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Abstract 

Quantification and identification of neuro-electrophysiological markers and brain 

network for biomedical applications 

Shu Kang, Ph.D. 

The University of Texas at Arlington, 2023 

Supervising Professor: Dr. Hanli Liu 

Electroencephalogram (EEG) can detect and monitor neuro-electrophysiological signals in the 

human brain, including assessing brain function in newborns at risk of neurological injury and 

healthy adults undergoing intervention with prefrontal transcranial photobiomodulation (tPBM). 

Moreover, EEG-based brain functional connectivity can be assessed in either resting-state or task-

based measurements using graph-theoretical network modeling. However, the management of 

newborns with mild hypoxic ischemic encephalopathy (HIE) is controversial, and no study has 

investigated the EEG-based brain network and information flow resulting from HIE. Also, the 

underlying electrophysiological mechanism of tPBM is still unclear, and further research is needed 

to determine optimal parameters for tPBM applications. My dissertation targets these gaps to (1) 

evaluate the potential of predicting neurodevelopmental outcomes of newborns with HIE using the 

brain state of newborn (BSN) measured within the first day of life; (2) investigate the brain network 

in newborns with HIE; and (3) compare electrophysiological modulations of the human brain in 

response to left and right prefrontal tPBM using 800-nm laser. 

In Chapter 2, I aimed to predict neurodevelopmental outcomes at two years of age using 

BSN that was derived from EEG data collected on the first day of life. The results showed that 

BSN can distinguish normal and HIE cases and has strong correlation with a clinical assessment 

score (i.e., the concomitant Total Sanart Score). BSN were also differentiated between neonates 

with normal and abnormal neurodevelopmental outcomes at the age of two years. Additionally, 
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higher BSN values indicate a reduction in the odds of HIE occurrence and of abnormal 

neurodevelopmental outcomes in global, cognitive, language, and motor skills. The findings 

confirm that BSN is a sensitive real-time biomarker for monitoring the dynamic progression of 

neonatal encephalopathy. 

In Chapter 3, I targeted the assessment of brain network in newborns with HIE. Based on 

the first 30 minutes of available clean eight-channel EEG data, I quantified the global brain 

connectivity parameters in newborns with HIE, followed by comparisons with those from healthy 

newborns and adults. Furthermore, nodal graphical brain connectivity and region-wise networks 

were also investigated. The major findings indicate that the neural networks of neonates affected 

by HIE exhibited a notable reduction of overall efficiency compared to both healthy neonates and 

adults. However, significant distinctions in these fundamental metrics were not observed between 

the mild and moderate HIE cohorts, implying the necessity for prompt and efficacious medical 

intervention even for newborns with mild HIE to mitigate potential adverse outcomes. 

In Chapter 4, I explored electrophysiological modulations of the brain in response to 

left/right prefrontal 800-nm tPBM. Recent literature supports tPBM's capacity to enhance cerebral 

blood flow and oxygenation and thus to improve cognitive performance. A total of 26 subjects 

underwent 7-min resting-state 19-channel EEG recordings before and after tPBM/sham 

stimulation on the left/right forehead, in a single-blind crossover design with randomized sham 

and tPBM sequences. Global and regional GTA-derived brain networks were assessed and 

compared between the tPBM and sham conditions. My results indicated site-specific effects of 

tPBM, with distinct EEG network changes induced by left and right prefrontal tPBM.    
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Chapter 1 

Introduction 

1.1. Background of Hypoxic-Ischemic Encephalopathy (HIE) 

Clinically presenting as neonatal encephalopathy (NE), HIE is a leading cause of long-term 

disability and death in newborns. As a dynamic condition that evolves over time, HIE can cause 

the extent of brain injury to worsen rapidly if untreated. In clinical practice, neonatal HIE severity 

is classified as mild, moderate, or severe. The assessment of HIE severity and prognosis is crucial 

for guiding appropriate clinical interventions and predicting neurodevelopmental outcomes. 

1.2. Treatment and challenges of HIE 

Targeting moderate to severe HIE, the current standard treatment whole-body therapeutic 

hypothermia (TH) is suggested to be initiated for moderate and severe encephalopathy within six 

hours of birth to be effective. TH involves cooling the body temperature of the newborn with HIE 

to 33.5°C for 72 hours to reduce the metabolic rate and decrease inflammation in the brain, 

followed by a gradual rewarming process at a rate of 0.5°C per one to two hours for the subsequent 

six hours. Newborns with mild encephalopathy will undergo late hypothermia if they progress to 

more severe encephalopathy or experience seizures within the first day of life. However, 

management of mild HIE is controversial. Accurately identifying mild HIE immediately after birth 

is challenging, and there is strong biological plausibility and preclinical evidence supporting that 

the newborns with mild encephalopathy are at a significant risk of adverse outcomes. 

1.3. Conventional monitoring tools 

Accurate and continuous measures of brain health are essential for prompt treatment decisions on 

infants with HIE, including newborns with mild NE. As a non-invasive neuroimaging tool, 

continuous scalp multichannel electroencephalography (EEG) is recommended for detecting and 
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monitoring neuro-electrophysiological signals in the brain of newborns at risk of neurological 

injury. This includes assessing brain function in newborns with seizures and HIE. 

 On the other hand, we can quantify the modulation effects caused by tPBM on brain 

functional connectivity based on EEG recording. Specifically, employing graph theory metrics, 

we can evaluate the alterations in brain network and information flow induced by tPBM. 

Representing the brain as a network of interconnected nodes which refer to brain regions) and 

edges which indicate the connections between regions, graph theory-based brain network analysis 

(GTA-based) enables the intricacies of connections and communication patterns within the brain. 

1.4. Background of Prefrontal transcranial photobiomodulation (tPBM) 

tPBM has emerged as a promising non-invasive intervention with the potential to enhance 

cognitive function, particularly in the domains of attention, memory, and executive function. 

Recent research has demonstrated its memory-enhancing effects in both healthy individuals and 

patients with specific neurological conditions. By targeting specific brain regions, tPBM has been 

shown to increase cerebral blood flow and oxygenation by working on cytochrome c oxidase, 

leading to enhanced neuronal activity and improved cognitive performance. Additionally, some 

studies suggest that tPBM may influence the levels of neurotransmitters like dopamine and 

serotonin, which play crucial roles in cognitive processes such as attention and memory. 

1.5.Challenges of tPBM 

The electrophysiological mechanism of tPBM remains unclear, necessitating further research to 

identify optimal parameters for tPBM applications, including wavelength and treatment location. 

Previous studies have primarily examined tPBM's effects on brain activity from hemodynamic, 

metabolic, or electrophysiological perspectives. However, to date, no research has explored the 

systemic modulation of the brain in response to left and right prefrontal tPBM using 800-nm laser. 
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1.6. Rationale of this thesis 

HIE evolves over time and the extent of brain injury can worsen rapidly if left untreated, leading 

to death or long-term disabilities such as cerebral palsy, seizures, and developmental delay. 

Current treatment for HIE includes TH, by cooling the body temperature of the newborn to reduce 

metabolic rate and decrease inflammation in the brain. This treatment must be initiated within six 

hours of birth to be effective. However, grading of severity of encephalopathy using neurological 

exams such as modified sarnat score may not be accurate due to the potential progression of 

encephalopathy severity. Recent reports have shown that newborns with mild encephalopathy 

experience poor neurodevelopmental outcomes. Therefore, prompt intervention within the first 6 

hours of life is critical and crucial in reducing the risk of long-term neurological deficits and 

improving survival chances, which requires accurate and continuous quantitative biomarkers.   

In neonates with HIE, acute kidney injury (AKI) is prevalent in approximately 40% of 

cases and serves as a separate risk determinant, leading to compromised neurodevelopmental 

progress and heightened mortality rates. According to the latest research Effects of 

photobiomodulation and caffeine treatment on acute kidney injury in a hypoxic ischemic neonatal 

rat model (Groves et al., 2023), tPBM using 670-nm red light has been found can reduce AKI 

caused by HIE in the modified Rice-Vannucci model. Therefore, if further research can 

substantiate that AKI can also be ameliorated by tPBM in neonates with HIE, this could offer a 

potential pathway for advancing therapeutic treatments for neonatal HIE.  

Previous studies investigating the effects of tPBM on brain activity have predominantly 

focused on hemodynamic and metabolic, or electrophysiological viewpoints. To date, no research 

has assessed the systemic modulation of the brain in response to left and right prefrontal tPBM 

using 800-nm laser. Hence, a more comprehensive understanding of the mechanisms underlying 
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tPBM can be achieved by examining the topological networks and their modulation in response to 

tPBM using a different wavelength. On the other  hand, exploring the modulation effects of tPBM 

in healthy adults may serve as a critical reference for the subsequent stages of research focused on 

applying tPBM therapy and selecting parameters in newborns with HIE. 

Therefore, I focused on quantifying and identifying EEG-derived electrophysiological 

markers and brain networks for two clinical and biomedical applications in my dissertation. The 

clinical application targeting neonatal HIE encompassed two aims: Aim 1 aimed to monitor 

evolving encephalopathy using the Brain State of Newborn (BSN) which quantifies EEG 

background activity. The purpose was to accurately and timely differentiate cases who may benefit 

from neuroprotective therapies, on the first day of life. Aim 2 involved investigating brain 

connectivity in newborns with mild and moderate HIE. This may provide insight into the 

underlying neural mechanisms of HIE and help to identify potential patterns for early diagnosis 

and intervention that can reduce the risk of long-term neurological impairments. In the second 

biomedical application, my objective was to explore the modulation effects of 800-nm left/right 

prefrontal tPBM in healthy young adults. Aim 3 serves as an investigation of optimal parameters 

for tPBM therapy. 

Specific aims under three aims are listed below:  

Aim 1(a): to determine if the Brain State Network (BSN) could provide real-time, automated 

monitoring and interpretation of encephalopathy grade in HIE cases, which might necessitate 

intervention within 6 hours.  

Aim 1(b): to examine the relationship between BSN measurements taken on the first day of life 

and the severity of neurodevelopmental impairment outcomes in infants affected by HIE at two 

years of age.  
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Aim 2(a): to study the brain power spectral density (PSD) of neonatal HIE.  

Aim 2(b): to explore the global topographical connectivity in neonatal HIE and healthy newborns.  

Aim 2(c): to compare the nodal topographical connectivity in infants with mild and moderate HIE.  

Aim 3(a): to investigate the global and nodal brain connectivity modulated by 800-nm left 

prefrontal tPBM.  

Aim 3(b): to study the modulation effects of 800-nm right prefrontal tPBM on neurophysiological 

networks. 

1.7.Organization of this thesis 

This dissertation has 6 chapters, which consist of one manuscript ready for submission (Chapter 

2), and two manuscripts that are in preparation for submission to  scientific journal (Chapter 3 and 

4). Chapter 1 is a brief introduction of the HIE and tPBM, current treatment for HIE, challenges 

of HIE management and tPBM, conventional monitoring tools and need for biomarkers to guide 

therapeutic decision-making and early prediction of neurodevelopmental impairment in newborns 

with HIE. Chapter 2 investigates if EEG-derived automated bedside brain state trend correlates 

with encephalopathy grade and neurodevelopmental outcome in newborns with HIE. Chapter 3 

aims to study the neurophysiological networks for newborns with Mild and Moderate HIE. In 

Chapter 4, the effects of both left and right prefrontal 800-nm tPBM on neurophysiological 

networks were determined, and distinct site-specific effects were observed. Furthermore, Chapter 

5 discussed serval directions of future studies, focusing on the prediction of long-term severities 

of newborns with HIE and advanced management in their first 72 hours of life. Finally, Chapter 6 

summarizes the conclusions of all three aims in this dissertation. 
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Chapter 2 

Brain State of Newborn (BSN) Predicts Encephalopathy Severity and 

Neurodevelopmental Outcome in Newborns with Hypoxic-Ischemic 

Encephalopathy 

2.1  Introduction 

Hypoxic ischemic encephalopathy (HIE) is one of the leading causes of mortality and morbidity 

in newborns worldwide [1]. HIE occurs when the fetal brain is deprived of oxygen and blood 

supply [2] and the encephalopathy severity is classified as mild, moderate, or severe grades within 

six hours after birth [3-5]. While therapeutic hypothermia (TH) [6] is standard clinical care for 

moderate and severe grades in developed countries, the management of mild HIE is controversial 

[7] due to difficult clinical classification and progression of encephalopathy grade. Mild HIE 

accounts for 50% of total HIE [8].  Newborns with mild HIE and worsening symptoms in the first 

day of life are often treated with TH using a late hypothermia protocol, but its effectiveness may 

be limited if it is initiated after six hours of life [9]. 

Electroencephalogram (EEG) monitoring is routinely used to detect seizures and predict 

outcomes in HIE [10]. We and others have studied Qualitative and quantitative metrics, such as 

background EEG activity, amplitude-integrated EEG (aEEG), spectral power, and connectivity, 

for prognosis [11-14]. However, due to the lack of continuous interpretation, these biomarkers 

have not been available to be used for timely interventions. 

Moghadam et al. proposed a novel biomarker called the brain state of newborn (BSN), 

which uses deep learning and expert-scored EEG background activity [15]. This method achieved 

92% accuracy and was validated with EEG datasets from other sources. This cloud-based tool 

provides BSN values range from 0 to 100 which are based on EEG background activity and sleep 
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state trend, where 0 represents inactive EEG background activity and 100 indicates gradual 

improvement. 

The aim of this study is to evaluate BSN measured within the first day of life in newborns 

with different grades of encephalopathy and correlate it with the Total Sarnat Score (TSS) from 

modified Sarnat exam and predict neurodevelopmental outcomes at two years of age. Our 

hypothesis is that BSN has the potential to accurately and timely differentiate in the first day of 

life cases who may benefit from neuroprotective therapies. 

2.2  Method 

2.2.1 Study participants 

2.2.1.1 HIE cohort 

Term newborns (≥36 weeks’ gestation) at Parkland Hospital (Dallas, TX) who met the following 

criteria were recruited for this prospective study between 2017 and 2019: 1) a history of an acute 

perinatal event (e.g., placental abruption, cord prolapse, decreased fetal heart rate), 2) umbilical 

cord arterial pH or arterial blood gas pH of ≤ 7.0 or base deficit ≥ 15 mmol/L at < 1 hour postnatal 

age, and 3) signs of encephalopathy. Newborns were excluded from the study if they had any 

genetic or congenital condition, birthweight < 1800 g, and/or head circumference < 30 cm, as 

these factors can interfere with the primary outcome. The study was approved by the Institutional 

Review Board at University of Texas Southwestern Medical Center, and written informed 

consent was obtained from a parent of each newborn prior to enrollment.  

The newborns were evaluated within 6 h after birth using a modified Sarnat exam to 

determine the severity of encephalopathy that included 1) level of consciousness, 2) spontaneous 

activity, 3) posture, 4) tone, 5) primitive reflexes (suck, moro), and 6) autonomic system (pupils, 

heart rate, respirations), with scores of normal (0), mild (1), moderate (2), or severe (3). The TSS 
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was determined by adding the scores for each of the six categories, which ranges from 0 to 18 

[5], where 0 represents normal in all six categories, and 18 represents severe encephalopathy in 

all six categories. The clinical grade of encephalopathy was determined by the number of Sarnat 

abnormalities, with classifications ranging from mild to moderate or severe. In cases where equal 

numbers of abnormalities were observed, the grade was determined by the degree of reduced 

level of consciousness. 

Whole-body therapeutic hypothermia (TH) was initiated within 6 h after birth for 

newborns with moderate and severe encephalopathy, following the National Institute of Child 

Health and Human Development (NICHD) protocol [6]. A servo-controlled blanket (Blanketrol 

II, Cincinnati Sub-Zero Products LLC, OH, USA) was used to maintain a core body temperature 

of 33.5 °C for 72 hours, followed by rewarming at a rate of 0.5°C per one to two hours for the 

next six hours. Newborns with mild encephalopathy received normothermia as per the standard 

of care. TH  was initiated in accordance with the NICHD late hypothermia protocol if they 

progressed to more severe encephalopathy or experienced seizures within the first day of life [9].  

Neurodevelopmental impairment at age of two years was death or disability defined by a 

cognition, language, or motor score < 85 on the Bayley Scales of Infant Toddler Development, 

third edition (BSID-III) [5, 16, 17], which was performed by certified professionals in the follow 

up clinic at 18-24 months of age.  

Continuous EEG acquisition was initiated at a sampling rate of 256 Hz as soon as 

newborns were admitted. EEG (Nihon Kohden America Inc., Irvine, CA) data were acquired 

from eight scalp electrodes (Fz, C3, Cz, C4, P3, P4, O1, O2) that are referenced to the midpareital 

electrode (Pz), placed according to the modified 10-20 montage for newborns [18]. The 

Component Neuromonitoring System (CNS Monitor) (Moberg Research, Inc., Ambler, PA, 
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USA) was used to interface EEG and other physiological signals at the bedside. The EEG data 

were obtained from CNS monitor and processed offline using MATLAB (MathWorks Inc., 

Natick, MA, USA). 

Central and parietal electrodes were chosen for analysis because they reflect watershed 

injury patterns on MRI that are commonly observed in cases of HIE [19-21]. Inter-hemispheric 

(C3-C4, P3-P4) and intra-hemispheric (C3-P3, C4-P4) bipolar EEG data were obtained by taking 

a difference between pair of electrodes. The bipolar EEG data were high pass filtered at 0.3 Hz 

using a Butterworth filter of order 4. 

2.2.1.2 Control Cohort 

EEG data were collected using a NicoletOne system (Cardinal Healthcare/Natus, USA) at 

sampling rate of 256 Hz from four need electrodes (F3, F4, P3, and P4). All the bipolar signals 

(F3-P3, F4-P4, F3-F4, and P3-P4) were obtained for further analysis. EEG review was normal, 

and no neurological abnormalities were identified in this cohort.   

2.2.2 Brain State of Newborn (BSN) 

An automated cloud service tool (https://babacloud.fi/) was employed to calculate BSN and 

identify seizures and artifacts for every two seconds segments of data[15]. BSN was derived 

from EEG background activity and sleep state trend. The BSN values ranged from 0 to 100, with 

indicating inactive cerebral activity and a gradual improvement in cerebral recovery represented 

by an increase to 100. The mean BSN value was calculated for the first hour of artifact-free 

segments from four bipolar electrode pairs for statistical analysis.  

2.2.3 Statistical analysis  

Demographic and clinical characteristics of newborns, stratified by non-mild HIE (including 

mild-moderate, moderate, and severe) and mild HIE, were summarized with descriptive 

https://babacloud.fi/
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statistics, where continuous variables were presented as means with standard deviations or 

medians with interquartile ranges (IQRs), and categorical variables were presented with counts 

with percentages. The non-mild and mild HIE groups were compared using Student’s t-test or 

Wilcoxon rank-sum test for continuous variables, while 𝜒2  test or Fisher’s exact test for 

comparisons among categorical variables. Univariate linear regression analysis was performed 

to determine the association between BSN and TSS. The assumptions for linear regression 

model, including normality of residuals and homoscedasticity, were evaluated using Shapiro-

Wilk test and Breusch-Pagan test. Univariate logistic regression models were used to assess the 

relationships of BSN on Bayley-III neurodevelopmental outcomes, including global, cognitive, 

language, and motor outcomes. To evaluate the prediction ability of BSN on Bayley-III 

neurodevelopmental outcomes, we conducted the receiver operating characteristic (ROC) curve, 

with the area under the ROC curve (AUC). The optimal cut-off values of BSN were obtained 

with the Youden method to distinguish between normal and abnormal neurodevelopmental 

outcomes in infants. Results were reported as odds ratios with 95% confidence intervals in 

logistic regression models, and regression coefficients with 95% confidence intervals in linear 

regression models. A 2-tailed p value less than 0.05 was considered the threshold for statistical 

significance. All statistical analyses were performed using R version 4.2.2. 

 

2.3 Results 

A total of 45 newborns with symptoms ranging from mild to severe encephalopathy, as 

determined by the modified Sarnat exam within the first six hours after birth, were recruited for 

this study. Among them, 26 newborns were initially classified as mild in the first six hours of 

life. However, seven of those infants later developed seizures or displayed worsening symptoms 
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of encephalopathy, leading to their reclassification as mild-moderate. Maternal and neonatal 

characteristics of the cohort are provided in Table 2-1. The non-mild group consisted of mild-

moderate, moderate, and severe grades, while the mild group consisted of 19 newborns. Two 

newborns with severe grade died in the first week of life following redirection of care. 

The severity of encephalopathy was associated with lower Apgar scores, the presence of 

meconium, and longer hospital stays (Table 2-1). Out of 45 infants eight were lost two-years 

follow up (6 mild, 2 moderate). There was no statistically significant difference in BSID-III 

scores between the mild and non-mild groups. An abnormal score in cognition, language, or 

motor skills was defined as a BSID-III score < 85. For global outcome, any of the three scores < 

85 was considered abnormal. Normal newborns (GA 40 [39 42]) with no neurological 

abnormalities were included benchmark the study cohort (GA 39 [38 40]) and their 

neurodevelopmental outcome was recorded normal.  

