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ABSTRACT

NOVEL ROLES OF STANDARD AND NON-STANDARD NULL

LAGRANGIANS IN CLASSICAL AND QUANTUM PHYSICS

LESLEY CATHERINE VESTAL, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Zdzislaw E. Musielak

The three known families of Lagrangians are standard, non-standard, and null

Lagrangians. While Lagrangians are widely used in physics for their ability to charac-

terize physical systems, most of this work uses only standard Lagrangians. As such,

standard Lagrangians have been studied in physics for around three hundred years;

however, non-standard Lagrangians for systems in physics have been considered only

for a few decades, and null have been ignored almost entirely. Although only some La-

grangians are null Lagrangians, all Lagrangians can be categorized as either standard

or non-standard Lagrangians, meaning that there exist standard null Lagrangians and

non-standard null Lagrangians. My dissertation is devoted to the study of null La-

grangians in physics, with some additional applications of non-standard Lagrangians.

Non-standard Lagrangians, which are Lagrangians with forms different from

standard Lagrangians, have been studied in physics, but significantly less so than

standard Lagrangians. This family of Lagrangians is known for having indiscernible

kinetic and potential energy terms. However, it is shown herein that the non-standard
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Lagrangian for the Law of Inertia preserves its Galilean invariance, which is notably

different from the standard Lagrangian formulation.

Null Lagrangians are a special family of Lagrangians known for yielding iden-

tically zero from the Euler-Lagrange equation, and, in this way, not contributing to

the equation of motion. Although this special but lesser-known family of Lagrangians

has been studied in Mathematics since the 1960s, very little work has been done con-

cerning them outside of this field. Though it might seem that as a result they would

be of little use for physical systems, this could not be farther from the truth. The

work presented in this dissertation comprises what I hope will become the first step

in a larger body of work exploring the role of null and non-standard Lagrangians for

physical systems. To the best of our knowledge, this is the first PhD dissertation

investigating null Lagrangians in physics.

I show how the addition of a null Lagrangian is sufficient to introduce force

to a system, converting an undriven system to a driven one. In this way, forces

naturally arise out of the gauge terms corresponding to these null Lagrangians. A

formalism for constructing null Lagrangians for systems in dynamics, along with a

generalized approach showing how null Lagrangians and their gauge functions can

be linked to known forces, is developed and presented. Further, this formalism for

introducing forces is extended to dissipative systems through an application to the

Bateman oscillator system. It is then shown how nonlinearities can also be introduced

through null Lagrangians, including the Duffing oscillator.

Compelling results from the application of null Lagrangians to physical systems

of increasing complexity are presented and discussed. Particular attention is given to

applications to oscillators, including the Bateman oscillator system, so as to illustrate

the physical implications of the work. Null Lagrangians are found for equations with

special function solutions in mathematical physics, including Bessel functions, and
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Legendre and Hermite polynomials. The connection between a system’s Galilean

invariance and how it behaves under the introduction of specific gauge functions

corresponding to null Lagrangians is discussed and explored for multiple equations of

key interest in physics.

As this work is not constrained to classical dynamics, I then show how to formu-

late physically consistent null Lagrangians for systems in quantum mechanics. The

Galilean invariance of the Schrödinger Lagrangian is investigated. Null Lagrangians of

a similar form to the Schrödinger Lagrangian are presented and whether they can be

used to replace the phase factor required for the aforementioned Galilean invariance

is discussed.

As we seek to better understand our universe, null Lagrangians have the poten-

tial to be a powerful new lens with which to view and investigate physical phenomena;

what underlying symmetries might be uncovered using these new tools? The work

presented in this dissertation shows that the investigation of null Lagrangians for

systems in physics has already yielded exciting results, and that this promising area

of research should be further explored.
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Goldstein et al. (2002), José et al. (2002), and Kahn (1990) . . . . . . 58

4.2 Selected nonlinearities in dynamical systems, from Goldstein et al.
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CHAPTER 1

Introduction

In modern physics, the equations of motion, which describe the time and space

evolution of different physical systems, are obtained by using the laws of physics. The

equation of motion for a given physical system can also be derived by using the so-

called Lagrangian formalism; this is the primary topic of research of this dissertation.

The formalism was originally developed by Euler (1744) and Lagrange (1788). This

effective and elegant procedure is commonly used in classical and quantum mechanics

and is based on the principle of least action. This principle was first formulated by

Maupertuis (1742) and its modern form was proposed nearly a century later by Hamil-

ton (1834). The principle requires a function that is now known as a Lagrangian, the

knowledge of which is necessary to obtain an equation of motion. Different equations

of motion require different Lagrangians, which means that they must be known before

the equations of motion are derived. As no theory exists as of yet that allows for the

construction of Lagrangians from first principles, the forms of such Lagrangians are

often initially found simply by guessing the necessary form such that they yield the

equations of motion, which are already known, for given dynamical systems.

The first attempts at finding a formalism to replace this method of ’guessing’

Lagrangians for a given system by their actual derivations dates back to Helmholtz

(1886), who formulated special conditions for the existence of Lagrangians for a gen-

eral form of second-order differential equations; these include those known in physics.

Over the years, a number of different methods of deriving Lagrangians for given equa-

tions of motion have been developed and detailed references to such work can be found
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in the following chapters of this dissertation. It is well known that Lagrangians are

not unique and that different Lagrangians may give the same equation of motion.

Typically, Lagrangians are classified as standard and non-standard. In standard

Lagrangians, which are very common in physics, the kinetic and potential energy-like

terms can easily be identified. Non-standard, however, have indistinguishable kinetic

and potential energy terms. Nevertheless, despite having very different mathematical

and physical forms, both standard and non-standard Lagrangians they give the same

equations of motion; both of these types of Lagrangians are investigated in this disser-

tation. Further, an additional family of Lagrangians is that of null Lagrangians, whose

main characteristic is that their addition to a standard or non-standard Lagrangian

makes no difference in the resulting equation of motion. This could be taken to imply

that null Lagrangians are of no significance in physics. Thus, the main aim of this

dissertation is to demonstrate the novel role of null Lagrangians in non-relativistic

classical and quantum physics.

