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ABSTRACT

A NOVEL SUPERVISED DIMENSIONALITY REDUCTION METHOD:

INTEGRATING PCA WITH SVM

FAEZEH SOLEIMANI, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professors: Dr. Li Wang & Dr. Ren-Cang Li

Data curation and storage methods have changed over the past few decades

with the use of new technologies, and gathering data on a huge number of features

(dimensions) is now very common among diverse scientific and engineering fields.

Prior to classification or regression, dimensionality reduction is necessary to eliminate

irrelevant features and to deal with data with high dimensions. A number of numerical

methods have already been proposed to reduce the dimension of data, for example,

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and

Supervised Principal Component Analysis (SPCA).

In this dissertation, we will introduce a novel way of reducing dimensionality and

classifying data simultaneously through a supervised approach that reduces dimension

while classifying data. The objective of our model is to determine the projection

matrix utilized in the dimensionality reduction procedure, as well as to determine the

hyperplane of the classifier used for data classification. Since the supervised model is

learning both the representation of the low-dimensional data and the classification

simultaneously, our supervised model has the advantage of high accuracy as well as
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effective representation. Additionally, our model is capable of performing multi-class

classification, i.e., it is capable of classifying data with more than two categories.

Due to our model’s ability to use nonlinear mappings, we can also apply it to data

sets with nonlinear and complex structures. Simulating the model and comparing

it with the state-of-the-art dimensionality reduction and classification techniques

demonstrate the model’s effectiveness and efficiency.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Real-world data with high dimensions such as those from fMRI scans and

speech signals are generated voluminously from various sources. Capabilities to

store large data sets and advances in data collection have led to an information

overload in most scientific disciplines. On a daily basis, more and more observations

and simulations are conducted by researchers working in domains as diverse as

biology, mathematics, computer science, engineering, astronomy, and economics.

Such data typically possesses a large number of features/variables and poses various

mathematical challenges. The number of features/variables that are measured on

each observation defines the “dimension” of the data. One of the problems with high-

dimensional data is that, in many cases, although the dimension of the data is high,

only a few key features are of critical importance for understanding the underlying

phenomena of interest and modeling tasks. Another challenge is that handling such

huge data is a burdensome task and the learning task becomes significantly more

difficult with an increase in the number of features. Due to the increase in the number

of variables associated with each observation, most of the traditional statistical

methods break down and fail to perform well. “Curse of Dimensionality” [1] is a

serious problem caused by the increase in the volume associated with adding extra

dimensions to space; see Figure 1.1.
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Figure 1.1: The increase in the volume associated with adding extra dimensions to
space caused by the Curse of Dimensionality [3].

1.2 Dimensionality reduction problem

In order to handle high-dimensional data, to remove irrelevant features, and to

mitigate the curse of dimensionality and other undesired properties of high-dimensional

spaces [2], the dimension of the original data in the high-dimensional space should

be reduced prior to any modeling of the data, i.e., a subset of features needs to be

carefully chosen and used. Transforming high-dimensional data into a representation

of reduced dimensionality is called “Dimensionality Reduction (DR)” which will help

us to identify the key features of the data; see Figure 1.2.
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Figure 1.2: Mapping some 3-dimensional data into their representation of reduced
dimensionality d = 2 [4].

The goal of dimensionality reduction techniques is to map high-dimensional

data to a low-dimensional space such that certain properties of the original data are

preserved. Neighborhood information [5, 6], local tangent space [7], global geometry,

and distances between data points [8, 9] are among certain properties that dimen-

sionality reduction methods aim to preserve. There are different ways to reduce the

dimension of the data. However, the most popular techniques in DR are feature

selection and feature extraction. Feature selection techniques try to select a subset

of the current features [10, 11], while feature extraction techniques are learning a

3



combination of existing features [12]. Over the last decades, a large number of

dimensionality reduction techniques have been proposed; see, e.g., [13, 14] for an

overview.

Mapping high-dimensional data to a low-dimensional space is also useful for

various reasons, such as reducing the effect of noise, reducing computational cost,

and visualizing data. Moreover, due to the curse of dimensionality, classification and

regression methods in the original space may not generate satisfactory results and

this demonstrates the importance of dimensionality reduction as a pre-processing step.

As a result, dimensionality reduction facilitates, among other things, classification,

regression, and compression of high-dimensional data.

In the past few years, dimensionality reduction has been an active topic and

attracted lots of interest. DR has a wide variety of applications in a number of areas

including applied mathematics, computer science, medical research, finance, and

engineering. For this reason, quite an amount of work has been done to reduce the di-

mensionality of the high-dimensional data. We list some of the fields where DR is used:

• Computer vision [15,16],

• Biomedical informatics [17–19],

• Speech recognition [20,21],

• Visualization [22,23],

• Text mining [24,25],

• Medical [26, 27],

• Agriculture [28, 29],

• Finance [30,31].
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Mathematically speaking, assume that data matrix X ∈ Rp×n, where p is

the number of features and n is the number of observations, has an “intrinsic”

dimensionality d [32], i.e., the data points lie on or near a manifold with dimension

d (d � p) embedded in the p-dimensional space. This assumption is the base for

most of the dimensionality reduction techniques. Most linear DR techniques try to

find a projection/transformation matrix P ∈ Rp×d by which the data matrix X with

dimensionality p is transformed into a new data matrix Y = P TX with dimensionality

d; see Figure 1.3. Often the intrinsic dimensionality d is unknown and there is no

assumption on the structure of the low-dimensional manifold.

1.3 Why supervised learning?

Machine learning algorithms, specifically dimensionality reduction techniques,

can be classified into three primary categories, Supervised Learning, Unsupervised

Learning, and Semi-Supervised Learning depending on having all, no, or some label

information. The type of training data (e.g. fully labeled, partially labeled, or

unlabeled) used as an input of a machine learning algorithm will distinguish these

three categories from each other and they will be defined based on the availability of

Figure 1.3: Linear dimensionality reduction is the problem of finding the projection
matrix P by which the dimension of the high-dimensional data matrix X is reduced.
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the output labels of the data. A brief explanation of these categories is given as follows:

• Supervised Learning : Fully labeled data points are available and used as training

data to train a model that predicts properties of unseen data points. This type

of learning has practical applications such as classification and regression.

• Unsupervised Learning : Unlabeled data points are available and used as training

data to train a model that predicts properties of unseen data points. Since no

label is available in this setting, evaluating the performance of a learning algo-

rithm will be difficult and results in having a limited spectrum of applications.

Dimensionality reduction and clustering are the most practical applications of

unsupervised learning.

• Semi-Supervised Learning : Only partial data points are labeled and all data

points with or without labels are used as training data to train a model that

predicts properties of unseen data points. In this type of learning, a combination

of labeled and unlabeled data is employed to train the model. When unlabeled

data is easily accessible but labels are expensive to obtain, semi-supervised

learning is the best scenario to choose for training the model. Classification,

regression, and ranking are practical applications of semi-supervised learning.

Most general dimensionality reduction methods belong to the unsupervised

learning category which is often much more challenging because there doesn’t exist

any information about the classes to which data points belong, i.e., data labels are not

accessible. On one hand, assessing the results obtained from unsupervised learning

methods is hard, since there is no accepted mechanism to validate such results on
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an independent data set. So, in unsupervised learning, it is in a sense impossible

to check the results, since we do not have access to the “true” answer. Instead,

fitting a predictive model using a supervised learning technique, one would be able to

check the results by seeing how well the response variable is predicted. On the other

hand, in most real-world problems, dimensionality reduction is just an intermediate

step towards final goals, like classification or regression, in which data labels are

playing a significant role to obtain good results. Consider the task of document

classification as an example in which feature selection or feature extraction methods

are used first to get a low-dimensional text representation, and then, a classifier is

trained to make a prediction [33]. Due to the “ lack of supervision”, it is possible

that some important words are filtered before training the classifier which affects the

final performance [34]. This explains the importance and applicability of supervised

learning techniques [35,36], especially supervised dimensionality reduction methods.

As mentioned earlier, the ultimate goal in many machine learning problems

is to efficiently classify high-dimensional data. Classifying the high-dimensional

data is still a challenging problem due to the curse of dimensionality. Many fea-

tures/dimensions are not helpful and may result in critical performance degradation

of the classification methods as well as increased computational complexity. To

efficiently handle high-dimensional data and to facilitate the classification task, one

direct way is to first reduced the dimension of the data by one of the dimensionality

reduction methods, and then applying a classification method to classify the embed-

ded data in the low-dimensional space. Although the methodology often works well,

we might confront the following challenges while classifying data with high dimensions:

• Powerful dimensionality reduction algorithms are only used to reduce the di-

mension of the data and are not able to do classification. Therefore, it is hard to

7



find an appropriate classification method and various classification techniques

need to be tried to see which one gives the best result.

• The separability of the data in different classes and consequently the perfor-

mance of the classification method are not necessarily improved by projecting

the data into a low-dimensional space, due to the separation between dimension-

ality reduction and classification. Since the dimensionality reduction procedure

and the subsequent classification technique are employed separately, they don’t

have a common objective. Thus, it is highly unlikely that we can get optimal

results.

One natural way to overcome the above challenges is to integrate dimensionality

reduction and classification in a joint framework. In other words, we need to consider

the classification requirements together with the dimensionality reduction to make use

of the data labels which results in improving the classification performance. Recently,

several researchers have dedicated themselves to performing dimensionality reduction

and clustering simultaneously [37,38].

1.4 Major contributions and organization of the dissertation

In this dissertation, we propose a novel supervised dimensionality reduction

model that addresses the aforementioned challenges in the previous section. We

develop an efficient method that is not only able to reduce the dimension of the

high-dimensional data but also to learn a classifier at the same time. Our model is able

to solve both dimensionality reduction and classification problems simultaneously.

In Chapter 2, we discuss some of the state-of-the-art methods for dimensionality

reduction. We briefly discuss some of the popular dimensionality reduction models
8



such as Principal Component Analysis (PCA) [39,40], Linear Discriminant Analysis

(LDA) [41, 42], and Supervised Principal Component Analysis (SPCA) [43]. Dual

and kernel forms of PCA and SPCA are also described in this chapter. Furthermore,

we explore two popular classification methods: Support Vector Machine [44] and

k-Nearest Neighbor (kNN) [45]. We also discuss the mathematical backgrounds

for solving convex quadratic optimization problems by MATLAB and LIBSVM

package [46].

In Chapter 3, we present our novel supervised approach that is able to solve

dimensionality reduction and classification problems simultaneously. We develop

and discuss the solution procedure for solving the following non-convex optimization

problem:

min
P,α

F (P, α) = ‖X − PP TX‖2F + µ(
1

2
αTATPP TAα− eTα) (1.1)

s.t. P TP = Id,

n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n,

where X = [x1, x2, ..., xn] ∈ Rp×n, P ∈ Rp×d, Z = [z1, z2, ..., zn] ∈ R1×n, α ∈ Rn, and

e ∈ Rn are the data matrix, projection matrix, label matrix, the dual variable, and

the vector of all ones, respectively, with p being the number of features (dimension

of the data), n being the number of observations, and d being the dimension of

the low-dimensional space. A = [z1x1, · · · , znxn] ∈ Rp×n and C > 0 and µ > 0 are

hyperparameters in our model that need to be tuned. We also explain the strategy

that is used in our model to solve multi-class classification problems. We present our
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numerical results and the performance of the model in dimensionality reduction and

classification in detail.

Chapter 4 focuses on expanding our model to its nonlinear form by utilizing

a nonlinear mapping to handle data sets with nonlinear and complex structures.