Figure 2-1 illustrates the BSN values for both normal newborns and newborns with HIE. 

It is evident that normal newborns have higher BSN values compared to the study cohort. Figure 

2-2 (a) to (d) provides examples of BSN trends with the classifier’s confidence on given BSN 

values for one of the newborns in each encephalopathy grade (normal, mild, moderate, and 

severe), along with the distribution of average BSN values for all newborns in each group (Figure 

2-2 e). 
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Table 2-1. Maternal and neonatal characteristics of the HIE cohort 

 

 

 

Characteristics Overall Encephalopathy Grade 

Mild Non-Mild 

Total N 45 19 26 

Male: N (%) 29 (64) 14 (74) 15 (58) 

Gestational Age (weeks), median [IQR] 39 [38 40] 39 [38 40] 39 [38 40] 

Birth Weight (kg) 3.3 (0.7) 3.4 (0.6) 3.3 (0.8) 

Apgar 1 minute, median [IQR]* 2 [1 4] 3 [2 5] 1 [1 2] 

Apgar 5 minute, median [IQR]* 6 [4 7] 7 [6 8] 5 [2 6] 

Umbilical Cord Gas pH 7 (0.1) 7(0.1) 7(0.2) 

Base Deficit 17.1 (6.1) 17.4 (3.6) 17 (7.5) 

Abnormal MRI (Global): N (%) 12 (27) 4 (21) 8 (31) 

Maternal Race/Ethnicity: N (%)    

Caucasian non-Hispanic 2 (4) 1 (5) 1 (4) 

Black non-Hispanic 10 (22) 4 (21) 6 (23) 

Hispanic 31 (69) 13 (68) 18 (69) 

Other non-Hispanic 2 (4) 1 (5) 1 (4) 

Delivery Mode: N (%)    

C/S 29 (64) 12 (63) 17 (65) 

Vaginal 16 (36) 7 (37) 9 (35) 

Maternal Risk Factors: N (%)    

Hypertension 10 (22) 4 (21) 6 (23) 

Diabetes 5 (11) 4 (21) 1 (4) 

Pre-eclampsia 12 (27) 4 (21) 8 (31) 

Labor Complications: N (%)    

Meconium* 12 (27) 2 (11) 10 (38) 

Umbilical Cord Prolapse 1 (2) 0  1 (4) 

Placental Abruption 4 (9) 1 (5) 3 (12) 

Uterine Rupture 4 (9) 2 (11) 2 (8) 

Maternal Chorioamnionitis 13 (29) 6 (32) 7 (27) 

Placental Chorioamnionitis 23 (51) 10 (53) 13 (50) 

Disposition:    

           DOL at discharge, median [IQR]*  9 [6 17] 6 [5 7] 14 [9 20] 

             Death prior to discharge, N (%)  2 (4) 0 2 (8) 

Neurodevelopmental Outcome:    

Total N  37 13  24  

Composite, death or disability N (%) 32 (86) 11 (85) 21 (88) 

BSID Score: median [IQR]    

Cognition 85 [75 90] 83 [75 95] 85 [80 90] 

Language 73 [60 79] 73 [59 80] 71 [62 79] 

Motor 94 [88 100] 94 [78 100] 94 [92 102] 
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Figure 2-1. BSN values for two groups: normal newborns (a) and newborns with HIE (b). Each 

row in the figure represents the BSN values recorded over the first two hours for each newborn. 

The color bar is in arbitrary units, ranging from 0 (Inactive brain activity is represented by red) to 

100 (normal brain activity is represented by blue). White spaces in the figure indicate missing data 

caused by artifacts or unavailability of data. Subject IDs with * in (b) indicate newborns (MO01 

to MO07) who were initially classified as mild and later progressed to moderate are indicated as 

mild-moderate.  

 



 

14 
 

 
 

Figure 2-2. BSN value trend for a newborn: normal (a), mild (b), moderate (c), and severe (d), 

during the initial hour of recording. The shading in the figure represents the confidence of the 

classifier on the corresponding BSN values. The dashed line indicates the mean value of the 

trend. (e) The distribution of BSN values for all newborns is categorized based on the 
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encephalopathy grade. The moderate category comprises newborns with a moderate grade of 

encephalopathy, as well as those who were initially classified as mild but later progressed to 

severe encephalopathy. 

 

In the univariate linear regression model that assessed the effect of BSN on TSS, BSN 

was negatively correlated with TSS, and the model explained 17% of the variation of TSS (i.e., 

𝑅2 of 0.17). It was found that for every 1-unit increase in BSN, TSS was decreased by 0.071 

points (95% CI, -0.118 to -0.024; p = 0.005). The Shapiro-Wilk test (p = 0.122) and the Breusch-

Pagan test (p = 0.213) suggested the normality of the residual and homoscedasticity, respectively. 

Figure 2-3 (a) displays the scatter plot of BSN and TSS, with a fitted line. Univariate logistic 

regression analysis showed that a higher score of BSN was associated with decreased odds for 

the occurrence of newborn HIE (OR, 0.794; 95% CI, 0.708 to 0.891; p < 0.001). Figure 2-3 (b) 

displays the ROC with the area under the curve (AUC). The BSN was classified HIE grade vs. 

normal, with an AUC of 0.808 (95% CI, 0.713 to 0.903), sensitivity of 0.667 and specificity of 

0.942. 

 

Figure 2-3. (a) Scatter plot illustrating the association between BSN and TSS. The black solid 

line represents the fitted line of simple linear regression. TSS exhibits a significant negative 
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correlation with BSN (regression coefficient = -0.071, R2=0.17, and P = 0.005). (b) The receiver 

operating characteristic (ROC) curve is generated for the classification of encephalopathy grade 

(normal versus HIE, including mild, mild-moderate, moderate, and severe categories) and BSN. 

The area under the curve (AUC) represents the area under the ROC curve compared to the line 

of non-significance, depicted in gray. A BSN value of 86.518 is the optimal threshold for 

discriminating between normal newborns and those with encephalopathy. 

 
 

The results of ROC curves for global, cognitive, language, and motor outcomes at the age 

of two years are presented in Figure 2-4. In Figure 2-4 (a), it is evident that a BSN value of 

86.518 effectively differentiated normal from abnormal global outcomes, achieving sensitivity 

of 0.75 and specificity of 0.912. The corresponding AUC value was 0.869 (95% CI, 0.779-0.958). 

Comparable findings were observed for cognitive, language, and motor outcomes, with the AUC 

value for global outcome slightly higher than the others. Additionally, the BSN threshold for 

cognition was marginally higher than the thresholds for the other outcomes. In addition, 

univariate logistic models reveal strong relationships between BSN and global, cognitive, 

language, and motor outcomes. Higher BSN scores are significantly associated with lower odds 

of abnormal global (OR, 0.854; 95% CI, 0.786 to 0.927; p < 0.001), cognitive (OR, 0.944; 95% 

CI, 0.918 to 0.971; p < 0.001), language (OR, 0.862; 95% CI, 0.798 to 0.930; p < 0.001), and 

motor outcomes (OR, 0.937; 95% CI, 0.908 to 0.967; p < 0.001). 
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Figure 2-4. The distribution of BSN values for normal and abnormal neurodevelopmental 

outcomes at two years of age and the corresponding receiver operating characteristic (ROC) 
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curves for global (a), cognitive (b), language (c), and motor (d) outcomes. The area under the 

ROC curve (AUC) is indicated, depicting the comparison with the line of non-significance in 

gray. 

2.4 Discussion 

This study highlights BSN as a promising bedside biomarker to quantify brain health, severity of 

encephalopathy and predict neurodevelopmental outcome using the first hours of EEG recording. 

This is especially crucial when the neurological exam may not accurately determine the severity 

of encephalopathy within the first six hours after birth, particularly for identifying mild cases that 

would benefit from neuroprotection therapies. Furthermore, it has a potential to quantify evolving 

encephalopathy in the first days of life.  

Heterogeneity across various encephalopathy grading systems like Sarnat, modified Sarnat 

exam, NICHD, and SIBEN, highlight the potential benefits of a standardized automated EEG 

quantitative system[22]. For instance, newborns, with mild encephalopathy a TSS ranging from 1 

to 10 is possible, while moderate ranges from 6 to 14, and severe from 9 to 18. Chalak et al. 

reported that a TSS value of ≥ 5 within first six hours of life predicted neurodevelopmental 

impairment and encephalopathy burden. The correlation between BSN and TSS in this study 

suggests that BSN could serve as a biomarker for assessing severity when trained and certified 

professionals are unavailable to conduct a neurological exam within the first day of life. The BSN 

value of 86.518 best discriminates HIE from normal.  We and others have similarly reported 

spectral power, neurovascular coupling, and phase amplitude coupling also correlate with TSS [12, 

23, 24].  
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Overall, BSN predicts encephalopathy severity and neurodevelopmental outcomes. The 

BSN value of 86.518 predicted Bayley-III outcome in language, cognition, and motor as well at 

the age of two years.  

Moghadam et al. reported distinct BSN level differentiations based on EEG background 

activity determined from aEEG: BSN of 0 – 33 (median 14.8, 95% CI 12.8 -18.4) corresponds to 

inactive aEEG, a BSN of 27 – 61 (41.8, 38.4-43.4) corresponded to burst suppression, 61-91 (75.8, 

70.4-73.6) corresponded to continuous normal voltage. The BSN values exceeding 90 were 

observed in EEG displaying more normal characteristics [15]. We observed that the BSN value of 

86.518 best distinguishes normal from HIE cohort and predicts neurodevelopmental impairment. 

Clinicians could utilize this threshold value as a reference at the bedside. Previous studies utilizing 

spectral power have reported similar threshold values, which can be valuable biomarkers for 

clinicians in predicting encephalopathy severity or abnormal outcome on MRI [12, 25]. However, 

it's important to note that those studies lacked the inclusion of normal newborns, and their data 

analysis was conducted offline.  

This study has several strengths. First, it evaluates a cloud-based tool that rapidly provides 

the trend of BSN values at the bedside, enabling immediate clinical decision-making. Second, the 

tool can identify EEG data with seizures and different types of artifacts that might be hard to 

identify with a human eye and reject segments with artifacts with visual inspection. Despite the 

small HIE cohort, the study successfully validated the use of BSN by comparing it with a normal 

cohort and predicting neurodevelopmental outcomes. Third, one of the significant advantages of 

this tool is its easy implementation at the bedside, requiring minimal data processing steps, such 

as high pass filtering. This simplicity makes it a potential tool to accurately assess the true severity 

of mild cases and determine the suitability of neuroprotective therapies within the first six hours 
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of life. Particularly in low-resource settings lacking physician availability for EEG review, BSN 

could play a crucial role in identifying newborns who would benefit from timely interventions. 

Study limitations include the observational nature and small numbers with HIE derived 

from a single center. However, there is potential to expand the cohort in the future by including 

data from other sites participating in the COOLPRIME trial 

(https://clinicaltrials.gov/ct2/show/NCT04621279). In this current study, the analysis only 

considered inter and intra hemispheric central parietal bipolar electrodes. Nevertheless, we and 

others have shown electrodes in central parietal region to represent global HIE insults[12, 21, 23-

26].  Moreover, Moghadam et al.[15] developed the algorithm using frontal parietal electrodes and 

validated it with frontal central electrodes, yielding no significant differences in outcomes.  

It's worth noting that 69% of our HIE cohort is Hispanic, which highlights the importance 

of including these underserved and underrepresented patients in research studies. The BSN value 

is calculated using aEEG (amplitude-integrated electroencephalogram), and the interpretation 

might be affected by the specific algorithm used. However, Das et al. did not find any influence of 

aEEG algorithm in calculation neurovascular coupling[27]. Finally, neurodevelopmental 

trajectory needs to monitor for developing early intervention therapies because true severity of 

mild HIE may not know until school age [20, 28-34]. Future studies will include predicting 

neurodevelopmental outcome using multi-modal biomarkers include maternal and neonatal 

characteristics to identify combination of biomarkers that can best distinguishes the outcome.  
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2.5 Conclusion 

BSN is a promising bedside tool for monitoring evolving encephalopathy in newborns and to 

predict neurodevelopmental outcomes. As a promising marker for continuous real-time monitoring 

of neonatal HIE, BSN is comparable with other published physiological biomarkers on long-term 

neurodevelopmental outcomes predictions. Moreover, larger studies with predictive modeling will 

be essential, which is particularly relevant when considering some of the measures may be 

independent to each other on predicting long-term neurodevelopmental outcomes. Subsequently, 

adding BSN into the muti-modal bedside monitor of neonatal HIE may assist clinicians in making 

prompt treatment decisions to reduce long-term neurodevelopmental impairment. It can help 

identify those who may benefit from additional interventions and protect those who may not 

require therapeutic hypothermia, thereby preventing potential adverse effects on their 

neurodevelopmental outcome. 
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Chapter 3 

Quantification of Brain Networks in Neonatal Hypoxic-Ischemic 

Encephalopathy (HIE) 

3.1 Introduction 

Hypoxic-Ischemic Encephalopathy (HIE) is a condition characterized by oxygen and blood 

deprivation in the brain during or shortly after birth, which can lead to severe disabilities or even 

mortality among affected neonates. The severity of HIE varies from mild to severe, necessitating 

prompt decision-making for effective treatment. While electroencephalography (EEG) is 

commonly used for clinical monitoring of HIE-inflicted infants, there is a lack of studies 

investigating the neurophysiological networks in newborns with HIE using EEG recordings.  

EEG-based functional connectivity analysis has shown promise in assessing neonatal brain 

development. Importantly, graph theory metrics have been employed to assess changes in brain 

networks and information flow due to diverse stimuli, diseases, cognitive decline, and altered 

consciousness states [35-37]. Analyzing EEG-based brain functional connectivity holds potential 

for developing early diagnosis and intervention strategies by identifying potential biomarkers, 

which could mitigate the risk of long-term neurological impairments in infants with HIE. 

Consequently, a compelling need arises for quantifiable measures of brain functional 

connectivity in neonates with HIE, aiming to shed light on the underlying neural mechanisms of 

HIE. Our hypothesis posits that noticeable disparities exist in graph-theory-based (GTA) 

neurophysiological brain networks between newborns with mild and moderate HIE and their 

healthy counterparts, characterized by specific features. Specifically, our goal is to quantify the 

key parameters of the brain network in newborns with HIE using an eight-channel EEG 
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measurement. Furthermore, we anticipate that the key GTA matrices linked to HIE will generally 

exhibit smaller values compared to those observed in healthy newborns. 

 

3.2 Method 

3.2.1 Study participants 

This study was based on a single-center prospective cohort having ≥ 36-week gestation inborn 

infants with HIE diagnosed within 6 hours (h) of birth in a level III neonatal intensive care unit 

from 2017 to 2019. The exclusion criteria include genetic syndromes, head circumference < 30 

cm, and birthweight < 1800 g, as they interfere with the primary outcome. 

In this study, the neonates with HIE include 16 with mild HIE, 15 moderate HIE. All 

newborns with HIE had metabolic acidosis, along with sentinel perinatal event and signs of 

encephalopathy within the first six hours of life. The classification of HIE was performed with 

Total Sarnat Score (TSS) in a scale from 0 to 18 which corresponding to normal and severe, by 

adding the scores of six categories includes level of consciousness, spontaneous activity, posture, 

tone, primitive reflexes, and autonomic system [5]. TSS was performed within 6 hours of age by 

experienced clinicians, to differentiate neonatal HIE severity into mild, moderate, or severe. 

Neonates with moderate to severe encephalopathy received 72 hours 33.5°C hypothermia 

therapy, achieved by placing them on a servo-controlled cooling blanket (Blanketrol II, 

Cincinnati Sub-Zero Products LLC, OH, USA) and maintaining their esophageal temperature. 
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3.2.2 EEG data acquisition  

In this study, the EEG data of newborns with mild and moderate HIE was acquired at eight 

electrodes (Figure 3-1, Fz, Cz, C3, C4, P3, P4, O1, and O2) with 256 Hz sampling rate, based on 

the modified version of standard 10-20 montage (Nihon Kohden, Irvine, CA, USA). Those eight 

electrodes can cover the watershed regions that are typically affected in neonatal HIE, including 

intervascular boundary-zone white matter and cortical gray matter [19, 38-40]. All HIE datasets 

were recorded by a Moberg Component Neuromonitoring System monitor (Moberg Research, 

Inc., Ambler, PA, USA). 

Figure 3-1. The location of eight-channel EEG electrodes for neonatal HIE, which overlying the 

watershed regions. 

 

3.2.3 Overview of data processing pipeline 

Each raw EEG dataset represents a time series of 8 channels collected from 31 subjects. As shown 

in Figure 3-2, the data processing pipeline includes four sections: (1) Preprocessing; (2) Power 

spectral density (PSD) analysis to obtain frequency-specific power topographies; (3) Construction 
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of connectivity matrices based on imaginary part of coherence analysis; (4) GTA-based global 

graphical brain connectivity analysis; (5) GTA-based nodal graphical brain connectivity analysis. 

 

Figure 3-2. Flowchart of EEG data processing, including steps for: (1) Preprocessing (yellow 

box), (2) PSD-based analysis to get power topographies (purple boxes), (3) Construction of 

connectivity matrices (green boxes), (4) GTA-based global graphical brain connectivity (blue 

boxes), and (5) GTA-based nodal graphical brain connectivity (red boxes). The purple dashed box 

presents the steps for obtaining frequency-specific power topography. The blue dashed box 

indicates the analysis steps involved in connectivity analysis based on imaginary part of coherence 

analysis. The green dashed box signifies the process of analyzing the global and nodal brain 

network using graph theory. 

 

3.2.4 Data preprocessing  

To prepare the EEG data for electrophysiological network analysis, a series of preprocessing steps 

were needed to get the first 30 minutes of artifact-free EEG, as shown with the yellow box in 

Figure 3-2. All the EEG signal preprocessing steps were accomplished with MATLAB ® 

(MathWorks 2022a, MathWorks Inc., Natick, MA, USA). After EEG signals were band-pass 
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filtered to 0.5-100Hz, the 60 Hz line noise was eliminated with a notch filter. Then, EEG voltage 

signals were re-referenced based on the common mean of all eight channels, followed by removing 

artifacts spikes, short-time burst, flat line segments, and low-frequency drifts.  

          

3.2.5 Channel-wise PSD-based analysis  

After preprocessing, the 30 minutes clean data was divided into five different EEG frequency 

bands: delta (1-4Hz), theta (4-8Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-55 Hz). 

Once the EEG signal has been decomposed into its frequency components, the power spectral 

density (PSD) can be calculated (Figure 3-2, purple boxes), which provides information about the 

distribution of power across different frequency bands in the signal. Since certain frequencies in 

the EEG signal are associated with different brain states, we can identify these frequency bands 

and use them to study changes in brain activity in response to different stimuli or conditions, by 

analyzing the PSD of the EEG signal. 

         To get PSD of preprocessed EEG data on five bands, “Pwelch” function was used with 4 

seconds window length, 75% overlap, and four times the sampling frequency as the number of 

discrete Fourier transform points. For each frequency band, bandwidth-averaged PSD values are 

represented by PSDband.  

         To illustrate the difference between Mild and Moderate HIE, ΔPower was calculated by 

subtracting the group mean power of Moderate HIE from respective group mean power of Mild 

HIE at each electrode for each of the five frequency bands:                               

                                              𝛥𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑆𝐷𝑏𝑎𝑛𝑑
𝑀𝑖𝑙𝑑 − 𝑃𝑆𝐷𝑏𝑎𝑛𝑑

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒                                             (1) 
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3.2.6 Construction of connectivity matrices 

By providing measures of network topology, graph theory helps to analyze the global brain 

network with measures such as degree, clustering coefficient, and path length. These measures can 

reveal important features of the network, including but not limited to the presence of highly 

connected hubs, the degree of local clustering, and the efficiency of information transfer between 

different brain regions. 

         Since correlations between the phases or amplitudes of EEG channels are interpreted as 

functional connectivity between all pairs of EEG electrodes, amplitude and phase decompositions 

were performed for all the 8 channels. Hence, the amplitude and phase of an EEG time-point could 

be represented as a complex number. Furthermore, Slepian sequences was utilized to taper the 

EEG signal in the time domain before performing the Fourier transform, using the 'ft_freqanalysis' 

function within FieldTrip toolbox [41, 42]. 

To measure connectivity, coherence is commonly utilized in frequency-domain, as an equivalent 

to the time-domain cross-correlation function. The coherence coefficient is computed for 

frequency of ω and yields a normalized coefficient between 0 and 1:  

                                                   𝐶𝑜ℎ𝑥𝑦(𝜔) =
|𝑆𝑥𝑦(𝜔)|

√𝑆𝑥𝑥(𝜔)𝑆𝑦𝑦(𝜔)
                                                        (2) 

         Sxx, Syy, and Sxy were calculated using complex values obtained with multitaper method, 

where Sxx and Syy respectively represent the power estimates of signals x and y, and Sxy denotes 

the averaged cross-spectral density term of these two signals. 