This dissertation is organized as follows: Chapter 2 presents the background

for my research by reviewing the Lagrangian formalism along with a brief look at

the historical context of Lagrangians. This chapter introduces the three families of

Lagrangians I will discuss: standard, non-standard, and null Lagrangians. In Chap-

ter 3, I illustrate the difference in standard and non-standard Lagrangians; special

attention is given to the Law of Inertia. The Bateman oscillators are also introduced

and discussed.

Chapters 4 through 6 contain my work with Null Lagrangians. In Chapter 4, I

begin with methods to construct null Lagrangians, including a generalized approach;

further, I show how forces naturally arise out of the gauge terms corresponding to

these null Lagrangians. I then present a compelling result from an application of

standard null Lagrangians to physical systems of increasing complexity. Particular
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attention is given to applications to oscillators, including the Bateman oscillator sys-

tem, to illustrate the physical implications of the work. I also introduce a connection

to nonlinearities and show that nonlinear terms can be formulated in a similar way

to what was done for forces.

Chapter 5 expands the formalism presented in the chapter preceding it and

extends this work to non-standard and non-standard null Lagrangians. An applica-

tion of the null Lagrangian formalism to special functions of key interest in physics

is also presented. The introduction of Galilean invariance by way of the gauge func-

tions associated with null Lagrangians is then discussed. In Chapter 6, I show how

to construct null Lagrangians for quantum fields. The Galilean invariance of the

Schrödinger equation is investigated, along with that of the Schrödinger Lagrangian,

and the associated phase factor is discussed.

Chapter 7 is a summary of key points and findings of my research. Conclusions

are drawn and I explore the implications of these results. Further, suggestions are

made for possible future work in this promising area of physics.
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CHAPTER 2

Background

2.1 Brief Historical Remarks and Motivation

The basic concepts of the calculus of variations were originally established by

Euler (1744). Euler was motivated by work done a couple years prior by de Maupertuis

(1742), who is credited with formulating the principle of least action around the

same time. Notably, some historians point out that Leibniz had already presented

the first version of this principle around 1707. Lagrange (1788) then refined Euler’s

approach and used it to demonstrate that there is a function, which is now known as a

Lagrangian, whose prior knowledge is sufficient to derive the equations of Newtonian

dynamics. Lagrange’s results were published in his work, Analytical Mechanics, first

in 1788. The principle of least action as formulated by Lagrange applies only to

virtual paths whose energy is the same as the real path. This limitation was then

removed by William R. Hamilton in 1834, who formulated his version of the principle

that is now known as Hamilton’s Principle.

Hamilton’s Principle can be stated as follows: ’A mechanical system moves from

one configuration to another in such a way that the variation of the integral of the

Lagrangian over time between the path taken and a neighboring virtual path, coter-

minous in space and time with the actual path, is zero.’ This means that a function

called a Lagrangian must be specified for the principle to be applied. The existence

of this function for second-order ordinary differential equations (ODEs) is guaranteed

by a set of conditions proposed by Helmholtz (1886); the conditions can also be used

to derive Lagrangians for such ODEs. For the next hundred years, most Lagrangians
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considered were standard, in reference to the original Lagrangian for Newton’s laws of

dynamics, introduced first by Lagrange (1788). Note that standard Lagrangians, as

aforementioned, are characterized by the difference between the kinetic and potential

energy terms.

Standard Lagrangians are also sometimes called natural Lagrangians. Further,

Arnold (1978) is credited with first introducing non-natural Lagrangians, which do not

have terms that have clearly discernible energy-like forms but yield the same equations

of motion. Non-natural Lagrangians are now more commonly known as non-standard

Lagrangians and this is the name that will be used to refer to them throughout

this dissertation. Null Lagrangians, also known as trivial Lagrangians, have been

studied in mathematics since early sixties (e.g., Edelen 1962; Eriksen 1962) and still

remain an active area of research in mathematics. Null Lagrangians, another lesser

known family of Lagrangians, were virtually ignored in physics with the exception of

elasticity, where null Lagrangians were associated with the energy density function of

materials (e.g., Anderson et al., 1999). A more detailed description of non-standard

and null Lagrangians is given in Section 2.3.

The primary motivation for performing the research presented in this disserta-

tion was to gain new insight into the physical meaning of null Lagrangians and to

use this insight to explore the different ways that these Lagrangians may contribute

to classical and quantum physics. Because of this strong physical motivation, the de-

scribed research and presented results are novel in physics and significantly different

than those obtained previously by mathematicians. Rather, the main emphasis of this

dissertation is on the physical aspects of null Lagrangians and their applications to

physical systems as well as implications for these systems. To the best of our knowl-

edge, this is the first PhD dissertation in physics fully devoted to null Lagrangians

and their novel roles in classical and quantum mechanics.
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2.2 Lagrangian Formalism and Helmholtz Conditions

The Lagrange formalism deals with a functional A[x(t)], where A is the action

and x(t) is an ordinary (with the maps x : R → R, with R denoting the real

numbers) and smooth (with at least two continuous derivatives C2) function to be

determined. Typically, A[x(t)] is given by an integral over a smooth function L(ẋ, x, t)

that is called a Lagrangian and ẋ, which is a derivative of x with respect to t. The

integral as defined in this way is a mathematical representation of Hamilton’s Principle

(Hamilton, 1834, Goldstein et al., 2002), which requires that δA = 0, where δ is the

variation known also as the functional (or Fréchet) derivative of A[x(t)] with respect

to x(t). Using δA = 0, the Euler-Lagrange (E-L) equation is obtained, and this

equation is a necessary condition for the action to be stationary (to have either a

minimum or maximum or saddle point).

Let ÊL be the Euler-Lagrange operator defined as

ÊL =
d

dt

∂

∂ẋ
− ∂

∂x
. (2.1)

The E-L equation then becomes ÊL[L(ẋ, x, t)] = 0. In general, this equation gives

a second-order ODE that can be further solved to obtain x(t) that makes the action

stationary. This procedure of deriving the second-order ODE from the E-L equation is

known as the Lagrangian formalism; notably, this formalism requires prior knowledge

of L(ẋ, x, t), either as a standard or non-standard form as both give the same equa-

tion of motion. To fully establish the Lagrangian formalism for ordinary differential

equations (ODEs), methods to construct standard or non-standard Lagrangians for

a given ODE must be developed (see Section 2.3). The construction of Lagrangians

for given ODEs is called the inverse calculus of variations problem, also referred to

as the Helmholtz problem.

