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ABSTRACT

A NOVEL k-NEAREST NEIGHBORS

METHOD BASED ON GENERALIZED FEATURE

OPTIMIZATION FOR PRECIPITATION FORECASTING

Sean Charles Guidry Stanteen, PhD. Mathematics

The University of Texas at Arlington, 2024

Supervising Professor: Jianzhong Su

Abstract

This study introduces a novel k-nearest neighbors (kNN) method of forecasting

precipitation at weather-observing stations. The method identifies numerous monthly

temporal patterns to produce precipitation forecasts for a specific month. Compared to

climatological forecasts, which average the observed precipitation over the prior thirty

years, and other existing contemporary iterations of kNN, the proposed novel kNN method

produces more accurate forecasts on a consistent basis. Specifically, the novel kNN method

produces improved root mean square errors (RMSE), mean relative errors, and

Nash-Sutcliffe coefficients when compared to climato- logical and other kNN forecasts at

five weather stations in Oklahoma. Rather than looking at the daily data for feature

vectors, this novel kNN method takes so many days and evenly groups them, using the

resulting average as one feature each. All methods tested were lacking in the ability to

forecast wet extremes; however, the novel kNN method produced more frequent

high-precipitation forecasts compared to climatology and the two other kNN methods

tested.
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CHAPTER 1

INTRODUCTION

1.1 The Benefits and Difficulties with Forecasting Precipitation

Accurate seasonal forecasts would assist stakeholders in minimizing losses that might occur

from planting crops that require more precipitation than will occur (Carberry et al. 2000;

Jones et al. 2000; Meinke and Stone 2005). Reliable forecasts allow for more dynamic plan-

ning and have the potential to increase a field’s production capabilities greatly (Bruno Soares

and Dessai 2016; Klemm and McPherson 2018; Nicholls 1996). As it stands, the National

Oceanic and Atmospheric Association (NOAA), specifically the Climate Prediction Center

(CPC), provides seasonal forecasts for precipitation in the form of probabilistic distribu-

tions of 30-day and 90-day totals. However, these forecasts are not useful for agricultural

stakeholders, due to the limited predictability and inadequate spatial scale they present

(Garbrecht and Schneider 2007; Klemm and McPherson 2018; Schneider and Wiener 2009).

As such, the exploration of different forecasting methods is warranted.

The issues with forecasting precipitation are twofold. To begin with, precipitation is

one of the most volatile weather phenomena in the world. Of course, it is likewise not

unpredictable. Several methods of forecasting using differential equations have come about

that are able to accurately predict precipitation. However, these methods do so by taking

in many variables such as sea surface temperatures, humidity, and solar radiation, among

others. While they’re useful, these variables are not available to many smaller stations,
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and while some of those stations may be able to begin collecting them, it would take several

decades for them to amass the data typically used for such forecasts. As well, such forecasting

is only accurate in the short term, typically dropping off after only forecasting five days ahead

(Chakraborty 2010). In the interim, and for stations which lack the means to collect such

data, an alternative is necessary which makes do with the data already available to most

stations across the country.

1.2 Machine Learning

A machine learning algorithm is an algorithm which analyses data input by a user to create

a prediction of the outcome caused by those inputs. While several forms of machine learning

exist, the relevant category for this paper is supervised learning, in which a computer is given

several sets of inputs (or predictors, often represented as vectors in the real space) already

correlated to their “correct” predictands by a human. The computer then uses these to

“learn” the patterns (if any) of the predictors and predictands, and uses them to predict the

outputs of inputs not yet seen by the computer. (El Mrabet et al. 2021).

Examples of such include support vector machine (Cortes and Vapnik 1995), where for

regression a hyperplane with the maximal margin between the training set’s predictors’

vectors is found to help classify inputs given later. When applied to regression, the method

is instead referred to as support method regression (Drucker et al. 1996). Given the inputs

(predictor and predictand) (xi, yi) ∈ Rp × R for i = 1, ..., l, b ∈ R, some arbitrary C > 0,

2



and the inner product function ⟨·, ·⟩ : Rp × Rp → R we optimize

Minimize:
1

2
⟨w,w⟩+ C

l∑
i=1

|ξi + ξ∗i |

Subject to:


yi − ⟨xi, w⟩ − b ≤ ϵ+ ξi

⟨xi, w⟩+ b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0

to get w ∈ Rp. For any newly introduced predictor x ∈ Rp, ⟨x,w⟩ + b is the resulting

prediction.

Long short-term memory (Hochreiter and Schmidhuber 1997) is a method of recurrent

learning (that is a method of machine learning which updates its parameters at every

step). Let m,n, p, T ∈ Z+ be the batch size, number of features, number of units in a

cell, and number of time steps desired respectively. Given matrices xt ∈ Rm×n (the input

at time step t), the input weight matrices Wi,Wf ,Wg,Wo ∈ Rn×p, recurrent weight matri-

ces Ri, Rf , Rg, Ro ∈ Rp×p, and biases bi, bf , bg, bo ∈ Rp, along with hidden and cell states

h0, c0 ∈ Rm×p, then for t = 1, ..., T

it = σ (Wixt +Riht−1 + bi)

ft = σ (Wfxt +Rfht−1 + bf )

gt = tanh (Wgxt +Rght−1 + bg)

ot = σ (Woxt +Roht−1 + bo)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh(ct)

where ◦ is the Hadamard product (that is the element-wise multiplication of vectors/matrices

from the same vector space) and σ(x) = 1
1+e−x is the sigmoid function applied element-wise

to its matrices. The hidden states ht for t = 1, ..., T are the resulting output. The purpose

3



then is to give an initial set of training input matrices to optimize the input weight and

recurrent weight matrices and biases.

