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ABSTRACT

New Methods in Electrical Source Imaging Based on EEG and Post-Mortem

Pathology Data

Julio Cesar Enciso-Alva, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Jianzhong Su, PhD

A central task for Neuroscience is to determine the location of electrical activity

of neural origin inside the brain. Electrical signals can be recorded at a high resolution

in time but low resolution in space, thus making it difficult to locate their source

unambiguously. Electrical Source Imaging (ESI) is a particular framework for neural

electrical source location; it is possible by modeling any additional information we may

have about the electrical sources. For instance, minimal-norm estimators assume that

the most plausible estimation is that with a lower norm. However, these estimators

possess a low resolution in space.

In this work, we construct a novel ESI estimator incorporating binary anatomical

data from pathologies observed in the post-mortem. This is done to improve the

spatial resolution of the estimator.

This work may be extended to similar types of binary data derived from fMRI,

NIRS, and CT, among others.
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CHAPTER 1

INTRODUCTION

One hundred years after its invention, the Electroencephalogram (EEG) is a

popular tool for studying the physiological substrate of behavioral phenomena. The

study of brain electrophysiology has led to a rather large corpus of electrical signals

that are known to be related to normal and pathological states. For example, the

interested reader may refer to the book from Niedermeyer [22].

In light of these historical antecedents, an important task for modern Neu-

roscience has been determining the location of electrical activity of neural origin

inside the brain. For instance, we may take a set of EEG recordings related to a

specific cognitive task and then ask which brain region is responsible for creating such

electrical activity. This task is known as electrical source localization or electrical

source reconstruction.

From this vague definition, the task is ill-posed (in the sense of Hadamard) and

impossible to achieve without further information/assumptions.

Electrical Source Imaging is a framework for source reconstruction. Its base

model reconstructs a group of dipoles whose electric field is equivalent to that produced

by neurons. ESI methods are agnostic to the number or extension of electrical sources

and require finding parameters from a linear system.

ESI methods have been used extensively in the literature to study pathological

conditions. Asadzadeh et al. reported 41 different ESI algorithms between 1970 and

June 2019, most of which were used to study clinical conditions.

1



We explore some ESI methods, their underlying assumptions, and related

algorithms. We aim to incorporate a particular set of assumptions into the ESI model

and derive an ESI method optimized for those assumptions.

The main focus of this work is the usability of the ESI methods in clinical

settings. All the methods described in this work are available for public use in the

GitHub repository of the author at https://github.com/EncisoAlva/Region-Priors.

These methods are implemented in a format compatible with the Brainstorm toolbox

[30], making it possible for non-technical users to incorporate them into a data analysis

pipeline without writing code.

1.1 Contents and Organization

Chapter 2 is dedicated to deriving the Forward Problem in ESI from physical

principles. At the end of the chapter, it is established that the following equation

governs the ESI,

Y = GS+ ε

with Y ∈ RM×T encoding the measurements from M point electrodes, S ∈ RN×T

encoding the electrical activity of N dipoles whose electrical field is equivalent to

that of the neurons in the brain, G ∈ RM×N is a mixing operator, and ε ∈ RM×N

encodes some noise. In this context, it is expected that M ≪ N .

The Forward Problem in ESI consists of computing G from anatomical data;

some additional assumptions are necessary. The derivation presented in chapter 2 is

standard; it can be found in the paper by Hallez et al. [12] or the book by Nunez

and Srinivasan [24].

The objective of chapter 2 is to present the assumptions required for the model

to work. Understanding the derivation of the realistic 4-sphere model, widely used in

2



the literature, should be sufficient to understand the realistic 2-sphere model used in

chapter 5.

Chapter 3 presents a basic review of the literature on ESI methods, parameter

tuning, and performance evaluation of ESI methods.

This chapter presents some assumptions that have been incorporated into the

ESI model, leading to algorithms with improved efficiency. Some of these ideas will

be used to construct a novel method reflecting specific assumptions.

The parameter tuning and performance metrics methods will also be used in

chapters 4 and 5.

Chapter 4 describes a protocol for creating synthetic data and explores some

characteristics induced into the resulting dataset.

Chapter 5 describes a novel ESI method based on anatomical data provided by

observed symptoms.

The model is derived from the assumptions, and we propose a way to implement

it efficiently. This should prove that the proposed method isn’t more computationally

expensive than popular fast methods, such as sLORETA.

The proposed method is later used on a real dataset from an induced stroke

in an animal model. The characteristics of the real data are the motivation of the

model assumptions.
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CHAPTER 2

FORWARD MODEL IN ELECTRICAL SOURCE IMAGING

Electroencephalography (EEG) is a type of electrophysiological recording that

uses electrodes, whose contact surface is in the order of 20 mm2, placed on the

subject’s scalp. The recording circuit is typically completed with a reference electrode

at a ‘neutral’ location, like the contra-lateral earlobe or the nose; another electrode

can also be used, resulting in referential channels.

In the century since the invention of the EEG machine, the simultaneous

observation of behavioral data and EEG recordings has helped establish strong

connections between specific EEG patterns and normal and pathological conditions.

The neural origin of electrical signals measured by EEG can be traced to the

post-synaptic potentials in neurons’ axons. Although each individual neuron cannot

produce an electric potential field large enough to be measured by the EEG electrodes

at the scalp, the simultaneous firing of all the neurons in the brain is sufficient to

produce the EEG measurements.

It is important to acknowledge that the EEG may also register events whose

origin is not neural, referred to as artifacts. These include but are not limited to

external electrical fields, eye movements, activity from facial muscles, and movement

from the EEG electrodes —if they are not fixated adequately to the scalp or if the

subject’s movement is excessive. This work does not discuss any methods for dealing

with artifacts; the interested reader must refer to specialized manuals, for example,

that from Fish and Spehlmann [5].
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In the absence of biological or instrumental artifacts, the EEG measurements

are produced exclusively by brain activity. The electric potential fields at the EEG

scale, often called macro-scale fields, correspond to large groups of neurons that fire

simultaneously and have a common physical orientation. It is estimated that groups

of neurons of at least 6 mm2 are required to produce activity measurable at the EEG

scale.

2.1 Electrical Source Imaging Framework

Electrical Source Imaging (ESI), or Electrical Source Reconstruction, involves

identifying the neural electrical sources responsible for the observed EEG. ESI can

be used to identify brain regions related to (and, in some cases, responsible for) the

normal or pathological state under study.

In this work, we perform ESI under the distributed dipole paradigm: the current

density field produced by neuronal activity is approximated by a finite set of electrical

dipoles whose location is known –on a grid that covers the brain region of interest–

and whose magnitude is to be determined.

This paradigm can be justified formally as a discretized multi-pole expansion

of order 2 (using dipoles) of the current density field; this approximation is sufficient

to explain measurements obtained 1 mm or farther from the electrical sources [23].

Within the paradigm of distributed dipoles, ESI’s task is to construct a rep-

resentative set of dipoles that will produce a current density equivalent to that of

the real neurons in the brain; the resulting model should operate at the EEG scale.

This paradigm is considered to be non-parametric in the sense that it is agnostic

to the number and extent of the electric sources. Since an area with no discernible

activity will produce a group of dipoles with a magnitude close to zero, this paradigm

is considered robust to model misidentification.
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When interpreting the results obtained from ESI, one should be aware of the

limitations inherited from EEG. For example, the lack of synchronization of time and

direction of some active neuron patches may prevent them from producing an electric

potential that the EEG can measure. This silent activity can’t be measured by ESI

methods based on EEG data.

The task of performing ESI within the paradigm of distributed dipoles is an

ill-posed inverse problem.

The ‘inverse problem’ denomination is earned since the reciprocal problem

is relatively more straightforward: constructing EEG recordings given the current

density. This problem is explored in Section 2.2, following that of Hallez et al. [12].

The ‘ill-posed’ denomination is earned since, given the data from EEG recordings,

the current density is not uniquely defined. In Chapter 3, we review some methods

used to solve this problem, while in Chapter 3, we propose a novel method for this

purpose.

2.2 Derivation of the Forward Problem

From a Physics framework, we can describe that EEG sensors measure the

electric scalar potential field, V : R3 → R, at a finite set of points in space,

s1, s2, . . . , sM ∈ R3. Thus, V (sm) represents the measurement from the m-th electrode.

We assume that the electric scalar potential field is caused by a finite num-

ber of dipoles with known locations, d1,d2, . . . ,dN ∈ R3, and whose momentum,

m1,m2, . . .mN ∈ R, are to be determined.

We first construct a model for a single sensor and a single dipole with unit

moment. The full model will be constructed later by superposing multiple copies of

this base model.
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Under these circumstances, we consider the electric field, E : R3 → R3, and the

current density field, K : R3 → R3,

E = −∇V (2.2.1)

K = σE = −σ∇V (2.2.2)

with σ : R3 → R3×3 the position-dependent conductivity tensor. In the isotropic

case, we assume σ(r) = κI3 for all r, where κ > 0 is the constant conductivity and

I3 ∈ R3×3 is the identity matrix.

The current density field has the property that its divergence vanishes every-

where except near the dipole. In more precise terms, the divergence of the current

density field is defined as

∇ ·K = lim
G(r)→{r}

1

vol (G (r))

∮
∂G(r)

K(r) dS (2.2.3)

with G(r) ⊂ R3 a set that contains r. The limit must be interpreted in a similar way

as Riemann sums, in the sense that the limit is not affected by the selections of G(r).

For the case of one single dipole, ∇ ·K can be simplified,

∇ ·K(r) = δ
(
r− d+

)
− δ

(
r− d−) =


+1, if r = d+

−1, if r = d−

0, otherwise.

(2.2.4)

where d−,d+ ∈ R3 are the dipole’s electric sink and source positions, respectively. For

ease of notation, we select d− and d+ so that the dipole position, d, and momentum,

m, satisfy the following

d =
1

2

[
d− + d+

]
(2.2.5)

m =
[
d+ − d−] (2.2.6)
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Figure 2.1. Visual representation of a single dipole with electric sink and source
located at d− and d+, respectively. The ‘position’ of the dipole, d, is the midpoint
of d− and d+. The electric scalar field, V , is denoted by its isopotential lines, while
the electrical field, E = −∇V , is shown as the lines of the fastest descent. On this
diagram is shown an example of a set G (r) ⊂ R3 that contains r; these sets are used
in equation (2.2.3) .

