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ABSTRACT 

 

Using Multiview Polynomial Learning to Estimate the Planting Dates of Crops 

Angela Avila, Ph.D. 

The University of Texas at Arlington, 2024 

Supervising Professor: Jianzhong Su 

This study presents a novel approach to predicting crop planting dates by integrating ground-

based Leaf Area Index (LAI) measurements with satellite images through Multiview Polynomial 

Learning. The research leverages time-series LAI data, representing crops growth. Third-degree 

polynomials are used to describe each year's crop growth. Due to the scarce availability of 

ground LAI data, synthetic polynomial curves are created to mimic a third-degree polynomial 

space representing any crop growth. 

Since ground LAI data collection is not feasible, due to its high cost and labor, we turn to the 

abundant satellite images. To connect satellite information with LAI, we use Orthogonal 

Canonical Correlation Analysis (OCCA), which maps satellite data to LAI by finding optimal 

linear transformations that maximize the correlation between these two data views. A neural 

network model is then trained on the augmented polynomial data to predict planting dates based 

on the LAI polynomial curves.  

The multiview OCCA mapping, combined with our trained neural network based on polynomial 

spaces, is referred to as Multiview Polynomial Learning. This approach may not only apply to 
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predicting planting dates but can also offer a framework that can be adapted to other domains 

where data from multiple sources must be integrated for predictive modeling. 
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1) General Introduction  

1.1 Topic of Interest 

Planting date is one of the most important factors in crop yield success. National Agriculture 

Statistics Service (NASS) document the Usual Planting Dates which list large ranges of planting 

dates for each state and each crop. These documents are released with frequency 1965, 1997, 

2010, [32,33] obtained by “historical crop progress estimates and the knowledge of industry 

specialists”. However, currently there is no mass historical database of planting dates for farms. 

Having a data base can assist in maximizing crop yield using predictive modeling and reducing 

farm management expenses.  

With the world’s population is increasing with the expectancy of 10 billion people by the year 

2050 [1, 2]it is of most importance to maintain the supply for demand of food. According to the 

United Nations [3], 44% of inhabitable land is occupied for agricultural purposes, consuming 

about 66% of freshwater availability for irrigation [4]. In addition of agriculture occupying a 

large amount of land, farm management is very costly. According to USDA Farm Production 

Expenditures report of 2023,[34] about $452.7 billion has been spent on farm production 

expenses in 2022 in the U.S alone. With an average of $226,986 per farm, farm costs have 

increased by 39% compared to average farm costs 10 years prior (which was $162,743 in 2012) 

[35]. Predictive models with outputs such as yield success and risk expectancy of crops, assist in 

optimizing crop production, reduction of cost and land usage.    

Aflatoxin is a fungus that poses a significant health risk to any organism consuming infected 

crops. This fungus is of risk to a large variety of crops impacting about $418 million to $1.66 

billion for stakeholders in the United States. Crops are more susceptible to the fungus in the 
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earlier stages of growth. There are modeling tools to assist in reducing the fungi [5]. An input to 

train these models are past crop planting dates. While the previous planting date inputs were 

estimates based on surveys provided by NASS,[36] improving these inputs to more precise 

calculations can better advise farmers to reduce risk.  

These models rely heavily on planting day inputs to calculate their results.  Another example is 

Agricultural Land Management Alternative with Numerical Assessment Criteria Simulation 

Model (ALMANAC) [6], where each day the seed is in the ground to accumulate the amount of 

sun exposure of the crop to assist in calculations of biomass yield. The more accurate the 

planting dates of past harvest the more accurate we can assist in predicting yield for future 

harvest. With this base knowledge of more accurate planting dates other parameters of the 

ALMANAC model can be adjusted to better advise farm management to optimize expenses and 

crop yield.  

Weather prediction is another area of interest for the USDA. By combining forecasted weather 

conditions for a given location with an analysis of past planting dates, past yield successes, and 

historical weather data, we can better advise optimal planting dates for maximum yield. For 

example, if a drought is expected in a certain location, we can examine past instances of drought 

in that area to identify the optimal planting dates that maximized yield during similar conditions. 

This information can then be used to recommend the best time frame for planting in the current 

year. 

The advancement of technology in smart agriculture has significantly improved field 

management costs and crop production [2]. Research in this area continues to be crucial for 

ensuring a sustainable and secure future for food production.   
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1.2 Mathematical Problem Addressed  

Satellite imagery, while abundant, is not fully reliable due to various limitations, including 

atmospheric effects (such as clouds) and sensor-related issues [30]. Due to these limitations, we 

will identify the most suitable data sets which may lead to post processing images. Different 

manipulations of image band widths, known as vegetation indices (VI)[9], will be explored. 

These VIs estimate crop health and growth. This will allow us to have a time series of crop 

growth with satellite imagery.  

Existing methods for predicting planting dates using satellite images have shown promise. For 

instance, a model utilizing data from the corn belt achieved a mean absolute error (MAE) of 7.4 

days by fitting a harmonic regression to time series satellite data and training a decision tree 

based on the equation’s coefficients [15]. While we will approach our research question 

similarly, we have a distinct advantage: highly accurate ground-truth data on crop growth, 

measured as Leaf Area Index (LAI) over 18 years. This data was meticulously collected by 

cutting down multiple samples throughout the growing season and measuring their leaf area with 

instruments of high precision. 

To utilize the pure growth measurement, LAI of crops, we plan to correlate satellite VI to LAI. 

Multiview algorithm orthogonal canonical correlation analysis (OCCA) will be used to achieve 

this. OCCA finds an orthogonal maps for two views such that the views corresponding 

projection from these maps are maximally correlated. We solve for a mapping by finding a map 

that minimizes the differences between projections.  
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To predict planting dates based on LAI, we will explore different machine learning models, 

including neural networks. However, one challenge is that the VI and LAI data are collected on 

different days. To address this, we will represent both datasets using third-degree polynomials, 

providing a unified description that allows comparison. Previous work on machine learning 

using polynomials to predict amount of real roots have shown great precision [18-20].  

Another significant challenge is the limited availability of LAI data. To train our machine 

learning model effectively, we require a large dataset. Therefore, we will generate synthetic data 

using the third-degree polynomial to augment our training set. This data will mimic a vast verity 

of possible growth curve representations of time series LAI. 

The outcome of this research will enable us to use time series satellite images to approximate 

crop growth through a VI. By mapping VI to LAI using an OCCA-based multiview algorithm 

and training a machine learning model on synthetic data, we will predict the planting date of any 

given farm. We call this method multiview polynomial learning.     

1.3 LAI Data 

Over the period of 1989-2021 various crops such as cotton, soybean, sorghum, corn, and 

sunflower were cultivated under a controlled, irrigated environment in Bushland, Texas [7]. 

Planting date is documented and throughout the growing season full crop samples were taken. 

The leaf area of each sample was measured, and the sum was divided by the sampling area to 

determine the leaf area index (LAI). 

LAI is captured by manually cutting down samples from the field and removing each leaf. The 

leaves were then processed using a LI-COR 3100 meter, which recorded the summation of their 

single sided surface area. This process leads to highly accurate representation of the growth state 
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of each sample but is time and labor intensive. Data collection occurred over 3 - 12 days each 

sampling year, with 3 - 6 samples collected per day. 
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2) Review on NDVI and Remote Sensing  

2.1 Benefits of Remote Sensing  

Data collection in Bushland over 18 years was both costly and labor intensive. It is uncommon 

for farmers to maintain comprehensive data on crop growth throughout the growing season or 

detailed records of planting dates. There is however a substantial database of satellite imagery 

that exists, dating back to 1972. Various satellites have been deployed to orbit the Earth to 

capture images and will continue to advance over time.  

Our objective is to utilize these time series satellite images to estimate past planting dates of 

farms at any given location. With our purest ground truth data (LAI), we can correlate time series 

satellite images with our growth patterns. Then using time series analysis of these growth 

patterns will then allow us to estimate planting dates. 

2.2 Available Data 

Satellite images capture various band frequencies across different bandwidths. For example, red 

color band is taken at the band width of 620-670nm, blue at 459-479nm and green at 545-565nm. 

Higher frequencies, such as Near-Infrared (NIR), which is from the wavelengths from 841 to 

876nm (bandwidths corresponding to the camera on MCD43A4 version 6) [8] can assist in 

providing more information about vegetation in our images. 

Vegetation indices are a manipulation of color bands to enhance features of crop land [9]. 