Finally, random forests (Ho 1995) are an extension of random decision trees. In the

context of regression, N trees are created by bootstrapping the predictors for each tree.

Trees are built using specific methods such as CART (Choubin et al. 2018) and iterated

through until theN subsets have given their predictions. Those predictions are then averaged

together to give the random forest’s ultimate prediction.

While all these are potentially useful algorithms to forecast precipitation, seeing as all

are based in detecting patterns in the real space, they are not the primary focus of this paper

for reasons to be discussed briefly in the beginning of the next chapter, along with the used

method’s unique difference which lead to its prioritization.
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CHAPTER 2

k-NEAREST NEIGHBORS

k-nearest neighbors (kNN) is a non-parametric method of pattern classification/regression,

respectively denoting data with categorical labels (dry, wet, stormy, etc.) and numerical

labels (0 mm, etc.). This algorithm utilizes a set of predictands, each of which have a set

of numerical representations of certain properties called predictors or features, stored in a

feature vector. We have our operational (target) data whose feature vector is known, but

its predictand is not (in our case because the target has not yet occurred). The objective

of kNN is to find which k labeled feature vectors are most similar to, or “nearest,” the

target’s feature vector. Once those labeled feature vectors are found, their labels are used

to predict the predictand of the target feature vector. For classification, whichever label is

most represented by the k nearest neighbors is predicted to apply best to our target feature

vector. For regression, a linear combination of the k nearest neighbors’ predictands is taken

and used as the average prediction, which is what was done for this study.

The foundations of kNN were first laid in 1951 Fix and Hodges (1989). Initially, the

method was conceived as the compliment to Fix and Hodges’s naive kernel estimate, which

is discussed in both the original paper and the commentary released shortly thereafter (Fix

and Hodges (1989); Silverman and Jones (1989)). It wasn’t until the next year that the

researchers would introduce the terminology which gives the method its modern name (Fix

and Hodges (1952)). In summary, given two distributions F and G with an equal number of

p-dimensional samples (p = M + 1 where M is the number of predictors), a p-dimensional

5



sample with an unknown distribution (our target feature vector), and an odd positive integer

k (to prevent a tie), the distances of all samples with known distributions from that of the

one whose distribution is unknown are found. Whichever of the two distributions owns a

majority of the nearest k samples, it is predicted the target belongs to that distribution. In

addition to this, they gave two important findings; the sample size has a negative correlation

with the probability of error, while the number of features in a feature vector has – at least,

at its simplest form possible – a positive correlation with the probability of error. In 1967,

Cover and Hart proved the upper bound on the method’s probability of error was twice

that for Bayes’s method when k = 1 (Cover and Hart (1967)). While using only the single

nearest neighbor k=1 may make the most intuitive sense, it runs the risk of allowing noise

or outliers to have an undue effect, especially when several distributions are available, or the

data in question are particularly volatile. In 1970, Hellman published his proposed solution

and brought us one step closer to the method we know today; the (k, k′) nearest neighbor

method (Hellman (1970)). Given two positive integers k′, k such that k′ < k, the target is

predicted to have a label if at least k′ of the k nearest neighbors share it. This allowed for

sample sets to be composed of samples from more than just two distributions, while retaining

the requirement that a significant number of the neighbors should be the same.

As valuable as all this information is, its usefulness is mitigated by one simple fact;

an estimation of future precipitation is desired, rather than a classification that denotes a

range of quantities. For this method to be of any use, it needs to be adaptable to not just

a continuous space, but a time series. Fortunately, in 1968 Cover was able to extend his

upper error bound from classification to regression. He showed that the large sample risk

of the nearest neighbor method was at least less than or equal to half the risk presented by

probability distributions such as normal, uniform, and Gaussian (Cover (1968)).

As such, several attempts at producing an algorithm to predict precipitation with this

method have been made by several individuals (e.g. Bannayan and Hoogenboom (2007);

Bannayan and Hoogenboom (2008); Zhang (2004); Yates et al. (2003); Huang et al. (2017)),

6



by comparing feature vectors of daily precipitation and other variables to predict the precip-

itation of the next day, adding that prediction to the data set and using it to predict the day

after, and so on until we have a prediction of the desired length. Attempts at reproducing

this have found that while it can be technically accurate on a day-to-day basis, the actual

quantity of forecasts can be unduly impacted by extreme bouts of precipitation in the past.

Indeed, looking to prior attempts, while kNN’s ability to predict temperature is impressive,

its predictions of precipitation, while promising, can leave something to be desired (Ban-

nayan and Hoogenboom (2008)). While they can certainly present impressive results, said

results tend to only be for a single year, which leaves it open to whether the method is of

quality, or simply a favorable year for the method. Given how volatile precipitation can be,

improvements are needed for kNN to be useful for precipitation prediction.

This paper proposes a novel solution. Rather than looking at the daily data for feature

vectors, for some target day t, this novel kNN method takes so many days and evenly groups

them, using the resulting average as one feature each, which is referred to as the (a, b) pair.

