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ABSTRACT

BATCH CULTURE MODELS OF THE MURINE GUT MICROBIOME & THE

IMPACT OF SIMPLE DORMANCY ON DORMANCY-CAPABLE

MICROORGANISMS MODELS

Ana Clarisa Mendez, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Hristo V. Kojouharov

The proposed mathematical biology research utilizes mathematical models to

gain insight into biological systems. These systems of ordinary differential equations

model diverse topics, ranging from gut microbiomes to harmful algal blooms. A

complete stability analysis, supporting phase plane portraits, bifurcation diagrams,

and numerical simulations will accompany the models presented.

In Chapter 2, the murine gut microbiome is modeled to match laboratory

experiments in the literature [27]. In these experiments, mice eat plasmid-carrying

“donor” bacteria and naturally carry plasmid-free “resident” bacteria in their gut.

The models aim to capture the behavior of plasmids, donor bacteria, and resident

bacteria.

Chapter 3 explores dormancy and its impact on the population dynamics

of microorganisms across different environments. Dormancy is a state of reduced

metabolic activity that enables dormancy-capable organisms to survive unfavorable

or harsh conditions. Each of the three dormancy models presented concerns a select

iv



combination of these topics: the murine gut microbiome, golden algae, nutrient

recycling, batch cultures, and chemostats.

Lastly, Chapter 4 provides a biological interpretation of the theoretical results

and situates each model in context with others found here and in recent mathematical

and scientific literature.
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CHAPTER 1

Introduction

The proposed mathematical biology research employs mathematical models

to enhance the understanding of biological systems. These systems of ordinary

differential equations model various topics, ranging from gut microbiomes to harmful

algal blooms. The following brief introduction to these topics will offer biological

context to the models presented in this dissertation.

Chapter 2 models the murine gut microbiome to match laboratory experiments

in the scientific literature, which we previously simulated [27]. Murine refers to

mice, and the murine gut microbiome pertains to the microorganisms residing in

the digestive tract of mice. Of particular interest is Escherichia coli, a bacteria

and “model organism” that is often genetically engineered to contain plasmids [25].

Plasmids are small, circular, double-stranded DNA molecules that exist outside the

chromosomal DNA of a cell; plasmids can be expelled, taken up from the environment,

or transferred between bacterial cells [52]. During the experiments, mice consumed E.

coli that contained a genetically engineered plasmid with both a reporter gene and an

antibiotic resistance gene. Then, bacteria collected from the murine fecal pellets are

quantified via plate assay to examine the persistence of the plasmid in the murine

gut.

We create mathematical models of paired ordinary differential equations to

represent the population dynamics of plasmid-carrying and plasmid-free bacteria in

the murine gut microbiome. The fundamental dynamics of the batch culture models

are plasmid loss, plasmid uptake, and plasmid transfer between cells. These models
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will help us understand competition and co-existence between these bacteria and

predict the prevalence of plasmid-carrying bacteria within batch cultures. Analyzing

and comprehending these bacterial dynamics is a considerable step toward predicting

and controlling bacterial growth processes; this control is vital for research, commercial

applications, and gut microbiome health and stability.

Chapter 3 explores dormancy and its impact on the population dynamics of

different microorganisms. Dormancy is a state of reduced metabolic activity that

enables dormancy-capable organisms to survive unfavorable or harsh conditions.

Microorganisms exhibit dormancy through different mechanisms: endospores, cysts,

akinetes, latency, quiescence, etc. [58]. Below are examples of such microorganisms:

• Bacteria such as Bacillus subtilis and Clostridium botulinum have the ability to

form endospores [40].

• Archaea such as Halobacterium salinarum can enter a state of quiescence [30].

• Fungi such as Aspergillus niger and Penicillium chrysogenum can produce

spores [41].

• Protozoa such as Entamoeba histolytica can enter a cyst formation [4].

• Algae such as Prymnesium parvum can form non-motile dormant cells [20].

• Viruses such as the herpes simplex virus can enter latency periods in host cells

[12].

Out of the above group, there are plenty of noteworthy microorganisms. For

example, the herpes simplex virus continues to infect roughly 67% of all humans

[29]. Bacillus subtilis has been found to reside in human gastrointestinal tracts

[23], while Penicillium chrysogenum is used to make antibiotics [57]. Prymnesium

parvum can cause harmful algal blooms, decimating local aquatic ecosystems in the

process [31]. These microbes have captured the attention of the medical community,

governments, and environmental protection agencies and organizations. Using math-
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ematical modeling, researchers aim to improve understanding of such species and

other dormancy-capable microorganisms.

The dormancy models in this chapter are batch culture and chemostat models,

all of which incorporate dormancy as first-order conversion. The first of the three

models builds from Chapter 2 and incorporates dormancy in the murine gut micro-

biome. We have published the second and third models in the scientific literature,

incorporating nutrient recycling at different efficiencies [34, 2]. The second model

concerns Prymnesium parvum, also known as golden algae, in a batch culture setting

with complete nutrient conservation [34]. The third model generalizes the Golden

Algae model, particularly nutrient recycling, to fit a chemostat setting [2].
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CHAPTER 2

Batch Culture Models of Plasmids in the Gut Microbiome

This chapter individually and jointly analyzes the fundamental dynamics of

plasmids and bacteria in the gut microbiome. The fundamental dynamics under

consideration are plasmid loss, transformation, and conjugation.

2.1 Plasmid Loss Model

In this section, plasmid loss will be the focus and the only plasmid behavior

incorporated into the batch culture model presented below. Plasmid loss can occur

in several ways: during cell division, cell lysis, or through secretion systems [42, 48].

Furthermore, plasmid-carrying cells often face a metabolic burden due to plasmid

replication and production levels [14]. This burden intensifies as the number of

plasmid copies produced increases, reducing bacterial replication rates. Bacteria

with higher metabolic burdens naturally replicate more slowly and are therefore

outperformed by faster-replicating bacteria with fewer metabolic burdens.

2.1.1 Formulation of Plasmid Loss Model

We consider a straightforward batch culture model of bacterial competition

between plasmid-carrying donor bacteria, BP , and plasmid-free resident bacteria, BA,
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in the presence of constant plasmids in a homogeneous environment. Such a model

consists of the following system of two ordinary differential equations:

dBP

dt
= α1BP

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-carrying bacteria

− η1BP︸ ︷︷ ︸
plasmid
loss

dBA

dt
= α2BA

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-free bacteria

+ η1BP︸ ︷︷ ︸
plasmid
loss

.
(2.1.1)

We assume that bacteria follow a logistical growth with carrying capacity K [24].

Furthermore, experimental evidence suggests that carrying a plasmid imposes a

metabolic burden on the bacteria, leading to either a slower growth rate or lower

carrying capacity for plasmid-carrying bacteria. In this model, we assume that

plasmid-carrying bacteria have a lower maximal growth rate, α1, than plasmid-free

bacteria, α2, while the relative capacity of BP is denoted by γ. Thus, α1 < α2,

with γ > 1. The rate of bacterial death is negligible as we are modeling bacterial

experimental growth during the exponential phase in a batch culture. Moreover, we

assume plasmids are constant and homogeneous across the environment. Bacteria

BP eliminates its plasmid and becomes BA at a constant rate η1. Table 2.1 lists the

model parameters with their descriptions and units.

Variable/Parameter Description Units

BP Donor/plasmid-carrying bacteria cells/µL
BA Resident/plasmid-free bacteria cells/µL
α1 Replication rate of donor bacteria 1/hour
α2 Replication rate of resident bacteria 1/hour
K Carrying capacity of the environment cells/µL
γ Relative capacity coefficient of BP −
η1 Rate of conversion from donor to resident bacteria 1/hour

Table 2.1: Model (2.1.1) parameters with their descriptions and units.

5



2.1.2 Analysis of Plasmid Loss Model (η1 ̸= 0, η2 = 0, β = 0)

In this subsection, System (2.1.1) is found to have three equilibria. We deduce

the criteria for the existence and stability of all equilibria. The stability conditions

are then summarized in Table 2.2 and corroborated in Figure 2.1.

By setting the right-hand sides of System (2.1.1) equal to zero, the following

three equilibria are found:

E0 = (0, 0) = (B0
P , B

0
A),

E1 = (0, K) = (B1
P , B

1
A),

E2 =

(
α2K(η1 − α1)

α1(α1 − α2γ)
,−K(η1 − α1)

(α1 − α2γ)

)
= (B2

P , B
2
A).

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P = 0 and B1

A = K are non-negative. Therefore, E1 is always

biologically feasible and always exists.

E2: Lastly, note B2
A = −α1

α2

B2
P . This means B2

P and B2
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E2. Thus, if E0 ̸= E2, E2 is

never biologically feasible. For our purposes, this means E2 never exists.

Moving forward, only E0 and E1 are eligible for analysis.

Next, we establish the stability conditions for the equilibria E0 and E1. The

following theorem regards the local stability of the trivial equilibrium E0.

Theorem 2.1.1. The trivial equilibrium E0 is always unstable.

6



Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 − η1 0

η1 α2

 .

Thus,

det
(
J
(
E0
))

= α2(α1 − η1)

and

tr (J (E0)) = (α1 − η1) + α2.

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= α2(α1 − η1) > 0 and tr
(
J
(
E0
))

= (α1 − η1) + α2 < 0.

Thus, α1 − η1 > 0 and tr
(
J
(
E0
))

= (α1 − η1) + α2 > 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the boundary equilibrium E1 is always locally asymptotically

stable.

Theorem 2.1.2. The boundary equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J
(
E1
)
=

 −η1 0

−α2γ + η1 −α2

 .

By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Clearly,

det
(
J
(
E1
))

= η1α2 > 0

7



and

tr (J (E1)) = −(η1 + α2) < 0.

Thus, E1 is always locally asymptotically stable.

Furthermore, the above stability analysis is summarized in Table 2.2 and supported

by the phase portraits in Figure 2.1.
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Figure 2.1: Phase portraits of System (2.1.1). The parameter values in (a) and (b) are
α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, and η1 = 10. E0 is unstable, as shown by
the direction field arrows moving away from E0 = (0, 0). E1 is locally asymptotically
stable, as shown by the direction field arrows moving toward E1 = (0, K).

Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

Table 2.2: Existence and stability of the equilibria of System (2.1.1).
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2.1.3 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (2.1.1), which were created

using the Matlab® ode45 solver. In this model, the only plasmid dynamic is plasmid

loss. Hence, conversion only happens in one direction: donor bacteria, BP , can lose

their plasmids and become resident bacteria, BA. This creates an uneven influx of

plasmid-free resident bacteria. It follows that the system will approach a steady state

where only the plasmid-free resident bacteria, BA, persists as inferred by the lone

stability of

E1 = (0, K) =
(
B1

P , B
1
A

)
of System (2.1.1).
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(a) BP (0) = 1000, BA(0) = 1000
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(b) BP (0) = 100000, BA(0) = 10

Figure 2.2: Numerical simulation of System (2.1.1). In (a) and (b), E0 is unstable and
E1 is locally asymptotically stable with parameter values α1 = 3, α2 = 3.7848, K =
200, 000, γ = 1.1, and η1 = 10.

Note the overall outcome of both simulations in Figure 2.2: BP = 0 and

BA = K. In (a), the initial population sizes are identical and
1

200
of the carrying

capacity, K. However, in (b), BP (0) is 100 times bigger, and BA(0) is 100 times

smaller in comparison to (a). Still, the outcomes are identical; this will be the case
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for any initial condition with at least one positive value. Furthermore, all numerical

simulations of System (2.1.1) can be categorized into two outcomes:

1. If BP (0) = BA(0) = 0, then the system will remain at E0 = (0, 0) =
(
B0

P , B
0
A

)
.

2. Otherwise, the system will trend towards and stabilize at E1 = (0, K) =
(
B1

P , B
1
A

)
.

2.2 Plasmid Acquisition Model

This section focuses on plasmid acquisition. The batch culture model presented

below incorporates two manners in which this behavior can occur. One process involves

the uptake of free plasmids from the environment through natural transformation.

This is a chance event of plasmid movement into the bacteria dependent upon the

characteristics of a given bacterial species and cell. The second mechanism accounted

for in this model is the transfer of plasmids through conjugation. In this process, a

bacteria with a transferable plasmid makes direct contact with a recipient bacteria

using its pilus to form a mating pair. After conjugation, both bacteria in the mating

pair will possess a plasmid [52].

2.2.1 Formulation of Plasmid Acquisition Model

We build off the previous model and incorporate plasmid acquisition instead of

loss. This means plasmid-free resident bacteria, BA, take in the plasmid via natural

transformation and become plasmid-carrying donor bacteria, BP , at a rate η2. In

10



addition, plasmid transfer occurs from BP to BA via conjugation at a rate β. Below

is the system of ordinary differential equations described above:

dBP

dt
= α1BP

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-carrying bacteria

+ η2BA︸ ︷︷ ︸
transformation

+ βBPBA︸ ︷︷ ︸
conjugation

,

dBA

dt
= α2BA

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-free bacteria

− η2BA︸ ︷︷ ︸
transformation

− βBPBA︸ ︷︷ ︸
conjugation

,

(2.2.1)

Table 2.3 lists the model parameters with their descriptions and units.

Variable/Parameter Description Units

BP Donor/plasmid-carrying bacteria cells/µL
BA Resident/plasmid-free bacteria cells/µL
α1 Replication rate of donor bacteria 1/hour
α2 Replication rate of resident bacteria 1/hour
K Carrying capacity of the environment cells/µL
γ Relative capacity coefficient of BP −
η2 Rate of conversion from resident to donor bacteria 1/hour
β Rate of bacterial conjugation µL/cells/hour

Table 2.3: Model (2.2.1) parameters with their descriptions and units.

2.2.2 Analysis of Transformation Model (η1 = 0, η2 ̸= 0, β = 0)

In this subsection, we assume β = 0 and η2 ̸= 0. System (2.2.1) is found to have

three equilibria. We deduce criteria for the existence and stability of all equilibria.

The stability conditions are then summarized in Table 2.4 and corroborated in Figure

2.3.

By setting the right-hand sides of System (2.2.1) equal to zero, the following

three equilibria are found:

E0 = (0, 0) =
(
B0

P , B
0
A

)
11



E1 =

(
K

γ
, 0

)
=
(
B1

P , B
1
A

)
E2 =

(
K(η2 − α2)

(α1 − α2γ)
,−α1K(η2 − α2)

α2(α1 − α2γ)

)
=
(
B2

P , B
2
A

)
Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P =

K

γ
and B1

A = 0 are non-negative. Therefore, E1 is always

biologically feasible and always exists.

E2: Lastly, note B2
P = −α1

α2

B2
A. This means B2

P and B2
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E2. Thus, if E0 ̸= E2, E2 is

never biologically feasible. For our purposes, this means E2 never exists.

Moving forward, only E0 and E1 are eligible for analysis.

Next, we establish the stability conditions for the two equilibria E0 and E1.

The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 2.2.1. The trivial equilibrium E0 is always unstable.

Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 η2

0 α2 − η2

 .

Thus,

det
(
J
(
E0
))

= α1(α2 − η2)

and

12



tr (J (E0)) = α1 + (α2 − η2).

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= α1(α2 − η2) > 0 and tr
(
J
(
E0
))

= α1 + (α2 − η2) < 0.

Thus, α2 − η2 > 0 and tr
(
J
(
E0
))

= α1 + (α2 − η2) > 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the boundary equilibrium E1 is always locally asymptotically

stable.

Theorem 2.2.2. The boundary equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J
(
E1
)
=

−α1 −α1γ + η2

0 −η2

 .

By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Clearly,

det
(
J
(
E1
))

= α1η2 > 0

and

tr (J (E1)) = −(η2 + α1) < 0.

Thus, E1 is always locally asymptotically stable.

