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ABSTRACT

MACHINE LEARNING FOR ULTRAVIOLET SPECTRAL PREDICTION

Linh Ho Manh, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Victoria C.P. Chen

Machine Learning has found wide applications in material science, including

dielectric polymers, superconducting materials, and drug property prediction. The

use of data analytics and machine learning methods to predict Vacuum Ultravio-

let (VUV) spectra by encoding molecular structure is gaining interest because high

quality VUV spectral prediction capability would enable the study of new molecules

without costly wet-lab measurements. This dissertation aims to study feature rep-

resentations for molecular structure that enhance the prediction of VUV spectra via

machine learning models. Both interpretable machine learning and deep learning are

studied.

Chapter 1 provides an overview of VUV/UV spectra retrieval, and Chapter 2

reviews relevant machine learning models and conventional techniques in molecular

analysis from the existing literature. Chapter 3 presents the primary contribution of

this dissertation, which introduces a new set of features that captures molecular char-

acteristics that are potentially important for accurate VUV spectral prediction. These

new features are combined with features derived from the literature and prediction

comparisons are studied for a variety of machine learning models. Findings demon-
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strate improvements in accuracy, highlight important features, provide comparisons

in computational effort for different methods, and identify directions for future work.

Chapter 4 takes a closer look at two of the deep learning methods studied in

Chapter 3, namely graph based and molformer methods. Because deep learning em-

beds feature engineering within the algorithm, the existing form of these methods

cannot take advantage of the features studied in Chapter 3. In order to leverage the

success of incorporating these features in VUV spectral prediction, a complementary

structure is developed with the deep learning architecture. In addition, the graph-

based method is improved by introducing a new edge feature that specifically identifies

aromatic cycles. Findings show increased prediction accuracy with the complemen-

tary structure, which indicates a potentially generalizable benefit for deep learning.

Finally, Chapter 5 provides closing remarks on future research.

This dissertation contributes to the application of machine learning in predicting

VUV spectra, providing interpretable models, and facilitating molecular analysis in

the domain of Cheminformatics.
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CHAPTER 1

Introduction

1.1 Introduction to ultraviolet absorption spectra

Gas phase absorption spectroscopy in the vacuum ultraviolet and ultraviolet

(VUV/UV) region of the electromagnetic spectrum probes the electronic structure

of molecules in the absence of an interacting solvent. Photons in the VUV/UV re-

gion promote quantized ground to excited state transitions for valence electrons of a

molecule during absorption. The energies (i.e., wavelengths) and probabilities (i.e.,

magnitude) of molecular absorption are dictated by the chemical structure and atom

connectivity of a molecule. Gas phase VUV/UV absorption spectra measured at suf-

ficient resolution are essentially unique and diagnostic for a particular molecule. Gas

phase spectra are not subject to deviations in absorption caused by the presence of a

solvent and are consequently highly stable and reproducible from one measurement

apparatus to another [1, 3, 4, 5, 6].

The relatively recent advancement of coupling gas chromatography with VUV

absorption spectroscopic detection (GC-VUV) now offers routine separation of com-

plex mixtures and speciation of separated components, since most the chemical species

absorb and have unique gas phase absorption cross sections in the approximately

120−240 nm wavelength range monitored [1, 7]. Hence, VUV/UV has the ability to

overcome some limitations of standardized techniques, such as Gas chromatography-

mass spectrometry (GC-MS) and liquid chromatography (LC), when compounds with

isomeric, isobaric, and multiple isomers are analyzed [8, 7, 9, 10].
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Ultraviolet-visible (UV-Vis) spectroscopy is a widely used technique in many

areas of science ranging from bacterial culturing, drug identification, and nucleic acid

purity checks and quantitation, to quality control in the beverage industry and chem-

ical research [11]. UV-Vis spectroscopy is an analytical technique that measures the

number of discrete wavelengths of UV or visible light that are absorbed by or trans-

mitted through a sample in comparison to a reference or blank sample. This property

is influenced by the sample composition, potentially providing information on what

is in the sample and at what concentration. Since this spectroscopy technique relies

on the use of light, the measured wavelength contributes a huge amount of informa-

tion about the studied material [5, 6]. Light has a certain amount of energy that

is inversely proportional to its wavelength. Thus, shorter wavelengths of light carry

more energy and longer wavelengths carry less energy. This is why the absorption

of light occurs for different wavelengths in different substances. Humans are able to

see a spectrum of visible light, from approximately 380 nm, which we see as vio-

let, to 780 nm, which we see as red. UV light has wavelengths shorter than that of

visible light to approximately 100 nm. Figure 1.1 depicts the mechanism of how a

spectrophotometer operates [11].

Figure 1.1. A simplified schematic of the main components in a UV-Vis spectropho-
tometer.
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Figure 1.2. Schematic of gas chromatography instrument with a VUV detector (not
to scale). Image source[1].

Whichever wavelength selector is used in the spectrophotometer, the light then

passes through a sample. The reference sample signal is then later used automatically

by the instrument to help obtain the true absorbance values of the analytes. UV-Vis

spectroscopy information may be presented as a graph of absorbance, optical density,

or transmittance as a function of wavelength. However, the information is more often

presented as a graph of absorbance on the vertical y-axis and wavelength on the

horizontal x-axis [1, 11]. As can be seen in Figure 1.3, each small molecule holds a

distinct VUV spectrum in the studied wavelength from 125 nm to 450 nm.

1.2 Importance of VUV prediction analysis

Forecasting the physicochemical characteristics of compounds plays a crucial

role in the exploration of new materials in biotechnology, pharmaceutical studies,

energy research, and fuel characterization. It is also significant in drug discovery

within pharmaceutical studies. Having a dependable system for predicting VUV/UV

3



Figure 1.3. Different VUV spectra of different molecules.

spectra would be valuable, as it could expedite the molecular design and analytical

measurement. This would enable chemists to identify the unique features of new

molecules even before synthesizing them. Since the creation of new compounds and

obtaining VUV spectra measurements can be challenging, chemists can benefit from

a highly accurate spectral prediction model.

Traditional molecular screening techniques known as Quantitative Structure–Activity

Relationships/ Quantitative Structure–Property Relationships (QSAR/QSPR) are

based on the correlation between features and functional activities for each com-

pound [12, 13]. However, QSAR/QSPR faces difficulties coping with random and

diverse databases with a restricted number of laboratory experiments [14]. Linear

solvation energy relationships can provide some useful information on solutes that

have detailed descriptors, but the molecules for which these descriptors are known

are limited, and the descriptors are not easy to determine for other molecules of

interest. On the other hand, properties with straightforward calculations, such as

pKa or logP , provide limited useful information when molecules are present in com-
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plex systems. QPSK/QSAR also possess limited transferability since their models are

typically specific to a particular dataset or chemical domain, which makes it challeng-

ing to extrapolate the predictions of a model to new compounds or different chemical

classes. Models trained on one dataset may not perform well on a different dataset due

to variations in chemical space, molecular diversity, and underlying mechanisms. The

interpretability of QPSK/QSAR can be also problematic since QSAR/QSPR models

often provide statistical correlations between molecular features and properties but

may not offer an understanding of underlying causal relationships. It can also be

unclear how to interpret the significance and physical meaning of specific descriptors

or their contributions to the predicted property. Since the data for QSPK/QSAR is

limited to several domains, QSAR/QSPR models may become outdated as new chem-

ical compounds and structures emerge. Keeping the models up-to-date and relevant

requires continual updates and retraining.

Conventional techniques for spectral prediction, such as time-dependent den-

sity functional theory (TD-DFT), are often deployed to predict electronic absorption

spectra. However, TD-DFT relies on various approximations, such as the adiabatic

approximation, linear response approximation, and Tamm-Dancoff approximation.

These approximations can introduce errors, particularly for highly excited states or

strongly coupled systems. In addition, TD-DFT primarily predicts absorption lines

and does not provide detailed information about the shape of the spectrum over a

wide bandwidth. To compensate for this limitation, artificial broadening techniques,

such as Gaussian functions, are often employed, which may affect the accuracy of the

predictions. Another disadvantage of TD-DFT is that the accuracy of TD-DFT calcu-

lations is highly sensitive to the choice of basis set and exchange-correlation function

used. Different combinations of these parameters can lead to varying results, making

it challenging to obtain consistent and reliable predictions.
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An alternate solution for predicting measured properties from molecule struc-

ture without expensive calculations is machine learning based on already measured

data, such as a reference spectra library. Machine learning has shown increasing ac-

curacy in various domains of data science. Prior to the development of deep learning

methods, machine learning techniques were already being used for classification and

regression tasks in cheminformatics. These methods have been applied to predict var-

ious chemical properties, such as energetic properties, logP, atomization energies, and

toxicity, often treated as single-output regression problems. In the literature, most

of the predicted chemical properties are energetic properties [15], logP [16], atomiza-

tion energies [17, 18, 19], and toxicity [20, 21]. Prediction of mass spectra, similar

to VUV/UV spectra, is considered a multiple-output regression problem [22]. Two

prominent approaches for molecular characterization involve feature extraction based

on Simplified Molecular-Input Line-Entry System (SMILES) and molecular graphs

[15, 16, 18, 23].

The prediction of UV spectra has been limited, due to a lack of high-quality

data below 200 nm in wavelength. Previous research on machine learning models

for VUV/UV spectral prediction primarily focused on the Long-Short Term Memory

(LSTM) model, as discussed by Urbina et al. [24]. Their study utilized an effective

wavelength range of 220 nm to 400 nm, with the Extended Connectivity Fingerprint

Diameter 6 (ECFP6) as the molecular representation and LSTM as the machine

learning model.

This dissertation explores different molecular feature representations and ma-

chine learning models using a dataset of 1397 molecules, with an effective wavelength

range of 126 nm to 240 nm and a resolution of 0.15 nm. It is important to note that

the wavelength scale in our dataset differs from the 1 nm resolution and the range

of 220 nm to 400 nm studied by Urbina et al. [24]. The measurements in our study

6



were conducted in the gas phase, without the presence of a liquid or any interacting

medium. This means that the absorption spectra obtained are not affected by the

interaction between the molecule of interest and a solvent, as commonly observed in

traditional solution-based UV/Vis measurements. The dataset used in our research is

derived from measurements performed by the VUV Analytics company and an estab-

lished commercially available spectral library of VUV/UV. By excluding the influence

of solvents, the measured spectra in our dataset exhibit more consistency and are not

subject to the variability and potential errors introduced by solvent interactions.

To achieve accurate VUV spectral prediction via machine learning, there is a

need to investigate molecular representations and computational techniques to map

the relationship between the structural information of molecules and VUV/UV spec-

tra. In Chapter 3, a variety of molecular feature representations and machine learning

/ deep learning techniques are studied. While Elton’s work [15] provides a comprehen-

sive overview of feature extraction for molecules, these lack information on aromaticity

and bond properties that are important for predicting VUV spectra. An important

contribution in Chapter 3 is the characterization of new feature representations.

In Chapter 4, an examination of deep learning methods studied in Chapter

3 identified two beneficial modifications. The first encodes edge information for

molecules with aromatic cycles within graph-based deep learning, and the second

develops a complementary structure for deep learning architectures that incorporates

features from Chapter 3. These modifications demonstrate how improvements in VUV

spectral prediction can be achieved and motivate future feature characterizations and

future research utilizing the knowledge gained from VUV spectra prediction.
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CHAPTER 2

Literature review

2.1 Conventional spectral prediction techniques

Before the development of machine learning and data science in the field of

Cheminformatics, there were two main conventional techniques for spectral predic-

tion, namely time-dependent density functional theory (TD-DFT) and Quantitative

Structure-Activity Relationship/ Quantitative Structure-Property relationship. In

the first section of this chapter, a brief discussion of these two algorithms and their

limitations is presented.

