffers less motion artifacts 

(red arrows) than IM4D and SMEIR. Some ringing artifacts (e.g. blue arrow in 

Figure 2.12) in the sagittal view of MF-PMM methods can be seen due to non-

optimized reconstruction parameters. Since 4D methods are much more time 

consuming than 3D TV, we were only able to tune parameters (ART step sizes: 

𝜆𝜆, 𝜆𝜆𝑟𝑟𝑙𝑙𝑑𝑑, and TV minimization step sizes: 𝛾𝛾, 𝛾𝛾𝑟𝑟𝑙𝑙𝑑𝑑, see Appendix for definitions) for 

patient data and used the other parameters from the simulation study for MF-PMM 
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methods. When we lowered the TV regularization by reducing 𝛾𝛾  and 𝛾𝛾𝑟𝑟𝑙𝑙𝑑𝑑 , we 

observed the dominance of noise and streak artifacts for 3D TV images, while the 

images from MF-PMM methods (IM4D, SMEIR, and G-SMEIR) are similar. Also, 

the ringing artifacts in 4D MF-PMM methods are alleviated for smaller TV 

regularization. This demonstrates that the strong denoising and sparse data 

recovery of 4D reconstruction than 3D reconstruction. Note that these images were 

acquired for the patient positioning purpose of radiation therapy and the projection 

views for each phase was only 30, thus their quality is not as good as diagnostic 

CT images and serves as a comparative purpose. 

 

 

 

Figure 2.12 Phase 1 images of the patient for different methods. From top to 
bottom: transverse, coronal, and sagittal; from left to right: 3D TV, IM4D, SMEIR, 

and G-SMEIR.  
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Figure 2.13 Phase 7 images of the patient for different methods. From top to 
bottom: transverse, coronal, and sagittal; from left to right: 3D TV, IM4D, SMEIR, 

and G-SMEIR.  

2.4 Discussion 

We also tested other combinations for G-SMEIR, e.g. (M, N) = (6, 3) and (8, 2). 

The performance is similar to those reported in Section 3. In general, we observed 

that the smaller M and the larger N leads to better RMSE, and the larger M and 

the smaller N leads to better SSIM. Although the improvement over RMSE and 

SSIM seems not to be substantial, G-SMEIR provides much better motion tracking 

of the tumor as indicated in Table 2.4, where the mean motion tracking error is 

reduced by more than 40% compared to SMEIR. The flexibility of G-SMEIR may 

provide an effective tool to boost the 4D reconstruction performance of other 

imaging modalities, such as CT, PET, and SPECT. 
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For image domain motion estimation, we mainly focused on improving the speed 

through the faster convergence and GPU implementation. Although the Demons 

algorithm was used in this work, more sophisticated motion estimation algorithms 

can be used to further improve the DVFs, thus the final reconstruction. It seems 

that the projection domain motion estimation using a symmetric form leads to 

better reconstruction for SMEIR in terms of RMSE and SSIM, whereas the image 

domain motion estimation using Demons leads to better tumor motion tracking for 

IM4D. G-SMEIR takes advantage of both image domain and projection domain 

motion estimation to achieve the best performance in all quantitative metrics as 

well as the appearance of reconstruction images. 

It is also worth noting that the motion-compensated reconstruction methods 

belonging to MF-PMM (IM4D, SMEIR, and G-SMEIR) hold great potential for dose 

reduction. When the imaging dose was reduced from 105 photons/incident ray to 

5x104 photons/incident ray, the RMSE and SSIM values changed little. Only when 

the dose was reduced to 1x104 photons/incident ray, a few percent decrease on 

RMSE was observed. The strong denoising and data compression capability of 

these methods are achieved by using both spatial (TV minimization) and temporal 

(motion-compensated joint reconstruction) correlations in phase images. The 

superior reconstruction quality can be seen from the patient images, where each 

phase has only 30 projection views. Among three motion compensated 

reconstruction methods, G-SMEIR reveals more anatomic details than IM4D and 

SMEIR, which further demonstrates the power of combining both image domain 

and projection domain motion estimation for better reconstruction of 4D images.  
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The flat-panel detector in the XCAT phantom study was larger than the 

conventional one used in CBCT in order to cover the whole-body projection. By 

doing this, we can avoid the truncation in the projection domain and focus on 

studying the behavior of different reconstruction methods under an idealized 

condition. In real patient data, the half-scan was used due to the size of the flat-

panel detector. Nevertheless, the reconstruction performance ranking of different 

methods is consistent with findings in the simulation study.   

In this work, G-SMEIR was run on the Maverick2 GPU server at Texas Advanced 

Computing Center (TACC). The image domain motion estimation ran on GPUs 

(NVidia P100 GPU), while the projection domain motion estimation ran on CPUs 

(Intel® Xeon® Platinum 8160 CPU). The reconstruction of each phase of P phases 

was implemented in parallel on one of the P CPU cores, providing P times saving 

on computation time. Both two domain motion estimations run parallel to decrease 

time consumption. It takes about 1,000 seconds to complete image domain motion 

estimation, 220 seconds to complete joint ART reconstruction, and 1,600 seconds 

to complete projection domain motion estimation. Note that since I/O operations of 

large DVF files are included in the calculation, the time reported for image domain 

estimation is much longer than the runtime of the MRD algorithm. The biggest 

computational bottleneck is the projection domain motion estimation, which 

includes the optimization of motion objective functions and multiple projection and 

warping operations. It is expected that GPU parallel computing can significantly 

reduce the runtime for this part similar to image domain motion estimation. The 

parallelization of projection/backprojections will further reduce the ART operations. 
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Finally, a clever scheme of using DVFs is in need to avoid excessive I/O 

operations. In the future, we will investigate these possibilities to further lower the 

computation cost, which is essential for parameter tuning and selection of 

deformable registration models of G-SMEIR for better performance. 

In summary we develop a G-SMEIR framework for MF-PMM to alleviate the local 

optimum trapping problem of 4D image reconstruction and accelerated the 

computational intense image domain motion estimation using GPU. The results 

using a 4D XCAT phantom and patient CBCT data demonstrate the superior 

reconstruction performance of G-SMEIR in a manageable time.  
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3.1 Introduction 

To avoid risks from cardiac catheterization of invasive coronary angiographies 

(ICAs) in low- and intermediate-risk coronary artery disease (CAD) patients, multi-

detector computed tomography (MDCT) has been used for CT angiography (CTA) 

to noninvasively assess the presence, location, severity, and characteristics of 

coronary atherosclerosis [52-54]. In addition, some findings from CTA may not be 

detectable by ICA [55-57]. The main challenge in CTA is the strong demand on 

high temporal resolution (to mitigate cardiac motion artifacts) and high spatial 

resolution (for small coronary structures), which leads to high radiation dose [58]. 

Electrocardiogram- (ECG-) gated multi-phase CTA (MP-CTA), either in a 

retrospective helical scan mode or a prospective axial scan mode, can provide 

much more clinically relevant information than single-phase CTA (SP-CTA). Not 

only is the important heart function information lost in SP-CTA, but also different 

parts of the coronary arteries are better seen in different phases [59]_ENREF_49. 

Thus, MP-CTA may be preferred for much greater diagnostic value than SP-CTA. 

However, even with ECG tube current modulation (TCM), the average effective 

dose of a MP-CTA scan could be much higher than 10 mSv [60]_ENREF_50 (6~24 

mSv at Mayo Clinic), depending on the width of the pulse window and patient size 

[61]_ENREF_51. Taking 80% patients with negative findings into account, 

minimizing the radiation dose becomes a major and urgent need for a broader 

application of MP-CTA for CAD diagnosis. 

Many methods have been developed to reduce radiation dose in CT acquisition, 

including optimization of tube current, tube potential, and use of dedicated bowtie 
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filters. However, X-ray dose reduction in general will lead to elevated noise in 

reconstructed images. The noise in the low-dose CT (LDCT) images can be 

reduced by either conventional reconstruction methods [62-69], or emerging deep-

learning based denoising methods directly on images after regular reconstruction 

through paired-image training [70-72] or unpaired images training using a cycle-

consistent generative adversarial network (CycleGAN) [73-76]. Several CycleGAN 

variants and a paired deep learning method (RED-CNN)[70] for LDCT denoising 

were investigated and compared [75]. However, all these deep learning denoising 

methods treated each CT image independently and failed to count for the temporal 

correspondence between images, such as that of MP-CTA image sequences.   

To our best knowledge, CycleGAN with an identity loss [73] or wavelet-assisted 

noise disentanglement [76] was the first work to use deep-learning methods to 

improve low-dose MP-CTA images. Although CycleGAN can achieve the 

translation between LDCT and full-dose CT (FDCT) without the need of paired 

training images, the translation is established only in the spatial domain. The 

temporal connections along the different cardiac phases of a MP-CTA image 

sequence are not utilized by CycleGAN and may lead to sub-optimal denoising 

performance. On the other hand, an advanced CycleGAN model with a recurrent 

loss and a cycle consistency loss over space and time (“recycle loss”), so called 

RecycleGAN [77], was proposed to achieve video-to-video translation in computer 

vision, which utilizes both spatial and temporal information to solve the translation 

problem of temporally related data. Nevertheless, RecycleGAN has never been 

applied to denoise low-dose CT image sequences including MP-CTA. In this work, 
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we adapt RecycleGAN to take into consideration of the temporal connection of the 

succeeding cardiac phases of MP-CTA images. This novel deep learning 

denoising method not only enjoys the advantage of CycleGAN without need of 

paired training images, but also exploits both spatial and temporal correspondence 

to boost denoising performance for time series of MP-CTA images. As our aim in 

this work focuses on comparing the denoising performance of CycleGAN and 

RecycleGAN for low-dose MP-CTA images, the comparison between CycleGAN 

and other traditional and deep learning methods for LDCT denoising can be found 

in the previous works, such as [75].  

3.2 Methods 

3.2.1 CycleGAN 

To achieve image-to-image translation, CycleGAN [78] is proposed to learn 

mapping functions between two different domains without the need of paired data. 

Formally, given a set of images from a source domain 𝐴𝐴  (e.g., low-dose CT 

images) and a set of images from a target domain 𝐵𝐵 (e.g., full-dose CT images), 

the goal of CycleGAN is to learn a mapping 𝐺𝐺𝐴𝐴𝐴𝐴:𝐴𝐴 ⟶ 𝐵𝐵, such that the output 

𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)  is indistinguishable from the images in domain 𝐵𝐵 . The architecture of 

CycleGAN is composed of two generators and two adversarial discriminators 

(Figure 3.1). Specifically, each generator aims to translate images from one 

domain to the other domain, while each discriminator is designed to distinguish 

between real samples in the target domain from the translated images.  
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The objective of CycleGAN contains two terms: an adversarial loss[79] and a cycle 

consistency loss[78]. Given data distribution 𝑎𝑎~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎)  and 𝑏𝑏~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) , the 

adversarial loss is designed to match the distribution of generated images 𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎) 

to the distribution of the target domain 𝐵𝐵. The objective of 𝐺𝐺𝐴𝐴𝐴𝐴 and 𝐷𝐷𝐴𝐴 is defined 

as: 

ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵)

= 𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏)[log𝐷𝐷𝐴𝐴(𝑏𝑏)]

+ 𝔼𝔼𝑑𝑑~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) �log �1 −𝐷𝐷𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)��� 

(3.1) 

where 𝐺𝐺𝐴𝐴𝐴𝐴 aims to minimize this objective against an adversary 𝐷𝐷𝐴𝐴 that tries to 

maximize it, i.e., min
𝐺𝐺𝐴𝐴𝐴𝐴

max
𝐷𝐷𝐴𝐴

ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵) [78]. Similarly, for the generator 𝐺𝐺𝐴𝐴𝐴𝐴, 

the objective is  

ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵)

= 𝔼𝔼𝑑𝑑~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑)[log𝐷𝐷𝐴𝐴(𝑎𝑎)]

+ 𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) �log �1 − 𝐷𝐷𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏)��� 

(3.2) 

To further reduce the space of possible mapping functions [79], cycle-consistency 

loss is introduced to guarantee the output of each cycle to be close to the input to 

that cycle, i.e., 𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)� ≈ 𝑎𝑎. The objective is defined as  
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ℒ𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴)

= 𝔼𝔼𝑑𝑑~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑) ��𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)� − 𝑎𝑎�1�

+ 𝔼𝔼𝑏𝑏~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏) ��𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏)� − 𝑏𝑏�1� 

(3.3) 

This cycle-consistency loss enforces the constraint that 𝐺𝐺𝐴𝐴𝐴𝐴 and 𝐺𝐺𝐴𝐴𝐴𝐴 be inverse of 

each other[73]. 

Taken together, the overall objective loss for CycleGAN is: 

ℒ𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐷𝐷𝑏𝑏)

= ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵)

+ ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐵𝐵,𝐴𝐴)

+ 𝜆𝜆ℒ𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴) 

(3.4) 

where 𝜆𝜆 controls the importance of each objective term.  

The variants of CycleGAN [78] has been applied to various domains [75] . 

However, they only use the spatial information in 2D images, and do not consider 

the temporal information for optimization [77].  

The cycle-consistency loss forces the optimization to learn a solution that is closely 

tied to the input. This is suitable for the situation that only spatial information is 

available during the translation, while for time-related image sequences, such as 

CTA images, with only the cycle consistency, the model may be inadequate to 

generate perceptually unique results. The network structure of CycleGAN used in 

this work is based on Fig. 4 and Fig. 5 in [75]. 
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Figure 3.1 The network structure of CycleGAN.  

