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ABSTRACT

THE DIRECT AND INVERSE SCATTERING PROBLEMS

FOR THE THIRD-ORDER OPERATOR

Ivan Toledo, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Dr. Tuncay Aktosun

We consider the full-line direct and inverse scattering problems for the third-order

ordinary differential equation containing two potentials decaying sufficiently fast at infinity.

The direct scattering problem consists of the determination of the scattering data set when

the two potentials are known. The scattering data set is made up of the corresponding

scattering coefficients and the bound-state information. On the other hand, the inverse

scattering problem involves the recovery of the two potentials when the scattering data set

is available. We formulate the inverse scattering problem via a related Riemann–Hilbert

problem on the complex plane. We describe the recovery of the two potentials from the

solution to that Riemann–Hilbert problem. We also mention how the Riemann–Hilbert

problem leads to a system of Marchenko integral equations. The recovery of the potentials

from the solution to the Marchenko system will be published elsewhere.
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CHAPTER 1

INTRODUCTION

1.1 The goal of the thesis

Consider the third-order ODE (ordinary differential equation)

ψ′′′ +Q(x)ψ′ + P (x)ψ = k3ψ, x ∈ R, (1.1)

where x is the independent spacial variable, the prime denotes the x-derivative, k3 is the

spectral parameter, ψ is the dependent variable known as the wavefunction, and the coeffi-

cients Q(x) and P (x) are the potentials. Even though k3 is the spectral parameter, we at

times refer to k as the spectral parameter. In general, Q(x) and P (x) are complex-valued

functions of x and we assume that they belong to the Schwartz class S(R). Most of our

results hold under weaker conditions on the potentials, but for simplicity and clarity, we

assume that Q(x) and P (x) belong to the Schwartz class. We recall the definition of the

Schwartz class below. Note that for any nonnegative integer n, we use f (n)(x) for the nth

derivative of a function f(x), with the understanding that f (0)(x) corresponds to f(x) itself.

Definition 1.1.1. We say that a function f(x) belongs to S(R) if f ∈ C∞(R), i.e. infinitely

differentiable, and for every pair of nonnegative integers m and n, the quantity xmf (n)(x)

tends to 0 as x→ ±∞.

Our goal in the thesis is to study the direct and inverse scattering problems for

(1.1). In particular, our thesis develops a viable method to solve the corresponding inverse

scattering problem. This is done by formulating a relevant Riemann–Hilbert problem whose

solution yields the solution to the inverse scattering problem for (1.1). We also mention

how that Riemann–Hilbert problem leads to a system of Marchenko integral equations. The

details related to the system of Marchenko integral equations and the solution of the inverse

scattering by using the solution to the Marchenko system will be published elsewhere.
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Without loss of generality, the nth-order linear ODE with n ≥ 2 given by

ψ(n) + an−1(x)ψ(n−1) + an−2(x)ψ(n−2) + · · ·+ a1(x)ψ′ + a0(x)ψ = knψ, x ∈ R, (1.2)

can be transformed into

ψ̃(n) + ãn−2(x) ψ̃(n−2) + · · ·+ ã1(x) ψ̃′ + ã0(x) ψ̃ = knψ̃, x ∈ R, (1.3)

where the coefficient of ψ̃(n−1) is zero. This can be achieved by relating ψ to ψ̃ via

ψ(x) = Γ(x) ψ̃(x), (1.4)

and by choosing Γ(x) as

Γ(x) = Γ(x1) exp
(
− 1
n

∫ x

x1
dy an−1(y)

)
, (1.5)

where x1 is an arbitrarily chosen fixed point in the x-domain of the wavefunction ψ. Hence,

it is not surprising that the second derivative ψ′′ is missing in (1.1).

Since we can interpret each of the coefficients ãj(x) for 0 ≤ j ≤ n− 2 as a potential,

we see that the linear ODE (1.3) contains (n− 1) potentials making up the set {ãj(x)}n−2
j=0 .

For example, the third-order ODE (1.1), where n = 3, has the set of two potentials, given

by {Q(x), P (x)}.

direct scattering problem

set of potentials scattering data set

inverse scattering problem

Figure 1.1: The direct and inverse scattering problems for an nth-order ODE.

The direct problem for (1.3) involves determining the scattering data set for (1.3)

from the set {ãj(x)}n−2
j=0 consisting of (n− 1) potentials. Meanwhile, the inverse scattering

problem for (1.3) consists of the determination of those (n−1) potentials when the scattering

data set is known. Figure 1.1 helps illustrate the direct and inverse scattering problems
2



for the nth-order ODE given in (1.3). In particular, the direct scattering problem for the

third-order ODE (1.1) corresponds to the determination of the scattering data set for (1.1)

when the potential set {Q(x), P (x)} is given. On the other hand, the inverse scattering

problem for (1.1) consists of the determination of the potentials Q(x) and P (x) when the

corresponding scattering data set is specified.

The scattering data set comprises the scattering coefficients and the bound-state

information. The scattering coefficients are certain functions of the spectral parameter k,

and they are obtained from the spacial asymptotics of certain particular solutions to (1.1).

The bound states for (1.1) consists of nontrivial solutions to (1.1) which are square integrable

in x ∈ R. In fact, when the potentials Q(x) and P (x) belong to the Schwartz class, the

bound-state solutions must decay exponentially as x → ±∞. The bound-state solutions

occur at certain k-values in the complex k-plane at which the corresponding particular

solutions become linearly dependent.

1.2 The comparison with the second-order case

Consider the analog of (1.1) in the second-order case, namely, consider the ODE

− ψ′′ + V (x)ψ = k2ψ, x ∈ R, (1.6)

where k2 is the spectral parameter and V (x) is the potential. The direct and inverse

scattering problems for (1.6) are well understood [3,8,13,16,19,30,31,35] when the potential

V (x) is real valued and belongs to the Faddeev class. The Faddeev class consists of potentials

V (x) satisfying the integrability condition

∫ ∞
−∞

dx (1 + |x|) |V (x)| < +∞, (1.7)

where we use the vertical bars to denote the absolute value. The second-order linear ODE

(1.6) is known [21,28,33,34,37] as the Schrödinger equation, and it describes the quantum

mechanical behavior of a particle under the influence of the potential V (x).

3



x

V(x,t)

Figure 1.2: The snapshot at time t of V (x, t) depicting the height of water from equilibrium.

If the potential V (x) appearing in (1.6) also depends on the time parameter t, then

the corresponding Schrödinger equation is given by

− ψ′′ + V (x, t)ψ = k2ψ, x ∈ R, (1.8)

where V (x, t) is the time-dependent potential. The linear second-order ODE in (1.8) is

related to the NPDE (nonlinear partial differential equation)

Vt(x, t)− 6V (x, t)Vx(x, t) + Vxxx(x, t) = 0, (1.9)

where the subscripts denote the appropriate partial derivatives. The NPDE given in (1.9)

is known [25] as the KdV (Korteweg–de Vries) equation, and it describes [1, 2, 17, 18, 25,

27, 36, 38] the propagation of surface water waves along narrow, shallow canals. Figure 1.2

depicts the quantity V (x, t), which has the physical interpretation as the height of water

from the equilibrium at time t and at location x along the canal.

We can write (1.6) as

Lψ = k2ψ, (1.10)

where L is the second-order linear differential operator given as

L = −D2 + V (x), (1.11)

with D := d/dx and D2 := d2/dx2. If the potential V (x) is real valued and belongs

to the Faddeev class specified by (1.7), then L is a selfadjoint differential operator. As a
4



result of the selfadjointness of the corresponding differential operator, the direct and inverse

scattering problems for (1.6) are well understood [1, 2, 17,18,25,27,36,38].

In a manner analogous to (1.6), we can write (1.1) as Lψ = k3ψ, where L is the

third-order linear differential operator defined as

L = D3 +Q(x)D + P (x), (1.12)

with D3 := d3/dx3. In general, the linear differential operator in (1.12) is not selfadjoint,

even when both Q(x) and P (x) are real valued. Hence, (1.1) is in general not associated

with a selfadjoint operator. Consequently, the analysis of the direct and inverse scattering

problems for (1.1) are more challenging.

1.3 The nonlinear system associated with the third-order ODE

If the potentials Q(x) and P (x) appearing in (1.1) also depend on the time parameter

t, then the time-evolved analog of (1.1) is given by

ψ′′′ +Q(x, t)ψ′ + P (x, t)ψ = k3ψ, x ∈ R, (1.13)

where Q(x, t) and P (x, t) are the time-evolved potentials. The time-evolved third-order

equation (1.13) is associated with the nonlinear system of two equations given by

Qt +Qxxxxx + 5QxQxx + 5QQxxx + 5Q2Qx + 15Qxx P + 15Qx Px − 30PPx = 0,

Pt + Pxxxxx + 5QPxxx + 15Qx Pxx + 20Qxx Px + 5Q2 Px + 10Qxxx P

− 15P Pxx + 10QQx P − 15P 2
x = 0,

(1.14)

where we have suppressed the arguments in Q(x, t) and P (x, t) for simplicity. The nonlinear

system in (1.14) can be derived by using the pair of linear differential operators L and A

given by
L = D3 +QD + P,

A = 9D5 + 15QD3 + (15P + 15Qx)D2 + (10Qxx + 15Px + 5Q2)D + (10Pxx + 10QP ),
(1.15)

5



where it is clear that D5 := d5/dx5. In the terminology of the field of integrable evolution

equations [1, 2, 4–7, 17, 18, 27, 29, 36, 38], the linear differential operators L and A in (1.15)

form the Lax pair (L,A) for the system of NPDEs in (1.14). In other words, the operator

equation

Lt + LA−AL = 0, (1.16)

yields the nonlinear system (1.14). This means that the combined differential operator

Lt + LA− AL appearing on the left hand side in (1.16) is actually the zero multiplication

operator. From the first line of (1.15), we have

Lt = QtD + Pt, (1.17)

and we obtain the differential operator LA by using the operator multiplication of the

operators L and A in that order, and similarly we obtain the differential operator AL by

multiplying the operators A and L in that order.

In an analogous manner, the KdV equation (1.9) is obtained by using the operator

equation (1.16) with the help of the Lax pair (L,A), where we now have
L = −D2 + V,

A = −4D3 + 6V D + 3Vx,
(1.18)

with the understanding that V represents V (x, t).

In the two special cases with P (x, t) ≡ 0 and P (x, t) ≡ Qx(x, t), respectively, the

nonlinear system (1.14) reduces to the single NPDE given by

Qt +Qxxxxx + 5QxQxx + 5QQxxx + 5Q2Qx = 0. (1.19)

In other words, the last three terms on the left-hand side of the first nonlinear equation

in (1.14) vanish, and that first nonlinear equation yields (1.19). At the same time, the

second nonlinear equation in (1.14) vanishes altogether. The nonlinear equation (1.19)

with real-valued Q(x, t) and P (x, t) ≡ 0 is known [22, 23] as the Sawada–Kotera equation.

On the other hand, the nonlinear system (1.14) with real-valued Q(x, t) and P (x, t) ≡
6



Qx(x, t) is known [23, 26] as the Kaup–Kupershmidt equation. While the KdV equation

(1.9) describes surface water waves in narrow, shallow canals, the Sawada–Kotera and Kaup–

Kupershmidt equations in (1.19) describe the propagation of steeper surface water waves

of shorter wavelength in narrow, shallow canals.

1.4 A special case of the third-order system

A special case of the third-order linear ordinary differential operator is given by

L = iD3 − i[q(x)D +D q(x)] + p(x), (1.20)

where i :=
√
−1 and the coefficients q(x) and p(x) are complex-valued functions of the

independent variable x. By using

Lφ = ik3φ, (1.21)

the third-order linear differential operator in (1.20) yields the third-order ODE

φ′′′ − 2q(x)φ′ − [q′(x) + ip(x)]φ = k3 φ, x ∈ R, (1.22)

where φ is the wavefunction, and q(x) and p(x) are the potentials. In case q(x) and p(x)

are real valued, the linear operator L given in (1.20) becomes selfadjoint, and consequently,

its spectral analysis is simpler compared to the analysis of the third-order nonselfadjoint

linear operator L appearing in (1.12).

The time-dependent version of (1.22) is given by

φ′′′ − 2q(x, t)φ′ − [qx(x, t) + ip(x, t)]φ = k3φ, x ∈ R, (1.23)

where q(x, t) and p(x, t) denote the time-dependent potentials. If the potentials q(x, t) and

p(x, t) are real valued, then (1.23) is associated with the integrable system of NPDEs given

by 
qt = −3px,

pt = −qxxx + 8qqx.
(1.24)

7



The nonlinear system (1.24) is obtained from the operator equation (1.16) by using the Lax

pair (L,A), where we have 
L = iD3 − i(q D +D q) + p,

A = i(3D2 − 4q).
(1.25)

In other words, the use of (1.25) in the operator equation (1.16) yields the nonlinear system

(1.24). The system (1.24) is known [32] as the bad Boussinesq system, and it models the

propagation of long water waves of small amplitude [3]. It is possible to eliminate p in (1.24)

after taking the x-derivative of the first equation in (1.24) and by taking the t-derivative of

the second equation there. This yields the single nonlinear evolution equation

qtt − 3qxxxx + 12(q2)xx = 0, (1.26)

which is known [32] as the bad Boussinesq equation. In (1.26), if the sign of the coefficient

of qxxxx is changed, we obtain the good Boussinesq equation [32] given by

qtt + 3qxxxx + 12(q2)xx = 0. (1.27)

In general, the bad and good Boussinesq equations describe [1,2,11] the propagation of long

waves on the surface of shallow water.

1.5 The Inverse Scattering Transform method

The NPDEs associated with a Lax pair (L,A) are known as integrable in the sense

of the IST (Inverse Scattering Transform) method, as Figure 1.3 depicts. For example, for

the KdV equation (1.9) we have the diagram given in Figure 1.3.

The interpretation of the diagram in Figure 1.3 is as follows. We would like to solve

the IVP (initial-value problem) for the NPDE, which is the KdV equation (1.9). In other

words, we would like to determine V (x, t) satisfying the NPDE with V (x, t) at t = 0 being

equal to the initial profile V (x, 0). Toward this goal, we use the following three steps:

(1) We associate the initial profile V (x, 0) with the initial scattering data S(k, 0). This

is done by analyzing the direct scattering problem for the second-order linear ODE
8



V (x, 0) direct scattering for LODE at t = 0−−−−−−−−−−−−−−−−−−−−−−→ S(k, 0)

solution to NPDE
y ytime evolution of scattering data

V (x, t) ←−−−−−−−−−−−−−−−−−−−−−−−
inverse scattering for LODE at time t

S(k, t)

Figure 1.3: The inverse scattering transform for the KdV equation.

in (1.8). In Figure 1.3, this is indicated as solving the direct scattering problem for

the LODE (linear ordinary differential equation) at t = 0. This involves finding some

particular solutions to (1.8). It also involves the determination of the initial scattering

data S(k, 0) from the spacial asymptotics of those particular solutions.

(2) The second step involves finding the appropriate time evolution of the scattering

data, i.e. the determination of the time-evolved scattering data S(k, t) from S(k, 0).

This time evolution is specific to the associated NPDE. Normally, we expect the

mathematical description of that time evolution to be rather simple.

(3) From the time-evolved scattering data S(k, t), one recovers the time-evolved potential

V (x, t). This involves [20] solving the inverse scattering problem for the linear ODE in

(1.8) at the fixed time t. It is an amazing fact that the time-evolved potential V (x, t)

is a solution to the IVP associated with (1.9). In other words, V (x, t) is a solution to

(1.9) and it reduces to the initial profile V (x, 0) at t = 0.

This three-step process of solving an IVP for a NPDE is known as the IST method,

and the corresponding NPDE is then called integrable in the sense of the IST.

1.6 A method for solving the inverse scattering problem for the third-order ODE

As already indicated, our main goal is to solve the inverse scattering problem for

(1.1), and we accomplish this without requiring the corresponding linear operator in (1.12)

to be selfadjoint.

9



The special third-order ODE (1.22) with the selfadjointness has been analyzed by

Deift, Tomei, and Trubowitz in their important paper [15] under certain restrictions on the

corresponding scattering data set. The restrictions used in [15] consist of the assumption

that the two secondary reflection coefficients associated with (1.22) are identically equal to

zero and that the two associated transmission coefficients are identically equal to one. The

two secondary reflection coefficients and the two transmission coefficients are part of the

scattering data set for (1.22). Those restrictions in [15] enabled Deift, Tomei, and Trubowitz

to analyze the inverse scattering problem for the special third-order linear ODE (1.22) by

using the techniques already known [13, 16, 19, 35] for the second-order linear ODE (1.6).

Consequently, Deift, Tomei, and Trubowitz developed in [15] a solution technique to solve

the IVP for the bad Boussinesq equation (1.26) under their assumed restrictions.

In solving the inverse scattering problem for (1.1), we have been inspired by the

approach used in [15]. On the other hand, the method developed in this thesis is by no

means a straightforward generalization of the method of [15]. In particular, our method

is not restricted to the selfadjoint case studied in [15], and we do not impose the severe

restrictions of setting the two transmission coefficients identically equal to one. Furthermore,

we do not restrict ourselves to the necessity of an analytic continuation across a particular

set of two half lines in the complex k-plane, as done in [15]. In our thesis work, by allowing

a meromorphic continuation across those two half lines in the complex k-plane, we no longer

need to require that the two transmission coefficients are identically equal to one.

For the history of the inverse scattering problem for the third-order operator and

other approaches, we refer the reader to [8–10, 12, 23, 24] and the references therein. In

those references, the formulation of the Riemann–Hilbert problem is not done on a single

full line in the complex k-plane, but on the set of two full lines. It is more challenging to

solve a Riemann–Hilbert problem formulated on multiple full lines than on a single full line.

Furthermore, it is unclear how to establish a Fourier transformation on multiple full lines.

10



Consequently, in those other approaches it has been difficult to solve the corresponding

inverse scattering problem and obtain some concrete results.

The bound states for (1.1) occur at certain k-values in the complex k-plane where the

corresponding transmission coefficients have poles. The assumption that the transmission

coefficients are identically equal to one, which is used in [15], results in the severe restriction

that the special ODE considered in (1.22) does not have any bound states. That restriction

also results in the assumption that the time-evolved special ODE (1.23) does not have any

bound states. The assumption of no bound states for (1.23) is equivalent to the assumption

that the corresponding bad Boussinesq equation (1.26) does not possess any soliton-type

solutions. As a matter of fact, soliton-type solutions to (1.26) make up the important class

of closed-form solutions that can be expressed explicitly in terms of elementary functions

of x and t.