         However, volume conduction occurs when two or more EEG signals recorded from different 

scalp locations share a common source or generator, resulting in the appearance of spurious 

coherence. To minimize this issue, the imaginary part of coherence can be used by removing the 

magnitude of the operation from equation (2) and considering the imaginary part of Sxy, while 
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setting the cross-spectral density of the signals with 0 or 2π phase difference to zero. Hence, the 

'ft_connectivityanalysis' function from FieldTrip toolbox was utilized for the computation of the 

imaginary part of coherence for all pairs of channels. For all pairs of electrodes in this study, the 

pairwise connectivity values were represented by 8 × 8 adjacency matrix. 

         For target temporal segments, the EEG data was divided into 10 sec epochs, and the 

adjacency matrices generated for all epochs on each frequency band were averaged. Then, these 

averaged matrices were binarized by varying the sparsity level and used for graph theory based 

global and nodal connectivity analyses. Afterward, the matrix was divided into five different EEG 

frequency bands, which were used for graph theory-based global and nodal connectivity analyses. 

The five frequency bands include delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), 

and gamma band (30-55 Hz). 

 

3.2.7 GTA-based global graphical brain connectivity 

As a user-friendly graph theory toolbox, GRETNA was used to quantify the global and nodal 

graphical metrics of brain network on five frequency bands [43]. This approach was repeated 19 

times to assess the chosen metrics under a sparsity range of 5%–95%, with 5% as step length. For 

global network (Figure 3-2, blue boxes), five global graphical measures were included for analysis: 

Synchronization, Network Efficiency (Global efficiency), Small-World, Hierarchy, and 

Assortativity. The definitions of global graphical measures are listed in supplementary material A.  

 

3.2.8 Comparison of GTA-based global brain networks between newborns with HIE and 

healthy newborns 
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To further investigate whether the GTA-based global brain networks of newborns with mild and 

moderate HIE are overall smaller than those of healthy newborns and adults, the global brain 

network of newborns with mild and moderate HIE was compared with resting-state GTA-based 

global brain networks of healthy newborns, young adults, and elderly adults. 

The 60 healthy newborns (median age ± MAD: 12.5 ± 6 days; 35 males) included in the 

comparison were sourced from the study conducted by De Asis-Cruz et al [44]. In their research, 

the topological properties were assessed, including clustering coefficient, path length, small-world 

index, global efficiency, and local efficiency, based the Blood Oxygen Level-Dependent (BOLD) 

signals detected by Functional Magnetic Resonance Imaging (fMRI) using a band-pass filter of 

0.01-0.1 Hz.  

  

3.2.9 GTA-based nodal graphical brain connectivity 

To analysis nodal connectivity (Figure 3-2, red boxes), the same approach was performed to get 8 

× 8 imaginary part of coherence matrix as mentioned in 3.2.6. Then, six nodal graphical measures 

were obtained for comparison between Mild and Moderate HIE, using GRETNA toolbox: Nodal 

Clust Coeff (NCp), Nodal Shortest Path (NLp), Nodal Efficiency (Ne), Nodal Local Efficiency 

(NLe), Degree Centrality (Dc), Betweenness Centrality (Bc). The definitions of nodal graphical 

measures are listed in supplementary material B.  

 

3.2.10 Statistical analysis  

To statistically analysis the difference of PSD between Mild and Moderate HIE at each electrode 

for each of the five frequency bands, unpaired t-test followed by false discovery rate (FDR) 
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correction for multiple comparisons (eight channels) were performed between these two groups of 

HIE. 

For GTA-based global graphical brain connectivity, to compare global network of Mild 

and Moderate HIE statistically, unpaired two-sample t-test was used for each global graphical 

measure at each sparsity level. For GTA-based nodal graphical brain connectivity, to quantify and 

compare nodal network of Mild and Moderate HIE statistically, unpaired t-test followed by FDR 

correction were used for each nodal graphical measure at each sparsity level. 

3.3 Results 

3.3.1 Channel-wise PSD-based analysis   

Figure 3-3. Comparison of Mild and Moderate HIE on ΔPower on five frequency bands. The 

channel showing significant difference between these two groups was marked with red asterisk. 

 

In the channel-wise PSD comparison, newborns with Mild and Moderate HIE showed statistically 

significant differences at channels with FDR corrected p< 0.05, marked with red asterisk in Figure 

3-3. Newborns with Mild HIE showed significantly higher PSD than those with Moderate HIE in 

the delta band at channel O1 (FDR corrected p=0.0349), with no significant differences observed 

in other frequency bands.  
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3.3.2 GTA-based global graphical brain connectivity 

Figure 3-4. Comparison between Mild and Moderate HIE on assortativity of brain network was 

conducted across sparsity values ranging from 0.2 to 0.95. For Mild HIE group, the mean was 

plotted using a red solid line, while the standard error was represented by the red shadow. For 

Moderate HIE group, the mean values were depicted with a blue solid line, and the standard error 

was shown with blue shadow. 

 

In the theta band, Moderate HIE had higher assortativity of brain network than Mild HIE within 

the sparsity range of 0.45 to 0.6, plotted with group mean and standard error in Figure 3-4. 

Assortativity measures the tendency of nodes in a network to be connected to nodes with similar 

degrees, such as those with similar connectivity patterns or functional properties [45]. Ranging 

from -1 to 1, negative values indicate that nodes with different properties are more likely to be 

connected to each other, while positive values indicate that nodes with similar properties are more 

likely to be connected. In other words, a higher assortativity in a brain network indicates that nodes 

or regions with similar properties or connectivity patterns are more strongly connected to each 

other within the network [46].  
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3.3.3 Comparison of GTA-based global brain networks of newborns with HIE and healthy 

newborns 

Based on the absolute values of the quantified parameters in the delta band, the global network of 

newborns with HIE was quantified and compared to that of healthy newborns. Notable differences 

are reflected in three key parameters: Clustering coefficient (Cp), Global efficiency (Eg), and 

Local efficiency (Eloc), as shown in Figure 3-5. In Figure 3-5 (a), Cp of healthy newborns is shown 

to be consistently larger than Cp of newborns with HIE, within the threshold range from 0.025 to 

0.45. As depicted in Figure 3-5 (b), within the sparsity range from 0.05 to 0.5, Eg of healthy 

newborns is consistently larger than Eg of newborns with HIE. The results in Figure 3-5 (c) 

demonstrate that Eloc of healthy newborns remains consistently larger than Eloc of newborns with 

HIE, within the sparsity range from 0.05 to 0.6. 

Graph theory-based metrics provide insights into different aspects of brain network 

connectivity. Cp measures the tendency of neighboring nodes to cluster together, reflecting 

localized connectivity patterns [47, 48]. Eg evaluates the efficiency of information flow between 

all nodes, indicating the network's integration ability [49]. Eloc quantifies how effectively 

neighboring nodes communicate, revealing local information exchange efficiency within specific 

brain regions [50]. 
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Figure 3-5. Characteristics of GTA-based global brain networks in newborns with HIE and healthy 

newborns. Newborns with mild and moderate HIE are represented in blue and red, respectively. 

The solid line and shaded area correspond to the mean values and standard error, respectively. The 

black dashed line represents the mean values of healthy full-term newborns. Quantification of key 

parameters in delta band were assessed, including (a) Clustering coefficient (Cp), (b) Global 

efficiency (Eg), and (c) Local efficiency (Eloc). For all figures except (a), network sparsity is 

plotted as the x-axis variable, as sparsity-based Cp is not available for healthy newborns. 
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3.3.4 GTA-based nodal graphical brain connectivity 

As shown in Table 3-1, the mild HIE group showed significantly higher nodal cluster coefficient 

and nodal local efficiency than moderate HIE group, in delta band on channel P3 and in theta band 

on channel C3. Also, newborns with mild HIE had significantly lower betweenness centrality in 

theta band on channel C3 and degree centrality in alpha band on the same channel, than newborns 

with moderate HIE. Nodal cluster coefficient refers to the density of connections between a node 

and its neighbors, while nodal local efficiency refers to the efficiency of communication between 

a node and its neighbors [51, 52]. Betweenness centrality measures of the number of shortest paths 

that pass through a node or region of the brain [53-55].  

 

Table 3-1. Comparison of Mild and Moderate on GTA-based nodal graphical brain connectivity. 

All five bands were investigated, and this table only lists the bands and parameters that showed 

significance between the two groups. Statistical analysis was performed using unpaired t-tests 

followed by FDR correction for each nodal graphical measure at each sparsity level.  

 

3.4 Discussion 

The current analysis of HIE infant brain networks mainly involves fMRI [56, 57], diffusion 

magnetic resonance imaging (dMRI) [58], and F-deoxyglucose brain positron emission 

tomography scanning (FDG-PET) [59]. However, to date, there have been no studies reporting the 

use of EEG recordings and graph theory analysis to study the brain networks of HIE infants. The 

novelty of this research lies in investigating the electrophysiological brain networks of newborns 
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with mild and moderate HIE using EEG recordings. This approach may potentially serve as 

bedside monitoring of changes in infant brain functional networks caused by HIE. EEG recordings 

provide high temporal resolution of brain electrical activity, allowing us to capture the rapid 

dynamic changes in brain networks, which is crucial for understanding the impact of HIE on infant 

brain development. 

Utilizing graph theory offers a framework to study the brain as a complex network of 

interconnected nodes. This approach enables the assessment of brain connectivity by analyzing  

the organization of different components and the strength of their connections. Based on graph 

theory, we can quantify the topological properties of the brain networks, such as clustering 

coefficient and shortest path length, to reveal the overall structure and functional characteristics of 

the brain networks in infants affected by HIE. Furthermore, contrasting brain networks in HIE 

infants with those of healthy peers enables a precise differentiation between HIE-induced and 

typical neonatal brain networks. This investigation deepens our comprehension of HIE's impact 

on brain function, yielding insights for early diagnosis and intervention. We anticipate this research 

will propel the integration of EEG technology into HIE studies and contribute to further 

exploration in related domains. 

 

3.4.1 Channel-wise PSD-based analysis  

Delta waves are slow brain waves that are typically seen in deep sleep or in states of decreased 

consciousness [60, 61]. In infants with HIE, an increase in delta power may indicate that the brain 

is struggling to maintain normal activity levels and is entering a state of reduced alertness or 

awareness [35-37]. During the 30 minutes period, we observed Mild HIE had significantly higher 

PSD than Moderate HIE on delta band, at marked channel O1.  
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An insightful interpretation for the observed phenomenon could be rooted in the brain's 

adaptive responses to the varying severities of Mild and Moderate HIE in infants. It is plausible 

that in the presence of Mild HIE, the infant brain endeavors to mitigate the impact of the condition 

by downregulating its energy demands and overall neural activity. This strategic reduction in brain 

activity might be aimed at prioritizing essential functions, such as respiration and circulation [62]. 

However, in cases of more severe HIE, such as Moderate HIE, the capacity of the infant brain to 

effectively employ the compensatory mechanism of energy reduction could be even more 

compromised, owing to the heightened severity of the condition. Consequently, the impairment in 

compensatory capabilities could culminate in a reduction in delta power, thereby reflecting the 

brain's diminished ability to support fundamental bodily functions. 

 

3.4.2 GTA-based global graphical brain connectivity 

Usually, assortativity is thought to contribute to the efficient processing of information in the brain, 

which allows specialized regions to work together in a coordinated manner. However, studies had 

shown that patients may have a higher assortativity of brain network than healthy individuals. This 

is thought to be due to the fact that certain diseases or conditions can affect specific brain regions 

or networks, leading to a disruption of the normal connectivity patterns within the brain. As a 

result, nodes that share similar connectivity patterns may become more strongly connected to each 

other, leading to a higher assortativity of the network. In recent studies for patients with 

Alzheimer's disease, increased assortativity within the brain's default mode network was reported, 

which was involved in self-referential thinking and mind-wandering [46, 63]. This increased 

assortativity may reflected a breakdown in the normal segregation and integration of brain regions, 

which was thought to underlie cognitive impairments in Alzheimer's disease. Several other studies 
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reported similar findings with different experimental protocols when assessing the impacts of 

Alzheimer's disease on communication between brain regions [64, 65]. These studies suggested 

that individuals with Alzheimer's disease may exhibit increased assortativity within the default 

mode network, which is a set of brain regions that are most active when the mind is at rest and not 

engaged in specific cognitive tasks. This increased assortativity may reflect a more selective and 

segregated pattern of connectivity within the network, potentially indicating disrupted 

communication between brain regions due to severity of encephalopathy. 

For infants with Moderate HIE, their brain regions affected by HIE may have similar 

patterns of damage or altered connectivity, leading to increased segregation and reduced 

integration. In contrast, infants with Mild HIE may have more diverse patterns of brain 

connectivity, leading to lower assortativity in their brain networks. This discovery aligns with the 

outcomes derived from a systematic review of brain network organization in focal epilepsy [47]. 

For neonatal HIE, the incidence of epilepsy is influenced by the severity of HIE condition. Infants 

with more severe cases of HIE are more likely to develop epilepsy compared to those with milder 

forms of HIE. Therefore, it is imperative to undertake subsequent investigations to ascertain the 

extent of the correlation between this network pattern and epilepsy. 

 However, there was no significant difference between newborns with mild HIE and 

moderate HIE in other key parameters of global connectivity. The results may suggest that 

newborns with mild HIE can develop similar impaired brain functional network patterns as 

newborns with moderate HIE. In previous research, investigators focused more on the impact of 

moderate and severe HIE on infant brain development. By comparing the effects of mild and 

moderate HIE on brain functional network, we found that even in cases of mild HIE, there may 

still be a comparable degree of adverse impact on infant brain function, emphasizing the 
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importance of early detection and intervention to minimize the detrimental effects of HIE on infant 

brain development. 

 

3.4.3 Comparison of GTA-based global brain networks of newborns with HIE and healthy 

newborns 

Accessing several key GTA-based parameters, a further comparison of Cp, Eg, and Eloc was 

conducted among three groups, including newborns with mild and moderate HIE and healthy 

newborns. Cp measures the tendency of neighbors of a node to cluster together, indicating how 

closely interconnected brain regions are in a network. A higher clustering coefficient indicates that 

nodes in the network tend to form tightly-knit clusters or communities, suggesting a higher level 

of local connectivity and organization. Therefore, the larger Cp values in healthy newborns 

compared to newborns with HIE indicate that the brain networks of newborns with HIE have a 

less organized and less efficient local communication pattern in the delta band. This difference 

reflects significantly worse developmental or neurological conditions in newborns with HIE. 

Eg measures how well information is transferred in a network. Thus, larger Eg indicates 

that the brain network has better overall information transmission capacity. The finding of Eg 

suggests that in the delta band, the brain networks of healthy newborns exhibit a higher level of 

global integration and information transfer efficiency compared to newborns with HIE. In other 

words, newborns with HIE exhibit lower efficiency and impaired communication pattern among 

distant brain regions in the delta band. 

Quantifying how well neighbors of a node communicate with each other after the node is 

removed, Eloc reflects the information transmission efficiency of each node among its neighboring 

nodes. Higher Eloc typically implies that nodes have more efficient information transmission 
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among their neighbors. The result of Eloc implies that the healthy newborns show more efficient 

information transmission among their neighboring brain regions compared to newborns with HIE. 

This difference in local efficiency could potentially indicate that the brain networks of newborns 

with HIE may have much less effective communication and coordination among nearby brain 

regions, which could be related to the impairment caused by HIE on brain development and 

function. 

 

3.4.4 GTA-based nodal graphical brain connectivity 

Nodal clustering coefficient measures the extent to which the immediate neighbors of a specific 

node (brain region) in a brain network are also interconnected. Nodal local efficiency measures 

the efficiency of communication and information exchange between a specific brain region (node) 

and its neighboring nodes within a brain network. The significantly higher nodal cluster coefficient 

and nodal local efficiency in the delta band on the P3 channel and in the theta band on the C3 

channel may indicate that newborns with mild HIE had more effective neural processing than those 

with moderate HIE. 

 Specifically, a low nodal clustering coefficient indicates that the neighbors of the node are 

less likely connected to each other, suggesting that the moderate HIE group has a lower degree of 

local information processing and functional specialization than the mild HIE group in the specific 

brain region covered by channels C3 and P3. A high nodal local efficiency indicates that a node is 

effectively connected to its neighbors, promoting efficient local information processing and 

functional integration. In comparison to the Moderate HIE group, the Mild HIE group can maintain 

more efficient information processing and integration within the local network neighborhood 

detected by channels C3 and P3. 
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 Meanwhile, nodal betweenness centrality quantifies the number of shortest paths that pass 

through the specific node. A higher nodal betweenness centrality suggests that the region covered 

by channel C3 plays a crucial role in facilitating communication and information flow between 

different parts of the network in cases of moderate HIE. 

From an anatomical perspective, channels C3 and P3 are positioned precisely within 

watershed regions, which are areas sensitive to the impact of HIE. Therefore, the differences in 

nodal connectivity observed in this study between the mild and moderate groups may suggest that 

the impairment of watershed regions worsens with a higher severity of encephalopathy. 

 

3.4.5 Limitation of the study and future work 

This study exhibits certain limitations primarily attributed to the utilization of distinct modalities 

when comparing newborns with HIE and healthy newborns. Specifically, these two experimental 

groups were based on different modalities, namely EEG and fMRI. These diverse experimental 

techniques offer unique advantages and constraints in the recording and assessment of brain 

function. EEG provides high temporal resolution but limited spatial resolution; fMRI, on the other 

hand, excels in spatial resolution but offers relatively lower temporal resolution.  

Consequently, while these experimental modalities furnish valuable information 

concerning the neurophysiological mechanisms in HIE research, it is imperative to take into 

account the differences among them during data interpretation and result comparison. In future 

investigations, further exploration with the same experimental modalities and strategies to 

synergize their strengths will be instrumental in comprehensively understanding the neural 

network disparities among newborns with HIE and healthy newborns. 
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In our future in-depth research, the neurophysiological brain networks of newborns with 

HIE and healthy newborns will be compared based on EEG recording, to avoid confounding 

effects from different modalities. Then, the comparison will be conducted within the same 

frequency range, ensuring comparability when analyzing the brain networks of newborns with HIE 

and healthy neonates. Through this research design, we aim to accurately assess the differences in 

brain function between newborns with HIE and healthy newborns, gaining a deeper understanding 

of the progression of encephalopathy severity on infant brain development. We anticipate that 

these research findings may contribute to the development of more effective early diagnostic and 

intervention measures, ultimately improving the prognosis of infants with HIE and providing 

substantial support for the development of treatment strategies. With a more comprehensive 

understanding of the characteristics of brain networks in newborns with HIE, we may offer more 

precise information for clinical applications, defining potential biomarkers for real-time 

monitoring of brain function, promoting early intervention and treatment to improve long-term 

neurodevelopmental outcome. 

3.5 Conclusion 

In this prospective study, newborns with HIE underwent eight-channel EEG measurements to 

assess brain networks, with key parameters quantified through graph theory. Newborns with 

moderate HIE showed more selective global connectivity compared to those with mild HIE, 

possibly indicating disrupted inter-brain communication due to encephalopathy severity. 

Comparing HIE infants to healthy newborns revealed less organized and efficient brain networks, 

especially in delta band. Furthermore, the moderate HIE group exhibited weaker neural processing 

power than the mild group on channel C3 and P3, covering watershed zones. Notably, key 
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parameters of global connectivity showed no significant difference between mild and moderate 

HIE groups, implying similar brain functional impairments and the need for prompt intervention. 
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Chapter 4 

Prefrontal Transcranial Photobiomodulation with 800-nm Laser Modulates 

Human Neurophysiological Networks  

4.1. Introduction 

Transcranial photobiomodulation (tPBM), also known as transcranial infrared laser stimulation 

(TILS), has shown potential in improving cognitive function, particularly in the areas of attention, 

memory, and executive function, as a non-invasive and safe intervention using near-infrared or 

infrared light. Recent studies have demonstrated that tPBM facilitates memory enhancement in 

both healthy humans and patients with certain neurological diseases [66-70]. To date, studies have 

proved that tPBM can increase cerebral blood flow and oxygenation in targeted brain regions, 

which enhance neuronal activity and improve cognitive performance [71-74]. However, the 

underlying electrophysiological mechanism of tPBM is still unclear and further research is needed 

to determine optimal parameters for tPBM applications, such as wavelength and treatment 

location. Previous studies investigating the effects of tPBM on brain activity have predominantly 

focused on hemodynamic and metabolic, or electrophysiological viewpoints. To date, few research 

has assessed the systematic modulation of the brain in response to left and right prefrontal tPBM 

using 800-nm laser.  

           Therefore, this research aims to investigate and quantify the modulation effects of left and 

right prefrontal 800-nm tPBM on neurophysiological networks using 19-channel wireless dry 

EEG. A more comprehensive understanding of the mechanisms underlying tPBM can be achieved 

by examining the topological networks and their modulation in response to tPBM. Specifically, 

employing Graph theory analysis (GTA), we evaluated the alterations in brain network and 

information flow induced by 800-nm prefrontal tPBM. Representing the brain as a network of 
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interconnected nodes (which refer to brain regions) and edges (which indicate the connections 

between regions), GTA-based brain network analysis enables the intricacies of connections and 

communication patterns within the brain [75].         