Refer to figure 2.1 for a graphical summary of this construction.

With equations (2.2.2) and (2.2.4) at hand, we may determine the electric scalar

field, V , in terms of the only dipole as

∇ · (σ(r)∇V (r)) = δ
(
r− d+

)
− δ

(
r− d−) (2.2.7)

or, in the isotropic case, as

κ∆V (r) = δ
(
r− d+

)
− δ

(
r− d−) (2.2.8)

It is relevant to recall that the EEG measurement from the only sensor is V (s),

with s the locations of the EEG sensors.

2.2.1 Boundary Conditions

To have a meaningful solution for equation (2.2.7) or (2.2.8) in the context of

EEG, we must consider appropriate domain and boundary conditions.

Since the electric conductivity of air is very small compared with that of head

tissues, it is straightforward to use the subject’s head as a domain with reflective

8



Surfaces:

Scalp

Outer skull

Inner skull

Cortex

Volumes:

Brain (      )

CSF (      )

Skull (      )

Head (      )

Figure 2.2. Geometric domain defined by relevant tissues in the subject’s head. The
4-sphere model considers three media: brain, cerebrospinal fluid (CSF), and the rest
of the head. Relevant interfaces between media are displayed: brain cortex, inner
and outer skull, and scalp. Notice the anatomical simplifications described in the
text. (Left) Realistic illustration of a human head. Composition from two diagrams
by Patrick L. Lynch and C. Carl Jaffe [18, 19]. (Right) Cross-section of the surfaces
obtained from the ICBM152 template after segmentation.

boundary conditions. Thus, the head is divided into a series of nested volumes, deter-

mined by both the biological tissues in place and their respective electric properties.

Under these conditions, the simplest model considers a small number of tissue-

based regions as homogeneous isotropic media with constant conductivity; different

media may have different conductivity. The 4-sphere model considers only four media:

the brain, M4, cerebrospinal fluid (CSF), M3, skull, M2, and the rest of the head,

M1. For computational purposes, we may consider a fifth medium, M0, representing

the outside of the head.

Multiple approximations are used in practice, as illustrated in figure 2.2 where

portions of the skull far from the brain are ignored, as well as muscle and connective

tissues because those tissues are too far from the EEG sensors to make a significant

difference in the model.

9



Tissue Conductivity (µS/cm)

White matter 1.43
Gray Matter 3.33
Cerebrospinal Fluid 15.38
Skull Tissue 625.00
Scalp 1.74

Table 2.1. conductivity for different head tissues considered in the Four-sphere model,
measured in microsiemens per centimeter. Data from [27]

With the media defined formally, reflective boundary conditions can be written

as follows,

σ(r)∇V (r) · n = 0, for r ∈ M1 (2.2.9)

where n is a vector orthogonal to ∂M1. At the interfaces between media, the boundary

conditions are to have continuous first derivatives; this property can be requested for

the whole domain,

V (•) , σ (•)V (•) ∈ C1 (M1 ∪M2 ∪M3 ∪M4) (2.2.10)

The continuity of σ(r)V (r) is particularly important on the interfaces between

media because the conductivity, σ, is expected to be homogeneous within each media

but to change drastically between different media.

To make sense of the magnitudes of the discontinuities of the conductivity, σ,

among different media, in table 2.1 are displayed typical values for the four media

described before; data is from Ramon et al. [27]. See figure 2.2 for a visual reference

of these tissues.

2.2.2 Construction of the leadfield operator

Recall that both equations (2.2.7) and (2.2.8) are constructed for one sensor

and one dipole with unit magnitude. We now consider a finite number of EEG sensors

10



at locations s1, s2, . . . , sM ∈ R3, and dipoles at locations d1,d2, . . . ,dN ∈ R3 with

momenta m1,m2, . . . ,mN . For ease of notation, write each momentum as

mn = ρn en (2.2.11)

with ρn ∈ R, en ∈ R3 such that en has unit norm, i.e. ∥en∥2 = 1.

After making the assumptions described in the previous sections, we may

conclude that the electric scalar field, V , is given by

V (r) =
N∑

n=1

ρnṼn(r) (2.2.12)

where Ṽn is the solution to the following equation

∇ ·
(
σ(r)∇Ṽn(r)

)
= δ

(
r− d+

n

)
− δ

(
r− d−

n

)
(2.2.13)

under the boundary conditions from equation (2.2.9), and with each d±
n constructed

from dn. For ease of notation, define

g(r,dn) = Ṽn(r) (2.2.14)

and thus, we can write

V (r) =
N∑

n=1

ρn g (r,dn) =

[
g (r,d1) g (r,d2) · · · g (r,dN)

]


ρ1

ρ2
...

ρN


(2.2.15)

Furthermore, by using the equation for all the sensor locations and stacking

the results, we obtain the following vector equation

V (s1)

V (s2)

...

V (sM)


=



g (s1,d1) g (s1,d2) · · · g (s1,dN)

g (s2,d1) g (s2,d2) · · · g (s2,dN)

...
...

. . .
...

g (sM ,d1) g (sM ,d2) · · · g (sM ,dN)





ρ1

ρ2
...

ρN


(2.2.16)
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Equation (2.2.16) can be rewritten as the following generic matrix equation

Y = GS (2.2.17)

where Y ∈ RM×1 encodes the EEG measurements, S ∈ RN×1 encodes the dipoles’

magnitude, and G ∈ RM×N is a matrix known as the leadfield matrix, gain matrix,

forward operator, among other names; G encodes the mixture of current density to

form the scalar electrical field measured by EEG sensors.

If the dipole’s orientation, en, is to be determined, we can consider each dipole

as the sum of three dipoles parallel to some orthogonal directions. Such as in figure

2.3, we can write

ρnen = ρxne
x
n + ρyne

y
n + ρzne

z
n (2.2.18)

with exn, e
y
n, e

z
n ∈ R3 vectors with unit norm located at dn and parallel to the respective

x−, y−, z−axis.

Under these new circumstances, equation (2.2.15) changes to

V (r) =
N∑

n=1

[ρxn g (r, e
x
n) + ρyn g (r, e

y
n) + ρyn g (r, e

z
n)] (2.2.19)

which can be written as a matrix equation such as (2.2.17).

The overall effect of assuming unknown orientations are (1) the increase of the

number of dipole magnitudes to be determined by a factor of 3, as well as the size of

the leadfield matrix, and (2) we need to compute the magnitude of these dipoles in

order to recover the original interpretation.

The forward model summarized in equation (2.2.17) can be extended trivially

to account for T EEG measurements in time by setting Y ∈ RM×T , S ∈ RM×T , and

G unchanged. This is possible due to the quasi-static Maxwell equations. Since the

neural electric fields change in time at relatively low frequencies, they don’t induce

an important change to the magnetic field [24]. The magnetic fields produced by
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Figure 2.3. Decomposition of a dipole with arbitrary momentum as a sum of dipoles
whose momentum is parallel to their respective x−, y−, z−axis. By definition, a
dipole is made of a sink and a source with equal charges. For visual simplicity, only
the source d+ is shown; the sink d− can be constructed similarly.

the electric potentials can be considered constant, and thus, any capacitance can be

neglected.

It is important to acknowledge that the changes in the electric and magnetic

fields are independent of biological tissue. However, the neural events that gen-

erate electrical fields also generate magnetic fields, which can be measured using

Magnetoencephalography (MEG).

The quasi-static properties of the system imply that the magnetic and electric

fields don’t interact with each other. Any correlation between them comes from their

neural generators. A complete discussion of this phenomenon is beyond the scope of

this work.
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2.3 Practical considerations

2.3.1 Geometry Identification from Data

Recall that the construction of the leadfield matrix, G, is based on solving the

equation (2.2.7) (or equation (2.2.8) in the isotropic case) subject to the boundary

conditions in (2.2.9).

These equations can be solved numerically using Boundary Element Methods

(BEM) or Finite Element Methods. A full review of these methods –even in the

particular case of ESI– is beyond the scope of this work, and the interested reader

may refer to the review by Hallez [12] or that by Vorwerk et al. [32].

These methods are implemented in commercially available software such as

OpenMEEG [10], DUNEuro [29], and MNE Python [11].

In this section, the goal is to describe the identification of the tissue media from

an operative standpoint. Tissues are often defined from the subject’s anatomical data

or an appropriately matched template.

The anatomical data often originates as the result of T1 or T2 magnetic

resonance imaging (MRI) from the subject. Later, the MRI images are segmented:

relevant tissues are identified, and triangulated 3D surfaces are constructed. Relevant

algorithms for these tasks are available on commercial software such as CAT12 [7],

and Fieldtrip [25].

It is relevant to mention that the Fours Sphere model is not the only option for

constructing the leadfield matrix. For instance, the model can be trivially extended to

include five media by separating the brain into gray and white matter. Such division

requires a robust algorithm to distinguish between those tissues; since the interface is

known to be non-smooth, robustness is a strong requirement.
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2.3.2 Location of Distributed Dipoles

Over the previous sections, the locations of the distributed dipoles, dn, were

assumed to be known. Two cases were considered: if their orientation, mn, was either

assumed to be known or not.

The goal of ESI is to gain knowledge from the neural sources of electrical

activity, including their location. Thus, we shouldn’t make assumptions about their

location.

In that sense, the most inclusive assumption is that the dipoles should be

located ‘anywhere’ inside the brain. This assumption can be enforced by setting the

locations of the distributed dipoles over a grid covering the entire brain volume. In

figure 2.4, two of these arrangements are displayed: a cubic grid and an adaptive grid.

The adaptive grid, as implemented on the Brainstorm software [30], is constructed

following these steps:

1. Use cortex as the initial layer.

2. Downsample to locate dipoles with a prescribed distance between them.

3. Shrink to obtain the next layer.

4. Repeat until no more layers can be constructed.

Adaptive grids offer some advantages since they are conceptually consistent

with depth weighting (see section 3.1.2), and they can be constructed so that the

outer layer falls within a certain distance from the cortex.