Furthermore, the above stability analysis is summarized in Table 2.4 and supported

by the phase portraits in Figure 2.3.

13
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Figure 2.3: Phase portraits of System (2.2.1) when η2 ̸= 0, and β = 0. The parameter
values in (a) and (b) are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, and η2 = 0.4973.
E0 is unstable, as shown by the direction field arrows moving away from E0 = (0, 0).
E1 is locally asymptotically stable, as shown by the direction field arrows moving

toward E1 =

(
K

γ
, 0

)
.

Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

Table 2.4: Existence and stability of the equilibria of System (2.2.1) when β = 0 and
η2 ̸= 0.

2.2.3 Analysis of Conjugation Model (η1 = 0, η2 = 0, β ̸= 0)

This subsection assumes η2 = 0 and β ̸= 0. System (2.2.1) is found to have four

equilibria. We deduce the criteria for the existence and stability of all equilibria. The

stability conditions are then summarized in Table 2.5 and corroborated in Figure 2.4.
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By setting the right-hand sides of System (2.2.1) equal to zero, the following

four equilibria are found:

E0 = (0, 0) =
(
B0

P , B
0
A

)
E1 =

(
K

γ
, 0

)
=
(
B1

P , B
1
A

)
E2 = (0, K) =

(
B2

P , B
2
A

)
E3 =

(
α2K

(βK − α1 + α2γ)
,− α1K

(βK − α1 + α2γ)

)
=
(
B3

P , B
3
A

)
Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, 3, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P =

K

γ
and B1

A = 0 are non-negative. Therefore, E1 is always

biologically feasible and always exists.

E2: Clearly, B2
P = 0 and B2

A = K are non-negative. Therefore, E2 is always

biologically feasible and always exists.

E3: Lastly, note B3
A = −α1

α2

B3
P . This means B3

P and B3
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E3. Thus, if E0 ̸= E3, E3 is

never biologically feasible. For our purposes, this means E3 never exists.

Moving forward, E0, E1, and E2 are eligible for analysis.

Next, we establish the stability conditions for the three equilibria E0, E1, and

E2. The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 2.2.3. The trivial equilibrium E0 is always unstable.

15



Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 0

0 α2

 .

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. However,

det
(
J
(
E0
))

= α1α2 > 0

and

tr (J (E0)) = α1 + α2 > 0.

Thus, E0 is always unstable.

Next, we prove that the boundary equilibrium E1 is always locally asymptotically

stable.

Theorem 2.2.4. The boundary equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J
(
E1
)
=

−α1
−α1

γ
+

βK

γ

0 −βK

γ

.
By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Clearly,

det
(
J
(
E1
))

=
α1βK

γ
> 0

and

tr (J (E1)) = −α1 −
βK

γ
< 0.

Thus, E1 is always locally asymptotically stable.

Next, we prove that the boundary equilibrium E2 is always unstable.

16



Theorem 2.2.5. The boundary equilibrium E2 is always unstable.

Proof. The Jacobian evaluated at E2 is

J
(
E2
)
=

 βK 0

−α2γ − βK −α2

 .

By the Routh-Hurwitz stability criterion [39], E2 is stable when det (J (E2)) > 0 and

tr (J (E2)) < 0. However,

det
(
J
(
E2
))

= −α2βK < 0

and

tr (J (E2)) = βK − α2.

Thus, E2 is always unstable.

Furthermore, the above stability analysis is summarized in Table 2.5 and supported

by the phase portraits in Figure 2.4.

Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 exists and unstable

E3 does not exist

Table 2.5: Existence and stability of the equilibria of System (2.2.1) when η2 = 0,
and β ̸= 0.
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Figure 2.4: Phase portraits of System (2.2.1) when η2 = 0, and β ≠ 0. The parameter
values in (a)-(c) are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, and β = 0.00005.
E0 and E2 are unstable, as shown by the direction field arrows moving away from
E0 = (0, 0) and E2 = (0, K). E1 is locally asymptotically stable, as shown by the

direction field arrows moving toward E1 =

(
K

γ
, 0

)
.

2.2.4 Analysis of Conjugation and Transformation Model (η1 = 0, η2 ̸= 0, β ̸= 0)

This subsection assumes η2, β ̸= 0. System (2.2.1) is found to have four

equilibria. We deduce the criteria for the existence and stability of all equilibria. The

stability conditions are then summarized in Table 2.6 and corroborated in Figure 2.5.

18



By setting the right-hand sides of System (2.2.1) equal to zero, the following

four equilibria are found:

E0 = (0, 0) = (B0
P , B

0
A)

E1 =

(
K

γ
, 0

)
= (B1

P , B
1
A)

E2 =

(
−η2

β
,K +

η2γ

β

)
= (B2

P , B
2
A)

E3 =

(
K(α2 − η2)

(βK − α1 + α2γ)
,− α1K(α2 − η2)

α2(βK − α1 + α2γ)

)
= (B3

P , B
3
A)

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, 3, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P =

K

γ
and B1

A = 0 are non-negative. Therefore, E1 is always

biologically feasible and always exists.

E2: Clearly, B2
A = K +

η2γ

β
is non-negative. However, B2

P = −η2
β

is non-negative if

and only if η2 = 0, which violates our initial assumption of η2, β ̸= 0. Thus, if

η2 ̸= 0, E2 is never biologically feasible. For our purposes, this means E2 never

exists.

E3: Lastly, note B4
P = −α2

α1

B4
A. This means B3

P and B3
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E3. Thus, if E0 ̸= E3, E3 is

never biologically feasible. For our purposes, this means E3 never exists.

Moving forward, E0 and E1 are eligible for analysis.

Next, we establish the stability conditions for the two equilibria E0 and E1.

The following theorem concerns the local stability of the trivial equilibrium E0.
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Theorem 2.2.6. The trivial equilibrium E0 is always unstable.

Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 η2

0 α2 − η2

 .

Thus,

det
(
J
(
E0
))

= α1(α2 − η2)

and

tr (J (E0)) = α1 + (α2 − η2).

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= α1(α2 − η2) > 0 and tr
(
J
(
E0
))

= α1 + (α2 − η2) < 0.

Thus, α2 − η2 > 0 and tr
(
J
(
E0
))

= α1 + (α2 − η2) > 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the boundary equilibrium E1 is always locally asymptotically

stable.

Theorem 2.2.7. The boundary equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J
(
E1
)
=

−α1 −α1γ + η2 +
βK

γ

0 −η2 −
βK

γ

 .

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. Clearly,
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det
(
J
(
E1
))

= α1

(
η2 +

βK

γ

)
> 0

and

tr (J (E1)) = −
(
η2 + α1 +

βK

γ

)
< 0.

Thus, E1 is always locally asymptotically stable.

Furthermore, the above stability analysis is summarized in Table 2.6 and supported

by the phase portraits in Figure 2.5.
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Figure 2.5: Phase portraits of System (2.2.1). The parameter values in (a) and (b)
are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η2 = 0.4973, and β = 0.00005. E0 is
unstable, as shown by the direction field arrows moving away from E0 = (0, 0). E1 is
locally asymptotically stable, as shown by the direction field arrows moving toward

E1 =

(
K

γ
, 0

)
.

2.2.5 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (2.2.1), which were created

using the Matlab® ode45 solver. In this model, the only plasmid dynamic included

is plasmid acquisition, which manifests in two different ways: transformation and

21



Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

E3 does not exist

Table 2.6: Existence and stability of the equilibria of System (2.2.1) when η2, β ̸= 0.

conjugation. However, conversion only happens in one direction: resident bacteria,

BA, can gain plasmids and become donor bacteria, BP . This creates an uneven influx

of plasmid-carrying

bacteria. It follows that the system will approach a steady state where only the

plasmid-carrying donor bacteria, BP , persist as inferred by the lone stability of

E1 =

(
K

γ
, 0

)
=
(
B1

P , B
1
A

)
across the three sub-models of System (2.2.1): η2 ̸= 0 and β = 0, η2 = 0 and β ̸= 0,

and η2, β ̸= 0.

Note the overall outcome of simulations in Figure 2.6: BP =
K

γ
and BA = 0.

In (a),(c), and (e), the initial population sizes are identical and
1

200
of the carrying

capacity, K. However, in (b),(d), and (f), BP (0) is 100 times smaller, and BA(0) is

100 times bigger in comparison to (a),(c), and (e). Still, the outcome is identical. This

will be the case for any initial condition with at least one initial positive population

value. Furthermore, all numerical simulations of System (2.1.1) can be categorized

into two outcomes:

1. If BP (0) = BA(0) = 0, then the system will remain at E0 = (0, 0) =
(
B0

P , B
0
A

)
.

2. If η2 = 0, β ̸= 0, BP (0) = 0, and BA(0) = K, then the system will remain at

BP (0) = 0 and BA(0) = K.

3. Otherwise, the system will trend towards and stabilize at E1 =

(
K

γ
, 0

)
=
(
B1

P , B
1
A

)
.
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(a) BP (0) = 1000, BA(0) = 1000
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(b) BP (0) = 10, BA(0) = 100000
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(c) BP (0) = 1000, BA(0) = 1000
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(d) BP (0) = 10, BA(0) = 100000
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(e) BP (0) = 1000, BA(0) = 1000
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(f) BP (0) = 10, BA(0) = 100000

Figure 2.6: Numerical simulations of System (2.2.1). In (a)-(f), E1 is locally
asymptotically stable, and any remaining existing equilibria are unstable. In (a)
and (b), β = 0. In (c) and (d), η2 = 0. Otherwise, the parameter values are
α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η2 = 0.4973, and β = 0.00005.
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2.3 Plasmid Loss and Acquisition Model

In this section, we will explore both plasmid loss and acquisition in a batch

culture model. We will analyze the different combinations of System (2.1.1) and

System (2.2.1). During this section, we always assume η1 ̸= 0.

2.3.1 Formulation of Plasmid Loss and Acquisition Model

We build off the previous models and incorporate both plasmid acquisition and

loss. Below is the modified system of ordinary differential equations:

dBP

dt
= α1BP

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-carrying bacteria

− η1BP︸ ︷︷ ︸
plasmid
loss

+ η2BA︸ ︷︷ ︸
transformation

+ βBPBA︸ ︷︷ ︸
conjugation

,

dBA

dt
= α2BA

(
1− γBP +BA

K

)
︸ ︷︷ ︸

replication of
plasmid-free bacteria

+ η1BP︸ ︷︷ ︸
plasmid
loss

− η2BA︸ ︷︷ ︸
transformation

− βBPBA︸ ︷︷ ︸
conjugation

,

(2.3.1)

Table 2.7 lists the model parameters with their descriptions and units.

Variable/Parameter Description Units

BP Donor/plasmid-carrying bacteria cells/µL
BA Resident/plasmid-free bacteria cells/µL
α1 Replication rate of donor bacteria 1/hour
α2 Replication rate of resident bacteria 1/hour
K Carrying capacity of the environment cells/µL
γ Relative capacity coefficient of BP −
η1 Rate of conversion from donor to resident bacteria 1/hour
η2 Rate of conversion from resident to donor bacteria 1/hour
β Rate of bacterial conjugation µL/cells/hour

Table 2.7: Model (2.3.1) parameters with their descriptions and units.
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2.3.2 Analysis of Plasmid Loss and Transformation Model(η1 ̸= 0, η2 ̸= 0, β = 0)

This subsection assumes η1, η2 ̸= 0, and β = 0. The System (2.3.1) is found to

have three equilibria. We deduce the criteria for the existence and stability of all

equilibria. The stability conditions are then summarized in Table 2.8 and corroborated

in Figure 2.7.

By setting the right-hand sides of System (2.3.1) equal to zero, the following

three equilibria are found:

E0 = (0, 0) =
(
B0

P , B
0
A

)
,

E1 =

(
Kη2

η1 + η2γ
,

Kη1
η1 + η2γ

)
=
(
B1

P , B
1
A

)
,

E2 =

(
K(α1η2 + α2η1 − α1α2)

α1(α1 − α2γ)
,−K(α1η2 + α2η1 − α1α2)

α2(α1 − α2γ)

)
=
(
B2

P , B
2
A

)
.

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P =

Kη2
η1 + η2γ

and B1
A =

Kη1
η1 + η2γ

are non-negative. Therefore, E1 is

always biologically feasible and always exists.

E2: Lastly, note B2
A = −α1

α2

B2
P . This means B2

P and B2
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E2. Thus, if E0 ̸= E2, E2 is

never biologically feasible. For our purposes, this means E2 never exists.

Moving forward, only E0 and E1 are eligible for analysis.

Next, we establish the stability conditions for the two equilibria E0 and E1.

The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 2.3.1. The trivial equilibrium E0 is always unstable.
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Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 − η1 η2

η1 α2 − η2

 .

Thus,

det
(
J
(
E0
))

= (α1 − η1)(α2 − η2)− η1η2 = α1(α2 − η2)− α2η1

and

tr (J (E0)) = (α1 − η1) + (α2 − η2).

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= (α1 − η1)(α2 − η2)− η1η2 = α1(α2 − η2)− α2η1 > 0

and tr
(
J
(
E0
))

= (α1 − η1) + (α2 − η2) < 0.

This implies, (α1 − η1)(α2 − η2) > η1η2 > 0 and α1(α2 − η2) > α2η1 > 0.

Thus, (α1 − η1) > 0 and (α2 − η2) > 0.

Lastly, tr
(
J
(
E0
))

= (α1 − η1) + (α2 − η2) > 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the interior equilibrium E1 is always locally asymptotically

stable.

Theorem 2.3.2. The interior equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J(E1) =

−
η21 + α1γη2 + γη1η2

η1 + γη2
η2 −

α1η2
η1 + γη2

η1 −
α2γη1

η1 + γη2
−η2 −

α2η1
η1 + γη2

 .
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By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Clearly,

det(J(E1)) = α2η1 + α1η2 > 0,

and

tr(J(E1)) = −α2η1 + η21 + (1 + γ)η1η2 + γη2(α1 + η2)

η1 + γη2
< 0.

Thus, E1 is locally asymptotically stable.
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Figure 2.7: Phase portraits of System (2.3.1) when η1, η2 ̸= 0, and β = 0. The
parameter values in (a) and (b) are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η1 =
10, and η2 = 0.4973. E0 is unstable, as shown by the direction field arrows moving
away from E0 = (0, 0). E1 is locally asymptotically stable, as shown by the direction

field arrows moving toward E1 =

(
Kη2

η1 + η2γ
,

Kη1
η1 + η2γ

)
.

Furthermore, the above stability analysis is summarized in Table 2.8 and supported

by the phase portraits in Figure 2.7.
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Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

Table 2.8: Existence and stability of the equilibria of System (2.3.1) when η1, η2 ̸= 0,
and β = 0.

2.3.3 Analysis of Plasmid Loss and Conjugation Model(η1 ̸= 0, η2 = 0, β ̸= 0)

This subsection assumes η1, β ̸= 0, and η2 = 0. System (2.3.1) is found to have

four equilibria. We deduce the criteria for the existence and stability of all equilibria.

The stability conditions are then summarized in Table 2.9 and corroborated in Figures

2.8 and 2.9.

By setting the right-hand sides of System (2.3.1) equal to zero, the following

four equilibria are found:

E0 = (0, 0) = (B0
P , B

0
A),

E1 = (0, K) = (B1
P , B

1
A),

E2 =

(
βK − η1

βγ
,
η1
β

)
= (B2

P , B
2
A),

E3 =

(
α2K(α1 − η1)

α1(βK − α1 + α2γ)
,− K(α1 − η1)

(βK − α1 + α2γ)

)
= (B3

P , B
3
A).