2.1.1 Time-dependent density functional theory (TD-DFT)

TD-DFT is a computational method used in quantum chemistry to study the

electronic structure and properties of molecules and materials. It is an extension

of the Density Functional Theory (DFT) method, which is a widely used method

for calculating the electronic structure of molecules and materials. In TD-DFT, the

electronic design of a system is described by the time-dependent density, which is a

function of both space and time. The method calculates the time evolution of the

density under the influence of an external electric field. This allows for the predic-

tion of properties, such as the absorption spectra of molecules, which are embedded

in a wide range of applications, including materials science, chemical synthesis, and

pharmaceuticals [25]. TD-DFT has a wide range of applications that study the prop-

erties of materials, such as semiconductors and catalysts. The method can be used

to predict the optical properties of materials, such as their absorption spectra, which
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are important for applications in optoelectronics and photovoltaics [26, 27]. In ad-

dition, TD-DFT is also embedded in the biomolecules, such as proteins and DNA,

which benefits the prediction of the absorption spectra of these molecules [28]. In

pharmaceuticals, this method studies the electronic properties of drug molecules and

their interactions with target molecules, such as receptors and enzymes [29, 30].

However, TD-DFT often does not produce the high-resolution spectral struc-

ture observed in experimental gas phase VUV spectra [1, 24]. Since TD-DFT primar-

ily predicts absorption lines and does not provide full information about the whole

spectrum, artificial broadening techniques, such as Gaussian functions, are often em-

ployed. These techniques can have negative effects on the accuracy of TD-DFT

method in the prediction of VUV/UV spectra.

2.1.2 Quantitative Structure-Activity Relationships/ Quantitative Structure-Property

Relationships (QSAR/QSPR)

Quantitative structure-activity relationship (QSAR) is a computational ap-

proach that analyzes the relationship between chemical structures and bioactivity

data to predict the biological activity of new chemical compounds. There are various

types of molecular descriptors used in QSAR, including constitutional, topological,

geometrical, electronic, and quantum-chemical descriptors[31, 32]. These descriptors

are used to represent the structural and physicochemical properties of a molecule

that are relevant to its biological activity, such as its size, shape, electronegativity,

hydrophobicity, and electronic structure. The choice of descriptors and their weight-

ing in the QSAR model affects its accuracy and applicability domain. Despite the

advances in QSAR modeling, there are still challenges in the prediction of chemical

toxicity and the extrapolation of QSAR models to new chemical structures [33].
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To improve the reliability and regulatory acceptance of QSAR models, several

guidelines and initiatives have been proposed, such as the Organisation for Economic

Co-operation and Development (OECD) principles for QSAR validation and the Eu-

ropean Chemicals Agency’s (ECHA) QSAR toolbox. These guidelines emphasize the

importance of transparency, reproducibility, uncertainty analysis, and external valida-

tion in QSAR modeling. QSAR models need to be validated against an independent

dataset, and their performance metrics, such as accuracy, precision, and robustness,

need to be reported transparently. The use of consensus QSAR models and uncer-

tainty analysis methods can also enhance the reliability and regulatory acceptance of

QSAR predictions [34].

Some advantages of QSAR include an ability to rapidly screen a large number

of compounds and provide insights into the molecular interactions between a com-

pound and its target, leading to the discovery of new binding sites and targets [35].

However, since the application of QSAR is based on the correlation between features

and bioactivities for each compound [12, 13, 36, 37], it faces some difficulties when

coping with random and diverse databases with a restricted number of laboratory

experiments [14]. Linear solvation energy relationships (LSER) are an example of

descriptors used in QSAR. LSER can offer valuable information about solutes with

detailed descriptors, but there is limited availability of known molecules with these

descriptors, and determining the descriptors for other molecules of interest is not

straightforward. On the other hand, properties that can be easily calculated, such

as pKa or logP , do not provide significant insights when multiple molecules from

different classes exhibit similar values for these properties.
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2.2 Machine Learning Methods

Given some of the disadvantages mentioned for TD-DFT and QSAR, there is

a need to investigate additional feature representations that can describe molecular

structures. Further, these features can be utilized within machine learning models for

predictive modeling applications. The scope of this dissertation concentrates on the

characterization of molecules into feature representations that can be utilized by ma-

chine learning / deep learning models for the prediction of VUV spectra. The standard

approach for implementing machine learning in cheminformatics is to represent each

molecule as a feature vector in the X domain. Prediction of VUV/UV spectra, similar

to mass spectra, is considered a multiple-output regression problem [22]; hence, the

spectra output is the Y domain. There are multiple machine learning models that

can map the relationship between X: input feature vectors to Y : VUV/UV spectra

output [38, 39, 40, 41, 42, 43]. Three machine learning algorithms considered for this

molecular representation were a Multi-Layer Perceptron Neural Network (MLP) with

two hidden layers of 256 and 128 nodes developed from the Pytorch package, mul-

tiple output Random Forest Regressor and Multiple output Gradient Boosting Tree

Regressor from sci-kit-learn framework. This section discusses the general overview

of these three machine learning methods, which are also implemented in our spectral

prediction problem, and the featurization scheme is discussed in the next chapter.

2.2.1 Random Forest Regressor

Random Forest regression is a supervised learning algorithm that uses an ensem-

ble learning mechanism for regression. The ensemble learning method is a technique

that combines predictions from multiple machine learning algorithms to make a more

accurate prediction than a single model [44, 45, 46, 47, 48, 49].

As depicted in Figure 2.1, Random Forest comprises the following steps:
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Figure 2.1. Ensemble learning mechanism in Random Forest.

1. Pick at random k data points from the training set.

2. Build a decision tree associated with these k data points.

3. Choose the number N of trees you want to build and repeat steps 1 and 2.

4. For a new data point, make each one of your N -tree trees predict the value of

y for the data point in question and assign the new data point to the average

across all of the predicted y values [48, 49].

As mentioned above, VUV/UV spectral prediction is a multiple output regres-

sion problem, and the details of how modified splitting or stopping rules are modified

are discussed in Schmid’s work [50].

2.2.2 Gradient Boosting Tree Regression

The Gradient Boosting Tree (GBT) is one of the most powerful techniques for

building predictive models for both classification and regression problems. Gradient

Boosting is a machine learning algorithm, which works on the ensemble technique
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called ’Boosting.’ Like other boosting models, Gradient Boosting sequentially com-

bines many weak learners to form a strong learner [51, 52, 53, 54, 55]. Typically,

Gradient Boosting uses decision trees as weak learners [56, 51, 57].

Figure 2.2. Schematic diagram of the gradient boosted regression tree.

As depicted in Figure 2.2, Random Forest comprises of following steps:

1. Construct a base tree with a single root node. It is the initial guess for all the

samples.

2. Build a tree from errors of the previous tree.

3. Scale the tree by learning rate (value between 0 and 1). This learning rate

determines the contribution of the tree in the prediction

4. Combine the new tree with all the previous trees to predict the result and repeat

step 2 until a maximum number of trees is achieved or until the new trees do

not improve the fit.

5. The final prediction model is the combination of all the trees.
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In the case of multiple output prediction as in the VUV/UV spectra problem, GBT

constructs multiple trees corresponding to the output variables [43]. Specifically, in

Zhang’s work [43], the objective for learning multiple outputs is based on the second-

order Taylor expansion of loss. This objective function is approximated and then

connected with the objective for a single output. We also formulate the problem of

learning a subset of variables and derive its objective. This is achieved by adding an

L0-norm constraint, a regularization technique that imposes a constraint on the num-

ber of leaves (terminal nodes) allowed in each tree. By setting an L0-norm constraint,

we limit the complexity of individual trees by restricting the number of possible splits

and preventing overfitting.

2.2.3 Multi-layer Perceptron Neural Network

The Multilayer Perceptron (MLP) is commonly used in simple regression prob-

lems [58, 59]. However, MLPs are not ideal for processing patterns with sequential

and multidimensional data [60]. An MLP Neural Network has input and output lay-

ers, and one or more hidden layers with many neurons stacked together[61, 62, 63].

MLP falls under the category of feedforward algorithms because inputs are combined

with the initial weights in a weighted sum and subjected to the activation function,

such as ReLu or Sigmoid. The internal computation resulting within each layer is

input to the next layer, starting from the input layer representing the datam, through

the hidden layers, and, finally, to the output layer [60].

Backpropagation is the learning mechanism that allows the Multilayer Percep-

tron to iteratively adjust the weights in the network, with the goal of minimizing

the lack-of-fit to the data. This is equivalent to estimating the model’s parameters

(i.e., MLP weights) to fit the model to the data. The lack-of-fit is represented by

a standard regression loss function that calculates the squared differences between
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Figure 2.3. Diagram of MLP network with two hidden layers for VUV/UV spectral
prediction problem.

Y targets and the MLP predictions, and the associated weights are updated in each

iteration to reduce this lack-of-fit. It is clearly stated in Goodfellow’s book [64] that

there is one hard requirement for backpropagation to work properly. The function

that combines inputs and weights in a neuron, for instance, the weighted sum, and

the threshold function, for example, ReLU, must be differentiable. These functions

must have a bounded derivative because gradient descent is typically the optimiza-

tion algorithm used in MLP. Figure 2.3 illustrates the implemented neural network

for VUV/UV prediction in this research by connecting the feature domain with VUV

spectra by an MLP neural network with two hidden layers.
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2.3 Deep Learning Architectures

This section explains the overview of several deep learning approaches that are

feasible for VUV spectral prediction. The common point of these techniques is that

the final feature vector from raw input is extracted by operators and execution units

within the algorithm, and they do not extract features as measurable properties.

2.3.1 Computer vision and Convolutional Neural Network

One of the most remarkable differences between convolutional neural networks

(CNNs) and traditional MLPs is that CNNs are primarily used in the field of pattern

recognition within images [65, 66, 67].

Figure 2.4. The use of CNN in image classification.

Based on the data processing technique presented in [20] and the CNN archi-

tecture [68, 69], the functionality of CNN-based architecture can be listed as four key

elements as follows:

• input layer: Hold the pixel values of three-dimensional images of molecules.

• Convolutional layer: Determine the coefficients of neurons which are con-

nected to local regions of the inputs.

• Polling layer: Downsample along the spatial dimensionality of the given input.

• Fully-connected layer: Produce the final prediction from activation functions

and outputs from previous layers.
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Figure 2.5. Architecture of DenseNet.

Figure 2.7 depicts the architecture of DenseNet, a deep learning framework

based on a CNN, which is also implemented in our VUV/UV spectral prediction

research. DenseNet was specially developed to improve accuracy by vanishing the

gradient in high-level neural networks, due to the long distance between input and

output layers, and the information vanishing before reaching its destination [70].

It is worth noting that the convolutional operation in machine learning can be

applied to many various data types that are multi-dimensional, making them similar

to multi-color images. For example, the transformer-based method, which is discussed

in the next section, implements a convolutional unit to study the interaction between

atoms in their operation.

2.3.2 Graph Neural Networks

Molecular graphs serve as a valuable two-dimensional representation of chem-

ical molecules, capturing their topological and structural characteristics, as well as

atom connectivity. A molecule can be seen as a graph of G = {X,A,E} where

X represents the node matrix, indicating the atom types within the molecule. The

adjacency matrix A and edge matrix E provide information about the connections

between atoms. Graph Neural Networks (GNNs) have the ability to learn atom order
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permutation invariant representations, encode the graph matrix representation into

a latent space, and efficiently train on a graphics processing unit (GPU) and scale to

large datasets. Some of these points are not unique to GNNs. However, the graph

representation can naturally be expanded in applications where one would need more

information than simply the identity and connectivity of atoms in a molecule.

Recently, a novel approach called HM-GNNs[71] has been developed, which

integrates heterogeneous motifs into the architecture of GNNs. Motifs are small sub-

graphs that frequently occur in molecular structures and represent important features

such as functional groups and cycles. By incorporating these motifs into the neural

network architecture, HM-GNNs can capture more detailed structural features and

enhance the expressiveness of the learned representations. Another approach for pre-

training molecular graph representations with 3D geometry involves the use of graph

convolutional neural networks (GCNNs) [72]. GCNNs are a type of neural network

designed specifically for processing graph-structured data, such as molecular struc-

tures. They operate by passing messages between neighboring atoms in a molecule,

using learned weights to combine information from different atoms and edges in the

graph[73].

In a GNN, there are three main tasks, that can be listed as follows:

• Graph-level task: In a graph-level task, the aim is to predict the property of

an entire graph.