6



The existence of Lagrangians is guaranteed by the Helmholtz conditions (Helmholtz,

1887; Lopuszanski, 1999), which are necessary and sufficient conditions. Let Fi(ẍj, ẋj, xj, t) =

0 be a set of n ODEs, with i = 1, 2, ..., n and j = 1, 2, ..., n. The Helmholtz conditions

are then

∂Fi

∂ẍj
=
∂Fj

∂ẋi
, (2.2)

∂Fi

∂xj
− ∂Fj

∂xi
=

1

2

d

dt

(
∂Fi

∂ẋj
− ∂Fj

∂ẋi

)
, (2.3)

and

∂Fi

∂ẋj
+
∂Fj

∂ẋi
= 2

d

dt

(
∂Fj

∂ẍi

)
. (2.4)

Further, the conditions can be used to verify whether or not a Lagrangian exists

for a given ODE. For the case that it does exist, the Lagrangian can then be found

from these conditions. Notably, all standard Lagrangians satisfy these conditions.

The same should be true for non-standard Lagrangians; however, there are some ex-

ceptions (e.g., Musielak et al., 2020). Note that null Lagrangians identically satisfy

the Helmholtz conditions, which means that they cannot be determined by these con-

ditions. Therefore, null Lagrangians can be added to any standard or non-standard

Lagrangian without changing the original equation or affecting the Helmholtz cond-

tions.

The Lagrangian formalism requires prior knowledge of a Lagrangian. In gen-

eral, there are no first principle methods to obtain Lagrangians, which are typically

presented without any explanation as to their origin. In physics, most equations

of motion were established first and only then were their Lagrangians found, which

was often done simply by guessing. Once the Lagrangians are known, the process

of finding the resulting dynamical equations is straightforward and can be done by

substituting the given Lagrangians into the E-L equation.
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2.3 Families of Lagrangians

2.3.1 Standard Lagrangians

Lagrangians are widely used in physics to characterize physical systems and

obtain their equations of motion. As originally shown by Lagrange (see Lagrange

1997), Lagrangians for one-dimensional dynamical systems represent the difference

between the kinetic and potential energy of these systems, and they can be written as

L(ẋ, x) = ẋ2/2− V (x), with V (x) being the potential energy; note that the energies

are given per unit mass. It is common to call such Lagrangians standard.

The main characteristic of standard Lagrangians is that their kinetic and po-

tential energy terms can be easily identified. Following Lagrange, in standard La-

grangians the potential energy Epot(x) is subtracted from the kinetic energy, Ekin(ẋ).

Rather, L(ẋ, x) = Ekin(ẋ) − E(x). The equation of motion resulting from this La-

grangian is derived from ÊL[L(ẋ, x)] = 0; it is a second-order ODE. Further, this

obtained equation of motion describes the time evolution of the system whose La-

grangian is L(ẋ, x). Physical systems with well-defined Lagrangians must be con-

servative, as non-conservative systems require significant modifications of standard

Lagrangians, which make these Lagrangians non-standard; this transition from stan-

dard to non-standard Lagrangians is explored in this dissertation, and specific physical

examples are presented and discussed in Chapter 3.

Standard Lagrangians are well-known for conservative dynamical systems of

classical mechanics (CM) such as the law of inertia, undriven and undamped har-

monic oscillators, a linear, undamped pendulum, and other systems. There has also

been some progress in deriving standard and non-standard Lagrangians for physi-

cal systems described by different ODEs (e.g., Helmholtz 1887; Douglas 1941; Hoj-

man 1984, 1992; Musielak 2008; Cieslinski & Nikiciuk 2010; Musielak et al. 2020a,
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2020b). Further, there are standard Lagrangians for quantum systems described

by the Schrödinger equation (e.g., Doughty 1990), which can be derived from the

Lagrangian formalism that deals with fields and wave functions instead of classical

particles (see Chapter 6).

2.3.2 Non-standard Lagrangians

Unlike standard Lagrangians, non-standard Lagrangians (NSLs) are Lagrangians

whose potential and kinetic energy terms are not easily distinguishable. The role of

standard Lagrangians, which have kinetic and potential energy-like terms that can

easily be identified, has been well established in classical mechanics (e.g., Lagrange

1997; Goldstein et al. 2002; Jose & Saletan 2002). Notably, so-called non-standard

Lagrangians have only been introduced to CM in recent years (e.g., Arnold 1978;

Chandrasekhar et al. 2005; Carinena et al. 2005; Nucci & Leach 2007, 2008a, 2008b;

Musielak 2008, 2009; Cieslinski & Nikiciuk 2010; Saha & Talukdar 2014; El-Nabulsi

2011, 2014, 2017; Davachi & Musielak 2019). Non-standard Lagrangians have not yet

been exhaustively studied in physics.

A general non-standard Lagrangian (e.g., Musielak 2009; Cieslinski & Nikiciuk

2010) can be written in the following form

Lns1[ẋ(t), x(t), t] =
1

g1(t)ẋ(t) + g2(t)x(t) + g3(t)
, (2.5)

where g1(t), g2(t) and g3(t) are arbitrary, but at least twice differentiable, scalar func-

tions of time t. This Lagrangian can be used to obtain equations of motion for

dynamical systems whose coefficients depend only on time, t. However, in the case

that the coefficients are functions of the dependent variable, x(t), the non-standard

Lagrangian must be of a different form (e.g., Musielak 2009), and written as

Lns2[ẋ(t), x(t)] =
1

G1(x)ẋ(t) +G2(x)x(t) +G3(x)
, (2.6)
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where G1(x), G2(x) and G3(x) are arbitrary, scalar functions that must be at least

twice differentiable. The Lagrangian Lns1[ẋ(t), x(t), t] has been extensively studied

in the literature (e.g., Musielak 2008, 2009, 2021; Cieslinski & Nikiciuk 2010; and

recently Segovia, Vestal, & Musielak 2022). However, studies of Lns2[ẋ(t), x(t)] are

rather limited (e.g., Musielak 2009; and recently Pham & Musielak 2022). Both La-

grangians are investigated herein and their specific applications to different dynamical

systems is presented and discussed in Chapter 3.