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP and BA that appear

in Ei, where i = 0, 1, 2, 3, represent population sizes. Hence, these values must all be

non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Clearly, B1
P = 0 and B1

A = K are non-negative. Therefore, E1 is always

biologically feasible and always exists.
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E2: Clearly, B2
A =

η1
β

is non-negative. However, B2
P =

βK − η1
βγ

is non-negative if

and only if βK − η1 > 0. Therefore, E2 is biologically feasible and exists if and

only if βK − η1 > 0.

E3: Lastly, note B3
A = −α1

α2

B3
P . This means B3

P and B3
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E3. Thus, if E0 ̸= E3, E3 is

never biologically feasible. For our purposes, this means E3 never exists.

Moving forward, E0 and E1 are always eligible for analysis. However, E2 is eligible

for analysis only when βK − η1 > 0.

Next, we establish the stability conditions for the three equilibria E0, E1, and

E2. The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 2.3.3. The trivial equilibrium E0 is always unstable.

Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 − η1 0

η1 α2

 .

Thus,

det
(
J
(
E0
))

= (α1 − η1)α2

and

tr (J (E0)) = (α1 − η1) + α2.

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= (α1 − η1)α2 > 0 and tr
(
J
(
E0
))

= (α1 − η1) + α2 < 0.

Thus, (α1 − η1) > 0 and tr
(
J
(
E0
))

= (α1 − η1) + α2 > 0.
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A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the boundary equilibrium E1 is locally asymptotically

stable when βK − η1 < 0.

Theorem 2.3.4. The boundary equilibrium E1 is locally asymptotically stable if and

only if βK − η1 < 0.

Proof. The Jacobian evaluated at E1 is

J(E1) =

βK − η1 0

η1 − γα2 −α2

 .

By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Since βK − η1 < 0, clearly

det
(
J
(
E1
))

= −(βK − η1)α2 > 0

and

tr (J (E1)) = (βK − η1)− α2 < 0.

Thus, E1 is locally asymptotically stable if and only if βK − η1 < 0.

Next, we prove that the interior equilibrium E2 is locally asymptotically stable

when 0 < βK − η1.

Theorem 2.3.5. The boundary equilibrium E2 is locally asymptotically stable if and

only if 0 < βK − η1.

Proof. The Jacobian evaluated at E2 is

J(E2) =

α1

(
η1
Kβ

− 1

)
(βK − α1)(βK − η1)

βγK

−α2η1γ

βK
η1

(
1

γ
− α2

βK

)
− βK

γ

 .
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By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Since 0 < βK − η1, clearly

det
(
J
(
E2
))

=
(βK − η1)[α1(βK − η1) + α2η1γ]

βγK
> 0

and

tr (J (E2)) =
−α2η1γ − α1γ(βK − η1)− βK(βK − η1)

βγK
< 0.

Thus, E2 is locally asymptotically stable if and only if 0 < βK − η1.

Existence and Stability

βK − η1 < 0 0 < βK − η1

E0 exists and unstable E0 exists and unstable

E1 exists and stable E1 exists and unstable

E2 does not exist E2 exists and stable

E3 does not exist E3 does not exist

Table 2.9: Existence and stability conditions of the equilibria of System (2.3.1) when
η1, β ̸= 0, and η2 = 0.

Furthermore, the above stability analysis is summarized in Table 2.9 and supported

by the phase portraits in Figures 2.8 and 2.9. As the model analysis indicates, the

relationship between the parameters, β, η1, and K, is instrumental in understanding

the population dynamics of donor and resident bacteria. The stability analysis reveals

two scenarios:

1. If the plasmid loss rate, η1, is greater than the conjugation potential, βK, then

the trivial equilibrium, E0 = (0, 0), is unstable, the boundary equilibrium,

E1 = (0, K), is locally asymptotically stable, and the interior equilibrium,

E2 =

(
βK − η1

βγ
,
η1
β

)
, does not exist. In other words, if the plasmid loss is

greater than the plasmid acquisition, only the plasmid-free resident bacteria,
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BA, will persist when introduced to a controlled and closed environment as

inferred by Figure 2.8 and the lone stability of

E1 = (BP , BA) = (0, K) .

2. If the plasmid loss rate, η1, is less the conjugation potential, βK, then the

trivial and boundary equilibrium, E0 = (0, 0) and E1 = (0, K), are unstable

and the interior equilibrium, E2 =

(
βK − η1

βγ
,
η1
β

)
, is locally asymptotically

stable. In other words, if the plasmid loss is less than the plasmid acquisition,

both the donor and resident bacteria, BP and BA, will persist when introduced

to a controlled and closed environment as inferred by Figure 2.9 and the lone

stability of

E2 =

(
βK − η1

βγ
,
η1
β

)
.
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Figure 2.8: Phase portraits of System (2.3.1) when η1, β ̸= 0, η2 = 0, and βK−η1 < 0.
In (a) and (b), the parameter values are α1 = 3, α2 = 3.7848, K = 200, 000, γ =
1.1, η1 = 10, η2 = 0.4973, and β = 0.00001. E0 is unstable, as shown by the direction
field arrows moving away from E0 = (0, 0). E1 is locally asymptotically stable because
βK − η1 < 0 when β = 0.00001, as shown by the direction field arrows moving toward
E1 = (0, K).

32



0 0.2 0.4 0.6 0.8 1 1.2

Donor Bacteria (B
P

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
R

e
s
id

e
n

t 
B

a
c
te

ri
a

 (
B

A
)

Direction Field Arrows

B
P

-Nullcline

B
A

-Nullcline

(a) E0 = (0, 0) always unstable

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Donor Bacteria (B
P

)
1.

99
99

75
1.

99
99

81.
99

99
85

1.
99

99
91.

99
99

95

22.
00

00
05

2.
00

00
12.

00
00

15
2.

00
00

22.
00

00
25

R
e

s
id

e
n

t 
B

a
c
te

ri
a

 (
B

A
)

105

Direction Field Arrows

B
P

-Nullcline

B
A

-Nullcline

(b) E1 = (0,K) unstable when 0 < βK − η1

8.0806 8.0807 8.0808 8.0809 8.081

Donor Bacteria (B
P

) 104

1.
11

10
95

1.
11

11
1.

11
11

05
1.

11
11

1
1.

11
11

15
1.

11
11

2
1.

11
11

25
1.

11
11

3

R
e

s
id

e
n

t 
B

a
c
te

ri
a

 (
B

A
)

105

Direction Field Arrows

B
P

-Nullcline

B
A

-Nullcline

(c) E2 =

(
βK − η1

βγ
,
η1
β

)
stable when

0 < βK − η1

Figure 2.9: Phase portraits of System (2.3.1) when η1, β ̸= 0, η2 = 0, and 0 < βK−η1.
In (a)-(c), the parameter values are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η1 =
10, η2 = 0.4973, and β = 0.00009. E0 is unstable, as shown by the direction field
arrows moving away from E0 = (0, 0). E1 is unstable because 0 < βK − η1 when
β = 0.00009, as shown by the direction field arrows moving away from E1 = (0, K).
E2 is locally asymptotically stable because 0 < βK − η1 when β = 0.00009, as shown

by the direction field arrows moving toward E2 =

(
βK − η1

βγ
,
η1
β

)
.

In the stability analysis above, we found that the long-term behavior of System

(2.3.1) when η1, β ̸= 0, and η2 = 0 depends on parameter values. We will conduct

a more detailed numerical investigation of the system’s behavior by examining how
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each equilibrium changes with variations in each, β and η1. We create one-parameter

bifurcation diagrams by varying each parameter separately, as shown in Figure 2.10:
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Figure 2.10: Bifurcation diagrams of System (2.3.1), when η1, β ̸= 0, and η2 = 0, for
the donor bacteria BP in (a) and (c), and resident bacteria BA in (b) and (d). In (a)-
(d), α1 = 3, α2 = 3.7848, K = 200, 000, and γ = 1.1. In (a) and (b), η1 = 10 and the
steady-state values are plotted as a function of β as it changes in [1× 10−5, 9× 10−5].
In (c) and (d), β1 = 5× 10−5 and the steady-state values are plotted as a function of
η1 as it changes in [0, 20]. In the diagrams, solid lines show stable states, and dashed
or dotted lines show unstable states. The trivial equilibrium, E0, is always unstable.
The boundary equilibrium, E1, is locally asymptotically stable when β < 5× 10−5

or equivalently, when 10 < η1. Otherwise, E1 is unstable. The interior equilibrium,
E2, is locally asymptotically stable when 5× 10−5 < β or equivalently, when η1 < 10.
Otherwise, E2 does not exist.
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We hold all model parameters constant and adjust a single parameter within the

biologically meaningful intervals of (1× 10−5, 9× 10−5) for β in 2.10 (a)-(b), or (0, 20)

for η1 in 2.10 (c)-(d). The bifurcation occurs at β = 5× 10−5, or equivalently, η1 = 10.

As shown in the diagrams, if β < 5× 10−5 or η1 > 10, System (2.3.1) (η1, β ̸=

0, and η2 = 0) only has two equilibria, E0 and E1, with only E1 being locally

asymptotically stable. This represents the persistence of resident bacteria and

complete plasmid elimination. On the other hand, if β > 5 × 10−5 or η1 < 10,

there are three equilibria, E0, E1, and E2, with only E2 being locally asymptotically

stable. This scenario represents the co-existence and persistence of resident and donor

bacteria and the successful establishment of plasmids in the system.

2.3.4 Analysis of Plasmid Loss, Conjugation, and Transformation Model (η1 ≠

0, η2 ̸= 0, β ̸= 0)

This subsection assumes η1, η2, β ̸= 0. System (2.3.1) is found to have four

equilibria. We deduce criteria for the existence and stability of all equilibria. The

stability conditions are then summarized in Table 2.10 and corroborated in Figure

3.1.

By setting the right-hand sides of System (2.3.1) equal to zero, the following

four equilibria are found:

E0 = (0, 0) =
(
B0

P , B
0
A

)
,

E1 =
(
B1

P , B
1
A

)
,

E2 =
(
B2

P , B
2
A

)
,

E3 =

(
K(α1η2 + α2η1 − α1α2)

α1(α1 − α2γ −Kβ)
,−K(α1η2 + α2η1 − α1α2)

α2(α1 − α2γ −Kβ)

)
=
(
B3

P , B
3
A

)
,
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where

B1
P =

Kβ − η1 − γη2 +
√

(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B1
A =

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

,

and

B2
P =

Kβ − η1 − γη2 −
√

(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B2
A =

Kβ + η1 + γη2 +
√
(Kβ + η1 + γη2)2 − 4βKη1
2β

.

Before considering the stability of the equilibria, one must know when and if

each equilibrium is biologically feasible. Recall that the values for BP and BA that

appear in Ei, where i = 0, 1, 2, 3, represent population sizes. Hence, these values

must all be non-negative.

E0: Clearly, B0
P = B0

A = 0 are non-negative. Therefore, E0 is always biologically

feasible and always exists.

E1: Notice that B1
P ’s denominator, 2βγ, is positive. Therefore, B1

P is non-negative

if and only if B1
P ’s numerator is non-negative. Notice

(Kβ − η1 − γη2)
2 < (Kβ − η1 − γη2)

2 + 4Kβγη2

−(Kβ − η1 − γη2) ≤ |Kβ − η1 − γη2| <
√

(Kβ − η1 − γη2)2 + 4Kβγη2

0 < (Kβ − η1 − γη2) +
√

(Kβ − η1 − γη2)2 + 4Kβγη2

and so B1
P ’s numerator and, consequently, B1

P are non-negative.

Notice that B1
A’s denominator, 2β, is positive. Therefore, B1

A is non-negative if

and only if B1
A’s numerator is non-negative. Notice

(Kβ + η1 + γη2)
2 > (Kβ + η1 + γη2)

2 − 4Kβη1

Kβ + η1 + γη2 = |Kβ + η1 + γη2| >
√

(Kβ + η1 + γη2)2 − 4Kβη1
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Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4Kβη1 > 0

and so B1
A’s numerator and, consequently, B1

A are non-negative. Thus, E1 is

always biologically feasible and always exists.

E2: Notice that B2
P ’s denominator, 2βγ, is positive. Therefore, B2

P is non-negative

if and only if B2
P ’s numerator is non-negative. However, notice

(Kβ − η1 − γη2)
2 < (Kβ − η1 − γη2)

2 + 4Kβγη2

Kβ − η1 − γη2 ≤ |Kβ − η1 − γη2| <
√

(Kβ − η1 − γη2)2 + 4Kβγη2

Kβ − η1 − γη2 −
√

(Kβ − η1 − γη2)2 + 4Kβγη2 < 0

and so B2
P ’s numerator and, consequently, B2

P are negative. Thus, E2 is never

biologically feasible and never exists.

E3: Lastly, note B3
A = −α1

α1

B3
P . This means B3

P and B3
A are non-negative if and

only if they are equal to zero, i.e. when E0 = E3. Thus, if E0 ̸= E3, E3 is

never biologically feasible. For our purposes, this means E3 never exists.

Moving forward, only E0 and E1 are eligible for analysis.

Next, we establish the stability conditions for the two equilibria E0 and E1.

The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 2.3.6. The trivial equilibrium E0 is always unstable.

Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

α1 − η1 η2

η1 α2 − η2

 .

Thus,

det
(
J
(
E0
))

= (α1 − η1)(α2 − η2)− η1η2 = α1(α2 − η2)− α2η1

and
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tr (J (E0)) = (α1 − η1) + (α2 − η2).

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. The above conditions are never satisfied simultaneously:

Suppose det
(
J
(
E0
))

= (α1 − η1)(α2 − η2)− η1η2 = α1(α2 − η2)− α2η1 > 0

and tr
(
J
(
E0
))

= (α1 − η1) + (α2 − η2) < 0.

This implies, (α1 − η1)(α2 − η2) > η1η2 > 0 and α1(α2 − η2) > α2η1 > 0.

Thus, (α1 − η1) > 0 and (α2 − η2) > 0.

Lastly, tr
(
J
(
E0
))

= (α1 − η1) + (α2 − η2) > 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the interior equilibrium E1 is always locally asymptotically

stable.

Theorem 2.3.7. The interior equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is

J
(
E1
)
=


βB1

A − α1

K
B1

A − 2
α1γ

K
B1

P + α1 − η1

(
β − α1

K

)
B1

P + η2

(
−β − α2γ

K

)
B1

A + η1 −βB1
P − α2γ

K
B1

P − 2
α2

K
B1

A + α2 − η2

 .

By the Routh-Hurwitz stability criterion [39], E1 is stable when det (J (E1)) > 0 and

tr (J (E1)) < 0. Clearly

det
(
J
(
E1
))

=

√
(η1 + γη2 −Kβ)2 + 4Kβγη2

K

(
α1B

1
P + α2B

1
A

)
> 0

and

tr
(
J
(
E1
))

=
1

2
X − βB1

P − α1γ

K
B1

P − α2

K
B1

A − η2 < 0
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since

X = Kβ − η1 + γη2 −
√

(Kβ − η1 + γη2)2 + 4γη1η2 < 0,

as shown below:

(Kβ − η1 + γη2)
2 < (Kβ − η1 + γη2)

2 + 4γη1η2

Kβ − η1 + γη2 ≤ |Kβ − η1 + γη2| <
√

(Kβ − η1 + γη2)2 + 4γη1η2

X = Kβ − η1 + γη2 −
√

(Kβ − η1 + γη2)2 + 4γη1η2 < 0.

Thus, E1 is always locally asymptotically stable.
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Figure 2.11: Phase portraits of System (2.3.1) when η1, η2, β ̸= 0. In (a)
and (b), the parameter values are α1 = 3, α2 = 3.7848, K = 200, 000, γ =
1.1, η1 = 10, η2 = 0.4973, and β = 0.00009. E0 is unstable, as shown
by the direction field arrows moving away from E0 = (0, 0). E1 is locally
asymptotically, as shown by the direction field arrows moving toward E1 =(

Kβ−η1−γη2+
√

(Kβ−η1−γη2)2+4βKγη2

2βγ
,
Kβ+η1+γη2−

√
(Kβ+η1+γη2)2−4βKη1

2β

)
.