 

4.2. Method 

4.2.1 Study participants 

Subjects were considered eligible if they met the inclusion criteria, which included being over 18 

years of age, being healthy and pain-free individuals, irrespective of gender or ethnic background, 

and having the ability to provide informed consent. Exclusion criteria were as follows: (1) 

individuals with serious medical conditions, including neurological or psychiatric diseases; (2) 

those with a history of brain injuries or violent behavior; (3) individuals who had been 

institutionalized or imprisoned; (4) those taking long-term or short-term medication; (5) pregnant 

individuals; (6) smokers or those with diabetes; and (7) those unable to provide informed consent. 

In total, thirty-one healthy subjects were recruited from the University of Texas at 

Arlington (UTA), who were the same as those in our recently reported studies on cerebral 

hemodynamic and metabolic activities [76, 77]. Each participant underwent five visits with a 

minimum interval of seven days between them. Due to the high sensitivity of wireless dry EEG to 

motion artifacts, five participants with excessive motion during one or more of the experiments 

were excluded from the analysis. Ultimately, 26 healthy  young adults (14 males and 12 females) 

with 22.4 ± 2.3 years of age (i.e., average ±  standard deviation) completed the two-visit 

experiments. All subjects were instructed to abstain from ingesting any beverages containing 

caffeine for a minimum of three hours preceding each visit. This study was conducted in 
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accordance with relevant federal guidelines and was approved by the Institutional Review Board 

(IRB) of UTA. All participants provided informed consent prior to participation. 

 

4.2.2 EEG data acquisition  

In this study, tPBM/sham was delivered on the left/right prefrontal location with a 4.16 cm 

diameter circular 800-nm laser beam, using a continuous-wave laser (Model CG-5000 Laser, Cell 

Gen. Therapeutics LLC, Dallas, TX, USA), which was cleared by the Food and Drug 

Administration (FDA). The setup for broadband near-infrared spectroscopy (bbNIRS) was 

positioned on the subjects' forehead for measurement during the pre-stimulation phase. It was 

temporarily removed during the stimulation to create space for the tPBM/sham procedure on the 

left/right frontal region. The setup was then placed back in the same location for post-stimulation 

measurement. 

The data analyzed in this study were obtained from resting-state, bilateral measurements 

with 19-channel wireless dry EEG (CGX Quick-20 10–20 EEG system), which is one of the dual-

mode (i.e., EEG and bbNIRS) modalities shown in Figure 1 (a) and (b). This section focuses on 

EEG signal for investigating the modulation effects of left/right prefrontal tPBM on 

neurophysiological networks with non-invasive 800-nm laser.  

For each visit, the entire experiment was 22 minutes, including a 7 min pre (resting state), 

an 8 min tPBM/sham, and a 7 min post tPBM/sham period (resting state). Upon completion of the 

informed consent process, each participant was directed to assume a seated position comfortably 

on a chair, followed by a dual-mode probe placement on the participant’s head firmly. 

Subsequently, as shown in Figure 1 (c), the 19-channel EEG and bbNIRS apparatus started to 

record data at a sampling frequency of 500 Hz. This occurred during a 7 min period of resting state 
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both before and after tPBM/sham stimulation, while the participant maintained a state of eyes-

closed wakefulness. The genuine stimulation intervention was delivered via 800-nm laser 

illumination targeted at the left/right frontal region with total power set to be 3.5 W, whereas the 

sham was performed with the laser power set to be 0.1 W and the laser aperture covered with a 

black cap. During tPBM/sham stimulation, participants were asked to wear protective goggles. 

The research was conducted in a single-blind crossover design, wherein every participant 

underwent sham tPBM and sham experiments in a random sequence (Figure 4-1). 

 

Figure 4-1. Experiment setup and protocol. (a) Front view of the dual-mode (EEG and bbNIRS) 

head probe setup (b) The side view of the dual-mode. While the 2-channel bbNIRS on the forehead 

is observable, the bbNIRS data are not the topic/subject of this section. The EEG datasets used for 

this study were taken during 7 min eyes-closed conditions with the setup shown. (c) The 

distribution of 19-channel wireless EEG (d) Experiment protocol for tPBM/sham 

 

4.2.3 Overview of data processing pipeline 
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Each raw EEG dataset represents a 7-minute time series of 19 channels collected during 

active/sham tPBM experiments from 26 subjects. As shown in Figure 4-2, the data processing 

pipeline consists of four sections: (1) Preprocessing; (2) Construction of connectivity matrices 

based on imaginary part of coherence analysis; (3) GTA-based global graphical brain connectivity 

analysis; (4) Region-wise network analysis based on coherence strength of connectivity matrix. 

 

Figure 4-2. Flowchart of EEG data processing, including steps for (1) Preprocessing (purple box). 

(2) Construction of connectivity matrices (blue boxes). (3) GTA-based global graphical brain 

connectivity (green boxes). (4) Region-wise network analysis, based on coherence strength (red 

boxes). The purple dashed box indicates the analysis steps involved in connectivity analysis based 

on the imaginary part of coherence analysis. The green dashed box signifies the process of 

analyzing the global brain network using graph theory. 

 

4.2.4 Data preprocessing  

As depicted by the purple box in Figure 4-2, all EEG signal preprocessing steps were executed 

using MATLAB® (MathWorks 2022a, MathWorks Inc., Natick, MA, USA). The raw EEG data 

sampled at 500 Hz underwent bandpass filtering within the range of 1-55 Hz using a Butterworth 
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filter. Additionally, artificial spikes and flat segments were replaced with combined (50%-50%) 

signals from preceding and subsequent recordings. Subsequently, bad channels were interpolated 

using EEGLAB, an open-source MATLAB toolbox. For each EEG series, re-referencing was 

conducted by averaging the voltage across all 19 channels. Following this, independent component 

analysis (ICA) was applied to decompose the 19-channel EEG signals into underlying independent 

neural sources, aiming to eliminate motion artifacts such as eye movements and muscle activity. 

 

4.2.5 Construction of connectivity matrices  

By providing measures of network topology, graph theory helps to analyze the global brain 

network with measures such as degree, clustering coefficient, and path length. These measures can 

reveal important features of the network, including but not limited to the presence of highly 

connected hubs, the degree of local clustering, and the efficiency of information transfer between 

different brain regions. 

Since correlations between the phases or amplitudes of EEG channels are interpreted as 

functional connectivity between all pairs of EEG electrodes, amplitude and phase decompositions 

were performed for all eight channels. Consequently, the amplitude and phase of an EEG time-

point could be represented as a complex number. Furthermore, Slepian sequences were utilized to 

taper the EEG signal in the time domain before performing the Fourier transform, using the 

'ft_freqanalysis' function within the FieldTrip toolbox [41, 42]. 

To measure connectivity, coherence is commonly utilized in the frequency domain as an 

equivalent to the time-domain cross-correlation function. The coherence coefficient is computed 

for a frequency of ω and yields a normalized coefficient between 0 and 1:  
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                                            𝐶𝑜ℎ𝑥𝑦(𝜔) =
|𝑆𝑥𝑦(𝜔)|

√𝑆𝑥𝑥(𝜔)𝑆𝑦𝑦(𝜔)
                                                                (2) 

Sxx, Syy, and Sxy were calculated using complex values obtained with the multitaper 

method, where Sxx and Syy respectively represent the power estimates of signals x and y, and Sxy 

denotes the averaged cross-spectral density term of these two signals. 

However, volume conduction occurs when two or more EEG signals recorded from 

different scalp locations share a common source or generator, resulting in the appearance of 

spurious coherence. To minimize this issue, the imaginary part of coherence can be used by 

removing the magnitude operation from equation (2) and considering the imaginary part of Sxy, 

while setting the cross-spectral density of the signals with 0 or 2π phase difference to zero. Hence, 

the 'ft_connectivityanalysis' function from the FieldTrip toolbox was utilized for computing the 

imaginary part of coherence for all pairs of channels. In this study, the pairwise connectivity values 

for all pairs of electrodes were represented by a 19 × 19 adjacency matrix. 

For the target temporal segments, the EEG data was divided into 10-second epochs, and 

the generated adjacency matrices for all epochs in each frequency band were averaged. These 

averaged matrices were then binarized by varying the sparsity level. Afterward, the matrix was 

divided into five different EEG frequency bands, which were used for graph theory-based global 

and region-wise connectivity analyses. The five frequency bands include delta (1-4 Hz), theta (4-

8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma band (30-55 Hz). 

 

4.2.6 GTA-based global brain network 

The user-friendly graph theory toolbox, GRETNA, was utilized to quantify the global and nodal 

graphical metrics of brain networks across five frequency bands [43]. This procedure was repeated 
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19 times to assess the selected metrics within a sparsity range of 5%–95%, with a step length of 

5%.  

Regarding the global network, five graphical measures were included for analysis: 

Synchronization (S), Network Efficiency (Global efficiency, N), Small-Worldness (Sw), 

Hierarchy (H), and Assortativity (A). The definitions of these global graphical measures are 

provided in supplementary material A.  

To compare relative tPBM and relative sham for the same subject, key parameters of global 

connectivity were normalized for tPBM and sham group with the following equations: (1) 

tPBMRelative = (tPBMPost - tPBMPre) / tPBMPre). (2) shamRelative = (shamPost - shamPre) / shamPre. Then, 

the statistical comparison of global networks between tPBM and sham was realized using paired 

two-sample t-test for each global graphical measure at every sparsity level. 

 

4.2.7 Adjacency-matrix-based region-wise network analysis  

After performing graph theory on 19-channel EEG, we were interested in classifying these 

channels into six identified cortical regions on the human scalp, i.e., prefrontal, centraltemporal, 

parietal-occipital regions in left and right cerebral hemisphere. Consequently, the 19 nodes were 

grouped into six clusters, each comprising 2–3 electrodes (as depicted in Figure 4-4). After 

obtaining the 19 × 19 imaginary part of coherence matrix with FieldTrip, paired two-sample t-test 

followed by FDR correction were performed to compare ∆tPBM (∆tPBM = tPBMPost - tPBMPre) 

and ∆sham (∆sham = shamPost - shamPre) on group-level. 

 

4.3 Results 

4.3.1 Modulation effects of 800-nm left prefrontal tPBM 
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GTA-based global connection in the human cortex modulated by left prefrontal tPBM 

 

Figure 4-3. Comparison of 800-nm left prefrontal tPBM and sham on connectivity parameters. 

The significant differences (p < 0.05) between tPBM and sham are marked with red stars after 

two-sample paired t-test. (a) Clustering coefficient (Cp) on alpha band. (b) Sigma of Small-World 

on alpha band. (c) Local efficiency (Eloc) on delta band (d) Cp on delta band. 

 

As the result of the comparison between relative tPBM and relative sham (Figure 4-3), tPBM 

created significantly higher metrics than sham in alpha band on Clustering Coefficient (Cp) and 

Sigma of Small-Word, both from sparsity 0.3 to 0.9 (Figure 4-3 ab). In delta band, tPBM generated 

significantly lower metrics than sham regarding effective Local Efficiency (Eloc) of Network 

Efficiency (from sparsity 0.25 to 0.4, Figure 4-3 c) and Cp of Small-Word (from sparsity 0.25 to 

0.45, Figure 4-3 d). Cp measures the tendency of neighbors of a node to cluster together. Sigma 
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quantifies specialized/modularized and integrated/distributed information processing. Eloc 

evaluates how well neighbors of a node communicate with each other after the node is removed. 

 

Adjacency-matrix-based region-wise network analysis  

Figure 4-4. Comparison of the region-wise network between 800-nm left prefrontal tPBM and 

sham on alpha band. After paired t-test and FDR correction, the significantly increased (p < 0.05) 

connections modulated by tPBM are marked by the red stars. 

 

After applying paired t-test and FDR correction, the coherence between the following regions 

demonstrated a statistically significant increase after tPBM treatment compared to sham within the 

alpha band: left frontal and right centrotemporal (p=0.0177), left centrotemporal and right parieto-

occipital (p=0.0397), right frontal and right centrotemporal (p=0.0062), and right centrotemporal 

and right parieto-occipital (p=0.0062). In the beta band, the coherence between the left frontal and 

right centrotemporal regions exhibited a statistically significant increase (p=0.0111) after tPBM 

treatment compared to sham, using paired t-test followed by FDR correction (Figure 4-4). 
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4.3.2 Modulation effects of 800-nm right prefrontal tPBM 

GTA-based global connection in the human cortex modulated by right prefrontal tPBM 

Comparing relative tPBM and relative sham, as shown in Figure 4-5, tPBM resulted in 

significantly higher values than sham in the beta band for Normalized Clustering Coefficient 

(Gamma) and Sigma of Small-Word, both within the sparsity range of 0.35 to 0.45 (Figure 4-5 a 

and b). In the gamma band, tPBM gave rise to significantly lower values than sham regarding 

Global Efficiency (Eg) of Network Efficiency (within the sparsity range of 0.3 to 0.4, Figure 4-5 

c), and significantly higher values than sham in terms of Shortest Path Length (Lp) of Small-Word 

(within the sparsity range of 0.2 to 0.4, Figure 4-5 d). Gamma measures the tendency of neighbors 

of a node to cluster together. Eg assess How well information is transferred in a network. Lp 

evaluates the average shortest distance between any two nodes. 
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Figure 4-5. Comparison of 800-nm right prefrontal tPBM and sham on connectivity parameters. 

The significant differences (p < 0.05) between tPBM and sham are marked with red stars after 

Two-sample t-test. (a) Gamma (Normalized clustering coefficient) on beta band. (b) Sigma of 

Small-World on beta band. (c) Eg (Global efficiency) on gamma band (d) Lp (Shortest path length) 

on gamma band.  

 

4.4. Discussion 

There is an incomplete understanding of the topological mapping of the brain’s 

electrophysiological network modulation in response to tPBM. Previous research by Wang et al. 

has shown that tPBM using 1064-nm laser can increase alpha and beta rhythms in frontal and 

parietal regions during eyes-open resting state as measured in healthy human using 64-channel 

EEG [67, 78]. However, the tPBM-induced functional network modulation has not been 

sufficiently studied and understood to identify changes in the interaction among different regions 

of the brain. Furthermore, the impact of left and right prefrontal tPBM on brain electrophysiology 

with 800-nm laser has not been investigated thus far. 

 

4.4.1 Modulation effects of 800-nm left prefrontal tPBM 

GTA-based global connection in the human cortex modulated by left prefrontal tPBM 

Small-World refers to the network in which most nodes are not directly connected to one another 

but can be reached through a relatively small number of intermediate connections. Cp measures 

the average distance between any two nodes in the network and high Cp indicates that the network 

has a short path length, because the intermediate nodes in a Small-World network act as shortcuts 

which allow information to travel quickly and efficiently between nodes. On the other hand, the 

clustering coefficient measures how likely two nodes that are connected to a common neighbor 
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are to be connected to each other, which indicates if nodes in a Small-World network tend to form 

clusters or groups [79]. A high sigma value indicates that the network has a small-world structure 

with high clustering and short path lengths, while a low sigma value indicates that the network is 

more random in structure. 

Eloc measures network efficiency that quantifies the ability of a network to transfer 

information efficiently between the immediate neighbors of a node, taking into account the 

network's overall topology [80]. The low Eloc value indicates that the network is less efficient in 

transmitting information between immediate neighbors of nodes. This could mean that there are 

certain regions or nodes in the network that are less well-connected than others, leading to reduced 

efficiency in local communication. A network with low Eloc may also have a higher number of 

long-range connections, which can reduce the efficiency of local information transfer [81]. This 

can occur if the long-range connections are less efficient than the shorter-range connections. Low 

Eloc values can also be observed in networks with high clustering coefficients, as the presence of 

highly connected clusters can reduce the efficiency of communication between immediate 

neighbors. 

         Studies have shown that the alpha band (8-12 Hz) is associated with relaxed wakefulness, 

attentional processes, and cognitive control, while the delta band (0.5-4 Hz) is associated with deep 

sleep, restorative processes, and emotional regulation [82, 83]. The results of this study indicated 

left prefrontal tPBM with 800-nm laser could enhance functional connectivity within the entire 

cortex in alpha band, which could lead to a more efficient and highly clustered network that may 

have positive effect on cognitive function. tPBM could also induce different effects on Small-

World network measures depending on the frequency band of the brain waves being targeted. For 

example, a decrease in Cp of Small-World networks in the delta band indicates more dispersed 
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network with longer path lengths. This could potentially facilitate collaboration between regions 

with greater spatial separation. 

 

Region-wise network strength on five bands, with coherence matrix 

The observed changes in coherence within distinct frequency bands following tPBM treatment 

provide insights into the modulatory effects of this intervention on brain functional connectivity. 

In the alpha and beta band, the statistically significant increase in coherence between specific brain 

regions underscores the potential role of tPBM in promoting synchronized neural activity within 

these regions. 

Current research widely posits that distinct anatomical structures of the brain play 

divergent roles when executing various functions and tasks [84-87]. Specifically, the left frontal 

region handles cognitive functions like decision-making, planning, and problem-solving. The right 

centrotemporal area processes auditory information and language comprehension. The left 

centrotemporal area is also linked to language processing and auditory perception. The right 

parieto-occipital region manages visual processing, spatial perception, and visual attention. The 

right frontal region regulates emotions, social interactions, and decision-making. 

The observed significant increase in coherence between specific brain regions after tPBM 

treatment within the alpha band suggests that tPBM has the potential to enhance coordination and 

communication among these regions, thereby fostering collaboration in cognitive, sensory, and 

perceptual processes. Since left frontal region is associated with cognitive and right centrotemporal 

region is associated with the processing of visual and auditory stimuli, the increased coherence 

between these two regions in beta band may suggest the brain shows enhanced capability for 

integrating sensory information that related to cognitive processes. Furthermore, within the beta 
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band, the increase in coherence between the left frontal and right centrotemporal regions after 

tPBM treatment compared to the sham condition indicates that tPBM enhances information 

exchange and potentially promotes improved integration of cognitive and auditory processing 

pathways. 

 

4.4.2 Modulation effects of 800-nm right prefrontal tPBM 

GTA-based global connection in the human cortex modulated by right prefrontal tPBM 

Metric Gamma derived from graph theory quantifies the level of local clustering or connectivity 

between neighboring nodes in the network, which can assess the efficiency of information 

processing within a brain network [35]. A high clustering coefficient indicates that the neighboring 

nodes of a given node are well interconnected, forming a tightly knit local neighborhood. On the 

other hand, a low clustering coefficient suggests that the neighboring nodes are less interconnected, 

forming a more sparsely connected neighborhood [88]. Providing insights into the local 

communication efficiency and the formation of functional modules or clusters within the brain, 

Gamma shows how information is processed and integrated within localized brain regions. 

Eg can quantify the efficiency of information transfer and integration across the entire 

network, to assess how efficiently information can be transmitted between any two nodes in the 

brain network [81, 89]. A higher global efficiency value indicates a more efficient brain network, 

where information can be rapidly and effectively transmitted across different regions. In other 

words, Eg shows the overall integration and communication capacity of the brain network.  

Lp measures the efficiency of communication between two nodes in the network, which 

calculates the smallest number of intermediate steps required to transmit information from one 

region of the brain to another [49, 90, 91]. A smaller Lp indicates a more efficient brain network, 
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as information can be transmitted quickly and directly between nodes. Hence, a larger Lp suggests 

a less efficient network with more indirect and longer routes for information transfer. 

Researchers believe that the beta band is associated with active or engaged mental states, 

such as focused attention, problem-solving, and decision-making [92, 93]. Beta waves are 

commonly observed during awake and alert states when the brain is actively processing 

information and performing cognitive tasks [94, 95]. Associated with more complex cognitive 

processes and are believed to play a crucial role in information integration and binding, EEG 

signals in gamma band are often observed during tasks that involve sensory perception, memory 

formation, and higher-level cognitive functions [96, 97]. The results of this study indicated the 

right prefrontal 800-nm tPBM may elicit more organized and efficient local communication 

patterns while subjects were awake. Additionally, the increased sigma suggests the right prefrontal 

800-nm tPBM may trigger a more balanced integration and segregation in brain networks during 

information processing. Interestingly, the overall information transfer efficiency of the brain 

network in the gamma band decreased, while the paths of information transmission became longer. 

This may suggest that the right prefrontal 800-nm tPBM induced a more relaxed state in the 

participants during the resting-state, leading to a temporary reduction in memory and cognitive 

activities. 

 

4.4.3 Site-specific effects of left and right prefrontal tPBM 

The 800-nm laser treatment applied to the left and right prefrontal regions in tPBM 

revealed distinct modulation effects, which were also observed in our previous study investigating 

cerebral hemodynamic and metabolic activities induced by 800-nm prefrontal tPBM [76, 77]. 