Classical dimensionality reduction methods often assume that the data points lie on

or near a linear low-dimensional space embedded in the original high-dimensional

manifold. However, this assumption may not always hold, and when it does not,

we are not able to linearly separate the data points. To effectively deal with the

nonlinearity in data, we utilize a nonlinear mapping that enables our model to be

applied to nonlinear problems. We develop and discuss the solution procedure for

solving the following non-convex optimization problem:

min
P,α

F (P, α) = ‖Φ(X)− PP TΦ(X)‖2F + µ(
1

2
αTATPP TAα− eTα) (1.2)

s.t. P TP = Id,

n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n,

where

Φ : x→ Φ(x) ∈ H,

is a nonlinear mapping that embeds vector x into some Hilbert space H.

In this chapter, numerical results and the performance of our proposed model in its

nonlinear form are presented in detail.

In Chapter 5, we discuss the relevance and importance of our work on solving

dimensionality reduction and classification problems. We summarize the conclusions
10



of the dissertation and some extensions of our work in other possible areas of data

science.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter reviews some of the well-known dimensionality reduction methods,

including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

and Supervised Principal Component Analysis (SPCA). Support Vector Machine

(SVM) and k-Nearest Neighbor (kNN) methods will also be described at the end of

this chapter.

2.1 Classical dimensionality reduction methods

2.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [39, 40] is one of the most popular

unsupervised dimensionality reduction techniques. PCA’s goal is to find a low-

dimensional linear subspace such that the data points lie on or near this linear

manifold. The maximum variability in the data is captured by this low-dimensional

space.

“Principal Components” refer to orthogonal vectors that form new coordinates

for the linear subspace; see Figure 2.1. The principal components enable us to

linearly transform the original data points in a high-dimensional space spanned by

the original features into a low-dimensional linear subspace spanned by principal

components. PCA has been successfully applied to a wide variety of domains such as

face recognition [47], coin classification [48], seismic series analysis [49], visualization

[50], noise removal [51], genetics [52], chemistry [53], and physics [54].
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Figure 2.1: A two dimensional projection by PCA applied to a randomly generated
data and the new coordinates for the linear subspace.

Assume data vectors xi (i = 1, ..., n) are packed into data matrix X ∈ Rp×n.

Rows of the data matrix show the features (dimension of the data) and columns are

observations. PCA tries to find a linear transformation P that projects the data

points into a low-dimensional manifold spanned by principal components, so the

number of principal components shouldn’t be more than p. The projection onto the

linear subspace will minimize the squared reconstruction error [55], i.e., the principal

components of a set of data generate the best linear approximations to that data; see

Figure 2.2.
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Figure 2.2: Ninety observations simulated in three dimensions. The plane that best
fits the data is spanned by the first two principal component directions. The sum
of squared distances from each point to the plane is minimized [56, Chapter 10,
page 380].

PCA can be described as the following optimization problem:

min
P∈Rp×d

‖X − PP TX‖2F (2.1)

s.t. P TP = Id.

The PCA algorithm is summarized in Algorithm 2.1.
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Algorithm 2.1 PCA
Input: Data matrix X ∈ Rp×n;

Output: Projection matrix P ∈ Rp×d.

1: Centralize the data: X = X(In − 1
n
eeT ), where e ∈ Rn is the vector of all ones;

2: Calculate the covariance matrix of X as:

Cov(X) = XXT =
n∑
i=1

xix
T
i ;

3: Find the eigenvalues and eigenvectors of Cov(X);

4: Sort the eigenvalues in the descending order;

5: Let P be composed of eigenvectors corresponding to the d largest eigenvalues of

Cov(X).

2.1.1.1 Dual PCA

Sometimes the number of features is much larger than the number of observations

(i.e., p� n), and this situation needs to be taken into special consideration when we

are working with high-dimensional data, especially for genomics and biology data. In

this case, the direct form of PCA (Algorithm 1) is impractical because of computing

the eigenvalues and eigenvectors of the very large p× p covariance matrix. So we

need to modify the algorithm such that the run time depends linearly on the number

of features p. This will introduce the “Dual” form of PCA. Both PCA and dual PCA

find the eigenvalues and eigenvectors of the covariance matrix, however, what makes

dual PCA different from PCA is that it performs the eigendecomposition of an n× n

matrix XTX which results in a significant decrease in the computational cost when

p� n. Dual PCA is summarized in Algorithm 2.2.
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Algorithm 2.2 Dual PCA
Input: Data matrix X ∈ Rp×n;

Output: Projection matrix P ∈ Rp×d.

1: Centralize the data: X = X(In − 1
n
eeT ), where e ∈ Rn is the vector of all ones;

2: Calculate XTX;

3: Find the eigenvalues and eigenvectors of XTX;

4: Sort the eigenvalues in the descending order;

5: Let V ∈ Rn×d be composed of eigenvectors corresponding to the d largest eigen-

values of XTX;

6: Let Σ ∈ Rd×d be a diagonal matrix composed of square roots of the d largest

eigenvalues of XTX;

7: P = XV Σ−1.

2.1.1.2 Kernel PCA

The goal of PCA is to find a low-dimensional linear subspace such that data

points lie on or near this low-dimensional space. In many cases, high-dimensional

data has a nonlinear structure, and data points lie on or near a nonlinear manifold;

see Figure 2.3. In other words, principal components of features are nonlinearly

related to the input variables. In this case, PCA is not able to capture the maximum

variability in the data. In order to overcome this problem, “Kernel PCA” (KPCA) [57]

was proposed. KPCA maps the data to a high-dimensional space where data has

sort of a linear structure. This method recasts PCA in a way that it only depends

on the inner product of data points, not on the coordinates of the data. KPCA has

been successfully applied to different areas such as face recognition [58,59], speech
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Figure 2.3: 3D Nonlinear Swiss Roll [64].

recognition [60], novelty detection [61], chemical and biological systems [62], and

ECG signals [63].

A nonlinear mapping is used to attain the low-dimensional space. Consider the

following nonlinear mapping:

Φ : x→ Φ(x) ∈ H,

where H is a Hilbert space representing the feature space. Φ also embeds vector x

into the space H.

Similar to PCA, the projection onto the manifold will minimize the squared

reconstruction error which leads to the following optimization problem for KPCA:

min
P∈Rn×d

‖Φ(X)− PP TΦ(X)‖2F (2.2)

s.t. P TP = Id.
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To find the projection matrix, first we need to compute the kernel matrix by

some “kernel function”. The kernel matrix, denoted by K(., .) ∈ Rn×n, only depends

on the number of observations, not on the dimension of the feature space. In KPCA,

the kernel matrix is introduced to address the inapplicability of PCA and to reduce

the dependency on the number of features when the dimension of the data is high.

Kernel matrix is a symmetric positive-semidefinite (P.S.D) matrix and every matrix

with these properties induces a dot (inner) product defined on some Hilbert space [65].

Therefore, K can be represented as:

K = κ(X,X) = 〈Φ(X),Φ(X)〉, (2.3)

where κ is a kernel function. Some kernel functions [66] will be explained later.

Note that entries of the kernel matrix can also be computed as follows:

Kij = κ(xi, xj) = 〈Φ(xi),Φ(xj)〉. (2.4)

Algorithm 2.3 summarizes the Kernel PCA algorithm.

Algorithm 2.3 Kernel PCA
Input: Data matrix X ∈ Rp×n and a kernel function κ;

Output: Projection matrix P ∈ Rn×d.

1: Calculate the kernel matrix Kij = κ(xi, xj) by a kernel function;

2: Find the eigenvalues and eigenvectors of K;

3: Sort the eigenvalues in the descending order;

4: Let Σ be a diagonal matrix whose entries are the d largest eigenvalues of K;

5: Let V be a matrix whose columns are eigenvectors corresponding to the d largest

eigenvalues of the kernel matrix K;

6: P = Φ(X)V Σ−1.
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One of the challenges in KPCA is to find an appropriate kernel function for the

model [67]. Many different kernels have been proposed by researchers and the most

popular ones are:

• Linear kernel:

κ(xi, xj) = xTi xj;

• Fisher kernel [68]:

κ(xi, xj) = UT
xi
I−1Uxj ,

with UX being the Fisher score and I being the Fisher information matrix ;

• Polynomial kernel [69]:

κ(xi, xj) = (γxTi xj + r)m,

with r ≥ 0 being a free parameter trading off the influence of higher-order

versus lower-order terms in the polynomial. m is the degree of the polynomial

and γ > 0 is the kernel parameter;

• Radial Basis Function kernel (RBF) [70–72]:

κ(xi, xj) = e(−ξ‖xi−xj‖
2),

where ξ > 0 is the kernel parameter;

• Sigmoid kernel [44] :

κ(xi, xj) = tanh(ηxTi xj + s),
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where η and s are kernel parameters;

• Neural Tangent Kernel (NTK) [73]:

Θ(L)(θ) =
∑
p

∂θpF
(L)(θ)⊗ ∂θpF (L)(θ),

where F (L) : RP → F is the Artificial Neural Network (ANN) realization map

that maps parameters θ to functions fθ in a space F .

Despite of having nice properties and several advantages over classical PCA,

KPCA has the following issues:

• The size of the kernel matrix is proportional to n, where n is the number of

observations in the data matrix. Thus, as n increases, the size of the kernel

matrix also increases. This will result in a high computational cost due to

forming K and computing the eigendecomposition. An approach has been

proposed to address this problem [74].

• There is no straightforward instruction on how the kernel function is selected.

Maximum Variance Unfolding (MVU, known as Semidefinite Embedding) has

been proposed to overcome this issue [67].

2.1.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [41,42] is one of the most popular super-

vised dimensionality reduction techniques, and it has applications in many different

areas, e.g., bioinformatic [75, 76], biometrics [77, 78], medical [79, 80], and agricul-

ture [81, 82].
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Similar to other dimensionality reduction methods, the goal of LDA is to

project high-dimensional data onto a low-dimensional manifold. In order to find this

low-dimensional space, first two matrices which are called the between-class variance

matrix and the within-class variance matrix are defined. The distance between the

means of different classes (separability) and the difference between the mean and

the sample data of each class are measured by the between-class variance matrix

and within-class variance matrix, respectively. LDA tries to find a low-dimensional

manifold such that the between-class variance is maximized and the within-class

variance is minimized, thereby maximum class separability will be guaranteed [83,84].

See e.g., [85, 86] for an overview.

Assume that data vectors xi (i = 1, ..., n) are packed into data matrix X ∈ Rp×n,

where p is the dimension of the data and n is the number of observations. Let c be

the number of classes into which the original data is partitioned and suppose that

each class has mi number of samples. The total mean of the data and the mean of

the j th class are denoted by µ and µj, respectively. Note that
∑c

j=1mj = n. The

within-class and between-class variance matrices are defined as follows. The between

class variance matrix is:

Sb =
c∑
j=1

mjSbj ,

where

Sbj = (µj − µ)(µj − µ)T ,

µj =
1

mj

mj∑
k=1

xjk, µ =
1

n

c∑
j=1

mj∑
k=1

xjk, j = 1, 2, ..., c,
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with xjk being the kth data point in the jth class.

The between-class variance matrix is:

Sw =
c∑
j=1

Swj
,

where

Swj
=

mj∑
k=1

(xjk − µj)(xjk − µj)T j = 1, 2, ..., c.

LDA seeks a linear transformationW by which maximum linear class separability

in the low-dimensional representation is achieved. If this linear transformation is a

vector, it maximizes the so-called Fisher Criterion:

J(w) =
wTSbw

wTSww
.

The LDA optimization problem can be formulated as follows:

max
W∈Rp×d

Tr(W TSbW ) (2.5)

s.t. W TSwW = Id.

The LDA algorithm is summarized in Algorithm 2.4.
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Algorithm 2.4 Linear Discriminant Analysis (LDA)
Input: Data matrix X ∈ Rp×n;

Output: Projection matrix W ∈ Rp×d.