• Node-level tasks: Focus on nodes, which include node classification, node

regression, and node clustering. This task is not explored in our research.

• Edge-level tasks: They are edge classification and link prediction, which re-

quire the model to predict whether or not there is a connection between two

atoms. If there is, then identify the property of that vertex. A notable exam-
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ple of this problem is a Kaggle Data Challenge [74] with the goal to predict

magnetic interactions between a pair of atoms.

Chemoinformatics is a broad field that encompasses computer science and chem-

istry with the goal of utilizing computer information technology to solve problems

in the field of chemistry, such as chemical information retrieval and extraction, com-

pound database searching, and molecular graph mining [75, 76, 77, 78, 79]. Regarding

the problem of VUV/UV prediction, the Graph-level task is a valid option for our

research since molecules can be described as graphs, and VUV spectra output can be

specified as graph properties. Details on the GNNs implemented in our research are

provided in Appendix B and Chapter 3.

2.3.3 Transformer Techniques

Until recent years, architectures that utilized recurrent neural networks (RNNs)

and deep learning methods (e.g., long short-term memory), were widely used for tasks

such as text translation to text classification. However, in 2017, the transformer

architecture was developed and demonstrated to outperform these methods [2]. The

rise of the transformer architecture for various natural language processing (NLP)

tasks was the catalyst for more transformer techniques [80, 81].

An encoder model would typically pass the embedding inputs via the following

sublayers [82, 83, 84, 85]:

1. Positional Embeddings: Incorporate positional information for each token

embedding.

2. Pre-layer normalization: Normalize each input in the batch to have zero

mean and unity variance.

3. Multi-headed attention layer: Focus the model simultaneously on multiple

sets of linear projections from the data.
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Figure 2.6. Architecture of full transformer model used in [2].

4. Feed-forward layer: Process each embedding input independently.

One of the most common ways to implement a self-attention layer would be to use the

scaled dot-product attention, which is discussed in more detail in Appendix C. It is

worth mentioning that, our VUV/UV spectral prediction problem falls in the category

of supervised learning; hence, only the encoder architecture in the transformer-full

model is investigated. Similar problems can be found in [86].

2.4 Visualization Toolbox by FLASK

The popularity of the FLASK toolbox has grown quickly in recent years [87, 88].

In chemistry, this toolbox is a convenient interface for predicting new molecules using
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learned patterns from machine learning models trained on library data. However,

the “black-box” effects of machine learning models potentially generate misleading

results. The main purpose of the FLASK application is for visualization, providing

Figure 2.7. Architecture of spectral prediction toolbox developed by FLASK.

information on a new molecule that is not in the library dataset. Since the whole

purpose of machine learning models is to build the relationship between molecular

structures and VUV spectra, a new prediction is retrieved as the mean prediction

from five models in a cross-validation procedure. After receiving the SDF file, the

system checks whether the uploaded molecule is already in the database. If not,

the prediction is provided. Since the pre-trained machine learning models from the

training data run at the backend of the FLASK application, the users are able to

get the final prediction by just submitting the SDF file of the new molecule. After

receiving SDF file as input, FLASK will implement data processing, load pre-trained

models, feed the input to the models, and perform prediction. It is worth noting

that FLASK is a Python framework that can handle HTML templates, CSS, and
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Javascript, making it convenient for machine learning developers, to deploy a user-

friendly application.
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CHAPTER 3

Machine Learning Molecular Feature Representation for Vacuum Ultraviolet and

Ultraviolet Gas Phase Absorption Spectral Prediction

3.1 Introduction

Gas phase absorption spectroscopy in the vacuum ultraviolet and ultraviolet

(VUV/UV) region of the electromagnetic spectrum probes the electronic structure of

molecules in the absence of an interacting solvent. Photons in the VUV/UV promote

quantized ground to excited state transitions for valence electrons of a molecule during

absorption. The energies (i.e., wavelengths) and probabilities (i.e., magnitude) of

molecular absorption are dictated by the chemical structure and atom connectivity of

a molecule. Gas phase VUV/UV absorption spectra measured at sufficient resolution

are essentially unique and diagnostic for a particular molecule. Gas phase spectra

are not subject to deviations in absorption caused by the presence of a solvent, and

as such, they are highly stable and reproducible from one measurement apparatus to

another [1].

The relatively recent advancement of coupling gas chromatography with VUV

absorption spectroscopic detection (GC-VUV) now offers routine separation of com-

plex mixtures and speciation of separated components since most of the chemical

species absorb and have unique gas phase absorption cross sections in the approx-

imately 120 – 240 nm wavelength range monitored [1, 7]. Hence, VUV/UV has

the ability to overcome some limitations of standardized techniques, such as gas

chromatography-mass spectrometry (GC-MS), when compounds with isomeric, iso-

baric, and multiple isomers are analyzed [7, 8, 9]. The prediction of spectroscopic
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absorption spectra, such as illicit drugs[89], fuels components [90, 91, 92], and syn-

thetic products [93], have been studied in recent years. A reliable means for VUV/UV

spectral prediction is valuable and could accelerate molecular design and analytical

measurements since chemists can use it to characterize and identify new molecules,

especially when pure standards are lacking.

Recent research demonstrates machine learning applied to different domains of

data science, including pharmaceutical studies, with increasing accuracy over time.

It is worth noting that, before the development of deep learning methods, there were

a number of classification and regression tasks in cheminformatics that had been

tackled by machine learning methods [16, 15, 18, 23, 19, 94]. In the literature, some

of the predicted chemical properties have been logP [16], energetic properties [15],

atomization energies [18, 19, 17], and toxicity [20, 21]. These examples all involve

the prediction of a single-output value. Prediction of VUV/UV spectra, similar to

mass spectra, is considered a prediction of multiple-output values [22]. Traditionally,

predicting VUV/UV spectra has been a challenging task due to the complexity of

spectral data and the high computational cost of underlying quantum mechanical

calculations.

Molecular characterization plays a critical role in machine learning prediction

of chemical properties of molecules. Machine learning algorithms rely on input fea-

tures, such as molecular descriptors, to learn patterns and make predictions about

new molecules. Traditional molecular characterization techniques have included the

use of various techniques, such as Abraham Descriptors and Linear Solvation Energy

Relationships (LSER). Efforts (often through extensive experimental measurements)

are made to reduce the complexity of a chemical compound/structure to a set of val-

ues that describe the nature of physicochemical properties and interactions exhibited

by the molecule [12, 13]. Since the accuracy of prediction models is highly depen-
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dent on the input data of molecular descriptors and experimental values, traditional

molecular screening faces difficulties when feature extraction requires laboratory ex-

periments [14]. In addition, linear solvation energy relationships can provide some

useful information on solutes having detailed descriptors, but the molecules for which

these descriptors are known are limited, and the descriptors are not easy to determine

for other molecules of interest. On the other hand, properties with straightforward

calculations, such as pKa or logP , provide limited information when the molecules

are present in complex systems. Another solution for predicting measured properties

from molecule structure without carrying out expensive wet-lab experiments is ma-

chine learning, which also delivers more information in diverse pools of molecules by

intuitive feature engineering. Thus, there is a need to investigate molecular represen-

tations and computational techniques to map the relationship between the structural

information of molecules and VUV/UV spectra. With the advent of machine learn-

ing algorithms, it is now possible to accurately predict VUV/UV spectra using com-

putational models. Two major categories of molecular characterization are feature

extraction based on Simplified Molecular-Input Line-Entry System (SMILES)[16, 15]

and molecular graphs [18, 23], both of which are studied in this chapter.

Reported techniques for predicting VUV/UV spectra of molecules involved the

use of quantum mechanical methods, specifically time-dependent density functional

theory (TD-DFT). TD-DFT relies on several approximations, including the adiabatic

approximation, the linear response approximation, and the Tamm-Dancoff approxi-

mation, which can lead to errors in the calculation of electronic properties, especially

for highly excited states or strongly coupled systems [95]. In addition, TD-DFT pre-

dicts only absorption lines and does not provide the shape over a wide bandwidth.

To address this, predicted absorption lines have been artificially broadened using

Gaussian functions to make them appear closer in appearance to experimental spec-
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tra. However, the accuracy of TD-DFT calculations can be highly sensitive to the

choice of basis set and exchange-correlation functions used [96]. As TD-DFT does

not fully account for electron correlation effects, it shows limitations when being ap-

plied to complex datasets where highly excited states or strongly correlated systems

are presented [97]. On the other hand, the prediction of ultraviolet spectra has been

restricted due to a shortage of quality data when the wavelength is below 200 nm.

Recently, Urbina et al. reported the use of machine learning models for the

prediction of UV spectra [24] at a wavelength window from 220 nm – 400 nm. They

implemented the well-known Extended Connectivity Fingerprint Diameter 6 (ECFP6)

as the molecular representation and Long-Short Term Memory (LSTM) network as

a machine learning model. In their dataset, the presence of solvents in experiments

can affect and shift the spectra in their studies. The framework of Urbina et al. can

serve as a spectral prediction tool for a new molecule in the wavelength range 225 –

400nm, as long as a valid SMILES is provided [98]. Our research work concentrates

on the wavelength ranging from 126 nm to 240 nm, as such the prediction can be

expanded to shorter wavelengths. In addition, our extended research on featurization

schemes can provide a better representation to explain the relative position of a new

molecule among the existing ones in the library data, and this function is not yet

included in the web-based framework [98]. By extensively exploring the feature space

of molecules with the aid of chemistry insights, predictions and outputs of machine

learning models are more interpretable and explainable.

3.1.1 Contribution

The aim of this work is to investigate different molecular feature representations

and machine learning models using a dataset of 1397 molecules with the effective

wavelength 126 nm – 240 nm and a resolution of 0.15 nm. The wavelength scale
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in our dataset is different from the 1 nm resolution and the wavelength range 220

nm – 400 nm studied by Urbina et al. [24]. The VUV measurements was partially

carried out by the company VUV Analytics [99] and an established spectral library of

VUV/UV gas phase absorption spectra, which is available commercially. In our study,

all measurements were conducted in the gas phase, as opposed to the liquid phase in

traditional solution-based UV/Vis measurements that involves potential interaction

with the solvent. Consequently, the measured spectra in our dataset are more regular

and do not include variability and potential sources of error due to solvents inter-

acting with measuring substances. With this more reliable dataset, our goal in this

chapter is to provide an investigation of machine learning based options to improve

VUV spectral prediction. In the next section, we first examine options for featurizing

molecular structure, starting with the overview by Elton et al. [15], and then provide

background on appropriate machine learning and deep learning methods. In partic-

ular, new features are introduced that identify the aromaticity, existence of atoms in

the halogen group, and bond properties of molecules to better represent molecular

structures that impact VUV spectra.

3.2 Molecular representations and machine learning methods

There are two main components to building predictive models. First, the ex-

planatory factors that may potentially yield predictive ability must be identified,

and second, the predictive model is constructed. In machine learning, the factors

are called features, and the prediction is generated by the machine learning model.

For characterizing features, we discuss how information from a molecular structure

data file (.sdf) is translated into feature vectors, representative images, and molecular

graphs by manipulating SMILES and their relative positions in 3D coordinates. For

machine learning models, we discuss both standard machine learning models that
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take the features as a input and deep learning models whose algorithms internally

conduct featurization.

3.2.1 Molecule represented as a feature vector

The feature representations in our study explicitly avoid descriptors that require

physical measurements. Rather, our focus in on features based on domain knowledge

and computational methods. We start the discussion with features in the problem do-

main of energetic materials [15] and then introduce new features specifically intended

to improve VUV spectral prediction.

3.2.1.1 Existing featurization scheme

There are three categories of features discussed by Elton et al. [15]: fingerprints,

custom descriptor set, and counts over chemical bonds.

• Fingerprint: Fingerprinting algorithms represent molecular structure as a set

of numerical values or binary bits. These numerical or binary values, known

as molecular descriptors, encode the chemical and physical properties of the

molecule, such as size, shape, polarity, and electronic structure [100]. In Elton

et al. [15], different schemes of fingerprints, such as Atom-Pair [101], Topological

Torsion [102, 103], Morgan’s fingerprint [104], and E-state [105] were examined.