In this context, a ∈ Z+ is the number of groups, while b ∈ Z+ is the number of days in each

group. Given this method of building a feature vector, the novel KNN results will be used

to forecast the total precipitation that occurs 30 days after t.

While the methods mentioned in Section 1.2 all have merit to them and can be used

effectively to create forecasts, their complexity compared to kNN would dramatically increase

the time needed to train them as later described in Algorithm 1.

2.1 Predictands and Features

Let W be a set where each w ∈ W ⊆ Rq is a predictand, where q is the dimensionality of the

space, or equivalently the number of entries in the predictand. In a temporal context such

as the one being discussed, this could be the data from a number of days past the given date

times the number of variables being forecasted. However, only the average precipitation a

7



number of days after the target date is being considered for this discussion. As such, W is

simply a subset of the real space R.

Each predictand has a set of predictors, or features, which is a real numerical represen-

tation of its properties. For the weather, this may be the precipitation, the maximum and

minimum temperature, etc., all of which being assigned to their predictand.

A feature vector, therefore, is a vector containing some or all of these features. In other

words, if we were to have p of these features available for each label, the feature vector of

w ∈ W would be v ∈ V ⊆ Rp. Finally, let Φ be a set of ordered pairs of predictands and

features vectors, or for the aforementioned v and w, (v, w) ∈ Φ ⊆ V ×W . It is expedient

to give the elements of Φ a name, however what that name would be can vary depending

on the features and predictands being used. Given the fact that, as will be discussed in

Chapters 3 and 4, features are drawn from the days prior to a specific date and predictands

from the data post that date, elements of Φ shall be referred to as dates. Moreover, for the

sake of intuitive correlation, if d ∈ Φ is a date, then d⃗ ∈ V is its feature vector and d ∈ W

its predictand. In other words,

(d⃗,d) = d ∈ Φ. (2.1)

All feature vectors have a predictand associated with them, however these predictands are

not always known. This can be due to a myriad of reasons, however in the context of

meteorology and time series in general it is quite simple. As was just stated, the predictand

of a date comes from the data of days after it. If those days have not yet occurred, their

data, and by extension the predictand of the date, cannot be known. Given the temporal

nature of the data being used, feature vectors with known predictands (h ∈ W ) shall be

called historical feature vectors (⃗h ∈ V ), while a feature vector associated with an unknown

predictand (t ∈ W ) is called a target feature vector (⃗t ∈ V ). The associated dates then

are the historical dates (h ∈ Φ) and target date (t ∈ Φ) respectively. It is in this situation

that k-nearest neighbor is used to compare historical feature vectors to the target to find

which are the most similar, and then forecast the unknown predictand as being some linear
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combination of the k known predictands whose feature vectors are closest to the target

feature vector. How this is determined will be discussed in the next section.

2.2 Euclidean Distance

This brings up the question of how one knows how close, or how similar, two feature vectors

are. The typical way to figure this out is to take the Euclidean distance of the two vectors,

meaning for dates t∗ and h, the function e : Φ× Φ→ R

e(t∗, h) = ∥D(⃗t∗ − h⃗)∥2 (2.2)

is the distance between their respective feature vectors t⃗∗ and h⃗. D meanwhile is a diagonal

matrix such that allows certain features to be of greater import. Specifically, this is done by

assigning such features greater values. In the event that some features are considered more

important predictors than others, a diagonal matrix D ∈ Rp×p where for i = 1, ..., p, Dii > 0

and the trace of D, that is

tr(D) =

p∑
i=1

Dii = 1. (2.3)

The purpose of D is to allow values with greater the ith feature to determining the target

predictand. However, as it is done in contemporary writings to which this novel method

shall be compared (Bannayan and Hoogenboom 2008,) Dii =
1
p
for i = 1, .., p.

2.3 Finding Neighbors

Finally, we can calculate the nearest neighbors. Let t∗ be the target date, and for each

historical date h ∈ Φ, let

eh = e(t∗, h) (2.4)

9



be the distance between t∗ and h. Once these are calculated, sort them from least to greatest

and take note of the k lowest eh. Equivalently, we can say we are looking for the k dates

with the lowest distance from t∗. In either case, these are our k nearest neighbors. What is

done from here depends on if the method is being used for classification or regression.

Since the purpose in this case is to forecast via regression, we shall take a weighted sum

of the k nearest neighbors (Dudani 1976). For i = 1, ..., k, if h has the ith lowest distance

from t∗, let Ei =
1
eh

and ki = h. Then, with

E =
k∑

i=1

Ei (2.5)

our forecast of the precipitation to occur after t∗ shall be

Kt∗ =
k∑

i=1

Eiki
E

(2.6)

The inverse of eh is taken to ensure that neighbors closest to t∗ have the greatest impact on

its forecast. In the event that eh = 0 for some date h, the respective Ei are set to the inverse

of the lowest positive distance available. In the unlikely event that all the lowest k eh = 0,

Ei = 1 for i = 1, ..., k.

10



CHAPTER 3

GEM

The information found in the previous chapter is a useful step-by-step demonstration of

kNN, however it leaves several things unclear, especially for forecasting. This requires a

clarification of what variables are used as features in the feature vectors, how we decide the

span of time included, and how we decide whether a certain amount of data either introduces

too much noise or removes too much information.