In our analysis of the inverse scattering problem for (1.1), we do not assume that the

two transmission coefficients are identically equal to one, and hence our method applies in

the presence of bound states. In particular, our work yields the IST method for each of the

nonlinear systems (1.14), (1.19), (1.24), and (1.26). Consequently, our method is capable

of producing soliton-type solutions to (1.14), (1.19), (1.24), and (1.26).

1.7 The organization of the thesis

This thesis is organized as follows. In Chapter 2, we provide a physical description

of the scattering phenomena associated with (1.1). We introduce two particular solutions

to (1.1), which we refer to as the Jost solutions, and we establish their relevant properties

such as their k-domains, their continuity and analyticity in k, and their spacial asymptotics.

Through those spacial asymptotics we introduce the scattering coefficients for (1.1). We

then present the adjoint equation related to (1.1), and with the help of the Jost solutions

to the adjoint equation we construct two additional solutions to (1.1). We also establish

the relevant properties of those two solutions. We refer to the two Jost solutions to (1.1)

11



and those two additional solutions as the four fundamental solutions. We then establish

the relevant properties of the four fundamental solutions. In Chapter 3, using the spacial

asymptotics of the two Jost solutions to the adjoint equation, we introduce the adjoint

scattering coefficients. We establish the relationships between the scattering coefficients

for (1.1) and the adjoint scattering coefficients. We then establish the small and large k-

asymptotics of the four fundamental solutions to (1.1). In a similar manner, we determine

the small and large k-asymptotics for the scattering coefficients for (1.1). Finally in Chap-

ter 3, we describe the bound-state solutions to (1.1) and introduce the dependency constant

for each bound state for (1.1). In Chapter 4, we describe the inverse scattering problem for

(1.1). We establish the Riemann–Hilbert problem related to the inverse scattering problem

for (1.1). We describe how the two potentials in (1.1) are recovered from the solution to the

relevant Riemann–Hilbert problem. Finally, we mention how a Fourier transformation on

the Riemann–Hilbert problem leads to a system of Marchenko integral equations associated

with (1.1). The analysis of the Marchenko system and the recovery of the two potentials in

(1.1) from the solution to the Marchenko system will be published elsewhere.
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CHAPTER 2

THE DIRECT SCATTERING PROBLEM: PART I

In Chapter 1, we have introduced the third-order equation (1.1) along with the de-

scriptions of the direct and inverse scattering problems associated with (1.1). In this chapter,

we introduce certain particular solutions to (1.1), from which we construct a fundamental

set of solutions to (1.1) at each k-value in the complex plane C. We recall that a fundamen-

tal set of solutions for (1.1) contains three linearly independent solutions. We can obtain

the general solution to (1.1) by using a linear combination of the particular solutions in the

fundamental set. Recall that, for simplicity, we assume that the potentials Q(x) and P (x)

appearing in (1.1) belong to the Schwartz class S(R), although our results are valid under

weaker conditions on the potentials.

In the current chapter, we explain how the scattering phenomena associated with

(1.1) occurs. We provide a physical description of the scattering for (1.1) by introducing

the physical solutions F (k, x) and G(k, x), where those physical solutions to (1.1) are closely

related to the particular solutions f(k, x) and g(k, x), respectively, which we first construct.

Since (1.1) is not associated with a selfadjoint linear differential operator, in order to

construct a fundamental set of solutions to (1.1), we make use of certain particular solutions

to the adjoint equation corresponding to (1.1). Hence, in our chapter we introduce the

adjoint equation related to (1.1) and construct particular solutions to that adjoint equation.

Then, by using the 2-Wronskians of those particular solutions to the adjoint equation, we

are able to construct two additional particular solutions to (1.1) besides the particular

solutions f(k, x) and g(k, x). We denote those two additional particular solutions to (1.1)

as hdown(k, x) and hup(k, x). We also introduce the 3-Wronskian of three functions, which

helps us determine whether any three solutions for (1.1) are linearly independent or linearly

dependent. In Chapter 3, we will use the 3-wronskians of various solutions to (1.1) to

13



determine the basic relevant relationships among the scattering coefficients for (1.1) and

the adjoint scattering coefficients.

2.1 The direct scattering problem for (1.1)

The main goal of this thesis is to develop an effective mathematical method to solve

the inverse scattering problem for (1.1). For this we need to understand the direct scattering

problem for (1.1) well. In particular, we need to identify the scattering data set to be used

as input to solve the corresponding inverse scattering problem for (1.1).

The scattering data set for (1.1) consists of the scattering coefficients and the bound-

state information. In this chapter, our emphasis is the description of the relevant scattering

phenomena and the construction of the scattering coefficients.

The scattering coefficients for (1.1) are obtained by using the spacial asymptotics of

two of the particular solutions to (1.1). By exploiting the analogy with the second-order

case, i.e. with the Schrödinger equation (1.6), we refer to those two particular solutions as

the Jost solutions, and we denote them by f(k, x) and g(k, x), respectively. We refer to

f(k, x) as the Jost solution from the left and g(k, x) as the Jost solution from the right. The

terminology related to the left and right will become clear when we describe the scattering

phenomena associated with (1.1). For simplicity, we use the term the left Jost solution to

mean the Jost solution from the left, and we say the right Jost solution as an equivalent

expression for the Jost solution from the right. We show that the k-domain of f(k, x) is

the region Ω1, which corresponds to the closure of the sector Ω1 in the complex k-plane, as

shown in Figure 2.1. Similarly, we show that the k-domain of g(k, x) is the region Ω3, which

corresponds to the closure of the sector Ω3 in the complex k-plane, as shown in Figure 2.1.

It is convenient to describe the sectors Ω1 and Ω3 with the help of the special complex

constant z

z := e2πi/3, (2.1)
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ℒ2 ℒ3

ℒ1 ℒ4

Ω1

Ω2

Ω3

Ω4

Figure 2.1: The k-domains Ω1 and Ω3 of f(k, x) and g(k, x), respectively.

which corresponds to a cube root of unity. Note that z satisfies

z = −1
2 + i

√
3

2 , (2.2)

z2 = −1
2 − i

√
3

2 , (2.3)

z3 = 1, (2.4)

1 + z + z2 = 0. (2.5)

We partition the complex k-plane into four sectors denoted by Ω1,Ω2,Ω3,Ω4, respec-

tively, as shown in Figure 2.1. Note that Ω1 is the open region in the complex k-plane with

the argument of k satisfying
2π
3 < arg[k] < 4π

3 . (2.6)

We obtain Ω1, the closure of Ω1, by including the boundary of Ω1. Hence, Ω1 is described

by
2π
3 ≤ arg[k] ≤ 4π

3 . (2.7)

In the sector Ω1, as shown in Figure 2.1, we use L1 to denote its directed upper boundary and

use L2 to denote its directed lower boundary. The directions of L1 and L2 are indicated by
15



an arrow in Figure 2.1. Note that Ω3 is the sector in the complex k-plane with the argument

of k satisfying

− π

3 < arg[k] < π

3 . (2.8)

Similarly, we obtain Ω3 by including the boundary of the open set Ω3. Hence, Ω3 is described

by

− π

3 ≤ arg[k] ≤ π

3 . (2.9)

In the sector Ω3, as shown in Figure 2.1, we use L4 to denote its directed upper boundary

and use L3 to denote its directed lower boundary. The directions of L3 and L4 are indicated

in Figure 2.1. As mentioned already, the boundaries L1,L2,L3,L4 are the directed half lines,

and they can be parameterized in terms of the real parameter s ∈ [0,+∞) as

L1 : k = zs, (2.10)

L2 : k = z2s, (2.11)

L3 : k = −zs, (2.12)

L4 : k = −z2s, (2.13)

where we recall that z is the special complex number appearing in (2.1). The two remaining

sectors Ω2 and Ω4 in Figure 2.1 are described in similar manners to Ω1 and Ω3. In particular,

the sector Ω2 has the parametrization

4π
3 < arg[k] < 5π

3 , (2.14)

with the directed boundaries L2 and L3. The sector Ω4 is parametrized by using

π

3 < arg[k] < 2π
3 , (2.15)

with the directed boundaries L1 and L4. The closure of the sectors Ω2 and Ω4 are similarly

defined by including their boundaries.
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2.2 The general solution to (1.1)

Since the potentials Q(x) and P (x) belong to the Schwartz class S(R), as x → ±∞

any solution to the third-order ODE (1.1) behaves asymptotically as a solution to the

corresponding “unperturbed equation”

ψ̊′′′ = k3ψ̊, x ∈ R, (2.16)

where ψ̊(k, x) is the unperturbed wavefunction. The unperturbed equation in (2.16) is

obtained from (1.1) by setting Q(x) ≡ 0 and P (x) ≡ 0. For each fixed k ∈ C, the general

solution to (2.16) is given by

ψ̊(k, x) = c1(k) ekx + c2(k) ezkx + c3(k) ez2kx, x ∈ R, (2.17)

where the coefficients c1(k), c2(k), c3(k) are arbitrary constants that can only depend on k.

The general solution to (1.1) can be obtained by using the method of variation of

parameters [14] on (1.1). For this we assume that the general solution to (1.1) is obtained

from (2.17) by allowing c1(k), c2(k), c3(k) to depend on the independent variable x, i.e. by

letting

ψ(k, x) = c1(k, x) ekx + c2(k, x) ezkx + c3(k, x) ez2kx, x ∈ R, (2.18)

and by determining the restrictions on the coefficients c1(k, x), c2(k, x), c3(k, x) so that the

right-hand side of (2.18) satisfies (1.1).

As already indicated, any solution to (1.1) has the asymptotic behavior similar to the

right-hand side of (2.17). Consequently, the asymptotic behavior of any solution to (1.1)

at each fixed k ∈ C is given by

ψ(k, x) =


a1(k) ekx + a2(k) ezkx + a3(k) ez2kx + o(1), x→ +∞,

a4(k) ekx + a5(k) ezkx + a6(k) ez2kx + o(1), x→ −∞,

(2.19)

for some appropriate coefficients a1(k), a2(k), a3(k), a4(k), a5(k), a6(k).
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2.3 The left and right Jost solutions to (1.1)

We define the particular solution f(k, x) to (1.1), namely the left Jost solution to (1.1),

by imposing three specific restrictions. Those three restrictions are obtained by choosing

the coefficients a1(k), a2(k), a3(k) in (2.19) as

a1(k) ≡ 1, a2(k) ≡ 0, a3(k) ≡ 0. (2.20)

Since the potentials Q(x) and P (x) in (1.1) belong to S(R), it can directly be verified that

f(k, x) satisfies the spacial asymptotics

f(k, x) = ekx [1 + o(1)] , x→ +∞,

f ′(k, x) = k ekx [1 + o(1)] , x→ +∞,

f ′′(k, x) = k2 ekx [1 + o(1)] , x→ +∞,

(2.21)

where we recall that we use the prime to denote the x-derivative. The remaining coefficients

a4(k), a5(k), a6(k) in (2.19) are then determined by the potentials Q(x) and P (x), and those

three coefficients are related to the scattering coefficients for (1.1).

It is convenient to express the left Jost solution f(k, x) as

f(k, x) = ekxu(k, x), (2.22)

with the help of the auxiliary function u(k, x). Using (2.22) in (2.21) we see that u(k, x)

satisfies the third-order ODE given by

u′′′ + 3ku′′ + [3k2 +Q(x)]u′ + [kQ(x) + P (x)]u = 0, x ∈ R. (2.23)

By using (2.22) in (2.21), we see that u(k, x) satisfies the spacial asymptotics

u(k, x) = 1 + o(1), x→ +∞,

u′(k, x) = o(1), x→ +∞,

u′′(k, x) = o(1), x→ +∞.

(2.24)
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In the next theorem, we present the integral equation for u(k, x), which is useful to

determine all the relevant properties of u(k, x). After we obtain those properties for u(k, x),

we also have all the relevant properties of the left Jost solution f(k, x) by using (2.22).

Theorem 2.3.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Then, the quantity u(k, x) appearing (2.22) satisfies the integral relation

u(k, x) = 1−
∫ ∞
x

dy D(k, x− y)
[
Q′(y)− P (y)

]
u(k, y) +

∫ ∞
x

dy E(k, x− y)Q(y)u(k, y),

(2.25)

where the quantities D(k, y) and E(k, y) are defined as

D(k, y) := 1
3k2

[
1 + ze(z−1)ky + z2e(z2−1)ky

]
, (2.26)

E(k, y) := 1
3k
[
1 + z2e(z−1)ky + ze(z2−1)ky

]
, (2.27)

with z being the special constant appearing in (2.1).

Proof. By using the method of variation of parameters [14] on the third-order ODE (2.23),

we convert (2.23) and (2.24) into the integral equation given in (2.25). �

After introducing the left Jost solution f(k, x) to (1.1), we now describe the con-

struction of the solution g(k, x). By choosing the coefficients a4(k), a5(k), a6(k) in (2.19)

as

a4(k) ≡ 1, a5(k) ≡ 0, a6(k) ≡ 0, (2.28)

we obtain the particular solution to (1.1), which is the right Jost solution g(k, x). Since the

potentials Q(x) and P (x) in (1.1) belong to S(R), it can directly be verified that g(k, x)

satisfies the spacial asymptotics

g(k, x) = ekx [1 + o(1)] , x→ −∞,

g′(k, x) = k ekx [1 + o(1)] , x→ −∞,

g′′(k, x) = k2 ekx [1 + o(1)] , x→ −∞.

(2.29)
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After the choice in (2.28), the remaining coefficients a1(k), a2(k), a3(k) in (2.19) are then

determined by the potentials Q(x) and P (x), and those three coefficients are related to the

scattering coefficients for (1.1).

As an analogy to (2.22), it is convenient to express the right Jost solution g(k, x) as

g(k, x) = ekxv(k, x), (2.30)

by using the auxiliary function v(k, x). By using (2.30) in (1.1), we see that v(k, x) satisfies

the same third-order ODE (2.23) satisfied by u(k, x). In other words, we have

v′′′ + 3kv′′ + [3k2 +Q(x)]v′ + [kQ(x) + P (x)]v = 0, x ∈ R. (2.31)

By using (2.30) in (2.29), we see that v(k, x) satisfies the spacial asymptotics

v(k, x) = 1 + o(1), x→ −∞,

v′(k, x) = o(1), x→ −∞,

v′′(k, x) = o(1), x→ −∞.

(2.32)

In the next theorem, we present the integral equation for v(k, x), which is useful to

determine all the relevant properties of v(k, x) and in turn all the relevant properties of

g(k, x).

Theorem 2.3.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Then, the quantity v(k, x) appearing in (2.30) satisfies the integral relation

v(k, x) = 1 +
∫ x

−∞
dy D(k, x− y)

[
Q′(y)− P (y)

]
v(k, y)−

∫ x

−∞
dy E(k, x− y)Q(y) v(k, y),

(2.33)

where D(x, y) and E(x, y) are the quantities in (2.26) and (2.27), respectively.

Proof. The proof is similar to the proof used in Theorem 2.3.1. By using the method of

variation of parameters [14], the third-order ODE (2.31) and the asymptotic conditions in

(2.32) are converted into the integral equation given in (2.33). �
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2.4 The k-domains of the left and right Jost solutions

The method of converting a differential equation supplemented by a set of asymptotic

conditions into an integral equation is a well established technique [14, 16, 19]. Once the

conversion to the integral equation is accomplished, the solution is obtained by solving the

corresponding integral equation iteratively. This iteration involves the representation of the

solution to the integral equation as a uniformly convergent infinite series. The iterative

technique also allows us to establish the existence and uniqueness of any particular solution

to a differential equation supplemented by some asymptotic conditions. In particular, it

helps us determine various properties of that particular solution such as the continuity

in k or x, the analyticity in k, and the small and large asymptotics in k. The continuity

and analyticity properties of the solution are established with the help of the following

theorem [13,14,16], which we state without a proof.

Theorem 2.4.1. Let u(k, x) be represented as an infinite series of the form

u(k, x) =
∞∑
j=0

uj(k, x), x ∈ R, (2.34)

where uj(k, x) is the jth term of the series. We have the following:

(a) Assume that each uj(k, x) is continuous in x ∈ R for some fixed k-value in C and that

the series in (2.34) is uniformly convergent for x ∈ R at that k-value. Then, u(k, x)

itself is continuous in x ∈ R at that k-value.

(b) Assume that, for each fixed x ∈ R, each of the terms uj(k, x) is analytic in every

compact subset in an open connected set Ω in the complex k-plane C. Further, assume

that the series in (2.34) is uniformly convergent when k ∈ Ω at each fixed x ∈ R.

Then, u(k, x) itself is analytic in k ∈ Ω for each fixed x ∈ R.

(c) Assume that, for each fixed x ∈ R, each of the terms uj(k, x) is continuous in the

closure Ω of the set Ω in the complex k-plane C. Further, assume that the series in

(2.34) is uniformly convergent when k ∈ Ω at each fixed x ∈ R. Then, u(k, x) is

continuous in k ∈ Ω for each fixed x ∈ R.
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For each fixed x ∈ R, we obtain the k-domain of the auxiliary function u(k, x) ap-

pearing in (2.22) by solving the integral equation (2.25) iteratively. This involves the iden-

tification of the k-values in the complex plane C for which the solution to (2.25) exists.

This is done by assuring that the exponential terms in the integrand do not blow up as

x → +∞. Solving the integral equation (2.25) iteratively can be accomplished by repre-

senting its solution u(k, x) to (2.25) as a uniformly convergent infinite series as in (2.34)

and by identifying the k-values in the complex plane C at which the uniform convergence

holds.

The advantage of using the auxiliary function u(k, x) in (2.25) rather than the left

Jost solution f(k, x) is that u(k, x) has the large k-asymptotics equal to 1, while f(k, x)

has the large k-asymptotics ekx. As a result, the representation of u(k, x) as a uniformly

convergent series as in (2.34) is easier to handle than representing f(k, x) as a uniformly

convergent infinite series.

In the next theorem, we present certain properties of the solution u(k, x) to (2.23)

satisfying the asymptotics (2.24).

Theorem 2.4.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Then, we have the following:

(a) The integral equation (2.25) has a solution and that solution is unique.

(b) Consequently, the solution u(k, x) to (2.23) satisfying the asymptotics (2.24) exists

and is unique.

(c) For each fixed x ∈ R, the solution u(k, x) is analytic in k ∈ Ω1 and continuous in Ω1,

where we recall that Ω1 is the open sector shown in Figure 2.1 and Ω1 is the closure

of Ω1.

(d) For each fixed k ∈ Ω1, the solution u(k, x) is continuous in x ∈ R.

Proof. The proof of (a) is obtained by solving (2.25) iteratively and by representing its solu-

tion as a uniformly convergent series as in (2.34). We remark that (b) is a direct consequence

of (a). The proof of (c) is obtained by applying Theorem 2.4.1(b) and Theorem 2.4.1(c)
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on the infinite series representation of the solution to (2.25) as in (2.34). Finally, the

proof of (d) is obtained by applying Theorem 2.4.1(c) on the uniformly convergent series

representation of the solution to (2.25). �

Using (2.22) and Theorem 2.4.2, we have the following corollary.