The main procedure for finding these two NSLs is to substitute Lns1[ẋ(t), x(t), t]

and Lns2[ẋ(t), x(t)] into the corresponding E-L equations, and then, by comparing

the resulting equation to the original (given) equation of motion, the functions are

evaluated. The equations of motion must be of specific forms to allow for determining

these functions. The Lagrangians Lns1[ẋ(t), x(t), t] and Lns2[ẋ(t), x(t)] are applicable

to the following respective equations of motion

ẍ+ a(t)ẋ2 + b(t)ẋ+ c(t)x = 0 , (2.7)

and

ẍ+ α(x)ẋ2 + β(x)ẋ+ γ(x)x = 0 . (2.8)

The coefficients a(t), b(t), c(t), α(x), β(x) and γ(x) are at least twice differentiable

functions, and they are given by the form of the equation of motion. The functions

g1(t), g2(t) and g3(t) are expressed in terms of the coefficients a(t), b(t) and c(t) by

substituting Lns1(ẋ, x, t) into the E-L equation. However, the functions G1(x), G2(x)

and G3(x) are determined by substituting Lns2(ẋ, x) into the E-L equation, which

allows for these functions to be expressed in terms of the coefficients α(x), β(x), and

γ(x).

The above results show that the form of the derived NSL is very specific for

a given equation of motion. For this reason, NSLs are often considered to be the
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generating functions that allow for finding equations of motion independently from

standard Lagrangians. One of the main goals of this dissertation is to gain new insight

into the physical meaning of NSLs, which will be done in Chapter 3, where physical

examples of NSLs, namely, Lns1[ẋ(t), x(t), t] and Lns2[ẋ(t), x(t)], are presented for

several dynamical systems.

2.3.3 Null Lagrangians

Lagrangians belonging to the family of Lagrangians called trivial, or null, La-

grangians (NLs) have two main characteristics, namely, they identically yield zero

from the E-L operator (see Eq. 2.1), and they have corresponding gauge functions.

These gauge functions are scalar functions with total derivatives that are equal to

NLs. These properties make it such that NLs do not contribute to the equations of

motion resulting from the E-L equation as standard or non-standard Lagrangians do

when substituted into it. Thus, from a physical point of view, one may consider NLs

to be of no interest for any physical applications. It is the main goal of this disser-

tation to demonstrate that this view is incorrect and that NLs do play important

roles in physics; it will futher be shown that these roles are very different than those

identified by mathematicians in different fields of mathematics.

Studies of NLs in mathematics date back to the early sixties (Edelen 1962;

Eriksen 1962) and have continued throughout the years (e.g., Krupka 1973; Ball

et al. 1981; Hojman 1984; Olver 1993; and others). Null Lagrangians are also an

active current area of research in mathematics (e.g., Crampin and Saunders 2005;

Krupka et al. 2010; Olver 2022; and others). However, NLs have not been used for

practical applications in physics until more recent work (e.g., Musielak & Watson

2020a,b; Vestal & Musielak 2021; 2023); the only exception is application of NLs in
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elasticity, where NLs were identified with the energy density function of materials

(e.g., Anderson et al. 1999; Saccomandi & Vitolo 2006).

Specifically, recent physical applications involved restoring the Galilean invari-

ance of Lagrangians in Newtonian dynamics (Musielak & Watson 2020a), and in-

troducing non-dissipative forces to dynamical systems (Musielak & Watson 2020b;

Vestal & Musielak 2021), nonlinearities (Vestal & Musielak 2023), and dissipative

forces (Segovia et al. 2022); notably, the introduction of forces in these applications

was done independently from the original approach used by Newton and others. In the

described work, it was also recognized that null Lagrangians can be divided into two

families, namely, the so-called standard and non-standard null Lagrangians. The pri-

mary differences between these two families of NLs are very similar to those aforemen-

tioned for the SLs and NSLs. In this dissertation, both standard and non-standard

null Lagrangians are investigated; many different applications of these Lagrangians

in physics are presented and discussed in Chapters 4, 5, and 6.

Recent studies of null Lagrangians demonstrated that there is a different con-

dition that is obeyed by NLs and, further, that this condition plays the same role for

NLs as the E-L equation plays for SLs and NSLs. According to recent work by Das

and Musielak (2022), the condition can be written as

dLnull(ẋ, x)

dt
=
∂Lnull

∂t
+ ẋ

∂Lnull

∂x
+ ẍ

∂Lnull

∂ẋ
= 0 , (2.9)

and it shows that the substitution of any NL into Eq. (2.6) results in an equation

of motion. However, according to Das & Musielak (2022), the resulting equations

of motion are limited because their coefficients are required to obey relationships

that are different for different equations of motion. It was recently shown (Das &

Musielak 2023) that the limitations of this approach can be removed by a significant

12



generalization of the original method and its basic Eq. (2.9); for more details, see

Chapter 5.

In the work performed by Das & Musielak (2022, 2023), it was also demon-

strated that the inverse of any null Lagrangian generates a non-standard Lagrangian,

whose substitution into the E-L equation gives a new equation of motion. This is

an interesting result that shows the close relationship between NLs and NSLs. This

relationship allows for the construction of new NSLs for all known NLs, and for new

equations of motion for dynamical systems to be obtained. The results of Das &

Musielak (2022, 2023) will be used in Chapter 5 to relate the derived NLs to NSLs

and the resulting equations of motion will be discussed.

2.4 Main Goals of this Dissertation

The primary goal of this dissertation is to communicate the impact and potential

of null Lagrangians for research in physics, as well as the work being done. Herein,

I aim to show how null and non-standard Lagrangians can be used to characterize

systems in physics; the addition of a null Lagrangian to a standard Lagrangian for a

given system is shown to be sufficient to convert an undriven, conservative system to

one that is driven.

I also present a generalized formalism for directly relating forces and gauges.

Forces arise out of gauge terms by way of their corresponding null Lagrangians. This

formalism is a new way of introducing forces to systems in physics. Further, nonlin-

earities can be introduced to a system also through the addition of a null Lagrangian.

Another goal of this dissertation is to present the work that has been done thus

far concerning null Lagrangians and gauge functions for systems in physics. As the

study of null Lagrangians is relatively new in physics, it is advantageous to discuss

the work that has been done. Further, null Lagrangians are presented for special
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functions of key importance in physics. Finally, it is also shown how null Lagrangians

can be written for systems in quantum mechanics.