In the forward cycle (blue line), an image 𝑎𝑎 from domain 𝐴𝐴 is translated to domain 

𝐵𝐵  by generator 𝐺𝐺𝐴𝐴𝐴𝐴 , expressed as 𝐵𝐵� = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎) . Then, 𝐵𝐵�  is translated back to 

domain 𝐴𝐴, expressed as 𝑎𝑎� = 𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎)�. The backward cycle (green line) has 

similar operations where image 𝑏𝑏  in domain 𝐵𝐵  is mapped to domain 𝐴𝐴  as 

�̂�𝐴 = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏) and then mapped back to domain 𝐵𝐵 as 𝑏𝑏� = 𝐺𝐺𝐴𝐴𝐴𝐴�𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏)�.  

3.2.2 RecycleGAN 

RecycleGAN [77] is proposed to learn a mapping between two videos from 

different domain. It utilizes both spatial and temporal information to solve the 

reconstruction problem of temporally related data. RecycleGAN shares similar 

model framework with CycleGAN, while the cycle-consistency loss is replaced by 

recurrent loss and recycle loss to make use of the temporal ordered images and 

learn better mapping. The network structure is shown in Figure 3.2. 

Given unpaired but ordered streams (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑑𝑑, … ) ∈ 𝐴𝐴 (e.g., temporally ordered 

low-dose CT images) and (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑑𝑑, … ) ∈ 𝐵𝐵 (e.g., temporally ordered full-dose 
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CT images), the recurrent temporal predictor 𝑃𝑃𝐴𝐴 is trained to predict future sample 

given the past. The recurrent loss is defined as: 

ℒ𝜏𝜏(𝑃𝑃𝐴𝐴) = �‖𝑎𝑎𝑑𝑑+1 − 𝑃𝑃𝐴𝐴(𝑎𝑎1:𝑑𝑑)‖2
𝑑𝑑

 (3.5) 

where 𝑎𝑎1:𝑑𝑑 = (𝑎𝑎1, … ,𝑎𝑎𝑑𝑑). Then the recycle loss can be defined using this temporal 

prediction model. The objective that across domains and time is expressed as: 

ℒ𝑟𝑟(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴 ,𝑃𝑃𝐴𝐴) = �‖𝑎𝑎𝑑𝑑+1 − 𝐺𝐺𝐴𝐴𝐴𝐴(𝑃𝑃𝐴𝐴(𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎1:𝑑𝑑)))‖2
𝑑𝑑

 (3.6) 

where 𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎1:𝑑𝑑) = �𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎1),𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎2), … ,𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎𝑑𝑑)�. In both forward and backward 

cycles, the above loss requires a sequence of image frames to map back to the 

initial domain. The overall loss is defined by: 

ℒ𝑟𝑟𝑙𝑙𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑙𝑙𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺,𝑃𝑃,𝐷𝐷)

= ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐴𝐴,𝐵𝐵)

+ ℒ𝐺𝐺𝐴𝐴𝐺𝐺(𝐺𝐺𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴,𝐵𝐵,𝐴𝐴)

+ 𝜆𝜆𝑟𝑟𝑥𝑥ℒ𝑟𝑟(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴 ,𝑃𝑃𝐴𝐴)

+ 𝜆𝜆𝑟𝑟𝑦𝑦ℒ𝑟𝑟(𝐺𝐺𝐴𝐴𝐴𝐴,𝐺𝐺𝐴𝐴𝐴𝐴,𝑃𝑃𝐴𝐴) + 𝜆𝜆𝜏𝜏𝑥𝑥ℒ𝜏𝜏(𝑃𝑃𝐴𝐴)

+ 𝜆𝜆𝜏𝜏𝑦𝑦ℒ𝜏𝜏(𝑃𝑃𝐴𝐴) 

(3.7) 

where 𝜆𝜆’s control the importance of the losses. We show in the experiments that 

the proposed method provides an effective translation from low-dose MP-CTA to 

full-dose MP-CTA images when learning from unpaired CT image series. The 

detailed network structure of RecycleGAN [77] can be found in Appendix D. 
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Figure 3.2 The framework of RecycleGAN.  

In the forward cycle (blue line), an image 𝑎𝑎𝑑𝑑 at time 𝑡𝑡 from domain 𝐴𝐴 is translated 

to domain 𝐵𝐵  by generator 𝐺𝐺𝐴𝐴𝐴𝐴 , expressed as 𝐵𝐵𝑑𝑑� = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎𝑑𝑑) . Then, a temporal 

predictor 𝑃𝑃𝐴𝐴  is applied on 𝐵𝐵1:𝑑𝑑�  to predict a future frame 𝐵𝐵�𝑑𝑑+1   and then 𝐵𝐵�𝑑𝑑+1  is 

translated back to domain 𝐴𝐴 , expressed as 𝑎𝑎𝑑𝑑+1� = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑃𝑃𝐴𝐴(𝐺𝐺𝐴𝐴𝐴𝐴(𝑎𝑎𝑑𝑑))) . The 

backward cycle (green line) has similar operations where image 𝑏𝑏𝑑𝑑 in domain 𝐵𝐵 is 

mapped to domain 𝐴𝐴 as 𝐴𝐴𝑑𝑑� = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏𝑑𝑑) and then mapped back to domain 𝐵𝐵 with a 

temporal predictor 𝑃𝑃𝐴𝐴, expressed as 𝑏𝑏𝑑𝑑+1� = 𝐺𝐺𝐴𝐴𝐴𝐴(𝑃𝑃𝐴𝐴(𝐺𝐺𝐴𝐴𝐴𝐴(𝑏𝑏𝑑𝑑))). 

3.3 Experimental setting 

3.3.1 Phantom Data 

We used the XCAT phantom program [80] based 18 patients’ data (nine females 

and nine males) to generate cardiac CT images (thorax 512x512x128, voxel size 

of 1 mm3) for two different dose levels: full-dose and low-dose (20% of the full-

dose). The number of phases for each cardiac cycle is set to eight. The 18 
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phantoms were divided into nine pairs of female and male. To generalize the 

performance of CycleGAN and RecycleGAN, we used the 9-fold cross-validation 

(CV). For each CV, the training dataset contains seven pairs of female and female 

phantoms, the validation dataset contains a pair of male and female phantoms, 

and the testing dataset contains another pair of male and female phantoms. The 

Table 3.1 shows the patient pairs for nine CV sets. For each CV, the network was 

trained using the training data and the hyperparameters were tuned using the 

validation data. Afterward, the optimal hyperparameters were used to train the 

network using both training and validation datasets. Finally, the denoising 

performance was evaluated on the test dataset. To account for the temporal 

relationship among cardiac phases, the images of each slice are viewed as a 

looped video of eight frames.  

Table 3.1 The CV setting 

CV number Training patients Validation patients Testing patients 
1 #2, #3, #4, #5, #6, #7, #9 #8 #1 
2 #1, #3, #4, #5, #6, #7, #8 #9 #2 
3 #1, #4, #5, #6, #7, #8, #9 #2 #3 
4 #1, #2, #3, #5, #7, #8, #9 #6 #4 
5 #1, #2, #4, #6, #7, #8, #9 #3 #5 
6 #1, #2, #3, #4, #5, #8, #9 #7 #6 
7 #1, #2, #3, #5, #6, #8, #9 #4 #7 
8 #2, #3, #4, #5, #6, #7, #9 #1 #8 
9 #1, #2, #3, #4, #6, #7, #8 #5 #9 

3.3.2 Patient Data  

We also used the real patient CTA images from Mayo Clinic to evaluate the 

performance of RecycleGAN. CTA images of 50 patients were retrospectively 

collected and deidentified (IRB was approved by Mayo Clinic). Intravenous 
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iodinated contrast (Omnipaque® 350) was injected using a bolus tracking 

technique, where the volume and injection rate were determined by the patient 

weight, followed by 10 cc saline chaser. The arterial attenuation enhancement is 

200~350 HU. These cases were acquired using a routine retrospectively ECG-

gated helical scanning technique on a 3rd generation 192-slice dual-source 

scanner (Force, Siemens Healthcare): 0.25 sec rotation time, 192x0.6 mm detector 

configuration, helical pitch automatically selected based on heart rate, tube 

potential automatically determined (CAREkV), TCM (CAREDose4D, maximum 

tube current (MTC) 180 mAs in the pulse window and 20% outside), and ECG-

pulsing at 40%-70% phases. These parameters may vary for some patients, 

especially for those with irregular heartbeat. The CTDIvol was varying from patient 

to patient depending on the patient size, heart rate, and regularity of the heart rate 

(31~120 mGy, i.e. 6~24 mSv). For irregular heart rate, the pulsing window may be 

extended automatically, which could dramatically increase radiation dose. 3D 

volume images (512x512 in plane, 300~375 slices, isotropic 0.4 mm size) at 20 

phases (0%-95%) was reconstructed using the Siemens ADMIRE algorithm with a 

Qr40 kernel (ADMIRE strength setting of 3). Therefore, in 20 phases of CTA 

images of each patient, roughly 6 phases are of full dose (with MTC) while the 

remaining 14 phases are of low dose (with 20% MTC). Due to the patient size, 

heartbeat irregularity, and unbalanced full-dose and low-dose slices (# of full-dose 

slices << # of low-dose slices), we selected the full-dose slices and the low-dose 

slices for training (48 patients out of 50) based on the standard deviation (STD) of 

a square region in the aorta (full dose < 39 HU and low dose > 59 HU) and at least 
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three consecutive phases falling into either full dose or low dose. To keep the 

underlying data the same, we selected 16.2 thousand low-dose images and 15.8 

thousand full-dose images for CycleGAN training, while we selected 15.8 thousand 

low-dose frames and 15.2 thousand full-dose frames for RecycleGAN training. The 

difference was caused by the requirement of three consecutive phases for 

RecycleGAN training, which was not satisfied by all CycleGAN training images. To 

tune the model hyperparameters, CTA images of one patient were used for the 

validation set. The remaining one patient dataset was served as the test set for 

performance evaluation.  

3.3.3 Evaluation Metrics 

To evaluate the proposed method, peak signal-to-noise ratio (PSNR) [81] and 

structural similarity index (SSIM) [82, 83] are used as quantitative measurements 

for the XCAT phantom data. The PSNR is an expression for the ratio between the 

(denoised) low-dose CT image 𝑥𝑥 and the corresponding full-dose CT image 𝑦𝑦 as 

follows,  

𝑃𝑃𝑃𝑃𝑃𝑃𝛽𝛽 = 10 log10 �
𝑀𝑀𝐴𝐴𝑋𝑋𝑌𝑌2

𝑀𝑀𝑃𝑃𝑀𝑀 � (3.8) 

where 𝑀𝑀𝐴𝐴𝑋𝑋𝑌𝑌 is the maximum signal value that is set as 4095 for 12-bit CT images 

in our experiments. The term “MSE” stands for mean squared error and is defined 

as, 
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𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑚𝑚𝑙𝑙

� �[𝑥𝑥(𝑦𝑦, 𝑗𝑗) − 𝑦𝑦(𝑦𝑦, 𝑗𝑗)]2
𝑙𝑙−1

𝑗𝑗=0

𝑚𝑚−1

𝑙𝑙=0

 (3.9) 

Where 𝑦𝑦 and 𝑗𝑗 are the row and column indices of low-dose CT image 𝑥𝑥 and the 

corresponding full-dose CT image 𝑦𝑦 , respectively, and 𝑚𝑚  and 𝑙𝑙  represent the 

number of rows the number of columns, respectively. The PSNR measures the 

cumulative difference between two images. The higher the PSNR, the better the 

performance of the denoising. 

In addition to PSNR, the SSIM is designed to compare luminance, contrast, and structure 

difference between two images and is defined as, 

𝑃𝑃𝑃𝑃𝐼𝐼𝑀𝑀(𝑥𝑥,𝑦𝑦) = 𝑙𝑙(𝑥𝑥,𝑦𝑦)𝑥𝑥(𝑥𝑥,𝑦𝑦)𝑑𝑑(𝑥𝑥,𝑦𝑦) (3.10) 

where 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1
𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1

, 𝑥𝑥(𝑥𝑥,𝑦𝑦) = 2𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐2
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2

, and 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐3
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦+𝑐𝑐3

 . The first term 

𝑙𝑙(𝑥𝑥,𝑦𝑦) measures closeness of mean luminance 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦. The contrast 𝑥𝑥(𝑥𝑥, 𝑦𝑦) is 

measured by standard deviation 𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑦𝑦 . The structure similarity 𝑑𝑑(𝑥𝑥, 𝑦𝑦)  is 

measured by correlation coefficient between images 𝑥𝑥  and 𝑦𝑦 . 𝜎𝜎𝑥𝑥𝑦𝑦  is the 

covariance between two images. The 𝑥𝑥1 , 𝑥𝑥2  and 𝑥𝑥3  are used to stabilize the 

division operation[82, 83] . The higher SSIM value indicates the closer 

resemblance of two images. 

For patient data, since the ground truth was unknown, the performance was 

evaluated using STD in a square region of the aorta of CTA images of the test 
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patient, where the uniform intensity is expected. Therefore, the lower STD, the 

better denoising performance. 