Normalized Difference Vegetation Index (NDVI) is one of the most common vegetation indices 

that measures area greenness and is directly related to crop growth [10]. The vegetation index is 

calculated as follows: 
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𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 Enhanced Vegetation Index EVI is similar to NDVI in that it measures vegetation greenness and 

provides a qualitative measure of crop growth.  However, EVI offers improvements for 

correcting atmospheric effects and background noise. The index includes an "L" factor to 

account for background noise and "C" coefficients for atmospheric resistance effect. These 

adjustments facilitate a more accurate ratio calculation between the red (R) and near-infrared 

(NIR) values. This minimizes background noise, atmospheric noise, and saturation issues [11,12] 

𝐸𝑉𝐼 = 2.5 ×  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + (𝐶1 × 𝑅𝑒𝑑) − (𝐶2 × 𝐵𝑙𝑢𝑒) + 𝐿
 

where the constants, 𝐶1, 𝐶2, and 𝐿, are set to 6.0, 7.5, and 1, respectively. 

NASA has also produced a data set of LAI produced by images taken by “Moderate Resolution 

Imaging Spectroradiometer” (MODIS) satellite sensor. LAI is calculated by first measuring the 

fraction of radiation within the photosynthetically active range of 400-700nm wavelengths that is 

absorbed by vegetation. This measurement is referred to as the fraction of photosynthetically 

active radiation (Fpar). LAI is then found with a non-linear relationship with Fpar that considers 

LAI being a measurement of a 3-dimensional figure. More information on the data set can be 

found here [13].  
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2.3 Selected Data 

While there are various satellites and corresponding datasets to choose from, we decided the data 

set (MODIS) combined 16-day NDVI” (MCD43A4 version 6)[37] was the best option for 

addressing our research question. MODIS is the sensor on satellites Aqua and Terra, acquired 

from NASA. Aqua and Terra combined capture the entire Earth’s surface every one to two days. 

These satellite images are processed to be stable, minimizing reflectance error. The dataset is 

named "16-day" because each day of data is produced by the inputs of 16 day of Aqua and Terra. 

The resolution of these images is 463.313 meters.  

While other data sets were explored and may have more precision in spatial resolution, such as 

Landsat satellite series [38] at 30m resolution, they are limited in temporal resolution with data 

collected every 16 days. Additionally, data points may be omitted due to cloud coverage. Given 

these issues, we must compromise spatial resolution to improve temporal resolution to best 

satisfy our goal. Our goal being to closely associate our time series LAI ground data with the 

time series growth approximations from satellite images. Higher temporal resolutions provide a 

more refined growth curve, which better aligns with our ground data. 

2.4 Discussion  

Google Earth Engine is a platform that allows to a large collection of images from varies 

satellites [14]. We utilize other data sets in Google Earth Engine such as masks to view only 

pixels of cultivated land and data on cloud coverage to remove noise from our analysis. Using 

Google Earth Engine, we can observe the time series satellite images of both the entire cultivated 

land in Potter County (where Bushland is located) and the specific site of the Bushland farm. The 
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Bushland farm location can be seen in Figure 2.41 and can be described with the enclosure of the 

four longitude and latitude points, 

 [-102.09670473519593, 35.189204798029294], [-102.09670473519593, 35.18710040788724],  

[-102.09445167962342, 35.18710040788724], [-102.09445167962342, 35.189204798029294]. 

 While our interest is to predict planting days on a pixel basis, the entire county may provide 

more stable data. Comparisons on both county time series data and the exact farm location are 

shown in Figure 2.43 and 2.44. 

 

 

Figure 2.41: The image on the left is the left represents Potter County filled in red. The image on 

the right represents our experiment field where LAI is collected.  

Data sets explored: Aqua NDVI, Aqua EVI, MOD13A2 NDVI, MOD13A2 EVI, Landsat NDVI, 

MODIS LAI as seen in Figure 2.42 and Figure 2.43.  
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Figure 2.42: This graph compares vegetation indices EVI and NDVI datasets considered for use 

in this project, based on the Bushland farm site in 2017.  

 

Figure 2.43: Data set on LAI estimation. The orange line being potter county’s LAI estimation 

for cultivated land. The blue line being LAI time series estimation for bushland farm site only.  
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Figure 2.44: MODIS Combined 16-day, comparison between county vs pixels of farm site. The 

NDVI averages every 16 days prior. The orange line being potter county’s LAI estimation for 

cultivated land. The blue line being LAI time series estimation for bushland farm site only. 

 

 Both Aqua satellite datasets for NDVI and EVI are unstable and would require pre-processing if 

we were to use them. Other datasets from Figure 2.42 are more stable but collect data less 

frequently. MODIS Combined offers the most frequent data set. When comparing the pixels of 

our farm site to the whole county there is an obvious difference in averages through the year.  To 

ensure greater accuracy, we choose to use only the pixels within our experimental farmland and 

not the whole county averages. 
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3)Planting Date Literature Review 

3.1 Review  

It is of interest to describe our yearly data of leaf area index of different crops uniformly. Our 

data is scarce, and measurements are taken on different days of the year over varying periods. 

Data collection intervals are inconsistent. Representing the data as an equation provides a 

uniform description of crop growth for each year. We explored various equations to describe our 

growth curves.  

Harmonic regression has been used to describe a full year of data on crop growth [15]. Sigmoid 

functions are a good fit to describe the rapid growth in the beginning of crop growing period 

[16]. Third-degree polynomials have also historically been used to describe crop growth [17]. 

Given our data, it was most appropriate to use a shape that is concave down, leading us to 

predominantly explore third-degree polynomials.  

Recently published work has similarly used equations to describe the growth of crops using 

satellite images to estimate the planting dates of the United States Corn Belt from 2000 to 2020 

[15]. This paper uses Green Chlorophyll Vegetation Index (GCVI): 

𝐺𝐶𝑉𝐼 =  
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 

to track crop growth through satellite images (Landsat). The authors had access to 28,000 

locations with planting dates that they use for training and validation of models.  

They describe crop growth using harmonic regression and evaluate different machine learning 

models to associate the coefficient to planting dates [15]. Another predictive model explored in 

this paper uses the mean days between planting date and peak of recorded GCVI.  
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The mean absolute error for their best model on test data is for corn only was 7.4 days using the 

random forest approach [15]. While we face the challenge of scarce data for LAI and limited 

planting date information, our LAI measurements are based on various crops. Our aim is for the 

model to be applicable to any given crop, given that it is based on pure leaf growth.  We continue 

to explore machine learning methods that can benefit our problem.  
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4) Machine Learning Model Review 

4.1 Initial Exploration  

Similar to the Corn Belt paper [15], it is reasonable to expect the peak day of a crop’s growth, or 

the sprouting day would strongly correlate to the planting date. Since we have chosen to use a 

third-degree degree polynomial, we can have a theoretical “sprout day” [39], which we assume 

to be the root of our function. To ensure this root, the leading coefficient must be greater than 0. 

Considering the need to find the root of a polynomial in mass number of pixels, we explore fast 

methods for doing so. In the following section, I will review the options presented in ‘Machine 

Learning the Real Discriminant Locus’ [18] where they explore two different machine learning 

models to solve for the number of real roots of polynomials. 

4.2 Real Discriminant Locus 

The scientific paper ‘Machine Learning the Real Discriminant Locus’ [18] aims to evaluate the 

effectiveness of machine learning techniques in identifying the real discriminant locus of 

parameterized polynomial systems. It focuses on using supervised classification machine 

learning to identify the number of real roots of third-degree polynomials. While there are 

algebraic techniques to track the number of solutions of a polynomial system as their parameters 

change, using machine learning techniques will be computationally faster. The algebraic 

techniques “parametric homotopies” are used to create labels for random parametric values.  

Both machine learning models K- Nearest Neighbor and feedforward neural networks are trained 

to determine the number of real roots of the following univariate cube polynomial:  

 𝑓(𝑥; 𝑏, 𝑐) = 𝑥3 + 𝑏𝑥 + 𝑐        𝑤ℎ𝑒𝑟𝑒  𝑥 ∈ ℝ 𝑎𝑛𝑑 𝑏, 𝑐 𝜖[−1,1]   
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That is, where b and c are the inputs of the model and the output is the classification of the 

number of real roots (1, 2, or 3). The models were trained with random data where b and c are 

selected uniformly. The neural network was trained with 9,000 data points, and the K-Nearest 

Neighbor was trained using 14,000 data points. Both models after training identify the test data’s 

number of real roots correctly every time with 100% accuracy. Therefore, we can use machine 

learning methods to feed our coefficients and determine planting dates fast and accurately.  