As much of our physical universe is not yet understood, investigating underlying

symmetries, such as the way gauge terms are able to introduce forces and nonlinear-

ities to a system, may shed light on phenomena not as-of-yet understood. Viewing

physical phenomena through this new lens may be the key to new connections and

compelling discoveries.
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CHAPTER 3

Standard and Non-standard Lagrangians for Dynamical Systems

Standard Lagrangians (SLs) have been widely used in multiple areas of physics

since being originally introduced by Lagrange in 1788 (see Lagrange 1997), and their

specific applications to derive the equations of motion for several well-known dynam-

ical systems will be discussed in this chapter. However, non-standard Lagrangians

have been used only recently, and the main reason for this is the fact that NSLs lack

distinguishable kinetic and potential energy terms, thus, their physical meaning still

remains unclear. Therefore, the emphasis of this chapter will be mainly on NSLs,

as SLs are commonly known and presented in most textbooks of classical mechanics

and dynamics. One of the goals of this dissertation is to present NSLs for several

well-known dynamical systems and also to give new insight into the physical meaning

of the NSLs as well as to discuss their potentials as new and promising tools to study

dynamical systems (e.g., Goldstein et al. 2002; José & Saletan 2002). The following

presentation of SLs and NSLs begins with Newton’s law of inertia.

3.1 The Law of Inertia

3.1.1 Standard and Non-standard Lagrangians

Newton’s first law, also called the law of inertia, describes the motion of an

object with an unchanging velocity. It states that a body at rest will stay at rest and

a body in motion at a constant speed will maintain this motion unless acted upon

by an outside force (see Goldstein et al. 2002; Jose & Saletan 2002). For the law
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of inertia, the SL is well known and was originally derived by Lagrange in 1788 (see

Lagrange 1997); it can be written as

Ls(ẋ) =
1

2
ẋ2. (3.1)

Substitution of Ls(ẋ) into the E-L equation gives the equation of motion, ẍ = 0 (e.g.,

Goldstein et al. 2002; Jose & Saletan 2002). Notably, while the equation of motion

is invariant with respect to all transformations that form the Galilean group of the

metric (Landau & Lifshitz 1969; Levy-Leblond 1963, 1967), its SL is not; however, it

was recently shown that the Galilean invariance of Ls(ẋ) can be restored by using a

null Lagrangian (Musielak & Watson 2020). Further discussion of this problem can

be found in Chapter 5.

A general form of NSLs is given by Eq. (2.5) and, after evaluation of its functions

g1(t), g2(t), and g3(t) by using the law of inertia, the following NSL is obtained

Lns[ẋ(t), x(t), t] =
1

C1(aot+ vo)2[(aot+ vo)ẋ(t)− aox(t) + C2]
, (3.2)

where C1 and C2 are constants of integration, with vo and ao specified by the initial

conditions for solving the auxiliary differential equation (Musielak 2021). An inter-

esting result is that this Lagrangian gives the law of inertia, which is conservative,

despite the fact that it explicitly depends on time. This non-standard Lagrangian

was used by Segovia, Vestal, & Musielak (2022) to introduce dissipative forces into

the law of inertia and convert it into the second law of dynamics (see also Chapter

5).

Recently, Das & Musielak (2022) considered another NSL for the law of inertia;

the form of this Lagrangian was fairly simple:

Lns[ẋ(t)] =
1

Cẋ(t)
, (3.3)
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where C is an arbitrary constant. Comparison of Eq. (3.2) to Eq. (3.3) shows the

same equation of motion is obtained by the two very different NSLs, with the first

one being explicitly time-dependent, and the second one time-independent. Since

Newton’s law of inertia is the fundamental equation in Galilean relativity, its Galilean

invariance must be guaranteed (Landau & Lifshitz 1969). Similarly, the second law

of dynamics is also required to be Galilean invariant; however, the latter depends on

the form of external force used in the equation

3.1.2 Galilean Invariance

The background space and time of non-relativistic classical mechanics is de-

scribed by the Galilean metrics ds21 = dt2 and ds22 = dx2 + dy2 + dz2, where t is time

and x, y and z are Cartesian coordinates associated with an inertial frame of reference

(Goldstein et al. 2002; Jose and Salatan 2002). The metrics are invariant with respect

to rotations, translations, and boosts, which form the Galilean transformations or the

Galilean group of the metric, whose structure is G = [T (1)⊗R(3)]⊗s [T (3)⊗B(3)];

T (1), R(3), T (3) and B(3) are the subgroups of translation in time, rotations in space,

translations in space, and boosts, respectively (Levy-Leblond 1963, 1967). The sub-

groups T (1), T (3) and B(3) are Abelian Lie groups; however, the subgroup B(3) is

a non-Abelian Lie group. The direct product is denoted as ⊗, and ⊗s denotes the

semi-direct product.

In Newtonian dynamics, the Galilean transformations induce a gauge transfor-

mation, which is called the Galilean gauge (Levy-Leblond 1969). The presence of

this gauge guarantees that Newton’s law of inertia is invariant with respect to the

Galilean transformations, and it also shows that its standard Lagrangian is not (Lan-

dau & Lifshitz 1969, Levy-Leblond 1969). As shown by Musielak & Watson (2020a),
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the Galilean invariance of this Lagrangian can be restored through the addition of a

null Lagrangian and its gauge function; more details are given in Chapter 5.

To demonstrate the Galilean invariance of the non-standard Lagrangian given

by Eq. (3.2), we follow Segovia, Vestal, & Musielak (2022) and start with this La-

grangian in the following form

Lns(ẋ, x, t) =
1

C1f 2(t)[f(t)ẋ− aox+ C2]
, (3.4)

where f(t) = aot+ vo. After the Galilean transformations, the Lagrangian becomes

L′
ns[ẋ

′(t′), x′(t′), t′] =
1

C ′
1f

′ 2(t′)[f ′(t′)ẋ′(t)− a′ox
′(t′) + C ′

2 + v′oV0]
. (3.5)

Galilean invariance of Lns(ẋ, x, t) requires that its form is the same as L′
ns[ẋ

′(t′), x′(t′), t′].