In some scenarios, the assumption of a total lack of information may be replaced

by the assumption that the dipoles are located in the cortex and are oriented

orthogonally to it. This is justified by the peculiar geometry of the outer layers of

the gray matter, which consist of neuron dendrites orthogonal to the cortex surface.

In figure 2.4, we may observe an arrangement of distributed dipoles that encodes this

assumption.
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Cubic grid

(Unconstrained)

Adaptive grid

(Unconstrained)

Figure 2.4. Some configurations for distributed dipoles. Constrained dipoles have a
known orientation (orthogonal to the cortex surface), while unconstrained dipoles
have an unknown orientation..

Whether we may or not assume that the dipoles are located only in the

cerebral cortex depends on additional assumptions of the neural processes under

study. Many ‘higher’ cognitive processes are known to occur in the cerebral cortex:

speech generation and recognition, face recognition, and spatial orientation, among

others [28]. Conversely, we may ignore some deeper brain regions if their associated

neural functions are not part of the phenomenon under study.

Many software dedicated to ESI refers to the case when dipoles are orthogonal

to the cortex surface as ‘constrained’, while the other case is ‘unconstrained’. Other

setups are possible, yet their discussion is outside the scope of this work.
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CHAPTER 3

REVIEW OF METHODS FOR ELECTRICAL SOURCE RECONSTRUCTION

The forward model discussed in Chapter 2 can be summarized in the following

matrix equation

Y = G (S+ ν) + ε

where Y ∈ RM×T encodes the EEG measurements over time, S encodes the magni-

tudes of a finite set of distributed dipoles with known locations, and G ∈ RM×N is a

mixing operator referred to as the Leadfield matrix.

The terms ν ∈ RN×T , ε ∈ RM×T represent additive noise within the true values

for the dipoles and sensors, respectively. Different authors have proposed different

assumptions for such noise terms, some of which will be discussed later.

In chapter 2, it was discussed that if the orientation is known, then we can use

S ∈ RN×T , and otherwise, we should use S ∈ R3N×T from decomposing each dipole

as the sum of dipoles with known orientations, parallel to the x-, y- and z-axis. Since

the cases of known and unknown dipole orientations don’t significantly change the

model formulation, they will be treated as a single model whenever possible.

Within the context of Electrical Source Reconstruction, the computation of the

leadfield matrix is referred to as the Forward Problem. This computation implies

a large number of steps: identification of tissues from anatomical MRI or similar,

construction of triangulated surfaces representing anatomical regions of interest (which

may be simplified), setup of several PDEs within the anatomical regions as geometric

domain, and the numerical solution of said equations by either BEM or FEM (or a

different method).
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All these points were discussed in Chapter 2. Thus, after this point, we will

consider the leadfield matrix G to be given for each set of anatomical data and

electrode montage.

3.1 Inverse problem formulations

The main aim of this work will be the task of ‘recovering’ S once the data Y

and some additional assumptions are considered.

In the absence of biological noise (ν = 0), the most straightforward path of

action is to find the S that minimizes the reconstruction error

Ŝnaive = argmin
S

∥GS−Y∥2F (3.1.1)

with ∥A∥F the Frobenius norm of A ∈ RM×N , defined as

∥A∥F =

(
N∑

n=1

M∑
m=1

[A(m,n)]2
)1/2

(3.1.2)

The expression in (3.1.1) represents an ill-posed problem due to (1) not having

a unique solution and (2) changing significantly with small changes in the parameters.

The first statement is straightforward since we assumed M ≪ N . The second

statement becomes clear if we choose the Least-Square solution,

ŜLS = GT
(
GGT

)†
Y (3.1.3)

where A† is the Moore-Penrose pseudoinverse of A = GGT .

It can be proven that the eigenvalues of A† are given by

(σi)
† =


σ−1
i , if σi ̸= 0

0, otherwise.

(3.1.4)

where σi are the eigenvalues of A = GGT . Notice that the case 0 ̸= σi ≈ 0 leads to

ŜLS being ‘unstable’ as a function of G and Y.
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As is discussed later, one way to alleviate the instability of the Least-Squares

estimator is to modify the inverse problem by introducing a regularisation parameter

λ, resulting in

Ŝ = argmin
S

∥GS−Y∥+ λ f (S) (3.1.5)

with λ > 0 and f : RM×T → R+ a penalization function, usually related to the norm

of S. It will be shown how this formulation naturally results from certain assumptions,

but it can also be designed to impose certain desirable properties on the solution.

3.1.1 Minimal Norm Estimator

For this estimator, we assume that both the sensor and internal noise are

Gaussian random variables, independent in time and space, and with constant

variance, i.e.

ν ∼ N
(
0, σ2IN ⊗ IT

)
(3.1.6)

ε ∼ N
(
0, λ2IM ⊗ IT

)
(3.1.7)

The Maximum A Posteriori (MAP) estimator of S is defined as

ŜMAP = argmax
S

Prob (S | Y)

= argmax
S

Prob (Y | S) ProbS. (3.1.8)

The above problem can be simplified by (1) taking the logarithm of the ex-

pression since log is a monotonic function, and by (2) considering the independence

in time so that columns of S are computed independently, and (3) considering the

normal distribution of ν and ε. Thus we have

Ŝ(:, t)MAP = argmax
S

log (Prob (Y(:, t) | S) Prob (S))

= argmax
S

− 1

2σ2
∥GS−Y(:, t)∥22 −

1

2λ2
∥S∥22
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= argmin
S

∥GS−Y(:, t)∥22 +
σ2

2λ2
∥S∥22 (3.1.9)

Notice how the MAP estimator can be interpreted as a regularized optimization

problem in the form of (3.1.5). Since the MAP estimator is obtained by minimizing

the norm of S (in particular, the ℓ2 norm), it is referred to as the Minimal-Norm

Estimator (MNE). This designation is ambiguous since many other estimators depend

on minimizing some norm of the sources; thus, ‘minimal-norm estimator’ refers to a

family of estimators. To avoid confusion, this particular estimator will be referred to

simply as MNE in this work.

The MNE estimator admits a closed-form solution as follows,

ŜMNE = ŜMAP = GT

(
GGT +

σ2

λ2
IM

)−1

Y (3.1.10)

3.1.2 Weighted Minimal Norm Estimator

This method incorporates the assumption that smaller coefficients in the lead-

field matrix scale the contribution of deep dipoles located far from the scalp. These

deeper dipoles must have larger magnitudes to contribute similarly to shallow dipoles

in the generation of EEG. The overall effect is that deep dipoles are misrepresented in

the MNE estimator and often deleted. This assumption can be encoded by considering

the following noise term,

ν ∼ N
(
0,W−1 ⊗ IT

)
(3.1.11)

W = diag (∥G(:, 1)∥2 , ∥G(:, 2)∥2 , . . . , ∥G(:, N)∥2) (3.1.12)

In order to alleviate the effect mentioned above, the depth-weighting matrix W

is introduced. The Weighted Minimal Norm Estimator (wMNE) is then defined as

ŜwMNE =
(
GTG+ λW TW

)†
GTY (3.1.13)

= GT
(
G
(
W TW

)−1
GT + λ IM

)†
Y (3.1.14)
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3.1.3 LORETA

The Low-Resolution Electric Tomography (LORETA) estimator was proposed

by Marqui[26]. One key idea from this method is to use a Laplacian operator to

impose spatial smoothness over S and use the same depth-weighting from wMNE.

In its original formulation, the dipoles are assumed to be located on a cubic

grid with a distance d between neighboring dipoles.

The LORETA estimator can be expressed as an optimization problem

ŜsLORETA = argmin
S

∥BW S∥2F

s.t. GS = Y (3.1.15)

with W as in (3.1.12), and B the laplacian operator defined as

B(ni, nj) =


6/d2, if ni = nj

−1/d2, if
∥∥rni

− rnj

∥∥
2
= d

0, otherwise

(3.1.16)

where d is the distance between dipoles. On a cubic grid, exactly 6 dipoles satisfy

the second condition when the ni-th dipole is far from the cortex.

The estimator is computed as follows:

ŜLORETA =
(
W BT BW

)−1
GT

[
G
(
W BT BW

)−1
GT
]†
Y (3.1.17)

3.1.4 sLORETA

The standardized Low-Resolution Electric Tomography (sLORETA) estimator

was proposed by Marqui [26]. Despite their similar name, LORETA and sLORETA are

two different methods. The sLORETA estimator considers the following minimization

problem

ŜsLORETA = argmin
S

∥GS−Y − c1∥2F + λ ∥S∥2F (3.1.18)
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with 1 = {1}M×1 a column vector of ones.

The underlying assumption is that the measurements are re-referenced to the

average, i.e., the raw observations Y0 ∈ RM×T are pre-processed as follows

Y = (IM −H)Y0 (3.1.19)

with H ∈ RM×M an averaging operator constructed as

H =
(
1M1

T
M

)
/
(
1
T
M1M

)
. (3.1.20)

Alternatively, we can construct H element-wise as

H(m1,m2) =
1

M
(3.1.21)

for mi = 1, 2, . . . ,M and i = 1, 2.

It is relevant to mention that this type of re-reference can be interpreted as

constructing a phantom electrode with neutral electric activity and using it to close

the recording circuit. This process is expected to eliminate noises that are common

to all electrodes.

Assuming that Y was re-referenced to the average, then the parameter c is

always zero, and the estimator is as follows

ŜsLORETA = GTH
(
HGGTH + λH

)†
Y (3.1.22)

3.1.5 Multivariate Source Prelocalization (MSP)

The MSP estimator proposed by Mattout [20] incorporates the idea of using

Single Value Decomposition (SVD) to produce a subspace that captures the most

relevant information in Y and G, then gets the sources more correlated with their

projections into that space. The obtained information is later used to construct a

weight matrix, so the final estimation is similar to wMNE.

ŜMSP = argmin
S

∥Y −GS∥2F + λ ∥WMSPS∥2F (3.1.23)
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The leadfield matrix is column-normalized as in 3.1.12, and the SVD decompo-

sition is performed,

G = GW−1
G = UΛVT (3.1.24)

WG = diag (∥G(:, 1)∥2 , ∥G(:, 2)∥2 , . . . , ∥G(:, N)∥2) (3.1.25)

with U ∈ RM×M ,V ∈ RN×N such that UTU = IM ,VTV = IN , and Λ ∈ RM×N a

matrix with the singular values of G in descending order on its diagonal.