3.1 (a, b) Pairs

To begin with, we must identify the features used for the feature vectors. Let P : Φ → Rp

be a function which maps a date d ∈ Φ to a vector containing all the normalized data points

which occurred on that date. As an example, our method uses precipitation, minimum

temperature, and maximum temperature, so P (d) is a vector containing the normalized

precipitation, minimum temperature, and maximum temperature to occur on date d. It is

with P as well as what follows that we shall build our feature vectors.

Before that, however, it is best to allow the following abuse of notation. For d ∈ Φ and

r ∈ Z+, allow d − r to be the date which occurs r days before d. So if d were January 2,

2024, d− 1 would be January 1, 2024, d− 2 would be December 31, 2023, etc.

Finally, the feature vectors. Generalized feature vectors (GFV) are denoted generally by

the ordered pair (a, b), which in this context can be read as ”a spans of b days,” where a

11



span is simply a length of time. For example, a week is one span of seven days, so (1, 7),

three weeks is (3, 7), one month is (1, 30), thirty days is (30, 1), etc. A GFV is then formed

by averaging the normalized data of the b days for each of the a spans. Suppose we have an

ordered pair (a, b) ∈ Ω ⊆ Z+ × Z+ and a date d ∈ Φ.

d⃗y =
1

b

b−1∑
j=0

P (d− (j + yb)) for y = 0, ..., a− 1. (3.1)

With the individual vectors d⃗y we are able to build the feature vector of date d, that being

d⃗ = [d⃗0, ..., d⃗a−1]. (3.2)

A visualization of this process is given in Figure 3.1.

3.2 Scoring and Selecting

Now that we have discussed how the dates’ feature vectors are constructed, we can explain

how we decide which to use. Let Tt∗ contain an arbitrarily chosen set of dates from the same

calendar month as t∗ such that their predictands are known. Most simply, this would be .

Then, let K
(a,b)
t be the forecast generated for date t ∈ Tt∗ when its feature vectors are built

using (a, b) ∈ Ω, and let Ct be the climatological forecast for t (the method to find which

being described in Chapter 4). Finally, let Ω be the piece-wise function

Ω(t, a, b) =


1 |K(a,b)

t − t| < |Ct − t|

0 otherwise

. (3.3)

Put simply, Equation 3.3 takes note of if the forecast produced by kNN using that (a, b) has

a lower absolute error than (is a superior forecast to) Ct. Which pair is used is then selected

12



Data: Target Date t∗, Training Target Dates Tt∗ , Potential Analogues Φ, Potential
GFVs Ω, Days Forward f

Result: Ideal GFV (a∗, b∗), Forecast Kt∗

Function GEM-kNN-Forecast(t, (a, b), Φ, Ω, f):
foreach t ∈ Tt∗ do

C ←Control(t, f) // Climatological control to compare results to

Φt ← Φ with dates after t removed
foreach (a, b) ∈ Ω do

K ←kNN-Forecast(t, (a, b), Φt, f) // see Algorithm 2

if |K − t| < |C − t| then
Give (a, b) 1 point // Reward (a, b) if more accurate than

control

end

end

end
(a∗, b∗)← (a, b) ∈ Ω with the most points
Kt∗ ←kNN-Forecast(t∗, (a∗, b∗), Φ, f) // see Algorithm 2

return (a∗, b∗), Kt∗

Procedure Control(d, f):

C ← 0⃗
for i← 1, ..., 30 do

d′ ← same calendar day as d, but i years ago
C ← C+Prediction(d′, f) // see Algorithm 3

end
C ← 1

30
C

return C
Algorithm 1: Pseudocode for performing GEM-kNN.
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Data: Target Date t, GFV (a, b), Potential Analogues Φ, Days Forward f

Result: Forecast K
(a,b)
t

Function kNN-Forecast(t, (a, b), Φ, f):

k ←
⌊√
|Φ|

⌋
// Square root of the number of potential analogues,

rounded down

t⃗←Feature Vector(t, (a, b), f) // Target feature vector

foreach h ∈ Φ do

h⃗←Feature Vector(h, (a, b), f) // Historical feature vector

eh ← ∥t⃗− h⃗∥2
end
E ← 0
for i← 1, ..., k do

h← The potential analogue with the ith lowest eh
ki ←Prediction(h, f)
if eh = 0 then

Ei ← 1
else if any prior eh = 0 then

Ei ← 0
else

Ei ← 1
eh

end
E ← E + Ei

end

K
(a,b)
t ← 0

for i← 1, ..., k do

K
(a,b)
t ← K

(a,b)
t + Ei

E
ki // Build weighted mean

end

K
(a,b)
t ← 1

f
K

(a,b)
t

return K
(a,b)
t

Procedure Feature Vector(d, (a, b), f):

d⃗← [] // Start with empty feature vector

r ← 0
for y ← 0, ..., a− 1 do

d⃗y ← 0⃗ ∈ Rp // Set d⃗y to 0⃗ (zero vector)

for j ← 0, ..., b− 1 do

d⃗y ← d⃗y + P (d− r) // See current Section for P
r ← r + 1

end

d⃗y ← 1
b
d⃗y

Append d⃗y to d⃗
end

return d⃗
Algorithm 2: Pseudocode for performing kNN with a fixed GFV.