Both K-Nearest Neighbor and neural networks are well known for classification models. 

However, both models can be modified to output continuous variables. The solution we are 

trying to find is, given a third-degree polynomial coefficient of LAI, a trained model can 

estimate crops initial planting date, which will be a continuous output.  

4.3 Root Finding Using Neural Networks 

In “A Neural Network Based Approach for Approximating Real Roots of Polynomials” [19] the 

authors evaluate the process of finding all real roots of polynomials of various degrees using 

neural networks. For fifth-order polynomials, a neural network with 3 layers, each containing 10 

neurons, is trained using various random coefficients. These coefficients are computed randomly 

by selecting 5 random real numbers as roots thus generating a fifth-degree polynomial. The 

neural networks performance is evaluated against Durand-Kerner method (also known as 

Weierstrass’ method) for solving polynomial. 

 Durand-Kerner method is a classic iterative algorithm for finding roots simultaneously of a 

polynomial. Let 𝑟1
0, 𝑟2

0, … , 𝑟𝑛
0 be nearby initial guesses and for 𝑖 , 𝑗 ∈ 1,2, … , 𝑛  number of roots 

and 𝑓(𝑥) is the polynomial of interest. From 𝑘 = 1,2 … 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒, the iterative formula 

is: 
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𝑟𝑖
(𝑘+1)

=  𝑟𝑖
𝑘 −

𝑓(𝑟𝑖
𝑘)

Π𝑗≠𝑖(𝑟𝑖
𝑘 − 𝑟𝑗

𝑘)
 

The mean squared error for solving the roots using neural networks is 0.0036 and the 

computation time is 2.5 times faster than the Durand-Kerner method.  With the mean squared 

error being relatively small and faster computing, neural networks is a reliable source to solve for 

polynomial roots. These results align with results found in “A Constructive Approach for 

Finding Arbitrary Roots of Polynomials by Neural Networks” [20].  

4.4 Neural Networks 

Neural networks methods are a subset of machine learning, designed to mimic the decision-

making processes of the human brain. In the brain, a vast number of neurons work together, 

where individual neurons hold little value in decision making, but groups of neurons activate 

when performing certain tasks or making decisions. Neural networks is built on this concept.  

The structure of neural networks begins as large equation, with initially meaningless 

multiplications. These multiplications are referred to as weights. During training, the model is 

supervised, meaning it has access to correct labels while training. The sample input features go 

through the large equation and output a random classification. If the classification is incorrect, 

the weights will adjust accordingly.  
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𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 

𝑓2((𝑤2(1,1)(𝑤1(1,1)𝑥1+ … +𝑤1(1,𝑛)𝑥𝑛)+. . .  𝑤2(1,𝑚)(𝑓1(𝑤1(𝑚,1)𝑥1 + ⋯ +𝑤1(𝑚,𝑛)𝑥𝑛))) + ⋯   

 𝑤2(𝑘,1)(𝑓1(𝑤1(2,1)𝑥1 + ⋯ +𝑤1(2,𝑛)𝑥𝑛)) + ⋯ + 𝑤2(𝑘,𝑚)(𝑓1(𝑤1(1,2)𝑥1 + ⋯ +𝑤1(2,𝑛)𝑥𝑛))) 

Figure 4.41: Basic structure of a neural network with 2 layers of nodes with corresponding neural 

network equation. 

The structure in Figure 4.41 represents a basic structure of a neural network with 2 layers of 

nodes. Each node is represented by the orange circle. The input to each node in the first layer is 

all the features of one sample. The input to the nodes in the second layer is the result of applying 

𝑓1 to all the outputs of the nodes in the previous layer. Here, 𝑓1 is referred to as an activation 

function or transfer function, that typically outputs a value in the range [0,1] or [-1,1]. A 

common activation function is log-sigmoid 𝑓(𝑥) =
1

1+ⅇ−𝑥  which has range of (0,1) but can easily 
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be modified to have the range (-1,1). 𝑓2 in this case is the function that makes the decision on 

class commonly 0 or 1.. A common function used for this decision is hard limit function:  

𝑓(𝑥) = {
0 𝑖𝑓  𝑥 < 0 
1 𝑖𝑓 𝑥 ≥ 0

.  

During the training process of neural networks, the only part of the function that changes is the 

weights. The weights in the equation are 𝑤𝑖(𝑗,𝑘), where 𝑖 corresponds with the layer, j 

corresponds with the neuron number within the layer and k corresponds with the weight within 

the neuron.  

There are multiple options for optimization of weights. ‘Steepest decent’ also known as ‘gradient 

decent’ is a common optimization method. The optimizer adjusts the weights to minimize the 

error/loss function, which measures the difference between the predicted output and the actual 

output. A common error function used is the mean squared error. 

The model becomes a regression solution by simply replacing (𝑓2) with 𝑓(𝑥) = 𝑥 and changing 

the error equation. For more information on neural network, information was derived by 

textbook ‘Neural Network Design’ [21] 

4.5 K-Nearest Neighbor  

K-nearest neighbor is another subset of machine learning primarily used for classification, 

though it can be adapted for regression. In K-nearest neighbor, "training" simply involves storing 

the input features and their corresponding labels from the training data. When classifying a new, 

unseen sample, the distance between the features of the new sample and each sample in the 

training data is calculated. A common distance metric used is the Euclidean distance, though 

other metrics can also be used. Then distances are sorted, and the K-nearest neighbors (k number 
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of samples with the smallest distances) are identified. For classification tasks, the new sample is 

assigned the label that is most common among the K-nearest neighbors. For regression problems, 

the same process is used to compute distances and identify the K-nearest neighbors. However, 

training data will be continuous and the output for the new sample is the average of its K-nearest 

neighbors.  

4.6 Closing Note 

Due to lack of data using either model serves as a challenge. We will continue our exploration 

using neural networks.  
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5) Polynomial Model for LAI 

5.1 Polynomial Fit 

To unify the yearly data, we will fit a third-degree polynomial to describe the LAI growth of 

each crop. The polynomial takes form of: 

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 

where 𝑎 > 0. This constraint helps reduce our domain space and ensures that the polynomial has 

a root representing the day of sprouting. Each polynomial is fitted using the least squares 

method, which minimizes the following objective function: 

𝑚𝑖𝑛𝑎 𝑏 𝑐 𝑑 √∑(𝑎𝑥𝑖
3 + 𝑏𝑥𝑖

2 + 𝑐𝑥𝑖 + 𝑑) − 𝑦)2

𝑛

𝑖=1

 

Where 𝑛  is the number of samples for each, year resulting in:  

𝑓1(𝑥) = 𝑎1𝑥3 + 𝑏1𝑥2 + 𝑐1𝑥 + 𝑑1, 

𝑓2(𝑥) = 𝑎2𝑥3 + 𝑏2𝑥2 + 𝑐2𝑥 + 𝑑2, 

⋮ 

𝑓18(𝑥) = 𝑎18𝑥3 + 𝑏18𝑥2 + 𝑐18𝑥 + 𝑑18 

Each polynomial 𝑓𝑖(𝑥) represents the LAI growth for a specific crop over the 18 year period. An 

example of the data over time fitted for one year is shown in Figure 5.11. 
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Figure 5.11: LAI data points from 1989 in Bushland, Texas, fitted to a third-degree polynomial. 

The polynomial equation is given by: 𝐿𝐴𝐼 = 1.0𝐸9𝑥3 − 1.0𝐸3𝑥2 + .47𝑥 − 50.1. 

 

5.2 Initial Exploration of Modeling Planting Date Based on Polynomials 

The average difference between the day corresponding to the root of the polynomial and the 

actual planting day is 33 days. The amount of days it takes between the date of planting and the 

polynomial to reach zero for each year is shown in Figure 5.21. Based on the average of these 

days, the planting date can be approximated as: 

𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑒 = 𝑅𝑜𝑜𝑡 − 33  

By using this approximation, we obtain an absolute mean error of 7.4 days with a standard 

deviation of 4.5 days with the Bushland dataset. 
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Figure 5.21: Comparison of the actual planting date (x-axis) versus the approximate days to 

sprout (y-axis), defined as the day of the polynomial root minus the actual planting day, for 18 

years of data.  

Using linear regression to relate the root of the polynomial to the planting date, we obtain the 

following equation:  

𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑒 = 𝑅𝑜𝑜𝑡 × 1.21 − 69.4 

 

Using this method, we receive mean absolute error of 6.6 days with the standard deviation of 4.6 

days with the Bushland dataset. The model’s performance can be observed in Figure 5.22. 
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Figure 5.22: Graph of the linear fit relating the root of the polynomial to the planting date.  