3.3.4 Hyperparameters  

Hyperparameters of CycleGAN and RecycleGAN were generally kept the same as 

the previous publications[75, 77]. Specifically, for CycleGAN  𝜆𝜆 was set to 10, while 

for RecycleGAN, 𝜆𝜆𝑟𝑟𝑥𝑥 was set to 0.5, and  𝜆𝜆𝑟𝑟𝑦𝑦 was set to 50,  𝜆𝜆𝜏𝜏𝑥𝑥 was set to 1, and  

𝜆𝜆𝜏𝜏𝑦𝑦 was set to 100. The networks were trained with random weights from scratch 

using the Adam solver. For each model, we searched for the best learning rate in 

the range of 5.00x10-6 to 1.26x10-3 based on the lowest PSNR of the validation set 

(a pair of female and male patients for the phantom data and one patient for the 

patient data). For the phantom data, after training each CV data set, the best 

performing model was applied on the test dataset for performance evaluation. For 

the patient data, the learning rate was tuned using the validation patient and the 

best model was applied on the test patient. 

3.4 Results 

3.4.1 Phantom results 

We compared our proposed spatiotemporal RecycleGAN method with CycleGAN 

using PSNR and SSIM as quantitative metrics. Figure 3.3 shows PSNR changes 

of the validation set along with different learning rates for nine CV sets. We 

separated the female and male validation PSNR as some large differences were 

found between the genders (see Table 3.2 and Table 3.3). For CycleGAN, the 
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learning rates 2x10-5 to 3x10-4 seem to have a PSNR plateau for the validation set. 

For RecycleGAN, this range narrows to 3x10-5 to 3x10-4. The best validation PSNR 

for each CV set was listed in Table 3.2 along with SSIM. First, the different PSNR 

and SSIM performance can be clearly seen between female and male validation 

patients. In most cases for CycleGAN, the PSNR differences are 2-6 dB except for 

CV7 (less than 1 dB), while SSIM difference is ranged from more than 0.01 to 

about 0.07. This difference is mainly caused by the learning rate was tuned based 

on the overall PSNR using both female and male validation patients. Although the 

differences are also observed for RecycleGAN metrics, they are notably smaller. 

RecycleGAN outperformances CycleGAN in almost all cases, except for CV7 male 

SSIM (marked as bold blue in Table 3.2). After taking the average values (± 

Standard Deviation) of nine CV sets, the PSNR and SSIM for CycleGAN are 

41.23±2.16 dB and 0.9462±0.0241 for the female, and 41.13±1.62 dB and 

0.9526±0.0188 for the male. The corresponding numbers for RecycleGAN are 

41.71±2.07 dB and 0.9523±0.0224 for the female, and 42.10±1.17 dB and 

0.9600±0.0108 for the male. RecycleGAN achieves not only the greater average 

values, but also the smaller variances than CycleGAN. The best models were then 

applied to the test dataset and the PSNR and SSIM results are shown in Table 

3.3. The similar findings to the best validation metrics are observed although the 

number of cases of that RecycleGAN is worse than CycleGAN slightly increases. 

RecycleGAN outperformances CycleGAN in most cases, except for PSNR of CV1 

male and CV8 female (marked as bold blue in Table 3.3). The PSNR and SSIM 

for CycleGAN are 40.36±2.23 dB and 0.9431±0.0250 for the female test data, and 
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40.91±2.16 dB and 0.9501±0.0208 for the male test data. The corresponding 

numbers for RecycleGAN are 40.84±2.05 dB and 0.9512±0.0215 for the female 

test data, and 41.43±2.11 dB and 0.9572±0.0178 for the male test data. The test 

results demonstrated again that RecycleGAN can achieve better denoising 

performance than CycleGAN.  

 

 

Figure 3.3 The validate PSNR changes for CycleGAN and RecycleGAN with 
different learning rates. (Top row: CycleGAN; Bottom row: RecycleGAN. Left 

column: Female; Right column: male) 

Table 3.2 The best validation metrics for CycleGAN and RecycleGAN 

 CycleGAN RecycleGAN 
Cross-
Validation 

Female 
PSNR 

Female 
SSIM 

Male 
PSNR 

Male 
SSIM 

Female 
PSNR 

Female 
SSIM 

Male 
PSNR 

Male 
SSIM 

1 44.42 0.9761 38.01 0.9071 44.73 0.9814 39.88 0.9394 
2 39.32 0.9284 42.46 0.9658 40.02 0.9367 43.25 0.9710 
3 41.17 0.9494 43.47 0.9729 41.75 0.9575 43.83 0.9745 
4 44.16 0.9762 41.59 0.9547 44.32 0.9778 42.05 0.9592 
5 39.08 0.9258 41.45 0.9552 39.48 0.9303 41.87 0.9578 

10
-5

10
-4

10
-3

learning rate

15

20

25

30

35

40

45

C
yc

le
ga

n 
Fe

m
al

e 
PS

N
R

/d
B

CV1

CV2

CV3

CV4

CV5

CV6

CV7

CV8

CV9

10
-5

10
-4

10
-3

learning rate

15

20

25

30

35

40

45

C
yc

le
ga

n 
M

al
e 

PS
N

R
/d

B

CV1

CV2

CV3

CV4

CV5

CV6

CV7

CV8

CV9

10
-5

10
-4

10
-3

learning rate

15

20

25

30

35

40

45

R
eC

yc
le

ga
n 

Fe
m

al
e 

PS
N

R
/d

B

CV1

CV2

CV3

CV4

CV5

CV6

CV7

CV8

CV9

10
-5

10
-4

10
-3

learning rate

15

20

25

30

35

40

45

R
eC

yc
le

ga
n 

M
al

e 
PS

N
R

/d
B

CV1

CV2

CV3

CV4

CV5

CV6

CV7

CV8

CV9



 55 

6 42.92 0.9679 40.86 0.9549 43.44 0.9723 41.77 0.9603 
7 39.59 0.9265 40.38 0.9609 40.06 0.9335 40.83 0.9458 
8 42.11 0.9600 39.28 0.9359 42.62 0.9640 42.04 0.9611 
9 38.30 0.9060 42.66 0.9654 38.83 0.9153 43.23 0.9696 
Average 41.23 0.9462 41.13 0.9526 41.71 0.9523 42.10 0.9600 
Standard 
Deviation 2.16 0.0241 1.62 0.0188 2.07 0.0224 1.17 0.0108 

Table 3.3 Quantitative metrics for the test data for CycleGAN and RecycleGAN 

We show an image (Phase 5) of the test female and male data denoised by 

CycleGAN and RecycleGAN for CV1, CV2 and CV3 in Figure 3.4 (female) and 

Figure 3.5 (male), respectively. The full-dose and low-dose images are also shown 

as reference. Both CycleGAN and RecycleGAN effectively remove the noise in the 

images. RecycleGAN has less noise and is closer to the full-dose images than 

CycleGAN as shown in Figure 3.4 and Figure 3.5. 

 

 

 

 CycleGAN RecycleGAN 
Cross-
Validation 

Female 
PSNR 

Female 
SSIM 

Male 
PSNR 

Male 
SSIM 

Female 
PSNR 

Female 
SSIM 

Male 
PSNR 

Male 
SSIM 

1 42.18 0.9601 41.31 0.9562 42.33 0.9665 41.28 0.9620 
2 41.03 0.9467 43.26 0.9706 41.70 0.9533 43.83 0.9749 
3 39.04 0.9245 41.44 0.9543 40.40 0.9474 42.67 0.9677 
4 39.54 0.9261 40.34 0.9408 40.00 0.9321 40.71 0.9452 
5 37.92 0.8993 42.64 0.9645 38.74 0.9116 42.93 0.9687 
6 37.40 0.9636 37.16 0.9396 37.55 0.9668 37.60 0.9495 
7 43.16 0.9680 41.36 0.9547 43.62 0.9711 41.96 0.9594 
8 43.57 0.9721 37.77 0.9026 43.29 0.9761 38.71 0.9174 
9 39.44 0.9274 42.90 0.9672 39.94 0.9358 43.19 0.9702 
Average 40.36 0.9431 40.91 0.9501 40.84 0.9512 41.43 0.9572 
Standard 
Deviation 2.23 0.0250 2.16 0.0208 2.05 0.0215 2.11 0.0178 
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Figure 3.4 The transverse slice of phase 5 in the testing dataset for female (From 
top to bottom: CV1, CV2, and CV3; from left to right: full-dose, low-dose, 

CycleGAN, and RecycleGAN). 
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Figure 3.5 The transverse slice of phase 5 in the testing dataset for male (From 
top to bottom: CV1, CV2, and CV3; from left to right: full-dose, low-dose, 

CycleGAN, and RecycleGAN).  
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Figure 3.6  Eight phases of the heart region for CV2 female test data (From top 
to bottom: full-dose, low-dose, CycleGAN, and RecycleGAN; from left to right: 

phase 1 to phase 8. Display Window [-215 335]HU). 

 

In Figure 3.6 and Figure 3.7, the eight phases of the heart region are shown for 

different methods along with the full-dose and low-dose references. Again, both 

CycleGAN and RecycleGAN effectively suppress the noise. RecycleGAN does a 

better job to further remove the noise than CycleGAN in the myocardium and the 

blood pool. RecycleGAN also achieves better contrast and structure preservation 

than CycleGAN. 
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Figure 3.7 Eight phases of the heart region for CV2 male test data (From top to 
bottom: full-dose, low-dose, CycleGAN, and RecycleGAN; from left to right: 

phase 1 to phase 8. Display Window [-215 335]HU). 

3.4.2 Patient results 

For the patient CTA data, some phases are with full-dose (at 100% MTC) and 

some with low-dose (at 20% MTC or transition between 100% MTC to 20% MTC). 

Twenty phases of the test patient are shown in Figure 3.8. Phase 8-13 in this test 

patient should be in the 100% MTC window (full dose), while others should be in 

the 20% MTC window (low dose) or the transition window. For simplicity, we 

selected eight consecutive phases for each category (while excluding four 

transition phases): 1) phases 1-6, 19 and 20 for low-dose with high noise; and 2) 

phases 8-15 for full-dose with low noise. Phases 4- 6 show less noise than other 

low-dose phases as the MTC was ramped up. The black box in the aorta is used 

as region of interest (ROI) to calculate the standard deviation (STD) of the intensity 

to represent the noise level and the magnified views of ROI are shown in Figure 

3.9. The noise texture can be seen more clearly, and the top row (low-dose 
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images) are much noisier than the bottom row (full-dose images). The STD values 

in HU are listed in Table 3.4, where the low-dose STD values are greater than 45 

HU and the full-dose STD values are less than 40. This is also different from the 

thresholds for the selection of low-dose and full-dose training data (full dose < 39 

HU and low dose > 59 HU). The purpose is to see how effective RecycleGAN can 

denoise these relatively high noise slices.    

 

 phase1 phase3 phase5 phase19 

low
-dose 

  phase8 phase10 phase12 phase14 

full-dos 
 

Figure 3.8 Twenty phases of the test patient CTA images (Top row: low-dose 
images of phase 1-6, 19, and 20; bottom row: full-dose images of phase 8-15). 
The black box in the aorta is used as a region of interest (ROI) to calculate the 
standard deviation (STD) of the intensity to represent the noise level. Display 

Window [-1000 950]HU. 
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Figure 3.9 Twenty phases of the ROI (black box in Figure 3.10) (Top row: low-
dose images of phase 1-6, 19, and 20; bottom row: full-dose images of phase 8-

15). Display Window is [76 676]. 

Table 3.4 The standard deviation (STD) values in HU of low-dose and full-dose 
ROI 

 
Phase 1 2 3 4 5 6 19 20 
Low-
dose 60.12 62.35 58.17 49.34 45.06 51.09 65.61 66.56 

phase 8 9 10 11 12 13 14 15 
Full-
dose 31.09 29.01 36.84 34.17 35.27 35.33 38.39 39.59 

In Figure 3.10, we compared the low-dose CTA images (phases 1-6, 19 and 20) 

of the test patient with CycleGAN and RecycleGAN denoised images. Similar to 

the findings in the phantom results, both CycleGAN and RecycleGAN can 

effectively suppress the noise, while RecycleGAN keeps the image details much 

better than CycleGAN. CycleGAN also suffers from some intensity artifacts as 
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marked by the yellow arrows in Figure 3.10, which are consistent with those 

reported in the previous study [76]. The ROI images are shown in Figure 3.11, 

CycleGAN and RecycleGAN yield less noisy looking compared to the original low-

dose images. Furthermore, RecycleGAN images are least noisy and more 

consistent across all phases, while CycleGAN suffers from some noise bumps for 

phase 5 and 6. This is likely due to the recurrent loss used RecycleGAN, which 

takes the temporal correlation into the denoising mechanism. The quantitative 

measures of STD of ROI are shown in Table 3.5. CycleGAN does a good job for 

most phases (bringing down the noise from 50~60 HU to 30~40 HU) except for 

phase 6. RecycleGAN further suppresses the noise to the range of 16~26 HU. 
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Figure 3.10 Low-dose phases of the test patient denoised by different methods. 
(Top row: original low-dose images; middle row: CycleGAN; bottom row: 

RecycleGAN) Display Window [-1000 950]HU. 

 

 

 

 

 



 63 

 phase1 phase3 phase5 phase19 

low
-dose 

 

C
ycleG

A
N

 
R

ecycleG
A

N
 

Figure 3.11 The ROI images of the test patient denoised by different methods. 
(Top row: original low-dose images; middle row: CycleGAN; bottom row: 

RecycleGAN) Display Window [76 676]HU. 