For the original and transformed Lagrangians to be of the same form in the variables

x(t) and x′(t′), the following conditions must be satisfied: (i) f ′(t′) = f(t), which re-

quires that a′o = ao and v
′
o = vo; further, it is also required that t′ = t, as guaranteed

by the Galilean transformation; (ii) C ′
1 = C1 is satisfied in all intertial frames; and

(iii) C ′
2 + voV0 = C2 is valid for all Galilean observers.

Since ao and vo are the integration constants for the auxiliary equation (Musielak

2021), and C1 and C2 are the constants of integration for the law of inertia, these

constants are determined by the initial conditions to be specified for a given physical

problem to be solved. However, both the auxiliary equation and the law of inertia

are Galilean invariant; thus, the solutions to these equations must be also (Galilean

invariant) in all inertial frames. The latter is equivalent to the requirement that the

specified initial conditions are also the same for all Galilean observers, which validates

the above conditions (i) and (ii). The condition (iii) shows that C ′
2 ̸= C2 and that

the constant C ′
2 must be modified by adding another constant voV0 to it as compared

to C2. This addition is known in advance by all Galilean observers, who, by their

definition, already agreed on the Galilean invariance.
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Thus, the non-standard Lagrangian for the law of inertia given by Eq. (3.2)

is Galilean invariant, which distinguishes it from the standard Lagrangian, whose

original form is not Galilean invariant (Landau & Lifshitz, 1969), and from the non-

standard Lagrangian given by Eq. (3.3), which is not Galilean invariant; for further

discussion of this non-standard Lagrangian, see Chapter 5.

3.2 Harmonic Oscillators

In classical mechanics, a harmonic oscillator is a system that undergoes simple

harmonic motion about an equilibrium point when displaced from that point. The

restoring force for this system depends on the spring constant and linearly on the

system’s displacement from the equilibrium. Thus, the force can be written as

F = −kx, (3.6)

where x is the displacement of the center of mass of the oscillator from its equilibrium

position, F is the restoring force, and k is the spring constant; this is referred to as

Hooke’s Law (Goldstein et al., 2002; Jose & Saletan, 2002). Then, the resulting

equation of motion is

ẍ+ ω2
ox = 0, (3.7)

where ω2
o = k/m is the natural frequency of the oscillator.

The standard Lagrangian for this simple harmonic oscillator has been known

since Lagrange’s original work (see Lagrange 1997) and is typically written as

Ls(ẋ, x) =
1

2

(
ẋ2 − ω2

ox
2
)
. (3.8)
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Substitution of this Lagrangian into the E-L equation gives Eq. (3.7). However,

the non-standard Lagrangian for this system was found by Havas (1957), which is as

follows,

Lns(ẋ, x, t) =
ẋ

ωox
arctan

(
ẋ

ωox

)
− 1

2
ln
(
ẋ2 + ω2

ox
2
)
. (3.9)

Comparison of Ls(ẋ, x) to Lns(ẋ, x, t) shows that the form of the latter is more compli-

cated than that of the former. A different form of Lns(ẋ, x, t) for the simple harmonic

oscillator was derived by Das & Musielak (2022b), who related their non-standard

Lagrangian directly to a null Lagrangian and its gauge function (see Chapter 5).

3.3 Bateman Oscillators and the Caldirola-Kanai Lagrangian

Bateman (1931) proposed a model that consists of two uncoupled oscillators,

with one oscillator in the model being damped or time-forward while the second one

is amplified or time-reversed; this model is now referred to as the Bateman model or

the Bateman oscillators (e.g., Vestal & Musielak 2021). The equations of motion for

the Bateman model are

mẍ(t) + γẋ(t) + kx(t) = 0 , (3.10)

and

mÿ(t)− γẏ(t) + ky(t) = 0 , (3.11)

where x(t) and y(t) are coordinate variables, and ẋ(t) and ẏ(t) are their derivatives

with respect to time t. Further, m is mass, γ represents the damping coefficient, and

k is the spring constant. The equations of motion given by Eqs (3.10) and (3.11)

describe damped and amplified oscillators, respectively. The equations are uncou-

pled; however, they are related to each other by the transformation [x(t), y(t), γ] →

[y(t), x(t),−γ], which allows for the replacement of Eq. (3.10) by Eq. (3.11) and

vice versa. Notably, the general solutions of the equations of motion for the Bateman
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model are well-known and given in terms of elementary functions (e.g., Murphy 2011,

Razavy 2017).

As originally shown by Bateman (1931), the equations of motion given by Eqs

(3.10) and (3.11) can be derived from the following Lagrangian, which is known in

the literature as the Bateman Lagrangian

LB[ẋ(t), ẏ(t), x(t), y(t)] = mẋ(t)ẏ(t) +
γ

2
[x(t)ẏ(t)− ẋ(t)y(t)]

−kx(t)y(t) . (3.12)

By substituting this Lagrangian into the E-L equations for y(t) and x(t), the result-

ing equations of motion for the damped and amplified oscillators are obtained (e.g.,

Vujanovic and Jones 1989). The Bateman Lagrangian has also been used to quantize

the damped harmonic oscillator (Weiss 2008, Razavy 2017; see also Pais & Uhlenbeck

1950, Feshbach & Tikochinsky 1977, Deguchi et al. 2019, Bagarello et al. 2019, 2020).

Let us follow Vestal & Musielak (2021) and define b = ±γ/m and c = k/m = ω2
o ,

where ωo is the characteristic frequency of the oscillators. Then, we write Eqs (3.10)

and (3.11) as one equation of motion

ẍ(t) + bẋ(t) + ω2
ox(t) = 0 , (3.13)

with the understanding that the damped and amplified oscillators require b > 0 and

b < 0, respectively, and that the variable x(t) describes either damped or amplified

oscillator. Let D̂ = d2/dt2 + bd/dt+ ω2
o be a linear operator; Eq. (3.13) can then be

written in the compact form D̂x(t) = 0.

The first-derivative term in Eq. (3.13) can be removed by using the standard

transformation of the dependent variable (Kahn 1990). The transformation is

x(t) = x1(t)e
−bt/2 , (3.14)
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where x1(t) is the transformed dependent variable, and it gives

ẍ1(t) +

(
ω2
o −

1

4
b2
)
x1(t) = 0 . (3.15)

Despite the fact that the first derivative term is removed, the coefficient b is still

present in the transformed equation of motion. However, if b = 0, then x1(t) = x(t)

and Eq. (3.15) becomes the equation of motion for a undamped harmonic oscillator

(Goldstein et al., 2002 José & Saletan, 2002).