Corollary 2.4.2.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the

Schwartz class S(R). Then, we have the following:

(a) The left Jost solution f(k, x) to (1.1) satisfying (2.21) exists and is unique.

(b) For each fixed x ∈ R, the left Jost solution f(k, x) is analytic in k ∈ Ω1 and continuous

in Ω1.

(c) For each fixed k ∈ Ω1, the left Jost solution f(k, x) is continuous in x ∈ R.

In a similar way, in the next theorem we present certain relevant properties of the

solution v(k, x) to (2.31) satisfying the asymptotics (2.32).

Theorem 2.4.3. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Then, we have the following:

(a) The integral equation (2.33) has a solution and that solution is unique.

(b) Consequently, the solution v(k, x) to (2.31) satisfying the asymptotics (2.32) exists

and is unique.

(c) For each fixed x ∈ R, the solution v(k, x) is analytic in k ∈ Ω3 and continuous in Ω3,

where we recall that Ω3 is the open sector shown in Figure 2.1 and Ω3 is the closure

of Ω3.

(d) For each fixed k ∈ Ω3, the solution v(k, x) is continuous in x ∈ R.

Proof. The proof is analogous to the proof of Theorem 2.4.2. This is accomplished by

representing the solution to (2.33) as a uniformly convergent infinite series, by solving

(2.33) via iteration, and by applying Theorem 2.4.1. �

Using (2.30) and Theorem 2.4.3, we have the following corollary.
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Corollary 2.4.3.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the

Schwartz class S(R). Then, we have the following:

(a) The right Jost solution g(k, x) to (1.1) satisfying (2.29) exists and is unique.

(b) For each fixed x ∈ R, the solution g(k, x) is analytic in k ∈ Ω3 and continuous in Ω3.

(c) For each fixed k ∈ Ω3, the solution g(k, x) is continuous in x ∈ R.

2.5 The scattering coefficients for (1.1)

As we have seen in Corollaries 2.4.2.1 and 2.4.3.1, the specification of three of the

six coefficients in (2.19) helps us construct the two particular solutions f(k, x) and g(k, x).

The remaining three coefficients in (2.19) allow us to define the corresponding scattering

coefficients for (1.1). Thus, we are able to define the scattering coefficients for (1.1) by using

the spacial asymptotics of the Jost solutions f(k, x) and g(k, x) to (1.1).

In the next theorem, we use the spacial asymptotics of the left Jost solution f(k, x)

to describe the left scattering coefficients Tl(k), L(k), and M(k) for (1.1).

Theorem 2.5.1. Assume that the potentials Q(x) and P (x) belong to the Schwartz class

S(R). Then, the left Jost solution f(k, x) to (1.1) appearing in (2.21) has the spacial

asymptotics as x→ −∞ given by

f(k, x) =



ekx Tl(k)−1[1 + o(1)] + ezkxL(k)Tl(k)−1[1 + o(1)], k ∈ L1,

ekx Tl(k)−1[1 + o(1)], k ∈ Ω1,

ekx Tl(k)−1[1 + o(1)] + ez
2kxM(k)Tl(k)−1[1 + o(1)], k ∈ L2,

(2.35)

where we have defined

Tl(k)−1 := 1 +
∫ ∞
−∞

dy

[
−Q

′(y)− P (y)
3k2 + Q(y)

3k

]
u(k, y), (2.36)

L(k)Tl(k)−1 :=
∫ ∞
−∞

dy ei
√

3z2ky

[
− z

3k2
(
Q′(y)− P (y)

)
+ z2

3kQ(y)
]
u(k, y), (2.37)

M(k)Tl(k)−1 :=
∫ ∞
−∞

dy e−i
√

3zky
[
− z2

3k2
(
Q′(y)− P (y)

)
+ z

3kQ(y)
]
u(k, y). (2.38)
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The domain of Tl(k)−1 in (2.36) is Ω1\{0}, where we recall that Ω1 is the open sector defined

in (2.6) and Ω1 is the closure of Ω1. The domain of L(k)Tl(k)−1 in (2.37) is L1\{0} and the

domain M(k)Tl(k)−1 in (2.38) is L2 \ {0}, where we recall that L1 and L2 are the directed

upper and lower boundaries of Ω1, respectively, as shown in Figure 2.1.

Proof. By letting x→ −∞ in (2.25) and using (2.22), we obtain the asymptotics of f(k, x)

given in (2.35). The k-domains of the quantities on the right-hand sides of (2.36)–(2.38)

are obtained by ensuring that the three integrals there are convergent. �

As we see from Theorem 2.5.1, the asymptotics of the left Jost solution f(k, x) as

x→ −∞ uniquely provides the coefficients Tl(k)−1, L(k)Tl(k)−1, and M(k)Tl(k)−1. From

those three coefficients, we can uniquely determine Tl(k), L(k), and M(k). We collectively

refer to Tl(k), L(k), and M(k) as the left scattering coefficients for (1.1). We refer to Tl(k)

as the transmission coefficient from the left (or the left transmission coefficient, for short),

refer to L(k) as the primary reflection coefficient from the left (or the left primary reflection

coefficient, for short), and refer to M(k) as the secondary reflection coefficient from the left

(or the left secondary reflection coefficient, for short).

In Theorem 2.5.1, with the help of the spacial asymptotics of the left Jost solution

f(k, x), we have introduced the three left scattering coefficients for (1.1). In the next

theorem, in an analogous manner, we use the spacial asymptotics of the right Jost solution

g(k, x) to introduce the right scattering coefficients Tr(k), R(k), and N(k) for (1.1).

Theorem 2.5.2. Assume that the potentials Q(x) and P (x) belong to the Schwartz class

S(R). Then, the right Jost solution g(k, x) to (1.1), appearing in (2.29) has the spacial

asymptotics as x→ +∞ given by

g(k, x) =



ekx Tr(k)−1[1 + o(1)] + ezkxR(k)Tr(k)−1[1 + o(1)], k ∈ L3,

ekx Tr(k)−1[1 + o(1)], k ∈ Ω3,

ekx Tr(k)−1[1 + o(1)] + ez
2kxN(k)Tr(k)−1[1 + o(1)], k ∈ L4,

(2.39)
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where we have defined

Tr(k)−1 := 1 +
∫ ∞
−∞

dy

[
Q′(y)− P (y)

3k2 − Q(y)
3k

]
v(k, y), (2.40)

R(k)Tr(k)−1 :=
∫ ∞
−∞

dy ei
√

3z2ky

[
z

3k2
(
Q′(y)− P (y)

)
− z2

3kQ(y)
]
v(k, y), (2.41)

N(k)Tr(k)−1 :=
∫ ∞
−∞

dy e−i
√

3zky
[
z2

3k2
(
Q′(y)− P (y)

)
− z

3kQ(y)
]
v(k, y). (2.42)

The domain of Tr(k)−1 in (2.40) is Ω3\{0}, where we recall that Ω3 is the open sector defined

in (2.6) and Ω3 is the closure of Ω3. The domain of R(k)Tr(k)−1 in (2.41) is L3 \ {0} and

the domain N(k)Tr(k)−1 in (2.42) is L4 \ {0}, where we recall that L3 and L4 are the

directed lower and upper boundaries of Ω3, respectively, as shown in Figure 2.1.

Proof. The proof is similar to the proof of Theorem 2.5.1. By letting x → +∞ in (2.33)

and using (2.30), we obtain the asymptotics of g(k, x) given in (2.39). The restrictions on

the k-domains of the quantities in (2.40)–(2.42) ensure that each of the integrals on the

right-hand sides of (2.40)–(2.42) is convergent. �

As demonstrated in Theorem 2.5.2, the asymptotics of the right Jost solution g(k, x)

as x → +∞ uniquely provides the coefficients Tr(k)−1, R(k)Tr(k)−1, and N(k)Tr(k)−1.

From those three coefficients, we can uniquely determine Tr(k), R(k), and N(k). We col-

lectively refer to Tr(k), R(k), and N(k) as the right scattering coefficients for (1.1). In

particular, we refer to Tr(k) as the transmission coefficient from the right (or the right

transmission coefficient, for short), refer to R(k) as the primary reflection coefficient from

the right (or the right primary reflection coefficient, for short), and refer to N(k) as the

secondary reflection coefficient from the right (or the right secondary reflection coefficient,

for short).

From Theorems 2.5.1 and 2.5.2, we know that each of the six quantities Tl(k)−1,

L(k)Tl(k)−1, M(k)Tl(k)−1, Tr(k)−1, R(k)Tr(k)−1, N(k)Tr(k)−1 in general has a singularity

at k = 0. However, as we will see in Theorem 3.5.1 and Corollary 3.5.1.1, each of the six

scattering coefficients Tl(k), L(k), M(k), Tr(k), R(k), N(k) is continuous at k = 0 and
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hence does not have a singularity there. Thus, with the help of Theorem 2.5.1 we see

that the left primary reflection coefficient L(k) is defined when k ∈ L1, the left secondary

reflection coefficient M(k) is defined when k ∈ L2, and the left transmission coefficient

Tl(k) is defined when k is in the closure set Ω1. Alternatively, we can assume that the

left transmission coefficient Tl(k) is originally defined on the boundaries L1 and L2 and

then meromorphically extended in k to the interior region Ω1. Similarly, with the help of

Theorem 2.5.2 we observe that the right primary reflection coefficient R(k) is defined when

k ∈ L3, the right secondary reflection coefficient N(k) is defined when k ∈ L4, and the right

transmission coefficient Tr(k) is defined when k is in the closure set Ω3. Alternatively, we can

assume that the right transmission coefficient Tr(k) is originally defined on the boundaries

L3 and L4 and then meromorphically extended in k to the interior region Ω3. For easy

referencing, we summarize the k-domains of the six scattering coefficients for (1.1) as
Tl(k), k ∈ Ω1; L(k), k ∈ L1; M(k), k ∈ L2,

Tr(k), k ∈ Ω3; R(k), k ∈ L3; N(k), k ∈ L4.

(2.43)

2.6 The scattering phenomena for (1.1)

Having described the six scattering coefficients Tl(k), L(k),M(k), Tr(k), R(k), N(k)

for (1.1), in this section we present their physical relevance. This is accomplished by pre-

senting how the scattering phenomena for (1.1) occurs. This also clarifies why we use the

terminology left and right in the description of the Jost solutions f(k, x) and g(k, x) and

the six scattering coefficients Tl(k), L(k),M(k), Tr(k), R(k), N(k).

In terms of the Jost solutions f(k, x) and g(k, x), we define the physical solutions

F (k, x) and G(k, x), respectively, as
F (k, x) := Tl(k) f(k, x),

G(k, x) := Tr(k) g(k, x).
(2.44)

We refer to F (k, x) as the physical solution from the left (or the left physical solution, for

short) and refer to G(k, x) as the physical solution from the right (or the right physical
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ekx

M(k) ez2kx

L(k) ezkx
potentials Q(x)

and P (x) causing
the scattering

Tl(k) ekx

Figure 2.2: The scattering phenomena for (1.1) related to the physical solution F (k, x).

solution, for short). Since (1.1) is a linear homogeneous ODE, due to the absence of a

nonhomogeneous term, any constant multiple of a solution to (1.1) is also a solution. Since

Tl(k) and Tr(k) do not contain the independent variable x and f(k, x) and g(k, x) are

solutions to (1.1), from (2.44) it follows that F (k, x) and G(k, x) are also solutions to (1.1).

The following scenario, in analogy with the scattering scenario for the Schrödinger

equation (1.6), explains why we refer to F (k, x) and G(k, x) as the physical solutions and

also why we refer to Tl(k), L(k),M(k), Tr(k), R(k), N(k) as the scattering coefficients. From

(2.21), (2.35), and the first line of (2.44), we see that the physical solution F (k, x) satisfies

the spacial asymptotics as x→ +∞

F (k, x) = Tl(k) ekx[1 + o(1)], k ∈ Ω1, (2.45)

and the spacial asymptotics as x→ −∞

F (k, x) =



ekx[1 + o(1)] + L(k) ezkx[1 + o(1)], k ∈ L1,

ekx[1 + o(1)], k ∈ Ω1,

ekx[1 + o(1)] +M(k) ez2kx[1 + o(1)], k ∈ L2.

(2.46)

The scattering phenomena for (1.1) associated with the spacial asymptotics of F (k, x) is

illustrated in Figure 2.2.

We interpret Figure 2.2 by relating it to the spacial asymptotics of F (k, x) given in

(2.45) and (2.46) as follows. From x = −∞, we send the plane wave ekx of unit amplitude

onto the nonhomogenity described by the potentials Q(x) and P (x). That plane wave
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ekx incoming from the left interacts with the potentials and a part of it is transmitted to

x = +∞ but by remaining in the same channel as the incoming wave ekx. The transmitted

wave at x = +∞ is given by Tl(k) ekx, and hence it has the amplitude Tl(k). Furthermore,

that transmitted wave travels in the same direction as the incoming wave ekx travels, namely

it moves from the left to the right. Since the incoming plane wave is traveling from the

left, i.e. from x = −∞, it is appropriate to call Tl(k) the transmission coefficient from the

left. We interpret a part of the asymptotic solution, i.e. the part L(k) ezkx, as the part

of the wave reflected from the potentials Q(x) and P (x), where the reflection takes place

in the channel described by ezkx. We interpret L(k) ezkx as the reflected wave at x = −∞

due to the interaction of the incoming plane wave ekx with the nonhomogenity created by

the potentials Q(x) and P (x). The wave L(k) ezkx travels from the right to the left, but

because that reflected wave is caused by the incoming plane wave from the left, we refer to

the reflection coefficient L(k) as the reflection coefficient from the left. In our description

of the scattering scenario, we choose to refer to the channel ezkx as the primary reflection

channel. Hence, we refer to L(k) as the primary reflection coefficient from the left. In a

similar manner, we interpret the asymptotic term M(k) ez2kx as the wave reflected into the

secondary channel resulting from the incoming plane wave ekx of unit amplitude. We refer

to the channel of ez2kx as the secondary reflection channel, and hence we call M(k) ez2kx

as the wave reflected into the secondary channel caused by the incoming wave ekx from

the left. Thus, it is appropriate to call M(k) as the secondary reflection coefficient from

the left. Consequently, we refer to the three scattering coefficients Tl(k), L(k),M(k) as the

scattering coefficients from the left or as the left scattering coefficients, for short. Similarly,

it is appropriate to refer to the solution F (k, x) to (1.1) as the physical solution from the left

because it has an appropriate physical interpretation describing the scattering phenomena

initiated by the unit amplitude incoming plane wave from the left and interacting with the

potentials.
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Having described the scattering phenomena for (1.1) associated with the spacial

asymptotics of F (k, x), we now present the scattering phenomena associated with the spa-

cial asymptotics of G(k, x). From (2.29), (2.39), and the second line of (2.44), we see that

the physical solution G(k, x) satisfies the spacial asymptotics as x→ −∞

G(k, x) = Tr(k) ekx[1 + o(1)], k ∈ Ω3, (2.47)

and the spacial asymptotics as x→ +∞

G(k, x) =



ekx[1 + o(1)] +R(k) ezkx[1 + o(1)], k ∈ L3,

ekx[1 + o(1)], k ∈ Ω3,

ekx[1 + o(1)] +N(k) ez2kx[1 + o(1)], k ∈ L4.

(2.48)

The scattering phenomena for (1.1) associated with the spacial asymptotics of G(k, x) is

illustrated in Figure 2.3.

Tr(k) ekx

N(k) ez2kx

R(k) ezkx
potentials Q(x)

and P (x) causing
the scattering

ekx

Figure 2.3: The scattering phenomena for (1.1) related to the physical solution G(k, x).

We interpret Figure 2.3 by relating it to the spacial asymptotics of G(k, x) given in

(2.47) and (2.48) as follows. From x = +∞, we send the plane wave ekx of unit amplitude

onto the nonhomogenity described by the potentials Q(x) and P (x). That incoming plane

wave ekx interacts with the potentials and a part of it is transmitted to x = −∞ but by

remaining in the same channel as the incoming wave ekx. The transmitted wave at x = −∞

is given by Tr(k) ekx, and hence it has the amplitude Tr(k). Furthermore, it travels in

the same direction as the incoming wave travels, namely it moves from the right to the
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left. Since the incoming plane wave is coming from the right, i.e. from x = +∞, it is

appropriate to call Tr(k) the transmission coefficient from the right. We interpret a part

of the asymptotic solution, i.e. the part R(k) ezkx, as the part of the wave reflected from

the potentials Q(x) and P (x), where the reflection takes place in the channel described by

ezkx. We interpret R(k) ezkx as the reflected wave at x = +∞ due to the interaction of

the incoming plane wave ekx with the nonhomogenity created by the potentials Q(x) and

P (x). The wave R(k) ezkx travels from the left to the right, but because that reflected wave

originates from the incoming plane wave from the right, we refer to the reflection coefficient

R(k) as the reflection coefficient from the right. Since we refer to the channel ezkx as

the primary reflection channel, consequently we refer to R(k) as the primary reflection

coefficient from the right. In a similar manner, we interpret the asymptotic term N(k) ez2kx

as the wave reflected into the secondary reflection channel resulting from the incoming plane

wave ekx of unit amplitude. Since we refer to the ez2kx channel as the secondary reflection

channel, consequently we call N(k) ez2kx the wave reflected into the secondary reflection

channel when the reflection is caused by the incoming wave ekx from the right. It is thus

appropriate to call N(k) the secondary reflection coefficient from the right. Consequently,

we refer to the three scattering coefficients Tr(k), R(k), N(k) as the scattering coefficients

from the right or as the right scattering coefficients, for short. Similarly, it is appropriate to

refer to the solution G(k, x) to (1.1) as the physical solution from the right. This is because

it has an appropriate physical interpretation and that physical interpretation describes the

scattering phenomena initiated by the unit amplitude incoming plane wave from the right

and interacting with the potentials.

Since we call F (k, x) the physical solution from the left and call G(k, x) the physical

solution from the right, from (2.44) we see that it is appropriate to refer to f(k, x) as the

Jost solution from the left and refer to g(k, x) as the Jost solution from the right.

31



2.7 The adjoint equation for (1.1)

The general solution to (1.1) at each fixed k-value in the complex plane C can be

constructed by using a combination of three linearly independent solutions to (1.1). Toward

this goal, we construct three linearly independent particular solutions to (1.1) at each k-

value in C. We already have the two particular solutions, namely the left Jost solution

f(k, x) with the k-domain Ω1 and the right Jost solution g(k, x) with the k-domain Ω3.