1: Find the mean of each class (µj) and the total mean of the data (µ);

2: Compute the between-class variance matrix (Sb ∈ Rp×p) as follows:

Sb =
c∑
j=1

mjSbj where Sbj = (µj − µ)(µj − µ)T j = 1, 2, ..., c;

3: Compute the within-class variance matrix (Sw ∈ Rp×p) as follows:

Sw =
c∑
j=1

Swj
where Swj

=

mj∑
k=1

(xjk − µj)(xjk − µj)T j = 1, 2, ..., c;

4: Find the generalized eigenvalues and eigenvectors of (Sb, Sw);

5: Sort the generalized eigenvalues in the descending order;

6: Let W be composed of the eigenvectors corresponding to the d largest generalized

eigenvalues.

Despite of being one of the most famous supervised dimensionality reduction tech-

niques, LDA suffers from three major problems:

• If the dimension of the data, p, is higher than the number of observations, n,

LDA is not able to find the lower-dimensional manifold. This problem is referred

to as the Small Sample Problem (SSS) which will result in the singularity of the

within-class variance matrix [87–89]. Various approaches have been proposed

to address this issue [90–92].

• If data points in different classes are nonlinearly separated, classes will not be

discriminated against by LDA. This problem is called the linearity problem and

there is a solution to this issue in [42].
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• LDA is only able to map the data into a (c− 1)-dimensional space where c is

the number of classes.

2.1.3 Supervised Principal Component Analysis (SPCA)

Supervised Principal Component Analysis (SPCA) [43] is another dimension-

ality reduction method proposed to make use of data labels. It searches for a

low-dimensional subspace such that maximum dependency between the projected

data and the data labels is achieved. The dependency is measured by Hilbert-

Schmidt’s Independence Criterion (HSIC) [93]. SPCA is applicable to visualization,

classification, and regression problems [43].

Let X ∈ Rp×n be the data matrix and Z ∈ Rl×n be the matrix of data labels,

where l is the number of labels each data point has. According to HSIC, Tr(HKHL)

needs to be maximized, where K is the kernel of P TX (e.g., XTPP TX) with P being

the projection matrix, and L is the kernel of Z (e.g., ZTZ). H := In− 1
n
eeT is called

the centering matrix.

SPCA looks for a projection matrix P that projects high-dimensional data into

a low-dimensional manifold whose features are uncorrelated. SPCA optimization

problem is formulated as follows:

max
P∈Rp×d

Tr(P TXHLHXTP ) (2.6)

s.t. P TP = Id.

The optimization problem in (2.6) can be considered as an eigenvalue problem and

has a closed-form solution. SPCA is summarized in Algorithm 2.5.
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Algorithm 2.5 Supervised Principal Component Analysis (SPCA)
Input: Data matrix X ∈ Rp×n, label matrix Z ∈ Rl×n, and kernel matrix L;

Output: Projection matrix P ∈ Rp×d.

1: Let

Q = XHLHXT where H = In −
1

n
eeT ;

2: Compute the eigenvalues and eigenvectors of Q;

3: Sort the eigenvalues in the descending order;

4: Let P be composed of the eigenvectors corresponding to the d largest eigenvalues

of matrix Q.

Note that if the response variable, i.e. data label, is unknown, then set L = I. Thus

XHLHXT = XHIHXT

= (XH)(HX)T

= [X(I − 1

n
eeT )][(I − 1

n
eeT )X]T

= Cov(X), (2.7)

where Cov(X) denotes the covariance matrix of the data matrix X. According to

equation (2.7), finding the top d eigenvalues of XHIHXT is equivalent to finding

the d largest eigenvalues of Cov(X). In other words, PCA is a special case of SPCA

with L = I.

2.1.3.1 Dual Supervised Principal Component Analysis (Dual SPCA)

Similar to PCA, when the number of features is much larger than the number

of observations (i.e., p � n), SPCA will be impractical because of computing the
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eigenvalues and eigenvectors of the very large p× p matrix Q. Dual Supervised

Principal Component Analysis was proposed by Barshan et al. [43] to address this

problem. The computational cost of dual SPCA has reduced dependence on the

number of features, p, so it reduces the dimension of the data with a less computational

cost.

Let Q = XHLHXT where X,L, and H are defined in the previous subsection.

Since Q and L are P.S.D matrices, they can be decomposed as follows:

L = ∆T∆

Q = XHLHXT = XH∆T∆HXT = ΨΨT

where Ψ = XH∆T . Projection matrix P can be computed by Singular Value

Decomposition (SVD) [94,95] of Ψ.

The dual SPCA algorithm is summarized in Algorithm 2.6.
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Algorithm 2.6 Dual Supervised Principal Component Analysis (Dual SPCA)
Input: Data matrix X ∈ Rp×n and label matrix Z ∈ Rl×n;

Output: Projection matrix P ∈ Rp×d.

1: Compute the kernel matrix L for the target variable;

2: Decompose L as

L = ∆T∆;

3: Compute matrix Ψ as

Ψ = XH∆T where H = In −
1

n
eeT ;

4: Compute the eigenvalues and eigenvectors of

ΨTΨ = ∆H(XTX)H∆T ;

5: Sort the eigenvalues in the descending order and let Σ be the diagonal matrix

of square roots of the d largest nonzero eigenvalues and V be the eigenvectors

associated with the top d eigenvalues;

6: Set P = ΨV Σ−1.

2.1.3.2 Kernel Supervised Principal Component Analysis (KSPCA)

In many cases, data with high dimensions has a nonlinear structure, and data

points lie on or near a nonlinear manifold; see Figure 2.4. In this case, a nonlinear

transformation is required. In order to handle the nonlinearity of the data to which

SPCA is applied, Kernel SPCA (KSPCA) [43] was proposed.
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Figure 2.4: The original form of two highly nonlinear artificial data sets (Left: Binary
XOR and Right: Concentric Rings) used in data visualization experiments in [43].

Consider the nonlinear mapping Φ:

Φ : x→ Φ(x) ∈ H,

where H is a Hilbert space representing the feature space. Φ also embeds vector x

into space H.

With this nonlinear mapping, equation (2.6) is changed to:

max
P∈Rp×d

Tr(P TΦ(X)HLHΦ(X)TP ) (2.8)

s.t. P TP = Id.

Transformation matrix P can be expressed as a linear combination of the

projected data points [96] as

P = Φ(X)β.

With this linear combination, problem (2.8) will change to

max
β∈Rn×d

Tr(βTKHLHKβ) (2.9)
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s.t. βTKβ = Id,

where K ∈ Rn×n is as in (2.4).

Equation (2.9) is a generalized eigenvalue problem and the solution of this problem,

β, is composed of generalized eigenvectors corresponding to the d largest gener-

alized eigenvalues of (KHLHK,K). Kernel SPCA algorithm is summarized in

Algorithm 2.7.

Algorithm 2.7 Kernel Supervised Principal Component Analysis (KSPCA)
Input: Kernel matrix for the target variable, L, kernel matrix for training

data Xtr, Ktrain = Φ(Xtr)
TΦ(Xtr), kernel matrix for testing data Xte, and Ktest =

Φ(Xtr)
TΦ(Xte);

Output: Dimension reduced training and testing data, Ytr and Yte.

1: Compute matrix Q as

Q = KtrainHLHKtrain where H = I − 1

n
eeT ;

2: Compute the generalized eigenvalues and generalized eigenvectors of (Q,Ktrain);

3: Sort the generalized eigenvalues in the descending order and let β be composed of

the generalized eigenvectors corresponding to the d largest generalized eigenvalues.

4: Reduce the dimension of the training data Xtr

Ytr = βT [Φ(Xtr)
TΦ(Xtr)] = βTKtrain;

5: Reduce the dimension of the testing data Xte

Yte = βT [Φ(Xtr)
TΦ(Xte)] = βTKtest.
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2.2 Classification methods

2.2.1 Support Vector Machine (SVM)

Support Vector Machine (SVM), proposed by Vapnik [44], is one of the earliest

supervised learning methods for classification. With a solid theoretical background

and a geometrical interpretation, SVM tries to separate the data points with a large

“gap”. That is, a classifier hyperplane of a binary labeled data set is found by SVM

such that maximum margin between positive and negative samples is achieved; see

Figure 2.5. Several efficient and fast SVM packages such as LIBSVM [46, 97] and

SVMlight [98] have been developed since the 1990s. SVM was initially developed

for binary classification and has since been extended for multi-class classification

problems [99,100]. Support Vector Machine has been successfully applied and used in

different areas such as pattern recognition [101], computational biology (medical) [102],

and image processing [103].

Assume that training data vectors xi (i = 1, ..., n) are packed into data matrix

X ∈ Rp×n and z ∈ Rn is a vector of the data labels with zi ∈ {1,−1} (i = 1, ..., n).

SVM can be formulated as a constrained optimization problem and its objective

function can be derived using its geometrical interpretation.

Hard-margin SVM classification: The goal of SVM is to find a separating

hyperplane wTx+b = 0 by which the maximum margin between positive and negative

classes is guaranteed. Vapnik’s Structural Risk Minimization explains the reason

behind maximizing the margin [44]. To find this hyperplane, first of all, we assume

that data is noise-free and can be linearly classified by a hyperplane. This is how the

hard-margin SVM is introduced. The hard-margin SVM can be formulated as the

following constrained optimization problem:

min
w∈Rp,b∈R

1

2
wTw (2.10)
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Figure 2.5: Optimal hyperplane found by SVM applied to a binary class classification
problem [104].

s.t. zi(w
Txi + b) ≥ 1, i = 1, 2, ..., n.

Soft-margin SVM classification: In many cases, the data is noisy and it is

not linearly separable. In other words, no (w, b) satisfies the constraints of (2.10).

In this situation, problem (2.10) will become “infeasible”. To overcome this issue,

soft-margin SVM was introduced to achieve maximum margin at a cost of having

a few misclassified data points. That is, soft-margin SVM maximizes the margin

and minimizes the degree of total violations simultaneously. A slack variable εi

(i = 1, 2, ..., n) is introduced which measures the degree of misclassification. The

following is the constrained optimization problem of the soft-margin SVM:

min
w,b,ε

1

2
wTw + C

n∑
i=1

εi (2.11)
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s.t. zi(w
Txi + b) ≥ 1− εi, i = 1, 2, ..., n,

εi ≥ 0, i = 1, 2, ..., n,

where C > 0 is the regularization parameter that controls the sum of the εi’s. So

the severity of the violations to the margin are determined by C. When C is small,

one would seek narrow margins that are rarely violated. On the other hand, when

C is large, the margin is wider and more violations to it is allowed; see Figure 2.6.

Lin [105] theoretically proved that for large C and linearly separable data, problem

(2.11) goes back to problem (2.10) with all εi being zero.

The dimension of vector w is the same as the dimension of the data points

and due to the possible high dimensionality of the data, w can be of high dimension.

To handle this difficulty, people usually solve the dual form of soft-margin SVM by

employing the Lagrange function. The dual problem can be formulated as follows:

min
α∈Rn

1

2
αTQα− eTα (2.12)

s.t.
n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, 2, ..., n,

where α is the dual vector and Q ∈ Rn×n is a positive semi-definite matrix whose

entries are calculated by:

Qij = zizjxi
Txj

with zi being the label of the ith data point.
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Figure 2.6: A support vector classifier was fit using four different values of the tuning
parameter C in (2.11). The largest value of C was used in the top left panel, and
smaller values were used in the top right, bottom left, and bottom right panels.
When C is large, there is a high tolerance for observations being on the wrong
side of the margin, and so the margin will be large. As C decreases, the tolerance
for observations being on the wrong side of the margin decreases, and the margin
narrows [56, Chapter 9, page 348].