The first s columns of U are selected based on the Velicer criterion [31],

Us = [U(:, 1),U(:, 2), . . . ,U(:, s)] (3.1.26)

Y is normalized on a similar way as G, and then it is projected into UsU
T
s ,

Ys = UsU
T
s Y = UsU

T
s WYY (3.1.27)

WY = diag (∥Y (:, 1)∥2 , ∥Y (:, 2)∥2 , . . . , ∥Y (:, T )∥2) (3.1.28)

As =
(
G

T
Ys

) (
G

T
Ys

)T
(3.1.29)

The authors of MSP propose interpreting As as a correlation matrix of the

sources within the resulting space. Following this interpretation, the authors define

Activation Probability Map (APM) as

Ds(j) = As(j, j) =
∥∥G(:, j)TYs

∥∥2
2

(3.1.30)

The MSP weigh matrix, WMSP, is constructed as

WMSP(j, j) = 1−Ds(j) (3.1.31)

leaving the MSP estimator as follows,

ŜMSP = [WMSP]
−2GT

(
G [WMSP]

−2GT + λIm
)−1

Y (3.1.32)
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3.1.6 Mixed Norm Estimate (MxNE)

This algorithm, proposed by Gramfort [9], incorporates the assumption that the

source patches are sparse in space and smooth in time. This assumption is enforced

by solving the following optimization problem.

ŜMxNE = argmin
S

∥GS−Y∥2F + λ ∥S∥2,1 (3.1.33)

with ∥S∥2,1 the ℓ2,1 norm of S. In general, the bi-level ℓp,q norm is defined as

∥A∥p,q =

 M∑
m=1

(
N∑

n=1

|A(m,n)|p
)q/p

1/q

(3.1.34)

The MxNE estimator does not admit a closed-form solution but can be computed

using the Alternating Direction Method of Multipliers (ADMM) or similar algorithms.

A thorough description of ADMM is beyond the scope of this chapter, and the

interested reader should refer to the book by Boyd [2].

3.2 Methods for parameter selection

From all the estimation methods described in the previous section, all of them

converge in a general form

ŜΘ = F (Y,G; Θ) (3.2.1)

with Θ a set of parameters that must be selected beforehand. One particular case,

referred to as linear estimator, occurs when the estimator can be written as

ŜΘ = KΘY (3.2.2)

with KΘ ∈ RN×N referred to as the Wiener kernel, or inversion kernel, which is

approximately a right inverse of G. The collection of liner methods includes wMNE,

FOCUSS, LORETA and their derivates, and MSP, among others.
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On the other hand, methods like MCE, MxNE, SiSSY, etc, are not linear and

can’t be assigned to a Wiener kernel.

This section reviews some heuristics for selecting the parameter set Θ. The

wMNE estimator is a reference model since it depends on a single parameter. How-

ever, the heuristics can be generalized to select multiple parameters by finding the

minima/maxima of functions of multiple variables. Such a generalization is not made

explicit.

3.2.1 L-curve

This heuristic incorporates the idea that the parameter λ balances the factors

∥S∥2F and ∥GS−Y∥2F , trying to minimize both of them evenly [13]. To do that,

define the quantities

ρ(λ) =
∥∥∥GŜλ −Y

∥∥∥2
F

(3.2.3)

η(λ) =
∥∥∥Ŝλ

∥∥∥2
F

(3.2.4)

The L-curve denominations come from the graph of the parametric curve

(ρ(λ), η(λ)), which resembles the letter ‘L’ in some cases. This graph is typically

displayed in log-log scale, i.e., the parametric curve (log (ρ(λ)) , log (η(λ))).

According to this criterion, the optimal value for λ is the one on the point of

maximal curvature of the parametric curve, often referred to as the ‘elbow’ of the

curve. Look at the figure 3.1 for visual reference.

It is important to mention that the selection of parameters using the L-curve

criterion depends on visual perception, and it may be affected by the precision with

which the curve is constructed. Without prior knowledge, η and ρ shall be computed

for several potential values of λ. Exploring the obtained parametric curve visually

allows us to identify better the range where the optimal values may be found.
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3.2.2 Generalized Cross-Validation

This heuristic is based on the principle of leave-one-out cross-validation and

some approximations that make it computationally efficient. Although this method

was proposed by Golub in 1979 [8], it remains popular for methods that admit an

inversion kernel.

Following the leave-one-out principle, we consider Y[m] ∈ R(M − 1)× T and

G[m] ∈ R(M−1)×N with the m-th sensor missing,

Y[m] =



Y(1, :)

...

Y(m− 1, :)

Y(m+ 1, :)

...

Y(M, :)


, G[m] =



G(1, :)

...

G(m− 1, :)

G(m+ 1, :)

...

G(M, :)


(3.2.5)

Based on this incomplete information, we construct a restricted Wiener kernel,

K
[m]
λ ∈ RN×(M−1), and a restricted estimation, S

[m]
λ ∈ RN×T ,

K
[m]
λ =

(
G[m]

)T (
G[m]

(
G[m]

)T
+ λIM

)−1

(3.2.6)

S
[m]
λ = K

[m]
λ Y

[m]
λ (3.2.7)

The cross-validation is incorporated by estimating the measurements from them-

th with information from S
[m]
λ and then comparing it with the actual measurements.

By performing this procedure over all the sensors and averaging, we obtain the

following quantity

V (λ) =
1

M

M∑
m=1

∥∥∥[GS
[m]
λ

]
(m, :)−Y(m, :)

∥∥∥2
F

(3.2.8)

This quantity is approximated by the following

GCV(λ) =
M ∥(GKλ − IM) Y∥2F
trace2 (GKλ − IM)

(3.2.9)
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Although the definition of GCV is based on the leave-one-out cross-validation

illustrated in equation (3.2.8), it is the expression on (3.2.9) the operative definition

of GCV. The latter expression represents a balance between Kλ as a pseudo-inverse

of G in general vs only for the current sensor data.

According to this criterion, the optimal value for λ is the one that minimizes

the function in (3.2.9). In other words,

λ⋆
GCV = argmin

λ
GCV(λ) (3.2.10)

It is important to emphasize that the approximation for the GCV error in

equation (3.2.9) can only be computed for linear methods; for instance, estimators

based on the ℓ1 norm or neural networks can’t be tuned using GCV.

3.2.3 Composite Residual and Smoothing Operator (CRESO)

This heuristic incorporates the idea that the residual, ∥GS−Y∥2F , and the

norm of the solution, S2
F , should be approximately equal [14]. To achieve that, the

residual and norm are written as the following function,

C (λ) =
d

dλ

[
−∥GSλ −Y∥22 + λ ∥Sλ∥22

]
=

d

dλ

[
−∥(GKλ + IM)Y∥22 − λ ∥KλY∥22

]
(3.2.11)

with KλY the inversion kernel, understood explicitly as a function of λ. This function

is called the Composite Residual and Smoothing Operator (CRESO).

According to this criterion, the optimal value for λ is the smallest solution to

the equation C(λ) = 0, or in other words,

λ⋆
CRESO = min

λ
{λ ∈ R+ | C(λ) = 0} . (3.2.12)
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3.2.4 U-curve

This heuristic incorporates the idea that both the largest among the residual and

the solution’s norm should be small; this is achieved by minimizing their reciprocals

[16]. In particular, the following function is constructed

U(λ) = ∥GSλ −Y∥−2
2 + ∥Sλ∥−2

2 (3.2.13)

Similar to the L-curve heuristic, the U-curve heuristic gets its denomination

from the typical shape of the plot of U(λ).

According to this criterion, the optimal value for λ is the global minimum of

U(λ). In other words,

λ⋆
U-curve = argmin

λ
U(λ) (3.2.14)

3.3 Performance metrics

3.3.1 Definitions of a Source Patch Location

In many early works, like the original paper for sLORETA [26], synthetic data

for ESI methods used ‘point sources’ in the form of

Sref(n) =


1, if n = n∗

0, otherwise

(3.3.1)

with n∗ the index of one dipole. Point sources are easy to evaluate in the forward

model: we only need to select a column of G instead of performing a multiplication.

The location of a point source indexed by n∗ is rn∗ , a very straightforward

definition. On the other hand, there is no single unified definition for more complicated

source distributions, including multiple source patches.

In this work, the location of a source patch, either the estimation or the reference,

is defined as the center of mass with respect to magnitude. This particular definition
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Figure 3.1. Selection of parameters using various criteria: L-curve, Generalized
Cross-Validation (GCV), Composite Residual and Smoothing Operator (CRESO),
and U-curve. Each criterion’s quantity of interest is computed for many candidate
values of λ, then the optimal value is decided. Data for these graphs was obtained
from a single trial of synthetic data described in Chapter 4. Data Y is constructed
with no-noise, inversion kernel Kλ and the source estimate Sλ = KλY are computed
using sLORETA .

can be traced back to the paper by Molins et al. [21], and the reasoning for its use is

discussed in the following subsection.

In order to establish a formal definition, we first must consider the concept

of a seed dipole. Informally, the idea of a seed dipole is that the source patch is

constructed around it, and thus, the seed dipole is a proto-center for the source patch.

This definition only works for sources with known locations; thus, it is unusable for

estimated sources.

One key property of a seed dipole, which will be later exploited, is that it must

be one of the most active dipoles in the patch, i.e.

∥∥S (k∗
p

)∥∥ = max {∥S (n)∥ | n ∈ Ip} (3.3.2)
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In the case of estimated sources, the role of seed dipoles can be fulfilled by local

maxima of the estimated magnitudes.

Let be k∗
1, k

∗
2, . . . , kP ∈ {1, 2, . . . , N} the indexes of the seed dipoles. Formally,

the p-th source patch, Ip, is defined as the set of dipoles that have significant activity

and are closer to the p-th seed dipole, k∗
p than to the other seed dipoles.

Ip =
{
n
∣∣∣ ∥∥rn − rk∗p

∥∥
2
<
∥∥∥rn − rk∗j

∥∥∥
2
for p ̸= j, ∥S(n)∥2 ≥ α

∥∥S (k∗
p

)∥∥
2

}
(3.3.3)

where α ∈ [0, 1] filters sources whose magnitude is very small; for instance, we may

set α = 10% as a cutoff for significance.