14



1/1/2024 2/1/2024 3/1/2024 4/1/2024 5/1/2024 6/1/2024

P (d− 5) P (d− 4) P (d− 3) P (d− 2) P (d− 1) P (d)−2.210.82
0.73

 −1.960.98
0.23

 0.640.65
0.24

  1.40
−0.22
−0.23

  1.50
−0.44
−0.61

 −3.00−0.58
−0.77



d⃗2 d⃗1 d⃗0−2.090.9
0.48

  1.02
0.22
0.005

 −0.75−0.51
−0.69



d⃗

−2.09
0.9
0.48
1.02
0.22
0.005
−0.75
−0.51
−0.69


First, for the date d (which in this case is January 6th) P (d− r) are found for r = 0, ..., 5
since our feature vector requires 3× 2 = 6 days. Since 2 is the second value of the ordered
pair, we take the average of the first two vectors (P (d) and P (d− 1)) to get d⃗0. The same

is done with P (d− 2) and P (d− 3) to get d⃗1, and P (d− 4) and P (d− 5) to get d⃗2. These

vectors are then joined together to get d⃗. All values are normalized.

Figure 3.1: Example of GFV (3, 2).

as follows:

(a∗, b∗) = arg max
(a,b)∈Ω

∑
t∈T

Ω(t, a, b). (3.4)

Once (a∗, b∗) is chosen, use them to build the feature vectors for t∗ and the historical dates

and use the k nearest neighbors to calculate Kt∗ . Or put simply,

Kt∗ = K
(a∗,b∗)
t∗ . (3.5)
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1/1/2024 2/1/2024 3/1/2024 4/1/2024 5/1/2024 6/1/2024

P (d− 5) P (d− 4) P (d− 3) P (d− 2) P (d− 1) P (d)−2.210.82
0.73

 −1.960.98
0.23

 0.640.65
0.24

  1.40
−0.22
−0.23

  1.50
−0.44
−0.61

 −3.00−0.58
−0.77



d⃗1 d⃗0−1.1770.817
0.4

 −0.033−0.413
−0.537



d⃗
−1.177
0.817
0.4
−0.033
−0.413
−0.537


First, for the date d (which in this case is January 6th) P (d− r) are found for r = 0, ..., 5
since our feature vector requires 2× 3 = 6 days. Since 3 is the second value of the ordered
pair, we take the average of the first three vectors (P (d), P (d− 1), and P (d− 2)) to get d⃗0.

The same is done with P (d− 3), P (d− 4), and P (d− 5) to get d⃗1. These vectors are then

joined together to get d⃗. All values are normalized.

Figure 3.2: Example of GFV (2, 3).

Data: Date d, Days Forward f
Result: Forecast d
Function Prediction(d, f):

d← 0⃗ ∈ Rp

for r ← 1, ..., f do
d← d+ P (d+ r)

end
d← 1

f
d

Remove unimportant forecasted variables from d
return d

Algorithm 3: Pseudocode for the prediction given by the given date d for the next f
days.
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Target Date t
Training Target Dates

(From the same calendar
month as t).

Import set of
potential GFVs

Ω

Perform kNN for each
GFV and each

Training Target Date

Select one GFV based
on overall performance for all

Training Target Dates

Perform kNN on
Target Date t with

the selected GFV (a∗, b∗)

Output Result Kt∗

Figure 3.3: Chart of Good Enough Method (GEM) Progression.
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CHAPTER 4

OTHER METHODOLOGY

The initial implementation of our methodology comes courtesy of Gerrit Hoogenboom et

al. (Bannayan and Hoogenboom 2008,) which is much more straightforward. In fact, its

implementation can be explained using the same (a, b) used in the previous section. For a

given target date t∗, let b = 1, and let a be the number of days between t∗ and January 1

of the same calendar year, inclusive. This means that for January 2, a = 2, for February

2, a = 33, etc. Under these conditions, we shall say that the forecasted precipitation after

target date t∗ given by Hoogenboom et al.’s method, denoted St∗ , is

St∗ = K
(a,1)
t∗ (4.1)

where K
(a,1)
t∗ is as it was defined in Section 3.2. As for climatology, for the target day t∗

(for this example, April 15th, 2022) let cfr denote the total precipitation f days after April

15th, 2022−r for r = 1, ..., 30. Then, c = 1
30

30∑
r=1

cfr is called the climatological forecast, which

is used as a baseline to evaluate the usefulness and skills of each forecast. The purpose of

these controls is to show the necessity of an adaptable methodology (Wolpert and Macready

1997) by contrasting GEM with its more rigid counterparts.
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CHAPTER 5

EVALUATION

5.1 Test

This method was tested on five stations from Oklahoma, USA, each with at least 90 years of

precipitation, minimum temperature, and maximum temperature data, where missing values

were filled using data from adjacent stations. The annual average of each station, as well

as the database period is given in Table 5.1. Lahoma, Weatherford, and Chandler are all

located in central Oklahoma, with southerly flow driving increases in humidity and related

precipitation during the warm season and producing less harsh winter temperatures. Hooker,

the northwest-most station located in the Oklahoma panhandle, is an arid region, where

precipitation comes in bursts due to isolated thunderstorm activity and infrequent convective

systems. Idabel is meanwhile the southeast-most station and likewise the most humid and

whose larger precipitation totals come primarily from organized convective systems synoptic

wave activity. For target dates, the 9th, 12th, 15th, 18th, and 21st of each month of the 5 most

recent years available (2004-2008 for all but Lahoma, which is 2002-2006) were used to ensure

diverse results for validation. This gave 25 test target dates per month per station, 300 per

station, or 1,500 in total. The k nearest neighbors were identified for each target date to

forecast the average precipitation over the next 30 days.