We further evaluate features of the polynomial by evaluating the day of the maximum LAI value, 

the rate of growth and their relationships through multiple linear regression. Define: 

 M as  the local max y-value of our third-degree polynomial  

 R as the min real root of our polynomial (x-value) 

 S as the slope of the line that connects point R and M 

Using these parameters, we apply multiple linear regression to model the planting date: 

𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑒 =  −1.5M + 1.13R + 154S-64 

This method results in a mean absolute error of 5.7 days, with a standard deviation of 4.6 days 

with the Bushland dataset. 
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Figure 5.23: Polynomial features extracted from polynomial fit of corn in 1989. 

5.3 Augmentation of Polynomials for Machine Learning Model  

Our goal is to train a neural network using polynomial coefficients resulting to in outputting the 

planting date, however we need more of training data. To achieve sufficient training data, we 

augment the third-degree polynomial modeling LAI crop growth curves using the following 

process. For each of the 18 years of data, we have polynomials 𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓18(𝑥). And to 

generate augmented curves we introduce perturbation factors,  𝑚𝑖,  𝑘 where: 

 𝑚1,𝑘𝜖 (−1,1),  𝑚2,𝑘𝜖 (−0.5,  0.5),   and   𝑚3,𝑘,  𝑚4,  𝑘 𝜖 (0.97,  1.03) 

With each 𝑚 randomly selected from a uniform distribution of each of their intervals and k 

𝜖 [1,2,  … ,  𝑛] for 𝑛 number of desired augmented curves for each year of data. Then the 

augmented polynomials are defined as:  

𝑔1,   𝑘 (𝑥) = 𝑚4,  𝑘(𝑓1 (𝑚3,𝑘(𝑥 + 𝑚2,𝑘)) + 𝑚1,  𝑘, 
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𝑔2,   𝑘 (𝑥) = 𝑚4,  𝑘(𝑓2 (𝑚3,𝑘(𝑥 + 𝑚2,𝑘)) + 𝑚1,  𝑘, 

⋮ 

𝑔18,  𝑘 (𝑥) = 𝑚4,  𝑘(𝑓18 (𝑚3,𝑘(𝑥 + 𝑚2,𝑘)) + 𝑚1,  𝑘 

where 𝑔𝑖,  𝑘  represents the augmented polynomial for the 𝑖 year with 𝑘 being the augmentation 

index for that specific year. Examples of the polynomial augmentation is shown in Figure 5.31. 

 

Figure 5.31: 7 years of LAI growth curves in bold, each with 3 augmented curves per year. 

While there is 18 years of data with each augmented 1,000 times, this figure illustrates the 

variety of actual and augmented growth curves used in the neural network training. 

 

The coefficients of these polynomials will be used as training for the neural network. With these 

theoretical curves we also need theoretical planting dates for training. For each new polynomial, 

we will extract the root, slope, and day of maximum LAI. We will then use the planting date 

equation derived from multiple linear regression to pair planting dates with our coefficients. 
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6) Applications of Polynomial Model in Mycotoxin Risk 

6.1 Polynomial Model Application Using NDVI 

This work has contributed to a broader research project aimed at predicting the risk of fungal 

outbreaks in Texas. The fungus of interest is mycotoxin and if a crop is infected and consumed, 

it can cause death. Various machine learning models are tested for best results in predicting risk. 

[5] is an example of procedures that are taken for creating such model done by the same team in 

past years. While they used planting dates provided by NASS surveys the following procedure 

will be used as a replacement for predicting risks in 2025 by the following variant of the work in 

chapter 5. 

6.2 Phenology Model for Planting Times   

Over the period of 2000-2020 various crops such as cotton, soybean, sorghum, corn, and 

sunflower were cultivated under a controlled, irrigated environment in Bushland, Texas [7]. The 

planting dates and harvest dates of each season are recorded. Daily NDVI was extracted from the 

MODIS MCD43A4.006 dataset for the Bushland site. This NDVI consists of one 463.313 meters 

pixel at the site’s location.  This data set are used for training to build the planting date predictive 

model. To test the precision and statistical significance of the model, we turn to USDA-ARS data 

in Texas A&M Corn Variety Trials (Texas A&M AgriLife Research). Texas A&M Corn Variety 

Trials consist of 8-12 different sites around Texas from 2018 to 2023. Similarly, daily NDVI is 

extracted from each site during the corn growth period for each location. The variety trial was 

conducted independently at different locations and different years and can be used objectively to 

measure the efficacy of the modeling. 
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To address outliers caused by fluctuations in satellite imaging, we implemented an algorithm to 

remove sudden changes in the data. For 𝑥𝑖 ∈  𝑋 𝑤ℎ𝑒𝑟𝑒 𝑋 = Time and 𝑦𝑖 ∈  𝑌 𝑤ℎ𝑒𝑟𝑒 𝑌 = NDVI 

and 𝑖 spans from January 1, 2000, to December 31, 2020 (with time strictly progressing), the 

point ( 𝑥𝑖, 𝑦𝑖)  is removed if: |𝑦𝑖−1 − 𝑦𝑖| > 0.05. An example of this filtering can be observed in 

Figure 6.21. This algorithm helps in maintaining the continuity and reliability of the NDVI data 

by filtering out abrupt and significant deviations. 

 

Figure 6.21: The image of the left is NDVI extracted from MODIS an experiment field in 

Sunray, Texas in 2019. The image on the right is the data after outlier removal.  

 

For the phenology model computations, MATLAB version R2023a is used (The MathWorks, 

Inc., 2023). The data is filtered to capture the NDVI during the growth period for each year. 

Subsequently, the data for each year is fitted to a third-degree polynomial using least squares 

method. As previous literature [17,31] has described the growth of crops using a third-degree 

polynomial. The leading coefficient is positive to ensure a suitable root. An example of this fit 

can be seen in Figure 6.22.  
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Figure 6.22. NDVI from experiment field in Sunray, Texas in 2019 during crop growing season 

best fit to a third-degree polynomial. 

 

From these polynomials the local max of the polynomial and the minimum x-value such that y=0 

is extracted for each year and location. As shown in previous studies, the day of theoretical zero 

NDVI correlates with the sprouting date of crops [32], and the maximum NDVI value can be 

used as an indicator for determining the planting date [15]. The authors find the day of 

theoretical zero NDVI paired with the rate of NDVI growth (rate in respect to functions zero to 

functions local max) as useful indicators of determining planting date.  

Multiple linear regression is used to optimize these two variables to predict the planting date. Let 

𝑋1 be the minimum x-value extracted from the values from where y=0. Let 𝑋2 be the local 

maximum of the cubic function divided by the number of days from 𝑋1 equation (6.23) is the 

result of the regression algorithm. 

𝑷𝒍𝒂𝒏𝒕𝒊𝒏𝒈 𝑫𝒂𝒕𝒆 =  𝟎. 𝟖𝟔𝟗 𝑿_𝟏 − 𝟏𝟎𝟓𝟎. 𝟑 𝑿_𝟐 + 𝟖. 𝟑𝟕    equation (6.23) 

To evaluate the model's performance, we used mean absolute error (MAE), mean absolute error 

standard deviation (R2) and root mean square error (RMSE). 
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Daily NDVI is collected for each pixel identified as land used for land cultivation that year in 

Texas. The average NDVI for the pixels in each county is calculated with outliers removed. The 

NDVI for each county is analyzed by year. For each year, the maximum data point is identified 

within the period February 1st to August 1st. The data selected for input into our model is 

determined by examining sequential data points before and after the maximum value. The 

process stops when a point falls below the mean of all data points for that year and county. The 

planting date is found for each county and each year using equation 6.23. 

6.3 Results 

The model's mean prediction error for planting dates is 6.8 days for the training data from 

Bushland, Texas and 8.6 the new data from the A&M variety trials. The R-squared value for our 

test data set is 0.85. These metrics support the model is a good predictor for new data of various 

regions in Texas. Further performance metrics of the model on both training and test datasets are 

summarized in Table 6.31 and Figure 6.32. 

 

 Mean 

absolute error 

Mean 

absolute error 

standard 

deviation  

Root Mean 

Squared error 

R-squared Sample size 

Training Data 6.8460 3.8433 26.9239 0.7337 10 

Test Data 8.6073 5.4918 10.1590 0.8537 29 

Table 6.31. Comparison of multiple linear regression model performance on the training data 

recorded from Bushland, Texas and testing data from Texas A&M Corn Variety Trials. 
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Figure 6.32: The image of the left is a representation of the model’s performance on the training 

data from Bushland, Texas (a perfect model would have all data points on y=x). The image on 

the right is the model’s performance on the test data from Texas A&M Trials. 