As a first step toward our goal, we construct a particular solution to (1.1) with the k-

domain Ω2 and we use hdown(k, x) to denote that solution. Similarly, we construct another

particular solution to (1.1) with the k-domain Ω4 and we use hup(k, x) to denote that

solution. The linear differential operator in (1.12) associated with (1.1) is not selfadjoint.

Hence, we construct hdown(k, x) and hup(k, x) with the help of the Jost solutions to the

adjoint equation associated with (1.1).

We define the adjoint equation associated with (1.1) as

ψ
′′′ +Q(x)ψ′ + P (x)ψ = k3 ψ, x ∈ R, (2.49)

where Q(x) and P (x) are the adjoint potentials related to the potentials Q(x) and P (x)

appearing in (1.1) as

Q(x) := Q(x)∗, P (x) := Q′(x)∗ − P (x)∗, x ∈ R, (2.50)

with the asterisk denoting complex conjugation. We remark that we use an overbar to

identify the quantities associated with the adjoint equation, and we emphasize that the

overbar does not denote complex conjugation.
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The adjoint equation (2.49) has the Jost solutions f(k, x) and g(k, x) satisfying the

analogs of (2.21) and (2.29), respectively. The left Jost solution f(k, x) to (2.49) is defined

as the particular solution satisfying the spacial asymptotics

f(k, x) = ekx [1 + o(1)] , x→ +∞,

f
′(k, x) = k ekx [1 + o(1)] , x→ +∞,

f
′′(k, x) = k2 ekx [1 + o(1)] , x→ +∞.

(2.51)

Similarly, the right Jost solution g(k, x) to (2.49) is defined as the particular solution sat-

isfying the spacial asymptotics

g(k, x) = ekx [1 + o(1)] , x→ −∞,

g′(k, x) = k ekx [1 + o(1)] , x→ −∞,

g′′(k, x) = k2 ekx [1 + o(1)] , x→ −∞.

(2.52)

As we see from (2.50), the adjoint potentials Q(x) and P (x) belong to the Schwartz class

S(R) because we assume that the potentials Q(x) and P (x) belong to S(R). Furthermore,

as seen from (2.21) and (2.51), the left Jost solutions f(k, x) and f(k, x) have the same

asymptotics as x→ +∞. Hence, f(k, x) and f(k, x) have similar properties. In particular,

f(k, x) and f(k, x) have the same k-domain Ω1 in the complex plane C. Similarly, as seen

from (2.29) and (2.52), the right Jost solutions g(k, x) and g(k, x) have the same asymptotics

as x→ −∞. Thus, g(k, x) and g(k, x) have similar properties. In particular, they have the

same k-domain Ω3.

Let us remark that if ψ(k, x) is a solution to (1.1), then ψ(zk, x), with z as in (2.1),

is also a solution to (1.1). Similarly, if ψ(k, x) is a solution to (1.1), then ψ(z2k, x) is also

a solution to (1.1). Even though both ψ(k, x) and ψ(zk, x) are solutions to (1.1), their k-

domains do not coincide. In fact, the k-domain of ψ(zk, x) is obtained from the k-domain of

ψ(k, x) by rotating the latter k-domain clockwise around the origin of the complex k-plane
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by 2π/3, i.e. by 120◦. For example, we know that the k-domain of the Jost solution f(k, x)

to (2.49) is Ω1. The k-domain of f(zk, x) is obtained from Ω1 by rotating it clockwise by

2π/3, which is illustrated in the left plot of Figure 2.4.

ℒ2ℒ2

ℒ1ℒ1

f (k,x)

f (z2k,x)

f (zk,x)

+--

ℒ4ℒ4

ℒ3ℒ3

g(k,x)

g(zk,x)

g(z2k,x)

+--

Figure 2.4: The k-domains of f(k, x), f(zk, x), f(z2k, x), respectively, shown on the left and
the k-domains of g(k, x), g(zk, x), g(z2k, x), respectively, shown on the right.

Since ψ(z2k, x) is obtained from ψ(zk, x) by replacing k in the latter quantity by zk,

the k-domain of ψ(z2k, x) is obtained from the k-domain of ψ(zk, x) by rotating the latter

domain clockwise by 2π/3. Equivalently, we see that the k-domain of ψ(z2k, x) is obtained
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from the k-domain of ψ(k, x) by rotating the latter k-domain counterclockwise by 2π/3. In

particular, the k-domain of f(z2k, x), which can be obtained from the k-domain of f(k, x)

or f(zk, x) as we have explained, is illustrated in the left plot of Figure 2.4. In a similar

manner, the k-domains of g(zk, x) and g(z2k, x) are obtained from the k-domain of the

right Jost solution g(k, x), as illustrated in the right plot of Figure 2.4. Since f(k, x) and

g(k, x) are the Jost solutions associated with the adjoint equation (2.49), we conclude that

f(zk, x), g(zk, x), f(z2k, x), and g(z2k, x) are also solutions to (2.49).

solution k-domain boundaries

f(k, x) Ωup
1 ∪ Ωdown

1 L1, L2

f(zk, x) Ωup
3 ∪ Ω4 R+, L1

f(z2k, x) Ω2 ∪ Ωdown
3 L2, R+

g(k, x) Ωdown
3 ∪ Ωup

3 L3, L4

g(zk, x) Ωdown
1 ∪ Ω2 −R−, L3

g(z2k, x) Ωup
1 ∪ Ω4 L4, −R−

Table 2.1: The k-domains of the Jost solutions to the adjoint equation (2.49).

To describe the k-domains of each of f(k, x), g(k, x), f(zk, x), g(zk, x), f(z2k, x), and

g(z2k, x), we divide the complex k-plane into six open sectors by using the directed half

lines L1, −R−, L2, L3, R+, and L4, as indicated in the left plot in Figure 2.5. Those six

sectors are denoted by Ωup
1 , Ωdown

1 , Ω2, Ωdown
3 , Ωup

3 , and Ω4, respectively, as shown in the

left plot in Figure 2.5. Recall that the directed half lines L1, L2, L3, L4 and the sectors Ω1,

Ω2, Ω3, Ω4 are all described in Figure 2.1. Note that R+ corresponds to the positive part of

the directed real axis, and −R− corresponds to the negative part of the real axis directed

from k = 0 to k = −∞. The k-domains of f(k, x), g(k, x), f(zk, x), g(zk, x), f(z2k, x),

g(z2k, x) are listed in Table 2.1, along with their respective boundaries. The right plot in
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Figure 2.5 helps illustrate the contents of Table 2.1 and provides easy referencing for the

k-domains of f(k, x), g(k, x), f(zk, x), g(zk, x), f(z2k, x), g(z2k, x).

ℒ2 ℒ3

ℒ1 ℒ4

Ω1
up

Ω1
down

Ω2

Ω3
up

Ω3
down

Ω4

+--

ℒ2 ℒ3

ℒ1 ℒ4

f (k,x)

g(z2k,x)

f (k,x)

g(zk,x)
f (z2k,x)

g(zk,x)

f (zk,x)

g(k,x)

f (z2k,x)

g(k,x)

f (zk,x)

g(z2k,x)

Figure 2.5: The complex k-plane divided into the six sectors Ωup
1 , Ωdown

1 , Ω2, Ωdown
3 , Ωup

3 , and
Ω4 as shown on the left, and the k-domains of f(k, x), g(k, x), f(zk, x), g(zk, x), f(z2k, x),
g(z2k, x), respectively, shown on the right.

36



2.8 The 2-Wronskian and the 3-Wronskian

Having presented the adjoint equation (2.49), the Jost solutions f(k, x) and g(k, x),

and the k-domains of those two Jost solutions, we next introduce the 2-Wronskian and the

3-Wronskian, respectively. We define the 2-Wronskian [F (x) ;G(x)] of any two differentiable

functions F (x) and G(x) as

[F (x) ;G(x)] :=

∣∣∣∣∣∣∣
F (x) G(x)

F ′(x) G′(x)

∣∣∣∣∣∣∣ , (2.53)

where the absolute bars denote the 2×2 matrix determinant and we recall that the prime de-

notes the x-derivative. We also define the 3-Wronskian of any three differentiable functions

F (x), G(x), and H(x) in terms of the 3× 3 matrix determinant as

[F (x); G(x); H(x)] :=

∣∣∣∣∣∣∣∣∣∣∣
F (x) G(x) H(x)

F ′(x) G′(x) H ′(x)

F ′′(x) G′′(x) H ′′(x)

∣∣∣∣∣∣∣∣∣∣∣
. (2.54)

We remark that (2.53) is equivalent to

[F (x) ;G(x)] = F (x)G′(x)− F ′(x)G(x). (2.55)

At times, the 2-Wronskian of F (x) and G(x) defined by other authors may differ by a minus

sign from our definition in (2.53). We prefer to define the 2-Wronskian as in (2.53) so that

the concept of Wronskian can easily be generalized from (2.53) and (2.54) by defining the

n-Wronskian of n functions of x with the help of the n× n matrix determinant.

In the next theorem, we construct a solution to (1.1) in terms of the 2-Wronskian of

two solutions to the adjoint equation (2.49).

Theorem 2.8.1. Let ψ(k, x) and φ(k, x) be two solutions to the adjoint equation (2.49)

with their respective k-domains that do not necessarily coincide. Then, the 2-Wronskian

given by
[
ψ(−zk∗, x)∗ ; φ(−z2k∗, x)∗

]
is a solution to (1.1), where the k-domain of the 2-

Wronskian is determined by the intersection of the respective k-domains of ψ(−zk∗, x)∗ and

φ(−z2k∗, x)∗.
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Proof. Since ψ(k, x) and φ(k, x) each satisfy the adjoint equation (2.49), we first obtain

the two ODEs satisfied by ψ(−zk∗, x)∗ and φ(−z2k∗, x)∗, respectively. Then, we form the

2-Wronskian
[
ψ(−zk∗, x)∗ ; φ(−z2k∗, x)∗

]
by using (2.55), which yields

[
ψ(−zk∗, x)∗ ; φ(−z2k∗, x)∗

]
= ψ(−zk∗, x)∗ φ′(−z2k∗, x)∗ − ψ′(−zk∗, x)∗ φ(−z2k∗, x)∗.

(2.56)

With the help of (2.50) relating the adjoint potentials Q(x) and P (x) to the potentials Q(x)

and P (x), we directly verify that the right-hand side of (2.56) satisfies (1.1). �

In Theorem 2.8.1, by choosing ψ(k, x) as the left Jost solution f(z2k, x) and by

choosing φ(k, x) as the right Jost solution g(k, x), we see that
[
f(−z2k∗, x)∗ ; g(−zk∗, x)∗

]
is a solution to (1.1). We use hdown(k, x), to denote that solution, i.e. we let

hdown(k, x) :=
[
f(−z2k∗, x)∗ ; g(−zk∗, x)∗

]
. (2.57)

Similarly, in Theorem 2.8.1, by choosing ψ(k, x) as f(k, x) and choosing φ(k, x) as g(z2k, x),

we see that
[
f(−zk∗, x)∗ ; g(−z2k∗, x)∗

]
is a solution to (1.1). We use hup(k, x) to denote

that solution, i.e. we define

hup(k, x) :=
[
f(−zk∗, x)∗ ; g(−z2k∗, x)∗

]
. (2.58)

We remark that the k-domains of hdown(k, x) and hup(k, x) are obtained from (2.57) and

(2.58), respectively, by using the appropriate transformations of the k-domains of f(k, x)

and g(k, x). The uses of the superscripts down and up in hdown(k, x) and hup(k, x) are due

to the locations of their k-domains Ω2 and Ω4, respectively, in the complex plane C, as we

will see in Section 2.9.

Note that the k-domain of the function ψ(−k, x) is obtained from the k-domain

of ψ(k, x) by reflecting the latter k-domain through the origin of the complex k-plane.

Similarly, the k-domain of the function ψ(k∗, x) is obtained by reflecting the k-domain of

ψ(k, x) along the real axis in the complex k-plane. Furthermore, the k-domain of ψ(k, x)∗

is the same as the k-domain of ψ(k, x). This is due to the fact that if ψ(k, x) is well defined
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at some k-value, then ψ(k, x)∗ is also well defined as the complex conjugate at that k-value.

In Section 2.7, we have already discussed how to obtain the k-domains of ψ(zk, x) and

ψ(z2k, x) from the k-domain of ψ(k, x). Thus, we can obtain the k-domains of f(−zk∗, x)∗,

g(−z2k∗, x)∗, f(−z2k∗, x)∗, and g(−zk∗, x)∗ from the k-domains of f(k, x) and g(k, x) by

applying the appropriate transformations in the complex k-plane. This also helps us to

determine the k-domains of hdown(k, x) and hup(k, x).

2.9 The k-domains of hdown(k, x) and hup(k, x)

ℒ4ℒ4

ℒ3ℒ3

f (-k,x)

f (-zk,x)

f (-z2k,x)

+--

ℒ4ℒ4

ℒ3ℒ3

f (-k* ,x)

f (-z2k* ,x)

f (-zk* ,x)

+--

Figure 2.6: The k-domains of f(−k, x), f(−zk, x), f(−z2k, x), respectively, as shown on the
left, and the k-domains of f(−k∗, x), f(−zk∗, x), f(−z2k∗, x), respectively, on the right.
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As mentioned in Section 2.8, we can obtain the k-domains of hdown(k, x) and hup(k, x)

by using a number of successive transformations on the k-domains of f(k, x) and g(k, x). To-

ward this goal, we first establish the k-domain of each of f(−zk∗, x), f(−z2k∗, x), g(−zk∗, x),

and g(−z2k∗, x). Then, to establish the k-domain of hdown(k, x), as seen from (2.57), we

use the intersection of the k-domains of f(−z2k∗, x) and g(−zk∗, x). Similarly, as seen from

(2.58), we obtain the k-domain of hup(k, x) by using the intersection of the k-domains

of f(−zk∗, x) and g(−z2k∗, x). To determine the k-domains of f(−zk∗, x), f(−z2k∗, x),

g(−zk∗, x), and g(−z2k∗, x), we proceed as follows. We start with the k-domains of f(k, x),

f(zk, x), and f(z2k, x), as shown in the left plot in Figure 2.4. With the help of reflections

with respect to the origin of the complex plane C, we obtain the k-domains of f(−k, x),

f(−zk, x), f(−z2k, x), as seen in the right plot in Figure 2.6. The reflection of a k-domain

with respect to the origin is equivalent to replacing k with −k in the arguments of the rele-

vant functions. As seen from the left and right plots in Figure 2.6, by using reflections with

respect to the real axis of the complex plane C, we transform the k-domains of f(−k, x),

f(−zk, x) and f(−z2k, x) into the k-domains of f(−k∗, x), f(−zk∗, x) and f(−z2k∗, x).

These transformations amount to replacing k with k∗ in the arguments of the relevant func-

tions. Recall that by taking the complex conjugate of a function, we do not change its

k-domain. In a similar way, as seen from the right plot in Figure 2.4 and the left plot in

2.7, we obtain the k-domains of g(−k, x), g(−zk, x), and g(−z2k, x) from the k-domains of

g(k, x), g(zk, x), and g(z2k, x), respectively. This is accomplished by using the appropriate

reflections with respect to the origin of the complex k-plane. Similarly, as seen from the

left and right plots in Figures 2.7, we obtain the k-domains of g(−k∗, x), g(−zk∗, x), and

g(−z2k∗, x) from the k-domains of g(k, x), g(zk, x), and g(z2k, x), respectively, by using the

appropriate reflection with respect to the real axis on the complex k-plane.

As seen from (2.57), we obtain the k-domain of hdown(k, x) by using the intersection

of the k-domains of f(−z2k∗, x) and g(−zk∗, x). From the right plot in Figure 2.6 and the

right plot in Figure 2.7, we see that that intersection is given by the sector Ω2, where the
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ℒ2ℒ2

ℒ1ℒ1

g(-k,x)

g(-z2k,x)

g(-zk,x)

+--

ℒ2ℒ2

ℒ1ℒ1

g(-k* ,x)

g(-zk* ,x)

g(-z2k* ,x)

+--

Figure 2.7: The k-domains of g(−k, x), g(−zk, x), g(−z2k, x), respectively, as shown on the
left, and the k-domains of g(−k∗, x), g(−zk∗, x), g(−z2k∗, x), respectively, on the right.

sector Ω2 and its boundaries L2 and L3 are shown in Figure 2.1. Similarly, from (2.58),

we see that the k-domain of hup(k, x) is obtained as the intersection of the k-domains of

f(−zk∗, x) and g(−z2k∗, x), as seen from the right plot in Figure 2.6 and the right plot in

Figure 2.7. That intersection yields the sector Ω4, where the sector Ω4 and its boundaries

L1 and L4 are shown in Figure 2.1. In summary, the sector Ω2 is the k-domain of hdown(k, x)

and the sector Ω4 is the k-domain of hup(k, x).
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ℒ2 ℒ3

ℒ1 ℒ4

f (k,x)

g(z2k,x)

hdown(zk,x)

f (k,x)

g(zk,x)

hup(z2k,x) f (z2k,x)

g(zk,x)

hdown(k,x)

f (zk,x)

g(k,x)

hdown(z2k,x)

f (z2k,x)

g(k,x)

hup(zk,x)

f (zk,x)

g(z2k,x)

hup(k,x)

+--

Figure 2.8: The k-domains of f(k, x), f(zk, x), f(z2k, x), g(k, x), g(zk, x), g(z2k, x),
hdown(k, x), hdown(zk, x), hdown(z2k, x), hup(k, x), hup(zk, x), and hup(z2k, x).

In Section 2.4, we have established the k-domains of the Jost solutions f(k, x) and

g(k, x) to (1.1) by determining the k-values for which the integral equations (2.25) and

(2.33) have solutions represented by uniformly convergent series. This has indicated that
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Ω1 and Ω3 are the respective k-domains of f(k, x) and g(k, x). In this section, we have

obtained the k-domains of hdown(k, x) and hup(k, x) with the help of some appropriate

transformations in the complex k-plane. By doing so, we have determined the k-domains

of hdown(k, x) and hup(k, x) as Ω2 and Ω4, respectively. By proceeding in a similar manner

and by exploiting the aforementioned transformations in the complex k-plane, we determine

the k-domains of all solutions to (1.1). In particular, we obtain the k-domains of f(zk, x),

f(z2k, x), g(zk, x), g(z2k, x), hdown(zk, x), hdown(z2k, x), hup(zk, x), and hup(z2k, x). The

relevant k-domains of all the twelve solutions are illustrated in Figure 2.8. The latter eight

solutions as well as the four solutions f(k, x), g(k, x), hdown(k, x), and hup(k, x) enable us

to express any solution to (1.1) by using three appropriate linearly independent solutions

among those twelve solutions. We choose the three linearly independent solutions by taking

into consideration the common k-domains indicated in Figure 2.8. The linear dependence

or independence of any three solutions to (1.1) can be established by checking whether the

corresponding 3-Wronskian is zero or nonzero, respectively. This will be done in Chapter 3,

where we will evaluate and establish the linear independence of the relevant three solutions

in each of the six sectors shown in Figure 2.8.