Large scale quadratic programming such as MATLAB built-in function quadprog

or LIBSVM package [46,97] can be employed to solve the optimization problem in

(2.12). The procedure of how the convex quadratic optimization problem in (2.12) is

solved by quadprog and LIBSVM will be explained at the end of this chapter. After

33



solving the optimization problem (2.12), with the help of the Karush-Kuhn-Tucker

(KKT) optimality conditions of problems (2.11) and (2.12), the normal vector of the

hyperplane, w, and the y-intercept of the hyperplane, b, can be calculated by:

w =
n∑
i=1

ziαixi

and

b = −
∑

i:0<αi<C
zi(Qαi − e)

|{i : 0 < αi < C}|
,

and the label of the new data x (testing data) can be found by the following decision

function:

DF (x) = sgn(wTx+ b) = sgn

(
n∑
i=1

ziαix
T
i x+ b

)
,

with sgn being the sign function.

2.2.1.1 Kernel SVM

Most often, data has a highly nonlinear distribution and fitting only by a linear

classifier may cause many training misclassifications. So, underfitting will occur

and the decision function will have a poor performance. Another trick to deal with

nonlinearly separable data is to use the kernel trick which will extend linear SVM

to nonlinear SVM. This problem is referred to as kernel SVM classification. The

main issue here is, modeling a nonlinear curve is a frustrating task and we are only

familiar with parabolic, hyperbolic, or elliptic curves which, in practice, are far from

being enough. So, mapping data to a high-dimensional space is another approach

that can be taken into consideration. Data is more likely linearly separable in this
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high-dimensional space with higher possibility [106]. So in this method, first the

nonlinear mapping Φ transforms the input data to a high-dimensional space where

the data is more likely linearly separable. Then a hyperplane of maximal margin is

found by SVM in the manifold with new features. The followings are the primal and

dual forms of kernel SVM classification problem:

• Primal:

min
w,b,ε

1

2
wTw + C

n∑
i=1

εi (2.13)

s.t. zi(w
TΦ(xi) + b) ≥ 1− εi, i = 1, 2, ..., n,

εi ≥ 0, i = 1, 2, ..., n,

• Dual:

min
α

1

2
αT Q̃α− eTα (2.14)

s.t.
n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, 2, ..., n,

where Q̃ij = zizjκ(xi, xj). The normal vector w, y-intercept b, and the label of the

testing data x are respectively calculated by:

w =
n∑
i=1

ziαiΦ(xi),

b = −
∑

i:0<αi<C
zi(Q̃αi − e)

|{i : 0 < αi < C}|
,

DF (x) = sgn(wTΦ(x) + b) = sgn

(
n∑
i=1

ziαiκ(xi,x) + b

)
.
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2.2.2 k-Nearest Neighbor (kNN)

k-Nearest Neighbor (kNN) [45] is a supervised learning method used for classi-

fication. The idea of kNN is to assign the same class (label) to observations that are

“similar” to each other. In other words, kNN tries to find the k closest (most similar)

training points according to some criterion, where k is a positive integer. However,

deciding whether the two data points are similar or not is quite an open question.

So, in order to find similar data points, we need to find a way to compare them.

However, data might be of many different types, such as number, true/false (boolean),

or categorical, which makes comparison difficult. The most common solution to this

problem is to convert all characteristics into numerical values. Once everything is

converted into numbers, we can compare the observations and find similar ones. kNN

uses some “distance” between data points, under some appropriate metric, to interpret

their similarity. Euclidean, Chebychev, Minkowski, Hamming, and Mahalanobis are

among the most popular distances that can be used to find similar observations. This

method is usually used when the data set is small and noise-free. kNN is successfully

applied in a variety of applications such as data compression and forecasting.

Suppose training data vectors xi (i = 1, ..., n) are packed into data matrix

X ∈ Rp×n. Assume that z ∈ Rn is a vector consisting of the data labels. For

simplicity, we consider the binary classification in which the data set has only two

classes, i.e., ∀i, zi ∈ {1,−1}. Given the training data and its labels, the distances

between the data points in the training set are calculated to find similar observations

and assign the same label (class) to them, i.e., for each data point xi we calculate:

dist(xi, xj) ∀ i, j = 1, ..., n,

where dist stands for the distance that is used.
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One should note that there are two important concepts that need to be taken

into consideration: (1) the method to calculate the distances between the data points

and (2) the parameter k to decide how many neighbors will be chosen for the kNN

model. The latter will be discussed in this section. Once appropriate metric and

parameter k are chosen, to classify a new observation, the distance from this new

data point and all other points in the training set is calculated, then k closest training

points will be called. kNN algorithm boils down to forming a majority vote between

the k most similar instances to the given “unseen” observation. Simply, the label

of the unseen data point will be determined by the labels of the majority of the

similar observations to this new data point. An odd k is usually chosen to prevent

tie situations.

The very first question that might be asked is: How to choose k and how it

affects the classifier? In the kNN algorithm, k is being considered as a hyperparameter

that needs to be tuned in order to get the best result. The appropriate choice of k

will have a significant impact on the performance of kNN. k can be thought of as a

parameter that controls the shape of the decision boundary. By choosing small k, the

region will be forced to be more flexible which will result in having less bias but the

high variance and being less stable. On the other hand, higher values of k lead to

having smoother decision boundaries which will reduce variance caused by random

error but increase bias; see Figure 2.7. Picking large k will also make the model more

resilient to outliers due to taking the average of more votes. k is usually set to be

equal to the square root of the number of observations in the training set.
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Figure 2.7: A comparison of the kNN decision boundaries (solid black curves) obtained
using k = 1 and k = 100 on a simulated data set consisting of 100 observations.
With k = 1, the decision boundary is overly flexible (Left). With k = 100 it is not
sufficiently flexible (Right). The Bayes decision boundary is shown as a purple dashed
line [56, Chapter 2, page 41].

2.3 Solving the convex quadratic problem in the dual form of SVM

2.3.1 Solving the convex quadratic problem by LIBSVM

Consider the following convex quadratic optimization problem:

min
α

1

2
αTQα− eTα (2.15)

s.t.
n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n,

where e is the vector of all ones, C is the upper bound of all variables, and Q is a

P.S.D matrix of size n × n. One should note that if Radial Basis Function (RBF)

kernel κ(xi, xj) = e(−ξ‖xi−xj‖
2) (with xi 6= xj ∀i, j) is used, then Q will be positive

definite (P.D). Problem (2.15) can be solved by LIBSVM [46,97].
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One of the difficulties we usually face is that Q is usually dense (i.e., all

Q’s components are non-zero) and may be too large to be stored. In LIBSVM, a

decomposition method is considered to address this difficulty in solving the dual

convex quadratic problem. Using this decomposition method, only a subset of α is

modified and updated in each iteration, so we only need some columns of Q to do

the operation. This small subset, the working set B, leads to a smaller optimization

subproblem. Sequential Minimal Optimization (SMO) [107] is an extreme case of

the decomposition methods used in LIBSVM [97]. An SMO-type decomposition

method [108] is considered in LIBSVM.

The decomposition method used in LIBSVM to solve the convex quadratic

optimization problem (2.15) is an iterative method that generates a sequence of

approximations for which the objective function is monotonically decreasing. This

sequence of approximations is always convergent. For more details on the convergence

of this method the reader can see, e.g., [109,110].

2.3.2 Solving the convex quadratic problem by MATLAB built-in function quadprog

Consider the following convex quadratic problem:

min
x

1

2
xTHx+ cTx (2.16)

s.t. Ax ≤ b,

Aeqx = beq,

l ≤ x ≤ u,
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where H ∈ Rn×n is the Hessian matrix of the objective function in (2.16) which needs

to be positive-semi definite. Note that H can be a “sparse” or a “full” matrix. The

interior-point-convex algorithm [111, Chapter 11] is utilized by the MATLAB built-in

function quadprog to solve the optimization problem (2.16).
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CHAPTER 3

A NOVEL SUPERVISED DIMENSIONALITY REDUCTION METHOD

3.1 Introduction

Dimensionality reduction is a necessity before classification when we are facing

high-dimensional data. To facilitate the classification task of high-dimensional data,

first the dimension of the data should be reduced by one of the dimensionality

reduction methods, and then the reduced dimension data is classified by one of the

classification techniques. However, on one hand, most of the powerful dimensionality

reduction methods are not able to do classification. Therefore, after reducing the

dimension of the data, finding an appropriate classification method is hard and

time-consuming and several methods need to be tried to obtain the best result. On

the other hand, performing dimensionality reduction on input high-dimensional data

samples to obtain the low-dimensional representation and successively classifying

them by means of a typical classifier is a stepwise manner that may overlook the

dependency between the two processes, resulting in compromise of classification

accuracy. In other words, two objectives independent of dimensionality reduction

and classification are done separately, and thus, achieving optimal results is not

guaranteed.

In this study, we propose a novel supervised dimensionality reduction method

that integrates PCA with the dual form of SVM. We elegantly unify the two processes,

namely dimensionality reduction and classification, by formulating a novel constrained

optimization model, which is supervised and takes advantage of the label information.

Our model simultaneously finds low-dimensional representations and a classifier

41



hyperplane. Moreover, we propose an alternating iteration algorithm to solve the

constrained optimization problem of our proposed model.

High accuracy and effective representation are the advantages of our supervised

model since it is learning the low-dimensional representation and the classifier simul-

taneously. Moreover, since our model utilizes the data labels, it is guaranteed that in

the reduced space, the data points from the same class are as close as possible to each

other and this will result in having a higher classification accuracy. Our model is also

able to solve multi-class classification problems. Our proposed model is formulated

as follows:

min
P,α

F (P, α) = ‖X − PP TX‖2F + µ(
1

2
αTATPP TAα− eTα) (3.1)

s.t. P TP = Id,

n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n,

where X = [x1, x2, ..., xn] ∈ Rp×n, P ∈ Rp×d, Z = [z1, z2, ..., zn] ∈ R1×n, α ∈ Rn, and

e ∈ Rn are the data matrix, projection matrix, label matrix, the dual variable, and

the vector of all ones, respectively, with p being the number of features (dimension

of the data), n being the number of observations, and d being the dimension of

the low-dimensional space. A = [z1x1, · · · , znxn] ∈ Rp×n and C > 0 and µ > 0 are

hyperparameters in our model that need to be tuned. Data matrix X and label matrix

Z are also known. The goal of our model is to find the projection matrix P being

used in dimensionality reduction and to find the classifier hyperplane wTP Tx+ b = 0

being used for data classification. With the help of the dual variable α, w and b which
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are the normal vector and y-intercept of the separating hyperplane, respectively, can

be obtained.

Problem (3.1) is non-convex, but it can be solved in an alternating way as follows:

• α-subproblem (fixing P )

min
α∈Rn

f(α) =
1

2
αTATPP TAα− eTα (3.2)

s.t.
n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n;

• P -subproblem (fixing α)

min
P∈Rp×d

g(P ) = ‖X − PP TX‖2F +
µ

2
αTATPP TAα (3.3)

s.t. P TP = Id.

Problem (3.3) can be converted into a trace optimization problem. In fact,

g(P ) : = ‖X − PP TX‖2F +
µ

2
αTATPP TAα

= ‖X‖2F − ‖P TX‖2F +
µ

2
‖P TAα‖22

= Tr(XTX)−Tr(P TXXTP ) +
µ

2
Tr(P TAααTATP )

= Tr(P TTP ) + Tr(XTX), (3.4)

where T = µ
2
AααTAT −XXT . Hence, the P -subproblem (3.3) is equivalent to:
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• P -subproblem (fixing α)

min
P∈Rp×d

g(P ) = Tr(P TTP ) (3.5)

s.t. P TP = Id.