 

Planting dates for cultivated land during 2008-2022 were calculated using equation 6.23. 

The average planting date per county can be seen in Figure 6.33. 

 

Figure 6.33: County wide average planting date using average NDVI per county. Data was fitted 

to a third-degree polynomial and features are extracted to solve for planting date using equation 

6.23. 
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6.4 Discussion 

The average planting date is calculated from 2008 - 2022, providing a maximum of 15 years. Not 

all counties have this maximum. There are instances where no pixel values represent cultivated 

land in a county for certain years. Occasionally the model predicted a planting date being in the 

year prior, which we exclude from the average calculation. Out of the counties calculated 81% of 

averages included at least 8 or more years. 

Some of our time series NDVI have double cropping curves within the same year. In these cases, 

we calculate the earliest curve. The number of pixels calculated varies across counties and years. 

Our results show that average planting dates in Texas range from January to June. The Hot Dry 

and Hot Humid BA Climate Zones typically have later planting dates, from April to June. 

Notably, there is a strip of early planting dates in North Central Texas, corresponding to the 

Blackland Prairie region—an area known for its extremely fertile soil, rich in organic matter and 

ideal for farming. 
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7) Machine Learning Models for Planting Data LAI  

7.1 Model Structure  

We follow the neural network structure presented in paper [18] to create a neural network with 

structure of 3 hidden layers, each containing 20 nodes each. The activation function used is 

tanh(x), and optimizer Adam with learning rate of 0.002. The neural network is trained for a 

maximum of 500 epochs with batch size of 50, and the loss function being mean squared error. 

For our 18 years of data, we create 1,000 augmented polynomials for each year. The data is 

normalized by each rescaling coefficients to [-1,1] 

The model will be created and tested in two ways: 

1.) Polynomial coefficient inputs  

Each coefficient type (𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑)from the augmented polynomials of type 𝑎𝑥3 + 𝑏𝑥2 +

𝑐𝑥 + 𝑑 is normalized. For each set of coefficients 𝑀𝑎, 𝑀𝑏 , 𝑀𝑐 , 𝑎𝑛𝑑 𝑀𝑑 the normalization is 

performed as follows: 

𝑚𝑖,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧ⅇ𝑑 = (
𝑚𝑖 − min(𝑀𝑖)

max(𝑀𝑖) − min(𝑀𝑖)
) × 2 − 1 

 where 𝑀𝑖represents the set of all coefficients of the same type (e.g., 𝑀𝑎 for all 𝑎 coefficients, 

𝑀𝑏 for all 𝑏 coefficients, 𝑀𝑐 for all 𝑐 coefficients, and 𝑀𝑑 for all 𝑑 coefficients). And 𝑚𝑖 ∈  𝑀𝑖 , 

𝑚𝑖 is the original coefficient being normalized.  
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2.) Interpolated Data Points from Polynomial 

From our 18,000 augmented polynomials (mentioned in 5.3), we interpolate to obtain 126 points 

of LAI, from Julian days 150 to 275.  This period is chosen because it typically represents the 

primary growing season for crops in this region. Data was similarly normalized at each day 

during the time period.  

During training, the model is allowed a maximum of 500 epochs, that is the number of times the 

model will evaluate the training data. If the mean absolute error of the validation data does not 

improve after 20 consecutive epochs, the model will stop training.  

We use the k-fold cross-validation method with k = 18, dividing our data into 18 mutually 

exclusive sections. Each iteration uses 17 of these sections (17,000 polynomials) for training the 

neural network and the remaining section (1,000 polynomials) is used for validation.  

To evaluate the performance of the neural network on our dataset and ensure it is not overfitting, 

we utilized the k-fold cross-validation method on both shuffled and unshuffled data. This 

approach helps assess its robustness of the model and ability to generalize to unseen data. 

In the shuffled data scenario, the dataset was randomly shuffled before being split into k-folds. 

This means each fold contains a mix of samples from different years, providing a diverse set of 

data points for training and validation in each iteration.  

7.2 Model Evaluation – Coefficient Approach 

The performance of the model on shuffled coefficient data was consistent, with the mean 

absolute error of the validation data falling within the interval [2,3] days for each fold. This 

indicates that the model performs well on the shuffled data, accurately predicting planting dates 
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across the diverse set of curves. The performance of the model during training can be observed 

in Figure 7.21. 

 

Figure 7.21: Mean absolute error of the validation data after each epoch during the training of the 

neural network trained on coefficient inputs, using 18-fold cross-validation on shuffled data. 

 

For the unshuffled data scenario, the dataset was split into k-folds without shuffling, so each fold 

corresponds to one year of data. This means that during each fold, the model is trained on several 

years of data and validated on an entirely separate year. This method better simulates real-world 

scenarios. 

The results of the k-fold method on unshuffled coefficient data varied more than the shuffled 

data, with the median mean absolute error being 3.80 days. It is expected that the model finds it 

more challenging to predict planting dates when removing a full year of augmented crop growth 

and testing it against training of other years. A median mean absolute error of 3.80 days is still a 

good result. This indicates that the model can reasonably predict planting dates even in the face 
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of yearly variations. The performance of the model during training can be observed in Figure 

7.22 and 7.23. 

Figure 7.22: Mean absolute error of the validation data after each epoch during the training of the 

neural network trained on coefficient inputs, using 18-fold cross-validation on unshuffled data. 

Figure 7.23: Box plot showing the mean absolute errors across the 18 folds of shuffled 

coefficaint data after training the neural network. 

7.3 Model Evaluation – Interpolation Approach 

The performance of the model on shuffled interpolated data fluctuated with 10 folds having 

nearly zero error and the remaining 8 folds showing about 15 days of error. These errors are 

presented in Figure 7.31. The consistency of having two sets of folds with similar error, 

separated by approximately 15 days, suggests the presence of potentially problematic training 
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data. Further investigation into the unshuffled data training may provide insights into the source 

of these discrepancies.  

Figure 7.31: Mean absolute error of the validation data after each epoch during the training of the 

neural network trained on interpolated LAI, using 18-fold cross-validation on shuffled data. 

 

The results of the k-fold method on unshuffled coefficient data show a median of mean absolute 

error being 1.04 days and the highest being 174 day. These errors are presented in Figure 7.33 

and the convergence of each model fold can be observed in Figure 7.32. This indicates there may 

be a year of data that is incompatible with the other augmented years. This particular year's 

growth period may not be well represented by the other 17 years of growth data. 
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Figure 7.32: Mean absolute error of the validation data after each epoch during the training of the 

neural network trained on interpolated LAI, using 18-fold cross-validation on unshuffled data. 

*Note: The scale of this graph differs from the previous ones. 

Figure 7.33: Box plot showing the mean absolute errors across the 18 folds of shuffled 

interpulated LAI data after training the neural network. * Note: Two larger errors of 40 and 174 

are not displayed within the scale of this graph." 
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8) Multiview Analysis 

8.1 Canonical Correlation Analysis (CCA)  

Multiview learning is a branch of machine learning which utilizes the information and 

relationship of two or more views of data [22]. This method is of interest to us, as our dataset 

consists of ground data and satellite images as two distinct views. While our ground data is 

valuable it is limited, requiring reliance on satellite images for future predictions. By leveraging 

both views, we can create a robust predictive model. 

Canonical correlation analysis (CCA) [23] is a part of multiview learning. This technique is used 

for feature extraction of two or more, multidimensional sets of data. For two sets, it identifies 

two sets of basis vectors, one for each view, that maximize the correlations between the 

projections of the variables onto the basis vectors [27].  

The following CCA is understood by reading the following [22-27]. We follow [23] closely in 

describing the methodology.   