Furthermore, the above stability analysis is summarized in Table 2.10 and supported

by the phase portraits in Figure 3.1.
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Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

E3 does not exist

Table 2.10: Existence and stability of the equilibria of System (2.3.1) when η1, η2, β ̸=
0.

2.3.5 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (2.3.1), which were created

using the Matlab® ode45 or ode89 solvers. In this model, there are two plasmid

dynamics, plasmid loss, and plasmid acquisition, which can manifest in two different

ways: transformation and conjugation. Hence, conversion happens in both directions.

1. Resident bacteria, BA, can gain plasmids and become donor bacteria, BP .

2. Donor bacteria, BP , can lose their plasmids and become resident bacteria, BA.

This creates the possibility of balance within the system. It makes sense that the

system usually approaches a steady state where both the plasmid-carrying donor

bacteria, BP , and the plasmid-free resident bacteria, BA, persist as inferred by Figure

2.12 and the stability of

E1 =

(
Kη2

η1 + η2γ
,

Kη1
η1 + η2γ

)
when η1, η2 ̸= 0 and β = 0 in 2.12 (a)-(b),

E2 =

(
βK − η1

βγ
,
η1
β

)
when η1, β ̸= 0 and η2 = 0 and 0 < Kβ − η1 in 2.12 (c)-(d),

E1 =
(
B1

P , B
1
A

)
when η1, η2, β ̸= 0 in 2.12 (e)-(f),

where

B1
P =

Kβ − η1 − γη2 +
√
(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B1
A =

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

.
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(c) BP (0) = 1000, BA(0) = 1000
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(d) BP (0) = 100000, BA(0) = 10
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(e) BP (0) = 1000, BA(0) = 1000
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(f) BP (0) = 100000, BA(0) = 10

Figure 2.12: Numerical simulations of System (2.3.1). In (a) and (b), β = 0. In
(c) and (d), η2 = 0. Otherwise, the parameter values are α1 = 3, α2 = 3.7848, K =
200, 000, γ = 1.1, η1 = 10, η2 = 0.4973, and β = 0.00009.
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However, when η2 = 0 and Kβ − η1 < 0 the stable equilibrium becomes

E1 = (0, K),

as shown by Figure 2.13 (a)-(b). Furthermore, this shows a scenario where the plasmid-

carrying donor bacteria, BP , can be eliminated in this double-dynamic system. In

contrast, the plasmid-free resident bacteria, BA, always persists in System (2.3.1).
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Figure 2.13: Numerical simulations of System (2.3.1) when η1, β ̸= 0, and η2 = 0. In
(a) and (b), the parameter values are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η1 =
10, and β = 0.00001.

Note the overall outcome of all simulations in Figure 2.12: BP > 0 and BA > 0,

i.e., co-existence. In (a), (c), and (e), the initial population sizes are identical and

1

200
of the carrying capacity, K. However, in (b), (d), and (f), BP (0) is 100 times

bigger, and BA(0) is 100 times smaller in comparison to (a), (c), and (e). Still, all

outcomes are similar in Figure 2.12.

Now, note the overall outcome of simulations in Figure 2.13: BP = 0 and

BA = K. In (a), the initial population sizes are identical and
1

200
of the carrying

capacity, K. However, in (b), BP (0) is 100 times bigger, and BA(0) is 100 times

smaller in comparison to (a). Still, the outcome is identical.
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Most of the time, any initial condition with at least one positive value will lead

to co-existence, as pictured in Figure 2.12. However, if η2 = 0 and βK − η1 < 0, any

initial condition with at least one positive value will lead to the persistence of BA and

extinction of BP , as pictured in Figure 2.13. In summary, all numerical simulations

of System (2.3.1) can be categorized into three outcomes:

1. If BP (0) = BA(0) = 0, then the system will remain at E0 = (0, 0) =
(
B0

P , B
0
A

)
.

2. If η1, β ̸= 0, η2 = 0, βK − η1 < 0, and BP (0) > 0 or BA(0) > 0

OR

η1, β ̸= 0, η2 = 0, BP (0) = 0, and BA(0) = K,

the system will trend towards and stabilize at BP = 0 and BA = K.

3. Otherwise, the system will trend towards and stabilize at co-existence where

BP > 0 and BA > 0.

It’s important to consider how to keep plasmid-carrying donor bacteria, BP , in

the system when η2 = 0, and βK−η1 < 0. In other words, how can we maintain donor

bacteria when the system naturally eliminates all plasmids? If BP is administered

like a medicine, how many “doses” does it take to maintain a certain level of BP in

the system? How do the pertinent parameters, K, β, and η1 affect these dosages?

The peaks of BP in Figure 2.14 represent the “doses” required to maintain

BP >
K

4
over the span of 2 hours. In Figure 2.14 (a), the doses seem farther apart

as time progresses. Recall the conjugation term in System (2.3.1), βBPBA, and note

an increase in BA increases plasmid acquisition, which, in turn, increases plasmid-

carrying donor bacteria, BP . Thus, an increase in BA can help temporarily delay

the elimination of the plasmid-carrying donor population, BP . Since BA initially

increases rapidly, BP elimination slows, and dosages become farther apart. The

dosage frequency later stabilizes alongside BA’s growth.
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(b) BP (0) = K; 7 doses
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(c) BA(0) =
3K

2
; 10 doses
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(d) η1 = 10.1; 9 doses
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(e) β = 5.9× 10−5; 9 doses
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(f) K = 238000; 9 doses

Figure 2.14: Numerical simulations of System (2.3.1) when η1, β ̸= 0, η2 = 0, and
βK − η1 < 0. Unless otherwise stated above, the parameter values and initial
conditions in (a)-(f) are α1 = 3, α2 = 3.7848, γ = 1.1, η1 = 12, β = 5 × 10−5, K =

200, 000, BP (0) =
K

2
, and BA = 10. The initial condition for BP is routinely reset to

ensure BP >
K

4
. 44



In Figure 2.14 (b), increasing the dosage from
K

2
in (a) to K in (b) reduces

the number of doses necessary to maintain BP >
K

4
because higher dosages of BP

take longer to eliminate.

In Figure 2.14 (c), BA(0) =
3K

2
is 30, 000 times greater than BA(0) = 10 in (a).

Similar to the previous rationale, since BA(0) is initially much greater, BP elimination

slows, and doses are initially farther apart than those initially seen in (a). Thus,

greater initial population sizes can allow for an initial lower dose frequency.

In Figure 2.14 (d), η1 = 10.1 is smaller than η1 = 12 in (a). Recall the plasmid

loss term in System (2.3.1), η1BP , and note a smaller η1 decreases plasmid loss and,

in turn, increases plasmid-carrying donor bacteria, BP . Thus, doses can decrease and

maintain the same minimum level of BP with a lower η1.

In Figure 2.14 (e), β = 5.9×10−5 is greater than β = 5×10−5 in (a). Recall the

conjugation term in System (2.3.1), βBPBA, and note a greater β increases plasmid

acquisition and, in turn, increases plasmid-carrying donor bacteria, BP . Thus, doses

can decrease and maintain the same minimum level of BP with a greater β.

In Figure 2.14 (f), K = 238, 000 is greater than K = 200, 000 in (a). Recall

the conjugation term in System (2.3.1), βBPBA, and note a larger K increases both

BP and BA, which increases plasmid acquisition and, in turn, further increases

plasmid-carrying donor bacteria, BP . Thus, doses can decrease and maintain the

same minimum level of BP with a greater K.

Below are ways to decrease the required doses and maintain BP above an

arbitrary minimum value.(
BP (ti)

↑) An increase (↑) of BP in each dosage at times, ti, will decrease (↓) the doses

required.
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(
BA(0)

↑) An increase (↑) in BA(0), the initial amount of BA introduced into the system,

will decrease (↓) the doses required.

(η1↓) A decrease (↓) in η1, the plasmid loss rate, will decrease (↓) the doses required.

(β↑) An increase (↑) in β, the bacterial conjugation rate, will decrease (↓) the doses

required.

(K↑) An increase (↑) in K, the carrying capacity, will decrease (↓) the doses required.

Incorporating the above recommendations into Figure 2.14 (a) reduces the

number of doses required to a third of the original amount, as shown in Figure 2.15.
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(a) 4 doses

Figure 2.15: Numerical simulation of System (2.3.1) when η1, β ̸= 0, η2 = 0, and
βK − η1 < 0. The parameter values and initial conditions in (a) are α1 = 3, α2 =
3.7848, γ = 1.1, η1 = 11.25, β = 5.5× 10−5, K = 220, 000, BP (0) = K, and BA = 2K.

The initial condition for BP is routinely reset to ensure BP >
K

4
.
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CHAPTER 3

Batch Culture and Chemostat Models of Dormancy-Capable-Microorganisms

This chapter will explore a variety of dormancy-capable microorganisms in both

batch culture and chemostat settings.

3.1 Batch Culture Model of Dormancy-Capable-Bacteria and Plasmids in the Gut

Micriobiome

This section will explore dormancy, plasmid loss, and acquisition in a batch

culture model. Evidence shows that bacteria commonly found in gut microbiomes can

enter dormant states [9, 23, 53]. Of particular relevancy, E. coli has been shown to

become dormant and was used in the murine gut microbiome experiments referenced

in Chapter 2. We will build off the most general plasmid model System (2.3.1) and

incorporate dormancy.

3.1.1 Formulation of Dormancy-Capable-Bacteria and Plasmids in a Batch Culture

Model

We build off the previous Model (2.3.1) and incorporate dormant plasmid-

free resident bacteria, BD, where dormancy is modeled as a first-order conversion

between active-resident bacteria, BA, and dormant-resident bacteria, BD. Below is

the modified system of ordinary differential equations:
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dBP

dt
= α1BP

(
1− γBP +BA

K

)
︸ ︷︷ ︸

growth

− η1BP︸ ︷︷ ︸
plasmid loss

+ η2BA︸ ︷︷ ︸
transformation

+ βBPBA︸ ︷︷ ︸
conjugation

,

dBA

dt
= α2BA

(
1− γBP +BA

K

)
︸ ︷︷ ︸

growth

+ η1BP︸ ︷︷ ︸
plasmid loss

− η2BA︸ ︷︷ ︸
transformation

− βBPBA︸ ︷︷ ︸
conjugation

− δ1BA︸ ︷︷ ︸
conversion to BD

+ δ2BD︸ ︷︷ ︸
conversion to BA

dBD

dt
= δ1BA︸ ︷︷ ︸

conversion to BD

− δ2BD︸ ︷︷ ︸
conversion to BA

,

(3.1.1)

In batch cultures, an organism resides in a regulated environment with a finite

amount of a predetermined nutrient, and therefore, additional nutrients and organisms

cannot enter the closed system [8]. Because of their dormant state, dormant-resident

bacteria, BD, do not reproduce or utilize nutrients. Donor bacteria, BP , and active-

resident bacteria, BA, remain active, grow, and reproduce, hence taking up nutrients.

The plasmid dynamics are identical to the previous Model (2.3.1). Furthermore,

the conversion rate from active-resident bacteria to dormant-resident bacteria is δ1,

and from dormant-resident bacteria to active-resident bacteria is δ2. Both of these

conversion rates are assumed to be constant. Table 3.1 lists the model parameters

with their descriptions and units.

3.1.2 Analysis of Plasmid Loss, Conjugation, and Transformation Model with Dor-

mancy (η1 ̸= 0, η2 ̸= 0, β ̸= 0)

In this subsection, System (3.1.1) is found to have four equilibria. Criteria for

the existence and stability of all equilibria are deduced. The stability conditions are

then summarized in Table 3.2 and corroborated in Figure 3.2.
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Variable/Parameter Description Units

BP Donor/plasmid-carrying bacteria cells/µL
BA Resident/plasmid-free bacteria cells/µL
α1 Replication rate of donor bacteria 1/hour
α2 Replication rate of resident bacteria 1/hour
K Carrying capacity of the environment cells/µL
γ Relative capacity coefficient of BP −
η1 Rate of conversion from donor to resident bacteria 1/hour
η2 Rate of conversion from resident to donor bacteria 1/hour
β Rate of bacterial conjugation µL/cells/hour
δ1 Rate of conversion from active to dormant day−1

δ2 Rate of conversion from dormant to active day−1

Table 3.1: Model (3.1.1) parameters with their descriptions and units.

By setting the right-hand sides of System (3.1.1) equal to zero, the following

four equilibria are found:

E0 = (0, 0, 0) =
(
B0

P , B
0
A, B

0
D

)
,

E1 =
(
B1

P , B
1
A, B

1
D

)
,

E2 =
(
B2

P , B
2
A, B

2
D

)
,

E3 =
(
B3

P , B
3
A, B

3
D

)
,

where

B1
P =

Kβ − η1 − γη2 +
√
(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B1
A =

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

,

B1
D =

δ1
δ2
B1

A,

B2
P =

Kβ − η1 − γη2 −
√
(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B2
A =

Kβ + η1 + γη2 +
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

,

B2
D =

δ1
δ2
B2

A,

B3
P =

K(α1η2 + α2η1 − α1α2)

α1(α1 − α2γ − βK)
,

49



B3
A = −α1

α2

B3
P ,

B3
D =

δ1
δ2
B3

A.

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for BP , BA, and BD that

appear in Ei, where i = 0, 1, 2, 3, represent population sizes. Hence, these values

must all be non-negative.

E0: Clearly, B0
P = B0

A = B0
D = 0 are non-negative. Therefore, E0 is always

biologically feasible and always exists.

E1: Notice that B1
P ’s denominator, 2βγ, is positive. Therefore, B1

P is non-negative

if and only if B1
P ’s numerator is non-negative. Notice

(Kβ − η1 − γη2)
2 < (Kβ − η1 − γη2)

2 + 4Kβγη2

−(Kβ − η1 − γη2) ≤ |Kβ − η1 − γη2| <
√

(Kβ − η1 − γη2)2 + 4Kβγη2

0 < (Kβ − η1 − γη2) +
√

(Kβ − η1 − γη2)2 + 4Kβγη2

and so B1
P ’s numerator and, consequently, B1

P are non-negative.

Notice that B1
A’s denominator, 2β, is positive. Therefore, B1

A is non-negative if

and only if B1
A’s numerator is non-negative. Notice

(Kβ + η1 + γη2)
2 > (Kβ + η1 + γη2)

2 − 4Kβη1

Kβ + η1 + γη2 = |Kβ + η1 + γη2| >
√

(Kβ + η1 + γη2)2 − 4Kβη1

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4Kβη1 > 0

and so B1
A’s numerator and, consequently, B1

A are non-negative.

Lastly, B1
D =

δ1
δ2
B1

A is non-negative because B1
A is non-negative. Thus, E1 is

always biologically feasible and always exists.
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E2: Notice that B2
P ’s denominator, 2βγ, is positive. Therefore, B2

P is non-negative

if and only if B2
P ’s numerator is non-negative. Notice

(Kβ − η1 − γη2)
2 < (Kβ − η1 − γη2)

2 + 4Kβγη2

Kβ − η1 − γη2 ≤ |Kβ − η1 − γη2| <
√

(Kβ − η1 − γη2)2 + 4Kβγη2

Kβ − η1 − γη2 −
√

(Kβ − η1 − γη2)2 + 4Kβγη2 < 0

and so B2
P ’s numerator and, consequently, B2

P are negative. Thus, E2 is never

biologically feasible and never exists.