3.1.1 Solving subproblems (3.2) and (3.5)

The optimization problem (3.2) is a convex quadratic optimization problem

that can be solved by a large scale quadratic programming solver such as MATLAB

built-in function quadprog or LIBSVM package [46,97]. Problem (3.5) is equivalent

to finding the smallest d eigenvalues of matrix T [112]. We can solve problem (3.2)

for α and problem (3.5) for P , alternatingly until convergence.

The outputs of our alternating algorithm are the projection matrix P and the

dual variable α. P is directly utilized to reduce the dimension of the data and α

helps to find the classifier hyperplane. As discussed in Chapter 2, with the help of the

KKT optimality conditions of the SVM optimization problem, after solving (3.2) and

obtaining α, the normal vector, w, and the y-intercept, b, of the classifier hyperplane

can be calculated by:

w =
n∑
i=1

αiziP
Txi (3.6)

and

b = −
∑

i:0<αi<C
zi∇f(α)i

|{i : 0 < αi < C}|
, (3.7)

where ∇f(α) = (ATPP TA)α− e is the gradient of the objective function in (3.2).
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Once all variables are found, the label of the new and unseen data x (testing data)

can be predicted by the following decision function:

DF (x) = sgn(wTP Tx+ b) = sgn

(
n∑
i=1

αizix
T
i PP

Tx+ b

)
, (3.8)

where sgn is the sign function.

Our proposed supervised algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 Linear Supervised PCA-SVM
Input: X,P 0, Z, µ > 0, C > 0, d, tolerance, and k = 1;

Output: P ∈ Rp×d, α ∈ Rn.

1: construct matrix A = [z1x1, · · · , znxn];

2: while |F (P k+1, αk+1)− F (P k, αk)| ≥ tolerance do

3: for given P k, solve α-subproblem (3.2) for αk;

4: T k = µ
2
A(αk)(αk)TAT −XXT ;

5: find eigenvalues and eigenvectors of T k;

6: sort eigenvalues in the ascending order;

7: let P k be composed of the eigenvectors corresponding to the d smallest eigen-

values of T k;

8: k ← k + 1;

9: end while

3.2 Convergence of the proposed algorithm

In this section, we study and discuss the convergence of our proposed algorithm

in Algorithm 3.1. To solve large-scale optimization problems, the big original problem

is usually broken down into small subproblems and then alternating methods are

employed to solve these small subproblems and finally get the optimal solution of the

45



original one. In other words, the original intractable problem is transformed into a

set of tractable subproblems by alternating procedures.

In our model, α and P are updated and optimized alternatingly. In our

experiments, LIBSVM [46,97] and MATLAB function quadprog are employed to solve

the convex quadratic optimization problem (3.2). The procedure of how LIBSVM

and quadprog solve this problem and their convergence is discussed in Chapter 2.

In this section, we discuss and explore the convergence of the trace optimization

problem (3.5), and then comment on the convergence of Algorithm 3.1 for the original

optimization problem and prove some nice properties of our model.

The trace optimization problem (3.5) yields an eigenvalue problem [112]. In

(3.5), given a symmetric matrix T of size p × p, the trace of P TTP is minimized

when P is an orthogonal basis of the eigenspace associated with the (algebraically)

smallest eigenvalues. If eigenvalues are labeled in the increasing order and v1, ..., vd

are eigenvectors associated with the first d eigenvalues λ1, ..., λd, P = [v1, ..., vd], with

P TP = Id, is the minimizer and,

Tr[P TTP ] = λ1 + ...+ λd. (3.9)

The conclusion is an immediate consequence of the Courant–Fisher characteriza-

tion [113, 114]. Any P which is an orthonormal basis of the eigenspace associated

with the d smallest eigenvalues is the optimal solution of (3.5) [115,116]. Note that

the optimal solution P of the problem (3.5) is not unique, however, what matters the

most is the subspace constructed by any orthonormal basis rather than a particular

orthonormal basis itself.
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In the following we discuss the convergence of our proposed algorithm. Suppose

{αk}∞k=1 and {P k}∞k=1 are the sequences generated by Algorithm 3.1, i.e., suppose αk

and P k are the optimal (exact) solutions of (3.2) and (3.5), respectively, in the kth

iteration. We have the following results:

Theorem 3.2.1. Suppose {αk}∞k=1 and {P k}∞k=1 are the sequences generated by Al-

gorithm 3.1.

(i) The sequence {αk}∞k=1 has a convergent subsequence.

(ii) The sequence {P k}∞k=1 has a convergent subsequence.

Proof. (i) The inequality constraint in (3.2) is a box constraint. Let D = [0, C]n. D

is a bounded, closed, and convex set, so it is compact. By Bolzano–Weierstrass

theorem, the sequence {αk}∞k=1 contains a convergent subsequence. This means there

exists α̃∗ ∈ D to which a subsequence of {αk}∞k=1, denoted by {αkj}∞j=1, converges to

α̃∗, i.e.,

lim
j→∞

αkj = α̃∗.

(ii) Let O = {M : M ∈ Rp×d & MTM = Id} be the set of orthonormal matrices

in Rp×d. O is a closed and bounded subset (as a subset of Rpd), so it is compact.

By Bolzano–Weierstrass theorem, the sequence {P k}∞k=1 contains a convergent

subsequence. So, there exists P̃ ∗ ∈ O to which a subsequence of {P k}∞k=1, denoted

by {P ki}∞i=1, converges to P̃ ∗, i.e.,

lim
i→∞

P ki = P̃ ∗.

47



In the following, we show that the limit points of subsequences {αkj}∞j=1 and

{P ki}∞i=1 satisfy the KKT optimality conditions of problems (3.2) and (3.5), respec-

tively. The KKT conditions for these subproblems are as follows:

• The KKT conditions of (3.2):

– Feasibility conditions:

n∑
i=1

αizi = 0, (3.10)

αi−C ≤ 0, i = 1, ..., n, (3.11)

−αi ≤ 0, i = 1, ..., n, (3.12)

λi ≥ 0, i = 1, ..., n, (3.13)

ηi ≥ 0, i = 1, ..., n; (3.14)

– Complementarity conditions:

λiαi = 0, i = 1, ..., n, (3.15)

ηi(αi−C) = 0, i = 1, ..., n; (3.16)

– First order condition:

ATPP TAα− e+ βz − λ+ η = 0, (3.17)

where z,λ and η are the label vector and dual variables, respectively.

• The KKT conditions of (3.5):

– Feasibility condition:

P TP = Id; (3.18)
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– First order condition:

(µAααTAT −XXT )P + 2PR̄ = 0, (3.19)

where R̄ is the dual variable of the problem (3.5).

Since ∀k, αk and P k are optimal solutions of problems (3.2) and (3.5) in the kth

iteration, they satisfy the KKT optimality conditions of these problems. Consequently,

{αkj}∞j=1 and {P ki}∞i=1 also satisfy the KKT conditions of these two subproblems. By

taking the limit of all the above equations and letting j →∞ and i→∞, it can be

easily seen that the KKT conditions of problems (3.2) and (3.5) are also met by the

limit points α̃∗ and P̃ ∗. This discussion leads to the following conclusion:

Conclusion 1: The KKT optimality conditions of optimization problems (3.2) and

(3.5) are met by the limit points α̃∗ and P̃ ∗.

We also show that the objective function in (3.1) is decreasing and convergent.

Theorem 3.2.2. Let {αk} and {P k} be generated by Algorithm 3.1. Then the

sequence {F (P k, αk)}∞k=1 in (3.1) is decreasing and convergent.

Proof. For any k, let Mk = ATP kP kTA and l = min{−eTαk : ∀k}. Suppose

0 < C <∞, where C is the hyperparameter of the model. Since αk has n components

and for each of its components, 0 ≤ αi
k ≤ C, ∀i, k, l is a finite number and lies in

the closed interval [−nC, 0], where n is the number of observations. Moreover, since

∀k, Mk is P.S.D, we have:

µl ≤ ‖X − (P k)(P k)TX‖2F +
µ

2
(αk)TMk(αk)− µeTαk = F (P k, αk), (3.20)
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where µ > 0 is the hyperparameter introduced in our model.

The optimization problem in (3.1) is a minimization problem and the value of the

objective function F (P k, αk) in the kth iteration is less than the value of F (P k−1, αk−1)

in the (k − 1)st iteration. The following inequality holds for any k

F (P k, αk) ≤ F (P k, αk−1) ≤ F (P k−1, αk−1). (3.21)

Inequality (3.21) holds because by fixing α (P ) in each iteration and minimizing the

problem in (3.1) over P (α) in the next iteration, the value of the objective function

decreases.

Inequality (3.20) shows that the sequence {F (P k, αk)}∞k=1 is bounded below and in-

equality (3.21) shows that this sequence is decreasing. So the sequence {F (P k, αk)}∞k=1

is decreasing and bounded below, thus by the Monotone Convergence theorem it

is convergent.

3.3 Multi-class classification

This section is devoted to explaining the strategy that is used in our model

to classify a data set with more than two classes. For example, hand-written digit

recognition contains 10 different classes: digits 0 to 9. This type of problem is called

a “multi-class classification” problem. Most classification methods such as SVM

are designed for binary-class classification problems and are not able to solve these

problems directly.
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To address this issue, the data set with more than two classes is split into

multiple data sets with only two classes and then each binary classification model is

trained separately. The most common methods to do multi-class classification are

One-vs-One andOne-vs-All. In the One-vs-One method, a multi-class classification

problem is split into several binary problems and each problem is solved separately.

On the other hand, in the One-vs-All method, a binary model is constructed so that

each model is trained with one class as positive, and the rest of the classes as negative.

Only the One-vs-One method is discussed in this section. In this method, q(q − 1)/2

classifiers are constructed, where q is the number of classes, and each one is trained

on data with two classes. The One-vs-One method is utilized in our model to do

multi-class classification.

For simplicity, consider a data set with 3 different classes. Using the One-vs-One

method, this multi-class problem is split into 3 binary classification problems: class 1

vs class 2, class 1 vs class 3, and class 2 vs class 3. For training data for the ith and

the jth classes, the following optimization problem needs to be solved:

min
wij ,bij ,εij

1

2
‖wij‖22 + C

n∑
t=1

εijt (3.22)

s.t. (wij)TP Txt + bij ≥ 1− εijt , if xt in the ith class,

(wij)TP Txt + bij ≥ −1 + εijt , if xt in the jth class,

εijt ≥ 0.

The dual form of the problem (3.22) which is a convex quadratic problem can be

solved by MATLAB built-in function quadprog. Once the dual variable α is found,

wij and bij are calculated by (3.6) and (3.7), respectively. Having wij and bij, the

classifier (wij)TP Tx+ bij = 0 can be easily obtained.
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For a three-class data set, three classifiers (decision functions), denoted by

DF 12, DF 13, and DF 23 are calculated. In order to classify a new data point x, a

“voting” strategy is used. Using this strategy, the new data point is put into three

decision functions. Class i will get a vote if the binary problem of classes i and j

indicates the new data point x should belong to class i. In the end, the new data

point belongs to a class with the maximum number of votes. In our proposed model,

this strategy is used to classify multi-class data sets.

3.4 Numerical experiments

3.4.1 Experimental settings

In this subsection, the performance of various dimensionality reduction methods

is evaluated on two toy data sets. These data sets are available from the LIBSVM

website1. We use “Heart” and “Iris” data sets as toy examples for classification. A

brief description of these data sets is given in Table 3.1.

Table 3.1: Description of data sets used in the experiments.

DATA SET # OBSERVATIONS # FEATURES # CLASSES
Heart 270 13 2

Iris 150 4 3

The experimental results are divided into two parts, Part I and Part II. The

first part shows the experimental settings and numerical results of the comparison

of several dimensionality reduction methods, including PCA, LDA, SPCA, and our

proposed model whose algorithm is summarized in Algorithm 3.1. In this part, we

look at our model just as a dimensionality reduction method and do not consider its
1https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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ability to do classification. The performance of our model as a whole package which

does the dimensionality reduction and classification is shown in the second part.