2.10 The analyticity and continuity in k

We refer to f(k, x), g(k, x), hdown(k, x), and hup(k, x) collectively as the four funda-

mental solutions for (1.1). This is because the remaining eight solutions f(zk, x), f(z2k, x),

g(zk, x), g(z2k, x), hdown(zk, x), hdown(z2k, x), hup(zk, x), and hup(z2k, x) are obtained by

replacing k with zk or z2k in those four fundamental solutions. In the following theorem, we

present the analyticity and continuity properties in k for those four solutions. Even though

the relevant properties of f(k, x) and g(k, x) are already stated in Corollaries 2.4.2.1 and

2.4.3.1, for the convenience of the reader we restate those properties in our theorem.

Theorem 2.10.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let f(k, x), g(k, x), hdown(k, x), and hup(k, x) be the four fundamental solutions
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to (1.1) appearing in (2.21), (2.29), (2.57), (2.58), respectively. We recall that Ω1, Ω3, Ω2,

and Ω4, respectively, are the k-domains of those four fundamental solutions, as illustrated

in Figure 2.1. Then, for each fixed x ∈ R, we have the following:

(a) The left Jost solution f(k, x) is analytic in k ∈ Ω1 and continuous in k ∈ Ω1.

(b) The right Jost solution g(k, x) is analytic in k ∈ Ω3 and continuous in k ∈ Ω3.

(c) The solution hdown(k, x) is analytic in k ∈ Ω2 and continuous in k ∈ Ω2.

(d) The solution hup(k, x) is analytic in k ∈ Ω4 and continuous in k ∈ Ω4.

Proof. As already indicated, the result in (a) is given in Corollary 2.4.2.1(b) and that the

result in (b) is given in Corollary 2.4.3.1(b). The proof of (c) is obtained by using (2.57) and

the relevant k-domains of the continuity and analyticity of the adjoint quantities appearing

on the right-hand side of (2.57). In a similar manner, we obtain the proof of (d) by using

(2.58) and the relevant k-domains of the continuity and analyticity of the adjoint quantities

appearing on the right-hand side of (2.58). �

We recall that, as a result of (2.50), the adjoint potentials Q(x) and P (x) in (2.49)

belong to the Schwartz class S(R) whenever the potentials Q(x) and P (x) in (1.1) are in

S(R). Hence, the properties of each of the four fundamental solutions to (2.49) are similar to

the properties of the corresponding fundamental solution to (1.1). For example, the solution

f(k, x) to (2.49) and the solution f(k, x) to (1.1) have similar analyticity and continuity

properties in k. The same holds for the remaining fundamental solutions to (2.49) and (1.1),

respectively. Thus, Theorem 2.10.1 yields the following corollary.

Corollary 2.10.1.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the

Schwartz class S(R). Let f(k, x) and g(k, x) be the Jost solutions to the adjoint equation

(2.49), appearing in (2.51) and (2.52), respectively. Let hdown(k, x) and h
up(k, x) be the

solutions to the adjoint equation (2.49), which are defined in terms of the Jost solutions to

(1.1) as

h
down(k, x) :=

[
f(−z2k∗, x)∗ ; g(−zk∗, x)∗

]
, (2.59)
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h
up(k, x) :=

[
f(−zk∗, x)∗ ; g(−z2k∗, x)∗

]
. (2.60)

Then, for each fixed x ∈ R, we have the following:

(a) The left Jost solution f(k, x) is analytic in k ∈ Ω1 and continuous in k ∈ Ω1.

(b) The right Jost solution g(k, x) is analytic in k ∈ Ω3 and continuous in k ∈ Ω3.

(c) The solution h
down(k, x) is analytic in k ∈ Ω2 and continuous in k ∈ Ω2.

(d) The solution h
up(k, x) is analytic in k ∈ Ω4 and continuous in k ∈ Ω4.

In the next theorem, we present the analyticity and continuity properties in k for the

scattering coefficients for (1.1).

Theorem 2.10.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k), L(k), and M(k) be the left scattering coefficients appearing in (2.35)

and similarly let Tr(k), R(k), and N(k) be the right scattering coefficients appearing in

(2.39). We have the following:

(a) The reciprocal Tl(k)−1 of the left transmission coefficient Tl(k) is analytic in Ω1 and

continuous in Ω1 \ {0}.

(b) The reciprocal Tr(k)−1 of the right transmission coefficient Tr(k) is analytic in Ω3 and

continuous in Ω3 \ {0}.

(c) The quantity L(k)Tl(k)−1 is continuous on the directed half line L1 \ {0}.

(d) The quantity M(k)Tl(k)−1 is continuous on the directed half line L2 \ {0}.

(e) The quantity R(k)Tr(k)−1 is continuous on the directed half line L3 \ {0}.

(f) The quantity N(k)Tr(k)−1 is continuous on the directed half line L4 \ {0}.

Proof. The proof of (a) is obtained by using the integral representation for Tl(k)−1 given in

(2.36) and by using the k-domains of the continuity and analyticity of u(k, x) established

in Theorem 2.4.2(c). Similarly, the proof of (b) is obtained with the help of the integral

representation for Tr(k)−1 given in (2.40) and by using the k-domains of the continuity and

analyticity of v(k, x) established in Theorem 2.4.3(c). The proofs of (c)–(f) are established

in a similar manner by using the integral representations for L(k)Tl(k)−1, M(k)Tl(k)−1,

R(k)Tr(k)−1, N(k)Tr(k)−1 given in (2.37), (2.38), (2.41), (2.42), respectively, and by using
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the k-domains of the continuity of u(k, x) and v(k, x) stated in Theorems 2.4.2(c) and

2.4.3(c), respectively. �
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CHAPTER 3

THE DIRECT SCATTERING PROBLEM: PART II

In Chapter 2, we have described the direct scattering problem for (1.1). We have also

introduced the left Jost solution f(k, x) and the right Jost solution g(k, x) to (1.1) along

with their respective k-domains and spacial asymptotics. In addition to the Jost solutions

f(k, x) and g(k, x), by introducing the 2-Wronskian and the adjoint equation (2.49), we

have constructed two additional solutions hdown(k, x) and hup(k, x) to (1.1), and we have

determined their respective k-domains.

We recall that, at any fixed k-value in C, the 3-Wronskian of any three solutions to

(1.1) is either identically zero for all x ∈ R or never becomes zero at any x-value in R. The

former happens when those three solutions are linearly dependent at that k-value, and the

latter occurs when the three solutions are linearly independent at that k-value. Since the

coefficient of the term ψ′′ in (1.1) is zero, the 3-Wronskian of any three solutions to (1.1) is

independent of x, and hence the value of that 3-Wronskian can be evaluated at any x-value,

including when x→ ±∞. This x-independence allows us to relate the scattering coefficients

for (1.1) to the 3-Wronskians of certain particular solutions to (1.1).

Through the use of the 3-Wronskian, we first establish the linear dependence of three

certain solutions to (1.1) on each of the respective boundaries L1, −R−, L2, L3, R+, and L4.

Then, the linear dependence of that set of three solutions on each of six directed boundaries

allows us to formulate various relationships among the primary and secondary reflection

coefficients for the adjoint equation (2.49) and the primary and secondary reflection coeffi-

cients for (1.1). The linear independence of any three solutions to (1.1) via the 3-Wronskian

on the six sectors as illustrated in Figure 2.5, then establishes various relationships between

the transmission coefficients for (1.1) and (2.49), respectively.
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In this chapter, we introduce the scattering coefficients for the adjoint equation (2.49)

and determine the spacial asymptotics of the solutions hdown(k, x) and hup(k, x) to (1.1)

appearing in (2.57) and (2.58), respectively. We also establish the relationships among the

scattering coefficients for (1.1) and the scattering coefficients for the adjoint equation (2.49).

We then present the large k-asymptotics of the four fundamental solutions f(k, x), g(k, x),

hdown(k, x), and hup(k, x) to (1.1). We also determine the large and small k-asymptotics of

the six scattering coefficients for (1.1). Finally, in this chapter, we provide the basic relevant

information on the bound states of (1.1) and introduce the concept of a dependency constant

at each bound state.

3.1 The scattering coefficients for the adjoint equation (2.49)

As mentioned in Chapter 2, the left Jost solutions f(k, x) to (1.1) and f(k, x) to

(2.49), respectively, have similar properties. Also, the respective right Jost solutions g(k, x)

and g(k, x) have similar properties. Consequently, the scattering coefficients for the adjoint

equation (2.49) are defined in a similar manner, and this is done by using the spacial

asymptotics of the Jost solutions f(k, x) and g(k, x) to (2.49).

For the adjoint equation (2.49), we introduce the left and right transmission coeffi-

cients T l(k) and T r(k), respectively, the left and right primary reflection coefficients L(k)

and R(k), respectively, and the left and right secondary reflection coefficients M(k) and

N(k), respectively. This is done by using the analogs of (2.35)–(2.38) for the left scattering

coefficients for (1.1) and using the analogs of (2.39)–(2.42) for the right scattering coeffi-

cients for (1.1). As x → −∞, the spacial asymptotics of the left Jost solution f(k, x) to

(2.49) is given as

f(k, x) =



ekx T l(k)−1[1 + o(1)] + ezkx L(k)T l(k)−1[1 + o(1)], k ∈ L1,

ekx T l(k)−1[1 + o(1)], k ∈ Ω1,

ekx T l(k)−1[1 + o(1)] + ez
2kxM(k)T l(k)−1[1 + o(1)], k ∈ L2,

(3.1)
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which is the counterpart of (2.35). As (2.36)–(2.38) are obtained from (2.35), we get

T l(k)−1 := 1 +
∫ ∞
−∞

dy

[
−Q(y)∗

3k + P (y)∗
3k2

]
u(k, y), k ∈ Ω1 \ {0}, (3.2)

L(k)T l(k)−1 :=
∫ ∞
−∞

dy ei
√

3z2ky

[
− z

3k2P (y)∗ + z2

3kQ(y)∗
]
u(k, y), k ∈ L1 \ {0}, (3.3)

M(k)T l(k)−1 :=
∫ ∞
−∞

dy e−i
√

3zky
[
− z2

3k2P (y)∗ + z

3kQ(y)∗
]
u(k, y), k ∈ L2\{0}, (3.4)

where we have replaced the adjoint potentials Q(x) and P (x) by their equivalents in terms

of Q(x) and P (x) given in (2.50). We recall that the asterisk denotes complex conjugation.

Similarly as x→ +∞, we have the spacial asymptotics of the right Jost solution g(k, x) to

(2.49) as

g(k, x) =



ekx T r(k)−1[1 + o(1)] + ezkxR(k)T r(k)−1[1 + o(1)], k ∈ L3,

ekx T r(k)−1[1 + o(1)], k ∈ Ω3,

ekx T r(k)−1[1 + o(1)] + ez
2kxN(k)T r(k)−1[1 + o(1)], k ∈ L4,

(3.5)

which is the counterpart of (2.39). As (2.39)–(2.42) are obtained from (2.38), we get

T r(k)−1 := 1 +
∫ ∞
−∞

dy

[
Q(y)∗

3k − P (y)∗
3k2

]
v(k, y), k ∈ Ω1 \ {0}, (3.6)

R(k)T r(k)−1 :=
∫ ∞
−∞

dy ei
√

3z2ky

[
z

3k2P (y)∗ − z2

3kQ(y)∗
]
v(k, y), k ∈ L3 \ {0}, (3.7)

N(k)T r(k)−1 :=
∫ ∞
−∞

dy e−i
√

3zky
[
z2

3k2P (y)∗ − z

3kQ(y)∗
]
v(k, y), k ∈ L4 \ {0}. (3.8)

We refer collectively to T l(k), L(k), and M(k) as the left scattering coefficients for (2.49)

and refer collectively to T r(k), R(k), and N(k) as the right scattering coefficients for (2.49).

3.2 The spacial asymptotics of hdown(k, x) and hup(k, x)

We recall that f(k, x), g(k, x), hdown(k, x), and hup(k, x) are the four fundamental

solutions to (1.1). In Theorem 2.5.1, we have presented the spacial asymptotics of f(k, x)
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for k ∈ Ω1. We also have presented the spacial asymptotics of g(k, x) for k ∈ Ω3 in Theo-

rem 2.5.2. In the next two theorems, we present the spacial asymptotics of hdown(k, x) for

k ∈ Ω2 and the spacial asymptotics of hup(k, x) for k ∈ Ω4.

Theorem 3.2.1. Assume that the potentials Q(x) and P (x) belong to the Schwartz class

S(R). Let hdown(k, x) be the solution to (1.1) given in (2.59). Then, we have the following:

(a) For k ∈ L2, using the parametrization k = z2s for s ≥ 0, we have the spacial asymp-

totics of hdown(k, x) given by

hdown(z2s, x) =



s(1− z) ez2sx
[
T r(−z2s)∗

]−1

+ s(1− z2) ezsxN(−z2s)∗
[
T r(−z2s)∗

]−1
+ o(1),

s(1− z) ez2sx
[
T l(−s)∗

]−1
+ o(1),

(3.9)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞. We can write (3.9) in terms

of k and k∗, for k ∈ L2, as

hdown(k, x) =



z(1− z)k ekx
[
T r(−zk∗)∗

]−1

− (1− z)k ez2kxN(−zk∗)∗
[
T r(−zk∗)∗

]−1
+ o(1),

z(1− z)k ekx
[
T l(−z2k∗)∗

]−1
+ o(1),

(3.10)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(b) For k ∈ L3, using the parametrization k = −zs for s ≥ 0, we have the spacial

asymptotics of hdown(k, x) given by

hdown(−zs, x) =



s(1− z2) e−zsx
[
T r(s)∗

]−1
+ o(1),

s(1− z2) e−zsx
[
T l(zs)∗

]−1

+ s(1− z) e−z2sx L(zs)∗
[
T l(zs)∗

]−1
+ o(1),

(3.11)
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where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞. We can write (3.11) in terms

of k and k∗, for k ∈ L3, as

hdown(k, x) =



z(1− z)k ekx
[
T r(−zk∗)∗

]−1
+ o(1),

z(1− z)k ekx
[
T l(−z2k∗)∗

]−1

+ (1− z2)k ezkx L(−z2k∗)∗
[
T l(−z2k∗)∗

]−1
+ o(1),

(3.12)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(c) For k ∈ Ω2, the spacial asymptotics of hdown(k, x) are given by

hdown(k, x) =


z(1− z)k ekx

[
T r(−zk∗)∗

]−1
+ o(1), x→ +∞,

z(1− z)k ekx
[
T l(−z2k∗)∗

]−1
+ o(1), x→ −∞.

(3.13)

Proof. The spacial asymptotics listed in (3.9)–(3.13) are obtained directly by using the

definition of hdown(k, x) given in (2.57) and with the help of the spacial asymptotics of

f(k, x) given in (2.51) and (3.1) and the spacial asymptotics of g(k, x) given in (2.52) and

(3.5). �

The spacial asymptotics of the solution hup(k, x) to (1.1) are presented in the next

theorem.

Theorem 3.2.2. Assume that Q(x) and P (x) belong to the Schwartz class S(R). Let

hup(k, x) be the solution to (1.1) given in (2.60). Then, we have the following:

(a) For k ∈ L1, using the parametrization k = zs for s ≥ 0, we have the spacial asymp-

totics of hup(k, x) given by

hup(zs, x) =



s(1− z2) ezsx
[
T r(−zs)∗

]−1

+ s(1− z) ez2sxR(−zs)∗ T r(−zs)∗−1 + o(1),

s(1− z2) ezsx
[
T l(−s)∗

]−1
+ o(1),

(3.14)
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where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞. We can write (3.14) in terms

of k and k∗, for k ∈ L1, as

hup(k, x) =



−z(1− z)k ekx
[
T r(−z2k∗)∗

]−1

− (1− z2)k ezkxR(−z2k∗)∗
[
T r(−z2k∗)∗

]−1
+ o(1),

−z(1− z)k ekx
[
T l(−zk∗)∗

]−1
+ o(1),

(3.15)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(b) For k ∈ L4, using the parametrization k = −z2s for s ≥ 0, we have the spacial

asymptotics of hup(k, x) given by

hup(−z2s, x) =



s(1− z) e−z2sx
[
T r(s)∗

]−1
+ o(1),

s(1− z) e−z2sx
[
T l(z2s)∗

]−1

+ s(1− z2) e−zsxM(z2s)∗
[
T l(z2s)∗

]−1
+ o(1),

(3.16)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞. We can write (3.16) in terms

of k and k∗, for k ∈ L4, as

hup(k, x) =



−z(1− z)k ekx
[
T r(−z2k∗)∗

]−1
+ o(1),

−z(1− z)k ekx
[
T l(−zk∗)∗

]−1

+ (1− z)k ez2kxM(−zk∗)∗
[
T l(−zk∗)∗

]−1
+ o(1),

(3.17)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(c) For k ∈ Ω4, the spacial asymptotics of hup(k, x) are given by

hup(k, x) =


−z(1− z)k ekx

[
T r(−z2k∗)∗

]−1
+ o(1), x→ +∞,

−z(1− z)k ekx
[
T l(−zk∗)∗

]−1
+ o(1), x→ −∞.

(3.18)
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Proof. The proof is similar to the proof of Theorem 3.2.1. The spacial asymptotics listed in

(3.14)–(3.18) are directly obtained by using the definition of hup(k, x) given in (2.58) and

with the help of the spacial asymptotics of f(k, x) given in (2.51) and (3.1) and the spacial

asymptotics of g(k, x) given in (2.52) and (3.5). �

3.3 The relationships among the scattering coefficients

In this section we provide various relationships involving the scattering coefficients

for (1.1) and the adjoint scattering coefficients for (2.49). We obtain those relationships by

evaluating the 3-Wronskians of various solutions to (1.1) and by using the fact that those

Wronskians are independent of x.

We recall that we have partitioned the complex k-plane into six sectors, as done in

Figure 2.5. In the interior of each sector, we have three linearly independent solutions to

(1.1). Those six sets of three linearly independent solutions are listed in their respective

sectors, as shown in Figure 2.8. For example, for k ∈ Ωup
1 , we have the three linearly

independent solutions f(k, x), hdown(zk, x), g(z2k, x). Similarly, for k ∈ Ω4, we have the

three linearly independent solutions hup(k, x), f(zk, x), g(z2k, x). The 3-Wronskian of the

three linearly independent solutions to (1.1) in each of the six sectors of Figure 2.8 then

produces certain relationships involving the scattering coefficients for (1.1) and the adjoint

scattering coefficients for (2.49).