Molecular representation in Urbina et al. [24] also falls in this category since

they implemented the Extended Connectivity Fingerprint Diameter 6 (ECFP6),

which is similar to Morgan’s fingerprint. In Elton et al., it was also demonstrated

that E-state has the best performance among the pool of fingerprints. Hence

E-state fingerprint truncated to 32 atom types is the only fingerprint fragment

studied in our feature set.
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• Sum over bonds (SOB): Based on the intuition that almost all of the la-

tent heat energy is stored in chemical bonds, the bond counts feature vector

was introduced [105]. The bond counts vectors find all bond types that occur

in the overall set of molecules considered and then count how many of each

bond are present in each molecule. Each entry in this vector has a magnitude

that corresponds to the number of one specific bond type that exists in the

molecule ensuring a unique representation. In the end, all the bond features are

concatenated to form the final vector.

• Custom Descriptor (CDS): A set of custom descriptors [15] was chosen

based on physical intuition and computational efficiency, mapping a molecule

to a scalar value and ignoring the descriptors that require physics computation

and measurement. It is worth noting that the functional groups in Elton et al.

[15] contain a lot of nitrogen.

The reaction of oxygen with the fuel atoms carbon and hydrogen is represented in a

descriptor called oxygen balances (OB) [15], and this feature type is also included in

our study.

3.2.1.2 New features as complementary information

Our proposed new features are generated in similarly to the count used by

the custom descriptor and sum over bonds techniques. Our features are based

on the theory that the aromaticity of a molecule contributes a significant amount

of information to the VUV spectral prediction problem [106]. Aromatic compounds

often exhibit strong UV absorption due to their conjugated pi-electron system. The pi

electrons are distributed evenly over a cycle, making it less reactive than other types

of compounds. This stability affects the chemical reactivity and overall properties of

the molecule [107]. Our new features also account for the presence of olefin atoms and
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conjugated non-aromatic double bonds, since the existence of the double bond also

leads to a planar, sp2 hybridized geometry around the carbon atoms, which influences

the molecule’s reactivity and stability [108]. In addition, contiguous rotatable bond

groups, also known as rotatable bonds or torsional angles, refer to a set of two or

more adjacent single bonds that can rotate relative to each other. The presence of

these rotatable bond groups can significantly influence the molecular properties of a

compound, such as its conformation, stability, and reactivity [109]. Finally, halogen

group atoms are highly electronegative, meaning they have a strong ability to attract

electrons toward themselves. The presence of a halogen atom in a molecule can

increase the overall electronegativity of the molecule [110]. consequently, our new

“ABOCH” features are proposed as follows:

1. Number of aromatic (A) and olefin (O) atoms.

2. Number of conjugated double bonds, aromatic bonds, and contiguous rotatable

bond groups (B).

3. Number of saturated cycles and aromatic cycles (C).

4. Number of each type of different halogen atom (H)

In order to count aromatic and olefin atoms, our method is based on data manipula-

tion using RDKit [111], an open-source software toolkit for cheminformatics. RDKit

transforms molecules into hierarchical structures, then accesses all atoms and bonds

in each molecule to extract their properties. The count of aromatic cycles and benzene

cycles is implemented in a similar fashion since we can access all the cycles within

molecules and extract the information. Regarding the count of contiguous rotat-

able bonds, our proposed method finds all groups of contiguous rotatable bonds and

sorts them by decreasing size. Since different molecules can have different contiguous

rotatable bond groups, the final feature is the count of all possible contiguous rotat-
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able bond groups. Regarding the count of halogen atoms, we propose three separate

features corresponding to the number of fluorine, chlorine, and bromine atoms.

Figure 3.1. Example molecule delta9-trans-tetrahydrocannabinol.

To demonstrate the counts for our ABOCH features, we use the delta9-trans-

tetrahydrocannabinol molecule as an example. This molecule contains one cycle that

may be mistaken as an aromatic cycle. Our featurization identifies three saturated

cycles and one aromatic cycle. There are six aromatic atoms and two olefin atoms.

However, there are no conjugated double bonds. Additionally, the molecule has six

aromatic bonds. Figure 3.1 shows the structure of the molecule. Notably, there are

no halogen atoms, resulting in zero values for the features indicating the number of

chlorine, bromine, and fluorine atoms.

3.2.1.3 Machine learning models

There are multiple readily available machine learning models that can map the

relationship between X: input feature vectors to Y : VUV spectra output [38, 39,

40, 41, 42, 43]. Three machine learning algorithms are considered for this molecular
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representation. From the Pytorch package [112], we implement a Multi-Layer Percep-

tron Neural Network (MLP), with two hidden layers of 256 and 128 nodes. From the

scikit-learn framework [113], we employ the multiple-output Random Forest Regres-

sor (RF) and the multiple-output Gradient Boosted Tree Regressor (GBT). PyTorch

and scikit-learn are widely used open-source machine learning frameworks that pro-

vide users with the necessary tools and libraries for constructing machine learning

models. These frameworks offer a range of functionalities, including data preprocess-

ing, model construction, training, and evaluation, facilitating the development and

implementation of machine learning algorithms to diverse application domains.

3.2.2 Deep learning approaches

In this section, three deep-learning approaches are discussed for VUV spectral

prediction. Unlike traditional machine learning methods discussed earlier, deep learn-

ing embeds featurization within a complex algorithm that, in theory, can automat-

ically learn nonlinear relationships between raw input data and the target variable,

automatically identifying transformations and combinations of the inputs that im-

prove prediction. Because the deep learning process conducts a comprehensive search

to uncover relationships, domain experts are not needed to define input features, such

as those features described in Section 3.2.1. This is particularly useful when deal-

ing with high-dimensional data, such as images or text, or molecules as graph-based

structures, where it may be difficult to manually design relevant features. However,

deep learning feature extraction is computationally expensive and may require large

amounts of training data to achieve good performance. In addition, it may be dif-

ficult to interpret the resulting models due to the lack of transparency, which can

be particularly problematic in cheminformatics. Unlike traditional machine learn-

ing algorithms, where features are explicitly defined and interpretable, deep learning
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models automatically learn hierarchical representations through multiple layers in

the model. Furthermore, deep learning models often consist of millions of parame-

ters, making it difficult to pinpoint the exact contribution of each model component

(or “neuron”) to the final prediction. This lack of interpretability raises concerns

in cheminformatics, where understanding the underlying molecular features is crucial

for decision-making, understanding structure-activity relationships, or identifying im-

portant substructures. In our VUV/UV spectral prediction problem, deep learning

feature extraction involves using a deep neural network to learn relevant features di-

rectly from the raw input data. The neural network consists of multiple layers of

interconnected nodes, each of which performs a nonlinear transformation of the input

data. Below, three specific deep learning models are described, each of which has

been adapted to represent aspects of molecular structure.

3.2.2.1 Molecules as multi-dimensional images and convolutional neural networks

In recent years, the use of deep learning for image recognition has been increas-

ing significantly. In the chemistry domain, these advances have led to the development

of Chemception, which is trained to predict chemical properties by encoding molecules

as multi-dimensional images. For this encoding, first, SMILES strings of molecules

are translated to their respective 2D coordinates and then encoded into multi-channel

images, with each layer containing molecular information [20, 21]. Each layer is then

used to encode different information from the molecule. In our implementation, layer

zero is encoded with the bond order, and the next two layers are encoded with the

atomic number and hybridization (not Gastieger charge as in [21]). It should be

emphasized that augmented images of molecules help the deep learning models gen-

eralize chemical structures better. Augmentation techniques involve applying trans-

formations, such as rotation, scaling, or flipping, to existing images to create new
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variations of the same image [114]. By introducing these variations into the training

data, machine learning models are forced to learn features that are invariant to such

transformations. This can help to reduce overfitting and improve the generalization

performance of the resulting prediction model. After molecules are transformed into

multi-dimensional images, DenseNet [115], a deep learning structure that consists of

multiple convolutional operators and pooling layers, is implemented to recognize the

molecular patterns and predict VUV spectra.

3.2.2.2 Graph representation and graph neural network

A molecular graph is a two-dimensional representation of a chemical molecule

and accounts for its topo-structural features and atom connectivity. A molecule can

be seen as a graph of G = {X,A,E} where X = {xi ∈ RF | i = 1, 2, ..., N},

and N is the maximum number of atoms for one molecule in the dataset. The

binary adjacency matrix A has the dimension N × N , in which 1 denotes there is

a connection between two atoms, and 0 denotes when there is no connection. It

is worth noting that the dimension of the node matrix is N × F , where F is the

number of node features. For cheminformatics studies, the node feature is typically

the atom type, in which the atom can be represented by the corresponding number

in the periodic table. The edge feature matrix has the dimension N ×N × S, where

S denotes the number of edge features. Similarly to the adjacency matrix, edge

features provide the characteristic of a connection between two atoms in the molecule:

single bond, double bond, or triple bond. The graph neural network framework in

this research uses the Spektral toolbox [18], consisting of message passing and graph

pooling functions. Message passing is similar to the role of the convolutional operator

in the convolutional neural network whereX, the node representation of one molecule,
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is updated iteratively. Details of graph neural network operations can be found in

different studies citeGrattarola2021[116, 117, 118].

3.2.2.3 Molecular graph representation and transformer

In the last few years, the transformer framework, with its unique mechanism of

“self-attention,” has been successfully used in the field of natural language processing

as an automated translator between languages [2] and in the domain of computer

vision [86]. A similarity between natural language processing and molecular struc-

tures is that they can both be represented as sequences of data. In natural language

processing, the text is often represented as a sequence of words, where the order of

the words matters and affects the meaning of the text. Similarly, in molecular struc-

tures, the sequence of atoms and bonds within a molecule determines its properties

and behavior. Recently, Wu et al. [23] proposed the molformer framework, with a

distinguished self-attention mechanism that can estimate interactions between multi-

level nodes. In their framework, the multi-scale mechanism to capture local patterns

with increasing contextual scales provides a perspective into how distances can influ-

ence the score between center atoms and the rest in one molecule, similar to the use

of deep learning to approximate quantum chemical simulations [19]. The molformer

framework takes atomic numbers and their 3D corresponding positions as the input

for the training process to capture how different chemical compositions, structures,

and conformations affect the behavior of VUV/UV spectra.

3.3 Comparisons of machine learning approaches for VUV spectral prediction

Since VUV spectra reflect the intensity of absorption of VUV light at different

wavelengths, the output can be seen as a vector with a length that depends on

the resolution of the absorption measurement. Experimental spectra from the VUV
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spectrometer can be from the range of 123 nm – 450 nm; however, the wavelength

window selected is 126 nm – 240 nm since relatively few entries in the spectral library

contain data in the range from 240 – 450 nm. It is worth noting that the resolution of

wavelength measurement is 0.15 nm which results in each molecule having 746 VUV

spectra outputs in the selected wavelength window. Our dataset comprises 1397

distinct molecules. To compare different machine learning algorithms, the dataset of

1397 molecules was divided into five groups, and 5-fold cross-validation with a fixed

randomization seed was employed to calculate prediction accuracy. Cross-validation

is a well-known approach for addressing possible biased selections of training and

testing sets [119]. After training, out-of-sample molecules, which are not included in

the training process, are used to investigate the goodness of the proposed method.

There are multiple methods to evaluate the efficiency of machine learning mod-

els such as mean absolute error (MAE), root mean square error, and coefficient of

determination. In this research, we employ the coefficient of determination, as de-

fined in the following equation, where 0 ≤ R2 ≤ 1 and a higher R2 indicates better

prediction accuracy:

R2 = 1−
∑

i (yi
true − yi

predict)
2∑

i (yi
true − ȳtruei )2

(3.1)

As mentioned in the previous section, this problem is a multiple-output regression

problem; hence, each sample/instance in the cross-validation operation has a corre-

sponding R2 score. In order to compare the different methods, the mean of R2 score

was obtained through 5-fold cross-validation.