The standard Lagrangian for this equation is

Ls[ẋ1(t), x1(t)] =
1

2

[
(ẋ1(t))

2 −
(
ω2
o −

1

4
b2
)
x21(t)

]
, (3.16)

and its substitution into the E-L equation gives Eq. (3.15).

The derived equation of motion and its standard Lagrangians are expressed

in terms of the dynamical variable x1(t). Let us now use Eq. (3.14) to make the

inverse transformation and convert the variable x1(t) into x(t) in Ls[ẋ1(t), x1(t)]. The

resulting Lagrangian is

Ls[ẋ(t), x(t), t] = LCK [ẋ(t), x(t), t] , (3.17)

where

LCK [ẋ(t), x(t), t] =
1

2

[
(ẋ(t))2 − ω2

ox
2(t)
]
ebt , (3.18)

is the Caldirola-Kanai (CK) Lagrangian (Caldirola 1941, Kanai 1948), which is de-

rived here independently; comparison of the CK and Bateman Lagrangian (Eqs (3.18)

and (3.12)) shows significant differences in their forms and physical meaning.

The CK Lagrangian, LCK [ẋ(t), x(t), t], when substituted into the E-L equation,

yields [D̂x(t)]ebt = 0, which is consistent with all Helmholtz conditions that are valid

for any system of ordinary differential equations (Helmholtz 1887, Vujanovic & Jones

1989). However, with ebt ̸= 0, the resulting D̂x(t) = 0 does obey the first and second
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Helmholtz conditions (see Eqs (2.2) and (2.3)), but fails to satisfy the third condition

(see Eq. (2.4)). This shows that, after the division by ebt, the equation of motion

fails to satisfy the third Helmholtz condition (Musielak, Vestal, et al. 2020).

The role of the CK Lagrangian in deriving the equation of motion for the

Bateman oscillators has been questioned in the literature (Ray 1979, Segovia-Chavez

2018) and it was concluded that the CK Lagrangian does not describe the Bateman

oscillators but instead a different oscillatory system in which the mass is increasing

(b > 0) or decreasing (b < 0) exponentially in time. However, as pointed out recently

by Torres del Castillo (2019), the previous work has some conceptual errors that led

to incorrect conclusions.

The results presented by Vestal & Musielak (2021) and described in this dis-

sertation show that the total energy and the linear momentum decrease (increase)

in time for the damped (amplified) Bateman oscillators, which is consistent with the

physical picture of these dynamical systems. The increase (decrease) of the canonical

momentum in time does not contradict this picture, but instead it guarantees that

the CK Lagrangian can be used to derive the equations of motion for the Bateman os-

cillators. These results and conclusions are consistent with those previously obtained

by and described by Torres del Castillo (2019).

Having obtained and discussed the standard (CK) Lagrangian for the Bateman

oscillators, the non-standard Lagrangian for these dynamical systems will now be

presented. As already shown in Section 3.2, the non-standard Lagrangian for an

undamped harmonic oscillator was found by Havas (1957) (see Eq. 3.9). Let us

now modify Havas’ non-standard Lagrangian so that it accounts for damping. This
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modification requires that we multiply the Lagrangian by the exponential term ebt,

as was done for the CK Lagrangian, and the result is

Lns(ẋ, x, t) =

[
ẋ

ωox
arctan

(
ẋ

ωox

)
− 1

2
ln
(
ẋ2 + ω2

ox
2
)]
ebt. (3.19)

Comparison of this non-standard Lagrangian to the standard (CK) Lagrangian shows

that the former is more complicated than the latter. Further, the fact that there are

also different forms of non-standard Lagrangians for the Bateman oscillators has been

recently demonstrated by Das & Musielak (2023).

3.4 Special Functions of Mathematical Physics

Special functions (SFs) are of key interest in mathematical physics as they are

solutions of second-order ordinary differential equations (ODEs). In this way, they

play important roles in both classical and quantum physics. Typically, ODEs whose

solutions are special functions are obtained by using the method of separation of

variables in hyperbolic, parabolic, and elliptic partial differential equations (PDEs)

(e.g., Cantrell, 2000; Bayin, 2006; Murphy, 2011). Another (lesser known) method

is based on Lie groups, whose irreducible representations (irreps) are used to find

the SFs and their corresponding ODEs (e.g., Miller 1968, Nikiforov & Uvarov 1988,

Cantrell 2000, Mathai & Haubold 2008). The Lagrangian formalism for the ODEs

with SFs solutions was established by Musielak et al. (2020). In this section, some

key results pertaining to standard and non-standard Lagrangians from this work will

be presented.

To introduce ODEs with SF solutions, let us first change the notation used in

the previous sections in this chapter, where dynamical systems were considered; x

was used as their dependent variable, and t was the independent variable. Since SFs

are solutions to ODEs describing different physical and mathematical systems, which
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may or may not be dynamical ones, in the notation used in this section, the dependent

variable is y and x is the independent variable. One of the justifications for this choice

is the fact that this notation is commonly used in applied mathematics, physics, and

engineering. In the following, the presented standard and non-standard Lagrangians

were originally obtained by Musielak et al. (2020), and they are presented here

in preparation for a more detailed discussion of null Lagrangians and their gauge

functions derived for the ODEs with SF solutions by Dange, Vestal, & Musielak

(2021) - see Chapter 5.

Let D̂ = d2/dx2 + B(x)d/dx + C(x) be a linear operator with B(x) and C(x)

being ordinary (with the maps B : R → R and C : R → R, withR denoting the real

numbers) and smooth functions with at least two continuous derivatives (C2) defined

either over a restricted interval (a, b) or an infinite interval (−∞,∞), depending on

the form of the ODE with SF solutions. Now, let D̂y(x) = 0 be a linear second-

order ODE with non-constant coefficients. The functions B(x) and C(x) can then be

selected such that the resulting equations represent all the ODEs whose solutions are

SFs. In the following, the general forms of constructed standard and non-standard

Lagrangians are presented and then used to find such Lagrangians for the Bessel,

Legendre, and Hermite equations.