In our experiments, first we conduct a comparison among PCA, LDA, SPCA,

and our proposed model whose algorithm is summarized in Algorithm 3.1. We

have performed 40 random splits of the data, taking different portions for training

and testing sets (20%/80%, 40%/60%, 50%/50%, 60%/40%, 80%/20%). First, the

transformation matrix is computed by these four dimensionality reduction methods

being applied to the training set. In the case of SPCA, linear kernel function,

κ(xi, xj) = xi
Txj is applied to the labels. In our model, we use PCA on the training

data to compute the initial projection matrix P . For an initial P obtained by PCA,

LIBSVM [46,97] and MATLAB built-in function quadprog are separately employed to

solve the α-subproblem (3.2) for an α vector. This vector is used to find the solution

of the P -subproblem (3.5) for a projection matrix P . Parameter µ is selected over

the range {10−3, 10−2, ..., 102, 103} and the tolerance is set to 10−10. After computing

the transformation matrix, the dimension of the testing data is reduced using matrix

P and then SVM or kNN (k = 1, 2, 3) are used to do classification of the reduced

dimension data. We calculate the following quantity to evaluate the performance of

Algorithm 3.1:

Classification Accuracy =
Number of correct predictions
Total number of predictions

× 100%.

In all methods, while using SVM, different values for the hyperparameter C over the

range {10−3, 10−2, 10−1, 100, 101} and linear kernel are used for the classification task.

All experiments are repeated 40 times.
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3.4.2 Numerical results: Part I

3.4.2.1 Numerical results for “Heart” data set

“Heart” data set, taken from the LIBSVM website [46], is considered as the first

toy example to evaluate and compare the performance of dimensionality reduction

methods mentioned in the previous subsection. We conduct dimensionality reduction

on this data set by PCA, LDA, SPCA, and our proposed model whose convex

quadratic problem is solved by LIBSVM and quadprog function. Since “Heart”

data set has 13 features, it is projected into low-dimensional spaces with dimension

d = {1, 2, 4, 6, 8, 10, 12}. Due to some limitations the LDA method has, in the case

where LDA is used as the dimensionality reduction method, data points in “Heart”

data set are projected into a 1-dimensional space. In all figures, the PCA graph

represents the classification accuracy of testing data whose dimension is reduced

by PCA and is classified by SVM or kNN. SPCA, NEW-LIB, and NEW-QUAD

graphs also show the classification accuracy by SVM or kNN of the testing set

whose dimension is reduced by SPCA, our proposed model whose convex quadratic

optimization problem is solved by LIBSVM, and our proposed model whose convex

quadratic optimization problem is solved by quadprog function, respectively.

Figure 3.1 shows the classification accuracy on “Heart” data set by SVM as the

classification method for different values of hyperparameter C and different portions

of training and testing. The results show that our model works well and in most

cases, it has the same as or better performance than other methods.
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Figure 3.1: Classification accuracy on “Heart” data set by SVM as the classification
method with C = 10−3 for the first row, C = 10−2 for the second row, C = 10−1 for
the third row, C = 100 for the fourth row, and C = 101 for the fifth row.

The classification accuracy on “Heart” data set by kNN as the classification

method for different values of k is also shown in Figures 3.2, 3.3, and 3.4. Similar to

the previous case, the results show the good performance of our model.
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Figure 3.2: Classification accuracy on “Heart” data set by kNN with k = 1.
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Figure 3.3: Classification accuracy on “Heart” data set by kNN with k = 2.
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Figure 3.4: Classification accuracy on “Heart” data set by kNN with k = 3.

Tables 3.2 and 3.3 contain the classification accuracy on “Heart” data set by

SVM or kNN after reducing the dimension of the data by LDA and our proposed

model. In Table 3.2, the LDA+SVM row represents the classification accuracy by

SVM after applying LDA to project the data into a 1-dimensional space and the

NEW+SVM row shows the classification accuracy by SVM after applying our model

to project the data into a 1-dimensional space. In Table 3.3, the LDA+kNN row

represents the classification accuracy by kNN after applying LDA to the data as the
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dimensionality reduction method and the NEW+kNN row shows the classification

accuracy by kNN after applying our model to the data as the dimensionality reduction

method. The best results are highlighted.

Table 3.2: Classification accuracy (in %) by SVM after applying LDA and our
proposed model to “Heart” data set to reduce its dimension.

mean ± std

Training Ratio Model C = 10−3 C = 10−2 C = 10−1 C = 100 C = 101

LDA+SVM 48.44 ± 3.65 51.92 ± 8.44 52.20 ± 10.97 52.77 ± 11.85 52.85 ± 10.35
20% NEW+SVM 55.33 ± 0.93 55.11 ± 1.35 55.18 ± 1.05 54.83 ± 2.67 55.41 ± 0.55

LDA+SVM 49.70 ± 6.63 48.92 ± 8.58 48.75 ± 9.86 49.47 ± 9.42 49.22 ± 9.43
40% NEW+SVM 55.47 ± 0.99 55.26 ± 1.34 55.38 ± 0.64 55.52 ± 0.13 55.46 ± 0.45

LDA+SVM 51.64 ± 7.39 48.97 ± 8.88 48.39 ± 9.18 49.73 ± 8.40 48.41 ± 8.14
50% NEW+SVM 55.76 ± 1.15 55.33 ± 1.15 55.50 ± 0.35 55.29 ± 1.09 55.51 ± 0.23

LDA+SVM 52.87 ± 7.46 47.44 ± 6.66 47.20 ± 6.59 46.67 ± 5.73 47.27 ± 4.70
60% NEW+SVM 55.80 ± 1.49 55.55 ± 0.94 55.69 ± 1.23 55.70 ± 1.31 55.62 ± 1.04

LDA+SVM 53.75 ± 7.35 45.15 ± 1.99 45.85 ± 1.27 44.89 ± 1.62 47.41 ± 4.98
80% NEW+SVM 55.91 ± 1.16 55.86 ± 1.24 55.98 ± 1.42 55.83 ± 1.85 55.81 ± 0.68
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Table 3.3: Classification accuracy (in %) by kNN after applying LDA and our proposed
model to “Heart” data set to reduce its dimension.

mean ± std

Training Ratio Model k = 1 k = 2 k = 3

LDA+kNN 52.59 ± 10.96 53.77 ± 11.93 52.98 ± 12.33
20% NEW+kNN 49.47 ± 2.69 52.68 ± 2.33 49.44 ± 2.11

LDA+kNN 50.19 ± 9.51 53.31 ± 11.34 48.86± 9.06
40% NEW+kNN 50.92 ± 2.10 53.81 ± 2.36 49.52 ± 1.58

LDA+kNN 48.83 ± 7.59 50.87 ± 9.47 48.28 ± 7.94
50% NEW+kNN 49. 85 ± 2.89 53.33 ± 1.83 49.58 ± 1.35

LDA+kNN 47.76 ± 4.85 50.41 ± 8.19 47.10 ± 5.84
60% NEW+kNN 50.64 ± 1.46 52.43 ± 1.21 51.25 ± 1.64

LDA+kNN 46.63 ± 3.12 48.46 ± 4.48 45.55 ± 2.64
80% NEW+kNN 53.37 ± 1.04 52.68 ± 1.34 49.12 ± 1.84

The results show that the performance of our model is by far better than the

performance of LDA as the dimensionality reduction method prior to the classification.

3.4.2.2 Numerical results for “Iris” data set

“Iris” data set, taken from the LIBSVM website [46], is another toy example con-

sidered in our experiments to evaluate and compare the performance of dimensionality

reduction methods mentioned in the previous subsection. We conduct dimensionality

reduction on this data set by PCA, LDA, SPCA, and our proposed model whose con-

vex quadratic problem is solved by LIBSVM and quadprog function, respectively. We

project the data into low-dimensional spaces with dimension d = {1, 2, 3}. Due to the

limitations of the LDA method, in the case where LDA is used as the dimensionality

reduction method, data points in “Iris” data set are projected into a 2-dimensional
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space. In all figures, the PCA graph represents the classification accuracy of testing

data whose dimension is reduced by PCA and is classified by SVM or kNN. SPCA,

NEW-LIB, and NEW-QUAD graphs also show the classification accuracy by SVM or

kNN of the testing set whose dimension is reduced by SPCA, our proposed model

whose convex quadratic problem is solved by LIBSVM, and our proposed model

whose convex quadratic problem is solved by quadprog function, respectively.

Figures 3.5-3.8 show the classification accuracy on “Iris” data set by SVM

and kNN as the classification methods for different values of C and k, and different

portions of training and testing, respectively. The results show that our model works

well and in most cases, it has the same as or better performance than other methods.
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Figure 3.5: Classification accuracy on “Iris” data set by SVM as the classification
method with C = 10−3 for the first row, C = 10−2 for the second row, C = 10−1 for
the third row, C = 100 for the fourth row, and C = 101 for the fifth row.
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Figure 3.6: Classification accuracy on “Iris” data set by kNN with k = 1.
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Figure 3.7: Classification accuracy on “Iris” data set by kNN with k = 2.
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Figure 3.8: Classification accuracy on “Iris” data set by kNN with k = 3.

Tables 3.4 and 3.5 contain the classification accuracy on “Iris” data set by SVM

or kNN after reducing the dimension of the data by LDA and our proposed model.

In Table 3.4, the LDA+SVM row represents the classification accuracy by SVM after

applying LDA to project the data into a 2-dimensional space and the NEW+SVM

row shows the classification accuracy by SVM after applying our model to project

the data into a 2-dimensional space. In Table 3.5, the LDA+kNN row represents

the classification accuracy by kNN after applying LDA to project the data into a
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2-dimensional space and the NEW+kNN row shows the classification accuracy by

kNN after applying our model to the data as the dimensionality reduction method

and projecting the data into a 2-dimensional space. The best results are highlighted.

It can be noted that our model outperforms LDA as the dimensionality reduction

method prior to the classification.