 

 

Table 3.5 The standard deviation (STD) values in HU in ROI for CycleGAN and 
RecycleGAN 

 
Phase 1 2 3 4 5 6 19 20 
Low-dose 60.12 62.35 58.17 49.34 45.06 51.09 65.61 66.56 
CycleGAN 40.46 36.48 34.50 30.43 38.87 54.59 53.14 46.46 
RecycleGAN 26.01 26.70 23.75 19.82 17.16 23.30 20.48 25.32 
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3.5 Discussion 

RecycleGAN is more effective than CycleGAN for denoising CT image sequence 

as it uses a recurrent loss to enforce the temporal consistence. In essence, it treats 

2D image series as a 3D signal (2D space + 1D time) and denoises in 3D instead 

of 2D. This leads to more effective noise suppression and structure preservation. 

In the future, the whole 3D volume image plus time may be treated as a 4D signal 

to see if further improvement could be achieved. Right now, the training of 

RecycleGAN is more time consuming (37 hours for RecycleGAN Vs 18 hours for 

CycleGAN). The computational burden moving from 3D to 4D may be alleviated 

by multiple GPU parallelism.  

In this work, we focus on comparing RecycleGAN and CycleGAN with extensive 

phantom and patient studies (with 9-fold cross-validation for the phantom study 

and 50 patients for the patient study). We used CycleGAN as a baseline, which 

was extensively compared with other state-of-the-art denoising methods [74, 75]. 

Although the direct comparison between RecycleGAN and other methods may be 

lack in this work, their relative performance can be deduced from the comparison 

between RecycleGAN and CycleGAN.   

MP-CTA can offer more diagnostic information than SP-CTA. However, the full 

radiation dose is a major hurdle to adopt MP-CTA broadly for CAD diagnosis. 

Therefore, to lower MP-CTA dose level to comparable to SP-CTA will be clinically 

significant. RecycleGAN is an important development moving toward to this goal. 

First, RecycleGAN is a software-based method and does not require the aligned 
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low-dose and full-dose images. Although the hardware difference may demand 

further tuning of the RecycleGAN model trained on a certain type of scanner (e.g. 

Siemens Force in this work), as the nature of CT images is the same, a 

comprehensive model could be built using data from multi-scanners and multi-

centers. Secondly, RecycleGAN showed superior performance on suppressing 

noise and preserving the structure details and contrast for CTA image sequences 

compared to CycleGAN. If a constant 20% MTC could be used for MP-CTA, the 

radiation dose could be lowered by ~55% (assuming 6 phase 100%MTC pulse 

window for a total of 20 phases). Although this dose level is still higher than SP-

CTA, further reduction, such as sparse sampling, could be exploit. Use of advance 

deep learning or reconstruction methods to explore the lower bound of MP-CTA 

dose level without compromising the diagnostic outcomes is worth further 

investigation.   

For the patient MP-CTA cases used in this study, an ECG-gated tube current 

modulation was turned on with the pulsing window between 40% and 70% of the 

cardiac phases. The tube current reduction outside the pulsing window was 20% 

of the full tube current. Therefore, this study focused on reducing noise of low-dose 

images acquired outside the pulsing window. One previous study has investigated 

CycleGAN denoising of extreme low-dose (high-noise) CT [76]. At 4% of full dose, 

although the baseline CycleGAN method [73] introduces some artificial features, 

CycleGAN denoised images still improved the signal-to-noise ratio (SNR) and the 

radiologist reading rates over the original LDCT images. To address the 

performance deterioration of CycleGAN, the wavelet-assisted noise 
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disentanglement (WAND) [76] was introduced to extract high-frequency sub-band 

images (including both noise and edge information) before CycleGAN training. 

Their results showed that WAND were effective to suppress high noise and avoid 

artifacts. In Figure 3.10, we also discovered similar artifacts in CycleGAN images 

reported in [76], which were successfully removed in RecycleGAN images. This 

demonstrated that the spatiotemporal training in RecycleGAN may be an 

alternative way to correct for the inconsistent translation of CycleGAN. 

Nevertheless, we believe that WAND can be deployed similarly to RecycleGAN, 

i.e. adding high-frequency sub-band image extraction before RecycleGAN training, 

when its denoising performance is significantly degraded due to substantially 

elevated noise. This will be a topic for future investigation. 

In summary, we developed a spatiotemporal deep learning denoising method, 

RecycleGAN, for cardiac CT image sequences. Compared to the state-of-the-art 

spatial domain denoising method, CycleGAN, RecycleGAN utilizes the temporal 

relationship of several consecutive phases through a recurrent loss to further 

improve the denoising performance. Note that RecycleGAN still enjoys the 

advantage of CycleGAN without need of aligned low-noise and high-noise images. 

Both phantom and patient studies show that RecycleGAN outperform CycleGAN 

in quantitative metrics and image quality for CT image sequences. It is envisioned 

that RecycleGAN could be used to significantly lower the MP CTA dose by 

effectively removing the image noise. More clinically relevant evaluations will be 

conducted in the future work. 

  



 67 

CHAPTER 4. TEXTURE TRANSFORMER SUPER-

RESOLUTION FOR LOW-DOSE COMPUTED TOMOGRAPHY 

 

Shiwei Zhou1 , Lifeng Yu2 and Mingwu Jin1 

1 Department of Physics, University of Texas at Arlington, TX 76019, United 

States of America  

2 Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of 

America 

Cited as: Shiwei Zhou, Lifeng Yu, and Mingwu Jin. "Texture transformer super-

resolution for low-dose computed tomography." Biomedical Physics & 

Engineering Express 8.6 (2022): 065024. 

 

 

 

 

 

Used with permission of the publisher, 2023. This is the version of the article before peer review or 
editing, as submitted by an author to Biomedical Physics & Engineering Express.  IOP Publishing 
Ltd is not responsible for any errors or omissions in this version of the manuscript or any version 
derived from it.  The Version of Record is available online at https://doi.org/10.1088/2057-
1976/ac9da7. 



 68 

4.1 Introduction 

Computed tomography (CT) is a common technique in modern medicine with 

millions of exams each year. However, due to the technical limitations of clinical 

scanners, CT images with typical resolution of millimeter or submillimeter are hard 

to resolve structures on an order of tens of microns for certain physiological and 

pathological applications [84], e.g., coronary artery analysis [85]. High-resolution 

CT (HRCT) can be done through hardware innovation, such as using smaller 

detector elements and pitches. Not only is this costly, but also the elevated 

quantum noise will become an issue if the incident X-ray intensity does not 

increase accordingly. Furthermore, low-dose CT has been actively pursued 

recently to lower the ionizing radiation to patients. A relatively smoother kernel is 

typically used in low-dose CT to suppress image noise, which may sacrifice spatial 

resolution. An alternative approach is to apply noise reduction methods to control 

image noise in low-dose CT. Many advanced algorithms were developed to 

alleviate the noise either in the projection domain, or in the image domain, or both. 

However, these algorithms may still suffer from degradation of spatial resolution, 

especially at low contrast level. It is desirable to develop algorithms that can 

simultaneously suppress image noise while enhancing spatial resolution (Super 

Resolution or SR). 

There are three categories of computational methods proposed to suppress 

noise and enhance spatial resolution for LRCT images: 1) model based iterative 

reconstruction methods [86, 87]; 2) sparse representation methods [88-90]; and 3) 

deep learning methods[74, 91-93] . In [93], a generative adversarial network (GAN) 
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[79] with a perceptual loss function combining both an adversarial loss and a 

content loss, called “SRGAN”, has been proposed to improve natural image 

resolution, which was used as a comparative method for super-resolution CT 

(SRCT) in [74]. Recently, GAN-CIRCLE [74], a GAN using residual and cycle-

consistent learning [94], was proposed to produce SRCT images. Extensive 

experiments have been conducted to show the SRCT performance of GAN-

CIRCLE superior or comparable to other state-of-the-art SR methods, including 

SRGAN.  

In this work, we propose a texture transformer network to simultaneously 

reduce image noise and improve spatial resolution in CT images. This network, 

referred to as Texture Transformer for Super Resolution (TTSR) [95], is a 

reference-based deep-learning image super-resolution method, which is another 

GAN-based deep learning method, to achieve SRCT from noisy LRCT. To our best 

knowledge, this is the first time to apply a transformer for SRCT, particularly for 

low-dose CT. The performance of TTSR outperforms the state-of-the-art methods, 

such as SRGAN and GAN-CIRCLE, for both simulated XCAT phantom data and 

Mayo low-dose CT dataset. We also show that TTSR can be used to allow the 

large detector size and fewer detectors for high-resolution CT scan and to save 

computation time. 

4.2 Methods 

4.2.1 SRGAN 
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SRGAN [93] adapts the basic generator and discriminator structure of GAN to build 

the generator that maps LRCT to HRCT. The generator employs a residual 

network with skip-connection to force a perceptual loss of high-level feature maps 

from a VGG network in addition to the adversarial loss. SRGAN is a supervised 

method requiring the paired LRCT and HRCT images for training. It has shown a 

decent performance for SRCT [74] and more details can be found in [74, 93].    

4.2.2 GAN-CIRCLE 

The basic structure of GAN-CIRCLE [74] is composed of two GANs: one is to learn 

the forward mapping from LRCT to HRCT (generator G: x → y and discriminator 

Dy) and the other is to learn the backward mapping from HRCT to LRCT (generator 

F: y → x and discriminator Dx). The GAN-CIRCLE principles are shown in Figure 

4.1. In order to learn two mappings without paired LR and HR CT images, the cycle 

consistency loss is used to enforce F(G(x)) = x and G(F(y)) = y, as indicated by the 

dashed arrows in Figure 4.1. Although CAN-CIRCLE still needs the general labels 

of LRCT and HRCT images for training, the one-to-one correspondence between 

them is not required. More details of GAN-CIRCLE can be found in [74, 75].  

 

Figure 4.1 The principles of GAN-CIRCLE. G: generator from LRCT (x) to HRCT 
(y); F: generator from HRCT (y) to LRCT (x); Dy: discriminator for real or fake 
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HRCT images; Dx discriminator for real or fake LRCT images. The dashed 
arrows enforce the cycle-consistency loss. 

4.2.3 TTSR with attention mechanism 

The TTSR [95] is a reference-based image super-resolution method through a 

GAN mechanism (the blue branch of the forward mapping from LRCT to HRCT in 

Figure 4.1). A complex transformer network is used for the generator to translate 

the LRCT images to the HRCT images. The LRCT images and HRCT images are 

severed as queries and keys in a transformer, respectively. The image translation 

is optimized through deep neural network (DNN) texture extraction, relevance 

embedding, and attention-based texture transfer and synthesis to enable joint 

feature learning between LRCT and HRCT images. The generator of TTSR is 

shown in Figure 4.2. Q, K and V are the texture features extracted from an up-

sampled LR image, a sequentially down/up-sampled reference image, and an 

original reference image, respectively. F is the LR extracted features and is further 

fused with the transferred texture features T to generate the SR output. ↑ 

represents upsampling. ↓ represents downsampling. The discriminator is used to 

distinguish HRCT and SRCT. The detailed network structures of the generator and 

discriminator can be found in Appendix. The parameters of TTSR network are 

optimized using the loss function that is composed of three parts: 1) L1 difference 

between the HRCT and HRCT images; 2) the GAN loss; and 3) the perceptual loss 

of feature maps. More details of TTSR can be found in [95].   
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Figure 4.2 The generator of the texture transformer super resolution (TTSR) 
network. Q: texture features extracted from an up-sampled LRCT image; K: 

texture features extracted from a sequentially down/up-sampled reference HRCT 
image; V: texture features from an original HRCT reference image; F: features 

from a LRCT image; T: transferred texture features; ↑: upsampling; ↓: 
downsampling. 

4.3 Experiment Setup 

To evaluate the super-resolution performance of TTSR, we performed both a 

phantom study by using the XCAT phantom, and a real patient data study by using 

a real clinical dataset from the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand 

Challenge [96]. Cubic spline interpolation, SRGAN [93], and GAN-CIRCLE [74] 

were used for comparison. 

4.3.1 Evaluation metrics 
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We use two metrics to quantitatively evaluate different methods: peak signal-to-

noise ratio (PSNR) [81] and structural similarity index measure (SSIM) [82, 83]. 

PSNR and SSIM are defined below, 

𝑃𝑃𝑃𝑃𝑃𝑃𝛽𝛽 = −10 ∙ log10 �
𝑀𝑀𝑃𝑃𝑀𝑀
𝑀𝑀𝐴𝐴𝑋𝑋𝑦𝑦2

� (4.1) 

𝑃𝑃𝑃𝑃𝐼𝐼𝑀𝑀(𝑥𝑥,𝑦𝑦) =
(2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝑥𝑥1)(2𝜎𝜎𝑥𝑥𝑦𝑦 + 𝑥𝑥2)

(𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝑥𝑥1)(𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝑥𝑥2)
 

where x denotes the SRCT image, y is the corresponding HRCT image, 𝑀𝑀𝑃𝑃𝑀𝑀 is 

mean squared error between x and y, MAXy denotes the maximum intensity value 

in the HRCT image y, 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 are the averages of the SRCT image x and the 

HRCT image y, 𝜎𝜎𝑥𝑥2, 𝜎𝜎𝑦𝑦2 and 𝜎𝜎𝑥𝑥𝑦𝑦 are the corresponding variance and covariance, 

and 𝑥𝑥1 and 𝑥𝑥2 are two constants to stabilize the division operation. Additionally, we 

calculate Feature Similarity Index (FSIM) [97], which is a structure-based image 

quality assessment using the phase congruency (PC) and the image gradient 

magnitude (GM). The local quality maps, i.e. PCSRCT, PCHRCT and GMSRCT, 

GMHRCT, are used to calculated the similarity measures SPC and SGM. The 

combined similarity is defined as SL= SPC•SGM, where • is pixel-wise multiplication. 