In the case of estimated dipoles, the number of source patches can be adjusted

algorithmically by joining or breaking other source patches.

The location of the p-th source patch, mp, is defined as the center of mass of

the dipoles in the source patch with respect to their magnitude,

mp =

∑
n∈Ip

∥S(n)∥22 rn∑
n∈Ip

∥S(n)∥22
(3.3.4)

Notice that this definition depends heavily on knowing the true locations of the

seed dipoles, if any, so it can’t be used with real data.

On the other side, the definition is trivially extended to the location of an

estimated source patch,

m̂p =

∑
n∈Ip

∥∥∥Ŝ(n)∥∥∥2
2
rn

∑
n∈Ip

∥∥∥Ŝ(n)∥∥∥2
2

(3.3.5)

This definition is deficient when an ESI method does not recover all source

patches, in which case the performance is overestimated.
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3.3.1.1 Other Definitions

Although the definition presented is compatible with other definitions in the

case of a single source patch, it is not the only one.

For instance, some authors have used the location of the seed dipole as the

location of the source patch

mp = rk∗p (3.3.6)

which shouldn’t be very different from the center of mass if the source patch is

symmetric and centered around the seed. For example, these assumptions are broken

for volumetric source patches near the cortex.

Some authors define the location as the local maximum magnitude

mp =

{
rk

∣∣∣∣ k = argmax
n

{∥S(n)∥ | n ∈ Ip}
}

(3.3.7)

which is also very similar if the source patch is symmetrical and decays monotonically

far from the seed. This is not the case if ∥S(n)∥ is constant in the patch.

The source location based on maximal magnitude can be trivially extended to

define the location of an estimated source patch

m̂p =

{
rk

∣∣∣∣ k = argmax
n

{∥∥∥Ŝ(n)∥∥∥ ∣∣∣ n ∈ Ip

}}
(3.3.8)

This definition is not robust to noise if the true source is large in space.

3.3.2 Distance Localization Error (DLE)

Given the definitions of the true and estimated centers for the source patches,

the Distance Localization Error is defined as

DLE =
1

P

P∑
p=1

∥mp − m̂p∥2 (3.3.9)

with P the number of true source patches. This definition does not account for

whether the reconstruction has more or fewer source patches than it should.
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3.3.3 Spatial Dispersion (SD)

This metric, proposed by Molins et al [21], is defined as

SD =


P∑

p=1

∑
n∈Ip

∥∥∥Ŝ(n)∥∥∥2
2
∥rn −mp∥

∑N
n=1

∥∥∥Ŝ(n))∥∥∥2
2



1/2

(3.3.10)

This quantity can be understood as a variance in space for the source location.

A small spatial dispersion is desirable.

It is possible to replace Ŝ for S in order to compute a ‘baseline’ spatial dispersion

for source patches, which is especially useful if they are large in space.

3.3.4 Relative Mean Square Error (rMSE)

Also referred to as relative Reconstruction Error, this metric represents the

estimation error for the dipole magnitudes. It is defined as

rMSE =

∥∥∥S− Ŝ
∥∥∥
2

∥S∥2
(3.3.11)

3.3.5 Area Under Receiver-Operator Curve (AUROC)

It is possible to interpret the estimation from Electric Source Imaging as a binary

classification problem over the dipoles; this is done by considering active/non-active

classes. This interpretation is consistent with the usability of ESI data to identify

brain regions that are ‘active’ during specific cognitive or pathological processes.

A natural assumption in this context, already discussed in Chapter 2, is that

dipoles with large magnitude are related to brain regions displaying coherent activity.
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We consider the target labels as reference, R : [0, 1] → {0, 1}N and the inferred

labels as estimations, E : [0, 1] → {0, 1}N . The assumption of active dipoles/regions

is modeled by constructing the labels as follows,

Rβ(n) =


1, if ∥S(n)∥2 ≥ βmaxn′ {∥S(n′)∥2}

0, otherwise

(3.3.12)

Eβ(n) =


1, if

∥∥∥Ŝ(n)∥∥∥
2
≥ βmaxn′

{∥∥∥Ŝ(n′)
∥∥∥
2

}
0, otherwise

(3.3.13)

The classical interpretation of the Receiver-Operator Curve requires that we

affix the target labels, Rβ, which can be achieved in the context of ESI by selecting a

particular value β = β0 ∈ [0, 1]. See figure 3.2.A for a quick example of creating the

target labels using β0 = 0.5.

Other authors, like Molins et al. [21], proposed to define Rβ dynamically,

changing with Eβ as β changes. This idea is not used in this work because it is

unstable for bad estimations, leading to unintuitive results.

With this notation, we define True Positives, False Positives, True Negatives,

and False Negatives as follows

TP(β) =
N∑

n=1

[Eβ (n)] [Rβ (n)] (3.3.14)

FP(β) =
N∑

n=1

[1− Eβ (n)] [Rβ (n)] (3.3.15)

TN(β) =
N∑

n=1

[1− Eβ (n)] [1−Rβ (n)] (3.3.16)

FN(β) =
N∑

n=1

[1− Eβ (n)] [Rβ (n)] (3.3.17)

33



U
n

it
le

s
s
 o

n
 [

0
,1

]

C

Reference, S Source patch label, Estimation, S
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B Precision-Recall Curve (global)Receiver-Operator Curve (global)

Precision-Recall Curve (local)Receiver-Operator Curve (local)

Figure 3.2. A. The true class labels are defined from the true sources, S, while the
estimated labels are constructed from the ESI estimation, Ŝ. Notice the severe class
imbalance between yellow and colorless (gray). B. Construction of Receiver Operator
Curve (ROC) and Precision-Recall Curve; the area under them is called AUROC and
Average Precision, respectively. C. To alleviate the class imbalance, only the dipoles
within a certain distance of the patch center are considered; such distance is set to
25.7 mm to consider approximately 50% of dipoles in each category.
Data for these graphs was obtained from a single trial of synthetic data described in
Chapter 4. Reference source distribution S was constructed with no-noise and the
source estimate Ŝ was computed using sLORETA .
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The Receiver-Operator Curve (ROC) itself is the parametric curve defined by

(FPR (β) ,TPR (β)), where the False Positive Rate (FPR) and True Positive Rate

(TPR) are defined as

FPR(β) =
FP (β)

FP (β) + TN (β)
(3.3.18)

TPR(β) =
TP (β)

TP (β) + FN (β)
(3.3.19)

The interpretation of the Receiver-Operator Curve is that each selection of β

balances the ratios of True Positives and False Negatives:

� Large β =⇒ labels will be strict, with very few False Positives but many False

Negatives.

� Small β =⇒ labels will be permissive, with very few False Negatives but many

False Positives.

In general, extreme values of β will lead to the endpoints (0,0) and (1,1) of the ROC,

and a somewhat smooth trajectory will be observed as β increases.

A classifier for which TPR(β) ≈ 1 and FPR(β) ≈ 0 for all beta’s is preferable

whenever possible. Visually, this condition means that the ROC is ‘close to the top.’

This concept is formalized by taking the area under the ROC (AUROC): the

area inside [0, 1]2 ⊂ R2 below the ROC curve. In practice, the AUROC can be

computed numerically using the trapezoid rule as follows

AUROC =
1

2

∑
i

(FPR (βi)− FPR (βi−1)) (TPR (βi) + TPR (βi−1)) (3.3.20)

with βi the finite number of values that β can take.

With this definition at hand, we can rewrite the most desirable scenario where

AUROC ≈ 1.
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3.3.5.1 Local AUROC

AUROC can be biased on the presence of severe class imbalance when a class

has many more elements than the other. This phenomenon is represented in figure

3.2: panel A shows how the reference labels created using β0 only account for a

tiny fraction of dipoles available in the model, while panel B shows that the ROC is

unusually flat, regardless of the quality of the ESI estimation.

The class imbalance can’t be avoided on the ESI since the source patches are

globally sparse and compact –or at least we assume that.

One option to alleviate this issue is to consider only a small selection of dipoles

for classification. In other words, construct local estimated labels as

E (d)
β (n) =


1, if

∥∥∥Ŝ(n)∥∥∥
2
≥ βmaxn′

{∥∥∥Ŝ(n′)
∥∥∥
2

}
and ∥rn −mp∥ < d

0, otherwise

(3.3.21)

with rn the location of the n-th dipole, m∗ the location of the center of the closest

source patch, and d > 0 a parameter controlling how many dipoles are to be considered.

We can define local target labels analogously. To compute local true/false

positives/negatives, we must consider only ‘local’ dipoles. For example,

TP(d)(β) =
∑

n∈{1,...,N}
∥rn−mp∥<d

[
E (d)
β (n)

] [
R(d)

β (n)
]

(3.3.22)

This construction leads to a local AUROC. In order to satisfy it’s purpose, d

must be selected so that 1
N

∑N
n=1R

(d)
β0
(n) ≈ 0.5 for a suitable β0.

3.3.6 Average Precision

A different approach to class imbalance is using a different quantity with

properties similar to AUROC. Average Precision, also known as Area Under Precision-
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Recall Curve, is based on the parametric curve (Rec (β) ,Pre (β)), where the Precision

(Pre) and Rec (Rec) are defined as

Pre (β) =
TP (β)

TP (β) + FP (β)
(3.3.23)

Rec (β) =
TP (β)

TP (β) + FP (β)
(3.3.24)

where the true/false positive/negatives are defined as in equations 3.3.14, 3.3.15,

3.3.16, and 3.3.17.

Similar to AUROC, Average Precision can be computed numerically as follows

Avg. Pre. =
1

2

∑
i

(FPR (βi)− FPR (βi−1)) (TPR (βi) + TPR (βi−1)) (3.3.25)

Average Precision ranges from 0 to 1, with 1 being preferable.

Although the definition of Average Precision is very similar to that of AUROC,

it is different in many aspects. For example, the Precision-Recall Curve is somewhat

decreasing but displays some sharp zigzags. When the recall is approximately 1, the

precision is roughly equal to the ratio of elements between classes.