Table 3.4: Classification accuracy (in %) by SVM after applying LDA and our
proposed model to “Iris” data set to reduce its dimension.

mean ± std

Training Ratio Model C = 10−3 C = 10−2 C = 10−1 C = 100 C = 101

LDA+SVM 74.63 ± 16.44 69.37 ± 18.96 69.11 ± 19.02 66.18 ± 18.66 66.73 ± 19.01
20% NEW+SVM 87.93 ± 1.09 86.68 ± 1.29 94.14 ± 1.56 95.54 ± 1.84 94.37 ± 2.22

LDA+SVM 79.73 ± 11.70 73.69 ± 11.68 70.55 ± 16.28 67.32 ± 18.01 71.68 ± 16.84
40% NEW+SVM 87.85 ± 1.50 90.58 ± 2.09 95.94 ± 1.95 95.72 ± 1.63 94.62 ± 1.44

LDA+SVM 78.68 ± 11.08 72.06 ± 10.12 70.44 ± 14.21 69.32 ± 15.40 70.93 ± 14.00
50% NEW+SVM 88.13 ± 1.23 90.40 ± 2.02 96.70 ± 1.62 96.53 ± 1.78 94.40 ± 1.76

LDA+SVM 75.94 ± 8.37 71.70 ± 9.91 68.18 ± 14.05 66.58 ± 15.44 69.11 ± 14.66
60% NEW+SVM 88.20 ± 1.96 90.83 ± 2.11 97.00 ± 1.96 96.00 ± 1.80 94.79 ± 1.43

LDA+SVM 74.27 ± 5.96 71.55 ± 5.42 68.16 ± 13.70 63.08 ± 12.07 64.61 ± 11.17
80% NEW+SVM 88.25 ± 1.33 92.10 ± 1.28 97.16 ± 1.54 97.19 ± 1.48 96.26 ± 1.91

62



Table 3.5: Classification accuracy (in %) by kNN after applying LDA and our proposed
model to “Iris” data set to reduce the dimension.

mean ± std

Training Ratio Model k = 1 k = 2 k = 3

LDA+kNN 72.09 ± 13.73 73.34 ± 16.12 74.55 ± 13.37
20% NEW+kNN 94.02 ± 1.84 92.79 ± 2.52 95.22 ± 2.24

LDA+kNN 71.19 ± 7.73 74.92 ± 10.34 71.65 ± 8.63
40% NEW+kNN 95.51 ± 1.81 93.97 ± 2.56 95.61± 1.81

LDA+kNN 72.56 ± 7.87 74.64 ± 8.85 70.66 ± 7.52
50% NEW+kNN 95.46 ± 1.63 94.53 ± 2.43 95.73 ± 2.16

LDA+kNN 71.90 ± 6.20 73.61 ± 6.86 71.77 ± 6.38
60% NEW+kNN 95.29 ± 1.24 94.62 ± 2.78 96.15 ± 1.69

LDA+kNN 70.88 ± 4.06 71.50 ± 4.24 70.08 ± 4.25
80% NEW+kNN 95.83 ± 2.08 94.58 ± 2.51 96.75 ± 1.24

3.4.3 Numerical results: Part II

In our experiments, we also compare the classification accuracy by our model

and the one by SVM and kNN after reducing the dimension of the data by PCA, LDA,

and SPCA. Experimental settings are similar to the ones we have in the previous

subsections. To compare the classification accuracy, first we apply PCA and SPCA

to the training set and find the projection matrix. This projection matrix is used

to reduce the dimension of the testing set. After reducing the dimension, SVM and

kNN are employed to obtain the classification accuracy. On the other hand, in our

model, we use PCA on the training data to compute the initial projection matrix

P , and we alternatingly solve problems (3.2) for an α and (3.5) for a transformation

matrix. This transformation matrix is used to reduce the dimension of the testing

data. Our model also learns a classifier while calculating the projection matrix. After

63



reducing the dimension of the testing data, the classifier hyperplane found by our

model is applied to the testing data to obtain the classification accuracy. In our

model, the label/class of each unseen data point in the reduced dimension testing

data is obtained by the decision function in (3.8).

3.4.3.1 Numerical results for “Heart” data set

The classification accuracy by the decision function for different values of

hyperparameter C is presented in Figure 3.9. In this figure, the decision function

in (3.8) is only used to find the classification accuracy of the testing data whose

dimension is reduced by our proposed model solved by LIBSVM or quadprog function.

For “Heart” data set, 1NN is used to find the classification accuracy of the testing

data for which the dimension is reduced by PCA and SPCA. Figure 3.9 shows that

our model outperforms PCA and SPCA and achieves much better results than these

two methods.
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Figure 3.9: Classification accuracy on “Heart” data set by the decision function in
our proposed model as the classification method with C = 10−3 for the first row,
C = 10−2 for the second row, C = 10−1 for the third row, C = 100 for the fourth row,
and C = 101 for the fifth row. kNN with k = 1 is applied on the testing data whose
dimension is reduced by PCA and SPCA.

3.4.3.2 Numerical results for “Iris” data set

The classification accuracy by decision function applied on “Iris” data set is in

Figure 3.10. While using the decision function for classifying the “Iris” data set by
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our proposed model, SVM is used to find the classification accuracy of the data set

for which the dimension is reduced by PCA and SPCA. From Figure 3.10, it can be

seen that our model works well and often it outperforms other methods. This figure

also indicates the ability of our model to solve multi-class classification problems.
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Figure 3.10: Classification accuracy on “Iris” data set by the decision function in
our proposed model as the classification method with C = 10−3 for the first row,
C = 10−2 for the second row, C = 10−1 for the third row, C = 100 for the fourth row,
and C = 101 for the fifth row. SVM is applied on the testing data whose dimension
is reduced by PCA and SPCA.
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CHAPTER 4

MOVING BEYOND LINEARITY

4.1 Introduction

In many cases, not all high-dimensional data problems are linearly separable

and there is a nonlinear relationship between the outcome and the predictors, i.e.,

the decision boundary between the two classes is nonlinear. We can take image data

as an example of high-dimensional data whose pixels are not very informative. In

this case, linear classifiers perform poorly. To accommodate a nonlinear boundary

between different classes in data sets, the feature space needs to be enlarged using

nonlinear mappings. Although the decision boundary in the original feature space is

nonlinear, however, it will be linear in the enlarged feature space and this is a nice

property of the new feature space; see Figure 4.1.

Suppose the following nonlinear mapping is used to enlarge the feature space:

Φ : x→ Φ(x) ∈ H,

where H is a Hilbert space that represents the feature space. Φ embeds vector x into

the space H.

In this chapter, we extend our model to a nonlinear form to be applied to data

sets with nonlinear and complex structures. We assume that the nonlinear mapping

Φ is explicitly known. The following problem is the optimization problem of our

nonlinear model:
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Figure 4.1: The decision boundary is nonlinear before transforming data to a higher-
dimensional space (Right). After enlarging the feature space, the decision boundary
becomes linear (Left) [117].

min
P,α

F (P, α) = ‖Φ(X)− PP TΦ(X)‖2F + µ(
1

2
αTATPP TAα− eTα) (4.1)

s.t. P TP = Id,

n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n,

where Φ(X) = [Φ(x1),Φ(x2), ...,Φ(xn)] ∈ RD×n, P ∈ RD×d, Z = [z1, z2, ..., zn] ∈ R1×n,

α ∈ Rn, and e ∈ Rn are the new data matrix, projection matrix, label matrix, the

dual variable, and the vector of all ones, respectively, with D (D > p) being the

number of features (dimension of the data) in the enlarged feature space, n being

the number of observations, and d being the dimension of the low-dimensional space.

A = [z1Φ(x1), · · · , znΦ(xn)] ∈ RD×n and C > 0 and µ > 0 are hyperparameters in our

model that need to be tuned. New data matrix Φ(X) and label matrix Z are known.

Φ is a nonlinear mapping used for enlarging the feature space. The goal of our model
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is to find the projection matrix P being used in dimensionality reduction and to find

the classifier hyperplane wTP TΦ(x) + b = 0 being used for data classification. With

the help of the dual variable α, w and b which are the normal vector and y-intercept

of the separating hyperplane, respectively, can be obtained.

Problem (4.1) is non-convex, but it can be solved in an alternating way as

follows:

• α-subproblem (fixing P )

min
α∈Rn

f(α) =
1

2
αTATPP TAα− eTα (4.2)

s.t.
n∑
i=1

ziαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , n;

• P -subproblem (fixing α)

min
P∈RD×d

g(P ) = ‖Φ(X)− PP TΦ(X)‖2F +
µ

2
αTATPP TAα (4.3)

s.t. P TP = Id.

Problem (4.3) can be converted into a trace optimization problem. In fact,

g(P ) : = ‖Φ(X)− PP TΦ(X)‖2F +
µ

2
αTATPP TAα

= ‖Φ(X)‖2F − ‖P TΦ(X)‖2F +
µ

2
‖P TAα‖22

= Tr(Φ(X)TΦ(X))−Tr(P TΦ(X)Φ(X)TP ) +
µ

2
Tr(P TAααTATP )

= Tr(Φ(X)TΦ(X)) + Tr(P TTP ), (4.4)

where T = µ
2
AααTAT − Φ(X)Φ(X)T . Hence, the P -subproblem (4.3) is equivalent

to:
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• P -subproblem (fixing α)

min
P∈RD×d

g(P ) = Tr(P TTP ) (4.5)

s.t. P TP = Id.

4.1.1 Solving subproblems (4.2) and (4.5)

Similar to the linear form of our model, the optimization problem (4.2) is a

convex quadratic optimization problem that can be solved by a large scale quadratic

programming solver such as MATLAB built-in function quadprog or LIBSVM package

[46,97]. Problem (4.5) is equivalent to finding the smallest d eigenvalues of matrix

T [112]. We can solve problems (4.2) for α and (4.5) for P , alternatingly until

convergence.

The outputs of our alternating algorithm are the projection matrix P and the

dual variable α. P is directly utilized to reduce the dimension of the data and α

helps to find the classifier hyperplane. As discussed earlier, with the help of the KKT

optimality conditions of SVM optimization problem, after solving (4.2) and obtaining

α, the normal vector, w, and the y-intercept, b, of the classifier hyperplane can be

calculated by:

w =
n∑
i=1

αiziP
TΦ(xi) (4.6)

and

b = −
∑

i:0<αi<C
zi∇f(α)i

|{i : 0 < αi < C}|
, (4.7)

where ∇f(α) = (ATPP TA)α− e is the gradient of the objective function in (4.2).

70



Once all variables are found, the label of the new and unseen data x (testing data)

can be predicted by the following decision function:

DF (x) = sgn(wTP TΦ(x) + b) = sgn

(
n∑
i=1

αiziΦ(xi)
TPP TΦ(x) + b

)
, (4.8)

where sgn is the sign function.

Algorithm 4.1 summarizes the procedure of our nonlinear supervised model.

Algorithm 4.1 Nonlinear Supervised PCA-SVM
Input: X,P 0, Z, µ > 0, C > 0, d, tolerance, and k = 1;

Output: P ∈ RD×d, α ∈ Rn.

1: construct matrix A = [z1Φ(x1), · · · , znΦ(xn)];

2: while |F (P k+1, αk+1)− F (P k, αk)| ≥ tolerance do

3: for given P k, solve α-subproblem (4.2) for αk;

4: T k = µ
2
A(αk)(αk)TAT − Φ(X)Φ(X)T ;

5: find eigenvalues and eigenvectors of T k;

6: sort eigenvalues in the ascending order;

7: let P k be composed of the eigenvectors corresponding to the d smallest eigen-

values of T k;

8: k ← k + 1;

9: end while
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4.2 Numerical experiments

4.2.1 Experimental settings

In this subsection, the performance of various dimensionality reduction methods

is evaluated on 5 data sets. These data sets are available from the LIBSVM website1.

A brief description of the data sets is given in Table 4.1.

Table 4.1: Description of data sets used in the experiments

DATA SET # OBSERVATIONS # FEATURES # CLASSES
sonar 208 60 2

german.numer 1000 24 2
wine 178 13 3

svmguide2 391 20 3
dna 2000 180 3

The experimental results are divided into two parts. The first part shows

the experimental settings and results of the comparison of several dimensionality

reduction methods, including PCA, LDA, SPCA, and our proposed model whose

algorithm is summarized in Algorithm 4.1. In this part, we look at our model just as a

dimensionality reduction algorithm and do not consider its ability to do classification.

The performance of our model as a whole package which does the dimensionality

reduction and classification is shown in the second part.

4.2.2 Nonlinear mapping Φ

A polynomial kernel function is:

κ(xi, xj) = (γxTi xj + r)m = 〈Φ(xi),Φ(xj)〉, (4.9)

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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where m is the degree of the polynomial kernel function, and γ > 0 and r are the

parameters for this kernel. Similar to other kernel functions, the polynomial kernel

is computed by the inner product of two vectors Φ(xi) and Φ(xj). Parameter r can

be fixed to one [118]. In all experiments, we use the following degree-2 nonlinear

polynomial mapping:

Φ(x) = [1,
√

2γx1, · · · ,
√

2γxp, γx
2
1, · · · , γx2p,

√
2γx1x2, · · · ,

√
2γxp−1xp]

T . (4.10)

4.2.3 Parameter selection

Our nonlinear model has 5 parameters (C, µ, γ, r,m) that need to be tuned.