Let 𝑋 ∈ ℝ𝑛×𝑝 and 𝑌 ∈ ℝ𝑛×𝑞 , where 𝑛 is the number of samples and 𝑝 is the number of 

features for view 𝑋 and 𝑞 is the number of features in view 𝑌. The target is to find a basis that 

maximizes the correlations between the two views. The size dimension of the basis 𝑏 must be 

chosen such that 𝑏 < 𝑝 and 𝑏 < 𝑞. Mean center the data such that: 

𝑋 = 𝑋 − 𝑚𝑒𝑎𝑛(𝑋), 𝑌 = 𝑌 − 𝑚𝑒𝑎𝑛(𝑌) 

 And let 𝑤𝑥 ∈ ℝ𝑝 and 𝑤𝑦 ∈ ℝ𝑞 denote linear transformations. Our goal is to maximize a new 

basis such that the views are maximally correlated. Then: 
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𝑤𝑥𝑚𝑎𝑥, 𝑤𝑦𝑚𝑎𝑥 = arg max 𝑐𝑜𝑟𝑟(𝑤𝑥
𝑇𝑋, 𝑤𝑦

𝑇𝑌) 

= argmax
𝐶𝑜𝑣(𝑤𝑥

𝑇𝑋, 𝑤𝑦
𝑇𝑌)

√𝑉𝑎𝑟(𝑤𝑥
𝑇𝑋)𝑉𝑎𝑟(𝑤𝑦

𝑇𝑌)
 

Since: 

 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 

We have: 

= argmax
𝑤𝑥

𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦

√𝑉𝑎𝑟(𝑋𝑤𝑋)𝑉𝑎𝑟(𝑌𝑤𝑦)
 

Since: 

𝐶𝑜𝑣(𝑎𝑋, 𝑏𝑋) = 𝑎𝐶𝑜𝑣(𝑋, 𝑌)𝑏𝑇 

It follows: 

= argmax
𝑤𝑥

𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦

√𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑋)𝑤𝑥√𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑌)𝑤𝑦

 

Since: 

 𝑉𝑎𝑟(𝑎𝑋, 𝑏𝑋) = 𝑎𝑐𝑜𝑣(𝑋, 𝑌)𝑏𝑇 

We can replace 𝑤𝑥 with 𝑎𝑤𝑥 for 𝑎 ∈ ℝ+ with the same solution (similarly for 𝑤𝑦) : 

𝑎𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦

√(𝑎𝑤𝑥
𝑇)𝑐𝑜𝑣(𝑋, 𝑋)(𝑎𝑤𝑥)√𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑌)𝑤𝑦

=
𝑤𝑥

𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦

√𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑋)𝑤𝑥√𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑌)𝑤𝑦
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Therefore, we can constraint the following:  

𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑋)𝑤𝑥 = 1 and 𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑌)𝑤𝑦 = 1  

This simplifies the denominator to 1 and we can equally solve the problem:  

𝑤𝑥𝑚𝑎𝑥, 𝑤𝑦𝑚𝑎𝑥 = arg 𝑚𝑎𝑥 𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦 

Define 𝐾 = √𝑐𝑜𝑣(𝑋, 𝑋)𝑐𝑜𝑣(𝑋, 𝑌)√𝑐𝑜𝑣(𝑌, 𝑌)  with dimensions  (𝑞 × 𝑝) 

𝐾 can be decomposed by Singular Value Decomposition (SVD):  

𝐾 = 𝑈𝛴𝑉𝑇  

Where U is (𝑞 × 𝑞) with orthonormal eigenvectors of 𝐾𝐾𝑇, 𝑉 is (𝑝 × 𝑝) with orthonormal eigenvectors 

of 𝐾𝑇𝐾 and 𝛴 is the diagonal matrix of the non-negative square roots of eigenvalues 𝐾𝑇𝐾 and 

𝐾𝐾𝑇. Let 𝑟 = 𝑟𝑎𝑛𝑘(𝐾) and 𝜆1, 𝜆2, … , 𝜆𝑟be the eigenvalues of 𝐾𝑇𝐾 and 𝐾𝐾𝑇 . Let 

𝑎1, 𝑎2, … , 𝑎𝑟 be the standardized eigenvectors of 𝐾𝐾𝑇and 𝑏1, 𝑏2, … , 𝑏𝑟 be the standardized 

eigenvectors of 𝐾𝑇𝐾 (each with unit length). Then:   

𝑤𝑥(𝑖) = √𝑐𝑜𝑣(𝑋, 𝑋)𝑎𝑖      𝑎𝑛𝑑    𝑤𝑦(𝑖) = √𝑐𝑜𝑣(𝑌, 𝑌)𝑏𝑖 

 for 𝑖 ∈ 1, ⋯ , 𝑟, these are canonical correlation vectors and: 

𝑛𝑖 = 𝜔𝑥(𝑖)
𝑇  𝑋  𝑎𝑛𝑑     𝑚𝑖 = 𝜔𝑦(𝑖)

𝑇 𝑌 

 for 𝑖 ∈ 1, ⋯ , 𝑟   are canonical correlation variables. The square roots of the eigenvalues, √𝜆𝑖    

for 𝑖 ∈ 1, ⋯ , 𝑟  are canonical correlation coefficients, with the following covariance properties: 

𝑐𝑜𝑣(𝑛𝑖 , 𝑛𝑗) =  𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑋)𝑤𝑥 =  𝑎𝑖𝑎𝑗 = {

1   𝑓𝑜𝑟 𝑖 = 𝑗
0  𝑓𝑜𝑟  𝑖 ≠ 𝑗
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By singular value decomposition properties. Now we want to prove that 

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦) = √𝜆𝑖 for 1 ≤ 𝑖 ≤ 𝑟 when 𝑤𝑥 = 𝑤𝑥(𝑖) and 𝑤𝑦(𝑖) 

Proof: 

 Let us fix 𝑤𝑥 and maximize with respect to 𝑤𝑦: 

𝑚𝑎𝑥
𝑤𝑦 (𝑤𝑥

𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦)2 = 
𝑚𝑎𝑥
𝑤𝑦 (𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑋)𝑤𝑥)(𝑤𝑦
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦) 

With the constraint 𝑤𝑦
𝑇𝑐𝑜𝑣(𝑌, 𝑌)𝑤𝑦 = 1 

Then, the maximum value of : 

𝑚𝑎𝑥
𝑤𝑦 (𝑤𝑦

𝑇𝑐𝑜𝑣(𝑌, 𝑋)𝑤𝑥)(𝑤𝑦
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦) 

corresponds to the largest eigenvalue of the matrix: 

𝑐𝑜𝑣(𝑌, 𝑌)−1𝐶𝑜𝑣(𝑌, 𝑋)𝑤𝑦𝑤𝑦
𝑇𝐶𝑜𝑣(𝑋, 𝑌) 

Since this matrix simplifies to:  

𝑤𝑥
𝑇𝑐𝑜𝑣(𝑋, 𝑌)𝑐𝑜𝑣(𝑌, 𝑌)−1𝐶𝑜𝑣(𝑌, 𝑋) 𝑤𝑥 

To maximize  𝑤𝑥 we put 𝑎 = √𝑐𝑜𝑣(𝑋, 𝑋)𝑤𝑥  and get: 

𝑎𝑇𝑐𝑜𝑣(𝑋, 𝑋)−
1
2𝑐𝑜𝑣(𝑋, 𝑌)𝐶𝑜𝑣(𝑌, 𝑌)−1𝑐𝑜𝑣(𝑌, 𝑋)𝑐𝑜𝑣(𝑋, 𝑋)−

1
2𝑎 =  𝑎𝑇𝐾𝑇𝐾𝑎 

We solve: 

𝑚𝑎𝑥
𝑎

𝑎𝑇𝐾𝐾𝑇𝑎 
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When 𝑎 = 𝑎𝑟 the r-th largest eigenvalue then  

𝑎𝑇𝐾𝐾𝑇𝑎 = 𝜆𝑟𝑎𝑟
𝑇𝑎 = 𝜆𝑟  

From SVD of K we know K𝑏𝑟=√𝜆𝑟𝑎𝑟 .Therefore:  

𝑤𝑥(𝑟)
𝑇 𝑐𝑜𝑣(𝑋, 𝑌)𝑤𝑦(𝑟) =  𝑎𝑟

𝑇𝐾𝑏𝑟 = √𝜆𝑟𝑏𝑟
𝑇𝑏𝑟 = √𝜆𝑟 

8.2 Orthogonal Canonical Correlation Analysis (OCCA)  

In this section, I will review the methods presented in “A Self-Consistent-Field Iteration for 

Orthogonal Canonical Correlation Analysis” [23] which offer improved approaches for CCA. 