Similar to AUROC, defining a ‘local’ Average Precision is possible. In figure

3.2, we can observe that the Precision-Recall Curve is quite similar to its global

counterpart, or at least when compared against the local and global ROC. Informally,

we may observe that Average Precision is more robust to the class imbalance.
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CHAPTER 4

NUMERICAL EXPERIMENTS

Following the model equation from the forward model, Y = GS+ ε, each trial

of synthetic data is constructed following these steps:

1. Construct the leadfield matrix G based on pertinent anatomical data.

2. Select a ‘seed’ dipole at random to determine the location of the source patch.

3. Construct the source distribution, S, based on the source patch.

4. Construct a noiseless version of the EEG measurements, Y0 = GS.

5. Construct some additive noise, ε, in order to achieve a prescribed Signal-to-Noise

Ratio (SNRdB) measured in decibels.

6. Construct the EEG measurements, Y = Y0 + ε.

After each trial of synthetic data is created, ESI is performed to estimate

the source distribution by using some of the methods described in Chapter 3. The

performance of these methods is then measured using the performance metrics

described in the same chapter.

It is important to mention that whenever an ESI method depended on a

parameter, its value was determined using either Generalized Cross-Validation (GCV)

or U-curve criterion when GCV was not possible.

4.1 Forward Model

For the construction of synthetic data, anatomy data was taken from the ICBM

152 template [6]. Segmentation and surface extraction were omitted since these

surfaces are provided with the template. These surfaces are displayed in figure 4.1.
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Figure 4.1. A. Cortex surface for the ICBM 152 template, consisting of 15,002 vertices.
Views from top, front, left, right (interior), bottom. B. Triangulated surfaces used for
the 4-sphere forward model: cortex, inner skull, outer skull, head.

Electrodes were placed according to the 10-10 International System; a total

of M = 90 electrodes were considered. See either figure 4.2 for visual reference or

[15] for a more precise description of the electrode placement protocol. No reference

electrode is considered for the synthetic data; the sensor data will be re-referenced to

the average.

The positions of the distributed dipoles were set along the brain cortex, and

their orientation was orthogonal to the cortex. A total of N = 15, 002 electrodes were

considered.

For illustrative purposes, the duration of the recordings was set to a total of

T = 1 time stamps.

4.1.1 Source Distribution

The source distribution, S, is constructed by considering one small source patch;

the dipoles in the source patch are selected as those being close to a seed dipole,
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A B

Figure 4.2. Electrode Placement according to the 10-10 International System. A.
Schematic with the electrode labels. B. Electrodes at the ICBM152 head.

indexed by n∗. The seed dipole was selected randomly for each trial; a total of 30

trials were simulated.

After selecting the seed dipole, indexed by n∗, S is constructed as

S(n) = f (∥rn − rn∗∥ /κ) (4.1.1)

with rn the location of the n-t dipole, f : R+ → R a decreasing function, and κ > 0 a

scaling parameters.

For illustrative purposes, four different options for f are considered:

Square fsq(x) =


1, if x ≤ 1

0, otherwise.

(4.1.2)

Gaussian fGauss(x) = e−x2/κ (4.1.3)

Exponential fexp(x) = e−x/κ (4.1.4)

Polynomial fpol(x) =
√

max {1− x2, 0} (4.1.5)

Apart from point sources, source patches created using fsq are relatively common;

their sharp edges facilitate determining the size of the source patch without ambiguity.

Some other papers have used fGauss to obtain smooth source patches in space.
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Square patch

Gaussian patch

Exponential patch

Polynomial patch

Figure 4.3. Different source patches used to generate synthetic data.

Functions fexp and fpol are introduced here to produce source patches with

intermediate properties. The source patches constructed using fpol have a finite

support and a smooth peak, while the ones built using fexp present spatial smoothness,

a sharp peak, and a ‘heavy tail’ in space. See figure 4.3 for a visual example of these

properties.

For the synthetic data in this chapter, we set κ = 12.6 mm in order to obtain

source patches with a surface area of approximately 5 cm2.

4.1.2 Noise

For simplicity, only additive white noise is added to the sensors, i.e., we use

ε(:) ∼ N
(
0, diag (σ1, . . . , σM)2

)
(4.1.6)

with σm ≥ 0 for m = 1, . . . ,M the noise variances for each EEG electrode.
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Under these conditions the noisy recordings, Y, have the following distribution

(Y | S) = N
(
GS, diag (σ1, . . . , σM)2

)
(4.1.7)

The channel SNR (in decibels) for the m-th sensor is given by

SNRm = 10 log10

(
([GS] (m))2

σ2
m

)
(4.1.8)

With a prescribed SNR value, the parameters σm are selected as follows

σ2
m = 10−SNR/10 [GS] (m) (4.1.9)

Based on informal observations, we consider an SNR level of 20 dB a low-noise

condition. Notice that the condition of lack of noise is attached to σm = 0 and

SNR = ∞.

4.2 Results

Different ESI algorithms, described in Chapter 3, were tested using this data:

Weighted Minimal Norm, Multivariate Source Prelocalisation, sLORETA, and SISSY.

These algorithms were selected due to their presence in the literature and because of

their small computational time.

Notice that only one ℓ1-norm-based method is accounted for. Although it would

be optimal to consider many more methods, the large number of trials reduced the

number of methods that can be effectively compared. The priority of this work is the

ESI method presented in Chapter 5.

The solutions produced by these methods, referred to as ‘solvers’ in the figures,

are evaluated using the quantities described in Chapter 3. Figure 4.4 displays some

of these results.

Before assessing the results, it is worth reviewing the assumption of depth

weighting: dipoles closer to the cortex tend to be over-represented on the minimal-
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Figure 4.4. Performance metrics for some linear estimators for the synthetic data
described in the text: the ‘Human’ dataset. The dataset contains 30 trials per shape
of source patch, and the SNR is set to 30 dB.

norm estimates. In previous sections, we described some mechanisms that could

alleviate this effect. It is natural to verify whether those mechanisms work or, on the

contrary, whether an estimate’s performance depends on the depth of the original

source patch.

Table 4.1 shows the Pearson correlation of the performance metrics. We can

observe that all the metrics seem to be correlated with each other, but none of them

correlate with the depth of the source patch.

4.2.1 Effect of Shape of Source Patch

A large group of factors affects the wide variability observed in the results. For

instance, figure 4.5 shows the results for only the SYSSY solver. We can observe that
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SD AUROC AP Depth

DLE 0.403 -0.525 0.036 -0.049
SD -0.586 -0.464 0.128
AUROC 0.524 -0.114
AP -0.094

Table 4.1. Pearson correlation between performance metrics with the ‘Human’ dataset.

some source patch shapes are recovered more accurately than others. For a reference

of the shapes of source patches used, see figure 4.3.

This effect was expected since the assumption of minimal norm tends to favor

estimations with few high-norm dipoles and many low-norm dipoles. In other words,

minimal-norm estimates tend to resemble point sources; if the original source resembled

a point source, then the reconstruction was accurate.

Although this phenomenon was observed for all the considered estimators, the

effect is exaggerated for SISSY due to its formulation.

4.3 Effect of Noise

Intuitively, we may expect that the performance of the solvers degrade in the

presence of stronger noise. In figure 4.6, we may observe that for all the solvers

considered, an SNR below 20 dB impairs the performance of the solvers drastically.

Performing the same observations over different shapes of source patches doesn’t

change this conclusion significantly.
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Figure 4.5. Changes in performance metrics for the SISSY estimator with the ‘Human’
dataset when different shapes of source patches are used.
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Figure 4.6. Changes in performance metrics for some estimators with the ‘Human’
dataset as the SNR decreases.
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CHAPTER 5

NOVEL METHOD USING ANATOMICAL PRIOR INFORMATION

When considering using more than one data modality for analysis, there are

many ways to combine them. The asymmetric multi-modal data analysis paradigm

consists of selecting a tool designed for one data modality and incorporating infor-

mation from all the other data modalities into the analysis. This paradigm fits the

purpose of performing the Electronic Source Imaging while incorporating information

from additional data modalities.

In particular, we consider the case in which a physical region is known to

produce a higher background electrical activity. The location and extent of this region

are observed using some imaging techniques independent of EEG.

The motivation for this particular setup comes from a specific experimental

setup in which an ischemic stroke is induced, and later, the affected area is determined

using histochemical analysis.

5.1 Model Assumptions

The relationship between the recordings from surface electrodes, Y, and the

magnitudes of equivalent distributed dipoles located inside the brain, S, is given by

the following equation

Y = G (S+ ε) , (5.1.1)

with Y ∈ RM×1, S ∈ R3N×1, G ∈ R3N×M , and ε ∈ RN×1. This model was described

in detail in Chapter 2, including the interpretation and derivation of the leadfield

matrix G. Notice that this model considers only internal noise.
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P-regions

Dipoles, labeled by set

Figure 5.1. Construction of labels based on P-regions, representing regions when a
particular symptom, independent of electrophysiological measurements, was observed..

Ideally, the extra information provided by the additional data modality should

allow us to identify an anatomical region exhibiting pathological behavior; for simplic-

ity, we refer to this region as a P-region. For generality, we consider the possibility

of multiple disjoint P-regions, say K with 1 ≤ K < ∞. P-regions are labeled

P1, P2, . . . , PK , with P0 the dipoles outside all P-regions. For notation, define

Pk = {n ∈ {1, 2, . . . , N} | n-th dipole is in the k-th region} (5.1.2)

As a remark, the P-regions are defined independently of the dipoles; each Pk is

the set of dipoles inside a specific P-region. If a different set of dipoles is selected

for the same subject and pathology data, the P-regions will change but will be

constructed in the same anatomical space.

For ease of handling in the model, the P-regions regions are encoded using the

matrix P ∈ {0, 1}N×K defined as

P (n, k) =


1, if n ∈ Pk

0, otherwise.

(5.1.3)
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The relation between the current density, S, and the P-regions is incorporated

into the model by adjusting the covariance of S depending on which P-region it is

located. To be specific, consider,

Cov (S (n1) ,S (n2)) =


γk, if n1, n2 ∈ Pk,

0, otherwise

(5.1.4)

with 0 < γ0 ≪ γk for 1 ≤ k ≤ K. This guarantees that P-regions have synchronized

activity that is larger in magnitude than the background activity.