Comparison of molecular feature representations and traditional machine learning

methods

Our new set of ABOCH features consists of ten integer values: number of

cycles, number of aromatic cycles, number of aromatic atoms, number of olefin atoms,
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number of contiguous rotatable bond groups, number of conjugated double bonds,

number of aromatic bonds and separate features accounting for the counts of different

halogen atoms. In Table 4.1, performance for various combinations of the feature sets

from Section 3.2.1 are presented. The following abbreviations are used to represent

the feature sets:

• Estate = E-state fingerprint (31 features).

• CDS = Custom Descriptor (19 features).

• SOB = Sum over bonds (45 features).

• OB = oxygen balances (1 feature).

Combining all the features together yields the best performance across all the ma-

chine learning methods. Among the existing feature sets from Section 3.2.1, Es-

tate+CDS+SOB performs best, notably better than Estate+CDS+SOB+OB. This

appears to be a non-intuitive result since both sets contain Estate+CDS+SOB. How-

ever, in general, adding unimportant features hampers predictive modeling, so this

result indicates that the OB feature set is not beneficial for VUV spectral prediction.

Regarding the machine learning models, Random Forest Regressor provided the high-

est R2 values. For the subsequent comparisons in this section, we employ the overall

best model using the combination of all features with a Random Forest Regressor.

The Random Forest Regressor model additionally provides an importance rank-

ing of the input features, which is given in Figure 3.2. Features from our ABOCH

feature set are marked by asterisks (∗). Seven of the ten ABOCH features appear

in the figure, with the number of aromatic atoms emerging as the most important.

The other ABOCH features listed include the number of conjugated double bonds,

the number of olefins, the number of aromatic cycles and bonds, and the number of

chlorine atoms. Notably, two features derived from the E-state fingerprint, namely

aCa and aaCa, indicate the presence of a carbon atom with two aromatic bonds and
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Table 3.1. Averages of 5-fold cross-validated R2 scores for various combinations of
molecular feature sets across three machine learning methods.

Multi-layer NN RF GBT
SOB + OB 0.485 0.635 0.621
CDS + SOB 0.543 0.637 0.614
Estate + SOB 0.607 0.663 0.643

Estate + CDS + SOB 0.617 0.665 0.650
Estate + CDS + SOB + OB 0.52 0.663 0.654

ABOCH features alone 0.524 0.575 0.556
ABOCH combined features 0.630 0.691 0.665

three aromatic bonds in its vicinity [105]. This observation further strengthens our

hypothesis that molecular aromaticity plays a prominent role in the absorption of

VUV/UV spectra within the wavelength window ranging from 126 nm to 240 nm.

To illustrate the effectiveness of learned patterns by machine learning algo-

rithms, four predictions of four “new” molecules namely hexahydrothymol, 4-methylethcathinone,

2,4-dimethylphenol, and 2,2,3,3,5,6,6-heptachlorobiphenyl are shown in Figure 4.5.

We consider them “new” molecules because they are not in the training database

that was used to generate our machine learning models. They have measured spectra

in the library, and they were chosen to represent a reasonably diverse group of com-

pounds across the molecules used to formulate the training set. Hexahydrothymol

is a terpenoid compound lacking aromaticity, 4-methyl methcathinone is an illicit

stimulant drug designed to mimic amphetamine, 2,4-dimethylphenol is a simple sub-

stituted aromatic, and 2,2,3,3,5,6,6-heptachlorobiphenyl represents a polychlorinated

biphenyl (PCB) environmental contaminant. Figure 4.5 shows that high quality VUV

spectral predictions were achieved for all four of these “new” molecules.

To illustrate the performance of machine learning vs. TD-DFT, VUV spectral

predictions for three molecules are presented in Figure 3.4. The three molecues 1,2-
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Figure 3.2. Feature importance from Random Forest Regressor model.

dimethylnaphthalene, a-PVP, and naphthalene were chosen because their spectral

predictions based on TD-DFT were previously presented in the literature [91]. How-

ever, it should be noted that these molecules are members of the training database, as

opposed to being “new” molecules (referring to previous paragraph). Consequently,

it is not surprising to see strong performance by the machine learning approach.

Regardless, TD-DFT fails to capture some critical peaks and valleys in the VUV pat-

tern, with some severely overestimated or underestimated. This is in part due to the

TD-DFT process that artificially broadens calculations over the wavelength range by

using overlapping Gaussian functions.

Finally, to provide perspective on poor performance by the machine learning

approach, Figure 3.5 provides the VUV spectral predictions with the lowest R2 score.

These molecules were contained in the training database, but their molecular structure
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Figure 3.3. Prediction of new molecules not in the training database using
the combination of all features with the Random Forest Regressor: (a) hexahy-
drothymol (b) 4-methylethcathinone HCl (c) 2,4-dimethylphenol (d) 2,2,3,3,5,6,6-
heptachlorobiphenyl..

includes characteristics that were not well represented in the database, namely, more

than three stacked aromatic cycles (chrysene, benzo[b]chrysene, 3-nitrophenanthrene)

or the inclusion of sulfur within the cycle (dibenzothiphene sulfone). With the knowl-

edge gained from our study, future research can introduce additional features that

better characterize the member and bond properties within aromatic cycles that are

currently absent from our studied feature sets.
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Figure 3.4. Prediction using TD-DFT vs. the combination of all features with the
Random Forest Regressor method: (a) 1,2-dimethylnaphthalene (b) a-PVP (c) naph-
thalene..

Comparison of deep learning methods

Two variants of the graph neural network (GNN) were implemented, namely the

Graph Attention (GAT) and edge-conditioned convolutional (ECC) neural networks.

Both GAT and ECC use the features of the nodes at the endpoints of an edge, but

ECC additional uses edge attributes as inputs to its convolutional operation. In our

implementation, we employ the configuration of GAT and ECC as in the spektral

toolbox [18] with two layers of GATConv and ECCConv with 64 output channels

for each layer, with a batch size of 32. Because GAT does not use properties of

edges as inputs, bond information is absent from its modeling. As can be seen from

the feature importance of the Random Forest model in Figure 3.2, bond properties,

including aromatic and double bonds, are important for VUV spectral prediction.
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Figure 3.5. Lowest R2 score predictions using the combination of all features with
the Random Forest Regressor method for molecules in the training database: (a)
chrysene (b) benzo[b]chrysene (c) dibenzothiphene sulfone (d) 3-nitrophenanthrene..

Table 3.2 compares the performance of GAT, ECC, and the Chemception model with

DenseNet [115]. It is seen that Chemception performs best, followed by ECC. The

absence of bond information in GAT is likely the primary reason for its extremely

poor performance.

Table 3.2. Averages of 5-fold cross-validated R2 scores for GNN methods and Chem-
ception.

Graph attention GNN Edge Convolutional GNN Chemception
Average R2 score -0.510 0.418 0.519
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In the Molformer framework proposed by Wu et al. [23], a set of five variants

with distinct modeling concepts is presented. The initial variant, referred to as a

3D-Transformer with Sinusoidal Position Encoding (SPE), leverages sinusoidal en-

coding to effectively utilize the 3D molecular geometry for molecular representation

learning. The second approach, a 3D-Transformer with Convolutional Position En-

coding (CPE), employs convolutional operations on the pairwise distance matrix of

molecules. The third variant, termed 3D-Transformer with Multi-scale Self-attention

(MSA), incorporates a distance-based constraint within the self-attention mechanism

to extract multi-scaled patterns from the global 3D coordinates of atoms in a given

molecule. The fourth variant, 3D-Transformer with Attentive Farthest Point Sam-

pling (AFPS), employs an algorithm to group the most significant atoms around a

designated starting atom within a molecule, forming the final representation of the

molecular graph. Finally, the complete model encompasses all the features and char-

acteristics derived from CPE, MSA, and AFPS.

A comparison of the five molformer variants is given in Table 3.3. It can be

observed that the SPE model exhibits the lowest R2 score. This result indicates

that utilizing sinusoidal positional encoding to embed the 3D relative positions of

atoms into their representation is not effective for VUV spectral prediction. While

the self-attention mechanism employed in the SPE model demonstrates the ability

to capture global data patterns, it falls short in capturing information regarding

local context, specifically the interactions between atoms. Similar performance is

observed among the CPE, MSA, and AFPS models, highlighting the effectiveness

of applying convolutional operations to analyze the pairwise distance matrix of the

molecules. Notably, the full model, encompassing all the characteristics of CPE,

MSA, and AFPS, outperforms other variants, achieving an average R2 score of 0.603.

As can be seen from Table 4.1, the performance of the full model is comparable to
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that of conventional features when applied to the traditional MLP neural network

model.

Table 3.3. Averages of 5-fold cross-validated R2 scores for five variants of Molfomer
methods.

SPE CPE MSA AFPS Full
Average R2 score 0.370 0.481 0.478 0.494 0.603

As a final look at the results, Table 3.4 compares the average performance and

computational effort of the deep learning methods against the best performing tra-

ditional machine learning method from Table 4.1, namely the combination of all fea-

tures from Section 3.2.1 with the Random Forest Regressor method. The traditional

method is seem to be superior to deep learning, from both the prediction perfor-

mance and computational effort perspectives. All the simulations were performed

on the server consisting of the following components: Intel(R) Core(TM) i7-2960X

CPU, 65536MB RAM. Ultimately, it does not appear worthwhile to implement a deep

learning method that requires many hours of training, is not interpretable, and does

not achieve improved prediction performance.

Table 3.4. Averages of 5-fold cross-validated R2 scores comparing deep learning meth-
ods against the combination of all features with the Random Forest Regressor method.
Computational times for model training are also shown.

Methods Average R2 score Training time
ABOCH combined features + RF 0.691 25 min
Molformer Full model 0.603 32 hours
Chemception + DenseNet 0.519 50 hours
Edge Conditional Convolutional Graph 0.418 22 hours

44



Figure 3.6 provides the complete distribution of R2 scores for the entire training

database in order to illustrate the variability in performance for the methods com-

pared in Table 3.4. In order to separate the improvement in performance achieved

with the addition of our new ABOCH feature set, Figure 3.6 includes the perfor-

mance of the Random Forest Regressor using only the existing conventional feature

sets (Estate, CDS, SOB, OB). All distributions are left-skewed with the majority of

molecules yielding R2 scores towards the maximum value of 1.0, and a long lower

whisker with outlier cases of extremely poor (negative R2) performance. The worst

outlier cases are seen for ECC, followed by Chemception, while the outlier cases are

similar for the Full Molformer and the two traditional machine learning methods. In

the zoomed view of the boxes, including our ABOCH feature set with Random Forest

Regressor yields the smallest box and the shortest whiskers, which corresponds to the

smallest variability in performance.

3.4 Concluding remarks and future research

In this paper, we have presented and compared molecular feature representa-

tions and machine learning methods for the application of VUV spectral prediction.

Our results demonstrate the benefit of our proposed ABOCH feature set and iden-

tified the combination of all features with the Random Forest Regressor method to

be the best performing approach, from the perspectives of prediction accuracy, in-

terpretability, and computational effort. Overall, for VUV spectral prediction, it

is recommended to utilize feature sets that are based on molecular structure and

chemical intuition. Hence, future research should conduct further examination of

interpretable features, possibly conducting feature selection to eliminate redundant

descriptors. Further, given the benefit of these feature sets, developing a complemen-
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tary deep learning structure to incorporate interpretable features could improve the

prediction performance of deep learning approaches.

Given the discussion for Figure 3.5 and through the examination of outliers in

Figure 3.6, it becomes apparent that there is room for expanding our ABOCH feature

set to enhance the representation of molecules. Specifically, this can be achieved

by investigating additional characteristics, such as the number of members present

in saturated cycles. Furthermore, it is beneficial to separately account for N- and

O-containing heterocycles with 5 and 6-membered cycles, as well as incorporating

separate features to capture the count of heterocyclic aromatic atoms and carbon

aromatic atoms. Moreover, it is worth exploring the properties of aromatic cycles in

more depth, including features that account for the number of non-aromatic bonds

between aromatic atoms. In addition, an additional set of features was considered,

specifically the count of halogen atoms connected directly to aromatic carbons and

the count of halogen atoms connected to non-aromatic carbons. The inclusion of

these features is justified by the significant influence of halogens’ electronegativity

on the pi-electron cloud of aromatic cycles, as they tend to attract electron density

towards themselves. These expansions to our feature set will contribute to a more

comprehensive and accurate representation of molecular structures.