Specifically, when stimulating the left prefrontal area, tPBM primarily modulated key parameters 
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of the global network within the alpha and delta frequency bands. Quantitative analysis of these 

parameters indicated that the brain network becomes more efficient and highly clustered, 

potentially yielding a positive effect on cognitive function. Furthermore, in comparison to 

stimulating the right prefrontal region, the 800-nm stimulation applied to the left prefrontal region 

resulted in pronounced region-wise synchronized neural activity. 

On the other hand, when stimulating the right prefrontal area, tPBM predominantly 

modulated key parameters of the global network within the beta and gamma frequency bands. 

Analysis of these parameters showed that the 800-nm laser applied to the right prefrontal region 

elicited more organized and efficient global communication patterns, while also triggering a more 

balanced integration and segregation during information processing. 

 

4.4.4 Limitation of the study and future work 

One limitation of this study is related to potential EEG setup movement. During the tPBM and 

sham experiments, EEG electrodes were removed from the Fp1/Fp2 channels. This process could 

lead to slight positional differences in the EEG channels during post-stimulation measurement, 

compared to their initial positions during pre-stimulation measurement. Such positional changes 

might impact data accuracy and create challenges when interpreting and comparing results.   

Another limitation pertains to the eyes-closed resting state, where subjects might 

experience drowsiness. This drowsy state could potentially affect the quality of recorded data, 

potentially leading to reduced signal stability or the introduction of noise. These factors could 

influence the analysis results of brain networks. 

For future studies, valuable insights could be gained by exploring the effects of various 

factors, including different wavelengths, light irradiance, stimulation doses, brain regions, and 
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subjects' ages. The effectiveness of specific brain regions may vary based on individual differences 

and light parameters. Additionally, different age groups might respond differently to the 

stimulation. Exploring these aspects can provide a more comprehensive understanding of 

photobiomodulation's effects on brain function. This, in turn, would offer valuable insights for 

clinical applications and guide further research endeavors. 

 

4.5. Conclusion 

This study underscores the site-specific effects of tPBM on brain function, wherein left and right 

prefrontal tPBM with the same wavelength can trigger distinct modulation effects. This suggests 

that the impact of brain stimulation may vary across different brain regions, possibly due to the 

differences of physiological structures among these regions, resulting in diverse responses to the 

stimulation. Furthermore, the analysis of key parameters of brain networks revealed that both left 

and right prefrontal tPBM significantly affected neurophysiological networks. These findings 

suggest that 800-nm tPBM on the prefrontal cortex can directly or indirectly regulate the 

connectivity patterns and information transmission in the brain. These findings are pivotal for 

tPBM application, ensuring optimal therapeutic outcomes for neurorehabilitation and brain 

disorder treatment. Further research is needed to validate and explore various brain regions and 

stimulation parameters, advancing tPBM in clinical practice. 
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Chapter 5 

Future Work 

Prediction of long-term severities of newborns with HIE and advanced 

management in the first 72 hours of life 

Neonatal Hypoxic Ischemic Encephalopathy (HIE) is a critical condition with significant 

implications for newborns worldwide. The utilization of the brain state of newborn (BSN) as a 

novel biomarker for prognostic assessment in HIE cases has shown promising results. However, 

for future work, there are several key areas that require further exploration to enhance the 

effectiveness and applicability of BSN and improve the management of HIE. 

1. Expanding BSN training and data collection: To improve BSN's accuracy and reliability in 

stratifying HIE severity, extensive training using a larger dataset of EEG recordings from HIE 

newborns is essential. The inclusion of diverse and ample data will refine the BSN algorithm 

and enhance its ability to distinguish between mild, moderate, and severe HIE cases. 

2. Machine learning-based prediction models: A large-scale studies are currently in progress, 

employing machine learning-based prediction models. These models utilize diverse markers 

and advanced algorithms, holding the promise of offering comprehensive and accurate 

prognostic insights for neonates with HIE. This integrated approach could enhance clinical 

decision-making by providing a holistic and accurate understanding of the condition. 

3. Revisiting the definition of mild HIE: Defining mild HIE is a challenging aspect of its 

management. Addressing key questions surrounding the classification of mild HIE is 

imperative to improve diagnostic accuracy and therapeutic decisions. Several specific aspects 

are suggested for future work. (1) Considering the limited power of the current standard to 

differentiate mild HIE from normal newborns within the first six hours of life, exploring the 
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possibility of introducing subclasses to refine severity stratification is worth investigating. (2) 

Incorporating dynamic severity stratification based on the evolving nature of neonatal HIE 

may aid in adapting treatments as the condition progresses. (3) Accurately identifying infants 

who may benefit the most from therapeutic hypothermia (TH) is essential, as it can optimize 

treatment outcomes. (4) Establishing a specific therapeutic window for effective treatment in 

neonates with mild NE could account for the slower evolution of brain injury and improve the 

efficacy of interventions. 

In summary, the application of BSN as a biomarker for prognostic assessment in neonatal 

HIE holds significant promise in improving clinical outcomes. To maximize its potential, future 

research should focus on expanding BSN training with more extensive EEG datasets, incorporating 

machine-learning-based prediction models, and redefining the classification of mild HIE. By 

addressing these key areas, we can enhance our understanding of HIE, optimize therapeutic 

strategies, and improve long-term neurological outcomes for affected infants. The continued 

collaborative efforts of researchers and clinicians are vital to advancing the management and care 

of neonatal HIE in the years to come. 

 

Potential research topics for future studies 

• To investigate the differences in brain network activity during the sleep cycle among 

different severities of HIE: This study aims to analyze the variations in neural connectivity 

and activity patterns across different sleep stages (such as active sleep and quiet sleep) in 

newborns with varying degrees of HIE severity. The objective is to uncover potential links 

between the severity of HIE and alterations in brain network dynamics during sleep. 
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• To explore the potential of using brain networks to predict the occurrence of epilepsy in 

newborns with HIE: This study aims to identify distinctive network patterns through 

machine learning algorithms that can serve as early indicators of epilepsy risk. The ultimate 

goal is to develop proactive and targeted interventions for newborns at risk of epilepsy due 

to HIE. 

• To study tPBM modulation effects in neonates with HIE: A recent research (Groves et al., 

2023) reported a photobiomodulation and caffeine treatment for acute kidney injury (AKI) 

in a hypoxic ischemic neonatal rat model using 670-nm red light. It has shown promise in 

reducing AKI induced by HIE in the modified Rice-Vannucci model. If further studies 

validate the potential of tPBM to alleviate AKI in neonatal HIE, it could pave the way for 

enhanced therapeutic strategies as an HIE management protocol. 
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Chapter 6 

Conclusion 

In conclusion, my dissertation focuses on the quantification of EEG-derived electrophysiological 

markers for two specific clinical and biomedical applications. The first application was to assess 

the potential of using the newborn brain state (BSN) to predict neurodevelopmental outcomes in 

infants with Hypoxic-Ischemic Encephalopathy (HIE). Furthermore, I explored how HIE can 

impact the topological connectivity of the neonatal brain based on 8-channel EEG reading. The 

second application focused on investigating the modulation effects of prefrontal transcranial 

photobiomodulation (tPBM) on neurophysiological networks in healthy young adults. 

Specifically, the following objectives have been achieved: 

1. The study confirmed that BSN is a promising bedside tool for monitoring evolving 

encephalopathy in newborns and predicting neurodevelopmental outcomes. 

2. The study demonstrated that GTA-based brain networks can be quantified in neonates with 

HIE using an eight-channel EEG. The results revealed that the brain networks of neonates with 

HIE exhibited a lower level of efficiency compared to those observed in healthy full-term 

neonates and adults. Importantly, no statistically significant differences in these crucial 

parameters were observed between the mild and moderate HIE groups. This finding suggests 

a potential equivalence in the degree of brain functional impairment between neonates with 

mild and moderate HIE, underscoring the importance of prompt medical intervention. 

3. My study illustrated that both left and right prefrontal 800-nm tPBM significantly affected 

neurophysiological networks. Moreover, the presence of site-specific effects of tPBM on brain 

function has been observed, where left and right prefrontal tPBM may elicit different 

modulation effects. 
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Supplementary material  

A. The definitions of global graphical measures 

Features 
Sub-

features 
Definition 

Synchronization 

s   Synchronization of network 

szscore 
  z-score of synchronization of network 

  szscore = (s − mean(srand)) / std(srand). 

Network 

Efficiency 

Eloc   Local efficiency of network 

Eg   Global efficient of network 

Small-World 

Cp   Clustering coefficient of network 

Gamma   Normalized clustering coefficient 

Lambda   Normalized characteristic path length 

Lp   Shortest path length of network 

Sigma 
  The ratio of Gamma and Lambda 

  Sigma = Gamma / Lambda. 

Hierarchy 

b   Hierarchy of network 

bzscore 
  z-score of hierarchy of network 

  bzscore = (b − mean(brand)) / std(brand). 

Assortativity 

r   Assortativity of network 

rzscore 
  z-score of assortativity of network 

  rzscore = (r − mean(rrand)) / std(rrand). 

Note 

srand 
  srand is a R×1 array, R is the number of randomized network. 

  It is the synchronization of randomized network. 

brand 
  brand is a R×1 array, R is the number of randomized network. 

  It is the hierarchy of randomized network. 

rrand 
  rrand is a R×1 array, R is the number of randomized network. 

  It is the assortativity of randomized network. 
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B. The definitions of nodal graphical measures 

Features Definition 

Nodal Cluster 
Coefficient (NCp) 

  It measures the likelihood the neighborhoods of a given node are   

  connected to each other. 

Nodal Shortest 
Path (NLp) 

  It quantifies the mean distance or routing efficiency between a given 

  node and all the other nodes in the network. 

Nodal Efficiency 
(Ne) 

  It characterizes the efficiency of parallel information transfer of a given 

  node in the network. 

Nodal Local 
Efficiency (NLe) 

  It measures how efficient the communication is among the first  

  neighbors of a given node when it is removed. 

Degree Centrality 
(Dc) 

  It reflects the information communication ability of a given node in the  

  functional network. 

Betweenness 
Centrality (Bc) 

  It characterizes the effect of a given node on information flow between 

  other nodes. 
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Appendix: MATLAB codes for this dissertation  

The MATLAB codes utilized for each aim are documented as follows. 

M.1 MATLAB codes for Aim 1 (Chapter 2) 

%% To access BabaCloud:  

% BABA cloud: https://babacloud.fi/login/?next=/ 

 

%% Get 1 hours artifact-free data and build bipolar EEG montages 

clc; close all; clearvars; 

cd E:\UTSW\HIE_neonates\SUB45\Matlab 

fout = sprintf('SUB45_EEG_1h.mat'); 

dirlist = dir('EEG,Composite,SampleSeries,Composite*.mat'); 

fn = length(dirlist); 

load(dirlist(1).name,'start_date_time','comp_elements','units'); 

cn = length(comp_elements); 

clear dirlist 

element = comp_elements(:); 

for idx = 1:9 

    fin = sprintf('EEG,Composite,SampleSeries,Composite,Amp1020,data_part%dof35.mat',idx);  

%change 35 to the number matches the recording  

    load(fin,'time_vector','measurement_data'); 

    if idx == 1 

        time = time_vector; 

        data = measurement_data(:,:); 

    else 

        time = [time time_vector]; 

        data = [data measurement_data(:,:)]; 

    end 

    clear fin time_vector measurement_data 

end 

clear idx 

data_1h = data(:,1:round(1*256*3600)+1);      

Chs_EEG = data_1h; 

eeg_C3 = Chs_EEG(1,1:end); 

eeg_C4 = Chs_EEG(2,1:end); 

eeg_P3 = Chs_EEG(7,1:end); 

eeg_P4 = Chs_EEG(8,1:end); 

C3_C4 = eeg_C3 - eeg_C4; 

P3_P4 = eeg_P3 - eeg_P4; 

C3_P3 = eeg_C3 - eeg_P3; 

C4_P4 = eeg_C4 - eeg_P4; 

EEG = [C3_C4; P3_P4; C3_P3; C4_P4]; 

element = {'C3_C4'; 'P3_P4'; 'C3_P3'; 'C4_P4'}; 

cd D:\UTSW\TESTING5\MATfiles_forEDF 
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save(fout,'start_date_time','element','units','time','EEG'); 

clear element time EEG fout data cn fn 

close all 

 

%  Convert EEG data from MAT to EDF 

clc; close all; clearvars; 

files = dir('E:\UTSW\TESTING5\forBaBaCloud\MATfiles_forEDF');  

for iFiles = 3 : length(files) 

    load(strcat(files(iFiles).folder, '\', files(iFiles).name)) 

    filename = [files(iFiles).name(1:end-4) '.edf']; % the same Filename only in EDF 

    ns = length(element);               % # channels 

    fs = round(1/(time(2)-time(1)));    % sampling frequency 

    BB = size(EEG);                     % recording length 

    len = floor(BB(2)/fs);              % recording length in sec 

    scx = ones(ns,1);                   % scaling 

    bp_f_high = 0.3;                    % cut off frequency 

    order = 4;                          % 4th order filter, low pass 

    [b,a] = butter(order,([bp_f_high]/(fs/2)),'high'); 

    dat = {}; 

    for iCh = 1:size(EEG,1) 

        % filtering 

        dat{iCh} = filtfilt(b,a,EEG(iCh,:)); % Copy EEG to dat 

    end 

 

    % Extract date and time of recording 

    start_date_time = ('20 03 2019, 12:50:09'); 

    date_time = datetime(start_date_time,'Format','dd MM yyyy, HH:mm:ss'); 

    yy = num2str(year(date_time)); 

    formatSpec = '%02.f'; 

 

    % Write EDF header 

    hdr{1} = ['0' ; char(32*ones(7,1)); ... 

        char(32*ones(160,1)); ... 

        num2str(day(date_time),formatSpec)';'.';... 

        num2str(month(date_time),formatSpec)';'.';... 

        yy(3:4)';... 

        num2str(hour(date_time),formatSpec)';'.';... 

        num2str(minute(date_time),formatSpec)';'.';... 

        num2str(second(date_time),formatSpec)';char(32*ones(8,1)); char(32*ones(44,1)) ; ... 

        num2str(len)' ; char(32*ones(8-length(num2str(len)),1)) ; '1' ;... 

        char(32*ones(7,1)) ; num2str(ns)' ; char(32*ones(4-length(num2str(ns)),1))]; 

    dstr1 = element; 

    % Label is ns*16 chars (Make sure each label has 16 characters if you 

    % want to change the label name) 

    hdr{2} = []; 

    for kk = 1:ns; hdr{2} = [hdr{2} ; dstr1{kk}' ; char(32*ones(16-length(dstr1{kk}),1))]; end 
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    % Transducer type (ns*80 chars) 

    hdr{3} = []; 

    for kk = 1:ns; hdr{3} = [hdr{3} ; char(32*ones(64,1)) ; ['AgAgCL electrode']']; end 

    % Physical dimension (ns*8 chars) 

    hdr{4} = []; 

    for kk = 1:ns; hdr{4} = [hdr{4} ; char(32*ones(6,1)) ; units'] ; end 

    % Physical minimum (ns*8 chars) 

    val2 = (2^15-1).*scx; val1 = -(2^15).*scx; 

    hdr{5} = []; 

    for kk = 1:ns 

        dum = val1(kk); 

        switch floor(log10(abs(dum))) 

            case 4 

                hdr{5} = [hdr{5} ; num2str(dum, '%5.1f')']; 

            case 3 

                hdr{5} = [hdr{5} ; num2str(dum, '%4.2f')']; 

            case 2 

                hdr{5} = [hdr{5} ; num2str(dum, '%3.3f')']; 

            case 1 

                hdr{5} = [hdr{5} ; num2str(dum, '%2.4f')']; 

        end 

    end 

    % Physical maximum (ns*8 chars) 

    hdr{6} = []; 

    for kk = 1:ns 

        dum = val2(kk); 

        switch floor(log10(abs(dum))) 

            case 4 

                hdr{6} = [hdr{6} ; num2str(dum, '%5.1f')' ; char(32)]; 

            case 3 

                hdr{6} = [hdr{6} ; num2str(dum, '%4.2f')' ; char(32)]; 

            case 2 

                hdr{6} = [hdr{6} ; num2str(dum, '%3.3f')' ; char(32)]; 

            case 1 

                hdr{6} = [hdr{6} ; num2str(dum, '%2.4f')' ; char(32)]; 

        end 

    end 

    % Digital minimum (ns*8 chars) 

    hdr{7} = []; 

    for kk = 1:ns; hdr{7} = [hdr{7} ; num2str(-32768)' ; char(32*ones(2,1))]; end 

    % Digital maximum (ns*8 chars) 

    hdr{8} = []; 

    for kk = 1:ns; hdr{8} = [hdr{8} ; num2str(32767)' ; char(32*ones(3,1))]; end 

    % Prefiltering 

    hdr{9} = []; 

    for kk = 1:ns; hdr{9} = [hdr{9} ; char(32*ones(80,1))]; end 
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    % Number of samples per record 

    hdr{10} = []; 

    for kk = 1:ns; hdr{10} = [hdr{10} ; num2str(fs)' ; char(32*ones(8-length(num2str(fs)),1))]; 

end 

    % Reserved section  

    hdr{11} = []; 

    for kk = 1:ns; hdr{11} = [hdr{11} ; char(32*ones(32,1))]; end 

    % Header length 

    h = 0; 

    for kk = 1:11 

        h = h + length(hdr{kk}); 

    end 

    h1 = [num2str(h)' ; char(32*ones(8-length(num2str(h)),1))]; 

    hdr{1}(185:192) = h1; 

    

    cd E:\UTSW\TESTING5\forBaBaCloud\EDF_files 

    write_edf(filename, dat, hdr); 

end 

 

% Analysis CSV file from BabaCloud 

clc; close all; clearvars; 

path = 'E:\UTSW\TESTING5\forBaBaCloud\BabaCloudOutput\datafiles\';    % change to your 

path 

for i =1:45  

realpath = strcat(path,'UTSW_UTSW_test2_2022-04-

07_SUB',num2str(i),'_EEG_6h_babyEEG_result','\');  % change to your folder 

cd(realpath); 

subject = i; 

datain = readtable('UTSW_test2_Classifiers_result.csv'); 

 

% Define quantifiable parameters 

NBS_raw = datain(12,1); 

NBS_cell = NBS_raw{1,1}; 

splitcells_NBS = regexp(NBS_cell, '\s+', 'split'); 

NBS_cell = vertcat(splitcells_NBS{:}); 

NBS = str2double(NBS_cell); 

clear NBS_raw NBS_cell splitcells_NBS NBS_cell 

NBS_mean = mean(NBS); 

NBS_std = std(NBS); 

save('outputs.mat','subject','NBS','SST','NBS_mean','NBS_std'); 

clear subject NBS NBS_mean NBS_std  

end 

 

%%% Function write_edf 

function dum1 = write_edf(filename, dat, hdr); 

% [data, hdr, label] = write_edf(filename); 
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% 

% This functions writes an EDF file as per the format outlined in 

%  http://www.edfplus.info/specs/edf.html. Note this version uses a 

%  pre-existing header so the function is limited. 