As mentioned in the introduction, a large volume of tests were completed to provide

robust quantification of the skill of this method compared to climatology and other kNN
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methods. Before this, however, a GFV must be selected. For each month the same 5

days (9th, 12th, 15th, 18th, and 21st) were used in the 45 years prior to the testing years for

validation, resulting in 225 validation target dates per month used to select a GFV via GEM

from the following set

{(a, b) | a ∈ {1, 2, ..., 180}, b ∈ {1, 2, ..., 20}, 30 ≤ ab ≤ 365}

which was then used for the precipitation forecasts found in the results.

Table 5.1: Station Data Table.

Station
Latitude Longitude Precipitation Min. Temp. Max. Temp. Database

(N) (W) (mm) (◦C) (◦C) Period

Chandler 35”42’ -96”53’ 886.5 9.49 22.78 1902-2009
Hooker 36”51’ -101”12’ 473.8 5.32 22.02 1907-2009
Idabel 33”53’ -94”49’ 1175.1 10.93 24.96 1907-2009
Lahoma 36”5’ -96”55’ 790.9 9.14 22.15 1909-2007

Weatherford 35”31’ -98”42’ 754.4 8.85 22.7 1905-2009
Physical location, historical annual average of minimum temperature (Min. Temp.),

maximum temperature (Max. Temp.), total annual precipitation, and the period of data
available for each study site.

To test our method’s reliability, several indicators of quality were used.

5.2 Nash-Sutcliffe

A comparison to the overall observed precipitation average was implemented, with said

average being

T̄ ∗ =
1

|T ∗|
∑
t∗∈T ∗

t∗ (5.1)

where |T ∗| is the cardinality of T ∗. Then, the Nash-Sutcliffe coefficient (NS), given by

NS = 1−

∑
t∗∈T ∗

(Kt∗ − t∗)2∑
t∗∈T ∗

(T̄ ∗ − t∗)2
(5.2)
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is a comparison with the observed average, with a range (−∞, 1]. If NS is negative, the

forecasting method tested performed poorly, the observed average being generally superior.

If 0 ≤ NS < 1, the method performed at least as well as the observed average, with greater

NS correlating to greater performance. An NS = 1 means the method forecasted all target

dates perfectly, meaning it had an RMSE of 0.

5.3 Root Mean Square Error (RMSE)

The root mean squared error (RMSE) is used to assess the quality of forecasts. Let e be

the set of forecasts (either those found with GEM, SotA, typical, or climatology) and o the

corresponding set of observed data.

RMSE =

√ ∑
t∗∈T ∗

(Kt∗ − t∗)2

|T ∗|
(5.3)

5.4 Significance Testing

Significance testing was performed via the Mann-Whitney U test (Mann and Whitney 1947)

to ensure that the differences between the results were significant. To perform this test, let

(P,≤) be an ordered set such that

P = {Kt∗ |t∗ ∈ T ∗}
⋃
{t∗|t∗ ∈ T ∗} (5.4)

with P ’s elements being ordered such that Pi ≤ Pj if i ≤ j ∀i, j.

5.5 Reliability Graphs

And finally, reliability graphs (Roberts 2023) were composed to look at how consistently the

predictions performed well. To create these graphs, all forecast data, and their corresponding
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observed values, are binned into discrete 10 mm wide bins. Then, the average values of both

the binned forecasts and their corresponding observations are taken. The final reliability

graph depicts the average forecast versus average observed values for those forecasts to show

how “reliable” the forecast system is in reproducing specific binned values of data. Observed

averages below the forecast average represent an overestimation for that specific forecast bin

and when the observed average is higher than the forecast average that means the forecast

system is underestimating the observed values for that range of forecast values.

Table 5.2: Example of how each point of the reliability graphs is calculated. The forecasts
that belong to each bin are averaged together and compared to the average of their corre-
sponding observed data. All values in this table are given in mm.

Bins Forecast Data Observed Data Forecast Average Observed Average
20-30 21, 24, 29, 22, 26 32, 10, 25, 29, 40 24.4 27.2
30-40 32, 35, 37, 38 51, 39, 28, 45 35.5 40.75
40-50 42, 49, 45 32, 44, 53 45.3 43

5.6 Results

All stations achieved superior RMSE, MRE, and NS when using GEM compared to SotA

or climatology. This indicates GEM not only produced superior forecasts, but when it did,

these forecasts had a non-trivial improvement over climatology.

It should be noted that there is a positive correlation between average total annual

precipitation and RMSE, in that for i = 1, ..., 5, the station with the ith greatest total annual

precipitation also had the ith greatest RMSE. This is the case regardless of the forecasting

method used.

Looking at Figures 5.2 and 5.3 gives important insights into these statistical measures.

Climatology is extremely prone to underestimation, typically several centimeters short of

the observed amounts on higher precipitation days. Using SotA does fix this to an extent,

especially regarding the cold season, but it is only when GEM is implemented that more

extreme forecasts are made. Unfortunately, this also brings about an opposite problem:

22



R
M
S
E
(m

m
)

M
R
E

N
S

Chandler Hooker Idabel Lahoma Weatherford

Figure 5.1: RMSE, MRE, NS data presented as a bar graph.

overestimation. Both of these problems are to be expected, seeing as the forecasts are

built using weighted averages. As such, while all methods have instances of this, GEM’s

willingness to make forecasts that exceed the upper bounds of the others’ predictions can

result in forecasts that go further past lower observations as they do approach higher ones.
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Scatter plots of mean monthly precipitation forecasts using the three methods mentioned
in Chandler and Hooker. Red circles are forecasts for March through September (the warm

season of the year), and blue circles are for all other months (the cold season).