On the other hand, in the ECC implementation, edge features are retrieved

from the SDF file, with a double bond and aromatic bond considered the same while

in chemistry, these two bonds clearly have different functionality. This may lead to

the poor performance of ECC following the implementation of spektral toolbox [18].

A research avenue and possible improvement could be reprocessing the molecular

structures and distinguishing the aromatic bonds from regular double bonds, which

exist outside of aromatic cycles.
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3.5 FLASK for visualization with chemical insights

The main purpose of the FLASK application is for visualization, providing

information on new molecules that are not in the library dataset. Since the purpose of

machine learning models is to build the relationship between molecular structures and

VUV spectra, a new prediction is retrieved as the mean prediction from five models

from the cross-validation procedure. If the uploaded molecule is not in the database,

the prediction is provided. For instance, the new molecule hexahydrothymol is not

in the database but has measured data in the library. Figure 3.7 shows the prediction

versus the truth labels of the spectra. In normal practice, for an arbitrary molecule,

only the VUV prediction is provided. The application also has the ability to provide

visualization when users want an image of prediction in a specific wavelength range.

An example shown in Figure 3.8.

To demonstrate the example, Figure 3.9 shows the prediction of VUV spectra

for a new molecule hexahydrothymol, the R2 score for this validation molecule is quite

high at 0.99, showing the ability to capture VUV pattern by machine learning models,

in this case, is the best model we have discussed in the previous section: Random

Forest Regressor with ABOCH combined features scheme.

In order to understand the position of the new molecule in the chemical domain

together with library data, 2D Principal Component Analysis is proposed as in Figure

3.9. By featurizing all data, which includes both the existing library and the new

molecule, we can identify the two nearest neighbors by sorting Euclidean distances

between feature vectors of molecules. The two most similar to hexahydrothymol in

the database are tetrahydrocannabivarin and (+)-3-methoxymorphinan HCl, with

their corresponding VUV spectra shown in the Flask app.

The last function of the FLASK application is to show the information by

processing the SDF file, as in Figure 3.10. The left-side of the figure is the 3D layout
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of atoms in the new molecule following the mechanism in xyz2graph [120] and the

right-side of the figure is a 2D layout. In addition, the most important and reasonable

features of the new molecule are also given in the web application.
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Figure 3.6. Box-and-whisker plots illustrating the distribution of 5-fold cross-
validated R2 scores across the 1397 molecules in the training database, for comparing
deep learning methods against the combination of all features with the Random For-
est Regressor method. Top figure shows the full box-and-whisker plots, and bottom
figure excludes lower outliers and extended whiskers to allow a better view of the box
representing the interquartile range (middle 50%) of the distribution..
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Figure 3.7. The plot of the VUV prediction using neural network.
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Figure 3.8. Zoom-in mode for specific wavelength range by VUV prediction toolbox
by FLASK.
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Figure 3.9. PCA plot of new sample: hexahydrothymol with library chemical domain.
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Figure 3.10. Molecular information of new sample: hexahydrothymol.

53



CHAPTER 4

Complementary Deep Learning Architecture for Vacuum Ultraviolet Spectral

Prediction

4.1 Abstract

Vacuum ultraviolet spectroscopy (VUV) plays a critical role in elucidating the

electronic structure and optical properties of molecules, thereby finding widespread

applications in materials science, chemistry, and physics. Having a reliable and trust-

worthy system in place to forecast VUV/UV spectra holds significant value, given

its potential to accelerate molecular design and analytical measurement processes.

It would allow chemists to identify distinctive characteristics of new molecules even

prior to their synthesis. Given the difficulties in creating new compounds and obtain-

ing VUV spectra measurements, chemistry researchers would greatly benefit from a

highly precise spectral prediction model. In recent years, the application of graph

neural networks and transformer-based techniques in Cheminformatics has garnered

significant attention as a means to address this challenge. This research presents a

novel approach that modifies the graph representation of molecules and employs en-

hanced deep-learning structures, integrating feature engineering for improved molec-

ular analysis. Our proposed complementary deep learning architectures outperform

existing deep learning approaches by a minimum of 25% in terms of average R2 score.

4.2 Introduction

Gas phase absorption spectroscopy in the vacuum ultraviolet and ultraviolet

(VUV/UV) region of the electromagnetic spectrum is a powerful tool for studying
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the electronic structure of molecules without the influence of a solvent. In VUV/UV

absorption, photons induce discrete transitions from the ground state to the excited

states of the valence electrons within a molecule. The absorption energies (i.e., wave-

lengths) and probabilities are determined by the molecule’s chemical structure and

atom connectivity. A notable advantage of VUV absorption spectroscopy lies in

its ability to directly observe molecular electronic transitions, which exhibit sharp

and well-resolved features. This characteristic facilitates the identification of spe-

cific electronic states and their corresponding energies. Moreover, VUV absorption

spectroscopy demonstrates high sensitivity, enabling the detection of even minute

quantities of molecules in the gas phase. This sensitivity arises from the unique

gas phase absorption cross-sections exhibited by various chemical species within the

monitored wavelength range of approximately 120 to 240 nm [1, 3, 4, 5, 6].

Accurate prediction of molecular properties from molecular structures plays a

crucial role in diverse fields like fuel research, forensics, and pharmaceutical drug dis-

covery, where efficient identification of promising drug candidates can significantly

reduce time and costs. As illustrated in Chapter 3, machine learning models offer a

promising approach for achieving accurate predictions of new molecules by deploying

machine learning models with learned patterns from library data. Hence, the use

of machine learning can overcome limitations associated with traditional techniques,

such as time-dependent density functional theory [95] and quantitative structure-

activity relationship [31, 32]. Graph-based neural networks (GNNs), which represent

molecules as graphs, have gained considerable attention and popularity due to their

ability to handle complex molecular structures without the need for extensive fea-

ture engineering. GNNs have demonstrated remarkable success in various domains,

including natural language processing [121, 122], pattern recognition [123, 124], and
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these methods are especially promising in Cheminformatics and material science, as

in the prediction of physicochemical properties [71, 125, 18].

The idea behind the molecular graph representation lies in mapping the atoms

and bonds that make up a molecule into sets of nodes and edges. Intuitively, one

could imagine treating the atoms in a molecule as nodes and the bonds as edges [126]

[127]. In Chapter 3, it was noted that features representing bond information for

molecules are important. In particular, the GNN variant that does not incorporate

bond information performed poorly, while the edge-conditioned convolutional (ECC)

neural network [18] performed reasonably because it encodes bond information as

edge features. Grattarola et al. [18] presented the implementation of ECC in both

classification and regression tasks for QM9 public data. ECC is a type of neural net-

work that is designed to work with graph-structured data, where each data point (or

node) is connected to other nodes via edges. Its purpose is to aggregate information

from neighboring nodes in the graph, allowing them to learn meaningful represen-

tations of the data. To improve upon the ECC structure, one contribution in this

chapter modifies the edge feature representation to distinguish aromatic cycles.

More generally, the results in Chapter 3 identified the benefit of the feature

sets from Elton et al. [15] with our new ABOCH feature set towards improving the

prediction of VUV spectra. Because deep learning embeds feature engineering within

their algorithms, they are not designed to take advantage of externally defined fea-

tures. In order to enable the integration of feature engineering from domain expert

knowledge, we introduce a complementary deep learning architecture. To study this

and the modified ECC edge features, we employ the same VUV spectra data set as

Chapter 3, with 1397 molecules in the effective wavelength range of 126 nm – 240 nm

and a resolution of 0.15 nm. The library of reference absorption spectra was provided

by VUV Analytics company [99], which is available commercially. As in Chapter 3,
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it should be noted that all measurements of the molecules were conducted in the gas

phase, excluding the presence of a liquid medium and any interacting medium.

4.2.1 Contribution

Our main contribution introduces a complementary deep learning architecture

to leverage the benefits of external features as part of the deep learning algorithm.

This approach enables the prediction to take advantage of both the feature engineering

conducted by deep learning algorithms and features derived from domain knowledge.

Our new architecture embeds the external features via the feature encoder from a

Multilayer Perceptron (MLP) neural network. This approach is studied for ECC

and molformer [23] deep learning methods, but is generalizable to any deep learning

approach.

A secondary contribution of this research modifies the edge features of the graph

representation for molecules, specifically incorporating a distinct edge feature to rep-

resent aromatic bonds. Traditionally, chemistry literature classifies bonds based on

the number of electron pairs shared between atoms, distinguishing between single,

double, and triple bonds. In this study, our proposal entails the recognition of aro-

matic bonds as a novel type of bond, distinct from both single bonds and double

bonds found outside of aromatic cycles.

4.3 Deep learning toolboxes

Two deep learning methods are studied in this paper, GNNs, and molformer.

An overview of these methods can be found in Chapters 2 and 3. Here we describe

the toolboxes employed for implementing deep learning.
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Spektral Toolbox

For implementing GNNs, we employed the Spektral toolbox based on Keras.

This toolbox is becoming increasingly popular thanks to its accessibility and intu-

ition, even to non-technical audiences. Specifically, the Spektral toolbox is designed

to provide tools for graph representation learning, which is the process of learning

low-dimensional embeddings of nodes in a graph that capture important structural

information about the graph. It provides a wide range of functionalities for work-

ing with graph data, including tools for building GNNs, preprocessing graph data,

and visualizing graphs [18]. One of the most important options that this toolbox

offers is a wide range of graph convolutional layers that can be used to build GNNs.

These layers can be used to learn low-dimensional embeddings of nodes in a graph,

which can then be used for downstream tasks such as node classification, link predic-

tion, and graph classification. It is worth mentioning that our problem of prediction

of VUV/UV spectra falls into the category of graph prediction when molecules are

represented as graphs and VUV/UV spectra are considered as graph properties.

Molformer Toolbox

In recent years, the Transformer model has been successfully applied in the

applications in the realm of natural language processing [2], and computer vision

[84]. In the domain of Cheminformatics, molformer proves as a feasible framework

to capture long-range interactions and dependencies within molecules. Leveraging

self-attention mechanisms, molformer framework possesses the ability to attend to

various segments of the molecule while incorporating information from the entire

sequence [23]. This attention mechanism facilitates the identification of pertinent

molecular features and the capture of subtle correlations that contribute to specific

properties, such as VUV spectra in our study. Within the Molformer toolbox, multiple
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techniques, including Sinusoidal Position Encoding, Convolutional Position Encoding,

and Attentive Farthest Point Sampling, are implemented to extract information from

two inputs: atom types and 3D coordinates, enabling the learning of relevant features

for molecular representation.

4.4 Complementary Deep Learning Architecture

In terms of feature engineering, our proposed scheme incorporates additional

features beyond the extensively studied ones described in Elton’s work [15]. These

include custom descriptor sets, sum over bond counts, E-state fingerprints, and oxygen

balance. In total, our scheme introduces ten new integer-valued features, denoted as

ABOCH. These encompass the number of cycles, number of aromatic cycles, number

of aromatic atoms, number of olefin atoms, number of contiguous rotatable bond

groups, number of conjugated double bonds, number of aromatic bonds, as well as

individual features representing the counts of different halogen atoms. Details of how

these features contribute to the characterization of molecules, and how the retrieve

them were discussed in detail in Chapter 3.

The goal of complementary architecture is to incorporate external features

within a deep learning algorithm. In Chapter 3, molecular feature representations

derived from expert knowledge were found to be important for improving VUV spec-

tral prediction. These features included custom descriptor sets, sum over bond counts,

E-state fingerprints, and oxygen balances described by Elton et al. [15] and our new

ABOCH features that encompass the number of cycles, number of aromatic cycles,

number of aromatic atoms, number of olefin atoms, number of contiguous rotatable

bond groups, number of conjugated double bonds, number of aromatic bonds, the

counts of different halogen atoms. To incorporate these external features, we inte-

grated the deep learning structure with an MLP structure as the external feature
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encoder. Our complementary ECC architecture is depicted in Figure 4.1. The MLP

layer enhances the model’s capacity by introducing additional trainable parameters

and enables the combination of learned patterns from different representations. Simi-

lar to the ECC architecture, we combine the features extracted from the deep learning

structure of Molformer with our set of measurable features in the final layer, which

leads to the generation of the predicted values for VUV spectra, as illustrated in

Figure 4.2.