% 

% INPUT: filename - EDF file name 

%                dat - a cell array containing the data in the file (int16 format) 

%                 hdr - a cell array the header file information in ASCII format 

% 

% Nathan Stevenson 

 

fid = fopen(filename, 'w'); 

 

% WRITE HEADER (see next commented section as to what each bits relates to with respect to 

the EDF specification) 

c1 = fwrite(fid, hdr{1}, 'char'); 

c2 = fwrite(fid, hdr{2}, 'char'); 

c3 = fwrite(fid, hdr{3}, 'char'); 

c4 = fwrite(fid, hdr{4}, 'char'); 

c5 = fwrite(fid, hdr{5}, 'char'); 

c6 = fwrite(fid, hdr{6}, 'char'); 

c7 = fwrite(fid, hdr{7}, 'char'); 

c8 = fwrite(fid, hdr{8}, 'char'); 

c9 = fwrite(fid, hdr{9}, 'char'); 

c10 = fwrite(fid, hdr{10}, 'char'); 

c11 = fwrite(fid, hdr{11}, 'char'); 

 

% CORRESPONDING COMPONNET OF HEADER IN EDF FORMAT 

% hdr{1} = fread(fid, 256, 'char');         % CONTAINS PATIENT INFORMATION, 

RECORDING INFORMATION 

% ns = char(hdr{1}(253:256))';              % NUMBER OF SIGNALS 

% hdr{2} = fread(fid, ns*16, 'char');    % LABEL channel label, temp or HR 

% hdr{3} = fread(fid, ns*80,'char');     % TRANSDUCER TYPE 

% hdr{4} = fread(fid, ns*8,'char');       % PHYSICAL DIMENSION, voltage - temperature 

% hdr{5} = fread(fid, ns*8,'char');       % PHYSICAL MIN 

% hdr{6} = fread(fid, ns*8,'char');       % PHYSICAL MAX 

% hdr{7} = fread(fid, ns*8,'char');       % DIGITAL MIN 

% hdr{8} = fread(fid, ns*8,'char');       % DIGITAL MAX 

% hdr{9} = fread(fid, ns*80,'char');     % PRE FILTERING 

% hdr{10} = fread(fid, ns*8, 'char');    % SAMPLING NO rec 

% hdr{11} = fread(fid, ns*32,'char');     % RESERVED     

 

len_s = str2num(char(hdr{1}(235:244))');        % START DATE AND TIME and a RESERVED 

ns = char(hdr{1}(253:256))'; 

ns = str2num(ns); 

nsamp = str2num(char(hdr{10})'); 
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for ii = 1:len_s; 

    for jj = 1:length(nsamp); 

        r1 = nsamp(jj)*(ii-1)+1; r2 = ii*nsamp(jj); 

        d1 =  dat{jj}(r1:r2); 

        fwrite(fid, d1, 'short');     

    end 

end 

dum1 = fclose(fid); 

 

 

M.2 MATLAB codes for Aim 2 (Chapter 3) 

%%% Preprocessing 

clear all; clc; 

fs=256; 

Target_timelength = 0.5;   

excluded_timelength = 0;    

people_Mild = [2,4:8,10,12,14:17,21:23,25];  

for i = 1:16 

    for j = 1:9     

        subject_mild{i,j}=strcat('F:\HIE_Brain_network\EEG for Shu\HIE EEG 

(+)\HIE_neonates\Ctrl',num2str(people_Mild(i)),'\Matlab\EEG,Composite,SampleSeries,Compo

site,Amp1020,data_part',num2str(j),'.mat'); 

    end 

end 

mild_data = []; 

for i = 1:16 

    for j = 1:9     

        temp = load(subject_mild{i,j}); 

        mild_data = [mild_data, temp.measurement_data]; 

    end 

    all_mild_data(:,:,i) = mild_data; 

    mild_data = []; 

end 

 

people_Moderate = [4:11,13:14,16,18:21]; 

for i=1:15 

    for j = 1:9     

        subject_moderate{i,j}=strcat('F:\HIE_Brain_network\EEG for Shu\HIE EEG 

(+)\HIE_neonates\HIE',num2str(people_Moderate(i)),'\Matlab\EEG,Composite,SampleSeries,Co

mposite,Amp1020,data_part',num2str(j),'.mat'); 

    end 

end 

moderate_data = []; 

for i = 1:15 

    for j = 1:9     
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        temp = load(subject_moderate{i,j}); 

        moderate_data = [moderate_data, temp.measurement_data]; 

    end 

    all_moderate_data(:,:,i) = moderate_data; 

    moderate_data = []; 

end 

 

for i = 1:16 

    dataIn=double(all_mild_data(:,:,i)); 

    EEG.data = dataIn(8,:); 

    EEG.nbchan = 8; 

    %% high pass filter  

    fl=0.5;  

    [b,a]=butter(2,fl/(fs/2) ,'high'); 

    prependLen=10*fs; 

    nChannels=size(dataIn,1); 

    dataIn=cat(2,zeros(nChannels,prependLen)+dataIn(:,1),dataIn); % Adding extra zeros to the 

begining to create zero padding for the filter 

    dataOut1=filter(b,a,dataIn,[],2); 

    dataOut1=dataOut1(:,prependLen+1:end); 

 

    %% low pass filter 

    fl=100;  

    [b,a]=butter(2,fl/(fs/2) ,'low'); 

    prependLen=10*fs; 

    nChannels=size(dataOut1,1); 

    dataIn1=cat(2,zeros(nChannels,prependLen)+dataOut1(:,1),dataOut1); % Adding extra zeros 

to the begining to create zero padding for the filter 

    dataOut=filter(b,a,dataIn1,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

 

    %% Remove 60 Hz 

    [b,a]=butter(4,[58/(fs/2) 62/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

    [b,a]=butter(4,[43/(fs/2) 45/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

    [b,a]=butter(4,[75/(fs/2) 77/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

 

    % rereference to the common mean 
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    dataOut=dataOut-repmat(mean(dataOut,1),nChannels,1); 

    dataOut = dataOut(:,(fs*60*60*excluded_timelength+1):(fs*60*60*6));    

    un_processed_mild(:,:,i) = dataOut; 

    t = linspace(1/fs,(60*60*(6-excluded_timelength)-1),length(un_processed_mild)); 

     

    for ii = 1:8 

        epoch_temp = buffer(dataOut(ii,:),fs); 

        std_epoch = std(epoch_temp,[],1); 

        std_epoch(std_epoch > 50 | std_epoch < 0.01) = NaN; 

        std_epoch_all = repmat(std_epoch,[fs,1]); 

        epoch_temp1 = epoch_temp; 

        epoch_temp1(isnan(std_epoch_all)) = []; 

        epoch_temp1(abs(epoch_temp1) > 4*std(epoch_temp1)) = []; 

        if ii == 1 

            data_final(ii,:) = epoch_temp1; 

        else 

            if length(epoch_temp1) < length(data_final) 

                data_final = data_final(:,1:length(epoch_temp1)); 

                data_final(ii,:) = epoch_temp1; 

            else data_final(ii,:) = epoch_temp1(1:length(data_final)); 

            end 

        end 

 

        pre_processed_mild_temp{i} = data_final; 

        clear epoch_temp1 

    end 

    clear data_final 

end 

 

for sub = 1:length(people_Mild)   

     pre_processed_mild_temp_temp = cell2mat(pre_processed_mild_temp(1,sub)); 

     pre_processed_mild(:,:,sub) = 

pre_processed_mild_temp_temp(:,1:(fs*60*60*Target_timelength+1));    

end 

 

% moderate pre-process 

for i = 1:15 

    dataIn=double(all_moderate_data(:,:,i)); 

    EEG.data = dataIn(8,:); 

    EEG.nbchan = 8; 

    %% high pass filter  

    fl=0.5;  

    [b,a]=butter(2,fl/(fs/2) ,'high'); 

        prependLen=10*fs; 

    nChannels=size(dataIn,1); 



 

81 
 

    dataIn=cat(2,zeros(nChannels,prependLen)+dataIn(:,1),dataIn); % Adding extra zeros to the 

begining to create zero padding for the filter 

    dataOut1=filter(b,a,dataIn,[],2); 

    dataOut1=dataOut1(:,prependLen+1:end); 

 

    %% low pass filter 

    fl=100;  

    [b,a]=butter(2,fl/(fs/2) ,'low'); 

    prependLen=10*fs; 

    nChannels=size(dataOut1,1); 

    dataIn1=cat(2,zeros(nChannels,prependLen)+dataOut1(:,1),dataOut1); % Adding extra zeros 

to the begining to create zero padding for the filter 

    dataOut=filter(b,a,dataIn1,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

 

    %% remove 60 Hz 

    [b,a]=butter(4,[58/(fs/2) 62/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

    [b,a]=butter(4,[43/(fs/2) 45/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

    [b,a]=butter(4,[75/(fs/2) 77/(fs/2)] ,'stop'); 

    dataOut=cat(2,zeros(nChannels,prependLen),dataOut); 

    dataOut=filter(b,a,dataOut,[],2); 

    dataOut=dataOut(:,prependLen+1:end); 

 

    %% rereference to the common mean 

    dataOut=dataOut-repmat(mean(dataOut,1),nChannels,1); 

    dataOut = dataOut(:,(fs*60*60*excluded_timelength+1):(fs*60*60*6)); 

    un_processed_moderate(:,:,i) = dataOut; 

    t = linspace(1/fs,(60*60*(6-excluded_timelength)-1),length(un_processed_moderate));  

    for ii = 1:8 

        epoch_temp = buffer(dataOut(ii,:),fs); 

        std_epoch = std(epoch_temp,[],1); 

        std_epoch(std_epoch > 50 | std_epoch < 0.01) = NaN; 

        std_epoch_all = repmat(std_epoch,[fs,1]); 

        epoch_temp1 = epoch_temp; 

        epoch_temp1(isnan(std_epoch_all)) = []; 

        epoch_temp1(abs(epoch_temp1) > 4*std(epoch_temp1)) = []; 

        if ii == 1 

            data_final(ii,:) = epoch_temp1; 

        else 

            if length(epoch_temp1) < length(data_final) 
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                data_final = data_final(:,1:length(epoch_temp1)); 

                data_final(ii,:) = epoch_temp1; 

            else data_final(ii,:) = epoch_temp1(1:length(data_final)); 

            end 

        end 

 

        pre_processed_moderate_temp{i} = data_final; 

        clear epoch_temp1 

    end 

    clear data_final 

end 

 

% Convert cell to double with target length 

for sub = 1:length(people_Moderate) 

pre_processed_moderate_temp_temp = cell2mat(pre_processed_moderate_temp(1,sub)); 

pre_processed_moderate(:,:,sub) = 

pre_processed_moderate_temp_temp(:,1:(fs*60*60*Target_timelength+1));   

end 

cd(strcat('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results')) 

save('F:\HIE_Brain_network\EEG for 

Shu\SK_HIE_results\HIE_pre_processed','fs','SK_chan_names','people_Mild','people_Moderate',

'Target_timelength','excluded_timelength','pre_processed_mild','pre_processed_moderate') 

 

%% Get coh via fieldtrip 

clear; 

clc; 

ft_defaults; 

conn_method  = 'coh'; 

freq_low = [1,4,8,12,30]; 

freq_high = [4,8,12,30,55]; 

time_low = [0]; 

time_high = [30];  

cd(strcat('E:\HIE_Brain_network\EEG for Shu\SK_HIE_results')) 

load HIE_pre_processed 

cd(strcat('F:\HIE_Brain_network\EEG for Shu\SK_Code_HIE')) 

load SK_EEG.mat 

EEG_type = pre_processed_moderate;   % change between pre_processed_mild and 

pre_processed_moderate 

EEG_type_str = 'pre_processed_moderate'; 

for mm = 1:size(EEG_type,3) 

    SK_EEG.trial{1,1} = []; 

    SK_EEG.trial{1,1} = EEG_type(:,:,mm); 

    cfg         = []; 

    cfg.channel = SK_EEG.label; 

    data        = ft_selectdata(cfg,SK_EEG); 
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    % convert elec positions in mm 

    elec        = ft_convert_units(SK_EEG.elec,'mm'); 

    data.elec   = SK_EEG.elec; 

    for ii = 1:5    

        for jj = 1:1   

            %% resegment the data into chunks 

            cfg         = []; 

            cfg.toilim  = [time_low(jj)*60 time_high(jj)*60]; 

            dataseg1    = ft_redefinetrial(cfg,data); 

            cfg         = []; 

            cfg.length  = 10; 

            dataseg     = ft_redefinetrial(cfg,dataseg1); 

 

   % compute sensor level Fourier spectra, to be used for cross-spectral density computation. 

            cfg            = []; 

            cfg.method     = 'mtmfft'; 

            cfg.output     = 'fourier'; 

            cfg.keeptrials = 'yes'; 

            cfg.tapsmofrq  = 1; 

            cfg.foilim     = [freq_low(ii) freq_high(ii)]; 

            cfg.pad        = 'nextpow2'; 

            freq           = ft_freqanalysis(cfg, dataseg); 

            %%% following two lines for Cluster based permutation test 

            cfg.output     = 'pow'; 

            freq2          = ft_freqanalysis(cfg, dataseg); 

            %% compute connectivity 

            cfg         = []; 

            % freq.freq = mean(freq.freq); 

            cfg.method  = conn_method; 

            cfg.complex = 'absimag'; 

            source_conn = ft_connectivityanalysis(cfg, freq); 

            source_conn_all(:,:,jj,ii) = mean(source_conn.cohspctrm,3); 

        end 

    end 

 

cd(strcat('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\Result_after_Fieldtrip')) 

save([EEG_type_str,'_','SUB',num2str(mm),'_',conn_method,'_','4hr','.mat'],'source_conn_all'); 

end 

 

%% get data into different five bands 

clear;  

clc; 

fd_name = 'F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\Result_after_Fieldtrip'; 

conn_method  = 'coh'; 

EEG_type_str = 'pre_processed_mild';   % change between pre_processed_mild and 

pre_processed_moderate 
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group_name = 'mild';    % change: mild or moderate 

 

for mm = [1:16]    % number of subjects: Mild 16, Moderate 15 

    sub_name = ['SUB',num2str(mm)]; 

    load([fd_name,'/',EEG_type_str,'_',sub_name,'_coh_30.mat']); 

    b_delta = squeeze(source_conn_all(:,:,:,1)); 

    b_theta = squeeze(source_conn_all(:,:,:,2)); 

    b_alpha = squeeze(source_conn_all(:,:,:,3)); 

    b_beta = squeeze(source_conn_all(:,:,:,4)); 

    b_gamma = squeeze(source_conn_all(:,:,:,5)); 

    cd(strcat(fd_name,'/Diff_bands/','Band1')) 

    save([group_name,'_',sub_name,'_',conn_method,'_','30','.mat'],'b_delta'); 

    cd(strcat(fd_name,'/Diff_bands/','Band2')) 

    save([group_name,'_',sub_name,'_',conn_method,'_','30','.mat'],'b_theta'); 

    cd(strcat(fd_name,'/Diff_bands/','Band3')) 

    save([group_name,'_',sub_name,'_',conn_method,'_','30','.mat'],'b_alpha'); 

    cd(strcat(fd_name,'/Diff_bands/','Band4')) 

    save([group_name,'_',sub_name,'_',conn_method,'_','30','.mat'],'b_beta'); 

    cd(strcat(fd_name,'/Diff_bands/','Band5')) 

    save([group_name,'_',sub_name,'_',conn_method,'_','30','.mat'],'b_gamma'); 

end 

 

%% Run Gretna (within Gretna)  
 

 

%%% PSD analysis via pwelch 

% load data 

clc; close all; clearvars; 

eeglab 

cd(strcat('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min')) 

load('HIE_pre_processed');  

G1_name = 'Mild';      

G2_name = 'Moderate';        

G1 = pre_processed_mild; 

G2 = pre_processed_moderate; 

clear pre_processed_mild pre_processed_moderate 

 

%%% PSD (via pwelch) 

for sub = 1:length(people_Mild) 

    for Ch = 1:8 

        [pxx_G1(Ch,:,sub) f1] = pwelch(G1(Ch,:,sub), 4*fs, 3*fs, 4*fs, fs,'psd');    

    end 

end 

for sub = 1:length(people_Moderate) 

    for Ch = 1:8 

        [pxx_G2(Ch,:,sub) f1] = pwelch(G2(Ch,:,sub), 4*fs, 3*fs, 4*fs, fs,'psd');    
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    end 

end 

 

% plot all channels on one pages 

FigN1 = figure('color','w') 

for i = 1:8 

    subplot(2,4,i) 

    pxx_G1_mean = median(pxx_G1(i,:,:),3);                      

    pxx_G1_sem = std(pxx_G1(i,:,:),0,3)/sqrt(size(pxx_G1(i,:,:),3));         

    pxx_G2_mean = median(pxx_G2(i,:,:),3); 

    pxx_G2_sem = std(pxx_G2(i,:,:),0,3)/sqrt(size(pxx_G2(i,:,:),3)); 

    hold on; 

    shadedErrorBar(f1,pxx_G1_mean, pxx_G1_sem,'b',1) 

    hold on; 

    shadedErrorBar(f1,pxx_G2_mean, pxx_G2_sem,'r',1)   

       xlim([1 55])    

    ylim([0 8]) 

    hold on 

    xlabel('Frequency (Hz)') 

    ylabel('Power (μV^2/Hz)')    

    xticks([1 4 8 12 30 55])     

    yticks([0 4 8])  

    title(SK_chan_names{i}) 

    set(gca,'fontsize',15,'fontweight','bold','linewidth',1.5) 

end 

cd('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min\Power') 

saveas(FigN1,'AllCh_PSD_withErrorBar_nfft434fs_to55Hz_withMedian.png','png');     

save('F:\HIE_Brain_network\EEG for 

Shu\SK_HIE_results\Power\Mild_vs_Moderate_nfft434fs','fs','f1','SK_chan_names','G1_name','

G2_name','pxx_G1','pxx_G2') 
 
 

% plot Mild and Moderate  

FigN2 = figure('color','w') 

colors = distinguishable_colors(8); 

for i = 1:8 

    subplot(2,1,1)   

    pxx_G1_mean = mean(pxx_G1(i,:,:),3);                       

    pxx_G1_sem = std(pxx_G1(i,:,:),0,3)/sqrt(size(pxx_G1(i,:,:),3));   

    hold on; 

    shadedErrorBar(f1,pxx_G1_mean, pxx_G1_sem, {'color', colors(i,:)},1); 

    xlim([1 55])    

    ylim([0 8]) 

    hold on 

    xlabel('Frequency (Hz)') 

    ylabel('Power (μV^2/Hz)') 

    xticks([1 4 8 12 30 55])    



 

86 
 

    yticks([0 4 8]) 

    title(G1_name) 

    set(gca,'fontsize',15,'fontweight','bold','linewidth',1.5) 

    hold on 

    subplot(2,1,2)   

    pxx_G2_mean = mean(pxx_G2(i,:,:),3); 

    pxx_G2_sem = std(pxx_G2(i,:,:),0,3)/sqrt(size(pxx_G2(i,:,:),3)); 

    hold on; 

    shadedErrorBar(f1,pxx_G2_mean, pxx_G2_sem, {'color', colors(i,:)},1) 

    xlim([1 55])    

    ylim([0 8]) 

    hold on 

    xlabel('Frequency (Hz)') 

    ylabel('Power (μV^2/Hz)') 

    xticks([1 4 8 12 30 55])     

    yticks([0 4 8]) 

    title(G2_name) 

    set(gca,'fontsize',15,'fontweight','bold','linewidth',1.5) 

end 

cd('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min\Power') 

saveas(FigN2,'Mild_Moderate_PSD_withErrorBar_nfft434fs_to55Hz_withMean.png','png');    

 

%% topoplot  

eeglab 

locfile = 'SK_BioSemi8.loc'; 

dif_PSD = mean(pxx_G1,3) - mean(pxx_G2,3);  % Mild - Moderate 

dif_PSD_Band1 = dif_PSD(:,5:17);       % 1-4Hz 

dif_PSD_Band2 = dif_PSD(:,18:33);      % 4-8Hz 

dif_PSD_Band3 = dif_PSD(:,34:49);      % 8-12Hz 

dif_PSD_Band4 = dif_PSD(:,50:121);     % 12-30Hz 

dif_PSD_Band5 = dif_PSD(:,122:221);    % 30-55Hz 

tp_Band1 = mean(dif_PSD_Band1,2); 

tp_Band2 = mean(dif_PSD_Band2,2); 

tp_Band3 = mean(dif_PSD_Band3,2); 

tp_Band4 = mean(dif_PSD_Band4,2); 

tp_Band5 = mean(dif_PSD_Band5,2); 

tp_Band = [tp_Band1,tp_Band2,tp_Band3,tp_Band4,tp_Band5]; 

 

FigT1 = figure('color','w') 

for Band = 1:5 

    subplot(1,6,Band)      

    topoplot(tp_Band(:,Band),locfile, 'electrodes','on'); 

    title(['Band',num2str(Band)]); 

    Clim_min = min( min (tp_Band)); 

    Clim_max = max( max (tp_Band)); 

    set(gca,'Clim',[Clim_min Clim_max]) 
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    tf = gca; 

    tf.FontSize = 28; 

end 

     

sgt = sgtitle('HIE Power (Mild - Moderate)'); 

sgt.FontSize = 30; 

subplot(1,6,6) 

colormap;colorbar('FontSize',28); 

caxis([Clim_min Clim_max]) 

cd('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\Power')             

saveas(gcf,strcat('topoplot_Power_Mild-Moderate_nfft434fs_withCh.png'),'png');   

 

% t-test & FDR 

clc; close all; clearvars; 

cd('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min\Power') 

load('Mild_vs_Moderate_nfft434fs');  

pxx_G1_Band1 = squeeze(mean(pxx_G1(:,5:17,:),2));       % 1-4Hz 

pxx_G1_Band2 = squeeze(mean(pxx_G1(:,18:33,:),2));      % 4-8Hz 

pxx_G1_Band3 = squeeze(mean(pxx_G1(:,34:49,:),2));      % 8-12Hz 

pxx_G1_Band4 = squeeze(mean(pxx_G1(:,50:121,:),2));     % 12-30Hz 

pxx_G1_Band5 = squeeze(mean(pxx_G1(:,122:221,:),2));    % 30-55Hz 

pxx_G1_Bands(:,:,1) = pxx_G1_Band1; 

pxx_G1_Bands(:,:,2) = pxx_G1_Band2; 

pxx_G1_Bands(:,:,3) = pxx_G1_Band3; 

pxx_G1_Bands(:,:,4) = pxx_G1_Band4; 

pxx_G1_Bands(:,:,5) = pxx_G1_Band5; 

pxx_G2_Band1 = squeeze(mean(pxx_G2(:,5:17,:),2));       % 1-4Hz 

pxx_G2_Band2 = squeeze(mean(pxx_G2(:,18:33,:),2));      % 4-8Hz 

pxx_G2_Band3 = squeeze(mean(pxx_G2(:,34:49,:),2));      % 8-12Hz 

pxx_G2_Band4 = squeeze(mean(pxx_G2(:,50:121,:),2));     % 12-30Hz 

pxx_G2_Band5 = squeeze(mean(pxx_G2(:,122:221,:),2));    % 30-55Hz 

pxx_G2_Bands(:,:,1) = pxx_G2_Band1; 

pxx_G2_Bands(:,:,2) = pxx_G2_Band2; 

pxx_G2_Bands(:,:,3) = pxx_G2_Band3; 

pxx_G2_Bands(:,:,4) = pxx_G2_Band4; 

pxx_G2_Bands(:,:,5) = pxx_G2_Band5; 