On the boundary L1, separating the sectors Ωup
1 and Ω4, we have five distinct solutions

to (1.1), which yield ten 3-Wronskians. In a similar way, by using the corresponding five

solutions to (1.1) on each of the other five boundaries −R−, L2, L3, R+, and L4, we obtain

various relationships involving the scattering coefficients for (1.1) and (2.49). Hence, by

evaluating the spacial asymptotics of the 3-Wronskians on each of the six open sectors

and the ten 3-Wronskians on each of the five boundaries, we find the relevant relationships

involving the scattering coefficients for (1.1) and the adjoint scattering coefficients for (2.49).
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ℒ2ℒ2

ℒ1ℒ1

T r (-k
* ,x)* 

=Tl (k)

T r (-zk
* ,x)* 

=Tl (z
2k)

T r (-z
2k* ,x)* 

=Tl (zk)

+--

ℒ2ℒ2

ℒ1ℒ1

T l (-k
* ,x)* 

=Tr (k)

T l (-zk
* ,x)* 

=Tr (z
2k)

T l (-z
2k* ,x)* 

=Tr (zk)

+--

Figure 3.1: The relationships between the adjoint transmission coefficients for (2.49) and
the transmission coefficients for (1.1) in the relevant k-domains in C.

In the next theorem, we present the relationships between the adjoint transmission

coefficients for (2.49) and the transmission coefficients for (1.1). These relationships are

obtained by evaluating the 3-Wronskian of the relevant solutions to (1.1) in each of the six

sectors in the complex k-plane, as shown in Figure 2.8.

Theorem 3.3.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k) and Tr(k) be the respective left and right transmission coefficients for

(1.1) appearing in (2.35) and (2.39). Similarly, let T l(k) and T r(k) be the respective left
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and right transmission coefficients for (2.49) appearing in (3.1) and (3.5). Then, we have

the following:

(a) The adjoint right transmission coefficient T r(k) is related to the left transmission

coefficient Tl(k) as

T r(−k∗)∗ = Tl(k), k ∈ Ω1. (3.19)

(b) The adjoint left transmission coefficient T l(k) is related to the right transmission

coefficient Tr(k) as

T l(−k∗)∗ = Tr(k), k ∈ Ω3. (3.20)

Proof. The proof is obtained by evaluating the 3-Wronskians of the solutions to (1.1) listed

in the six open sectors shown in Figure 2.8 and by using the identities obtained by exploiting

the fact that each of those 3-Wronskians has the same value as x→ +∞ and x→ −∞. �

Having established the relationships between the transmission and adjoint transmis-

sion coefficients in Theorem 3.3.1, in Figure 3.1 we show those relationships everywhere

in the complex k-plane. We recall that the k-domain of Tl(zk) is obtained by rotating

the k-domain of Tl(k) clockwise by 2π/3 in the complex k-plane. Similarly, the k-domain

of Tl(z2k) is obtained by rotating the k-domain of Tl(k) counterclockwise by 2π/3 in C.

The k-domains of Tr(zk) and Tr(z2k) are obtained from the k-domain of Tr(k) in a similar

manner.

In the next theorem, we present the relationships between the scattering coefficients

for (1.1) and the adjoint scattering coefficients for (2.49). This is done by evaluating the

Wronkskians of three relevant solutions to (1.1) on the boundaries L1, L2, L3, L4, where

the relevant solutions are shown in Figure 2.8.

Theorem 3.3.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the respective left and right

scattering coefficients for (1.1) appearing in (2.35) and (2.39). Similarly, let T l(k), L(k),

M(k), and T r(k), R(k), N(k) be the respective left and right adjoint scattering coefficients

for (2.49) appearing in (3.1) and (3.5). Then, we have the following:
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(a) The adjoint right primary reflection coefficient R(k) is related to the left primary

reflection coefficient L(k) as

R(−z2k∗)∗
[
T r(−z2k∗)∗

]−1
= z2L(k)Tl(k)−1, k ∈ L1, (3.21)

where we recall that the boundary L1 can be parametrized as k = zs for s ≥ 0 and z

is the special constant in (2.1).

(b) The adjoint right secondary reflection coefficient N(k) is related to the left secondary

reflection coefficient M(k) as

N(−zk∗)∗
[
T r(−zk∗)∗

]−1
= zM(k)Tl(k)−1, k ∈ L2, (3.22)

where we recall that the boundary L2 can be parametrized as k = z2s for s ≥ 0.

(c) The adjoint left primary reflection coefficient L(k) is related to the right primary

reflection coefficient R(k) as

L(−z2k∗)∗
[
T l(−z2k∗)∗

]−1
= z2R(k)Tr(k)−1, k ∈ L3, (3.23)

where we recall that the boundary L3 can be parametrized as k = −zs for s ≥ 0.

(d) The adjoint left secondary reflection coefficient M(k) is related to the right secondary

reflection coefficient N(k) as

M(−zk∗)∗
[
T l(−zk∗)∗

]−1
= z N(k)Tr(k)−1, k ∈ L4, (3.24)

where we recall that the boundary L4 can be parametrized as k = −z2s for s ≥ 0.

Proof. As seen from Figure 2.8, on each directed half line L1, L2, L3, L4 in the complex

k-plane, we have five distinct solutions to (1.1). Thus, on each of those four half lines we can

construct ten 3-Wronskians from those five solutions to (1.1). By exploiting the fact that

each of those 3-Wronskians yields the same value as x→ +∞ and x→ −∞, we obtain the

identities listed in (3.21)–(3.24). We remark that in the evaluations of those 3-Wronskians

as x → ±∞, we use the spacial asymptotics listed in (2.21), (2.29), and Theorems 2.5.1,

2.5.2, 3.2.1, and 3.2.2. �
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In Theorems 3.2.1 and 3.2.2, we have presented the respective spacial asymptotics of

the solutions hdown(k, x) and hup(k, x) to (1.1). Those asymptotics have been expressed in

terms of the adjoint scattering coefficients for (2.49). Using the results in Theorems 3.3.1

and 3.3.2, we can express the same asymptotics in terms of the scattering coefficients for

(1.1). This is done in the next corollary.

Corollary 3.3.2.1. Assume that Q(x) and P (x) belong to the Schwartz class S(R). Let

hdown(k, x) be the solution to (1.1) given in (2.57), and let hup(k, x) be the solution to (1.1)

given in (2.58). We have the following:

(a) For k ∈ L2, we have the spacial asymptotics of hdown(k, x) given by

hdown(k, x) =



z(1− z)k ekx Tl(z2k)−1

− z(1− z)k ez2kxM(k)Tl(k)−1 + o(1),

z(1− z)k ekx Tr(zk)−1 + o(1),

(3.25)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(b) For k ∈ L3, we have the spacial asymptotics of hdown(k, x) given by

hdown(k, x) =



z(1− z)k ekx Tl(z2k)−1 + o(1),

z(1− z)k ekx Tr(zk)−1

− z(1− z)k ezkxR(k)Tr(k)−1 + o(1),

(3.26)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(c) For k ∈ Ω2, the spacial asymptotics of hdown(k, x) are given by

hdown(k, x) =


z(1− z)k ekx Tl(z2k)−1 + o(1), x→ +∞,

z(1− z)k ekx Tr(zk)−1 + o(1), x→ −∞.

(3.27)
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(d) For k ∈ L1, the spacial asymptotics of hup(k, x) is given by

hup(k, x) =



−z(1− z)k ekx Tl(zk)−1

+ z(1− z)k ezkx L(k)Tl(k)−1 + o(1),

−z(1− z)k ekx Tr(z2k)−1 + o(1),

(3.28)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(e) For k ∈ L4, the spacial asymptotics of hup(k, x) is given by

hup(k, x) =



−z(1− z)k ekx Tl(zk)−1 + o(1),

−z(1− z)k ekx Tr(z2k)−1

− z(1− z)k ez2kxN(k)Tr(k)−1 + o(1),

(3.29)

where the top line on the right-hand side refers to the asymptotics when x→ +∞ and

the bottom line refers to the asymptotics when x→ −∞.

(f) For k ∈ Ω4, the spacial asymptotics of hup(k, x) are given by

hup(k, x) =


−z(1− z)k ekx Tl(zk)−1 + o(1), x→ +∞,

−z(1− z)k ekx Tr(z2k)−1 + o(1), x→ −∞.

(3.30)

As a direct consequence of Theorem 3.3.2, in the next corollary we express the four

adjoint reflection coefficients for (2.49) in terms of the scattering coefficients for (1.1).

Corollary 3.3.2.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the

Schwartz class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the respective left

and right scattering coefficients for (1.1) appearing in (2.35) and (2.39). Let L(k), M(k),

R(k), N(k) be the respective adjoint reflection coefficients for (2.49) appearing in (3.1) and

(3.5). Then, we have the following:

(a) The adjoint right primary reflection coefficient R(k) is expressed in terms of the left

scattering coefficients for (1.1) as

R(−z2k∗)∗ = z2L(k)Tl(k)−1

Tl(zk)−1 , k ∈ L1. (3.31)
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(b) The adjoint right secondary reflection coefficient N(k) is expressed in terms of the left

scattering coefficients for (1.1) as

N(−zk∗)∗ = zM(k)Tl(k)−1

Tl(z2k)−1 , k ∈ L2. (3.32)

(c) The adjoint left primary reflection coefficient L(k) is expressed in terms of the right

scattering coefficients for (1.1) as

L(−z2k∗)∗ = z2R(k)Tr(k)−1

Tr(zk)−1 , k ∈ L3. (3.33)

(d) The adjoint left secondary reflection coefficient M(k) is expressed in terms of the right

scattering coefficients for (1.1) as

M(−zk∗)∗ = z N(k)Tr(k)−1

Tr(z2k)−1 , k ∈ L4. (3.34)

In the next theorem, we relate the four reflection coefficients L(k), M(k), R(k), N(k)

to the two transmission coefficients Tl(k) and Tr(k) for (1.1).

Theorem 3.3.3. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the respective left and right

scattering coefficients for (1.1) appearing in (2.35) and (2.39). Then, we have the following:

(a) The left reflection coefficients L(k) and M(k) are related to the transmission coeffi-

cients Tl(k) and Tr(k) as

Tr(z2k)−1 = Tl(k)−1 Tl(zk)−1 [1− L(k)M(zk)], k ∈ L1. (3.35)

(b) The right reflection coefficients R(k) and N(k) are related to the transmission coeffi-

cients Tl(k) and Tr(k) as

Tl(z2k)−1 = Tr(k)−1 Tr(zk)−1 [1−R(k)N(zk)] , k ∈ L3. (3.36)

Proof. The relationships listed in (3.35) and (3.36) are obtained by evaluating the 3-

Wronskian of f(k, x), f(zk, x), g(z2k, x) on the directed half line L1 and the 3-Wronskian

of g(k, x), g(zk, x), f(z2k, x) on L3 and by using the fact that each of those 3-Wronskians

yields the same value as x→ +∞ and x→ +∞. �
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3.4 The large k-asymptotics for (1.1)

The spacial asymptotics for the four fundamental solutions f(k, x), g(k, x), hdown(k, x),

hup(k, x) to (1.1) have been established in the previous section. In this section we estab-

lish the large k-asymptotics of those fundamental solutions. We also present the large

k-asymptotics for the scattering coefficients for (1.1).

We recall that the left and right Jost solutions f(k, x) and g(k, x) are related to the

auxiliary functions u(k, x) and v(k, x) appearing in (2.20) and (2.28), respectively. It is

more convenient to obtain first the large k-asymptotics of u(k, x) and v(k, x) and then use

(2.20) and (2.28) to recover the large k-asymptotics of f(k, x) and g(k, x), respectively. This

is because the large k-asymptotics of u(k, x) and v(k, x) can readily be evaluated from the

respective integral equations (2.25) and (2.33).

In the next theorem, we present the large k-asymptotics of the four fundamental

solutions to (1.1).

Theorem 3.4.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let u(k, x) and v(k, x) be the auxiliary quantities related to the Jost solu-

tions f(k, x) and g(k, x) to (1.1) as in (2.20) and (2.28), respectively. Let hdown(k, x) and

hup(k, x) be the solutions to (1.1) appearing in (2.57) and (2.58), respectively. Then for

each fixed x ∈ R, we have the following large k-asymptotics:

(a) As k →∞ in Ω1, the quantity u(k, x) has the asymptotic behavior

u(k, x) = 1 + u1(x)
k

+ u2(x)
k2 +O

( 1
k3

)
, (3.37)

where we have defined

u1(x) := 1
3

∫ ∞
x

dy Q(y), (3.38)

u2(x) := −1
3

∫ ∞
x

dy
[
Q′(y)− P (y)

]
+ 1

18

[∫ ∞
x

dy Q(y)
]2
, (3.39)

and we recall that Ω1 is the closed sector described in (2.7) and shown in Figure 2.1.
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(b) Consequently, as k → ∞ in Ω1, the left Jost solution f(k, x) has the asymptotic

behavior

f(k, x) = ekx
[
1 + u1(x)

k
+ u2(x)

k2 +O

( 1
k3

)]
. (3.40)

(c) As k →∞ in Ω3, the quantity v(k, x) has the asymptotic behavior

v(k, x) = 1 + v1(x)
k

+ v2(x)
k2 +O

( 1
k3

)
, (3.41)

where we have defined

v1(x) := −1
3

∫ x

−∞
dy Q(y), (3.42)

v2(x) := 1
3

∫ x

−∞
dy
[
Q′(y)− P (y)

]
+ 1

18

[∫ x

−∞
dy Q(y)

]2
, (3.43)

and we recall that Ω3 is the closed sector described in (2.9) and shown in Figure 2.1.

(d) Consequently, as k → ∞ in Ω3, the right Jost solution g(k, x) has the asymptotic

behavior

g(k, x) = ekx
[
1 + v1(x)

k
+ v2(x)

k2 +O

( 1
k3

)]
. (3.44)

(e) As k →∞ in Ω2, the solution hdown(k, x) has the asymptotic behavior

hdown(k, x)
z(1− z)k = ekx

[
1 + wdown

1 (x)
k

+ wdown
2 (x)
k2 +O

( 1
k3

)]
, (3.45)

where we have defined

wdown
1 (x) := 1

3z2

∫ x

−∞
dy Q(y)− 1

3z

∫ ∞
x

dy Q(y), (3.46)

wdown
2 (x) :=1

3Q(x) + 1
3z

∫ x

−∞
dy P (y)− 1

3z2

∫ ∞
x

dy P (y)

+ 1
18z

(∫ x

−∞
dy Q(y)

)2
+ 1

18z2

(∫ ∞
x

dy Q(y)
)2

− 1
9

(∫ ∞
x

dy Q(y)
)(∫ x

−∞
dy Q(y)

)
,

(3.47)

and we recall that Ω2 is the closed sector shown in Figure 2.1.

(f) As k →∞ in Ω4, the solution hup(k, x) has the asymptotic behavior

hup(k, x)
−z(1− z)k = ekx

[
1 + wup

1 (x)
k

+ wup
2 (x)
k2 +O

( 1
k3

)]
, (3.48)
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where we have defined

wup
1 (x) := 1

3z

∫ x

−∞
dy Q(y)− 1

3z2

∫ ∞
x

dy Q(y), (3.49)

wup
2 (x) :=1

3Q(x) + 1
3z2

∫ x

−∞
dy P (y)− 1

3z

∫ ∞
x

dy P (y)

+ 1
18z2

(∫ x

−∞
dy Q(y)

)2
+ 1

18z

(∫ ∞
x

dy Q(y)
)2

− 1
9

(∫ ∞
x

dy Q(y)
)(∫ x

−∞
dy Q(y)

)
,

(3.50)

and we recall that Ω2 is the closed sector shown in Figure 2.1.

Proof. We obtain the large k-asymptotics given in (3.37) directly from the integral rep-

resentation of u(k, x) in (2.25). Hence, the proof of (a) is complete. We remark that (b)

directly follows from (a) by using the connection between f(k, x) and u(k, x) given in (2.22).

The proof of (c) is obtained by using the large k-asymptotics of v(k, x) with the help of its

integral representation in (2.33). The proof of (d) directly follows from (c). We obtain the

large k-asymptotics in (e) by using the definition of hdown(k, x) given in (2.57) expressed in

terms of the adjoint Jost solutions f(k, x) and g(k, x) and by using the large k-asymptotics

of those adjoint Jost solutions. The large k-asymptotics of the adjoint Jost solutions are

similar to the large k-asymptotics of the Jost solutions expressed in (b) and (d) and they

can be expressed in terms of the potentials Q(x) and P (x) after using (2.50). In a similar

manner, we obtain the large k-asymptotics in (f) by using the definition of hup(k, x) given

in (2.58) and using the large k-asymptotics of the adjoint Jost solutions. �

In the next theorem, we present the large k-asymptotics of the scattering coefficients

for (1.1).

Theorem 3.4.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the left and right scattering

coefficients for (1.1) appearing in (2.35) and (2.39), respectively. We have the following

large k-asymptotics:
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(a) As k → ∞ in Ω1, the reciprocal of the left transmission coefficient Tl(k) has the

asymptotic behavior

Tl(k)−1 = 1 + u1(−∞)
k

+ u2(−∞)
k2 +O

( 1
k3

)
, (3.51)

where we have defined

u1(−∞) := 1
3

∫ ∞
−∞

dy Q(y), (3.52)

u2(−∞) := −1
3

∫ ∞
−∞

dy
[
Q′(y)− P (y)

]
+ 1

18

(∫ ∞
−∞

dy Q(y)
)2
. (3.53)

We remark that u1(−∞) and u2(−∞) are obtained from u1(x) and u2(x) appearing

in (3.38) and (3.39), respectively, by letting x→ −∞ there.

(b) Consequently, as k →∞ in Ω1, the left transmission coefficient Tl(k) has the asymp-

totic behavior

Tl(k) = 1− u1(−∞)
k

+O

( 1
k2

)
, (3.54)

(c) As k → ∞ in Ω3, the reciprocal of the right transmission coefficient Tr(k) has the

asymptotic behavior

Tr(k)−1 = 1 + v1(+∞)
k

+ v2(+∞)
k2 +O

( 1
k3

)
, (3.55)

where we have defined

v1(+∞) := −1
3

∫ ∞
−∞

dy Q(y), (3.56)

v2(+∞) := 1
3

∫ ∞
−∞

dy
[
Q′(y)− P (y)

]
+ 1

18

(∫ ∞
−∞

dy Q(y)
)2
. (3.57)

We remark that v1(+∞) and v2(+∞) are obtained from v1(x) and v2(x) appearing in

(3.42) and (3.43), respectively, by letting x→ +∞ there.