Figure 5.2: Results Scatter Plots 1

24



O
b
se
rv
ed

(m
m
)

Expected (mm)

GEM State of the Art Climatology

Id
ab

el
L
ah

om
a

W
eath

erford

Scatter plots of mean monthly precipitation forecasts using the three methods mentioned in
Idabel, Lahoma, and Weatherford. Red circles are forecasts for March through September
(the warm season of the year), and blue circles are for all other months (the cold season).

Figure 5.3: Results Scatter Plots 2.
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ChandlerrGEM = 0.512, rClim = 0.419

HookerrGEM = 0.382, rClim = 0.276

IdabelrGEM = 0.263, rClim = 0.101

M
on

th
ly

P
re
ci
p
it
at
io
n
(m

m
)

LahomarGEM = 0.487, rClim = 0.385

Weatherford

Months of the Year

rGEM = 0.482, rClim = 0.428

A comparison of forecasts developed by climatology and GEM to the observed monthly
precipitation from 1997 to 2006 at Chandler, Hooker, Idabel, Lahoma, and Weatherford.

Also gives the correlation coefficients for GEM and climatology to the observed
precipitation with r =

∑
(ei−ē)(oi−ō)√∑

(ei−ē)2
∑

(oi−ō)2
where ē and ō are the respective means of the

forecast being correlated and the observer precipitation.

Figure 5.4: Extended Results Comparisons.
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One can also look to the aforementioned figures for the differences in performance at

different times of the year, with red circles indicating the warm season of March through

September, and blue being the cold, October through February. During the warm season,

GEM is likely to make lower forecasts, regardless of observed precipitation. Interestingly,

though, Idabel it is just as likely to over-forecast during the warm season, and in Chandler

it rarely under-forecasts at all. For both SotA and climatology, forecasts skew into a mix

of over and under-forecasting for both the warm and cold seasons, though much like with

GEM, their seasonal forecasts at all stations sans Idabel can be clearly distinguished by the

range of values each method was willing to put out.

Figure 5.4, meanwhile, is a demonstration of how GEM (the highest performing of the

three kNN implementations) performed in monthly forecasts of the testing data. The purpose

of this is to give a visual aid for not only how GEM is meeting individual forecasts, but how

well it is able to match the trends of the observed data. For GEM, all stations had a

correlation coefficient above 0.25, with the highest being Chandler at 0.512, and the lowest

being Idabel at 0.263. Alphabetically, GEM has an RMSE of 54.465, 41.937, 75.829, 41.32,

and 56.953 mm for these graphs. With climatology, the resulting correlation coefficients

were universally lower, with its highest being Weatherford at 0.428 and its lowest being

Idabel at 0.101. Alphabetically, climatology has an RMSE of 59.015, 43.280, 78.937, 44.552,

and 58.634 mm for these graphs. By its nature as the 30-year average, the climatological

forecast takes on a seasonal cycle, making any similarities to the observed trend coincidental.

GEM, however, has a much more interesting relationship. Although it rarely predicts the

heavier precipitation totals accurately, GEM’s forecasts often will ”peak” in comparison to

the forecasts made a month prior and after, suggesting a level of sensitivity to the larger

precipitation values. Examples of this trend can be seen in most larger precipitation totals,

with exceptions for Lahoma. It should be noted that the GEM forecast shown in the above

results is a weighted average from the k nearest neighbors identified by the GEM system, thus

this represents not a single instance of a precipitation prediction but a smoothed average.
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Figure 5.5: Reliability graphs for each of the five stations.
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The spread of the nearest neighbor forecast values extends beyond the observed values in

most cases (outside of extreme values).

Of the 5 stations, Hooker, Lahoma, and Weatherford’s GEM forecasts were found to be

significantly different from those of SotA, with p-values of 0.029, 0.019, and 0.002, respec-

tively. Chandler and Idabel, meanwhile, had p-values of 0.800 and 0.144 respectively. When

compared with climatology, the differences are more apparent both in Figures and in these

statistics, with Chandler, Hooker, Lahoma, and Weatherford having p-values of less than

0.001 while only Idabel had an extreme p-value of 0.947.

Figure 5.5 shows the reliability graphs for each station. For lower precipitation totals, the

averaged forecasts and observed precipitations are relatively close. The primary exception

to this is Idabel at 30-50mm. Once the expected forecasts pass a certain threshold, however,

they are found to be generally lacking. In the cases of Chandler and Weatherford, they tend

to underestimate, while Hooker and Lahoma overestimate. Once again, the exception seems

to be Idabel, however this should not necessarily be taken as evidence of quality. Looking

back to Figure 5.3, while many of the extreme forecasts are accurate, moderate forecasts

have several examples of over and under-forecasting to give the results seen in Figure 5.5.

For SotA, some similarities in shape to GEM can be observed in Chandler and Hooker,

however it is otherwise quite different, in the cases of Chandler, Idabel, and Lahoma being

unable to produce forecasts greater than those of GEM. While it is able to do so in Weath-

erford, it is only able to make over-forecasts, whereas in Hooker, where both GEM and SotA

tend to over-forecast, SotA’s are slightly more extreme.