The assumption of a perfect synchrony is introduced in order to simplify the

model. We can separate the source, S, into a regionally-synchronized activity, R, and

a background noise, B, as

S+ ε = B+PR = B+
K∑
k=1

P(:, k)R(k) (5.1.5)

with B ∈ RN×1,R ∈ RK×1 independent with each other. These assumptions about

P-regions can be combined with Gaussian assumptions, leading to

B ∼ N (0, γ0IN) (5.1.6)

R ∼ N (0, [diag (γ1, γ2, . . . , γK)− γ0IK ]) (5.1.7)

5.2 Proposed Estimator

Given the assumptions described in the previous section, we propose constructing

a linear estimator for S similar to those presented in Chapter 3. This choice follows

the expectation of short computation times and memory requirements. We expect

that the additional information from P-regions will decrease spatial dispersion while

not significantly increasing computational speed.
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The estimator of S will be constructed as a Maximum A Posteriori estimator,

maximizing the log probability of S | Y , as

Ŝ = argmax
S

log (Prob (S | Y))

= argmax
S

log (Prob (Y | S) Prob (S)) (5.2.1)

the structure of P-regions is incorporated by using the following decomposition

S = B+PR = B+
K∑
k=1

P(:, k)R(k) (5.2.2)

and the model equation Y = GS is incorporated as a constraint, resulting in the

following optimization problem

{
B̂, R̂

}
= argmax

B,R

σ

2γ0
∥B∥2 +

K∑
k=1

σ

2 (γ0 − γk)
∥P(:, k)R(k)∥2

s.t. G (B+PR)−Y = 0 (5.2.3)

where γ0, γ1, . . . , γk, σ ∈ R+ are parameters related to the assumed distributions of

B and S given in equations (5.1.6) and (5.1.7). For ease of notation, we define the

following equivalent parameters

θ0 =
1

σ
γ0 (5.2.4)

θk =
1

σ
(γk − γ0) , for k = 1, 2, . . . , K. (5.2.5)

Notice that the parameter σ scales all the other parameters γk equally, and

thus, it can be ignored when discussing their relative magnitudes only.

The constrained optimization problem in equation (5.2.3) is solved using the

method Lagrange multipliers. First, we construct the respective Lagrangian function

L (B,R, λ) =
1

2θ0
∥B∥2 +

K∑
k=1

1

2θk
∥P(:, k)R(k)∥2 + λT (G (B+PR)−Y) (5.2.6)
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which can be minimized by solving the normal equations, i.e., the partial derivatives

equal to zero. The partial derivatives are given by

∂

∂B
L (B,R, λ) =

1

θ0
B+GTλ (5.2.7)

∂

∂R(k)
L (B,R, λ) =

1

θk
P(:, k)TP(:, k)R(k) +P(:, k)TGTλ (5.2.8)

∂

∂λ
L (B,R, λ) = G (B+PR)−Y (5.2.9)

Solving the normal equation for (5.2.7) and (5.2.8) lead to the following identities

B = −θ0G
Tλ (5.2.10)

R(k) = −θk
[
P(:, k)TP(:, k)

]−1
P(:, k)TGTλ (5.2.11)

Notice that P(:, k)TP(:, k) ∈ N1×1 represents the number of dipoles on the k-th

P-region, and thus is invertible. For ease of notation, define

|Pk| = P(:, k)TP(:, k) (5.2.12)

From equation (5.2.9), we may obtain a closed-form expression for λ,

Y = GB+G
K∑
k=1

P(:, k)R(k)

= G
(
−θ0G

Tλ
)
+G

K∑
k=1

P(:, k)
(
−θk |Pk|−1P(:, k)TGTλ

)
= −G

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GTλ (5.2.13)

which leads to the following identity

λ = −

[
G

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GT

]−1

Y (5.2.14)

For robustness and to ensure that the resulting matrices are invertible, we

propose using a regularized λρ, defined as

λρ = −WρY (5.2.15)
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Wρ =

[
G

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GT + ρIM

]−1

(5.2.16)

where ρ > 0 is a regularization parameter that must be determined using any of the

heuristics defined in Chapter 3.

Using λρ in equations (5.2.10) and (5.2.11) lead to the estimators

B̂ = θ0G
TWρY (5.2.17)

R̂(k) = θk |Pk|−1P(:, k)TGTWρY (5.2.18)

The estimator for S is constructed as in equation (5.2.2),

Ŝ = B̂+
K∑
k=1

P(:, k)R̂(k)

=
(
θ0G

TWρY
)
+

K∑
k=1

P(:, k)
(
θk |Pk|−1P(:, k)TGTWρY

)
=

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GTWρY (5.2.19)

Thus, the proposed estimator is given by

Ŝ =

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GTWρY (5.2.20)

Wρ =

[
G

(
θ0IN +

K∑
k=1

θk |Pk|−1P(:, k)P(:, k)T

)
GT + ρIM

]−1

(5.2.21)

For ease of notation, the parameter θ0 will be replaced by rewriting

Ŝ =

(
IN +

K∑
k=1

τk |Pk|−1P(:, k)P(:, k)T

)
GTWλY (5.2.22)

Wλ =

[
G

(
IN +

K∑
k=1

τk |Pk|−1P(:, k)P(:, k)T

)
GT + λIM

]−1

(5.2.23)

with τk = θk/θ0 > 1 and λ = ρ/θ0.
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5.2.1 Implementation notes

The computation of the estimator described in equations (5.2.22) and (5.2.23)

can be accelerated by avoiding explicit matrix multiplications whenever possible. For

instance, consider the matrices in the form

Ak = |Pk|−1P(:, k)P(:, k)T (5.2.24)

for 1 ≤ k ≤ K. Notice that each Ak ∈ RN×N is an averaging operator with support

over the corresponding P-region. In other words, for any vector V ∈ RN we have

[AkV ] (n) =


1

|Pk|
∑
n′∈Pk

V (n′), if n ∈ Pk,

0, otherwise.

(5.2.25)

With this notation at hand, we can rewrite equation (5.2.22) as

Ŝ =

(
IN +

K∑
k=1

τkAk

)
GTWλY (5.2.26)

Using the matrices Ak, we can construct Ŝ row-by-row as follows:

B̂0 = GTWλY (5.2.27)

R̂0(k) =
1

|Pk|
∑
n∈Pk

B̂0(n), for 1 ≤ k ≤ K (5.2.28)

Ŝ = B̂0 +
K∑
k=1

τkGR̂0(k) (5.2.29)

with B̂0 ∈ RN×1, R̂0 ∈ RK×1. Alternatively, we can construct Ŝ row by row as

Ŝ(n) =


B̂0(n) + τkR̂0(k), if n ∈ Pk with 1 ≤ k ≤ K,

B̂0(n), if n ∈ P0

(5.2.30)

Depending on how large the P-regions are, i.e., how large are each |Pk| with respect

to N , it would be more convenient to use either (5.2.29) or (5.2.30). In a practical
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setting, we informally expect each P-region to contain less than 10% of the total

dipoles.

Next, equation (5.2.23) is simplified by considering the properties of the matrices

involved. Notice that each matrix Ak is symmetric and idempotent. Furthermore, if

the P-regions are non-intersecting, then

Ak1Ak2 =


Ak1 , if k1 = k2,

0, otherwise.

(5.2.31)

This property can be extended to get powers and decomposition of the averaging

operators Ak. In particular, we have the following[
q0IN +

K∑
k=1

qkAk

]2
= q20IN +

K∑
k=1

(
2q0qk + q2k

)
Ak (5.2.32)

which leads to the following identity[
IN +

K∑
k=1

(√
1 + τk − 1

)
Ak

]2
= IN +

K∑
k=1

τkAk (5.2.33)

For ease of notation, define

AΘ = IN +
K∑
k=1

(√
1 + τk − 1

)
Ak (5.2.34)

With this decomposition at hand, we can rewrite Wλ as

Wλ =
[
(GAΘ) (GAΘ)

T + ρIM

]−1

(5.2.35)

Notice that AΘ ∈ RN×N is a sum of matrices in the form of Ak which, as seen

in equation (5.2.25), work as averaging operators. We can conclude that AΘ acts as

a weighted average operator over the rows of G. In other words, we can write

[GAΘ] (:, n) =


GT (:, n) +

(√
1 + τk − 1

)
|Pk|

∑
n′∈Pk

GT (:, n′), for n ∈ Pk, 1 ≤ k

GT (:, n). for n ∈ P0

(5.2.36)
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Clearly,
(
AΘG

T
)
∈ RN×M can be computed by updating G on a similar way

as in equation (5.2.29). The similarity can be made more clear by using similar steps.

GR(:, k) =
1

|Pk|
∑
n∈Pk

GT (:, n), for 1 ≤ k ≤ K, (5.2.37)

[GAΘ] (:, n) =


GT (:, n) +

(√
1 + τk − 1

)
GR(:, k), for 1 ≤ k ≤ K

GT (:, n). for n ∈ P0

(5.2.38)

with GR ∈ RK×M . Notice that, once (GAΘ) is computed, it can be subject to SVD

decomposition in order to compute Wλ efficiently. This process is similar to all the

kernels described in Chapter 2 for linear methods.

We may skip part of the construction and use the eigendecomposition of

(GAΘ) (GAΘ)
T directly, which is

(GAΘ)(GAΘ)
T = UΣ2UT (5.2.39)

where U ∈ RM×M is an orthogonal matrix with eigenvectors of (GAΘ) (GAΘ)
T as

columns, and Σ ∈ RM×M a diagonal matrix given by

Σ(m,m) = σm (5.2.40)

for m = 1, 2, . . . ,M and σm an eigenvalue of (GAΘ) (GAΘ)
T . Without loss of

generalization, we may assume

σ1 ≥ σ2 ≥ · · · ≥ σM (5.2.41)

With these matrices at hand, it is possible to compute Wλ as

Wλ = U
(
Σ2 + ρIM

)−1
UT (5.2.42)

with the diagonal matrix in the middle given by

(
Σ2 + ρIM

)−1
(m,m) =

1

σ2
m + ρ

(5.2.43)
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SD AUROC AP Depth

DLE 0.733 -0.477 -0.054 -0.097
SD -0.555 -0.393 0.079
AUROC 0.536 -0.103
AP -0.108

Table 5.1. Pearson correlation between performance metrics for the proposed estimator
and the Human dataset.