(d) Consequently, as k →∞ in Ω3, the right transmission coefficient Tr(k) has the asymp-

totic behavior

Tr(k) = 1− v1(+∞)
k

+O

( 1
k2

)
, (3.58)
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(e) As k →∞ on L1, the left primary reflection coefficient L(k) has the asymptotics

L(k) = z2

3k

∫ ∞
−∞

dy e
√

3iz2ky Q(y) +O

( 1
k2

)
, (3.59)

where we recall that L1 is the directed half line in complex k-plane shown in Figure 2.1

and has the parametrization k = zs for s ≥ 0.

(f) As k →∞ on L2, the left secondary reflection coefficient M(k) has the asymptotics

M(k) = z

3k

∫ ∞
−∞

dy e−
√

3izky Q(y) +O

( 1
k2

)
, (3.60)

where we recall that L2 is the directed half line in the complex k-plane shown in

Figure 2.1 and has the parametrization k = z2s for s ≥ 0.

(g) As k →∞ on L3, the right primary reflection coefficient R(k) has the asymptotics

R(k) = − z
2

3k

∫ ∞
−∞

dy e
√

3iz2ky Q(y) +O

( 1
k2

)
, (3.61)

where we recall that L3 is the directed half line in the complex k-plane shown in

Figure 2.1 and has the parametrization k = −zs for s ≥ 0.

(h) As k →∞ on L4, the left secondary reflection coefficient N(k) has the asymptotics

N(k) = − z

3k

∫ ∞
−∞

dy e−
√

3izky Q(y) +O

( 1
k2

)
, (3.62)

where we recall that L4 is the directed half line in the complex k-plane shown in

Figure 2.1 and has the parametrization k = −z2s for s ≥ 0.

Proof. We obtain the large k-asymptotics in (a) by using the integral representation of

Tl(k)−1 given in (2.36). The result in (b) is a direct consequence of (a). The large k-

asymptotics in (c) is obtained by using the integral representation of Tr(k)−1 given in

(2.40). The result in (d) follows from (c). We obtain (3.59) in (e) by using (2.37) and

(3.54). We establish (3.60) in (f) with the help of (2.38) and (3.54). We obtain (3.61) in

(g) by using (2.41) and (3.58). Finally, we get (3.62) in (h) with the help of (2.42) and

(3.58). �
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3.5 The small k-asymptotics of the scattering coefficients for (1.1)

In the previous section, we have presented the large k-asymptotics of the scattering

coefficients for (1.1). In this section we determine the small k-asymptotics of those scattering

coefficients. In the next theorem we present the relevant small k-asymptotics related to the

scattering coefficients for (1.1).

Theorem 3.5.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the left and right scattering

coefficients for (1.1) appearing in (2.35) and (2.39), respectively. We have the following

small k-asymptotics:

(a) As k → 0 in Ω1, the reciprocal of the left transmission coefficient Tl(k) has the asymp-

totics

Tl(k)−1 = α−2
k2 + α−1

k
+O(1), (3.63)

where we have defined

α−2 := −1
3

∫ ∞
−∞

dy [Q′(y)− P (y)]u(0, y), (3.64)

α−1 := 1
3

∫ ∞
−∞

dy

(
Q(y)u(0, y)− [Q′(y)− P (y)] u̇(0, y)

)
, (3.65)

with u̇(0, y) denoting the k-derivative of u(k, y) evaluated at k = 0.

(b) Similarly, as k → 0 in Ω3, the reciprocal of the right transmission coefficient Tr(k)

has the asymptotics

Tr(k)−1 = β−2
k2 + β−1

k
+O(1), k → 0, (3.66)

where we have defined

β−2 := 1
3

∫ ∞
−∞

dy [Q′(y)− P (y)] v(0, y), (3.67)

β−1 := −1
3

∫ ∞
−∞

dy

(
Q(y) v(0, y)− [Q′(y)− P (y)] v̇(0, y)

)
, (3.68)

with v̇(0, y) denoting the k-derivative of v(k, y) evaluated at k = 0.
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(c) As k → 0 on L1, we have

L(k)Tl(k)−1 = z α−2
k2 + γ−1

k
+O(1), (3.69)

where we have defined

γ−1 :=1
3

∫ ∞
−∞

dy

(
z2Q(y)−

√
3iy[Q′(y)− P (y)]

)
u(0, y)

− z

3

∫ ∞
−∞

dy [Q′(y)− P (y)] u̇(0, y).
(3.70)

(d) As k → 0 on L2, we have

M(k)Tl(k)−1 = z2 α−2
k2 + δ−1

k
+O(1), (3.71)

where we have defined

δ−1 :=1
3

∫ ∞
−∞

dy

(
z Q(y) +

√
3iy[Q′(y)− P (y)]

)
u(0, y)

− z2

3

∫ ∞
−∞

dy [Q′(y)− P (y)] u̇(0, y).
(3.72)

(e) As k → 0 on L3, we have

R(k)Tr(k)−1 = z β−2
k2 + ω−1

k
+O(1), (3.73)

where we have defined

ω−1 :=− 1
3

∫ ∞
−∞

dy

(
z2Q(y)−

√
3iy[Q′(y)− P (y)]

)
v(0, y)

+ z

3

∫ ∞
−∞

dy [Q′(y)− P (y)] v̇(0, y).
(3.74)

(f) As k → 0 on L4, we have

N(k)Tr(k)−1 = z2 β−2
k2 + η−1

k
+O(1), (3.75)

where we have defined

η−1 :=− 1
3

∫ ∞
−∞

dy

(
z Q(y) +

√
3iy[Q′(y)− P (y)]

)
v(0, y)

+ z2

3

∫ ∞
−∞

dy [Q′(y)− P (y)] v̇(0, y).
(3.76)
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Proof. The proof of (a) follows from the representation of Tl(k)−1 given in (2.36) and by

using the small k-expansion of u(k, x) given by

u(k, x) = u(0, x) + k u̇(0, x) +O(k2), k → 0 in Ω1, (3.77)

where we recall that u̇(0, x) denotes the k-derivative of u(k, x) evaluated at k = 0. The

proof of (b) is obtained in a similar manner by using the representation of Tr(k)−1 given in

(2.40) and by using the small k-expansion of v(k, x) given by

v(k, x) = v(0, x) + k v̇(0, x) +O(k2), k → 0 in Ω3. (3.78)

The results in (c), (d), (e), (f) are obtained by using the representation of L(k)Tl(k)−1 in

(2.37), M(k)Tl(k)−1 in (2.38), R(k)Tr(k)−1 in (2.41), N(k)Tr(k)−1 in (2.42), respectively,

and with the help of the expansions in (3.77) and (3.78). �

By using the small k-asymptotics of the relevant quantities given in Theorem 3.5.1,

in the following corollary we present the small k-asymptotics for the scattering coefficients

for (1.1).

Corollary 3.5.1.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the

Schwartz class S(R). Let Tl(k), L(k), M(k), and Tr(k), R(k), N(k) be the left and right

scattering coefficients for (1.1) appearing in (2.35) and (2.39), respectively. We have the

following small k-asymptotics:

(a) If the constant α−2 defined in (3.64) is nonzero, then the left transmission coefficient

Tl(k) is continuous at k = 0 and it has the small k-asymptotics given by

Tl(k) = k2

α−2
+O(k3), k → 0 in Ω1. (3.79)

(b) If the constant α−2 defined in (3.64) is zero and the constant α−1 defined in (3.65) is

nonzero, then the left transmission coefficient Tl(k) is continuous at k = 0 and it has

the small k-asymptotics given by

Tl(k) = k

α−1
+O(k2), k → 0 in Ω1. (3.80)
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(c) If the constant α−2 defined in (3.64) and the constant a−1 defined in (3.65) are both

zero, then the left transmission coefficient Tl(k) is continuous at k = 0 and it has the

small k-asymptotics given by

Tl(k) = O(1), k → 0 in Ω1. (3.81)

(d) If the constant β−2 defined in (3.67) is nonzero, then the right transmission coefficient

Tr(k) is continuous at k = 0 and it has the small k-asymptotics given by

Tr(k) = k2

β−2
+O(k3), k → 0 in Ω3. (3.82)

(e) If the constant β−2 defined in (3.67) is zero and the constant β−1 defined in (3.68) is

nonzero, then the right transmission coefficient Tr(k) is continuous at k = 0 and it

has the small k-asymptotics given by

Tr(k) = k

β−1
+O(k2), k → 0 in Ω3. (3.83)

(f) If the constant β−2 defined in (3.67) and the constant β−1 defined in (3.68) are both

zero, then the right transmission coefficient Tr(k) is continuous at k = 0 and it has

the small k-asymptotics given by

Tr(k) = O(1), k → 0 in Ω3. (3.84)

(g) If the constant α−2 defined in (3.64) is nonzero, then the left primary reflection coef-

ficient L(k) is continuous at k = 0 and it has the small k-asymptotics given by

L(k) = z +O(k), k → 0 in L1. (3.85)

(h) If the constant α−2 defined in (3.64) is zero and the constant α−1 defined in (3.65) is

nonzero, then the left primary reflection coefficient L(k) is continuous at k = 0 and

it has the small k-asymptotics given by

L(k) = γ−1
α−1

+O(k), k → 0 in L1, (3.86)

where γ−1 is the constant defined in (3.70).
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(i) If the constant α−2 defined in (3.64) and the constant α−1 defined in (3.65) are both

zero, then the left primary reflection coefficient L(k) is continuous at k = 0 and it has

the small k-asymptotics given by

L(k) = O(1), k → 0 in L1. (3.87)

(j) If the constant α−2 defined in (3.64) is nonzero, then the left secondary reflection

coefficient M(k) is continuous at k = 0 and it has the small k-asymptotics given by

M(k) = z2 +O(k), k → 0 in L2. (3.88)

(k) If the constant α−2 defined in (3.64) is zero and the constant α−1 defined in (3.65)

is nonzero, then the left secondary reflection coefficient M(k) is continuous at k = 0

and it has the small k-asymptotics given by

M(k) = δ−1
α−1

+O(k), k → 0 in L2, (3.89)

where δ−1 is the constant defined in (3.72).

(l) If the constant α−2 defined in (3.64) and the constant α−1 defined in (3.65) are both

zero, then the left secondary reflection coefficient M(k) is continuous at k = 0 and it

has the small k-asymptotics given by

M(k) = O(1), k → 0 in L2. (3.90)

(m) If the constant β−2 defined in (3.67) is nonzero, then the right primary reflection

coefficient R(k) is continuous at k = 0 and it has the small k-asymptotics given by

R(k) = z +O(k), k → 0 in L3. (3.91)

(n) If the constant β−2 defined in (3.67) is zero and the constant β−1 defined in (3.68) is

nonzero, then the right primary reflection coefficient R(k) is continuous at k = 0 and

it has the small k-asymptotics given by

R(k) = ω−1
β−1

+O(k), k → 0 in L3, (3.92)

where ω−1 is the constant defined in (3.74).
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(o) If the constant β−2 defined in (3.67) and the constant β−1 defined in (3.68) are both

zero, then the right primary reflection coefficient R(k) is continuous at k = 0 and it

has the small k-asymptotics given by

R(k) = O(1), k → 0 in L3. (3.93)

(p) If the constant β−2 defined in (3.67) is nonzero, then the right secondary reflection

coefficient N(k) is continuous at k = 0 and it has the small k-asymptotics given by

N(k) = z2 +O(k), k → 0 in L4. (3.94)

(q) If the constant β−2 defined in (3.67) is zero and the constant β−1 defined in (3.68) is

nonzero, then the right secondary reflection coefficient N(k) is continuous at k = 0

and it has the small k-asymptotics given by

N(k) = η−1
β−1

+O(k), k → 0 in L4, (3.95)

where η−1 is the constant defined in (3.76).

(r) If the constant β−2 defined in (3.67) and the constant β−1 defined in (3.68) are both

zero, then the right secondary reflection coefficient N(k) is continuous at k = 0 and

it has the small k-asymptotics given by

N(k) = O(1), k → 0 in L4. (3.96)

3.6 The bound states for (1.1)

In the description of the scattering theory for (1.1), we have observed that there are

six scattering coefficients Tl(k), Tr(k), L(k), M(k), R(k), and N(k) with their k-domains

on the directed half lines L1, L2, L3, L4 in the complex k-plane as shown in Figure 2.1.

In particular, the left primary reflection coefficient L(k) is defined when k ∈ L1, the right

primary reflection coefficient R(k) is defined when k ∈ L3, the left secondary reflection

coefficient M(k) is defined when k ∈ L2, and the right secondary reflection coefficient N(k)

is defined when k ∈ L4. The left transmission coefficient Tl(k) is originally defined on
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k ∈ L1 ∪ L2 and meromorphically extended to k ∈ Ω1. Similarly, the right transmission

coefficient Tr(k) is originally defined on k ∈ L3 ∪ L4 and meromorphically extended to

k ∈ Ω3. Thus, we can view the scattering for (1.1) taking place on the four half lines L1,

L2, L3, L4 in the complex k-plane.

As we observe from (2.19), a solution to (1.1) vanishing as x → +∞ must actually

vanish exponentially and that a solution vanishing as x→ −∞ must vanish exponentially.

A solution to (1.1) that vanishes when x→ +∞ and also vanishes when x→ −∞ does not

correspond to a scattering solution to (1.1) but corresponds to a bound-state solution to

(1.1). In general, such a solution does not occur at a k-value on the four half lines L1, L2,

L3, L4 if the potentials Q(x) and P (x) satisfy some appropriate restrictions and decay to

zero as x → ±∞ sufficiently fast. Thus, we expect a bound-state k-value to occur at an

interior point in one of the four open sectors Ω1, Ω2, Ω3, Ω4 shown in Figure 2.1.

In general, a bound state for (1.1) is defined as a nontrivial solution which is square

integrable in x ∈ R. Thus, if there is a bound state at the k-value k1, then there exists a

solution Ψ(k1, x) to (1.1) at k = k1 so that∫ ∞
−∞

dx |Ψ(k1, x)|2 < +∞. (3.97)

We note that if Ψ(k1, x) is a bound-state wavefunction, then any constant multiple of it is

also a bound-state wavefunction. This is because the ODE (1.1) is homogeneous. If there

are several bound states for (1.1) occurring at the k-values k1, k2, . . . , kN, then there exists

square-integrable solutions Ψ(kj , x) to (1.1) occurring at k = kj for 1 ≤ j ≤ N. We refer to

N as the number of bound states for (1.1).

With each bound state at k = kj we associate a complex constant Dj , which we refer

to as the bound-state dependency constant. The dependency constant relates to each other

two fundamentals solutions to (1.1) at k = kj . For example, when kj belongs to the sector

Ωdown
1 in the complex k-plane shown in Figure 2.5, the dependency constant Dj occurs as

the constant relating the Jost solutions f(kj , x) and g(zkj , x) as

f(kj , x) = Dj g(zkj , x), x ∈ R. (3.98)
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We remark that (3.98) can be derived as follows. As seen from Figure 2.8, at the k-value

kj in Ωdown
1 there are the three fundamental solutions f(kj , x), g(zkj , x), and hup(z2kj , x).

We can evaluate their 3-Wronskian by using (2.21), (2.29), (2.35), (2.39), and (3.30). We

obtain

[f(kj , x) ; g(zkj , x) ; hup(z2kj , x)] = −9z2 k4
j Tl(kj)−1 Tr(zkj)−1. (3.99)

At the bound state k = kj we have Tl(kj)−1 = 0, and hence the right-hand side of (3.99) is

zero. Consequently, the solutions f(kj , x), g(zkj , x), and hup(z2kj , x) are linearly dependent.

Thus, there are two constants Dj and Ej so that

f(kj , x) = Dj g(zkj , x) + Ej h
up(z2kj , x), x ∈ R. (3.100)

If we want f(kj , x) to be a bound-state solution to (1.1), we know that f(kj , x) must decay

exponentially as x→ +∞ and also x→ −∞. Since kj is located in Ωdown
1 , from Figure 2.5

we see that the real part of kj is negative. Hence, from (2.21) we observe that f(kj , x)

decays exponentially as x → +∞. Thus, we would like the right-hand side of (3.100) to

decay exponentially as x→ −∞ so that f(kj , x) decays exponentially also when x→ −∞.

It turns out that g(zkj , x) decays exponentially as x → −∞, and this is seen from (2.29)

and the fact that the real part of zkj is positive. On the other hand, hup(z2kj , x) cannot

decay exponentially as x → −∞ and hence we must choose Ej in (3.100) as zero. Thus,

(3.100) yields (3.98).

We recall that in the solution to the inverse scattering problem for (1.1), the scattering

data set that we use consists of the scattering coefficients for (1.1) and the bound-state

information for (1.1). If there are N bound states for (1.1) at k = kj with 1 ≤ j ≤ N,

then the appropriate bound-state information to use is given by the set {kj , Dj}Nj=1, where

Dj is the dependency constant at the bound state at k = kj . For the use of bound-state

dependency constants in other linear differential equations in inverse scattering theory, we

refer the reader to [6, 7] and the references therein.

72



CHAPTER 4

THE INVERSE SCATTERING PROBLEM FOR (1.1)

We recall that the goal in the solution to the inverse scattering problem for (1.1)

is the recovery of the potentials Q(x) and P (x) from the scattering data set consisting of

the scattering coefficients and the bound-state information. The scattering coefficients for

(1.1) consist of the left scattering coefficients Tl(k), L(k), M(k) appearing in (2.35) and

the right scattering coefficients Tr(k), R(k), N(k) appearing in (2.39). As we have seen in

Section 3.6, the bound-state information consists of the set {kj , Dj}Nj=1, where N denotes

the number of bound states, kj denotes the k-value at which (1.1) has a square-integrable

solution, and Dj is the dependency constant at the bound state at k = kj .

In this thesis we consider the analysis of the inverse scattering problem when the

secondary reflection coefficients are zero, i.e. when we have

M(k) ≡ 0, k ∈ L2, (4.1)

N(k) ≡ 0, k ∈ L4. (4.2)

The assumptions in (4.1) and (4.2) enables us to formulate a Riemann–Hilbert problem on

the complex k-plane by formulating that problem on the full line L in C, where we have

defined

L := L1 ∪ (−L3). (4.3)

We recall that −L3 is the directed line parametrized by k = zs where s ∈ (−∞, 0]. The

directed full line L separates the complex k-plane into the two open half planes P+ and

P−, as shown in Figure 4.1. The half plane P+ lies to the left of the full line L and the

half plane P− lies to the right of L. We use P+ and P− to denote the closure of P+ and

the closure of P−, respectively, where we have defined

P+ := P+ ∪ L, (4.4)
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P− := P− ∪ L. (4.5)

We refer to P+ as the plus region and P− as the minus region. We refer to a meromorphic

function of k in P+ as a plus function, and we refer to a meromorphic function of k in P−

as a minus function.