Orthogonal Canonical Correlation Analysis (OCCA) extends CCA by imposing orthogonality 

constraints on the basis vectors, which helps preserve the covariance structure of the original 

data and reduces noise in the analysis. However, solving for eigenvalues in previous OCCA 

methods [23, 29] can present challenges, particularly when numerical schemes encounter 

complex solutions, leading to potential non-solutions. The orthogonalization of projections 

allows leveraging a trace-fractional structure, and the paper proposed optimization methods to 

take advantage of this structure, discussed in the following: 

Let n be the number of samples and X (𝑝 × 𝑛) and Y (𝑞 × 𝑛)be our two mean centered views 

and define: 

𝐴 = 𝑋𝑋𝑇, B= 𝑌𝑌𝑇, C=X𝑌𝑇  

And let 𝑂1 (𝑝 × 𝑛) 𝑎𝑛𝑑 𝑂2 (𝑞 × 𝑛) have orthogonal columns. Then proposed maximization 

problem is:  



 

 43 

𝑓 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑂1𝑂2

𝑡𝑟2(𝑂1
𝑇𝐶𝑂2)

𝑡𝑟(𝑂1
𝑇𝐴𝑂1)𝑡𝑟(𝑂2

𝑇𝐵𝑂2)
 

Subject to: 

      𝑡𝑟(𝑂1
𝑇𝐶𝑂2) ≥ 0 

The algorithm to solve this maximization problem is as follows: 

Initialize orthogonal matrices 𝑂1
0 and 𝑂2

0  then, 

Iterate through the following steps such that: i=1, 2,…,100 or until convergence.  

Update   𝑂1
𝑖  by:  

𝑂1
𝑖 =  

𝑎𝑟𝑔𝑚𝑎𝑥
𝑂1

𝑡𝑟2(𝑂1
𝑖−1𝐶𝑂2)

𝑡𝑟(𝑂1
𝑇𝐴𝑂1)𝑡𝑟 (𝑂2

𝑖−1𝑇
𝐵𝑂2

𝑖−1)
                     (8.21) 

Given 𝑡𝑟(𝑂𝑇𝐶𝑂𝑖−1) ≥ 0 

Update   𝑂2
𝑖  by: 

𝑂2
𝑖 =

𝑎𝑟𝑔𝑚𝑎𝑥
𝑂2

𝑡𝑟2(𝑂1
𝑖 𝑇

𝐶𝑂2)

𝑡𝑟 (𝑂1
𝑖𝑇

𝐴𝑂1
𝑖) 𝑡𝑟(𝑂2

𝑇𝐵𝑂2)
                              (8.22) 

Given 𝑂1
𝑖 𝑇

𝐶𝑂2
𝑖 ≥ 0, 

Then compute SVD of 𝑂1
𝑖 𝑇

𝐶𝑂2
𝑖  such that: 

𝑂1
𝑖 𝑇

𝐶𝑂2
𝑖  =  �̃��̃��̃�𝑇                                                        

Where  �̃�, �̃� = 
𝑎𝑟𝑔𝑚𝑎𝑥 

𝑈, 𝑉 𝑡𝑟(𝑈𝑇𝑂1
𝑖 𝑇

𝐶𝑂2
𝑖 𝑉)  where 𝑈, 𝑉 ∈ 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 (𝑛 × 𝑛) 
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Update: 𝑂1
𝑖  and 𝑂2

𝑖 : 

𝑂1
𝑖 = 𝑂1

𝑖  �̃� 𝑎𝑛𝑑 𝑂2
𝑖 = 𝑂2

𝑖  �̃� 

Then check for convergence defined by: 

|
𝑓(𝑂1

𝑖 ,   𝑂2
𝑖 ) − 𝑓(𝑂1

𝑖−1,  𝑂2
𝑖−1)

𝑓(𝑂1
𝑖 ,  𝑂2

𝑖)
| ≤ 10−8 

This algorithm will result in maximized orthonormal basis 𝑂1, 𝑂2 where 𝑂1𝑋 = 𝑂2𝑌 = 𝐼  

The sequence of  𝑂1
1, 𝑂1

2, … and 𝑂2
1, 𝑂2

2, … that is (𝑂1
𝑖 )𝑇𝐶𝑂2

𝑖  is symmetric and semidefinite 

therefore the sequences converge. 

8.3 Sub-Maximization Problem in OCCA Algorithm  

The OCCA algorithm maximizes equations (8.21) and (8.22) within each iteration. These sub-

problems are of the form: 

𝑚𝑎𝑥
𝐺

𝜂(𝐺) ≔
𝑡𝑟2(𝐺𝑇𝐷)

𝑡𝑟(𝐺𝑇𝐴𝐺)
                                             (8.23) 

Subject to 𝑡𝑟(𝐺𝑇𝐷) ≥ 0, where ≠ 0, A is positive semidefinite and 𝐺 is orthogonal. 

We solve these equations by using Self-Consistent Field interactions. The algorithm to solve this 

maximization problem is as follows: 

Initialize orthogonal matrix 𝐺0, 

Iterate through the following steps such that : i=1, 2,… until convergence.  
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Then turn to compute the first partial derivative of 𝜂(𝐺) on the Stiefel manifold (orthogonal 

constraints) where: 

𝜕𝜂(𝐺)

𝜕(𝐺)
=

2𝑡𝑟(𝐺𝑇𝐷)

𝑡𝑟(𝐺𝑇𝐴𝐺)
𝐷 −

2𝑡𝑟2(𝐺𝑇𝐷)

𝑡𝑟2(𝐺𝑇𝐴𝐺)
𝐴𝐺 

And the gradient taken on the restriction of the Stiefel manifold must be orthogonally projected 

to remain tangent on the manifold where: 

𝑔𝑟𝑎𝑑 𝜂(𝐺) = 𝛱𝐺(
𝜕𝜂(𝐺)

𝜕(𝐺)
) 

Where for a matrix X, 

𝛱𝐺(𝑋) = 𝑋 − 𝐺𝑠𝑦𝑚(𝐺𝑇𝑋) 

Where 𝑠𝑦𝑚(𝑋) is for symmetry such that:  

𝑠𝑦𝑚(𝑋) =
(𝑋 + 𝑋𝑇)

2
  

Giving our gradient on the Stiefel manifold to be: 

𝑔𝑟𝑎𝑑 𝜂(𝐺) =  −2 (
𝑡𝑟(𝐺𝑇𝐷)

𝑡𝑟(𝐺𝑇𝐴𝐺)
)

2

([𝐴𝐺 −
𝑡𝑟(𝐺𝑇𝐴𝐺)

𝑡𝑟(𝐺𝑇𝐷)
𝐷] − 𝐺𝑠𝑦𝑚 (𝐺𝑇𝐴𝐺 −

𝑡𝑟(𝐺𝑇𝐴𝐺)

𝑡𝑟(𝐺𝑇𝐷)
𝐺𝑇𝐷)) 

Now if G is at a point satisfying the Karush-Kuhn-Tucker conditions [23,28] of (8.23) then we 

get: 

𝐴𝐺 −
𝑡𝑟(𝐺𝑇𝐴𝐺)

𝑡𝑟(𝐺𝑇𝐷)
𝐷 = 𝐺𝑠𝑦𝑚 (𝐺𝑇𝐴𝐺 −

𝑡𝑟(𝐺𝑇𝐴𝐺)

𝑡𝑟(𝐺𝑇𝐷)
𝐺𝑇𝐷) 

That we will construct as a nonlinear eigenvalue problem to insure real eigenvalues such that: 
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𝐸(𝐺) ≔ 𝐴 −
𝑡𝑟(𝐺𝑇𝐴𝐺)

𝑡𝑟(𝐺𝑇𝐷)
(𝐷𝐺𝑇 + 𝐺𝐷𝑇) 

Then we update  𝐸𝑖 = 𝐸(𝐺𝑖−1)  

Then we compute the orthogonal eigen basis matrix  𝑍 that associates with the k smallest eigen 

values of 𝐸𝑖. And compute the SVD: 

𝐺𝑖
𝑇𝐷 = 𝑈𝛴𝑉𝑇 

Then we update 𝐺𝑖: 

𝐺𝑖 = 𝑍𝑈𝑉𝑇 

And continue the algorithm until 𝐺 convergences. 

  



 

 47 

9) Using NDVI Data to Predict with Multiview Analysis Fusion of LAI and NDVI 

9.1 NDVI to LAI Map 

Neural networks have been shown to predict planting date estimations efficiently with LAI 

inputs. For practical applications, to apply the model to real life data (such as satellite imagery), 

it is necessary to convert our NDVI data into LAI. By manipulating results from OCCA, we can 

derive a mapping to transform our 126 points of NDVI into 126 points of LAI. 

OCCA finds two sets of linear combinations, 𝑂1for 𝑋  and  𝑂2 for Y, such that  

𝑂1
𝑇𝑋 and 𝑂2

𝑇𝑌 are maximally correlated with each other.  