Figure 4.1. Architecture of modified ECC with the participation of molecular feature
engineering.

60



Figure 4.2. Architecture of modified molformer framework with the participation of
molecular feature engineering.

4.5 Modified edge features for graph-based deep learning

ECC takes the node feature matrix, the adjacency matrix, and the edge fea-

ture matrix as inputs, and generates a new node feature matrix based on the ECC

operation. The EdgeConditionedConv layer uses a neural network to generate the

filter weights based on the edge and node features. In the conventional Spectral

toolbox, edge features are extracted from original sdf files, wherein aromatic bonds

within a cycle are depicted as three double bonds with single bonds adjacent to each

other. However, it is known that the pi electrons are evenly delocalized over the cycle,
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leading to its reduced reactivity compared to other compound types. This inherent

stability has a significant impact on the chemical reactivity and overall properties of

the molecule [107]. To address this, we introduce a unique edge feature to represent

aromatic bonds. In this study, we propose the inclusion of aromatic bonds as a new

bond type within a molecule, denoted as artificial type 4, as illustrated in Figure 4.3

Figure 4.3. Illustration of new edge features taking cypermethrin (CAS number:
52315-07-8) as an example (a) Original edge features as in spektral (b) Proposed
edge features.

4.6 Computational results

The VUV dataset is the same as Chapter 3, with 1397 molecules in the training

database and VUV spectral measurements over the effective wavelength range of 126

nm – 240 nm. Also as in Chapter 3, coefficient of determination (R2 score) derived

from 5-fold cross validation is employed.

Figure 4.4 illustrates the implementation of the ECC framework with comple-

mentary deep learning architecture represented by the MLP feature encoder on the

right, and the modified edge features at the upper right (where the “4” indicates the

aromatic cycle information for edges). Table 4.1 presents the comparison among the

variants of ECC, including the original ECC framework, ECC with modified edge

features, and the complementary ECC architecture with externally defined features
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from Chapter 3 for both the original ECC and modified edge features. As a bench-

mark, the last row of the table presents the prediction performance using only the

externally defined features from Chapter3 with a traditional MLP model.

ECC Original, representing the basic form of ECC without any modifications

or additional features, exhibited a moderate R2 score of 0.418, suggesting its partial

ability to predict VUV spectra. However, introducing the aromatic cycle information

in ECC Modified resulted in a higher R2 score of 0.548, indicating the significant

benefit of identifying aromatic cycles. The best performance is achieved using our

complementary ECC architecture. While ECC Modified with the complementary

structure shows a slightly higher R2 score of 0.657 vs. 0.647, this difference is not

considered significant. This result is logical since the ABOCH features from Chapter 3

also incorporate aromatic cycle information, so the modified ECC does not provide

additional information. Finally, the complementary ECC deep learning structure

does provide a small benefit above the traditional MLP structure (0.657 vs. 0.630),

indicating that the feature engineering within the ECC algorithm is contributing to

the prediction of VUV spectra.

Table 4.1. Averages of 5-fold cross-validated R2 scores for ECC variants

Methods R2 Score
ECC Original 0.418
ECC Modified 0.548

ECC original + ABOCH combined features 0.647
ECC modified + ABOCH combined features 0.657

ABOCH combined features alone 0.630

To illustrate the effectiveness of learned patterns by machine learning algo-

rithms, Figure 4.5 presents VUV spectral predictions for four “new” molecules that
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Figure 4.4. The modified ECC framework in TensorFlow module.

were not in the training database, namely hexahydrothymol, 4-methylethcathinone,

2,4-dimethylphenol, and 2,2,3,3,5,6,6-heptachlorobiphenyl. It is seen that the original

ECC model successfully captures the underlying pattern and yielded comparable re-

sults to the modified edge features version (Aromatic ECC) and complementary ECC

architecture (Aromatic ECC + ABOCH combined features) version of graph neural

networks for hexahydrothymol and heptachlorobiphenyl. However, it is evident that

the improved graph versions outperformed the original ECC model in terms of peak

positions and magnitudes for 4-methylethcathinone and 2,4-dimethylphenol. Overall,

our modifications yielded greater accuracy in predicting the precise locations of peaks

and accurately estimating their intensities.

For the Molformer-based deep learning framework, Chapter 3 studied five vari-

ants proposed originally by Wu et al. [23]: Sinusoidal Position Encoding (SPE),

Convolutional Position Encoding (CPE), Multi-scale Self-attention (MSA), Attentive

Farthest Point Sampling (AFPS), and the Full model with all of the above. Table 4.2

presents the comparison of these five Molformer variants without and with our comple-
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Table 4.2. Averages of 5-fold cross-validated R2 scores for Molformer variants

R2 Score Training time
SPE model 0.370 18.50 hours

SPE + ABOCH combined features 0.513 32.50 hours
CPE model 0.481 21.20 hours

CPE + ABOCH combined features 0.545 35.36 hours
MSA model 0.478 25.50 hours

MSA + ABOCH combined features 0.595 49.68 hours
AFPS model 0.494 30.50 hours

AFPS + ABOCH combined features 0.574 52.25 hours
Full model 0.603 45.50 hours

Full+ ABOCH combined features 0.608 72 hours
ABOCH combined features alone 0.630 2.50 hours

mentary deep learning architecture. The bottom row is the same benchmark as Table

4.1. Computational times are also provided for reference. While it can be seen that

our complementary deep learning architecture yields a clear benefit, the molformer

structure does not demonstrate improvement over the traditional MLP benchmark.

This indicates that the Molformer deep learning structure is over-complicating the

modeling task and critical information for predicting VUV structure is not effectively

discovered by the algorithm.

This disparity in performance can be attributed to the challenges associated

with monitoring a large-scale neural network model like Molformer, which poses in-

herent difficulties in the context of machine learning. The conventional perception

of machine learning models primarily emphasizes measurable properties derived from

feature engineering. The computational times also indicate the complexity of the

Molformer (up to 72 hours) vs. the traditional MLP (2.5 hours).
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4.6.1 Concluding remarks

In this paper, we implemented a modification to the graph-based representa-

tion of molecules by differentiating double bonds in aromatic cycles from regular

double bonds. Our approach results in an average R2 score improvement of 25%.

Furthermore, by incorporating external features related to molecule properties using

our complementary deep learning architecture, we achieved a further enhancement in

the average R2 score by 20%. A similar concept was also applied to the Molformer

architecture. While the inclusion of external features improved the performance of

the original models, it did not surpass the performance of using only the molecular

features from Chapter 3 with a traditional MLP neural network model. It is worth

noting that the Molformer architecture is relatively new and has the potential for

unexplored modifications and variations. The training times of the models vary, de-

pending on factors such as the framework’s size and complexity. We speculate that

the selection of hyperparameters and optimization algorithms plays a crucial role

in model performance. Additionally, training deep learning models like Molformer

can be computationally expensive, posing challenges in conducting a thorough hy-

perparameter optimization. Consequently, our work primarily focuses on conceptual

advancements, leaving room for further research on hyperparameter exploration.
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Figure 4.5. Prediction of new, novel molecules not in the database by three versions
of graph neural networks: original ECC, aromatic ECC, and aromatic ECC with
ABOCH combined features (a) hexahydrothymol (b) 4-methylethcathinone (c) 2,4-
dimethylphenol (d) 2,2,3,3,5,6,6-heptachlorobiphenyl.
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CHAPTER 5

Final Discussion and Future Work

The research presented in this dissertation addresses the development of machine-

learning models for predicting VUV spectra. The findings relevant to advancement

of machine learning and feature engineering for applications in chemistry, biotech-

nology, pharmaceutical studies, energy research, and fuel characterization. In this

study, the VUV spectral measurements were obtained in the gas phase, so as to avoid

errors due to interactions with a solvent. The specific wavelength range was from

126 nm to 240 nm at a resolution of 0.15 nm, yielding 746 VUV spectra outputs

per molecule for this multiple-output prediction problem. Chapter 3 considered both

traditional machine learning and deep learning and introduced a new “ABOCH” set

of molecular feature representations, explicitly for improving VUV spectral predic-

tion. Across all the comparisons, the recommended approach was using traditional

machine learning with molecular feature representations derived from chemistry do-

main knowledge. This approach was not only superior for prediction but was also

significantly faster computationally and provided interpretable models. Of the tradi-

tional machine learning methods implemented, the Random Forest Regressor had the

highest R2 performance metric, but the Gradient Boosted Tree Regressor performed

similarly. In addition, it is revealing to note that seven of the ten ABOCH features

were identified as important for VUV spectral prediction.

In Chapter 4, an examination of the deep learning architecture was conducted to

explore potential improvement in VUV spectral prediction. Two modifications were

studied. The main contribution was a complementary deep learning architecture that
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enabled the inclusion of the molecular feature sets from Chapter 3 within deep learn-

ing algorithms. The secondary contribution was the edge encoding of double bonds

in aromatic cycles in graph-based ECC models. Both modifications demonstrated

superior predictive performance over the original deep learning structures. However,

these improvements did not outperform the traditional and interpretable machine

learning approaches from Chapter 3.

Given the success of featurization derived from chemical intuition in this disser-

tation, future research should continue this direction for feature engineering, including

addressing directions identified in Chapter 3 following the examination of outlier cases

and molecules with poor VUV spectral predictions. In future studies, the training

database can be expanded to include more large molecules, with more aromatic cycles

and cyclic groups, and corresponding features to describe these large molecules can

be studied. In addition, given the already high number of molecular features and

the fact that too many features can degrade the performance of machine learning, it

would be useful to examine relationships between the features and identify redundant

descriptors. An initial look at this is given in the Appendix with a correlation anal-

ysis of the features from Chapter 3. For improving the machine learning algorithms,

hyperparameter optimization could be conducted to tune the modeling parameters.

However, we do expect significant improvement from hyperparameter optimization

since our findings demonstrate that the critical directions for improving prediction

are molecular feature representations.

Finally, an interesting application of machine learning in this domain is computer-

aided molecular design with the goal of generating new molecules with desired prop-

erties. This problem can be viewed as the reverse of the problem studied in this

dissertation. Specifically, if we are given a desired VUV spectral pattern, how we can

identify a set of molecules that match. A common strategy from a practical point

69



of view is to select the top molecules out of millions of cases in the public dataset

and verify them experimentally. In theory, this challenge can be overcome by the

use of a variational autoencoder [128, 129, 130, 131, 132], where the target properties

can be incorporated with latent space in the encoding process and manipulated in

the decoding process to retrieve the final set of molecules matching the target VUV

spectra.

Figure 5.1. Generation of new molecules by the decoder with the measured VUV
spectra as a constraint.

Figure 5.1 illustrates the conceptual framework for generating novel molecules

using a trained variation autoencoder (VAE). Following the training process, the en-

coder maps the molecular structures onto a multi-dimensional latent space character-

ized by a predefined range. To generate a diverse set of solutions with desired target

properties, namely a measured spectrum, the decoder employs two inputs. The first
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input is the ”artificial” latent space, which is predefined before the training process,

to represent the target molecules (unknown), while the second input corresponds to

the measured vacuum ultraviolet (VUV) spectra, acting as a conditioning factor.

Additional information related to this dissertation is provided in the Appendix.

Additional information on molecular fingerprints and correlation analysis for ABOCH

features are given in Appendix A. Appendix B provides background on graph-based

deep learning, and Appendix C provides background on the Molformer approach.
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APPENDIX A

Molecular Feature Representations
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A.1 Molecular fingerprints

Molecular fingerprints were originally created to solve the problem of identifying

isomers and later found to be useful for rapid substructure searching and the calcula-

tion of molecules in large molecular databases. In the past two decades, fingerprints

have been used as an alternative to descriptors for QSPR studies. Fingerprinting

algorithms transform the molecular graph into a vector populated with bits or inte-

gers. The RDKit graph fingerprints are a set of circular and path-based molecular

fingerprints implemented in the RDKit cheminformatics toolkit, The RDKit graph

fingerprints include several types of fingerprints as they can be generated using a

single function call in the RDKit Python API. One advantage of the RDKit graph

fingerprints is their computational efficiency and ease of use. They have been widely

used in various cheminformatics applications, such as compound similarity search,

and QSAR modeling, among others.