-ℒ3

ℒ1

plus region

minus region

minus function

plus function

P-

P+

Figure 4.1: The full line L separating the complex k-plane into the plus region P+ and the
minus region P−.
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For each fixed x ∈ R, we define the particular function Φ+(k, x) as

Φ+(k, x) :=


Tl(k) f(k, x), k ∈ Ω1,

Tr(zk)hdown(k, x)
z(1− z)k , k ∈ Ω2,

(4.6)

where we recall that f(k, x) is the left Jost solution to (1.1) appearing (2.21), hdown(k, x) is

the solution to (1.1) appearing in (2.57), Tl(k) is the left transmission coefficient for (1.1)

appearing in (2.35), Tr(k) is the right transmission coefficient for (1.1) appearing in (2.39), z

is the special constant defined in (2.1), and Ω1 and Ω3 are the closed sectors in the complex

k-plane shown in Figure 2.5. In a similar manner, for each fixed x ∈ R, we define the

particular function Φ−(k, x) as

Φ−(k, x) :=


Tr(z2k)hup(k, x)
−z(1− z)k , k ∈ Ω4,

g(k, x), k ∈ Ω3,

(4.7)

where we recall that g(k, x) is the right Jost solution to (1.1) appearing in (2.39), hup(k, x)

is the solution to (1.1) appearing in (2.58), and Ω3 and Ω4 are the closed sectors in the

complex k-plane shown in Figure 2.5.

In the next theorem, we show that the restriction in (4.1) yields that the two pieces

of Φ+(k, x) defined in Ω1 and Ω2, respectively, agree on k ∈ L2, and hence the function

Φ+(k, x) defined in (4.3) becomes a plus function in k ∈ P+.

Theorem 4.0.1. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tl(k) and Tr(k) be the transmission coefficients for (1.1) appearing in (2.35)

and (2.39), respectively. Let f(k, x) and hdown(k, x) be the solutions to (1.1) appearing in

(2.21) and (2.57), respectively. For each fixed x ∈ R, we have

Tl(k) f(k, x) = Tr(zk)hdown(k, x)
z(1− z)k , k ∈ L2, (4.8)

if and only if the left secondary reflection coefficient M(k) is zero, as indicated in (4.1).

Consequently, when (4.1) holds the quantity Φ+(k, x) defined in (4.3) is a plus function in

k ∈ P+.
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Proof. From Figure 2.8, we see that f(k, x), hdown(k, x) and hup(z2k, x) are solutions to

(1.1) when k ∈ L2. The 3-Wronskian of those three solutions can be evaluated when k ∈ L2

by using the spacial asymptotics given in (2.21), (2.35), (3.25), and (3.28) it turns out that

that 3-Wronskian is zero. Hence, we can write f(k, x) as a linear combination of hdown(k, x)

and hup(z2k, x) as

f(k, x) = α(k)hdown(k, x) + β(k)hup(z2k, x), k ∈ L2, x ∈ R. (4.9)

By letting x → ±∞ in (4.9) and using (2.21), (2.35), (3.25), and (3.28), we determine

coefficients α(k) and β(k) as

α(k) = Tl(k)−1

z(1− z)k Tr(zk)−1 , β(k) = −M(k)Tl(k)−1

(1− z)k Tr(zk)−1 . (4.10)

We see that (4.8) and (4.9) are equivalent if and only if M(k) ≡ 0 when k ∈ L2. �

In a similar manner, in the next theorem we show that the restriction in (4.2) yields

that the two pieces of Φ−(k, x) defined in Ω3 and Ω4, respectively, agree on k ∈ L4, and

hence the function Φ−(k, x) defined in (4.7) becomes a minus function in k ∈ P−.

Theorem 4.0.2. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Let Tr(k) be the transmission coefficient for (1.1) appearing in (2.39), and let

g(k, x) and hup(k, x) be the solutions to (1.1) appearing in (2.29) and (2.58), respectively.

For each fixed x ∈ R, we have

g(k, x) = Tr(z2k)hup(k, x)
−z(1− z)k , k ∈ L4, x ∈ R. (4.11)

if and only if the right secondary reflection coefficient N(k) is zero, as indicated in (4.2).

Consequently, when (4.2) holds the quantity Φ−(k, x) defined in (4.7) is a minus function

in k ∈ P−.

Proof. The proof is similar to the proof of Theorem 4.0.1. From Figure 2.8, we observe

that g(k, x), hup(k, x), and hdown(z2k, x) are solutions to (1.1) when k ∈ L4. Using the

spacial asymptotics in (2.30), (2.39), (3.26), and (3.29), we evaluate the 3-Wronskian of
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those solutions and find that that Wronskian is zero when k ∈ L4. Thus, we can express

g(k, x) as a linear combination of hup(k, x) and hdown(z2k, x) as

g(k, x) = γ(k)hup(k, x) + ε(k)hdown(z2k, x), k ∈ L4, x ∈ R. (4.12)

By letting x → ±∞ in (4.12) and using (2.29), (2.39), (3.26), and (3.29), we obtain the

coefficients γ(k) and ε(k) as

γ(k) = −Tr(z2k)−1

z(1− z)k [1−R(z2k)N(k)] , ε(k) = N(k)Tr(k)−1

(1− z)k Tl(zk)−1 , (4.13)

where we have also used (3.36) to obtain γ(k). We see that (4.11) and (4.12) are equivalent

if and only if N(k) ≡ 0 when k ∈ L4. �

In the next theorem, we present some relevant properties of Φ+(k, x) and Φ−(k, x)

defined in (4.3) and (4.4), respectively.

Theorem 4.0.3. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Further, assume that the secondary reflection coefficients M(k) and N(k) for

(1.1) are both zero, i.e. that (4.1) and (4.2) hold. We then have the following:

(a) For each fixed x ∈ R, the quantity Φ+(k, x) is continuous on k ∈ L.

(b) For each fixed x ∈ R, the quantity Φ−(k, x) is continuous on k ∈ L.

(c) The function Φ+(k, x) is a solution to (1.1) and meromorphic in k ∈ P+. Similarly,

the function Φ−(k, x) is a solution to (1.1) and meromorphic in k ∈ P−.

(d) For each fixed x ∈ R, the asymptotics of Φ+(k, x) as k →∞ in P+ is given by

Φ+(k, x) = ekx
[
1 +O

(1
k

)]
. (4.14)

(e) For each fixed x ∈ R, the asymptotics of Φ−(k, x) as k →∞ in P− is given by

Φ−(k, x) = ekx
[
1 +O

(1
k

)]
. (4.15)

(f) Consequently, for each fixed x ∈ R, each of the quantities e−kx [Φ+(k, x) − 1] and

e−kx [Φ−(k, x)− 1] is a square-integrable function of k when k ∈ L.
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Proof. The proof of (a) is given as follows. From (4.6) we see that Φ+(k, x) is continu-

ous in k for k ∈ L provided f(k, x) and Tl(k) are continuous in k for k ∈ L1 and that

hdown(k, x) and Tr(zk)/k are continuous in k for k ∈ L3. The continuity of f(k, x) follows

from Theorem 2.10.1(a), the continuity of hdown(k, x) follows from Theorem 2.10.1(c), and

the continuity properties of Tl(k) and Tr(zk)/k follow from Theorem 2.10.2 and Corol-

lary 3.5.1.1. Hence, the proof of (a) is complete. For the proof of (b) we proceed as follows.

From (4.7) we see that Φ−(k, x) is continuous in k for k ∈ L provided g(k, x) is contin-

uous in k for k ∈ L3 and that hup(k, x) and Tr(z2k)/k are continuous in k for k ∈ L4.

The continuity of g(k, x) follows from Theorem 2.10.1(b), the continuity of hup(k, x) follows

from Theorem 2.10.1(d), and the continuity of Tr(z2k)/k follows from Theorem 2.10.2 and

Corollary 3.5.1.1. Thus, the proof of (b) is complete. The proof of (c) is obtained as follows.

Because f(k, x) and hdown(k, x) are solutions to (1.1), from (4.6) we see that Φ+(k, x) is

also a solution to (1.1). The meromorphic property of Φ+(k, x) in k ∈ P+ follows from

Theorem 4.0.1. Similarly, since g(k, x) and hup(k, x) are solutions to (1.1), from (4.7) it

follows that Φ−(k, x) is also a solution to (1.1). From Theorem 4.0.2 it follows that Φ−(k, x)

is meromorphic in k ∈ P−. Hence, the proof of (c) is complete. For the proof of (d), we

proceed as follows. We obtain the large k-asymptotics of Φ+(k, x) given in (4.24) by us-

ing the large k-asymptotics of f(k, x), hdown(k, x), Tl(k), and Tr(k) given in (3.40), (3.45),

(3.54), and (3.58), respectively. This completes the proof of (d). In order to establish the

large k-asymptotics of Φ−(k, x) given in (4.15), we use the large k-asymptotics of g(k, x),

hup(k, x), and Tr(k) given in (3.44), (3.48), and (3.58), respectively. This completes the

proof of (e). The result of (f) directly follows from (d) and (e). �

In Theorem 4.0.3, we have established that the quantity Φ+(k, x) is a solution to

(1.1) and is a plus function in k ∈ P+ and that the quantity Φ−(k, x) is a solution to (1.1)

and is a minus function in k ∈ P−. We also know that Φ+(k, x) and Φ−(k, x) have their

common k-domain given by the full line L in C. However, in general those two functions
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do not agree when k ∈ L. We refer to the difference Φ+(k, x) − Φ−(k, x) as the jump and

denote it by J(k, x), i.e. we let

J(k, x) := Φ+(k, x)− Φ−(k, x), k ∈ L, x ∈ R. (4.16)

In the next theorem, we express J(k, x) defined in (4.16) in terms of the primary

reflection coefficients L(k) and R(k) for (1.1), under the assumption that the secondary

reflection coefficients M(k) and N(k) are zero.

Theorem 4.0.4. Assume that the potentials Q(x) and P (x) in (1.1) belong to the Schwartz

class S(R). Further, assume that the secondary reflections M(k) and N(k) for (1.1) are

both zero, i.e. that (4.1) and (4.2) hold. Then, the jump J(k, x) defined in (4.16) is given

by

J(k, x) =


L(k)Tl(zk) f(zk, x), k ∈ L1,

−R(k) Tr(zk)
Tr(k) g(zk, x), k ∈ −L3,

(4.17)

where we recall that Tl(k) and L(k) are the left scattering coefficients for (1.1) appearing in

(2.35), Tr(k) and R(k) are the right scattering coefficients for (1.1) appearing in (2.39), and

f(k, x) and g(k, x) are the Jost solutions to (1.1) appearing in (2.21) and (2.29), respectively.

Proof. The jump value stated in the first line on the right-hand side of (4.17) is obtained as

follows. From Figure 2.8 we see that f(k, x), hup(k, x), f(zk, x) are solutions to (1.1) when

k ∈ L1. We evaluate the 3-Wronskian of those three solutions with the help of the spacial

asymptotics in (2.21), (2.35), and (3.28). It turns out that that 3-Wronskian is zero when

k ∈ L1. Thus, we can express f(k, x) as a linear combination of hup(k, x) and f(zk, x) as

f(k, x) = ω(k)hup(k, x) + η(k) f(zk, x), k ∈ L1, x ∈ R. (4.18)

By letting x→ ±∞ in (4.18), with the help of the spacial asymptotics in (2.21), (2.35), and

(3.28) we obtain the coefficients ω(k) and η(k) as

ω(k) = −Tl(k)−1[1− L(k)M(zk)]
z(1− z)k Tr(z2k)−1 , η(k) = L(k)Tl(k)−1

Tl(zk)−1 , (4.19)
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where we have also used (3.35) to obtain ω(k). Let us write (4.18) in the equivalent form

Tl(k) f(k, x) = Tl(k)ω(k)hup(k, x) + Tl(k) η(k) f(zk, x), k ∈ L1, x ∈ R. (4.20)

When M(k) ≡ 0 for k ∈ L2, the equality in (4.20) yields the jump J(k, x) for k ∈ L1 given

in (4.17).

Similarly, we obtain the jump value stated in the second line on the right-hand side of

(4.17) as follows. From Figure 2.8 we see that g(k, x), hdown(k, x), and g(zk, x) are solutions

to (1.1) when k ∈ L3. With the help of the spacial asymptotics in (2.29), (2.39), (3.26), we

see that the 3-Wronskian of g(k, x), hdown(k, x), and g(zk, x) is zero when k ∈ L3. Thus, we

can express g(k, x) as a linear combination of hdown(k, x) and g(zk, x) as

g(k, x) = ξ(k)hdown(k, x) + ζ(k) g(zk, x), k ∈ L3, x ∈ R. (4.21)

By letting x → ±∞ in (4.21), with the help of (2.29), (2.39), (3.26), we determine the

coefficients ξ(k) and ζ(k) as

ξ(k) = Tr(zk)
z(1− z)k , ζ(k) = R(k)Tr(zk)

Tr(k) , (4.22)

where we have also used (3.36) to obtain ξ(k) and assumed that N(k) ≡ 0 for k ∈ L4. By

rewriting (4.21) as

ξ(k)hdown(k, x) = g(k, x)− ζ(k) g(zk, x), k ∈ L3, x ∈ R, (4.23)

we see that the equality in (4.23) yields the jump J(k, x) for k ∈ L3 given in (4.17). �

4.1 The Riemann–Hilbert problem for (1.1)

As a consequence of Theorems 4.0.3 and 4.0.4, we obtain the Riemann–Hilbert prob-

lem for (1.1) given by

Φ+(k, x) = Φ−(k, x) + J(k, x), k ∈ L, (4.24)

where L is the full line in the complex k-plane separating the plus region P+ and the minus

region P−, the quantity Φ+(k, x) is the plus function defined in (4.6), the quantity Φ−(k, x)
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is the minus function given in (4.7), and J(k, x) is the jump function given in (4.17). We

recall that (4.24) is valid when the secondary reflection coefficients M(k) and N(k) for (1.1)

are both zero. We also recall that each of Φ+(k, x) and Φ−(k, x) is a solution to (1.1), and

their common k-domain is the full line L.

The solution to the Riemann-Hilbert problem (4.24) yields the solution to the inverse

scattering problem for (1.1) as follows. For simplicity, we describe the solution to the

Riemann–Hilbert problem (4.24) when there are no bound states for (1.1). In that case,

given the four scattering coefficients Tl(k), L(k), Tr(k), and R(k) for (1.1), we solve the

Riemann–Hilbert problem (4.24) by determining Φ+(k, x) and Φ−(k, x) in P+ and P−,

respectively, for each fixed x ∈ R. Once we obtain Φ+(k, x) and Φ−(k, x), from (4.6) we see

that we have recovered the left Jost solution f(k, x) in Ω1 and from (4.7) we see that we have

recovered the right Jost solution g(k, x) in Ω3. Then, as seen from (2.22) and (2.30), we have

also recovered u(k, x) and v(k, x) appearing in (3.37) and (3.41), respectively. Finally, we

can recover the two potentials Q(x) and P (x) in (1.1) from either of the quantities u(k, x)

and v(k, x). For example, the recovery of Q(x) and P (x) from u(k, x) is accomplished as

follows. Having u(k, x) at hand, we see from (3.37) that we also have u1(x) and u2(x)

defined in (3.38) and (3.39), respectively. From (3.38), we get the potential Q(x) as

Q(x) = −3u′1(x), x ∈ R, (4.25)

which is obtained by differentating both sides of (3.38). By taking the x-derivative of both

sides of (3.39), we obtain

u′2(x) = 1
3[Q′(x)− P (x)]− 1

9 Q(x)
∫ ∞
x

dy Q(y), x ∈ R. (4.26)

Using (4.25) in (4.26), we recover the potential P (x) as

P (x) = 3
[
u1(x)u′1(x)− u′′1(x)− u′2(x)

]
, x ∈ R. (4.27)

The recovery of the potentials Q(x) and P (x) from the quantity v(k, x) is accomplished in

a similar manner. Having v(k, x) at hand, we see from (3.41) that we also have v1(x) and
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v2(x) defined in (3.42) and (3.43), respectively. By taking the x-derivative of both sides of

(3.42), we obtain the potential Q(x) as

Q(x) = −3 v′1(x), x ∈ R. (4.28)

By taking the x-derivative of both sides of (3.43), we obtain

v′2(x) = 1
3[Q′(x)− P (x)] + 1

9 Q(x)
∫ x

−∞
dy Q(y), x ∈ R. (4.29)

Using (4.28) in (4.29), we recover the potential P (x) as

P (x) = 3
[
v1(x) v′1(x)− v′′1(x)− v′2(x)

]
, x ∈ R. (4.30)

We conclude the discussion of the inverse scattering problem for (1.1) with the fol-

lowing remark. As seen from Theorem 4.0.3(f), for each fixed x ∈ R, the modified plus

function e−kx[Φ+(k, x) − 1] and the modified minus function e−kx[Φ−(k, x) − 1] are each

square integrable in k ∈ L in the complex k-plane. Hence, we can take Fourier transfor-

mations of those modified functions for k ∈ L. Let us write the Riemann–Hilbert problem

(4.24) as

e−kx[Φ+(k, x)− 1] = e−kx[Φ−(k, x)− 1] + e−kx J(k, x), k ∈ L. (4.31)

From (4.31) we observe that the quantity e−kxJ(k, x) is also square integrable when k ∈ L.

By using the Fourier transformation on each side of (4.31) for k ∈ L, we are able to transform

the modified Riemann–Hilbert problem in (4.31) into a linear integral equation, which we

refer to as the Marchenko integral equation. In particular, we define the quantity K(x, y),

which is the Fourier transform for e−kx[Φ+(k, x)− 1] for k ∈ L, as

K(x, y) := 1
2π

∫ ∞
−∞

ds eisy e−zsx[Φ+(zs, x)− 1], x ∈ R, (4.32)

where we recall that z is the special constant appearing in (2.1) and that the directed full

line L is parametrized as k = zs with s ∈ (−∞,+∞). For each fixed x ∈ R, the quantity

K(x, y) satisfies an integral equation in y ∈ R, which is our Marchenko integral equation.
82



It is possible to rewrite that Marchenko integral equation in an equivalent form as a system

of two integral equations for y > 0 and for y < 0, respectively. We refer to that system of

two integral equations as the Marchenko system of integral equations. The potentials Q(x)

and P (x) in (1.1) can be obtained from the solution K(x, y) to that Marchenko system.

This procedure is the analog of the Marchenko method [13, 16, 19, 30, 31, 35] used to solve

the inverse scattering problem for the full-line Schrödinger equation. The details of our

Marchenko method for (1.1) and the recovery of the two potentials Q(x) and P (x) from the

solution to our Marchenko system for (1.1) will be published elsewhere.
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