Then let X=LAI and Y=NDVI .  

To find the mapping, we need to first solve for 𝑊 (𝑘 × 𝑘) that minimizes the following: 

𝑚𝑖𝑛‖𝑊𝑇𝑂2
𝑇𝑌 − 𝑂1

𝑇𝑋‖𝐹
2  

Where 𝐹 is the Frobenius norm.  

Now, we can rewrite this in a more convenient form by transposing the expression inside the 

norm: 

𝑚𝑖𝑛‖𝑌𝑇𝑂2𝑊 − 𝑋𝑇𝑂1‖𝐹
2  

Now, let 𝐴 =  𝑌𝑇𝑂2 and 𝐵 = 𝑋𝑂1. Then the problem becomes of form: 

𝑚𝑖𝑛‖𝐴𝑊 − 𝐵‖𝐹
2  

Which is the standard linear least squares problem to find 𝑊 that minimizes the Frobenius norm 

of the difference between 𝐴𝑊 and 𝐵. The least squares solution is.  
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𝑊 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 

Now substituting back 𝐴 =  𝑌𝑇𝑂2 and 𝐵 = 𝑋𝑂1 we get: 

 𝑊 = (𝑂2
𝑇𝑌𝑌𝑇𝑂2)−1𝑂2

𝑇𝑌𝑋𝑇𝑂1 

And with the transformation matrix 𝑊 we can approximate 𝑋 𝑎𝑠: 

𝑋 ≈ 𝑂1𝑊𝑇𝑂2
𝑇𝑌                                      (9.11) 

Equation (9.11) now allows us to have an approximation for transforming NDVI values to LAI 

values.  

9.2 Orthogonal Canonical Correlation Analysis Map Analysis 

We optimized our OCCA map using LAI and NDVI from Bushland, Texas. The satellite data 

used starts in 2000, which results in the removal of some years from our original 18 years of 

data. For the remaining years, NDVI was evaluated to determine if a distinct growth curve from 

planting to harvest could be identified. Years where no clear curve was present, likely due to 

satellite errors, were excluded, leaving us with 9 years of data. These 9 years align well with the 

available LAI measurements and satellite imagery. The third-degree polynomials of these 9 years 

were interpolated to obtain 126 points from Julian days 150 to 275.   

In OCCA analysis, we use 126 variables each for LAI and NDVI, optimizing our map to 

transform NDVI points into LAI. We select our k-value to be 3, generating 3 variable vectors for 

each LAI and NDVI variables, resulting in output matrices.   𝑂1,  𝑂2 are (126 × 3).  
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We use z-score normalization for each 126 days in both LAI and NDVI data from Bushland, 

Texas. When mapping back NDVI to LAI, we must multiply the output by the standard deviation 

of the interpolated LAI and add the mean of the interpolated LAI to denormalize the data. 

Since weights are randomly initialized at the start of OCCA, we build 20 maps and select the 

map with the minimum mean squared error between the interpolated LAI from the real ground 

truth data and the NDVI data mapped to LAI.  The performance during training of the best model 

can be seen in Figure 9.21 and Figure 9.22. 

 

Figure 9.21: The graph on the left is the number of SCF (Self-Consistent Field) iterations 

required for the subproblems associated with NDVI and LAI matrices at each iteration of the 

OCCA algorithm. The blue line representing LAI and orange representing NDVI. The graph on 

the right plots the residuals of the Nonlinear Eigenvalue Problem (NEPv) during each iteration of 

the OCCA algorithm.   
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Figure 9.22: This graph displays the objective function values at each iteration of the OCCA 

algorithm. 

Figure 9.23: The blue lines represent the third-degree polynomial used for interpolating our 126 

inputs of OCCA during the period of Julian day 120 to 175. The blue dots represent the output of 

the NDVI to LAI map found using OCCA during the period of Julian day 120 to 175.  



 

 51 

 

The best map will allow us to map NDVI to LAI for any given time series LAI from Julian day 

120 to 175. The NDVI of Bushland is mapped to LAI. The mapped LAI is compared to the 

actual LAI polynomial curves to test accuracy. The comparison can be seen in Figure 9.23. 

We then train a neural network with the same model structure discussion in section 7.3, except 

we use random 80% of the data for training and remaining 20% for validation in optimizing the 

network. The convergence of this model can be seen in Figure 9.24. 

 

 
Figure 9.24: The blue curve represents the training loss (MAE) and the orange curve represents 

validation MAE over 500 epochs. 

 

The performance of the neural network's on the satellite NDVI data mapped to LAI data gives a 

mean absolute error of approximately 5.51 days with the maximum error being 16.79 days.  
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10) Predicting Planting Date Using Multiview Polynomial Learning  

10.1 Texas A&M Variety Trials Data (Test Data) 

To test the precision and statistical significance of the model, we will use new unseen data 

specifically, Texas A&M Corn Variety Trials (Texas A&M AgriLife Research). This data set 

consists of 8-12 different sites around Texas from 2018 - 2023. Similarly, daily NDVI is 

extracted from each site during the corn growth period for each location. The variety trial was 

conducted independently at different locations and different years and can be used objectively to 

measure the efficacy of the modeling. 

10.2 Test Data Performance   

Our neural network is trained on polynomials derived from the 18 years of data from Bushland. 

The planting dates of this data range from Julian day 105 to 181, while the variety trails have 

planting dates earlier than Julian day 105. To use the neural network appropriately, we need to 

restrict some of the variety trial years and locations to align with the neural networks training 

data.  

To determine an appropriate predictive range for our model, we examine our augmented 

polynomials discussed in section 5.3. The mean planting date of the training data is Julian day 

144 with a standard deviation of 19 days. By limiting our data intake to the range encompassing 

95% of our training data (assuming a normal distribution), we will test the model on A&M 

Variety Trials data with planting dates in-between day 106 to 182. This criterion provides us 

with 13 planting experiments to evaluate the model's performance. The locations of the sites are 

represented in Figure 10.21. 
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Figure 10.21: The four locations from the A&M variety such that their planting dates are in 

range of the neural networks training data. Locations consist of, Dumas, Sunray, Stratford, and 

Spearman, Texas. 

We used the model OCCA map combined with trained neural network created in section 9.2 and 

Use the NDVI from Texas variety trials to predict the planting date. NDVI from these locations 

are mapped to LAI and is represented Figure 10.22.  
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Figure 10.22: The blue dots are representing the output of the  NDVI to LAI map found using 

OCCA from Julian day 120 to 175 for each Texas A&M trial experiment. 
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This LAI data is then used as inputs on the trained neural network from section 9.2.  This data 

has never been seen in training for the OCCA model or the neural network model and serves as a 

more accurate representation of the models' true performance.  

The performance of the neural network on the satellite NDVI data mapped to LAI data yields a 

mean absolute error of approximately 3.74 days with the maximum error being 10.05 days. This 

performance highlights the model's effectiveness and offers a reliable indication of its predictive 

accuracy on new, unseen data.  
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11) Conclusion 

This paper presents a comprehensive approach to predicting planting dates using the combination 

of OCCA and neural networks. By integrating ground-based LAI measurements with satellite-

derived NDVI data, we developed a predictive model that leverages the strengths of both 

datasets, addressing the limitations of each.  

The use of third-degree polynomial models to represent LAI allowed for a unified comparison of 

data collected on different days, enabling the effective use of both ground and satellite data in 

our machine learning models. Augmenting the LAI data through the polynomials was crucial in 

generating sufficient training data for the neural network. This method, combined with k-fold 

cross-validation, ensured that the training of this data would produce a robust model.  

The implementation of Orthogonal Canonical Correlation Analysis (OCCA) provided a map for 

NDVI data to be transformed to LAI data, preserving the essential correlations between the two 

views while minimizing noise. This mapping was crucial to have feasible data to use the neural 

network that is trained on the purest growth curves, leading to higher planting date accuracy. 

The evaluation of our model on unseen Texas A&M Variety Trials data, which had never been 

included in training, demonstrated its ability to generalize effectively, achieving a mean absolute 

error of 3.74 days. 

The contributions of muti-view polynomial learning extend beyond the immediate application to 

crop growth monitoring. By developing a methodology that combines polynomial augmentation, 

multiview learning, and neural network training, this work offers a framework that can be 

adapted to other domains where data from multiple sources must be integrated for predictive 

modeling. 
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Future work would be to apply these methods to a larger data set and include more diverse 

geographical regions to further validate and refine the model’s applicability. It is also of interest 

to use mutiview polynomial learning to predict harvest date of crops.  
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