 

for band = 1:5 

    pm_pxx_G1 = permute(pxx_G1_Bands,[2 1 3]);         % change order of dimension 

    pm_pxx_G2 = permute(pxx_G2_Bands,[2 1 3]); 

end 

size(pm_pxx_G1) 

size(pm_pxx_G1) 

for band = 1:5 

    for col = 1:8 
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        [ht,pt,cit,statst] = ttest2(pm_pxx_G1(:,col,band),pm_pxx_G2(:,col,band),'alpha', 0.05, 

'Vartype','unequal', 'tail', 'both');  % use ttest2 for Independent two-sample t-test 

        ht_all(col,band) = ht; 

        pt_all(col,band) = pt; 

    end 

end 

 

size(ht_all) 

size(pt_all) 

if any(pt_all(:) == 0) 

    disp('pt_all has 0 value') 

else 

    disp('pt_all does not has any 0 value') 

end 

 

for band = 1:5 

    [h_r, Crit_p_r, ci_r, p_r]  = fdr_bh(pt_all(:,band), 0.05); 

    h_r_all(:,band) = h_r; 

    p_r_all(:,band) = p_r; 

end 

size(h_r_all) 

size(p_r_all) 
 

% number of significant p value 

if any(ht_all(:) == 1) 

    disp('ht_all >= 1') 

    num_sig_ttest = sum(ht_all(:) == 1); 

    disp(num_sig_ttest) 

else 

    disp('all ttest p-value not significant') 

end 

if any(h_r_all(:) == 1) 

    disp('h_r_all >= 1') 

    num_sig_fdr = sum(h_r_all(:) == 1); 

    disp(num_sig_fdr) 

else 

    disp('all FDR p-value not significant') 

end 

 

% number of sig ttest p-value in each band 

for band = 1:5 

    num_sig_ttest_indBand = sum(ht_all(:,band) == 1); 

    num_sig_ttest_Bands(:,band) = num_sig_ttest_indBand; 

end 

disp(num_sig_ttest_Bands); 

 

% number of sig FDR p-value in each band 



 

89 
 

for band = 1:5 

    num_sig_fdr_indBand = sum(sum(h_r_all(:,band) == 1)); 

    num_sig_fdr_Bands(:,band) = num_sig_fdr_indBand; 

end 

disp(num_sig_fdr_Bands); 

 

% sig increase or decrease 

change_amount_temp = mean(pm_pxx_G1,1) - mean(pm_pxx_G2,1); 

change_amount = squeeze(change_amount_temp); 

 

% sig ttest p-value & FDR p-value with change_amount 

sig_ttest_with_change = change_amount .* ht_all; 

sig_FDR_with_change = change_amount .* h_r_all; 

 

cd('F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min\Power')     

save('Mild_vs_Moderate_Power_ttest_FDR.mat','ht_all','pt_all','h_r_all','p_r_all','change_amount

','sig_ttest_with_change','sig_FDR_with_change'); 

 

 

%%% Global network analysis 

clear; 

clc; 

GN_path = 'F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\30min_after_First1hr\Gretna'; 

Mild_or_Mode = 'Mild';     

Band_name = 'Band1';     

 

% Global Network 

% Synchronization (GS1 = s_All_Thres; GS2 = szscore_All_Thres) 

cd(strcat(GN_path,'/',Mild_or_Mode,'/',Band_name,'\Synchronization')) 

GS1 = readmatrix('s_All_Thres.txt'); 

GS2 = readmatrix('szscore_All_Thres.txt'); 

if Mild_or_Mode == 'Mild' 

    Mild_GS1 = GS1;                      

    Mild_GS2 = GS2; 

else 

    Mode_GS1 = GS1; 

    Mode_GS2 = GS2; 

end 

 

% NetworkEfficiency (GN1 = Eloc_All_Thres; GN2 = Eg_All_Thres) 

cd(strcat(GN_path,'/',Mild_or_Mode,'/',Band_name,'\NetworkEfficiency')) 

GN1 = readmatrix('Eloc_All_Thres.txt'); 

GN2 = readmatrix('Eg_All_Thres.txt'); 

if Mild_or_Mode == 'Mild' 

    Mild_GN1 = GN1; 

    Mild_GN2 = GN2; 
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else 

    Mode_GN1 = GN1; 

    Mode_GN2 = GN2; 

end 

 

% SmallWorld (GSw1 = Cp_All_Thres; GSw2 = Gamma_All_Thres; GSw3 = 

%                 Lambda_All_Thres; GSw4 = Lp_All_Thres; GSw5 = 

%                 Sigma_All_Thres) 

cd(strcat(GN_path,'/',Mild_or_Mode,'/',Band_name,'\SmallWorld')) 

GSw1 = readmatrix('Cp_All_Thres.txt'); 

GSw2 = readmatrix('Gamma_All_Thres.txt'); 

GSw3 = readmatrix('Lambda_All_Thres.txt'); 

GSw4 = readmatrix('Lp_All_Thres.txt'); 

GSw5 = readmatrix('Sigma_All_Thres.txt'); 

if Mild_or_Mode == 'Mild' 

    Mild_GSw1 = GSw1; 

    Mild_GSw2 = GSw2; 

    Mild_GSw3 = GSw3; 

    Mild_GSw4 = GSw4; 

    Mild_GSw5 = GSw5; 

else 

    Mode_GSw1 = GSw1; 

    Mode_GSw2 = GSw2; 

    Mode_GSw3 = GSw3; 

    Mode_GSw4 = GSw4; 

    Mode_GSw5 = GSw5; 

end 

 

% Hierarchy (GH1 = b_All_Thres; GH2 = bzscore_All_Thres) 

cd(strcat(GN_path,'/',Mild_or_Mode,'/',Band_name,'\Hierarchy')) 

GH1 = readmatrix('b_All_Thres.txt'); 

GH2 = readmatrix('bzscore_All_Thres.txt'); 

if Mild_or_Mode == 'Mild' 

    Mild_GH1 = GH1; 

    Mild_GH2 = GH2; 

else 

    Mode_GH1 = GH1; 

    Mode_GH2 = GH2; 

end 

 

% Assortativity (GA1 = r_All_Thres; GA2 = rzscore_All_Thres) 

cd(strcat(GN_path,'/',Mild_or_Mode,'/',Band_name,'\Assortativity')) 

GA1 = readmatrix('r_All_Thres.txt'); 

GA2 = readmatrix('rzscore_All_Thres.txt'); 

if Mild_or_Mode == 'Mild' 

    Mild_GA1 = GA1; 



 

91 
 

    Mild_GA2 = GA2; 

else 

    Mode_GA1 = GA1; 

    Mode_GA2 = GA2; 

end 

 

PltA = Mild_GN2;          

PltB = Mode_GN2;         

[ht,pt,cit,statst] = ttest2(PltB,PltA,'alpha', 0.05, 'Vartype','unequal', 'tail', 'both');    

Output_ttest = [ht; pt]; 

if any(ht(:) == 1) 

    disp('ht >= 1') 

    num_sig = sum(ht(:) == 1);             % We want at least three continus sig, otherwise ignore 

    disp(num_sig) 

else 

    disp('all p value not significant') 

end 

 

% Add normal groups 

PltC = Normal_Eg(2,:);          

C_Sparsity = 0.05:0.05:0.6;       

 

% Plot 

close all 

feature_name = 'Eg';            

Sparsity = 0.05:0.05:1;       

PltA_mean = mean(PltA,1);                        

PltA_sem = std(PltA)/sqrt(size(PltA,1));         

PltB_mean = mean(PltB,1); 

PltB_sem = std(PltB)/sqrt(size(PltB,1)); 

FigM = figure(1); 

set(gcf,'Position', get(0, 'Screensize'),'color','w'); 

hold on; 

plot(C_Sparsity,PltC,'k:', 'linewidth',4) 

plot(Sparsity,PltA_mean,'b',Sparsity,PltB_mean,'r','linewidth',4) 

Location = [0.21 0.8 0.1 0.1] ;    

set(0,'DefaultLegendAutoUpdate','off') 

legend('boxoff') 

hold on; 

shadedErrorBar(Sparsity,PltA_mean, PltA_sem,'b',1) 

hold on; 

shadedErrorBar(Sparsity,PltB_mean, PltB_sem,'r',1) 

legend('Healthy newborn (n=60)','Mild HIE (n=16)','Moderate HIE (n=15)', 

'Location',Location,'Orientation','Vertical') 

grid on                   

set(gca,'fontweight','bold','fontsize',26,'linewidth',4,'box','on');     
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xlabel('Sparsity'); ylabel(feature_name);      

title('Global Network (Delta band)')    

cd 'F:\EEG for Shu\SK_HIE_results\30min\Graph_theory\Global_Network'           

saveas(gcf,strcat('Eg_Delta_band_OnlyAdd_Normal_Shorten.png'),'png');              %  

 
 

%%% Nodal network analysis 

clear; 

clc; 

Group1 = 'Mild';     

Group2 = 'Mode';       

network_method = 'BetweennessCentrality';      

fd_name = 'F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\Gretna'; 

for jj = 1:5 

    Band_fd = ['Band',num2str(jj)]; 

    G1 = load([fd_name,'/',Group1,'/',Band_fd,'/',network_method,'/',network_method,'.mat']); 

    G1_all(1:16,:,:,jj) = squeeze(G1.Bc);      % choose from: NCp NLp Ne NLe Dc Bc 

end 

for jj = 1:5 

    Band_fd = ['Band',num2str(jj)]; 

    G2 = load([fd_name,'/',Group2,'/',Band_fd,'/',network_method,'/',network_method,'.mat']); 

    G2_all(1:15,:,:,jj) = squeeze(G2.Bc);      % choose from: NCp NLp Ne NLe Dc Bc 

end 

G1_mean = mean(G1_all,1); 

G1_Median = median(G1_all,1); 

G2_mean = mean(G2_all,1); 

G2_Median = median(G2_all,1); 

 

% t-test 

for band = 1:5 

    for sparsity = 1:20 

        for ch_num = 1:8 

            [ht,pt,cit,statst] = 

ttest2(G1_all(:,ch_num,sparsity,band)',G2_all(:,ch_num,sparsity,band)','alpha', 0.05, 

'Vartype','unequal', 'tail', 'both'); 

            ht_all(ch_num,sparsity,band) = ht; 

            pt_all(ch_num,sparsity,band) = pt; 

        end 

    end 

end 

 

% FDR 

for band = 1:5 

    for sparsity = 1:19   % not 1:20, to avoid NaN 

        [h_r, Crit_p_r, ci_r, p_r]  = fdr_bh(pt_all(:,sparsity,band), 0.05); 

        h_r_all(:,sparsity,band) = h_r; 

        p_r_all(:,sparsity,band) = p_r; 
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    end 

end 

 

% Bonferroni correction 

for band = 1:5 

    for sparsity = 1:19   % not 1:20, to avoid NaN 

        for ch_num = 1:8      

            if pt_all(ch_num,sparsity,band) < (0.05/8)     

                h_Bf_all(ch_num,sparsity,band) = ht_all(ch_num,sparsity,band);  % or use '= 1' 

            else 

                h_Bf_all(ch_num,sparsity,band) = 0; 

            end 

        end 

    end 

end 

 

% number of significant p value 

if any(ht_all(:) == 1) 

    disp('ht_all >= 1') 

    num_sig_ttest = sum(ht_all(:) == 1);             % We want at least three continus sig, otherwise 

ignore 

    disp(num_sig_ttest) 

else 

    disp('all ttest p-value not significant') 

end 

 

if any(h_r_all(:) == 1) 

    disp('h_r_all >= 1') 

    num_sig_fdr = sum(h_r_all(:) == 1);             % We want at least three continus sig, otherwise 

ignore 

    disp(num_sig_fdr) 

else 

    disp('all FDR p-value not significant') 

end 

 

if any(h_Bf_all(:) == 1) 

    disp('h_Bf_all >= 1') 

    num_sig_Bf = sum(h_Bf_all(:) == 1);             % We want at least three continus sig, otherwise 

ignore 

    disp(num_sig_Bf) 

else 

    disp('all p-value after Bonferroni correction are not significant') 

end 

 

% number of sig ttest p-value for each band 

for band = 1:5 
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    num_sig_ttest_indBand = sum(sum(ht_all(:,:,band) == 1)); 

    num_sig_ttest_Bands(:,band) = num_sig_ttest_indBand; 

end 

disp(num_sig_ttest_Bands); 

 

% number of sig FDR p-value for each band 

for band = 1:5 

    num_sig_fdr_indBand = sum(sum(h_r_all(:,:,band) == 1)); 

    num_sig_fdr_Bands(:,band) = num_sig_fdr_indBand; 

end 

disp(num_sig_fdr_Bands); 

 

% number of sig p-value after Bonferroni correction for each band 

for band = 1:5 

    num_sig_Bf_indBand = sum(sum(h_Bf_all(:,:,band) == 1)); 

    num_sig_Bf_Bands(:,band) = num_sig_Bf_indBand; 

end 

disp(num_sig_Bf_Bands); 

 

% number of sig ttest p-value for each sparsity under each band 

for band = 1:5 

    for sparsity = 1:19 

        num_sig_ttest_ind = sum(ht_all(:,sparsity,band) == 1); 

        num_sig_ttest_all(:,sparsity,band) = num_sig_ttest_ind; 

    end 

end 

loc_sig_t = find(num_sig_ttest_all(:) >= 1);   % use >= 1 for 8 channels 

[row_t, col_sparsity_t, height_band_t] = ind2sub(size(num_sig_ttest_all),loc_sig_t); 

sum_sig_ttest = [row_t, col_sparsity_t, height_band_t]; 

disp(sum_sig_ttest) 

 

% total number of sig FDR p-value for each sparsity under each band 

for band = 1:5 

    for sparsity = 1:19 

        num_sig_fdr_ind = sum(h_r_all(:,sparsity,band) == 1); 

        num_sig_fdr_all(:,sparsity,band) = num_sig_fdr_ind; 

    end 

end 

loc_sig_f = find(num_sig_fdr_all(:) >= 1);    

[row_f, col_sparsity_f, height_band_f] = ind2sub(size(num_sig_fdr_all),loc_sig_f); 

sum_sig_fdr = [row_f, col_sparsity_f, height_band_f]; 

disp(sum_sig_fdr)     

 

% check total number of sig p-value after Bonferroni correction for each sparsity under each 

band 

for band = 1:5 
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    for sparsity = 1:19 

        num_sig_Bf_ind = sum(h_Bf_all(:,sparsity,band) == 1); 

        num_sig_Bf_all(:,sparsity,band) = num_sig_Bf_ind; 

    end 

end 

loc_sig_Bf = find(num_sig_Bf_all(:) >= 1);    

[row_B, col_sparsity_B, height_band_B] = ind2sub(size(num_sig_Bf_all),loc_sig_Bf); 

sum_sig_Bf = [row_B, col_sparsity_B, height_band_B]; 

disp(sum_sig_Bf)     

 

% channels/regions location for target sparsity&band, which are sig after FDR 

for L = 1:size(sum_sig_fdr,1) 

    if sum_sig_fdr(L,2) >= 4 && sum_sig_fdr(L,2) <= 14     

        target_sig_fdr(L,1) = sum_sig_fdr(L,2); 

        target_sig_fdr(L,2) = sum_sig_fdr(L,3); 

    end 

end 

target_sig_fdr_all = target_sig_fdr(all(target_sig_fdr,2),:);  

 

for L = 1:size(target_sig_fdr_all,1)   

    target_sig_fdr_loc_temp = h_r_all(:,target_sig_fdr_all(L,1),target_sig_fdr_all(L,2)); 

    target_sig_fdr_loc(L,1:8) = target_sig_fdr_loc_temp';     

end 

 

% channels/regions location for target sparsity&band, which are sig after Bonferroni correction 

for L = 1:size(sum_sig_Bf,1) 

    %     if sum_sig_Bf(L,2) >= 4 && sum_sig_Bf(L,2) <= 14  && sum_sig_Bf(L,3) ~= 5   % 

focuse on sparsity 0.3-0.5 (6-10 row), without Gamma band 

    if sum_sig_Bf(L,2) >= 4 && sum_sig_Bf(L,2) <= 14     

        target_sig_Bf(L,1) = sum_sig_Bf(L,2); 

        target_sig_Bf(L,2) = sum_sig_Bf(L,3); 

    end 

end 

target_sig_Bf_all = target_sig_Bf(all(target_sig_Bf,2),:);  

 

for L = 1:size(target_sig_Bf_all,1)  

    target_sig_Bf_loc_temp = h_Bf_all(:,target_sig_Bf_all(L,1),target_sig_Bf_all(L,2)); 

    target_sig_Bf_loc(L,1:8) = target_sig_Bf_loc_temp';    % 8 channels use '1:8' 

end 

 

% check sig increase/decrease 

change_amount_temp = mean(G1_all,1) - mean(G2_all,1);    

change_amount = squeeze(change_amount_temp); 

 

% check FDR 
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all_sig_change_fdr = h_r_all .* change_amount(:,1:19,:);    % change_amount: 1st col for num 

of Ch/region, 2nd col for sparsity, 3rd col for bands 

 

for L = 1:size(target_sig_fdr_all,1) 

    target_sig_change_fdr_temp = 

all_sig_change_fdr(:,target_sig_fdr_all(L,1),target_sig_fdr_all(L,2)); 

    target_sig_change_fdr(L,1:8) = target_sig_change_fdr_temp';    

end 

 

target_sig_fdr_new_temp = 

[target_sig_change_fdr,target_sig_fdr_all,sum(target_sig_fdr_loc,2)];   

target_sig_fdr_new = target_sig_fdr_new_temp; 

target_sig_fdr_new(:,9) = target_sig_fdr_new_temp(:,9)*0.05;   

 

%%% check for Bonferroni correction 

all_sig_change_Bf = h_Bf_all .* change_amount(:,1:19,:); 

for L = 1:size(target_sig_Bf_all,1) 

    target_sig_change_Bf_temp = 

all_sig_change_Bf(:,target_sig_Bf_all(L,1),target_sig_Bf_all(L,2)); 

    target_sig_change_Bf(L,1:8) = target_sig_change_Bf_temp';    

end 

 

target_sig_Bf_new_temp = [target_sig_change_Bf,target_sig_Bf_all,sum(target_sig_Bf_loc,2)];   

target_sig_Bf_new = target_sig_Bf_new_temp; 

target_sig_Bf_new(:,9) = target_sig_Bf_new_temp(:,9)*0.05;   

cd 'F:\HIE_Brain_network\EEG for Shu\SK_HIE_results\Graph_theory\Nodal_Network'     

save(['Mild_vs_Moderate_Bands','_',network_method,'.mat'],'num_sig_fdr_all','num_sig_Bf_all',

'sum_sig_fdr','sum_sig_Bf','target_sig_fdr_new','target_sig_Bf_new','network_method','pt_all','ht

_all','p_r_all','h_r_all','h_Bf_all','target_sig_fdr_loc','target_sig_Bf_loc');    

 

 

M.3 MATLAB codes for Aim 3 (Chapter 4) 

%% Prepocessing 

close all;  

clear all;  

clc 

addpath 'C:\Users\sxk1519\OneDrive - University of Texas at 

Arlington\Notebooks\EEGLab\eeglab2021.1\functions'; 

addpath 'C:\Users\sxk1519\OneDrive - University of Texas at 

Arlington\Notebooks\Quik20\EEG_FALL2021\Code\FromXinlong_pca_ica'; 

addpath 'C:\Users\sxk1519\OneDrive - University of Texas at 

Arlington\Notebooks\Quik20\EEG_FALL2021\Code\SK_For_pre_and_power'; 

eeglab 

path = 'C:\Users\sxk1519\OneDrive - University of Texas at 

Arlington\Notebooks\Quik20\EEG_FALL2021\808R\';  
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for i = [1:8, 10:33]  

    realpath = strcat(path,'SUB',num2str(i),'\'); 

    EEG = pop_biosig(strcat(realpath,'SUB',num2str(i),'_B_R808.bdf')); 

    EEG = eeg_checkset( EEG ); 

    % above are using EEGLAB built-in functions to load .bdf data 

 

    data= EEG.data(1:19,:); 

    dataIn=double(data); 

    fs=EEG.srate;  