Finally, the FSIM index is defined as follows: 

𝐹𝐹𝑃𝑃𝐼𝐼𝑀𝑀 =
∑ 𝑃𝑃𝐿𝐿 ∙ max (𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑃𝑃𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆)Ω

∑ max (𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑃𝑃𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆)Ω
 (4.2) 
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where ΣΩ represents the sum over the image spatial domain Ω. 

The PSNR measures the super-resolution performance by calculating overall 

intensity difference between the SRCT image (translated from the LRCT image) 

and the HRCT image. The SSIM measures the perceptual similarity between the 

SRCT and HRCT images while pooling all locations to be the same importance. 

The FSIM is devised to measure the low-level feature sets between SRCT and 

HRCT images. The higher PSNR, SSIM, and FSIM values, the better the SR 

performance.  

4.3.2 Phantom data experiments 

The 4D XCAT phantom program [80] based on 18 patients’ CT data was used to 

produce the projection data through the ray tracing algorithm [64, 98]. The photon 

noise at 1x105 and 2x104 per ray and the electron noise of 10 were added 

respectively for full dose and low dose projection [99]. The benchmark HRCT 

images (1x105 photon counts/ray) were reconstructed as 512x512 slices with 1 

mm x 1 mm pixel size. For LRCT images, the photon counts were reduced to 20% 

of HRCT, i.e. lower radiation dose (2x104 photon counts/ray), and 128x128 slices 

with 4 mm x 4 mm pixel size were reconstructed. 17 patients’ data were used as 

training data, while the remaining patient’ data were used as test data. The TTSR 

model was trained on CUFED dataset (i.e. only nature images without CT images). 

The pre-trained model was further tuned with 10 epochs using the simulated CT 

images with learning rate of 1x10-4. The reference image to obtain the SRCT image 

for the test LRCT image can be: 1) a HRCT image totally different from the LRCT 
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image (“random”), e.g. the different organ areas from the different patients (in the 

training set); 2) an HRCT image similar to the LRCT image (“partially aligned”), 

e.g. the similar organ area from different patients (in the training set); and 3) an 

HRCT image identical to the scene of the LRCT image (“fully aligned”), e.g. the 

same organ area from the same patient (in the test set), as shown in Figure 4.3 

(green lines for random, red lines for partially aligned, and blue lines for fully 

aligned). Note that the first two types of reference images are not from the test set 

and represent a realistic achievable performance and the third one is trivial (as the 

corresponding HRCT image exists), but provides the best benchmark. For 

comparison, the cubic spline interpolation, SRGAN, and GAN-CIRCLE were used 

to obtain SRCT images from LRCT images as well. SRGAN was tuned to the 

learning rate of 1x10-4, and GAN-CIRCLE was tuned using lambda of 10 for the 

consistency loss and learning rate of 1x10-4. 
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Figure 4.3 Three types of reference images of TTSR to obtain SRCT images for 
the test LRCT images: a) Green lines, random; b) Red lines, partially aligned; c) 
Blue lines, fully aligned, trivial in a real application. k: the number of patients in 

the training set; n: the number of patients in the test set (n=1 in this study). 

4.3.3 Patient data experiments 

The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset contains 

10 anonymous patients’ full-dose and corresponding low-dose (1/4 of the full dose) 

CT projection data. First, we used the conjugate gradient least squares (CGLS) 

iterative method [100] to reconstruct LRCT and HRCT images. HRCT images were 

reconstructed from the full-dose projection data (736x64 detector matrix, detector 
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size 1.2858 mm x 1.0947 mm per pixel, helical pitch 0.6) with the image size of 

512x512. To obtain LRCT images, the low-dose projection data were binned from 

736x64 to 184x64, i.e. 4x binning in the in-plane direction. Consequently, LRCT 

images were reconstructed with an image size of 128x128. As the low-dose 

projection data used only 1/4 of the full dose, the 4x binning was roughly achieved 

the similar noise level as the full dose. For GAN-CIRCLE and TTSR methods, 9 

patients’ data were used as training data, while the remaining patient’ data were 

used as test data. To train TTSR for the patient data, we found that the pre-trained 

model using CUFED dataset (“pre-trained”) did not provide any faster convergence 

for good SRCT performance (see “Discussion”) in contrast to the phantom data. 

Thus, we randomized the network parameters of TTSR and trained it for the patient 

data from scratch, where a learning rate of 8x10-5 and 150 epochs were used. For 

SRGAN, a learning rate of 5x10-4 and 200 epochs were used. For GAN-CICLE, a 

learning rate of 2x10-4 and 100 epochs were used. For the reference image of the 

test LRCT image of TTSR, we used the similar slice in the training HRCT images 

to represent a realistic performance. The evaluation of SR performance of different 

methods in this patient data study is shown in Figure 4.4. 

 

Figure 4.4 Evaluation of SRCT for the real patient data study. (CGLS: conjugate 
gradient least squares) 
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Finally, we conducted a study to compare the aforementioned TTSR method 

(that translated LRCT to HRCT) to denoising of high-resolution low-dose CT using 

block-matching and 3D filtering (BM3D)  [101] and GAN-CIRCLE [74]. We use 

GAN-CIRCLE instead of SRGAN because GAN-CIRCLE has been investigated 

for low-dose CT denoising [75], while SRGAN has not. For denoising methods, the 

high-resolution 512x512 low-dose CT images were first reconstructed from low-

dose high-resolution projections (736x64 projection matrix). Then, SRCT images 

from TTSR were compared with these high-resolution low-dose CT images 

denoised by BM3D GAN-CIRCLE. Note that both methods used the same 

radiation dose. However, TTSR has two advantages over high-resolution low-dose 

CT denoising: 1) the hardware requirement is less demanding, as 184 (for TTSR) 

vs 736 (for high-resolution low-dose CT denoising) in-slice detector elements; and 

2) the reconstruction time of 128x128 images is much less than that of 512x512 

images. Once TTSR and GAN-CIRCLE were trained, the times for applying the 

models were in the same order (see Table 4.4).  

4.4 Results 

4.4.1 Phantom data results 

The SRCT images from different methods are shown in Figure 4.5 along with the 

original HRCT image (Figure 4.5a). Note that the original LRCT images (128x128) 

are too small to show here. The cubic spline interpolation method is one of the 

simplest SR methods. However, as shown in Figure 4.5b, the interpolated SR 

image is blurry and suffers some noise. SRGAN (Figure 4.5c) greatly improves the 
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clarity of fine structures. GAN-CIRCLE (Figure 4.5d) yields a SR image with better 

defined edges and suppressed noise than the interpolation method, but seems to 

still oversmooth the image. TTSR (Figure 4.5e-g) shows more details than the 

other two methods although some artifacts seem to be present in SR images (e.g. 

in the heart). The difference among TTSR using different reference images is 

small. The magnified view of the red box in Figure 4.5a is shown in Figure 4.6. 

Both interpolation and GAN-CIRCLE are unable to recover the lung nodules clearly 

and cause blurred edges, while SRGAN and TTSR provides much better resolution 

recovery. Although SRGAN maintains the sharp edges well, it produces piece-wise 

smoothness and is not able to keep the small structures inside the lung as well as 

TTSR. Full-aligned TTSR preserves the nodule shape better than the other TTSR 

methods. The quantitative results averaged over 128 slices of the test patient are 

listed in Table 4.1. TTSR achieves the best PSNR and SRGAN yields the best 

SSIM. Both TTSR and SRGAN ties for the best FSIM. As SRGAN and TTSR use 

paired training data, they seem to achieve better SRCT performance than GAN-

CIRCLE, which is an un-paired training. Some artifacts are noticeable in TTSR 

images inside the heart (Figure 4.5), which may have caused inferior SSIM of 

TTSR to that of SRGAN and GAN-CIRCLE. Nevertheless, these results suggest 

that previously acquired HRCT images can be used as reference images to 

improve newly acquired LRCT images with much reduced radiation dose without 

the requirement of alignments (for TTSR-random and TTSR-partially aligned).  
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Figure 4.5 HRCT image and SRCT images from different methods (a: HRCT; b: 
cubic spline interpolation; c: SRGAN; d: GAN-CIRCLE; e: TTSR random; f: TTSR 

partially aligned; g: TTSR fully aligned). (Display window: [-1345 782]HU) 

 

 

Table 4.1 Quantitative results for different methods for the phantom data 

Methods PSNR (dB) SSIM FSIM 
Cubic spline 31.57±0.89 0.74±0.02 0.87±0.01 
SRGAN 35.84±0.41 0.89±0.02 0.95±0.01 
GAN-CIRCLE 34.85±0.32 0.88±0.02 0.94±0.01 
TTSR/random 37.23±0.42 0.84±0.02 0.93±0.01 
TTSR/partially aligned 37.23±0.42 0.84±0.02 0.93±0.01 
TTSR/fully aligned 37.99±0.49 0.86±0.02 0.95±0.01 

 

d    
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Figure 4.6 HRCT image and SRCT images from different methods for the red 
box area in Figure 4.5a. (a: HRCT; b: cubic spline interpolation; c: SRGAN; d: 

GAN-CIRCLE; e: TTSR random; f: TTSR partially aligned; g: TTSR fully aligned). 
(Display window: [-1345 150]HU) 

4.4.2 Patient data results 

The images from different methods for real patient data are shown in Figure 4.7 

(for the thighs) and Figure 4.8 (for the thorax). Again, the original LRCT images 

(128x128) are too small to show here. The interpolation (Figure 4.7b, Figure 4.8b) 

and GAN-CIRCLE (Figure 4.7d, Figure 4.8d) SR images are kind of blurry, 

although GAN-CIRCLE performs slightly better. SRGAN (Figure 4.7c, Figure 4.8c) 

suffers less blurry, but the SR images seem to show different patterns from the 
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HRCT images, e.g. in the thighs (Figure 4.7c) and in the lungs (Figure 4.8c). Note 

that the TTSR method uses the similar HRCT slice in the training set as the 

reference image, corresponding to TTSR-partially aligned in the simulation study. 

The TTSR images (Figure 4.7e, Figure 4.8e) successfully recover image resolution 

without notable artifacts and yield most similar images to the original HRCT images 

(Figure 4.7a, Figure 4.8a). The quantitative results in Table 4.2also show the 

superior SR performance of the TTSR model, followed by SRGAN, over other 

methods. As can be seen in the zoomed region of the part of the lung and heart 

(red box in Figure 4.8a) in Figure 4.9, GAN-CIRCLE (d) has less noise than the 

interpolation method (b), but is still lack of details. SRGAN generates a sharp 

SRCT image (c) at the cost of eliminating the fine structures in the lung and the 

texture in the heart. The TTSR method shows better structure details, e.g. red 

arrows, and better preserved edge, e.g. blue arrows. The TTSR image (e) 

resembles the HRCT image (a) most although the texture inside the heart in the 

TTSR image (with less streak-artifacts) seems to be different from and more 

visually appealing than the original HRCT. It suggests that TTSR may not benefit 

from the pre-trained network with totally unrelated data for better CT SR 

performance [102]. The quantitative results for the region shown in Figure 4.9 are 

listed in Table 4.3. The TTSR model beats all other methods with a large margin 

in all three metrics. The performance of GAN-CIRCLE becomes comparable to 

SRGAN as SRGAN suffers loss of a lot of details in this region full of fine structures 

and textures. 
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Figure 4.7 HRCT image and SRCT images of the legs from different methods (a: 
HRCT; b: cubic spline interpolation; c: SRGAN; d: GAN-CIRLCE; e: TTSR). 

(Display window: [-160 240]HU) 
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Figure 4.8 HRCT image and SRCT images of the chest from different methods 
(a: HRCT; b: cubic spline interpolation; c: SRGAN; d: GAN-CIRLCE e: TTSR). 