In this work, a brief description of several fingerprints found in RDKit, a pop-

ular cheminformatics package– Atom-Pair, Topological Torsion, Extended, E-state

fingerprints, Avalon fingerprints, ErG fingerprints, and physiochemical property fin-

gerprints.

A.1.1 Atom Pair fingerprints

Atom Pair fingerprint is a commonly used method in cheminformatics for gen-

erating a molecular descriptor that encodes the presence or absence of pairs of atoms

within a molecule. This method involves enumerating all pairs of atoms within a

molecule and hashing the resulting pairs into a fixed-length bit vector. This type of

fingerprint has been shown to be effective in predicting molecular properties such as

solubility, lipophilicity, and biological activity [133]. It is widely used in drug discov-
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ery and other areas of cheminformatics for pattern searching, clustering, and machine

learning.

The Atom Pair fingerprint algorithm starts by defining a ”radius” around each

atom in the molecule [101]. The radius is the number of bonds that need to be tra-

versed from the atom to reach the neighboring atom. The algorithm then enumerates

all pairs of atoms within the molecule that are separated by a distance less than or

equal to a predefined maximum radius. For each pair of atoms, a hash function is

applied to generate a unique hash code. The hash code is then used to set a bit in

the fingerprint vector [134].

The resulting Atom Pair fingerprint is a binary vector, which corresponds to a

particular pair of atoms within the molecule in each bits. A value of 1 indicates the

presence of the pair of atoms, while a value of 0 indicates their absence [135].

A.1.2 Topological Torsion fingerprints

Topological Torsion (TT) fingerprint is another widely used molecular descrip-

tor, which encodes the topological features of a molecule related to its three-dimensional

shape. The descriptor is based on the concept of molecular torsion, which is defined as

the angle between two sets of three consecutive bonds within a molecule. Compared

to other fingerprinting methods, TT fingerprint is particularly effective in capturing

the 3D structural features of a molecule, making it a powerful tool for the virtual

screening of compounds for drug discovery [136].

The Topological Torsion fingerprint algorithm starts by identifying all possible

sets of four contiguous atoms within a molecule that form a planar quadrilateral. For

each set of four atoms, the torsion angle is calculated where each bit corresponds to

a particular torsion angle[137].
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A.1.3 E-state fingerprints

E-state fingerprint is a molecular descriptor that encodes the electronic proper-

ties of a molecule. The descriptor is based on the concept of atom types, where each

atom in a molecule is assigned a unique electronic state or E-state [138]. The E-state

of an atom is determined by its local chemical environment, including the types and

identities of its neighboring atoms and the bond orders between them.

The E-state fingerprint algorithm involves identifying all the atoms in a molecule

and assigning them unique E-states. The E-states are then hashed into a fixed-length

bit vector using a hash function, resulting in the E-state fingerprint. The resulting

E-state fingerprint is a binary vector of fixed length, where each bit corresponds to a

particular E-state [139].

A.1.4 Avalon fingerprints

Avalon fingerprint is designed by the circular substructures or ”patterns” in

a molecule, which is defined as sets of atoms and bonds that form a closed loop.

The size of the circular substructures can be varied, allowing for different levels of

detail and complexity to be captured in the fingerprint [140]. The most common

sizes used in practice are 2, 3, 4, and 6, corresponding to patterns with 3, 4, 5, and

7 atoms respectively. The Avalon fingerprint is robust to changes in atom order,

stereochemistry, and tautomerism, making it a reliable descriptor for diverse sets of

molecules. It is also highly scalable, allowing for the efficient processing of large

databases of compounds. This makes it a popular choice for drug discovery.

A.1.5 Extended Reduced Graph (ErG) fingerprints

Extended Reduced Graph is fingerprint is an extension of the Reduced Graph

(RG) fingerprint, which represents a molecule as a graph by removing its atomic
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details and focusing on its structural connectivity. In ERG fingerprint, each atom

and bond in the graph is labeled based on its properties, such as its hybridization

state, formal charge, and atom type. These labels are used to capture the environment

of each atom and bond in the molecule. The labeled graph is then hashed into a fixed-

length binary vector using a hash function, resulting in the ERG fingerprint [141].

Compared to other fingerprinting methods, ERG fingerprint has several advan-

tages. It is robust to different tautomeric forms and can handle a wide range of

molecular sizes. It also has a high information content, allowing for the capture of a

large number of substructures and their combinations.

A.2 Multicollinearity in proposed ABOCH feature set

Figure A.1 illustrates a strong correlation between the number of aromatic

bonds, the number of aromatic atoms, and the number of aromatic rings. This

correlation arises from the resonance-based bonding system formed by the delocalized

π-electrons in aromatic compounds. Typically, a normal aromatic ring contains one

aromatic ring, six aromatic atoms, and six aromatic bonds.

However, certain fused ring systems, such as naphthalene-1,8-dione, exhibit de-

viations from the typical aromatic bonding pattern. In this molecule, which comprises

two benzene rings fused together, carbonyl groups (C=O) are attached to each ring.

As a result, two aromatic atoms in close proximity do not form an aromatic bond.

Despite this deviation, the three distinct features associated with aromaticity

remain valid in characterizing molecules. Conversely, other features in the dataset

demonstrate minimal correlation, thus highlighting their independent and valid con-

tributions to the feature set.
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Figure A.1. Correlation analysis to test multicollinearity in proposed feature
set.
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APPENDIX B

Graph Neural Networks
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B.1 Data processing for graph neural network models

Atoms in one molecule can be represented by characters such as C: Carbon, H:

Hydrogen, O: Oxygen,... and then they are encoded to their corresponding number

in the periodic table, forming input node matrix for graph neural network. Features

in a node matrix of a corresponding molecule is its atom type As depicted in Figure

Figure B.1. Processing graph representative inputs from a raw SDF file.

B.1, the adjacency matrix gives information on the connection between atoms in a

molecule and edge features are the properties of bond types, which are extracted from

.sdf file.

79



B.2 Graph Attention Network

Graph Attention Network is an attention-based architecture to perform node

classification of graph-structured data.

The idea is to compute the hidden representations of each node in the graph,

by computing the scores attaching the node to its neighbors, following an attention

strategy. The attention architecture has several interesting properties: (1) the op-

eration is efficient since it is parallelizable across node neighbor pairs; (2) it can be

applied to graph nodes having different degrees by specifying arbitrary weights to the

neighbors; and (3) the model is directly applicable to inductive learning problems,

including tasks where the model has to generalize to completely unseen graphs.

• Z = αXW + b

αij =
exp

(
LeakyReLU

(
a⊤[(XW )i ∥ (XW )j]

))∑
k∈N (i)∪{i}

exp (LeakyReLU (a⊤[(XW )i ∥ (XW )k]))

Notation:

1. X: node attribute matrix

2. W: trainable weights matrices

B.3 Edge-Conditioned Convolution

A mathematically sound definition of the convolution operator makes use of the

spectral analysis theory, where it corresponds to the multiplication of the signal on

vertices transformed into the spectral domain by graph Fourier transform.

• This layer computes for each node i:

x′
i =

∑
j∈N (i)

MLP
(
xi∥xj − xi

)
where MLP is a multi-layer perceptron.
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• Deep Networks with Edge-Conditioned Convolution (ECC): The information

from the local neighborhoods gets combined over successive layers to gain con-

text [18]. The information from the edges in the case of molecular graph repre-

sentation is extracted from the original sdf where edge (vertex) properties are

bond types: single, double or triple and encoded by corresponding real numbers

of 1, 2 and 3.

Figure B.2. Illustration of edge-conditioned convolution as presented in [18].
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APPENDIX C

Molformer techniques
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C.1 Introduction to molformer framework

The framework in Molformer exploits 3D molecular geometry, as depicted in

Figure C.1, finding 3D translations and rotations is an underlying principle for molec-

ular representation learning. The idea of the Transformer encoder and AlphaFold2

is to apply a convolutional operation to the pairwise distance matrix with the kernel

size of (1,1). Consequently, the attention score is computed to control the impact of

interatomic distance over the attention score. This molecular representation learn-

Figure C.1. An overview of molformer framework as presented in Wu’s work
[23].

ing has been deployed to a number of drug discovery and material design problems.

A similar framework can be adopted to predict VUV spectra.
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C.2 Data processing and positional embedding

A molecule has n atoms and c atom classes, which contain the one-hot atom

representations of the 3D coordinates of each atom. Atoms in one molecule can

be represented by characters such as C: Carbon, H: Hydrogen, O: Oxygen,... and

then they are encoded to their corresponding number in the periodic table, forming

two inputs atomic charges and positions respectively. N is so-called the maximum

number of atoms for one molecule in the dataset, if one molecule has a smaller number

of atoms than the maximum number, 0 are imputed to standardize the data, making

each molecule has an atomic charge with the size of (N, 1) and positions of (N, 3)

The embedding layer, a well-known module in language-processing machine learning

Figure C.2. Processing inputs for molformer models from original sdf.

models, transform the dimension of atomic charges from 1 to embeddim, which is set

to be 512 by default. It is worth noting that the embedding dimension should be
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divisible by the number of heads in the multi-head mechanism is presented in the

following section.

C.3 Details of molformer

Figure C.3. Diagram of one variant of molformer model with Sinudoial
Position Encoding (SPE).

Details of positional encoding for SPE model can be found in Figure C.4 and

details of multi-head mechanism are illustrated in Figure C.5
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Figure C.4. Illustration of positional encoding in SPE model.

Figure C.5. Illustration of multi-head mechanism.

After combining the output of the embedding layer and positional encoding

layer, an attention function can be described as mapping a query and a set of key-

value pairs to an output, where the query, keys, values, and output are all vectors. The
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output is computed as a weighted sum of the values, where the weight assigned to each

value is computed by a compatibility function of the query with the corresponding

key. The input consists of queries and keys of dimension dk. This is fed to all three

parameters, Query, Key, and Value in the Self-Attention which then also produces an

encoded representation for each atom in the molecule sequence. The Self-Attention

module also adds its own attention scores to each word’s representation. We compute

the dot products of the query with all keys, divide by
√
dk, and apply a softmax

function to obtain the weights on the values, as depicted in Figure C.6

Figure C.6. Illustration of scale-dot product with Q, K, V as inputs.

Instead of performing a single attention function with model-dimensional keys,

values, and queries, It is beneficial to linearly project the queries, keys, and values h

times with different, learned linear projections. On each of these projected versions of

queries, keys, and values we then perform the attention function in parallel, yielding
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Figure C.7. Illustration of score update after multi-head separation.

number of heads dimensional output values. These are concatenated and once again

projected, resulting in the final values, as depicted in Figure C.7.

Multi-scaled attention (MSA) model

Transformers are powerful sequence models capable of passing information from

any position to any other position. However, they are not trivially applied to a set of

aligned sequences. The main contribution MSA model is to extend the transformer

to operate better while respecting its structure matrix. Guo et al. (2020b) propose

to use integer-based distance to limit attention to local word neighbors, which cannot

be used in molecules. This is because different types of molecules have different

densities and molecules of the same type have different spatial regularity, which results

in the nonuniformity of interatomic distances. To address that, a new multi-scale

methodology is designed to robustly capture details. An illustration of the MSA

model can be found in Figure C.8.

88



Figure C.8. Illustration of MSA model as one variant of molformer-based
techniques.

Attentive furthest point sampling (AFPS) model

Figure C.9. Illustration of AFPS model as one variant of molformer-based
techniques.
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The model not only characterizes the atomic local environment by propagating

node information from nearby nodes to more distant ones but also allows for non-

local effects at the intramolecular level. For input, we assume that a molecule, its

positions, and its atomic charge features are extracted like other models. Because the

model is atom-centric, each atom has its own neighbor features that concatenate both

neighboring atoms and the connecting bond features. An illustration of the AFPS

model can be found in Figure C.9.
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[117] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
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