E3: Lastly, note −α1

α1

B3
P = B3

A =
δ2
δ1
B3

D. This means B3
P , B

3
A, and B3

D are all non-

negative if and only if they are all equal to zero, i.e., when E0 = E3. Thus, if

E0 ≠ E3, E3 is never biologically feasible. For our purposes, this means E3

never exists.

Moving forward, only E0 and E1 are eligible for analysis.

Here, we establish the stability conditions for the equilibria E0 and E1. The

following theorem regards the local stability of the trivial equilibrium E0.

Theorem 3.1.1. The trivial equilibrium E0 is always unstable.

Proof. The Jacobian evaluated at E0 is
α1 − η1 η2 0

η1 α2 − η2 − δ1 δ2

0 δ1 −δ2

 .

The characteristic polynomial of J (E0) is

0 = x3 + a1x
2 + a2x+ a3,

where

a1 = −α1 + η1 − α2 + η2 + δ1 + δ2,
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a2 = (−α1 + η1)(−α2 + η2 + δ1 + δ2) + δ2(−α2 + η2)− η1η2,

a3 = δ2(−α2 + η2)(−α1 + η1)− δ2η1η2.

By the Routh-Hurwitz stability criterion [39], E0 is stable if and only if a1 > 0, a3 > 0

and a1a2 − a3 > 0. The above conditions are never satisfied simultaneously:

Suppose a1 = −α1 + η1 − α2 + η2 + δ1 + δ2 > 0, a1a2 − a3 > 0,

and a3 = δ2 [(−α2 + η2)(−α1 + η1)− η1η2] > 0.

This implies, (−α1 + η1)(−α2 + η2) > η1η2 > 0 and α1(α2 − η2) > α2η1 > 0.

Thus, (α1 − η1) > 0 and (α2 − η2) > 0.

This implies, − α2 + η2 + δ1 + δ2 > α1 − η1 > 0

and a2 = (−α1 + η1)(−α2 + η2 + δ1 + δ2) + δ2(−α2 + η2)− η1η2 < 0.

Lastly, a1a2 − a3 < 0.

A contradiction has been reached. In conclusion, the Routh-Hurwitz stability criterion

is never satisfied, and E0 is always unstable.

Next, we prove that the interior equilibrium E1 is locally asymptotically stable.

Theorem 3.1.2. The interior equilibrium E1 is always locally asymptotically stable.

Proof. The Jacobian evaluated at E1 is J(E1) =


α1 −

2α1γ

K
B1

P − η1 +B1
A

(
β − α1

K

)
η2 +B1

P

(
β − α1

K

)
0

η1 −B1
A

(α2γ

K
+ β

)
α2 − η2 − δ1 −B1

P

(
β +

α2γ

K

)
− 2α2

K
B1

A δ2

0 δ1 −δ2

.
Thus, the characteristic polynomial of J (E1) is

0 = x3 + a1x
2 + a2x+ a3
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where

a1 = δ1 + δ2 +
C

2
+

B

2γ
+

α1P

2βK
+

α2A

2βK
,

a2 =
(δ1 + δ2)C

2
+

δ2B

η2γ
+

α1(δ1 + δ2)P

2βK
+

α2δ2A

2βK
+

a3
δ2
,

a3 =
δ2
√

(Kβ − η1 − γη2)2 + 4βKγη2
2βK

(
α1P

γ
+ α2A

)
.

By the Routh-Hurwitz stability criterion [39], E1 is stable if and only if a1 > 0, a3 > 0

and a1a2 − a3 > 0. Note

a1 = δ1 + δ2 +
C

2
+

B

2γ
+

α1P

2βK
+

α2A

2βK
> 0,

a3 =
δ2
√

(Kβ − η1 − γη2)2 + 4βKγη2
2βK

(
α1P

γ
+ α2A

)
> 0,

and

a1a2 − a3 =

(
δ1 +

C

2
+

B

2γ
+

α1P

2βK
+

α2A

2βK

)
a2

+ δ2

(
(δ1 + δ2)C

2
+

δ2B

η2γ
+

α1(δ1 + δ2)P

2βK
+

α2δ2A

2βK

)
> 0

since

A = Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1 > 0,

P = Kβ − η1 − γη2 +
√

(Kβ − η1 − γη2)2 + 4βKγη2 > 0,

B = Kβ − η1 + γη2 +
√

(Kβ − η1 + γη2)2 + 4γη1η2 > 0,

C = −Kβ + η1 − γη2 +
√
(−Kβ + η1 − γη2)2 + 4γη1η2 > 0

as shown below:

(Kβ + η1 + γη2)
2 > (Kβ + η1 + γη2)

2 − 4βKη1

Kβ + η1 + γη2 = |Kβ + η1 + γη2| >
√

(Kβ + η1 + γη2)2 − 4βKη1

A = Kβ + η1 + γη2 −
√

(Kβ − η1 − γη2)2 − 4βKη1 > 0,
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(Kβ − η1 − γη2)
2 < (Kβ − η1 − γη2)

2 + 4βKγη2

−(Kβ − η1 − γη2) ≤ |Kβ − η1 − γη2| <
√

(Kβ − η1 − γη2)2 + 4βKγη2

P = Kβ − η1 − γη2 +
√

(Kβ − η1 − γη2)2 + 4βKγη2 > 0,

(Kβ − η1 + γη2)
2 < (Kβ − η1 + γη2)

2 + 4γη1η2

−(Kβ − η1 + γη2) ≤ |Kβ − η1 + γη2| <
√

(Kβ − η1 + γη2)2 + 4γη1η2

B = Kβ − η1 + γη2 +
√

(Kβ − η1 + γη2)2 + 4γη1η2 > 0,

and

(−Kβ + η1 − γη2)
2 < (−Kβ + η1 − γη2)

2 + 4γη1η2

−(−Kβ + η1 − γη2) ≤ | −Kβ + η1 − γη2| <
√

(−Kβ + η1 − γη2)2 + 4γη1η2

C = −Kβ + η1 − γη2 +
√

(−Kβ + η1 − γη2)2 + 4γη1η2 > 0,

since

(Kβ + η1 + γη2)
2 − 4βKη1 =

(Kβ − η1 − γη2)
2 + 4βKγη2 =

(Kβ − η1 + γη2)
2 + 4γη1η2 =

(−Kβ + η1 − γη2)
2 + 4γη1η2 > 0.

Thus, E1 is always locally asymptotically stable.
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Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

E3 does not exist

Table 3.2: Existence and stability of the equilibria of System (3.1.1).

(a) E0 = (0, 0, 0) unstable (b) E1 =
(
B1

P , B
1
A, B

1
D

)
stable

Figure 3.1: Phase portraits of System (2.3.1). In (a) and (b), the param-

eter values are α1 = 3, α2 = 3.7848, K = 200, 000, γ = 1.1, η1 = 10, η2 =

0.4973, β = 0.00005, δ1 = 1.2, and δ2 = 1.3. E0 is unstable, as shown by

the direction field arrows moving away from E0 = (0, 0, 0). E1 is locally

asymptotically, as shown by the direction field arrows moving toward E1 =(
Kβ−η1−γη2+

√
(Kβ−η1−γη2)2+4βKγη2
2βγ ,

Kβ+η1+γη2−
√

(Kβ+η1+γη2)2−4βKη1
2β , δ1δ2B

1
A

)
.

3.1.3 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (3.1.1), which were created

using the Matlab® ode45 solver. The results are almost exactly those of System

(2.3.1). The only difference is our third additional population, BD, now mirrors the
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behavior of BA. This is highlighted when the equilibrium and stability are seen side

by side as shown next. The equilibrium for our general dormancy System (3.1.1) are

E0 = (0, 0, 0) ,

E1 =
(
B1

P , B
1
A, B

1
D

)
,

where

B1
P =

Kβ − η1 − γη2 +
√
(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B1
A =

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

,

B1
D =

δ1
δ2
B1

A,

and for our general plasmid System (2.3.1) are

E0 = (0, 0) ,

E1 =
(
B1

P , B
1
A

)
,

where

B1
P =

Kβ − η1 − γη2 +
√

(Kβ − η1 − γη2)2 + 4βKγη2
2βγ

,

B1
A =

Kβ + η1 + γη2 −
√

(Kβ + η1 + γη2)2 − 4βKη1
2β

.

Furthermore, the tables summarizing the stability of Systems (2.3.1) and (3.1.1) are

identical.

This shows that including first-order conversion to model dormancy in System

(2.3.1) does not affect the original dynamics. Future research should explore different

ways dormancy can affect plasmid dynamics: this can be accomplished by adding

complex plasmid and dormancy dynamics to Model (3.1.1).
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Existence and Stability

E0 exists and unstable

E1 exists and stable

E2 does not exist

E3 does not exist

Table 3.3: Existence and stability of the equilibria of Systems (2.3.1) and (3.1.1).
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(a) BP (0) = 1000, BA(0) = 1000, BD(0) = 1000
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(b) BP (0) = 100000, BA(0) = 10, BD(0) = 10

Figure 3.2: Numerical simulations of System (3.1.1). In (a) and (b), E0 is unstable and
E1 is locally asymptotically stable with parameter values α1 = 3, α2 = 3.7848, K =
200, 000, γ = 1.1, η1 = 10, η2 = 0.4973, β = 0.00005, δ1 = 1.2, and δ2 = 1.3.

Note the overall outcome of both simulations in Figure 3.2:

BP =
Kβ−η1−γη2+

√
(Kβ−η1−γη2)2+4βKγη2

2βγ
, BA =

Kβ+η1+γη2−
√

(Kβ+η1+γη2)2−4βKη1

2β
and

BD = δ1
δ2
B1

A. In (a), the initial population sizes are identical and
1

200
of the carrying

capacity, K. However, in (b), BP (0) is 100 times bigger, and both BA(0) and BD(0)

are 100 times smaller in comparison to (a). Still, the outcomes are identical. This

will be the case for any initial condition with at least one positive value. Furthermore,

all numerical simulations of System (3.1.1) can be categorized into two outcomes:
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1. If BP (0) = BA(0) = 0, then the system will remain at E0 = (0, 0, 0) =

(B0
P , B

0
A, B

0
D).

2. Otherwise, the system will trend towards and stabilize at E1 =(
Kβ−η1−γη2+

√
(Kβ−η1−γη2)2+4βKγη2

2βγ
,
Kβ+η1+γη2−

√
(Kβ+η1+γη2)2−4βKη1

2β
, δ1
δ2
B1

A

)
= (B1

P , B
1
A, B

1
D).

3.2 Batch Culture Model of Dormancy-Capable-Golden Algae and Conserved Nutri-

ent Recycling

Prymnesium parvum is a unicellular species of phytoplankton often referred to

as golden algae. While this alga may be harmless at times, P. parvum is one of several

algae species known to grow excessively and release lethal toxins. The scientific

community refers to this phenomenon as a harmful algal bloom. These toxins can

annihilate local aquatic populations, compromise water sources, and harm or even

kill humans and animals [49, 54]. Rightfully, P. parvum has the attention of many

scientists, governments, and environmental protection agencies and organizations.

In hopes of assisting, the analysis below aims to deepen the understanding of the

population dynamics of golden algae.

The model presented modifies previous zooplankton and phytoplankton models

to fit P. parvum [32, 33, 15, 44, 26, 45]. Specifically, a batch culture model provides

some understanding of the dormancy of golden alga [56]. However, the model does

not take into account mortality; thus, its applicability is limited. The batch culture

model introduced below focuses only on the population dynamics of golden algae.

Hence, the main features of this golden algae model are the documented dormancy of

golden alga [20] and the extensive phenomenon of nutrient recycling [13].
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In this section, we use a model of ordinary differential equations to represent

the population dynamics of P. parvum. The initial model is reduced in order by one,

resulting in both a trivial and non-trivial equilibrium. A complete stability analysis is

conducted and numerical simulations are provided to support the theoretical results.

3.2.1 Formulation of Dormancy-Capable-Golden Algae and Conserved Nutrient

Recycling in a Batch Culture Model

The following model is a direct extension of Ventura et al.’s batch culture model

[56], with the addition of a death term and Martines et al.’s nutrient recycling term

[32]. A system of three ordinary differential equations is constructed to represent the

population dynamics of golden algae in a batch culture:

dR

dt
= −µmaxRM

K +R
q︸ ︷︷ ︸

consumption by M

+ λMq︸ ︷︷ ︸
recycled nutrients from death of M

,

dM

dt
=

µmaxRM

K +R︸ ︷︷ ︸
growth of M

− λM︸︷︷︸
death of M

− δM︸︷︷︸
conversion to N

+ γN︸︷︷︸
conversion to M

,

dN

dt
= δM︸︷︷︸

conversion to N

− γN︸︷︷︸
conversion to M

.

(3.2.1)

Here, R represents the nutrient concentration available in the closed system. “Motile

algae” refers to metabolically active P. parvum, where M represents motile algae

density, while “non-motile algae” refers to dormant P. parvum, whereN represents non-

motile algae density. In batch cultures, an organism resides in a regulated environment

with a finite amount of a predetermined nutrient, and therefore, additional nutrients

and organisms cannot enter the closed system [8]. Because of their dormant state,

non-motile algae do not reproduce and do not utilize nutrients. Motile algae remain

active, grow, and reproduce, hence, taking up nutrients in the process. Algal growth
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is understood to be limited by nutrient supplies [55]. Historically, models have utilized

the Monod function [36],

µmaxR

K +R
,

to represent the relationship between nutrient use and P. parvum growth [21]; this

model does the same. Here, µmax is the maximal growth rate of motile algae as

R → ∞, and K is the half-saturation constant for motile algae. The constant

parameter q denotes the portion of nutrient necessary per individual P. parvum cell.

The conversion rate from motile algae to non-motile algae is δ, and from non-motile

algae to motile algae is γ. Both of these conversion rates are assumed to be constant.

Since non-motile algae reside in a protective-cyst-like state, they have an assumed

negligible mortality rate. However, motile algae lack this protection and naturally

perish at a constant rate λ. As mentioned earlier, nutrient recycling emerges in

multiple related models [32, 44, 26, 45], but this model takes direct inspiration from

Martines et al.’s recycling term [32]. Thus, nutrients contained in dead motile algae

are recycled back into the system at the rate λMq. It is worth noting that q appears

in both the consumption term,

−µmaxRM

K +R
q,

and the recycling term, λMq. While other models incorporate different parameters

for these terms [44, 26, 45], q does appear in all of Martines et al.’s consumption and

recycling terms [32]. Furthermore, utilizing q for these terms facilitates the reduction

of order of System (3.2.1) and the analysis of System (3.2.2). Table 3.4 lists all

variables and parameters mentioned and their units.

3.2.1.1 Reduction of Order

It is worth noting that System (3.2.1) can be reduced to a system of two

differential equations. The total amount of nutrients in the system, T , is comprised of
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Variable/Parameter Description Units

R Nutrient concentration µmol/mL
M Motile algae density cells/mL
N Non-motile algae density cells/mL
γ Rate of conversion from non-motile to motile algae day−1

δ Rate of conversion from motile to non-motile algae day−1

K Half-saturation constant for motile algae µmol/mL
µmax Maximal growth rate of motile algae day−1

λ Death rate of motile algae day−1

q Nutrient quota of motile algae µmol/cell

Table 3.4: Model (3.2.1) parameters and variables with their description and units.

the nutrient concentration in the system, R, and the nutrient concentration present

in both types of algae, Mq and Nq. Thus,

T = R +Mq +Nq

and

dT

dt
=

dR

dt
+

dM

dt
q +

dN

dt
q.

Direct substitution yields
dT

dt
= 0. This implies T is constant. Hence,

R = T −Mq −Nq

can be used to eliminate the equation:

dR

dt
= −µmaxRM

K +R
q + λMq.