(Display window: [-1556, 1043]HU) 

 

 

Table 4.2 Quantitative results for different methods for the patient data 

Methods PSNR (dB) SSIM FSIM 
Cubic spline SR 27.25±0.49 0.53±0.04 0.89±0.01 
SRGAN SR 29.59±0.70 0.61±0.04 0.94±0.01 
GAN-CIRCLE SR 27.75±0.41 0.54±0.05 0.89±0.01 
TTSR 31.16±1.38 0.73±0.06 0.97±0.01 
BM3D denoising 28.18±0.52 0.54±0.04 0.88±0.01 
GAN-CIRCLE 
denoising 

29.39±0.51 0.58±0.03 0.91±0.01 
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Figure 4.9 Zoomed-in HRCT image and SRCT images of the chest from different 
methods for the red box area in Figure 4.8a (a: HRCT; b: cubic spline 

interpolation; c: SRGAN; d: GAN-CIRLCE e: TTSR). (Display window: [-1556, 
1043]HU) 

 

Table 4.3 Quantitative results for different methods for the patient data in the 
zoomed-in range 

Methods PSNR (dB) SSIM FSIM 
Cubic spline SR 27.12 0.51 0.79 
SRGAN 28.77 0.59 0.82 
GAN-CIRCLE denoising 28.03 0.57 0.82 
TTSR  31.39 0.81 0.98 

 

To compare the denoised high-resolution low-dose CT images with TTSR, the 

corresponding images are shown in Figure 4.10 and Figure 4.11. The BM3D 

 b  

d  
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method largely suppresses the noise, but leads to over-smoothing as shown 

particularly in the zoomed-in view of Figure 4.11b. Although GAN-CIRCLE 

successfully addresses the blurring issue, the apparency of denoised image is 

different from the original HRCT, e.g. the contrast and the edge of the heart as 

indicated by the red arrow in Figure 4.11. Again, TTSR SRCT images are closest 

to the original image compared to the two denoising methods. The quantitative 

results for BM3D and GAN-CIRCLE denoising of low-dose CT were listed in the 

bottom two rows of Table 4.3. Both denoising methods of high-resolution low-dose 

CT images are outperformed by TTSR, although GAN-CIRCLE denoising yields 

better PSNR, SSIM and FSIM values than GAN-CIRCLE SR.       

a    b 

 
c    d 

 

Figure 4.10 Comparison of denoised high-resolution low-dose CT and TTSR 
SRCT images: a) HRCT (512x512 full dose); b) BM3D denoised low-dose CT; c) 

 b 

 d 
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GAN-CIRCLE denoised LDCT; d) TTSR SRCT. (Display window: [-1556, 
1043]HU) 

a    b 

 
c    d 

 

Figure 4.11 Comparison of denoised high-resolution low-dose CT and TTSR 
SRCT images - zoomed-in views for the red box area in Figure 4.8a: a) HRCT 

(512x512 full dose); b) BM3D denoised low-dose CT; c) GAN-CIRCLE denoised 
low-dose CT; d) TTSR SRCT. (Display window: [-1556, 1043]HU) 

4.4.3 Computational efficiency 

To compare the computational efficiency of different methods, we listed the 

computation time for CGLS reconstruction of a 3D image for one set of patient data 

(471 slices), denoising, SRGAN, and TTSR in Table 4.4. As can be seen from the 

Table 4.4, TTSR combined with low-resolution reconstruction (CGLS of 128x128 

with 4x projection binning) is much less time consuming than the high-resolution 

 b 

 d 
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low-dose CT denoising (CGLS of 512x512 + either BM3D , GAN-CIRCLE, or 

SRGAN), yet provides much better image quality as shown in previous results. 

Table 4.4 Time consuming for generating testing patient images (471 slices) 

Method Time(second) 
CGLS of 128x128 with 
4x projection binning 

163 

CGLS of 512x512  1396 
BM3D 3499 
SRGAN 70 
GAN-CIRCLE 29 
TTSR 80 

4.5 Discussion 

The training for TTSR is substantially slower than SRGAN and GAN-CIRCLE. It 

takes six hours for 10 epochs of TTSR training on an NVIDIA A6000 GPU card, 

while 16 minutes for SRGAN and two hours for GAN-CIRCLE for the same number 

of epochs. The high computational efficiency of SRGAN is due to its 

straightforward generator and discriminator structure. The complexity of TTSR is 

also much higher than that of SRGAN and GAN-CIRCLE. There are more than 

seven million network parameters for TTSR, while 1.6 million for SRGAN and less 

than 200 thousand for GAN-CIRCLE.  

In this work, we mainly tuned the learning rate and the number of epochs for 

different models empirically for the best PSNR using the test data, while keeping 

other hyperparameters the same as previous publications. This is mainly due to 

the heavy computational cost for a systematic investigation of the optimal 

hyperparameter set and the main purpose of this work is to demonstrate the 
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feasibility of TTSR for SRCT. For the phantom data, we found that the TTSR model 

pre-trained on the natural images could facilitate the training of SRCT (10 epochs). 

However, this is not the case for real patient data. The PSNR of the test patient 

data using TTSR trained from the pre-trained model and from scratch (learning 

rate = 8x10-5) are plotted in Figure 4.12. As can be seen, the pre-trained model 

does not provide a faster convergence than the from-scratch model, but seems to 

be less stable at the later epochs. This is likely due to that the difference between 

real patient data and natural images is bigger than that between phantom data and 

natural images. We also compared the quantitative metrics and images for two 

TTSR models. The from-scratch model is slightly better than the pre-trained model.   

We also decided not to use a separated validation set as the datasets, particularly 

for the patient data, are relatively small. Although the performance may be over-

estimated due to the involvement of the test data in hyperparameter tuning, the 

relative ranking of the different deep learning methods shall not change. 

Furthermore, due to the computational hurdle and the limited number of patients, 

the SR image translation was limited in 2D in this work. Although this may not be 

an issue for helical CT where 2D slices are reconstructed, the translation in 3D 

space could further utilize the features in the axial direction and lead to better 

performance. 
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Figure 4.12 PSNR of the test patient set for pre-trained and from-scratch TTSR. 
(Learning rate = 8x10-5) 

To evaluate the SR performance, we used the engineering metrics, such as PSNR, 

SSIM and FSIM, as a preliminary demonstration of the effectiveness of TTSR. 

TTSR outperforms both SRGAN and GAN-CIRCLE for the patient data, especially 

for the regions with fine structures and textures (Table 4.3). The results in Table 

4.2 should be used in caution as large blank regions outside the body may favor 

SRGAN, which tends to produce over-cleaned images. It is also worth mentioning 

that GAN-CIRCLE used in this work is corresponding to un-supervised GAN-

CIRCLE (“GAN-CIRCLEu”) in [74], i.e. no paired LRCT and HRCT were used in 

training. Our quantitative results (PSNR and SSIM) on the Mayo low-dose CT data 

seem not to be consistent with that in Table 4.1 of [74] (except for the PSNR 

relationship, i.e. SRGAN has a higher PSNR than GAN-CIRCLEu). This 

inconsistency may be due to several reasons: 1) the split of training and test data 
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is not the same (unclear in[74]); 2) the super-resolution is different (1X in each 

dimension in[74] and 4X in this work); 3) the reconstruction methods are different 

(FBP in [74] and CGLS in this work); and 4) the implementation of SRGAN and 

GAN-CIRCLE may be different although we downloaded the original code and 

tuned the hyperparameters based on PSNR.  Furthermore, the caveat should be 

kept in mind that these quantitative metrics may not reflect the real impact of image 

quality on the clinical decision making. In future studies, the task-based evaluation 

should be used for the relevant clinical task, such as liver lesion detection or artery 

plaque quantification etc. 

TTSR has been developed originally for SR of natural images [95]. A detailed 

ablation study was conducted to show that all three loss functions together 

achieved the best visual results. In this work, we adapted the optimal structure 

suggested by the original TTSR and tuned the learning rate for SRCT. In addition, 

we compared two other deep-learning based methods, SRGAN and GAN-

CIRCLE, as they were extensively studied and compared for SRCT[74]. As our 

primary goal is to demonstrate that the current implementation of TTSR could 

achieve SRCT comparable to or better than other state-of-the-art methods, such 

as SRGAN and GAN-CIRCLE, we leave the detailed ablation study in future work, 

which may determine the effectiveness of different components of TTSR for 

improved computational efficiency and/or SRCT performance. 

In summary, we proposed a TTSR method for low-dose CT super-resolution in this 

work. TTSR based on texture transformer and attention mechanism is effective to 

improve the spatial resolution and to suppress the noise of low-dose CT images 
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for both phantom and patient data. The high-quality super-resolution CT images 

can be obtained through TTSR even with much reduced dose (1/4) and fewer 

projection data (1/4), which can lower ionizing radiation and computation time. This 

development could not only contribute to conventional CT super-resolution, but 

also improve image quality using less expensive CT detectors. 
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CHAPTER 5. SUMMARY 

This work is primarily centered on improving the image quality of computed 

tomography (CT) scans. The goal has always been to minimize potential harm to 

patients while delivering superior imaging quality. Our approach consists of two 

distinct categories: conventional numerical methods and deep learning 

techniques. 

For numerical methods, we developed G-SMEIR for CT, which includes motion 

estimation in both projection and image domains and iterative reconstruction 

techniques. With G-SMEIR, we made use of all available information across all 

phases to enhance image quality under low-dose conditions. Initially, we 

reconstructed a series of noisy 3D images using isolated respiratory phases. 

Afterward, we estimated motion among different phases and incorporated the 

information into the iterative reconstruction process. Given the potential 

inaccuracies of motion estimation from noisy starting images, we estimated the 

motion in both projection and image domains and looped motion estimation in the 

iterative reconstruction process to greatly improve the motion estimation, thus the 

final reconstruction images. 

In the deep learning part, we advanced the CycleGAN/ReCycleGAN for low-dose 

CT denoising, and TTSR for low-dose CT super-resolution. These techniques are 

two avenues towards image quality improvement. In the denoising process, since 

the original projection data are unattainable, we proposed to denoise CT images 

directly. To maintain generality, we implemented the cycle-consistent loss, which 
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enables unpaired training, i.e. not one-to-one correspondence between a full-dose 

image and a low-dose image. This is very important as the labeling the 

corresponding full-dose and low-dose images is not only time consuming and 

costly, but also unethical to scan patients twice before enough evidence is 

collected to show the improved benefit-to-risk ratio of low-dose CT. For CT super-

resolution, as original projection data is available, we combined projection pixels 

to lessen noise even before reconstruction at the cost of loss of image resolution. 

Then, TTSR kicked in to achieve clean and high-resolution CT images. This 

approach can also be applied to low-cost low-resolution CT detectors to obtain 

high-resolution CT images. 

Testing our methods initially involved computer simulated phantoms for several 

reasons. Since phantoms are known entities, we can juxtapose results with the 

ground truth, allowing for early detection and correction of any discrepancies in our 

methods or code. Furthermore, accessing patient data in a clinical setting can be 

challenging. Initiating testing with patient data might lead to model overfitting to a 

specific patient or device, given the scarcity of data sources. Nevertheless, our 

methods developed on phantoms were all tested on real patient data for their 

clinical viability. 

In conclusion, the crux of our work is to continuously improve the quality of CT 

images and reduce the radiation dose to a negligible level for patients. As the 

motion estimation and image reconstruction techniques as well as deep learning 

methods are continuously evolving, we are committed to a path where patients 

receive enhanced diagnostic clarity with minimal potential harm. The methods 
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discussed in this work are distinct yet complimentary approaches towards this 

objective.  
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APPENDIX A.  PSEUDO-CODE OF G-SMEIR 

The G-SMEIR pseudo-code is listed below along with SMEIR, TV minimization  

[36] and the image domain Demons registration [103, 104]. 

A.1 Pseudocode for G-SMEIR algorithm 

Input and Parameter Setup: 

𝒗𝒗 = {𝑣𝑣𝑟𝑟→𝑑𝑑} - all DVF pairs 

𝒑𝒑 = {𝑝𝑝𝑟𝑟} – all projection data 

𝜇𝜇𝑟𝑟 - initialization of image at the reference phase r (from 1 to P) from 3D TV 

reconstruction 

 

𝑀𝑀𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙  =  2 - number of maximum iterations in image domain DVF updating 

step (demons) 

𝑃𝑃𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙  =  11 - number of maximum iterations in image updating step (SMEIR) 

P = 10 - number of phases 

 

for 𝑦𝑦 = 1:𝑀𝑀𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 

for 𝑓𝑓 = 1:𝑃𝑃 
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 for 𝑡𝑡 = 1:𝑃𝑃 

  update 𝑣𝑣𝑟𝑟→𝑑𝑑 using Demons registration of 𝜇𝜇𝑟𝑟 and 𝜇𝜇𝑑𝑑 

 end for 

end for 

for 𝑗𝑗 = 1:𝑃𝑃𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 

 for 𝑓𝑓 = 1:𝑃𝑃 

update 𝜇𝜇𝑟𝑟  using SMEIR for the reference phase r, DVF v and all 

projection data p 

         end for 

end for 

end for 

 

A.2 Pseudocode for SMEIR algorithm 

Input and Parameter Setup: 

𝒑𝒑 = {𝑝𝑝𝑟𝑟} – all projection data 

𝜇𝜇𝑗𝑗
𝑟𝑟,(0)  - initialization of image at the reference phase r, obtained by 3D TV 

reconstruction or previous SMEIR iteration 
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𝑣𝑣𝑟𝑟→𝑑𝑑,(0) - initialization of DVF (from the reference phase r to the target phase t), 

estimated from the DVF obtained from the initial 

 

𝐼𝐼𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙  =  20 - number of maximum iterations in image updating step 

𝑀𝑀𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙  =  10 - number of maximum iterations in DVF updating step 

𝑃𝑃 =  10 - number of phases 

𝜀𝜀 = 1 × 10−4; 𝛼𝛼𝑟𝑟𝑙𝑙𝑑𝑑 = 0.5 - two parameters in backtracking line search for updating 

DVF in projection domain. 

 𝜆𝜆 = 0.1. 

 𝜆𝜆𝑟𝑟𝑙𝑙𝑑𝑑 = 1. 