With this list of considerations, we claim that this new method is not significantly

more computationally expensive than the linear methods presented in Chapter 2.

5.2.2 Synthetic Data (Human)

The effectiveness of the proposed ESI method is tested using synthetic data

created following the same protocol described in Chapter 4.

In order to use the proposed method, one single P-region is constructed for

each trial from the synthetic dataset by following these steps:

1. Recall the position of the seed dipole, rn∗ . The source patch has an approximate

radius of κ = 12.6 mm.

2. Select a point at the cortex, c, so that ∥rn∗ − c∥ < κ.

3. Region P1 consist on a ball with center at c an radius 2κ.

4. Region P0 comprises all dipoles not in P1.

The use of one single P-region is a natural selection since only one connected

source patch was considered. Model misspecification is not explored.

The results from these numerical experiments are collected in the figures 5.2,

5.3, and 5.4, as well as in table 5.1. These figures are extensions of figures 4.4, 4.5, and

4.6 with additional data. The findings from these observations may be summarised

as follows:
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Figure 5.2. Performance metrics for some linear estimators, including the proposed
one, for the Human synthetic dataset. The dataset contains 30 trials per shape of
source patch, and SNR is set to 30 dB.

� The proposed solver outperforms the linear methods in Distance Localization

Error but is outperformed by them in Spatial Dispersion.

� The proposed method is quite sensible to the shape of the source patch.

� The proposed method seems to outperform all methods, including SISSY, in

high-noise conditions, as seen by AUROC and Average Precision.

� For the proposed method, performance degradation due to increasing noise is

unremarkable –when compared with other linear estimators.

Source patches that resemble point sources, such as the exponential profile, are

more easily recovered by all methods; the proposed method is no exception. Average

Precision seems to be particularly sensible to the labels created using different shapes

of source patches.
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Profile Exponential Gaussian Square
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Figure 5.3. Changes in performance metrics for the proposed estimator with the
Human dataset when different shapes of source patches are used..
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Figure 5.4. Changes in performance metrics for the proposed estimator with the
Human dataset as the as the SNR decreases.
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The presence of P-regions can explain the proposed method’s high performance

in the classification metrics: the location of the source is already given, to some

extent, independently of noise. In other words, the additional information gives a hot

start in creating estimated labels.

The proposed method’s advantages seem marginal; they stay within the expected

values for linear estimators.

5.2.3 Synthetic Data (Animal Model)

5.2.3.1 Forward Model

We consider a young male from the species Sus scrofa: Yucatan minipig for

this synthetic dataset. This selection follows from the real data used in the next

subsection in preparation for it.

Anatomical data was obtained from an age-matched publicly available MRI

template published by Joanne et al. [4].

The skull-stripped MRI was segmented using the CAT12 software [7]. We used

the provided skull-tripped MRI to accommodate the anatomical differences concerning

human subjects. Later, the cortex surface and its envelope were reconstructed; both

surfaces are displayed in figure 5.5.

Following the protocol from the real data, a total of 8 surface electrodes were

placed at the cortex; the placement is 10 mm parallel to the Central Line and 10 mm

away from the Anterior Edge. See figure 5.6 for a visual guide of the locations of the

electrodes.

An adaptive layer of N = 4, 940 unconstrained dipole sources was constructed

over the brain volume. For the forward model, we considered only the surface ECoG

electrodes (M = 8). Only one single point in time was considered (T = 1).
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Figure 5.5. A. Cortex surface for the Sus scrofa template by Joanne et al. [4],
consisting of 8,395 vertices. Views from top, front, left, right, bottom. B. Triangulated
surfaces used for the 2-sphere forward model: cortex, cortex envelope.

L1

L2

L3

L4

R1

R2

R3

R4

A B

Figure 5.6. A. Approximate location and labels for the surface electrodes on a diagram.
B. Electrode locations on the cortex triangulated surface.

For this particular model, a 2-sphere model was constructed with the media

being (1) the brain and (2) the space between the cortex and its envelope. This

second media is justified because the CSF and connective tissues were not removed

from the subject; additionally, it is required computationally due to the reflective

conditions at the outer layer. See chapter 2 for more details.

The leadfield matrix was computed using OpenMEEG [10] within the Brain-

storm toolbox [30].
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SD AUROC AP Depth

DLE 0.870 0.138 0.105 -0.192
SD 0.028 0.008 -0.144
AUROC 0.957 -0.035
AP -0.063

Table 5.2. Pearson correlation between performance metrics for the proposed estimator
and the Animal Model dataset.

5.2.3.2 Results

As for the previous synthetic dataset, the proposed method is tested. A single

P-region is constructed per each trial, following the same protocol with κ = 8.95 mm.

This value of κ was selected so that the resulting source patches have an approximate

volume of 3 cm3, which is similar to the volume of the region with pathological

symptoms observed in the real data.

The battery of visualizations from figures 5.7, 5.8, and 5.9 tell us similar

information as with the other synthetic dataset: the performance of the proposed

method is within the expected, and the estimation is affected by the shape of the

source patches.

As for the other datasets, in table 5.2, we have confirmation that the Distance

Localization Error and the Spatial Dispersion are correlated, as well as AUROC and

Average Precision. None of the variables is significantly correlated with the depth of

the source patch.

For this particular dataset, the performance degradation due to increased noise

is not very aggressive. This can be explained by the smaller brain volume, which

makes the source patches relatively bigger.
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Figure 5.7. Performance metrics for some linear estimators, including the proposed
one, for the Animal Model synthetic dataset. The dataset contains 100 trials per
shape of source patch, and the SNR is set to 20 dB.

5.2.4 Real Data

The effectiveness of the ESI method is now tested using a dataset from an ex-

periment on acute ischemic stroke in an animal model; this experiment was performed

by Dr. J. Pascal et al. at UT Southwestern Medical Center [1, 3].

Acute Ischemic Stroke was induced in the subject by obstruction of the Middle

Cerebral Artery. In summary, a stroke is the obstruction of a vein or artery in the

brain, which stops the supply of oxygenated blood. The brain regions affected by

hypoxia (lack of oxygen at a cellular level) are called the Ischemic Penumbra.

This procedure is referred to as the induced lesion for ease of notation.
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Figure 5.8. Changes in performance metrics for the proposed estimator with the
Animal Model dataset when different shapes of source patch are used.
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Figure 5.9. Changes in performance metrics for the proposed estimator with the
Animal Model dataset as the SNR decreases.
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Acute Ischemic Stroke at 

the Middle Central Artery

In vivo: Post-mortem:

Stain with TTC

(Tetrazolium chlorine)

Normal tissue (    )

Hypoxic tissue (    )

Figure 5.10. P-regions are determined based on observed symptoms from a pathology:
the TTC stain colors normal tissue as white and hypoxic tissue as red. Hypoxia is
due to an induced acute ischemic stroke in the Middle Cerebral Artery on an animal
model (pig) .

5.2.5 Pathology Data

Posterior to the experiment, the subject was sacrificed. During a post-mortem

analysis, the subject’s brain was extracted and sliced in order to be stained with 2, 3,

5 triphenyltetrazolium (TTC).

The operation of the TTC staining is based on the fact that TTC (white) is

degraded to 1,3,5-triphenyl formazan (TPF, red) on the presence of dehydrogenases

in metabolically active cells. As a result, tissue colored white was affected by necrosis,

and tissue colored red was unaffected [17].

Within the framework of this work, pictures obtained after TTC staining were

registered to the template MRI to identify retroactively the Ischemic Penumbra at

the time of the ECoG recordings.

With this information, we constructed the P-region P1 as the Ischemic Penumbra

and the rest of the brain as the region P0. See figure 5.10 for a guide to this process.

Although the model can consider multiple P-regions, based on the observed data,

only one region is used for this dataset.
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Figure 5.11. Recordings from surface electrodes. The point in time used for figure
5.12 is highlighted. Time is measured after the induced lesion.

5.2.6 Results

After using the TCC data to construct the P-regions, the proposed method was

used over recordings from the subject after the induced lesion. Other ESI methods

(wMNE, MSP, and sLORETA) were also tested on the same dataset for comparison.

Here, we show an image from the reconstruction at t = 78.507 s after the lesion

was performed. As shown in figure 5.11, a small peak can observed at this point in

time. However, this specific point in time is not of particular interest; it is merely

presented as an example to compare the behaviors of different ESI methods.

In figure 5.12, we can observe the cortical activations: the estimated magnitudes

of the distributed dipoles superimposed with the subject’s MRI. A few coronal slices

were used to illustrate the 3D extent of the estimations.

Notice that wMNE and MSP suffer from depth weighting as their estimations

are concentrated near the cortex, especially near the sensors. These estimations are

also relatively compact in space, which is a positive quality.

On the other hand, sLORETA is spread throughout the whole volume, making

it difficult to judge whether it is sensible to the depth of the sources.
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Figure 5.12. Coronal slices of the subject’s brain displaying the magnitude of dis-
tributed dipoles; maximum magnitude was scaled to 1 for comparison. Results were
obtained using various ESI methods: wMNE (A), MSP (B), sLORETA (C), and the
proposed method (D).
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The proposed method behaves much like sLORETA. Although the spread is

similar, we can observe a slightly better focus in space, with regions far from the source

possessing lower magnitudes. Notice that the high amplitude region is diffusively

aligned with the P-region shown in figure 5.10.

The numerical experiments show that source localization is not heavily correlated

with depth for one simple case: a single source patch of relatively small size. We

observed that all ESI methods under consideration, including the proposed method,

reconstruct better sources whose shape is similar to a point source.

The results from real data suggest that the real source patch may be large in

size, and its shape is not similar to a point source.

Based on this data, we can infer that wMNE and MSP enforce the minimal-norm

assumption by preferring point-like solutions. In contrast, the sLORETA assumption

of smoothness in space is more appropriate for large sources but leads to overspreading.

The proposed method’s additional information makes it prefer sources located near

or at P1, but it also selects sources that extend on the entirety of P1 and beyond.

For future work, we suggest using this assumption in combination with stronger

assumptions of minimal-norm. Maybe the concept of P-regions can be combined with

methods based on the ℓ1 norm.
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