After substitution, the resulting reduced system is given by:

dM

dt
=

µmaxM(T −Mq −Nq)

K + T −Mq −Nq︸ ︷︷ ︸
growth of M

− λM︸︷︷︸
death of M

− δM︸︷︷︸
conversion to N

+ γN︸︷︷︸
conversion to M

,

dN

dt
= δM︸︷︷︸

conversion to N

− γN︸︷︷︸
conversion to M

.

(3.2.2)
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3.2.2 Analysis of Dormancy and Conserved Nutrient Recycling in a Batch Culture

Model

In this subsection, the reduced System (3.2.2) is found to have two equilibria.

Criteria for the existence and stability of both equilibria are deduced. The stability

conditions are then summarized in Table 3.5 and corroborated in Figure 3.4.

By setting the right-hand sides of System (3.2.2) equal to zero, the following

two equilibria are found:

E0 =
(
M0, N0

)
= (0, 0),

E∗ = (M∗, N∗) =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
.

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for M and N that appear

in E0 and E∗ represent population sizes and the value for R, given by

R = T −Mq −Nq,

represents the nutrient concentration in the system. Hence, these values must all be

non-negative.

E0: Clearly, M0 = N0 = 0 and R0 = T − M0q − M0q = T are non-negative.

Therefore, E0 is always biologically feasible and always exists.

E∗: Note R∗ = T −M∗q −M∗q =
−λK

λ− µmax

. Thus, R∗ is non-negative if and only

if

λ− µmax < 0.

Now, note M∗ =
δ

γ
N∗. Thus, M∗ is non-negative if and only if N∗ is non-

negative. Since γ, δ, q > 0, both M∗ and N∗ are non-negative if and only

if
λK + T (λ− µmax)

λ− µmax

is non-negative. Since λ − µmax < 0, M∗ and N∗ are

non-negative if and only if

λK + T (λ− µmax) < 0.
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Note the two above conditions can be combined. Therefore, E∗ is biologically

feasible and exists when λ <
µmaxT

K + T
< µmax.

Moving forward, E0 is always eligible for analysis. However, E∗ is eligible for analysis

only when λ <
µmaxT

K + T
< µmax.

Next, we establish the stability conditions for the two equilibria E0 and E∗.

The following theorem concerns the local stability of the trivial equilibrium E0.

Theorem 3.2.1. The trivial equilibrium E0 is locally asymptotically stable if and

only if λ >
µmaxT

K + T
.

Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=

−λ− δ +
µmaxT

K + T
γ

δ −γ

 .

By the Routh-Hurwitz stability criterion [39], E0 is stable when det (J (E0)) > 0 and

tr (J (E0)) < 0. Clearly,

det
(
J
(
E0
))

= γ

(
λ− µmaxT

K + T

)
> 0

and

tr (J (E0)) = −(δ + γ) +

(
−λ+

µmaxT

K + T

)
< 0.

Thus, E0 is locally asymptotically stable if and only if λ >
µmaxT

K + T
.

Next, we prove that the interior equilibrium E∗ is locally asymptotically stable

when it exists, λ <
µmaxT

K + T
.

Theorem 3.2.2. The interior equilibrium E∗ is locally asymptotically stable if and

only if λ <
µmaxT

K + T
.
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Proof. The Jacobian evaluated at E∗ is

J (E∗) =

−δ − q
(λ− µmax)

2

µmaxK
M∗ γ − (λ− µmax)

2

µmaxK
M∗

δ −γ

 .

By the Routh-Hurwitz stability criterion [39], E∗ is stable when det (J (E∗)) > 0 and

tr (J (E∗)) < 0. Clearly,

det (J (E∗)) = qγ
(λ− µmax)

2

µmaxK
M∗ + δ

(λ− µmax)
2

µmaxK
M∗ > 0

and

tr (J (E∗)) = −
(
δ + γ + q

(λ− µmax)
2

µmaxK
M∗
)

< 0.

Thus, E∗ is locally asymptotically stable if and only if λ <
µmaxT

K + T
.

Furthermore, the above stability analysis is summarized in Table 3.5 and supported

by the phase portraits in Figure 3.4. As indicated by the model analysis, the

relationship between the death rate, λ, and the growth term,
µmaxT

K + T
, is instrumental

in understanding the population dynamics of P. parvum. The stability analysis reveals

two scenarios:

1. If the death rate is less than the growth term, λ <
µmaxT

K + T
, then the trivial

equilibrium is unstable, and the non-trivial equilibrium is locally asymptotically

stable. In other words, if the overall death is less than the overall growth,

both types of algae will persist when introduced to a controlled and closed

environment as inferred by Figure 3.4 (a) and the stability of

E∗ = (M∗, N∗) =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
.

2. If the death rate is greater than the growth term, λ >
µmaxT

K + T
, then the trivial

equilibrium is locally asymptotically stable, and the non-trivial equilibrium

does not exist. In other words, if the overall death is greater than the overall
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growth, both types of algae will die off when introduced to a controlled and

closed environment as inferred by Figure 3.4 (b) and the stability of

E0 = (M∗, N∗) = (0, 0) .

Existence and Stability

λ <
µmaxT

K + T

µmaxT

K + T
< λ

E0 exists and unstable E0 exists and stable

E∗ exists and stable E∗ does not exist

Table 3.5: Existence and local stability conditions of the equilibria of System (3.2.2)
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Figure 3.3: Bifurcation diagrams of System (3.2.2) for the motile algae M in (a), and
non-motile algae N in (b). The parameter values are µmax = 0.4, q = 0.05, T = 5,
δ = 0.3, γ = 0.2 and K = 10. In (a) and (b), the steady-state values are plotted
as a function of λ as it changes in [0.01, 0.25]. In the diagrams, solid lines show
stable states, and dashed lines show unstable states. The trivial equilibrium, E0, is
locally asymptotically stable when λ > 0.13. Otherwise, E0 is unstable. The interior
equilibrium, E∗, is locally asymptotically stable when λ < 0.13. Otherwise, E∗ does
not exist.
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(b) E∗ = (M∗, N∗) stable and E0 = (0, 0)

unstable when λ <
µmaxT

K + T

Figure 3.4: Phase portraits of System (3.2.2). In (a) and (b), the parameter values
are µmax = 0.4, q = 0.05, T = 5, δ = 0.3, γ = 0.2 and K = 10. In (a), E0

is locally asymptotically stable, and E∗ does not exist because λ >
µmaxT

K + T
when

λ = 0.15, as shown by the direction field arrows moving toward the single nullcline
intersection at E0 = (0, 0). In (b), E∗ is locally asymptotically stable, and E0 is

unstable because λ <
µmaxT

K + T
when λ = 0.05, as shown by the direction field arrows

moving toward E∗ = (M∗, N∗) =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
and

away from E0 = (0, 0).

In the stability analysis above, we found that the long-term behavior of System

(3.2.2) depends on parameter values. We will conduct a more detailed numerical

investigation of the system’s behavior by examining how each equilibrium point

changes with variations in λ. We will create a one-parameter bifurcation diagram by

varying λ, as illustrated in Figure 3.3. We will hold all model parameters constant and

adjust λ within the biologically meaningful interval of (0.01, 0.25). The bifurcation

occurs at λ =
µmaxT

K + T
=

2

15
= 0.13.

As shown in the diagrams, if λ > 0.13, System (3.2.2) has a single locally

asymptotically stable equilibria, E0. This represents the extinction of both motile
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and non-motile algae. On the other hand, if λ < 0.13, there are two equilibria, E0

and E∗, with only E∗ being locally asymptotically stable. This scenario represents

the co-existence and persistence of both motile and non-motile algae.

3.2.3 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (3.2.2), which were created

using the Matlab® ode45 solver.In this model, two main algae dynamics are in play:

death and growth. It follows that the relationship between the death rate, λ, and the

growth term,
µmaxT

K + T
, is fundamental in understanding the population dynamics of P.

parvum. There are two existence and stability conditions:

1. The death rate is greater than the growth term, λ >
µmaxT

K + T
.

2. The death rate is less than the growth term, λ <
µmaxT

K + T
.

This creates the possibility of complete extinction when λ >
µmaxT

K + T
inferred by Figure

3.5 (a)-(b) and the lone stability of

E0 = (0, 0)

and the possibility of mutual persistence when λ <
µmaxT

K + T
inferred by Figure 3.5

(c)-(d) and the lone stability of

E1 =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
.

Note the overall outcome of simulations in Figure 3.5 (a)-(b): M = N = 0.

In 3.5 (a), the initial population sizes, M(0) = N(0) = 10, are identical and small.

However, in 3.5 (b), the initial population sizes, M(0) = N(0) = 100, are 10 times

bigger in comparison to 3.5 (a). Still, the outcomes are identical in Figures 3.5 (a)-(b).

Now, note the overall outcome of simulations in Figure 3.5 (c)-(d):

M = γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
and N = δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
. In 3.5 (c), the initial pop-

ulation sizes, M(0) = N(0) = 10, are identical and small. However, in 3.5 (d), the
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(c) M(0) = N(0) = 10
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(d) M(0) = 100, N(0) = 1

Figure 3.5: Numerical simulations of System (3.2.2). In (a)-(d), the parameter values
are µmax = 0.4, q = 0.05, T = 5, δ = 0.3, γ = 0.2 and K = 10. In (a)-(b), λ = 0.15

and λ >
µmaxT

K + T
. In (c)-(d), λ = 0.05 and λ <

µmaxT

K + T
.

initial population size M(0) = 100 is 10 times bigger and N(0) = 1 is 10 times smaller

in comparison to 3.5 (c). Still, the outcomes are identical in Figures 3.5 (c)-(d)

In this model, the existence and stability conditions largely dictate the behavior

of the simulations. If the death rate is greater than the growth term, λ >
µmaxT

K + T
, any

initial condition will result in the extinction of both M and N , as pictured in Figures

3.5 (a)-(b). However, if the death rate is less than the growth term, λ <
µmaxT

K + T
, any

initial condition with at least one positive value will lead to the persistence of both
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M and N , as pictured in Figures 3.5 (c)-(d). In summary, all numerical simulations

of System (3.2.2) can be categorized into three outcomes:

1. If M(0) = N(0) = 0, then the system will remain at

E0 = (0, 0) =
(
M0, N0

)
.

2. If M(0) = γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
and N(0) = δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, then the sys-

tem will remain atE∗ =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
= (M∗, N∗).

3. If λ >
µmaxT

K + T
, the system will trend towards and stabilize at E0 = (0, 0) =

(
M0, N0

)
.

4. Otherwise, the system will trend towards and stabilize at

E∗ =

(
γ
λK + T (λ− µmax)

q(δ + γ)(λ− µmax)
, δ

λK + T (λ− µmax)

q(δ + γ)(λ− µmax)

)
= (M∗, N∗).

3.3 Chemostat Model of Dormancy-Capable-Microorganisms and Nutrient Recycling

This section constructs a new chemostat model for dormancy-capable microor-

ganisms while simultaneously generalizing the nutrient recycling term in the previous

P. parvum Model (3.2.1). A chemostat is an apparatus that sustains a homogeneous

environment through continuous inflow and outflow; compared to batch culture

models, chemostat models can represent more realistic biological problems [51]. Fur-

thermore, nutrients are not always conserved through nutrient recycling; nutrients

can be lost, conserved, or acquired through nutrient cycling [28]. There are many

other chemostat models that incorporate nutrient recycling but do not incorporate

dormancy [6, 5, 18, 32, 43, 45, 46, 59, 56]. The mathematical model below consists

of a system of nonlinear ordinary differential equations incorporating first-order con-

version between active and dormant states of dormancy-capable microorganisms, a

chemostat-like environment, and nutrient recycling at different efficiencies.
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3.3.1 Formulation of Dormancy-Capable-Microorganisms and Nutrient Recycling in

a Chemostat Model

The three nonlinear ordinary differential equations below constitute the new

mathematical model:

dR

dt
= DRin︸ ︷︷ ︸

input

− DR︸︷︷︸
dilution

− q1µ(R)M︸ ︷︷ ︸
consumption

+ q2λM︸ ︷︷ ︸
nutrient recycling

,

dM

dt
= µ(R)M︸ ︷︷ ︸

growth

− λM︸︷︷︸
death

− δM︸︷︷︸
conversion

+ γN︸︷︷︸
conversion

− DM︸︷︷︸
dilution

,

dN

dt
= δM︸︷︷︸

conversion

− γN︸︷︷︸
conversion

− DN︸︷︷︸
dilution

.

(3.3.1)

In Model (3.3.1), the variable R corresponds to the concentration of limiting

nutrients in the system. The term “active cell” pertains to a metabolically active

microorganism, where the density of the active population is denoted by M . Simi-

larly, “dormant cell” pertains to a metabolically inactive microorganism, where N

represents the density of the dormant population. As stated above, a chemostat

undergoes continuous inflow and outflow of any combination of nutrients, byproducts,

microorganisms, etc. All components in the chemostat flow out of the system at a

constant dilution rate, D [38]. However, only the limiting nutrient flows into this

system at the constant rate Rin. The active population, M , naturally grows and

multiplies, depleting R as it does. In the literature, the Monod function,

µ(R) =
µmaxR

K +R
,

often represents the above relationship between nutrient use and microbial growth [36].

For purposes of this model, µmax is the maximal growth rate of active microorganisms

as R → ∞, and K is the half-saturation constant for active microorganisms. Dormant
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microorganisms do not multiply and do not deplete the nutrient concentration; thus,

N does not elicit a growth function like M .

The positive constant q1 is the quota of nutrients required per individual microor-

ganism [32]. The constant conversion rate from active to dormant microorganisms

is δ and from dormant to active microorganisms is γ. This first-order conversion

is routinely utilized as a first step when modeling dormancy [3, 35, 37, 47, 50, 56].

Because dormancy is a protective state, there is an assumed negligible mortality rate

for N . However, active microorganisms are still vulnerable to their surroundings;

thus, they perish at a constant rate λ. The product λq2 is the nutrient recycle rate

after the death of M . Here,

0 ≤ q2 ≤ q1,

where q2 represents the quota of nutrients successfully recycled into the nutrient

concentration per individual microorganism. This inequality implies only nutrients

residing within a dead microorganism can be recycled back into R. In other words,

this model assumes nutrients can be lost or conserved, but not acquired.

Remark 3.3.1. Amidst diverse microorganisms and complex biological processes,

all manifestations of dormancy involve a minimum of two cellular states: active

and inactive. Utilizing M and N to represent the populations of these two states,

respectively, enables Model (3.3.1) to represent dormancy at a fundamental level

across its different manifestations.

3.3.2 Analysis of Dormancy and Nutrient Recycling in a Chemostat Model

In this subsection, the reduced System (3.3.1) is found to have two equilibria.

Criteria for the existence and stability of both equilibria are deduced. The stability

conditions are then summarized in Table 3.7 and corroborated in Figure 3.6.
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Variable/Parameter Description Units

R Nutrient concentration µmol/mL
M Active population density cells/mL
N Dormant population density cells/mL
Rin Concentration of substrate in feed µmol/mL
D Dilution rate day−1

γ Rate of conversion from dormant to active day−1

δ Rate of conversion from active to dormant day−1

K Half-saturation constant for active µmol/mL
µmax Maximal growth rate of active day−1

λ Death rate of active day−1

q1 Nutrient quota of active µmol/cell
q2 Nutrient quota of recycled nutrients µmol/cell

Table 3.6: Model (3.3.1) parameters and variables with their description and units.

By setting the right-hand sides of System (3.2.2) equal to zero, the following

two equilibria are found:

E0 =
(
R0,M0, N0

)
= (Rin, 0, 0),

E∗ = (R∗,M∗, N∗) ,

where

R∗ = µ−1

(
D + λ+

Dδ

D + γ

)
,

M∗ =
D (Rin −R∗)

q1

(
D + λ+ Dδ

D+γ

)
− q2λ

,

N∗ =
δ

D + γ
M∗, and

µ−1(µ̂) =
µ̂K

µmax − µ̂

Before considering the stability of the equilibria, one must know when and if each

equilibrium is biologically feasible. Recall that the values for M and N that appear in

E0 and E∗ represent population sizes. Hence, these values must all be non-negative.