 

% high pass 

    fl = 1;  

    [b,a] = butter(2,fl/(fs/2) ,'high'); 

    prependLen = 0*fs;       

    nChannels = size(dataIn,1); 

    dataIn1 = [zeros(nChannels,prependLen),dataIn];  

    dataOut1 = filtfilt(b,a,dataIn1');  

    dataOut2 = dataOut1(prependLen+1:end,:); 

    dataOut_hp = dataOut2'; 

 

% low pass 

    fl = 55;  

    [b,a] = butter(2,fl/(fs/2) ,'low'); 

        prependLen = 0*fs; 

    nChannels = size(dataOut_hp,1); 

    dataIn2 = [zeros(nChannels,prependLen),dataOut_hp];   

    dataOut3 = filtfilt(b,a,dataIn2');  

    dataOut4 = dataOut3(prependLen+1:end,:); 

    dataOut = dataOut4'; 

 

% NaN the cns created artificial spikes 

    eeg_temp = dataOut; 

    for ch_n = 1:19; 

        TH_4std_upper = median(eeg_temp(ch_n,:)) + 4*std(eeg_temp(ch_n,:)); 

        TH_4std_lower = median(eeg_temp(ch_n,:)) - 4*std(eeg_temp(ch_n,:)); 

        timer = length(eeg_temp(ch_n,:)); 

 

        for j = 1:length(eeg_temp(ch_n,:)) 

            if eeg_temp(ch_n,j) > TH_4std_upper 

                eeg_temp(ch_n,j)=NaN; 

            end 

            if eeg_temp(ch_n,j) < TH_4std_lower 

                eeg_temp(ch_n,j)=NaN; 

            end 

            j=j+1; 

        end 
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        clear j 

    end 

 

    sum_nan = sum(isnan(eeg_temp),2); 

    time_nan_sec = sum_nan./fs; 

     

%Denan by interpolated Data                

    eeg_temp2 = dataOut'; 

    temp2 = filloutliers(eeg_temp2,'nearest','median'); 

    temp2 = temp2'; 

    EEG.data = temp2(1:19,:);      

 

% Replace bad seg 

    locfile = 'SK_BioSemi19.loc';    

    [Zica, W, T, mu] = fastICA(temp2(1:19,:),19,'kurtosis',1); 

    icaw = pinv(W*T); 

    FigN = figure              

    for j = 1:19 

        subplot(4,5,j) 

        topoplot(icaw(:,j),locfile, 'electrodes','off'); 

        title(j); 

        colormap(jet); 

    end 

EEG.icaweights = W;   

  

% ICs 

    EEG.icasphere = T; 

    EEG.icawinv = icaw; 

    EEG.chanlocs = EEG.chanlocs(1:19,:); 

    EEG = pop_editset(EEG, 'chanlocs', 'SK_BioSemi19.loc');   

    EEG = pop_select( EEG,'time',[0 420],'channel',{'F7' 'Fp1' 'Fp2' 'F8' 'F3' 'Fz' 'F4' 'C3' 'Cz' 'P8' 

'P7' 'Pz' 'P4' 'T3' 'P3' 'O1' 'O2' 'C4' 'T4'}); 

     

% save plot before replace bad ch 

    cd(strcat(realpath))               

    save(strcat(realpath,'R808_B_PreEEGLAB.set'),'EEG') 

end 

 

% Remove artifacts in EEGLAB  

eeglab    

locfile = 'SK_BioSemi19.loc'; 

clear data dataOut1 dataIn f1 a b fs 

clear prependLen nChanneLS dataBeforeRPCA A_hat E_hat iter 

clear U S V dataIn dataIn1 ans c fl 

EEG.data = dataOut(1:19,:); 
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% run ICA usin the function fastICA 

[Zica, W, T, mu] = fastICA(dataOut(1:19,:),19,'kurtosis',1); 

icaw = pinv(W*T); 

 

% plot the ICs 

FigN = figure 

for j = 1:19 

    subplot(4,5,j) 

    topoplot(icaw(:,j),locfile, 'electrodes','off'); 

    title(j); 

   colormap(jet); 

end  

 

% EEGLAB need following modification to plot the result 

EEG.icaweights = W; 

EEG.icasphere = T; 

EEG.icawinv = icaw; 

EEG.chanlocs = EEG.chanlocs(1:19,:); 

EEG = pop_editset(EEG, 'chanlocs', 'SK_BioSemi19.loc'); 

EEG = pop_select( EEG,'time',[0 420],'channel',{'F7' 'Fp1' 'Fp2' 'F8' 'F3' 'Fz' 'F4' 'C3' 'Cz' 'P8' 

'P7' 'Pz' 'P4' 'T3' 'P3' 'O1' 'O2' 'C4' 'T4'}); 

fin = sprintf('SUB%d',i); 

cd(strcat('E:\Quik20\EEG_FALL2021\808R\',fin)) 

save(strcat(realpath,'B_RS_afterICA.set'),'EEG')  

saveas(FigN,strcat('SUB',num2str(i),'B_RS_Icsplot.png'),'png');   

 

% transfer_eeglab_to_fieldtrip 

path = 'C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\';  

fd_name = 'C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\808R_Post\'                               

for ii = [1:3,6:8,10,11,13:28,31,33] \ 

    realpath = strcat(path,'SUB',num2str(i),'\'); 

    sub_fd = ['SUB',num2str(ii)]; 

    EEG = pop_loadset([path,'/',sub_fd,'/','R808_B_PostEEGLAB.set']);         

    transferred_EEG = eeglab2fieldtrip(EEG,'raw','none'); 

     save([fd_name,'/',sub_fd,'_Ftrip.mat'],'transferred_EEG'); 

end 

 

 

%% Network analysis 

clear; 

clc; 

ft_defaults; 

conn_method  = 'coh'; 

freq_low = [1,4,8,12,30]; 

freq_high = [4,8,12,30,55]; 

time_low = [0,2,4,6]; 
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time_high = [2,4,6,7]; 

fd_name = 'C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808L\808L_Pre'; 

for mm = [1:3,6:8,10,11,13:28,31,33] %% number of subjects 

    sub_name = ['SUB',num2str(mm)]; 

    EEG = load([fd_name,'/',sub_name,'_Ftrip.mat'],'transferred_EEG'); 

    cfg         = []; 

    cfg.channel = EEG.transferred_EEG.label; 

    data        = ft_selectdata(cfg,EEG.transferred_EEG); 

    elec        = ft_convert_units(EEG.transferred_EEG.elec,'mm'); 

    data.elec   = EEG.transferred_EEG.elec; 

    for ii = 1:5    

        for jj = 1:1   

            cfg         = []; 

            cfg.toilim  = [time_low(jj)*60 time_high(jj)*60]; 

            dataseg1        = ft_redefinetrial(cfg,data);  

            cfg         = []; 

            cfg.length  = 10; 

            dataseg        = ft_redefinetrial(cfg,dataseg1); 

             

% compute sensor level Fourier spectra, to be used for cross-spectral density computation 

            cfg            = []; 

            cfg.method     = 'mtmfft'; 

            cfg.output     = 'fourier'; 

            cfg.keeptrials = 'yes'; 

            cfg.tapsmofrq  = 1; 

            cfg.foilim     = [freq_low(ii) freq_high(ii)]; 

            cfg.pad        = 'nextpow2'; 

            freq           = ft_freqanalysis(cfg, dataseg); 

             

% compute connectivity 

            cfg         = []; 

            % freq.freq = mean(freq.freq); 

            cfg.method  = conn_method; 

            cfg.complex = 'absimag'; 

            source_conn = ft_connectivityanalysis(cfg, freq); 

            source_conn_all(:,:,jj,ii) = mean(source_conn.cohspctrm,3);           

        end 

    end 

save([fd_name,'/',sub_name,'_',conn_method,'_','2221','.mat'],'source_conn_all'); 

end 

 

% get data into different five bands 

clear; 

clc; 

fd_name = 'C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\808R_Post'; 

conn_method  = 'coh'; 
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for mm = [1:3,6:8,10,11,13:28,31,33]  

     

    sub_name = ['SUB',num2str(mm)]; 

    load([fd_name,'/',sub_name,'_coh_2221.mat']); 

    b_delta = squeeze(source_conn_all(:,:,1,1)); 

    b_theta = squeeze(source_conn_all(:,:,1,2)); 

    b_alpha = squeeze(source_conn_all(:,:,1,3)); 

    b_beta = squeeze(source_conn_all(:,:,1,4)); 

    b_gamma = squeeze(source_conn_all(:,:,1,5)); 

     

    cd(strcat(fd_name,'/','Diff_bands\1_4')) 

    save([sub_name,'_',conn_method,'_','2221','.mat'],'b_delta');  

    cd(strcat(fd_name,'/','Diff_bands\4_8')) 

    save([sub_name,'_',conn_method,'_','2221','.mat'],'b_theta');  

    cd(strcat(fd_name,'/','Diff_bands\8_12')) 

    save([sub_name,'_',conn_method,'_','2221','.mat'],'b_alpha');  

    cd(strcat(fd_name,'/','Diff_bands\12_30')) 

    save([sub_name,'_',conn_method,'_','2221','.mat'],'b_beta');  

    cd(strcat(fd_name,'/','Diff_bands\30_55')) 

    save([sub_name,'_',conn_method,'_','2221','.mat'],'b_gamma'); 

end 

 

% Run Gretna 

 

% Gretna output analysis 

clear; 

clc; 

GN_path = 'D:\Quik20\EEG_FALL2021\808L'; 

Pre_or_Post = 'Pre';     

Band_name = 'Band1';     

 

% GTA_Global Network 

% Synchronization (GS1 = s_All_Thres; GS2 = szscore_All_Thres) 

cd(strcat(GN_path,'/','808L_',Pre_or_Post,'/',Band_name,'\Synchronization')) 

GS1 = readmatrix('s_All_Thres.txt'); 

GS2 = readmatrix('szscore_All_Thres.txt'); 

if Pre_or_Post == 'Pre' 

    Pre_GS1 = GS1;                      

    Pre_GS2 = GS2; 

else 

    Post_GS1 = GS1; 

    Post_GS2 = GS2; 

end 

 

% NetworkEfficiency (GN1 = Eloc_All_Thres; GN2 = Eg_All_Thres) 

cd(strcat(GN_path,'/','808L_',Pre_or_Post,'/',Band_name,'\NetworkEfficiency')) 
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GN1 = readmatrix('Eloc_All_Thres.txt'); 

GN2 = readmatrix('Eg_All_Thres.txt'); 

if Pre_or_Post == 'Pre' 

    Pre_GN1 = GN1; 

    Pre_GN2 = GN2; 

else 

    Post_GN1 = GN1; 

    Post_GN2 = GN2; 

end 

 

% SmallWorld (GSw1 = Cp_All_Thres; GSw2 = Gamma_All_Thres; GSw3 = 

%                 Lambda_All_Thres; GSw4 = Lp_All_Thres; GSw5 = 

%                 Sigma_All_Thres) 

cd(strcat(GN_path,'/','808L_',Pre_or_Post,'/',Band_name,'\SmallWorld')) 

GSw1 = readmatrix('Cp_All_Thres.txt'); 

GSw2 = readmatrix('Gamma_All_Thres.txt'); 

GSw3 = readmatrix('Lambda_All_Thres.txt'); 

GSw4 = readmatrix('Lp_All_Thres.txt'); 

GSw5 = readmatrix('Sigma_All_Thres.txt'); 

if Pre_or_Post == 'Pre' 

    Pre_GSw1 = GSw1; 

    Pre_GSw2 = GSw2; 

    Pre_GSw3 = GSw3; 

    Pre_GSw4 = GSw4; 

    Pre_GSw5 = GSw5; 

else 

    Post_GSw1 = GSw1; 

    Post_GSw2 = GSw2; 

    Post_GSw3 = GSw3; 

    Post_GSw4 = GSw4; 

    Post_GSw5 = GSw5; 

end 

 

% Hierarchy (GH1 = b_All_Thres; GH2 = bzscore_All_Thres) 

cd(strcat(GN_path,'/','808L_',Pre_or_Post,'/',Band_name,'\Hierarchy')) 

GH1 = readmatrix('b_All_Thres.txt'); 

GH2 = readmatrix('bzscore_All_Thres.txt'); 

if Pre_or_Post == 'Pre' 

    Pre_GH1 = GH1; 

    Pre_GH2 = GH2; 

else 

    Post_GH1 = GH1; 

    Post_GH2 = GH2; 

end 

 

% Assortativity (GA1 = r_All_Thres; GA2 = rzscore_All_Thres) 



 

103 
 

cd(strcat(GN_path,'/','808L_',Pre_or_Post,'/',Band_name,'\Assortativity')) 

GA1 = readmatrix('r_All_Thres.txt'); 

GA2 = readmatrix('rzscore_All_Thres.txt'); 

if Pre_or_Post == 'Pre' 

    Pre_GA1 = GA1; 

    Pre_GA2 = GA2; 

else 

    Post_GA1 = GA1; 

    Post_GA2 = GA2; 

end 

 

PltA = Pre_GH1;          

PltB = Post_GH1;         

[ht,pt,cit,statst] = ttest(PltB,PltA,'alpha', 0.05, 'tail', 'both');   

Output_ttest = [ht; pt]; 

if any(ht(:) == 1) 

    disp('ht >= 1') 

    num_sig = sum(ht(:) == 1);              

    disp(num_sig) 

else 

    disp('all p value not significant') 

end 

 

% Plot 

feature_name = 'b of Hierarchy';            

Sparsity = 0.05:0.05:1; 

PltA_mean = mean(PltA,1);                        

PltA_sem = std(PltA)/sqrt(size(PltA,1));         

PltB_mean = mean(PltB,1); 

PltB_sem = std(PltB)/sqrt(size(PltB,1)); 

FigM = figure(1); 

set(gcf,'Position', get(0, 'Screensize'),'color','w'); 

plot(Sparsity,PltB_mean,'r',Sparsity,PltA_mean,'b','linewidth',4) 

Location = [0.16 0.8 0.1 0.1] ;    

legend('Post','Pre','Location',Location,'Orientation','Vertical')  

set(0,'DefaultLegendAutoUpdate','off') 

legend('boxoff') 

 

hold on; 

shadedErrorBar(Sparsity,PltB_mean, PltB_sem,'r',1) 

hold on; 

shadedErrorBar(Sparsity,PltA_mean, PltA_sem,'b',1) 

 

set(gca,'XLim',[min(Sparsity),max(Sparsity)],'XTick',Sparsity,'XTickLabel',num2str(Sparsity'),'

XTickLabelRotation',45) 

set(gca,'fontweight','bold','fontsize',33,'linewidth',4,'box','off'); 
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xlabel('Sparsity'); ylabel(feature_name);   

title('Global Network (Theta band)')    

cd D:\Quik20\EEG_FALL2021\808R\Global_network\Plot_RSPre_RSPos    

saveas(gcf,strcat('b_Hierarchy_Theta_band.png'),'png');               

 

 

%% Six regions with Coherence matrix 

clear; 

clc; 

cd C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\RS_Pre\Diff_bands   

load('coh_2221_Bands_Pre.mat'); 

G1_all = mm_Bands_Pre;       

cd C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\808R_Pre\Diff_bands   

load('coh_2221_Bands_Pre.mat'); 

G2_all = mm_Bands_Pre;        

size(G2_all) 

 

% tPBM_Post-Pre vs sham_Post-pre 

cd C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\RS_Pos\Diff_bands 

load('coh_2221_Bands_Pos.mat'); 

G3_all = mm_Bands_Pos;        

cd C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\808R_Pos\Diff_bands 

load('coh_2221_Bands_Pos.mat'); 

G4_all = mm_Bands_Pos;        

G1_all = G3_all;     

G2_all = G4_all;     

pm_G1 = permute(G1_all,[3 1 2 4]);          

pm_G2 = permute(G2_all,[3 1 2 4]); 

 

% build regions for t-Test 

Reg1 = [1,2,5]; 

Reg2 = [14,8]; 

Reg3 = [11,15,16]; 

Reg4 = [3,7,4]; 

Reg5 = [18,19]; 

Reg6 = [13,10,17]; 

pm_G = pm_G2;      % choose from pm_G1 or pm_G2 

for band = 1:5 

    for sub = 1:26 

         

% for 1st col in new 6*6 matrix 

        set_ele = []; 

        for s = Reg1 

            for k = Reg2 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 
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                new_Reg_1_2 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg1 

            for k = Reg3 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_1_3 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg1 

            for k = Reg4 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_1_4 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg1 

            for k = Reg5 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_1_5 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg1 

            for k = Reg6 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_1_6 = mean(set_ele, 2); 

            end 

        end 

         

% for 2nd col in new 6*6 matrix 

        set_ele = []; 

        for s = Reg2 

            for k = Reg3 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 
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                new_Reg_2_3 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg2 

            for k = Reg4 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_2_4 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg2 

            for k = Reg5 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_2_5 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg2 

            for k = Reg6 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_2_6 = mean(set_ele, 2); 

            end 

        end 

         

% for 3rd col in new 6*6 matrix 

        set_ele = []; 

        for s = Reg3 

            for k = Reg4 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_3_4 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg3 

            for k = Reg5 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 
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                new_Reg_3_5 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg3 

            for k = Reg6 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_3_6 = mean(set_ele, 2); 

            end 

        end 

         

% for 4th col in new 6*6 matrix 

        set_ele = []; 

        for s = Reg4 

            for k = Reg5 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_4_5 = mean(set_ele, 2); 

            end 

        end 

         

        set_ele = []; 

        for s = Reg4 

            for k = Reg6 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_4_6 = mean(set_ele, 2); 

            end 

        end 

         

% for 5th col in new 6*6 matrix 

        set_ele = []; 

        for s = Reg5 

            for k = Reg6 

                temp_ele = pm_G(sub,s,k,band); 

                set_ele = union(set_ele,temp_ele); 

                new_Reg_5_6 = mean(set_ele, 2); 

            end 

        end 

         

        new_Reg_all = [new_Reg_1_2; new_Reg_1_3; new_Reg_1_4; new_Reg_1_5; 

new_Reg_1_6; 

            new_Reg_2_3; new_Reg_2_4; new_Reg_2_5; new_Reg_2_6; 

            new_Reg_3_4; new_Reg_3_5; new_Reg_3_6; 
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            new_Reg_4_5; new_Reg_4_6; 

            new_Reg_5_6]; 

        new_pm_G(sub,:,band) = new_Reg_all; 

    end 

end 

if pm_G == pm_G1 

    new_pm_G1 = new_pm_G; 

else 

    new_pm_G2 = new_pm_G; 

end 

 

% t-test 

for band = 1:5 

    for new_matrix_ele = 1:15         

        [ht,pt,cit,statst] = 

ttest(new_pm_G1(:,new_matrix_ele,band),new_pm_G2(:,new_matrix_ele,band),'alpha', 0.05, 

'tail', 'both'); 

        ht_all(new_matrix_ele,band) = ht; 

        pt_all(new_matrix_ele,band) = pt;         

    end 

end 

 

if any(pt_all(:) == 0) 

    disp('pt_all has 0 value') 

else 

    disp('pt_all does not has any 0 value') 

end 

 

% FDR 

for band = 1:5 

    [h_r, Crit_p_r, ci_r, p_r]  = fdr_bh(pt_all(:,band), 0.05); 

    h_r_all(:,band) = h_r; 

    p_r_all(:,band) = p_r; 

end 

 

% number of significant p value 

if any(ht_all(:) == 1) 

    disp('ht_all >= 1') 

    num_sig_ttest = sum(ht_all(:) == 1); 

    disp(num_sig_ttest) 

else 

    disp('all ttest p-value not significant') 

end 

 

if any(h_r_all(:) == 1) 

    disp('h_r_all >= 1') 
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    num_sig_fdr = sum(h_r_all(:) == 1); 

    disp(num_sig_fdr) 

else 

    disp('all FDR p-value not significant') 

end 

 

% number of sig ttest p-value for each band 

for band = 1:5 

    num_sig_ttest_indBand = sum(sum(ht_all(:,band) == 1)); 

    num_sig_ttest_Bands(:,band) = num_sig_ttest_indBand; 

end 

disp(num_sig_ttest_Bands); 

 

% number of sig FDR p-value for each band 

for band = 1:5 

    num_sig_fdr_indBand = sum(sum(h_r_all(:,band) == 1)); 

    num_sig_fdr_Bands(:,band) = num_sig_fdr_indBand; 

end 

disp(num_sig_fdr_Bands); 

 

% check sig increase or decrease 

change_amount_temp = mean(new_pm_G2,1) - mean(new_pm_G1,1); 

change_amount = squeeze(change_amount_temp); 

 

cd 

C:\Users\sxk1519\Documents\Quik20\EEG_FALL2021\808R\BrainNetViewer\SixReg_with_Co

herence_matrix 

save('R808_Post_vs_RS_Post_Bands.mat','ht_all','pt_all','h_r_all','p_r_all','num_sig_ttest_Bands'

,'num_sig_fdr_Bands','change_amount'); 
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