Perhaps unsurprisingly, climatology has the fewest extremes of these three forecasting

methods. It will have the lowest range of forecasted precipitation, particularly noticeable

in Chandler, Lahoma, and Weatherford, and lacking extreme deviation from the 1:1 line,

or at least rarely to the extreme of its kNN counterparts. The main exceptions to this

are in Hooker where its lowest forecasts correlate to observed precipitation nearly seven

times greater, as well as Weatherford where forecasts around 140mm correlate to observed
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precipitation nearly double that on average.
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CHAPTER 6

DISCUSSION

GEM-kNN, of course, did not come to this point as soon as this research began, and empirical

evidence alone is not enough to create a case for its use in an academic context. In this

chapter previous iterations of the method shall be discussed briefly, along with the logic

behind the conclusion drawn.

Due to its higher volatility, precipitation is especially susceptible to the problems this

produces, with extreme errors being far more likely than moderate errors. While GEM

certainly shows improvement over SotA and climatological forecasts, it is far from being

exceptional regardless of time and location, and past tests could be even less exemplary. A

less thorough archive of values from past tests are provided in the appendix. It is important

to note several differences from these past tests, namely NMNSC = 1
2−NS

for the NS

established in Section 5.2, and that Kt∗ was instead defined as

Kt∗ =
k∑

i=1

ki

i
k∑

j=1

1
j

.

As mentioned, empirical evidence was given in Section 5.6 as to the improvements of

GEM over SotA. Here we shall go into the more conjectural nature of our experiment. To

begin with, GEM is predicated on the assumption that any (a, b) that could accurately and

consistently forecast a weather variable in the past is capable of doing so again with currently
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available data. According to the “no free lunch” theorem (NFL), (Wolpert and Macready

1997) algorithms are going to perform equally well when their results are compared across

all different problems, with the only difference being on which problems they performed

well, and which poorly. This theorem is our justification of the results presented in Section

5.6. Looking to climatology and SotA for comparison, climatology is consistent in both the

number of potential analogues used, and where these potential analogues are found. It is also

the worst performing of the three. Along with that, we have SotA, which has the unusual

criteria for what is included in the feature vector of “how many days are there between now

and January 1st of this year.” While this is technically variation, it is arbitrary variation.

GEM falls in line with the “no free lunch” theorem by acknowledging that a single iteration

won’t always work for a forecast, and instead tries to identify which iteration is most likely

to work in the present. This claim cannot be presented as anything more than conjecture,

however the evidence should be sufficient to not call it baseless.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

In this paper, a novel method of performing kNN was introduced and tested for five different

stations across Oklahoma, being compared to the climatological average as well as the typical

and state of the art methodologies for kNN. This comparison was performed by noting the

RMSE, MRE, and NS of all methodologies’ forecasts of the total precipitation 30 days

after several target dates. As well, statistical significance of the results were measured, and

reliability graph were made to determine whether the novel GEM method was not only

superior, but distinct to those others.

The GEMmethod was demonstrated as superior to all other methods in this study. While

far from perfect, GEM universally had a lower RMSE and MRE than all other methods, and

was the only method to maintain a positive NS across all five stations. The conclusions

drawn by GEM were found to be statistically significantly different from those of SotA,

which implies that with refinement the program could continue to improve on those results.

In the future, applying GEM to machine learning algorithms aside from kNN would be

most pressing. While the efficacy of the method in contrast to SotA and climatology has

been demonstrated, other methods of supervised machine learning such as long short-term

memory (Hochreiter and Schmidhuber 1997), support vector machine (Cortes and Vapnik

1995), or Random Forests (Ho 1995) have yet to be contrasted with GEM-kNN, or have

GEM used in conjunction with them where possible.

Furthermore, climate change, one of the most extreme, controversial, and prevalent cli-
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mate phenomena of the day runs the risk of introducing problems in this program’s efficacy.

Were it not clear from 2.6, this algorithm is incapable of forecasting precipitation, or any

predictand, outside the range of its potential analogues. Furthermore, it is dependant on

a consistent correlation between precipitation and temperature, something global warming

has been shown to harm (Butler 2018). A more in-depth look into these changes is necessary

to determine the severity of climate change’s impacts on this algorithm’s forecasting efficacy.

And finally, a look into implementing downscaling weather data is necessary. As men-

tioned in the introduction, the most certain solution to the absence of data on the station

level is to start collecting data now and wait for enough to be available later. However,

before that, there is the potential option of taking data recorded or modeled at higher-scale

resolution (in this instance, meaning simply to be applied to a larger geographical region

than what precipitation could realistically be applied to) and performing statistical down-

scaling to bring those models down to the resolution necessary to perform those forecasts

(Raje and Mujumdar 2011).
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Figure A.1: Older Chandler Forecasts

36



Figure A.2: Older Hooker Forecasts
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Figure A.3: Older Idabel Forecasts
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Figure A.4: Older Lahoma Forecasts
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Figure A.5: Older Weatherford Forecasts

Figure A.6: Older Results
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Figure A.7: Expected Precipitation vs. Observed Precipitation in Hooker Oklahoma using
older model.

Figure A.8: Individual NMNSC vs. Observed Precipitation in Hooker Oklahoma using older
model.
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