E0: Clearly, M0 = N0 = 0 and R0 = Rin are non-negative. Therefore, E0 is always

biologically feasible and always exists.

72



E∗: Note N∗ =
δ

D + γ
M∗. Thus, N∗ is non-negative if and only if M∗ is non-

negative. Since γ, δ,D > 0, both M∗ and N∗ are non-negative if and only if

D (Rin −R∗)

q1

(
D + Dδ

D+γ

)
+ (q1 − q2)λ

is non-negative. Since q2 ≤ q1, M
∗’s denominator

is positive. Thus, M∗ and N∗ are non-negative if and only if M∗’s numerator is

non-negative, i.e., when Rin > R∗, which is equivalent to

µ(Rin) > D + λ+
Dδ

D + γ
.

Now, consider R∗. R∗ is non-negative if and only if

(
D + λ+ Dδ

D+γ

)
K

µmax −
(
D + λ+ Dδ

D+γ

) is

non-negative. Clearly, R∗’s numerator is positive. Thus, R∗ is non-negative if

and only if R∗’s denominator is non-negative, i.e., when

µmax > D + λ+
Dδ

D + γ
.

Since µmax > µ(Rin) =
µmaxRin

K +Rin

, the two above existence conditions are satisfied

when

µmax > µ(Rin) > D + λ+
Dδ

D + γ
.

Therefore, E∗ is biologically feasible and exists when

µ(Rin) > D + λ+
Dδ

D + γ
.

Moving forward, E0 is always eligible for analysis. However, E∗ is eligible for analysis

only when µ(Rin) > D + λ+
Dδ

D + γ
.

Next, we establish the stability conditions for the two equilibria E0 and E∗.

The following theorem is in regard to the local stability of the boundary equilibrium

E0.

Theorem 3.3.1. The boundary equilibrium E0 is locally asymptotically stable if and

only if Rin < R∗.
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Proof. The Jacobian evaluated at E0 is

J
(
E0
)
=


−D −µ(Rin)q1 + λq2 0

0 µ(Rin)− λ− δ −D γ

0 δ −γ −D

 .

Thus, the characteristic polynomial of J (E0) is

x3 + a01x
2 + a02x+ a03 = 0,

where

a01 = −trace
(
J
(
E0
))

= 2D + γ + [D + λ+ δ − µ (Rin)] ,

a02 = Da01 +
a03
D

−D2,

a03 = −det
(
J
(
E0
))

= D (D + γ)

[
D + λ+

Dδ

D + γ
− µ (Rin)

]
.

By the Routh-Hurwitz stability criterion [39], E0 is stable when

a01 > 0, a03 > 0 and a01a
0
2 − a03 > 0. Note Rin < R∗ implies

0 < D + λ+
Dδ

D + γ
− µ(Rin) < D + λ+ δ − µ(Rin). Thus,

a01 = 2D + γ + [D + λ+ δ − µ (Rin)] > 0, and

a03 = D (D + γ)

[
D + λ+

Dδ

D + γ
− µ (Rin)

]
> 0.

Lastly, a01 −D = D + γ + [D + λ+ δ − µ (Rin)] > 0 implies
a1
D

> 1 and

a01a
0
2 − a03 = Da01

(
a01 −D

)
+ a03

(
a01
D

− 1

)
> 0.

Thus, E0 is locally asymptotically stable when Rin < R∗.

Next, we prove that the interior equilibrium E∗ is locally asymptotically stable

if and only if Rin > R∗.
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Theorem 3.3.2. The interior equilibrium, E∗, is locally asymptotically stable if and

only if Rin > R∗.

Proof. The Jacobian evaluated at E∗ is

J (E∗) =


−D − q1M

∗ µmaxK

(K +R∗)2
−q1

(
D +

Dδ

D + γ

)
+ (q2 − q1)λ 0

M∗ µmaxK

(K +R∗)2
− δγ

D + γ
γ

0 δ −γ −D

 .

Thus, the characteristic polynomial of J (E∗) is

0 = x3 + a1x
2 + a2x+ a3

where

a1 = −trace
(
J
(
E0
))

= 2D + γ +
δγ

D + γ
+ q1M

∗ µmaxK

(K +R∗)2
,

a2 =

(
D + γ +

δγ

D + γ

)(
D + q1M

∗ µmaxK

(K +R∗)2

)
+

a3
D + γ

,

a3 = −det
(
J
(
E0
))

= (D + γ)M∗ µmaxK

(K +R∗)2

(
q1

(
D +

Dδ

D + γ

)
+ (q1 − q2)λ

)
.

By the Routh-Hurwitz stability criterion [39], E∗ is stable if and only if a1 > 0, a3 > 0

and a1a2 − a3 > 0. Since q1 ≥ q2 and M∗, R∗ > 0,

a1 = 2D + γ +
δγ

D + γ
+ q1M

∗ µmaxK

(K +R∗)2
> 0,

a2 =

(
D + γ +

δγ

D + γ

)(
D + q1M

∗ µmaxK

(K +R∗)2

)
+

a3
D + γ

> 0,

a3 = (D + γ)M∗ µmaxK

(K +R∗)2

(
q1

(
D +

Dδ

D + γ

)
+ (q1 − q2)λ

)
> 0,

and

a1a2 − a3 = a1

(
D + γ +

δγ

D + γ

)(
D + q1M

∗ µmaxK

(K +R∗)2

)
+

a3
D + γ

(
D +

δγ

D + γ
+ q1M

∗ µmaxK

(K +R∗)2

)
> 0.

Thus, E∗ is locally asymptotically stable if and only ifRin > R∗.
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Existence and Stability

µ (Rin) > D + λ+
Dδ

D + γ
µ (Rin) < D + λ+

Dδ

D + γ

E0 exists and unstable E0 exists and stable

E∗ exists and stable E∗ does not exist

Table 3.7: Existence and local stability conditions of the equilibria of System (3.3.1).

Furthermore, the above stability analysis is summarized in Table 3.7 and supported by

the phase portraits in Figure 3.6. As indicated by the model analysis, the relationship

between the dilution, death, and conversion rates (D,λ, δ, γ) and the growth term,

µ(Rin) is instrumental in understanding the population dynamics. The stability

analysis reveals two scenarios:

1. If the elimination term, D + λ+
Dδ

D + γ
, is less than the growth term µ(Rin),

then the trivial equilibrium is unstable, and the non-trivial equilibrium is locally

asymptotically stable. This implies that if the overall elimination is less than

the overall growth, both the active and dormant populations will persist when

introduced to a chemostat as inferred by Figure 3.6 (b) and the lone stability of

E∗ =

(
µ−1

(
D + λ+

Dδ

D + γ

)
,

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗

)

= (R∗,M∗, N∗) .

2. If the elimination term, D + λ+
Dδ

D + γ
, is greater than the growth term µ(Rin),

then the trivial equilibrium is locally asymptotically stable, and the non-trivial

equilibrium does not exist. This implies that when the overall elimination

exceeds the overall growth, the microorganism will die off upon introduction to

a chemostat as inferred by Figure 3.6 (c) and the lone stability of

E0 = (Rin, 0, 0) = (R∗,M∗, N∗).
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(a) E0 = (0, 0, 0) unstable when

µ (Rin) > D + λ+
Dδ

D + γ

(b) E∗ = (R∗,M∗, N∗) stable when

µ (Rin) > D + λ+
Dδ

D + γ

(c) E0 = (0, 0, 0) stable when

µ (Rin) < D + λ+
Dδ

D + γ

Figure 3.6: Phase portraits of System (3.3.1). In (a)-(c), the parameter val-
ues are µmax = 0.4, q1 = 0.05, q2 = 0.03, K = 1, γ = 0.2, δ = 0.3, λ = 0.15,

and D = 0.1. In (a), E0 is unstable because µ (Rin) > D + λ+
Dδ

D + γ
when

Rin = 0.3, as shown by the direction field arrows moving away from E0 =

(0, 0, 0). In (b), E1 is locally asymptotically stable because µ (Rin) > D + λ+
Dδ

D + γ
when Rin = 0.3, as shown by the direction field arrows moving toward

E∗ =

(
µ−1

(
D + λ+

Dδ

D + γ

)
,

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗

)
. In (c), E0

is locally asymptotically stable because µ (Rin) < D + λ+
Dδ

D + γ
when Rin = 7.1, as

shown by the direction field arrows moving toward E0 = (0, 0, 0).
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Figure 3.7: Bifurcation diagrams of System (3.3.1) for the active population M in
(a), and dormant population N in (b). The parameter values are µmax = 0.4, q1 =
0.05, q2 = 0.03, K = 1, γ = 0.2, δ = 0.3, λ = 0.15, and D = 0.1. In (a) and (b), the
steady-state values are plotted as a function of Rin as it changes in [6.9, 7.1]. In the
diagrams, solid lines show stable states, and dashed lines show unstable states. The
trivial equilibrium, E0, is locally asymptotically stable when Rin < 7. Otherwise, E0

is unstable. The interior equilibrium, E∗, exists and is locally asymptotically stable
when Rin > 7. Otherwise, E∗ does not exist.

Remark 3.3.2. When the constant dilution rate is equal to zero, D = 0, the chemostat

model (3.3.1) can represent a batch culture model with dormancy and nutrient

recycling. Setting D = 0 and q1 = q2 results in the batch culture Model (3.2.1).

Setting D = 0 and q1 > q2 results in a batch culture where all equilibria require

M∗ = N∗ = 0, i.e., in a closed system where nutrients are lost through nutrient

recycling, neither M nor N persist under any conditions.

In the stability analysis above, we found that the long-term behavior of System

(3.2.2) depends on parameter values. We will conduct a more detailed numerical

investigation of the system’s behavior by examining how each equilibrium point

changes with variations in Rin. We will create a one-parameter bifurcation diagram

by varying Rin, as illustrated in Figure 3.7. We will hold all model parameters
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constant and adjust Rin within the biologically meaningful interval of (6.9, 7.1). The

bifurcation occurs at Rin = 7.

As shown in the diagrams, if Rin < 7, System (3.3.1) has a single locally

asymptotically stable equilibrium, E0. This represents the extinction of both active

and dormant microorganisms. On the other hand, if Rin > 7, there are two equilibria,

E0 and E∗, with only E∗ being locally asymptotically stable. This scenario represents

the co-existence and persistence of both active and dormant microorganisms.

3.3.3 Numerical Simulations and Discussion

In this subsection, we discuss simulations of System (3.3.1), which were created

using the Matlab® ode45 solver. In this model, two main population dynamics

are in play: elimination and growth. It follows that the relationship between the

elimination term, D + λ+
Dδ

D + γ
, and the growth term,

µmaxRin

K +Rin

, is fundamental in

understanding the population dynamics of dormancy-capable-microorganisms in a

chemostat setting. There are two existence and stability conditions:

1. The elimination term is greater than the growth term,

µ(Rin) < D + λ+
Dδ

D + γ
.

2. The elimination term is less than the growth term,

µ(Rin) > D + λ+
Dδ

D + γ
.

This creates the possibility of complete extinction when µ(Rin) < D + λ+
Dδ

D + γ

inferred by Figure 3.8 (a)-(d) and the lone stability of

E0 = (0, 0, 0)
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and the possibility of mutual persistence when µ(Rin) > D + λ+
Dδ

D + γ
inferred by

Figure 3.9 (a)-(d) and the lone stability of

E∗ =

(
µ−1

(
D + λ+

Dδ

D + γ

)
,

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗

)
.
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(a) R(0) = M(0) = N(0) = 0.1
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(b) R(0) = 10,M(0) = N(0) = 0.1
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(c) R(0) = M(0) = N(0) = 10
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(d) R(0) = 1000,M(0) = N(0) = 10

Figure 3.8: Numerical simulations of System (3.2.2). In (a)-(d), the parameter values
are µmax = 0.4, q1 = 0.05, q2 = 0.03, K = 1, γ = 0.2, δ = 0.1, λ = 0.15, Rin = 0.3 and

D = 0.1 and µ(Rin) < D + λ+
Dδ

D + γ
.

Note the overall outcome of simulations in Figure 3.8 (a)-(d): R = Rin,M =

N = 0. In (a)-(b), the initial population sizes, M(0) = N(0) = 0.1, are identical and

small. However, in (b), the initial nutrient concentration, R(0) = 10, is 100 times
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bigger in comparison to (a), where R(0) = 0.1. In (c)-(d), the initial population sizes,

M(0) = N(0) = 10, are identical and larger. However, in (d), the initial nutrient

concentration, R(0) = 1000, is 100 times bigger in comparison to (a), where R(0) = 10.

Still, the outcomes are identical in (a)-(d).
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(a) R(0) = M(0) = N(0) = 0.1
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(b) R(0) = M(0) = 0.1, N(0) = 10
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(c) R(0) = N(0) = 10,M(0) = 0.1
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(d) R(0) = N(0) = 100,M(0) = 0.1

Figure 3.9: Numerical simulations of System (3.2.2). In (a)-(d), the parameter values
are µmax = 0.4, q1 = 0.05, q2 = 0.03, K = 1, γ = 0.2, δ = 0.1, λ = 0.15, Rin = 4 and

D = 0.1 and µ(Rin) > D + λ+
Dδ

D + γ
.

Now, note the overall outcome of simulations in Figure 3.9 (a)-(d):

R = µ−1

(
D + λ+

Dδ

D + γ

)
,M =

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,
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N =
δ

D + γ

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
. In (a)-(d), the initial population size for

M(0) = 0.1 is noticeably small. However, in (a)-(d), the initial population size

for N and the nutrient concentration gradually increase to 0.1, 10, and 100. Re-

gardless of the initial amount of nutrients or dormant microorganisms, the active

population, M , remained the greatest, as shown by the identical outcomes in (a)-(d).

In this model, the existence and stability conditions largely dictate the be-

havior of the simulations. If the elimination term is greater than the growth term,

µ(Rin) < D + λ+
Dδ

D + γ
, any initial condition will result in the extinction of both

M and N , as pictured in Figure 3.8 (a)-(d). However, if the elimination term is

less than the growth term, µ(Rin) > D + λ+
Dδ

D + γ
, any initial condition with at

least one positive value will lead to the persistence of both M and N , as pictured in

Figures 3.9 (a)-(d). In summary, all numerical simulations of System (3.2.2) can be

categorized into three outcomes:

1. If M(0) = N(0) = 0, then the system will remain at

E0 = (R(0), 0, 0) =
(
R0,M0, N0

)
.

1. IfM(0) = µ−1

(
D + λ+

Dδ

D + γ

)
andN(0) =

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗,

then the system will remain at

E∗ =

(
µ−1

(
D + λ+

Dδ

D + γ

)
,

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗

)
.

3. If µ(Rin) < D + λ+
Dδ

D + γ
, the system will trend towards and stabilize at

E0 = (Rin, 0, 0) =
(
R0,M0, N0

)
.

4. Otherwise, the system will trend towards and stabilize at

E∗ =

(
µ−1

(
D + λ+

Dδ

D + γ

)
,

D(Rin −R∗)

q1(D + Dδ
D+γ

) + (q1 − q2)λ
,

δ

D + γ
M∗

)
.

Next, we perform a series of numerical simulations to explore different biological

scenarios arising from the batch culture (D = 0) and chemostat (D ̸= 0) models
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originating from Model (3.3.1). Specifically, the effects of altering the dilution rate

and the in-flowing nutrient concentration, D and Rin, are depicted in Figure (3.10).