 

Iteration: 

for 𝑘𝑘 = 0: 𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 

for 𝑗𝑗 = 1: 𝐽𝐽 do - image update 

 𝜇𝜇𝑗𝑗
𝑟𝑟,(𝑘𝑘+1) = 𝜇𝜇𝑗𝑗

𝑟𝑟,(𝑘𝑘) + 𝜆𝜆𝜆𝜆𝑟𝑟𝑙𝑙𝑑𝑑𝑘𝑘
∑ 𝑑𝑑𝑗𝑗𝑙𝑙

𝑑𝑑→𝑟𝑟
𝑑𝑑,𝑙𝑙 ∑ �𝑑𝑑𝑙𝑙𝑙𝑙

𝑝𝑝𝑙𝑙
𝑑𝑑−∑ 𝑑𝑑𝑙𝑙𝑙𝑙𝜇𝜇𝑙𝑙

𝑑𝑑,(𝑘𝑘)
𝑙𝑙

∑ 𝑑𝑑𝑙𝑙𝑙𝑙
𝐽𝐽
𝑙𝑙=1

�𝑙𝑙

∑ 𝑑𝑑𝑗𝑗𝑙𝑙
𝑑𝑑→𝑟𝑟

𝑑𝑑,𝑙𝑙 ∑ 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙
 

 𝜇𝜇𝑙𝑙
𝑑𝑑,(𝑘𝑘) = ∑ 𝑑𝑑𝑗𝑗𝑙𝑙𝑟𝑟→𝑑𝑑𝜇𝜇𝑗𝑗

𝑟𝑟,(𝑘𝑘)
𝑗𝑗  



 99 

end for 

Perform TV minimization on 𝜇𝜇𝑗𝑗
𝑟𝑟,(𝑘𝑘+1) 

for 𝑡𝑡 = {1:𝑃𝑃}\𝑓𝑓 

 𝑞𝑞𝑟𝑟→𝑑𝑑,(0) = ∇𝑓𝑓1�𝑣𝑣𝑟𝑟→𝑑𝑑,(0)�; ℎ𝑟𝑟→𝑑𝑑,(0) = −𝑞𝑞𝑟𝑟→𝑑𝑑,(0); 

 for 𝑚𝑚 = 1:𝑀𝑀𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 do - DVF update by minimizing 𝑓𝑓1 and 𝑓𝑓2 alternately 

  𝛼𝛼 = 1.0 - initial step size for minimizing 𝑓𝑓1 

  while 𝑓𝑓1�𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚) + 𝛼𝛼ℎ𝑟𝑟→𝑑𝑑,(𝑚𝑚)� > 𝑓𝑓1�𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚)�  

+𝜀𝜀𝛼𝛼∇𝑓𝑓1�𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚)�ℎ𝑟𝑟→𝑑𝑑,(𝑚𝑚) do 

   𝛼𝛼 = 𝛼𝛼 × 𝛼𝛼𝑟𝑟𝑙𝑙𝑑𝑑 

  end while 

  𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚+1) = 𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚) + 𝛼𝛼ℎ𝑟𝑟→𝑑𝑑,(𝑚𝑚) 

  𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚+1) = ∇𝑓𝑓1�𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚+1)� 

  𝜌𝜌 = �𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚+1)�
′
�𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚+1)−𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚)�

�𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚)�
′
𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚)

 

  ℎ𝑟𝑟→𝑑𝑑,(𝑚𝑚+1) = −𝑞𝑞𝑟𝑟→𝑑𝑑,(𝑚𝑚+1) + 𝜌𝜌ℎ𝑟𝑟→𝑑𝑑,(𝑚𝑚) 

  𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚) = −𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚) 
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  𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚) = ∇𝑓𝑓2�𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚)�; ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚) = −𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚); 

  𝛼𝛼 = 1.0 - initial step size for minimizing 𝑓𝑓2 

  while 𝑓𝑓2�𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚) + 𝛼𝛼ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚)� > 𝑓𝑓2�𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚)�  

+𝜀𝜀𝛼𝛼∇𝑓𝑓2�𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚)�ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚) do 

   𝛼𝛼 = 𝛼𝛼 × 𝛼𝛼𝑟𝑟𝑙𝑙𝑑𝑑 

  end while 

  𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚+1) = 𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚) + 𝛼𝛼ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚) 

  𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚+1) = ∇𝑓𝑓2�𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚+1)� 

  𝜌𝜌 = �𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚+1)�
′
�𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚+1)−𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚)�

�𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚)�
′
𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚)

 

  ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚+1) = −𝑞𝑞𝑑𝑑→𝑟𝑟,(𝑚𝑚+1) + 𝜌𝜌ℎ𝑑𝑑→𝑟𝑟,(𝑚𝑚) 

  𝑣𝑣𝑟𝑟→𝑑𝑑,(𝑚𝑚+1) = −𝑣𝑣𝑑𝑑→𝑟𝑟,(𝑚𝑚+1); 

 end for 

end for 

end for 

 

A.3 Pseudocode for TV minimization 
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Input and Parameter Setup: 

𝜇𝜇 - image with J voxels. 

𝐼𝐼𝑡𝑡𝑒𝑒𝑓𝑓𝑎𝑎𝑡𝑡𝑦𝑦𝑥𝑥𝑙𝑙 = 5 - number of maximum iterations 

𝛾𝛾𝑟𝑟𝑙𝑙𝑑𝑑 =  0.8  - parameter in line search 

 

Iteration: 

for 𝑙𝑙 = 1 to 𝐼𝐼𝑡𝑡𝑒𝑒𝑓𝑓𝑎𝑎𝑡𝑡𝑦𝑦𝑥𝑥𝑙𝑙 do 

𝛾𝛾 =  0.8 - initial step size 

for j = 1: J do  

𝜕𝜕𝑔𝑔𝑗𝑗 = ∇𝑔𝑔�𝜇𝜇𝑗𝑗�  

|∇𝑔𝑔(𝜇𝜇)| = �∑ �𝜕𝜕𝑔𝑔𝑗𝑗�
2

𝑗𝑗 . 

end for 

 

for j = 1: J do 

𝜕𝜕𝑔𝑔𝑗𝑗 = 𝜕𝜕𝑔𝑔𝑗𝑗/|∇𝑔𝑔(𝜇𝜇)|  

𝜇𝜇𝑗𝑗′ = 𝜇𝜇𝑗𝑗 − 𝛾𝛾 ∙ 𝜕𝜕𝑔𝑔𝑗𝑗  
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if 𝜇𝜇𝑗𝑗′ < 0 

 𝜇𝜇𝑗𝑗′ = 0 

end if 

end for 

while 𝑔𝑔�𝜇𝜇𝑗𝑗′� > 𝑔𝑔�𝜇𝜇𝑗𝑗� do  

  𝛾𝛾 = 𝛾𝛾 × 𝛾𝛾𝑟𝑟𝑙𝑙𝑑𝑑 

for j = 1: J do  

 𝜕𝜕𝑔𝑔𝑗𝑗 = 𝜕𝜕𝑔𝑔𝑗𝑗/|∇𝑔𝑔(𝜇𝜇)|  

   𝜇𝜇𝑗𝑗′ = 𝜇𝜇𝑗𝑗 − 𝛾𝛾 ∙ 𝜕𝜕𝑔𝑔𝑗𝑗  

 if 𝜇𝜇𝑗𝑗′ < 0 

 𝜇𝜇𝑗𝑗′ = 0 

 end if 

end for 

end while 

𝜇𝜇𝑗𝑗 = 𝜇𝜇𝑗𝑗′   

end for 
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A.4 Pseudocode for Demons registration 

 

Input and Parameter Setup: 

𝜇𝜇𝑟𝑟 - the reference image 

𝜇𝜇𝑑𝑑 - the target image 

 

𝑃𝑃 =  100 - number of maximum iterations 

f – Gaussian filter kernel 

 

Initialization: 

𝑇𝑇𝑥𝑥 = 0 – Transformation vector in x direction 

𝑇𝑇𝑦𝑦 = 0 – Transformation vector in y direction 

𝑇𝑇𝑧𝑧 = 0 – Transformation vector in z direction 

𝒈𝒈 = ∇𝜇𝜇𝑟𝑟 – Gradient of the reference image 
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Iteration: 

for 𝑘𝑘 = 1:𝑃𝑃 

        𝑑𝑑 = 𝐼𝐼𝑚𝑚𝐼𝐼𝑚𝑚 − 𝐼𝐼𝑟𝑟𝑙𝑙𝑓𝑓 

 𝑢𝑢𝑥𝑥 = 𝑑𝑑∗𝑔𝑔𝑥𝑥
𝒈𝒈2+𝑑𝑑2

 

 𝑢𝑢𝑦𝑦 = 𝑑𝑑∗𝑔𝑔𝑦𝑦
𝒈𝒈2+𝑑𝑑2

 

 𝑢𝑢𝑧𝑧 = 𝑑𝑑∗𝑔𝑔𝑧𝑧
𝒈𝒈2+𝑑𝑑2

 

 𝑇𝑇𝑥𝑥 = 𝑇𝑇𝑥𝑥 + 𝑢𝑢𝑥𝑥 

  𝑇𝑇𝑦𝑦 = 𝑇𝑇𝑦𝑦 + 𝑢𝑢𝑦𝑦  

  𝑇𝑇𝑧𝑧 = 𝑇𝑇𝑧𝑧 + 𝑢𝑢𝑧𝑧  

  𝑇𝑇𝑥𝑥 = ∑ ∑ ∑ 𝑓𝑓(𝑦𝑦, 𝑗𝑗,𝑘𝑘)𝑇𝑇𝑥𝑥(𝑥𝑥 − 𝑦𝑦 ,𝑦𝑦 − 𝑗𝑗, 𝑧𝑧 − 𝑘𝑘)𝑘𝑘𝑗𝑗𝑙𝑙   

𝑇𝑇𝑦𝑦 = ∑ ∑ ∑ 𝑓𝑓(𝑦𝑦, 𝑗𝑗, 𝑘𝑘)𝑇𝑇𝑦𝑦(𝑥𝑥 − 𝑦𝑦 ,𝑦𝑦 − 𝑗𝑗, 𝑧𝑧 − 𝑘𝑘)𝑘𝑘𝑗𝑗𝑙𝑙   

  𝑇𝑇𝑧𝑧 = ∑ ∑ ∑ 𝑓𝑓(𝑦𝑦, 𝑗𝑗,𝑘𝑘)𝑇𝑇𝑧𝑧(𝑥𝑥 − 𝑦𝑦 , 𝑦𝑦 − 𝑗𝑗, 𝑧𝑧 − 𝑘𝑘)𝑘𝑘𝑗𝑗𝑙𝑙   

  𝜇𝜇𝑑𝑑 = 𝜇𝜇𝑟𝑟 + 𝑻𝑻  

end for 

𝑣𝑣𝑟𝑟→𝑑𝑑 = 𝑻𝑻  
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The parameters shown in the pseudo code were used to reconstruct images in this 

work, unless otherwise stated. Particularly, to balance the TV constraints and the 

data fidelity term, the numbers of ART and TV iterations were set as 20 and 5, 

respectively. The step size parameters, 𝜆𝜆, 𝜆𝜆𝑟𝑟𝑙𝑙𝑑𝑑, 𝛾𝛾, 𝛾𝛾𝑟𝑟𝑙𝑙𝑑𝑑, were 0.1, 1, 0.1, and 0.8 

for the phantom data, and 0.1, 0.99, 0.3, and 0.9 for the patient data. These 

parameters were tuned using 3D TV for the best RMSE of phantom reconstruction 

and visual inspection of patient reconstruction. In addition, G-SMEIR performance 

is influenced by 𝑀𝑀𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 and 𝑃𝑃𝐼𝐼𝑑𝑑𝑙𝑙𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝐼𝐼𝑙𝑙 as shown in the results.  

 

  



 106 

APPENDIX B.   RECYCLEGAN NETWORK STRUCTURE 

The generator, predictor, and discriminator of RecycleGAN are shown in Table A.I, 

Table A.II, and Table A.III, respectively. For the CycleGAN structure, please refer 

to Fig. 4 and Fig. 5 in [75]. 