Since we set r to be one and only use the polynomial with degree 2, the number of

parameters is reduced to 3. In all experiments, parameters C and γ are chosen by a

10-fold cross-validation over the range {10−3, 10−2, 10−1, 100, 101, 102, 103}. Parameter

µ is also chosen over the same range.

4.2.4 Numerical results: Part I

In this subsection, we look at our model just as a dimensionality reduction

method and do not consider its ability to do classification. The experimental settings

and numerical results of the comparison of several dimensionality reduction methods,

including PCA, LDA, SPCA, and our proposed model are also shown in this subsection.

In our experiments, we conduct a comparison among PCA, LDA, SPCA, and our

proposed model in Algorithm 4.1. We have performed 40 random splits of the data

and use a %80/%20 split for training and testing. First, the transformation matrix

is computed by these four dimensionality reduction methods being applied to the

training set. In the case of SPCA, linear kernel function, κ(xi, xj) = xi
Txj is applied

to the labels. In our model, we use PCA on the training data to compute the initial

projection matrix P . For given P , LIBSVM [46,97] and MATLAB built-in quadprog
73



are separately employed to solve the α-subproblem (4.2) for an α vector. This vector

is used to find the solution of subproblem (4.5) for a projection matrix P . The

tolerance is set to 10−10. After computing the transformation matrix, the dimension

of the testing data is reduced using matrix P and and then SVM or 1NN are used

to do classification of the reduced dimension data. LDA limitations force to project

the data sets with 2 classes into a 1-dimensional space and the data sets with 3

classes into a 2-dimensional space. We calculate the following quantity to evaluate

the performance of Algorithm 4.1:

Classification Accuracy =
Number of correct predictions
Total number of predictions

× 100%.

In all figures, the PCA graph represents the classification accuracy of testing data

whose dimension is reduced by PCA and is classified by SVM or 1NN. SPCA, NEW-

LIB, and NEW-QUAD graphs also show the classification accuracy by SVM or

1NN of the testing data whose dimension is reduced by SPCA, our proposed model

whose convex quadratic problem is solved by LIBSVM, and our proposed model

whose convex quadratic problem is solved by quadprog function, respectively. All

experiments are repeated 40 times.

Figure 4.2 shows the classification accuracy on “sonar” data set by SVM and

1NN as the classification methods for the best values of hyperparameters C, µ,

and γ. This data set is projected into low-dimensional spaces with dimension

d = {1, 2, 4, 6, 8, 10, 20, 30, 40, 50}. The results show that our model works well and

in most cases, it has the same as or better performance than other methods.
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Figure 4.2: Classification accuracy on “sonar” data set. (a) Classification accuracy by
SVM. (b) Classification accuracy by 1NN. The best C = 1000, µ = 10, and γ = 0.1.

The classification accuracy on “german.numer” data set is shown in Figure 4.3.

The classification accuracy is obtained by SVM and 1NN as the classification methods

for the best values of hyperparameters C, µ, and γ. This data set is projected into

low-dimensional spaces with dimension d = {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}. The

results show that how our model outperforms against other models.
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Figure 4.3: Classification accuracy on “german.numer” data set. (a) Classification
accuracy by SVM. (b) Classification accuracy by 1NN. The best C = 100, µ = 1, and
γ = 0.001.
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The classification accuracy on “wine” data set is shown in Figure 4.4. The

classification accuracy is obtained by SVM and 1NN as the classification methods

for the best values of hyperparameters C, µ, and γ. This data set is projected into

low-dimensional spaces with dimension d = {2, 4, 6, 8, 10, 12}. The results show that

our model has the same as or better performance than by other models.
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Figure 4.4: Classification accuracy on “wine” data set. (a) Classification accuracy by
SVM. (b) Classification accuracy by 1NN. The best C = 10, µ = 10, and γ = 0.01.

The classification accuracy on “svmguide2” data set is shown in Figure 4.3. The

classification accuracy is obtained by SVM and 1NN as the classification methods

for the best values of hyperparameters C, µ, and γ. This data set is projected into

low-dimensional spaces with dimension d = {2, 4, 6, 8, 10, 12, 14, 16, 18}. The results

show that our model works well and in most cases, it has the same as or better

performance than other methods.
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Figure 4.5: Classification accuracy on “svmguide2” data set. (a) Classification accuracy
by SVM. (b) Classification accuracy by 1NN. The best C = 1, µ = 0.1, and γ = 100.

Figure 4.2 shows the classification accuracy on “dna” data set by SVM and

1NN as the classification methods for the best values of hyperparameters C, µ,

and γ. This data set is projected into low-dimensional spaces with dimension

d = {2, 10, 20, 40, 60, 80, 100, 120, 140, 160}. The results show that our model works

well and has a similar performance to PCA. It can be easily seen that our model

outperforms the SPCA model.
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Figure 4.6: Classification accuracy on “dna” data set. (a) Classification accuracy by
SVM. (b) Classification accuracy by 1NN. The best C = 1, µ = 10, and γ = 0.01.

Tables 4.2 contains the classification accuracy on 6 data sets by SVM or 1NN

after after reducing the dimension of the data by LDA and our proposed model. In

this table, the LDA+SVM and LDA+1NN rows represent the classification accuracy

by SVM and 1NN, respectively, after applying LDA as the dimensionality reduction

method to different data sets. The NEW+SVM and NEW+1NN rows show the

classification accuracy obtained by SVM and 1NN, respectively, after applying our

model as the dimensionality reduction method to different data sets. The best

results are shown in this table. It can be noted that, almost in all cases, our model

outperforms LDA and its performance is much better than LDA.
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Table 4.2: Classification accuracy (in %) by SVM and 1NN after applying LDA and
our proposed model to different data sets with the best parameters C, µ, and γ.

mean ± std
Model/Data Set sonar german.numer wine svmguide2 dna

LDA+SVM 59.08 ± 6.69 69.03 ± 1.28 92.14 ± 3.02 64.84 ± 9.54 80.28 ± 3.25
NEW+SVM 60.81 ± 1.23 70.50 ± 2.26 93.10 ± 2.31 65.96 ± 2.18 83.10 ± 1.66

LDA+1NN 64.77 ± 5.97 61.55 ± 0.96 88.10 ± 2.75 60.14 ± 8.64 68.46 ± 3.62
NEW+1NN 68.64 ± 2.08 58.78 ± 1.84 92.25 ± 1.37 61.62 ± 1.78 68.94 ± 2.09

4.2.5 Numerical results: Part II

The performance of our model in Algorithm 4.1 as a whole package which

does the dimensionality reduction and classification is shown in this subsection. In

our experiments, we also compare the classification accuracy by our model and the

one obtained by 1NN after reducing the dimension of the data by PCA and SPCA.

Experimental settings are similar to the ones we have in the previous subsection. To

compare the classification accuracy, first we apply PCA and SPCA to the training

set and find the projection matrix. This projection matrix is used to reduce the

dimension of the testing data. After reducing the dimension, 1NN is employed to

obtain the classification accuracy. On the other hand, in our model, we use PCA

on the training data to compute the initial projection matrix P and alternatingly

solve problems (4.2) for an α vector and (4.5) for a transformation matrix. This

transformation matrix is used to reduce the dimension of the testing data. Our model

also learns the classifier while calculating the projection matrix. After reducing the

dimension of the testing set, the classifier hyperplane found by our model is applied

to the testing data to obtain the classification accuracy. In our model, the label/class
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of each unseen data point in the reduced dimension testing data is obtained by the

decision function in (4.8).

The classification accuracy by the decision function for the best values of

hyperparameters C, µ, and γ is presented in Figure 4.7. In this figure, the decision

function in (4.8) is only used to find the classification accuracy of the testing data set

whose dimension is reduced by our proposed model is solved by LIBSVM [46,97] and

quadprog function. 1NN is applied to find the classification accuracy of the testing

data for which the dimension is reduced by PCA and SPCA. Figure 4.7 shows how

our model outperforms against other state-of-the-art algorithms and achieves much

better results than the methods mentioned in Chapter 2.
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Figure 4.7: Classification accuracy on 5 data sets by the decision function in our
proposed model as the classification method. 1NN is applied on the testing data
whose dimension is reduced by PCA and SPCA.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

In this section, we summarize the mathematical optimization method that

proposed in this dissertation to solve dimensionality reduction and classification

problems arising in mathematics and data science fields.

In Chapter 2, we reviewed some popularly used dimensionality reduction meth-

ods such as Principal Component Analysis (PCA), Linear Discriminate Analysis

(LDA), and Supervised Principal Component Analysis (SPCA). Dual and kernel

forms of PCA and SPCA were also discussed in this chapter. Two classification

algorithms, Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) were

also reviewed. Moreover, the procedure of solving a convex quadratic optimization

problem by LIBSVM and MATLAB built-in function quadprog was explained.

We found that applying dimensionality reduction methods and classification

algorithms to high-dimensional data sets separately brings some challenges. We

proposed a model that is able to reduce the dimension of the data and to do

classification at the same time by integrating PCA with SVM. We also proposed an

alternating way to solve the original optimization problem of our proposed model in

(3.1) which is non-convex. We solved the subproblem (3.2) that is a convex quadratic

optimization problem for which various optimization packages such as LIBSVM

and MATLAB built-in function quadprog have been developed. From all numerical

simulations based on synthetic data, the proposed method, either as a diminesionality

reduction method or a model that does dimensionality reduction and classification
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simultaneously is very efficient and robust. In this regard, our proposed model can be

a good option to consider solving dimensionality reduction and classification problems.

To handle and classify high-dimensional data with nonlinear and complex

structures, we expanded our model to its nonlinear form by employing a nonlinear

mapping, Φ, that embeds vector x into some Hilbert space H. Similar to its linear

form, the optimization problem of our nonlinear model in (4.1) is also solved in an

alternating way. The plots of testing classification results show the superior and

satisfactory performance of our nonlinear model both as a dimensionality reduction

method and a model that can reduce the dimension of the data and do classification

at the same time.

5.2 Future Work

The research in this dissertation is motivated by the investigation for better

mathematical optimization models and tools for solving dimensionality reduction

and classification problems. We would like to contribute to a diverse spectrum

of mathematical questions and challenges related to data science, dimensionality

reduction, image classification, text classification, etc. The mathematical optimization

is the heart of a wide variety of data science problems. We would like to enhance the

ideas of convex and non-convex optimization techniques to broaden the applicability

of our research in recent trends and applications in data science.

We would like to continue our current research and work on various topics in

data science. The first question for which we would like to find answer is:

Are there other multi-class classification algorithms to utilize in our model

instead of the ones depending on binary classification?

We used the One-vs-One strategy in our model to do the multi-class classification

which depends on a binary classification procedure. We would like to propose a more
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advanced and computationally efficient algorithm that uses better and more efficient

multi-class classification methods that are not dependent on the binary classification

strategy.

This research focuses on degree-2 polynomial mapping. Implementation for an

efficient degree-3 mapping would be an interesting future study. We also would like to

investigate other nonlinear mapping functions to expand data vectors. There might

be greater flexibility to design the nonlinear mapping functions, as kernel functions

are not used.

Our proposed model in Chapter 4 is linear in dimensionality reduction and

nonlinear in classification. Applying nonlinear mappings and kernel functions to the

dimensionality reduction part can also be considered.

We also would like to develop efficient open access toolboxes so that researchers

and students interested in data science can use our research results and apply them

in other areas especially in supervised dimensionality reduction.

Mathematical modeling skills, extensive knowledge of mathematical optimiza-

tion, and synthesis of powerful novel mathematical concepts are required for answering

challenges in dimensionality reduction and classification problems of several domains.

We would like to continue working on dimensionality reduction and classification

problems in data science and other areas of science. The effort on advancing math-

ematical research on solving the challenges in the domain of data science will be

continued.
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