3.10 (a): In Figure 3.10 (a), µ(Rin) < D + λ+
Dδ

D + γ
, which corresponds to a stable E0

and complete extinction in a batch culture model setting (D = 0) [34].
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(b) D = 0.2, Rin = 1.35× 10−3
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Figure 3.10: Effects of the dilution rate D and the concentration of the limiting
nutrient supplied in the in-flowing medium Rin on the system outcome, for model
parameter values q1 = 10−8, K = 10−3, q2 = 10−9, λ = 0.1, δ = 1.1, γ = 1, µmax = 0.95,
and D = 0 (batch culture model) in (a), D = 0.2 with Rin = 1.35× 10−3 (chemostat
model) in (b), D = 0.25 with Rin = 1.35 × 10−3 (chemostat model) in (c), and
D = 0.2 with Rin = 1.35× 10−4 (chemostat model) in (d).
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3.10 (b) Introducing even a small non-zero dilution rate D = 0.2 and Rin = 1.35×10−3 in

3.10 (b), completely transforms the population dynamics. Now, in a chemostat

setting, E∗ is stable, indicating the persistence of both active and dormant

populations.

3.10 (c) However, further increasing the dilution rate to D = 0.25 and maintaining

Rin = 1.35×10−3 in 3.10 (c), results in a too high of a dilution in the chemostat,

affecting the stability condition once again. Therefore, returning back to a

stable E0 and complete extinction in a chemostat setting (D ̸= 0).

3.10 (d) Lastly, in Figure 3.10(d), D = 0.2, as in Figure (3.10) (b), but Rin = 1.35×10−4

is much smaller than in Figures3.10 (b)-(c). Rin is insufficient to sustain the

population, again resulting in a stable E0 and complete extinction in a chemostat

setting (D ̸= 0).

The effects of altering the dilution rate and the in-flowing nutrient concentration, D

and Rin, are also depicted in Figure 3.11:

3.11 (a): In Figure 3.11 (a), µ(Rin) > D + λ+
Dδ

D + γ
, which corresponds to a stable E∗

and the persistence of both active and dormant populations in a batch culture

model setting (D = 0) [34].

3.11 (b) Introducing a non-zero dilution rate D = 10−4 and Rin = 1.35×10−4 in 3.11 (b),

does not affect the population dynamics at all. Now, in a chemostat setting, E∗

is still stable, indicating the persistence of both active and dormant populations.

3.11 (c) However, further increasing the dilution rate to D = 10−1 and maintaining

Rin = 1.35×10−4 in 3.11 (c), results in a too high of a dilution in the chemostat,

affecting the stability condition. Therefore, this results in a stable E0 and

complete extinction in a chemostat setting (D ̸= 0).

3.11 (d) Lastly, in Figure 3.11(d), D = 10−1, as in Figure (3.11) (c), but Rin = 1.35×10−2

is much higher than in Figures3.11 (b)-(c). There is now sufficient Rin to sustain
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both populations, resulting in a stable E∗ and the persistence of both active

and dormant populations in a chemostat setting (D ̸= 0).
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Figure 3.11: Effects of the dilution rateD and the concentration of the limiting nutrient
supplied in the in-flowing medium Rin on the system outcome, for model parameter
values q1 = 10−2, K = 10−2, q2 = 10−2, λ = 10−9, δ = 0.9, γ = 1, µmax = 0.98, and
D = 0 (batch culture model) in (a), D = 10−4 with Rin = 1.35 × 10−4 (chemostat
model) in (b), D = 10−1 with Rin = 1.35 × 10−4 (chemostat model) in (c), and
D = 10−1 with Rin = 1.35× 10−2 (chemostat model) in (d).

Since the chemostat Model (3.3.1) is able to distinguish between similar yet

different environments, different combinations of the dilution rate D and the in-flowing

nutrient concentration Rin can alter the stability of the steady states of the system.
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Specifically, the numerical simulations in Figures 3.10 (a) and 3.11(a) show the two

possible outcomes when D = 0. In contrast, the numerical simulations presented in

Figures 3.10 (b)-(d) and 3.11 (b)-(d) demonstrate the adaptability of the chemostat

model (D ̸= 0) compared to the batch culture model (D = 0).
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CHAPTER 4

Conclusion

All the plasmid sub-models in Chapter 2, except one, have straightforward

stability results. They stabilize at their designated stable equilibrium value regardless

of their parameter values. The sub-model with the most nuance, Model (2.3.1) where

η2 = 0 and β, η1 ̸= 0, is the only one with nuance.

In actuality, gut microbiomes often successfully eliminate newly introduced

plasmids. This model allows for just that whenever Kβ − η1 < 0 or equivalently,

when K <
η1
β
. This means whenever the carrying capacity is decreased by either

smaller space or less nutrient (increased competition), there is more likelihood that

E1 = (0, K) will be stable or that the plasmid-carrying donor bacteria, BP , will

be eliminated. Furthermore, note
η1
β

is a ratio between plasmid loss and plasmid

acquisition via conjugation. Naturally, plasmid-carrying bacteria, BP , are more likely

to be eliminated as plasmid loss increases. Similarly, plasmid-carrying bacteria, BP ,

are more likely to be eliminated as plasmid acquisition via conjugation decreases.

Thus, to maintain plasmid-carrying bacteria in the gut microbiome, it will be

necessary to decrease bacterial competition, discourage plasmid loss, or encourage

plasmid acquisition via conjugation. This can be done through medication such as

antibiotics or bio-engineering techniques to make the plasmid beneficial and more

appealing to the cell. In contrast, regardless of the parameter values, the plasmid-free

resident bacteria, BA, will always remain in the gut microbiome. This idea agrees with

the biological literature since an established microorganism in the gut will require a

lot to remove from the host system.
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Lastly, it may interest scientists to maintain a specific ratio of donor, BP , to

resident bacteria, BA, in the gut. Note

B2
P

B2
A

=
1

γ

(
βK

η1
− 1

)
.

Below are the pertinent parameters and their relationship to the above ratio and the

plasmid-carrying donor bacteria population, B2
P :

(γ↓) A decrease (↓) in γ, the relative capacity coefficient, will increase (↑) the

ratio and B2
P . i.e., a decrease in plasmid burden increases the population of

plasmid-carrying bacteria.

(β↑) An increase (↑) in β, the bacterial conjugation rate, will increase (↑) the ratio

and B2
P . i.e., An increase in plasmid acquisition via conjugation increases the

plasmid-carrying bacteria population.

(K↑) An increase (↑) in K, the carrying capacity, will increase (↑) the ratio and B2
P .

i.e., An increase in resources increases the plasmid-carrying bacteria population.

(η1↓) A decrease (↓) in η1, the rate of conversion from donor to resident bacteria,

will increase (↑) the ratio and B2
P . i.e., a decrease in plasmid loss increases the

population of plasmid-carrying bacteria.

In summary, System (2.3.1) (η2 = 0) is a satisfactory starting point for modeling

and understanding plasmids. However, future research should explore other ways to

create nuance aside from allowing η2 = 0. Biologically, η2 should be non-zero but

much smaller than η1 as shown by experiments and parameter estimation previously

conducted [27]. However, a small η2 should allow for the eventual elimination of

plasmid-carrying donor bacteria, BP , from the gut. Thus, these models should be

expanded to incorporate more complex dynamics to allow for a small η2 to eliminate

BP eventually. The first natural modification would be to make Model (2.3.1) into a

chemostat, then allow nutrient and donor bacteria to be continuously introduced into

the homogeneous mixture. Assuming an organism continuously consumes nourishment,
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consumes donor bacteria, and homogeneously eliminates contents at a constant rate,

this would be a basic gut simulation.

In Chapter 3, notice how dormancy materializes in the models through conver-

sion rates. Out of the three dormancy models presented in Chapter 3, only Model

(3.3.1) has an existence and stability condition where conversion rates, δ, and γ,

appear to influence the outcome. If conversion were to cease, the elimination term

in Table 3.7 would decrease and, thus, increase the possibility that the persistence

equilibrium, E∗, in Model (3.3.1) is stable. Therefore, there is a higher chance

of population survival when the conversion rates δ = γ = 0. Although dormancy

impacts the stability conditions, it does not offer much of a survival advantage to

microorganisms in this setting. A possible explanation of this observation is the

active microorganism’s lack of hardship in this model.

The conversion rates, δ, and γ, appear in the non-trivial equilibria values of

Models (3.2.2) and (3.3.1) and help determine population sizes. However, dormancy

does not seem to play a significant role in Models (3.1.1) and (3.2.2) as the conversion

rates do not appear in any existence or stability conditions for these models (Table 3.2,

3.5). Furthermore, conversion rates are absent from Model (3.1.1)’s equilibria values

and stability analysis. Thus, dormancy modeled as simple first-order conversion offers

no survival advantages in a controlled and closed environment.

Like dormancy and conversion rates, nutrient recycling materializes in the

models through the nutrient quotas, q, q1, and q2. However, q, q1, and q2 do not

appear in the stability conditions of the nutrient recycling Models (3.2.2) and (3.3.1).

At first glance, nutrient recycling does not seem to play a significant role in the

models. On the other hand, nutrient recycling does influence the two outcomes of

Model (3.2.2). Nutrient recycling pumps nutrients back into the system as individuals

die; this prevents the nutrient supply from depleting. Hence, nutrient recycling allows
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motile and non-motile algae to persist and stabilize when introduced to a controlled

and closed environment. Contrarily, neither q1 nor q2 impact the overall stability of

Model (3.3.1) as the in-flowing nutrient concentration rate, Rin, can supply nutrients

in a chemostat setting.

Lastly, notice how all nutrient quotas, q, q1, and q2, appear in both of the

non-trivial equilibrium values and affect the population sizes of Models (3.2.2) and

(3.3.1). In the batch culture Model (3.2.2), the smaller q is, the higher the population

values of E∗, the persistence equilibrium. In other words, the fewer nutrients required

per individual algae, the more algae the system can sustain. In the chemostat Model

(3.3.1), the smaller q1 is, the higher the population values of E∗, the persistence

equilibrium. In other words, the fewer nutrients required per individual microorganism,

the more microorganisms the system can sustain. Furthermore, the greater q2

is, the higher the population values of E∗, the persistence equilibrium. In other

words, the more nutrients are recycled per individual dead microorganism, the more

microorganisms the system can sustain.

Overall, the mathematical analysis reveals several findings for the different

combinations of topics presented in the models of Chapter 3.

(3.1.1): Dormancy offers no survival advantage to a dormancy-capable plasmid-free

resident bacteria with threat-free active resident bacteria in a batch culture.

(3.2.2): Dormancy offers no survival advantage to golden algae with threat-free motile

algae in a batch culture; however, nutrient recycling allows the possibility of

both motile and non-motile algae co-existence and persistence.

(3.3.1): Neither dormancy nor nutrient recycling provides a survival advantage to a

dormancy-capable microorganism with threat-free active microorganisms in a

simple chemostat setting.
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Thus, the next natural step is to identify and analyze the circumstances under

which dormancy and nutrient cycling benefit a microorganism’s survival. Future

research on dormancy should aim to modify the first-order conversion between the

active and dormant populations. Models that allow dormancy to depend on some

mechanism, such as nutrient availability, death rate, or toxin presence, have more

complex and versatile dynamics [1, 7, 11, 17]. Similarly, there is a multitude of

applications and mechanisms that can guide modifications of future nutrient recycling

terms [10, 16, 19, 22]. Enhancing these models in such manners should lead to more

realistic dynamics. However, acknowledging that these proposed models are one of

the first dormancy-plasmid and dormancy-nutrient-recycling models is crucial. As

a result, there should be cautious progression with each additional mechanism to

ensure a comprehensive understanding of the individual contributions and resulting

model complexity.
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Del Molino, G Bou, R Garćıa-Contreras, TK Wood, and M Tomás. Mechanisms

of bacterial tolerance and persistence in the gastrointestinal and respiratory

environments. Clinical microbiology reviews, 31(4):10–1128, 2018.

[54] U.S. Environmental Protection Agency. Nutrient Pollution: Harmful Algal

Blooms. https://www.epa.gov/nutrientpollution/harmful-algal-blooms#effect,

08 2022.

[55] U.S. Geological Survey. Water Resources: Nutrients and Eutrophica-

tion. https://www.usgs.gov/mission-areas/water-resources/science/nutrients-

and-eutrophication, 03 2019.

[56] Wilber Ventura, Tyler Randolph, Jayce Rodriguez, Alicia Prieto Langarica,

Betty Scarbrough, Hristo Kojouharov, and James Grover. Resting stages and

the population dynamics of harmful algae in batch cultures and chemostats.

Mathematics Preprint Series 2011-19, University of Texas at Arlington, 2011.

[57] Stefan S Weber, Roel AL Bovenberg, and Arnold JM Driessen. Biosynthetic

concepts for the production of β-lactam antibiotics in Penicillium chrysogenum.

Biotechnology Journal, 7(2):225–236, 2012.

[58] Philip C Withers and Christine Cooper. Dormancy. In Encyclopedia of ecology,

pages 952–957. Elsevier, 2008.

[59] Sanling Yuan, Weiguo Zhang, and Maoan Han. Global asymptotic behavior in

chemostat-type competition models with delay. Nonlinear Analysis: Real World

Applications, 10(3):1305–1320, 2009.

98



BIOGRAPHICAL STATEMENT

Ana Clarisa Mendez was born in Dallas, Texas in 1998. She earned her B.A.

and M.S. degrees in Mathematics at the University of North Texas at Dallas and at

the University of Texas at Arlington in 2019 and 2021, respectively.

99


	Batch Culture Models of the Murine Gut Microbiome & The Impact of Simple Dormancy on Dormancy-Capable Microorganisms Models
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	Batch Culture Models of Plasmids in the Gut Microbiome
	Plasmid Loss Model
	Formulation of Plasmid Loss Model
	Analysis of Plasmid Loss Model (1=0, 2=0, =0)
	Numerical Simulations and Discussion

	Plasmid Acquisition Model
	Formulation of Plasmid Acquisition Model
	Analysis of Transformation Model (1=0, 2=0, =0)
	Analysis of Conjugation Model (1=0, 2=0, =0)
	Analysis of Conjugation and Transformation Model (1=0,2=0,=0)
	Numerical Simulations and Discussion

	Plasmid Loss and Acquisition Model
	Formulation of Plasmid Loss and Acquisition Model
	Analysis of Plasmid Loss and Transformation Model(1=0, 2=0, =0)
	Analysis of Plasmid Loss and Conjugation Model(1=0, 2=0,=0)
	Analysis of Plasmid Loss, Conjugation, and Transformation Model (1=0, 2=0, =0)
	Numerical Simulations and Discussion


	Batch Culture and Chemostat Models of Dormancy-Capable-Microorganisms
	Batch Culture Model of Dormancy-Capable-Bacteria and Plasmids in the Gut Micriobiome
	Formulation of Dormancy-Capable-Bacteria and Plasmids in a Batch Culture Model
	Analysis of Plasmid Loss, Conjugation, and Transformation Model with Dormancy (1=0, 2=0, =0)
	Numerical Simulations and Discussion

	Batch Culture Model of Dormancy-Capable-Golden Algae and Conserved Nutrient Recycling
	Formulation of Dormancy-Capable-Golden Algae and Conserved Nutrient Recycling in a Batch Culture Model
	Analysis of Dormancy and Conserved Nutrient Recycling in a Batch Culture Model
	Numerical Simulations and Discussion

	Chemostat Model of Dormancy-Capable-Microorganisms and Nutrient Recycling
	Formulation of Dormancy-Capable-Microorganisms and Nutrient Recycling in a Chemostat Model
	Analysis of Dormancy and Nutrient Recycling in a Chemostat Model
	Numerical Simulations and Discussion


	Conclusion
	REFERENCES
	BIOGRAPHICAL STATEMENT