B.1 The generator structure of RecycleGAN 

============================================================= 

Function blocks (level # - layer #)              Kernel Shape 

=============================================================                      

Generator                               -- 

├─Sequential: 1-1                             -- 

│    └─ReflectionPad2d: 2-1                   -- 

│    └─Conv2d: 2-2                            [1, 64, 7, 7] 

│    └─InstanceNorm2d: 2-3                    -- 

│    └─ReLU: 2-4                              -- 

│    └─Conv2d: 2-5                            [64, 128, 3, 3] 

│    └─InstanceNorm2d: 2-6                    -- 

│    └─ReLU: 2-7                              -- 
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│    └─Conv2d: 2-8                            [128, 256, 3, 3] 

│    └─InstanceNorm2d: 2-9                    -- 

│    └─ReLU: 2-10                             -- 

│    └─ResnetBlock: 2-11                      -- 

│    └─ResnetBlock: 2-12                      -- 

│    └─ResnetBlock: 2-13                      -- 

│    └─ResnetBlock: 2-14                      -- 

│    └─ResnetBlock: 2-15                      -- 

│    └─ResnetBlock: 2-16                      -- 

│    └─ConvTranspose2d: 2-17                  [128, 256, 3, 3] 

│    └─InstanceNorm2d: 2-18                   -- 

│    └─ReLU: 2-19                             -- 

│    └─ConvTranspose2d: 2-20                  [64, 128, 3, 3] 

│    └─InstanceNorm2d: 2-21                   -- 

│    └─ReLU: 2-22                             -- 

│    └─ReflectionPad2d: 2-23                  -- 

│    └─Conv2d: 2-24                           [64, 1, 7, 7] 
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│    └─Tanh: 2-25                             -- 

 

B.2 The predictor structure of RecycleGAN 

============================================================= 

Function blocks (level # - layer #)              Kernel Shape 

=============================================================               

Predictor                                                                                        -- 

├─UnetSkipConnectionBlock: 1-1                                                                       -- 

│    └─Sequential: 2-1                                                                               -- 

│    │    └─Conv2d: 3-1                                                                           [2, 64, 4, 4] 

│    │    └─UnetSkipConnectionBlock: 3-2                                                             -- 

│    │    │    └─Sequential: 4-1                                                                     -- 

│    │    │    │    └─LeakyReLU: 5-1                                                                 -- 

│    │    │    │    └─Conv2d: 5-2                                                           [64, 128, 4, 4] 

│    │    │    │    └─InstanceNorm2d: 5-3                                                            -- 

│    │    │    │    └─UnetSkipConnectionBlock: 5-4                                                   -

- 
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│    │    │    │    │    └─Sequential: 6-1                                                           -- 

│    │    │    │    │    │    └─LeakyReLU: 7-1                                                       -- 

│    │    │    │    │    │    └─Conv2d: 7-2                                          [128, 256, 4, 4] 

│    │    │    │    │    │    └─InstanceNorm2d: 7-3                                                  -- 

│    │    │    │    │    │    └─UnetSkipConnectionBlock: 7-4                                         -

- 

│    │    │    │    │    │    │    └─Sequential: 8-1                                                 -- 

│    │    │    │    │    │    │    │    └─LeakyReLU: 9-1                                             -- 

│    │    │    │    │    │    │    │    └─Conv2d: 9-2                                [256, 512, 4, 4] 

│    │    │    │    │    │    │    │    └─InstanceNorm2d: 9-3                                        -

- 

│    │    │    │    │    │    │    │    └─UnetSkipConnectionBlock: 9-4                               -

- 

│    │    │    │    │    │    │    │    │    └─Sequential: 10-1                                      -- 

│    │    │    │    │    │    │    │    │    │    └─LeakyReLU: 11-1                                  -

- 

│    │    │    │    │    │    │    │    │    │    └─Conv2d: 11-2                 [512, 512, 4, 4] 

│    │    │    │    │    │    │    │    │    │    └─InstanceNorm2d: 11-3                              
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│    │    │    │    │    │    │    │    │    │    └─UnetSkipConnectionBlock: 11-4                     

│    │    │    │    │    │    │    │    │    │    │    └─Sequential: 12-1                            - 

│    │    │    │    │    │    │    │    │    │    │    │    └─LeakyReLU: 13-1                         

│    │    │    │    │    │    │    │    │    │    │    │    └─Conv2d: 13-2    [512, 512, 4, 4] 

│    │    │    │    │    │    │    │    │    │    │    │    └─InstanceNorm2d: 13-3                    

│    │    │    │    │    │    │    │    │    │    │    │    └─UnetSkipConnectionBlock: 13-

4    

│    │    │    │    │    │    │    │    │    │    │    │    │    └─Sequential: 14-1                   

│    │    │    │    │    │    │    │    │    │    │    │    │    │    └─LeakyReLU: 15-1            

│    │    │    │    │    │    │    │    │    │    │    │    │    │    └─Conv2d: 15-2   [512, 

512, 4, 4] 

│    │    │    │    │    │    │    │    │    │    │    │    │    │    └─ReLU: 15-3                    

│    │    │    │    │    │    │    │    │    │    │    │    │    │    └─ConvTranspose2d: 15-

4        [512, 512, 4, 4] 

│    │    │    │    │    │    │    │    │    │    │    │    │    │    └─InstanceNorm2d: 15-5          

│    │    │    │    │    │    │    │    │    │    │    │    └─ReLU: 13-5                            

│    │    │    │    │    │    │    │    │    │    │    │    └─ConvTranspose2d: 13-6                  

[512, 1024, 4, 4] 
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│    │    │    │    │    │    │    │    │    │    │    │    └─InstanceNorm2d: 13-7                    

│    │    │    │    │    │    │    │    │    │    └─ReLU: 11-5                                       -- 

│    │    │    │    │    │    │    │    │    │    └─ConvTranspose2d: 11-6        [512, 1024, 

4, 4] 

│    │    │    │    │    │    │    │    │    │    └─InstanceNorm2d: 11-7                              

│    │    │    │    │    │    │    │    └─ReLU: 9-5                                                  -- 

│    │    │    │    │    │    │    │    └─ConvTranspose2d: 9-6            [256, 1024, 4, 4] 

│    │    │    │    │    │    │    │    └─InstanceNorm2d: 9-7                                         

│    │    │    │    │    │    └─ReLU: 7-5                                                            -- 

│    │    │    │    │    │    └─ConvTranspose2d: 7-6                         [128, 512, 4, 4] 

│    │    │    │    │    │    └─InstanceNorm2d: 7-7                                                  -- 

│    │    │    │    └─ReLU: 5-5                                                                      -- 

│    │    │    │    └─ConvTranspose2d: 5-6                                    [64, 256, 4, 4] 

│    │    │    │    └─InstanceNorm2d: 5-7                                                            -- 

│    │    └─ReLU: 3-3                                                                                -- 

│    │    └─ConvTranspose2d: 3-4                                              [1, 128, 4, 4] 

│    │    └─Tanh: 3-5                                                                                -- 
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B.3 The discriminator structure of RecycleGAN 

============================================================= 

Function blocks (level # - layer #)              Kernel Shape 

=============================================================  

Discriminator                      -- 

├─Sequential: 1-1                        -- 

│    └─Conv2d: 2-1                       [1, 64, 4, 4] 

│    └─LeakyReLU: 2-2                    -- 

│    └─Conv2d: 2-3                       [64, 128, 4, 4] 

│    └─InstanceNorm2d: 2-4               -- 

│    └─LeakyReLU: 2-5                    -- 

│    └─Conv2d: 2-6                       [128, 256, 4, 4] 

│    └─InstanceNorm2d: 2-7               -- 

│    └─LeakyReLU: 2-8                    -- 

│    └─Conv2d: 2-9                       [256, 512, 4, 4] 

│    └─InstanceNorm2d: 2-10              -- 
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│    └─LeakyReLU: 2-11                   -- 

│    └─Conv2d: 2-12                      [512, 1, 4, 4] 

 

Definition of fundamental blocks: 

Conv2d: 2D convolution 

ReLU: rectified linear unit function 

LeakyReLU: A type of activation function based on a ReLU, which has a small 

slope for negative values instead of strict zero 

ConvTranspose2d: Applies a 2D transposed convolution operator over an input 

image composed of several input planes. 

Tanh: Applies the Hyperbolic Tangent function element-wise. 

ReflectionPad2d: Pads the input tensor using the reflection of the input boundary. 

InstanceNorm2d: Applies Instance Normalization over a 4D input 

ResnetBlock: Sequence of ReflectionPad2d, Conv2d(shape of [256, 256, 3, 3]), 

InstanceNorm2d, ReLU, ReflectionPad2d, Conv2d(shape of [256, 256, 3, 3]), and 

InstanceNorm2d functions 
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APPENDIX C.   TTSR NETWORK STRUCTURE 

The generator of TTSR is shown in B.1 and the discriminator in B.2. For more 

details, please refer to the supplementary material in [95]. 

 

C.1 The generator structure of TTSR 

============================================================= 

Function blocks (level # - layer #)              Kernel Shape 

=============================================================  

├─Generator: 1-1                           -- 

│    └─SFE: 2-1                           -- 

│    │    └─Conv2d: 3-1                  [3, 64, 3, 3] 

│    │    └─16 x ResBlock: 3-2             -- 

│    │    └─Conv2d: 3-3                  [64, 64, 3, 3] 

│    └─Conv2d: 2-2                       [320, 64, 3, 3] 

│    └─16 x ResBlock: 2-3                  -- 

│    └─Conv2d: 2-4                       [64, 64, 3, 3] 
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│    └─Conv2d: 2-5                       [64, 256, 3, 3] 

│    └─PixelShuffle: 2-6                    -- 

│    └─Conv2d: 2-7                       [192, 64, 3, 3] 

│    └─CSFI2: 2-8                         -- 

│    │    └─Conv2d: 3-20                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-21                 [64, 64, 3, 3] 

│    │    └─Conv2d: 3-22                 [128, 64, 3, 3] 

│    │    └─Conv2d: 3-23                 [128, 64, 3, 3] 

│    └─8 x ResBlock: 2-9                   -- 

│    └─8 x ResBlock: 2-10                  -- 

│    └─Conv2d: 2-11                      [64, 64, 3, 3] 

│    └─Conv2d: 2-12                      [64, 64, 3, 3] 

│    └─Conv2d: 2-13                      [64, 256, 3, 3] 

│    └─PixelShuffle: 2-14                   -- 

│    └─Conv2d: 2-15                      [128, 64, 3, 3] 
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│    └─CSFI3: 2-16                        -- 

│    │    └─Conv2d: 3-40                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-41                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-42                 [64, 64, 3, 3] 

│    │    └─Conv2d: 3-43                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-44                 [64, 64, 3, 3] 

│    │    └─Conv2d: 3-45                 [64, 64, 3, 3] 

│    │    └─Conv2d: 3-46                 [64, 64, 3, 3] 

│    │    └─Conv2d: 3-47                 [192, 64, 3, 3] 

│    │    └─Conv2d: 3-48                 [192, 64, 3, 3] 

│    │    └─Conv2d: 3-49                 [192, 64, 3, 3] 

│    └─4 x ResBlock: 2-17                  -- 

│    └─4 x ResBlock: 2-18                  -- 

│    └─4 x ResBlock: 2-19                  -- 

│    └─Conv2d: 2-20                      [64, 64, 3, 3] 
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│    └─Conv2d: 2-21                      [64, 64, 3, 3] 

│    └─Conv2d: 2-22                      [64, 64, 3, 3] 

│    └─MergeTail: 2-23                     -- 

│    │    └─Conv2d: 3-62                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-63                 [64, 64, 1, 1] 

│    │    └─Conv2d: 3-64                 [192, 64, 3, 3] 

│    │    └─Conv2d: 3-65                 [64, 32, 3, 3] 

│    │    └─Conv2d: 3-66                 [32, 3, 1, 1] 

├─LTE: 1-2                               -- 

│    └─Sequential: 2-24                    -- 

│    │    └─Conv2d: 3-67                 [3, 64, 3, 3] 

│    │    └─ReLU: 3-68                   -- 

│    └─Sequential: 2-25                     -- 

│    │    └─Conv2d: 3-69                 [64, 64, 3, 3] 

│    │    └─ReLU: 3-70                   -- 



 119 

│    │    └─MaxPool2d: 3-71               -- 

│    │    └─Conv2d: 3-72                 [64, 128, 3, 3] 

│    │    └─ReLU: 3-73                   -- 

│    └─Sequential: 2-26                     -- 

│    │    └─Conv2d: 3-74                 [128, 128, 3, 3] 

│    │    └─ReLU: 3-75                   -- 

│    │    └─MaxPool2d: 3-76               -- 

│    │    └─Conv2d: 3-77                 [128, 256, 3, 3] 

│    │    └─ReLU: 3-78                   -- 

│    └─MeanShift: 2-27                    [3, 3, 1, 1] 

├─LTE: 1-3 (repeat LET: 1-2)                 --  

├─SearchTransfer: 1-4                       -- 

 

C.2 The discriminator structure of TTSR 

============================================================= 

Function blocks (level # - layer #)              Kernel Shape 
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============================================================= 

├─Discriminator: 1-1                        -- 

│    └─Conv2d: 2-1                       [3, 32, 3, 3] 

│    └─LeakyReLU: 2-2                    -- 

│    └─Conv2d: 2-3                       [32, 32, 3, 3] 

│    └─LeakyReLU: 2-4                    -- 

│    └─Conv2d: 2-5                       [32, 64, 3, 3] 

│    └─LeakyReLU: 2-6                    -- 

│    └─Conv2d: 2-7                       [64, 64, 3, 3] 

│    └─LeakyReLU: 2-8                    -- 

│    └─Conv2d: 2-9                       [64, 128, 3, 3] 

│    └─LeakyReLU: 2-10                   -- 

│    └─Conv2d: 2-11                      [128, 128, 3, 3] 

│    └─LeakyReLU: 2-12                   -- 

│    └─Conv2d: 2-13                      [128, 256, 3, 3] 
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│    └─LeakyReLU: 2-14                   -- 

│    └─Conv2d: 2-15                      [256, 256, 3, 3] 

│    └─LeakyReLU: 2-16                   -- 

│    └─Conv2d: 2-17                      [256, 512, 3, 3] 

│    └─LeakyReLU: 2-18                   -- 

│    └─Conv2d: 2-19                      [512, 512, 3, 3] 

│    └─LeakyReLU: 2-20                   -- 

│    └─Linear: 2-21                       [12800, 1024] 

│    └─LeakyReLU: 2-22                   -- 

│    └─Linear: 2-23                       [1024, 1] 

 

Definition of fundamental blocks: 

Conv2d: 2D convolution 

ReLU: rectified linear unit function 

MaxPool2d: 2D max pooling 

MeanShift: Subtract channel-wise mean from the input 
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PixelShuffle: Rearranges elements 

SearchTransfer: Sequence of unfold, permute, normalize, multiply, max, unfold, 

fold functions 

ResBlock: Sequence of Conv2d and ReLU functions 

LeakyReLU: A type of activation function based on a ReLU, which has a small 

slope for negative values instead of strict zero 

Linear: Linear transformation 
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