The constructed standard Lagrangians, denoted here as Ls, are of the form:

Ls[y
′(x), y(x), x] = Gs[y

′(x), y(x), x] Es(x) , (3.20)

where

Gs[y
′(x), y(x), x] =

1

2

[
(y′(x))

2 − C(x)y2(x)
]
, (3.21)

and Es(x) = exp [
∫ x

B(x̃)dx̃]. Since Es(x) is only a function of one independent

variable, x, the lower limit must be an arbitrary constant, which can be omitted

because such constant has no effect on the Lagrangian formulation. Note that in
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a special case of B(x) = constant, Ls[y
′(x), y(x), x] becomes the Caldirola–Kanai

Lagrangian (see Section 3.3, and also Vestal & Musielak 2021).

To construct non-standard Lagrangians for the ODEs with the SFs solutions,

Dange, Vestal, & Musielak (2021) considered the form of such Lagrangian as given

by Eq. (2.5) and wrote it as Lns[y
′(x), y(x), x] = 1/[f(x)y′(x) + g(x)y(x)], where

the functions f(x) and g(x) are to be determined for a given ODE. In general, the

non-standard Lagrangian is

Lns[y
′(x), y(x), x] = Hns[y

′(x), y(x), x] Ens(x) , (3.22)

where

Hns[y
′(x), y(x), x] =

1

[y′(x)v̄(x)− y(x)v̄′(x)] v̄2(x)
(3.23)

and Ens(x) = exp [−2
∫ x

B(x̃)dx̃], with the necessary auxiliary condition D̂v̄(x) = 0.

Let us now apply the above results to the Bessel, Legendre, and Hermite equa-

tions, for which both standard and non-standard Lagrangians are constructed. The

standard Lagrangians are constructed using Eqs (3.20) and (3.21), and for the non-

standard Lagrangians Eqs (3.22) and (3.23) are used.

Bessel equation

Let us write the Bessel equation in the following general form

y′′(x) +
α

x
y′(x) + β

(
1 + γ

µ2

x2

)
y(x) = 0 , (3.24)

where B(x) = α/x and C(x) = β(1 + γµ2/x2). In addition, α, β, γ, and µ are con-

stants, and their specific values determine the four different types of Bessel equations

(see Table 3.1).

Then, the standard and non-standard Lagrangians for Eq. (3.24) are

Ls[y
′(x), y(x), x] =

1

2

[
(y′(x))

2 − β

(
1 + γ

µ2

x2

)
y2(x)

]
xα , (3.25)
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and

Lns[y
′(x), y(x), x] = Hns[y

′(x), y(x), x] x−2α , (3.26)

where Hns[y
′(x), y(x), x] is given by Eq. (3.23),

The auxiliary condition that must supplement Lns[y
′(x), y(x), x] is given by

v̄′′(x) +
α

x
v̄′(x) = −β

(
1 + γ

µ2

x2

)
v̄(x) , (3.27)

and this condition is required in order to derive the original Bessel equation given by

Eq. (3.24) from the E-L equation.

Legendre Equations

There are the regular and associated Legendre equations, and the latter can be

written as

y′′(x)− 2x

(1− x2)
y′(x) +

[
l(l + 1)

(1− x2)
− m2

(1− x2)2

]
y(x) = 0 , (3.28)

where l andm are constants, and whenm = 0 the above equation becomes the regular

Legendre equation. Then, the standard and non-standard Lagrangians are

Ls[y
′(x), y(x), x] =

1

2
[y′(x)]

2
(1− x2)

−
[
l(l + 1)

(1− x2)
− m2

(1− x2)2

]
y2(x)(1− x2) , (3.29)

Lns[y
′(x), y(x), x] = Hns[y

′(x), y(x), x] (1− x2)−2 , (3.30)

where Hns[y
′(x), y(x), x] is given by Eq. (3.24).

Hermite Equation

The Hermite equation can be written as

y′′(x)− xy′(x) + ny(x) = 0 , (3.31)

where n is any integer. Comparing this equation to D̂y(x) = 0, we find B(x) = −x

and C(x) = n. The range of validity of the Hermite equation is x ϵ (0,∞).
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The explicit forms of the standard and non-standard Lagrangians for the Her-

mite equation are

Ls[y
′(x), y(x), x] =

1

2

[
(y′(x))

2 − ny2(x)
]
e−x2/2 , (3.32)

Lns[y
′(x), y(x), x] = Hns[y

′(x), y(x), x]ex
2

, (3.33)

where Hns[y
′(x), y(x), x] is given by Eq. (3.24). The auxiliary condition given by

v̄′′(x) + xv̄′(x) = −nv̄(x) , (3.34)

must also be used to derive the original equation from the non-standard Lagrangian.

The above results presented here by following Musielak et al. (2020) have been

significantly extended by Dange, Vestal, & Musielak (2021), who constructed null

Lagrangians and their gauge functions for ODEs with SF solutions (see Chapter 4).

3.5 Biological Applications

Another compelling application of Lagrangians has been to biological systems.

Lagrangians were first applied in the field of theoretical biology by Kerner (1964).

Kerner noted that many systems in biology, such as population kinetics in ecolog-

ical theory, are given in terms of first-order ODEs. Later, Paine (1982) studied

Lagrangians for similar sets of ODEs following the original work of Helmholtz (1887).

The first specific applications of the Lagrangian formalism to population dynamics

were done by Trubatch & Franco (1974), who obtained in an ad hoc manner La-

grangians for the population dynamics models such as the Lotka-Volterra (Lotka,

1925; Volterra, 1926), Verhulst (1838), Gompertz (1825), and Host-Parasite (Collins

et al., 1956) models. The Lagrangians found for the models were formally derived

by Nucci & Tamizhmani (2012), who used the method based on the Jacobi Last

Multiplier (Nucci & Leach 2007). The derived Lagrangians were non-standard and
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therefore treated as generating functions whose substitution into the E-L equation

gave the evolution equations for the models.

Among a large variety of biological systems, population dynamics plays a special

role as it is the key to understanding the relative importance of the competition

for resources and predation in complex communities, and for preserving biodiversity

(Turchin, 2003a,b; Oro, 2013). Population dynamics models that describe interacting

species are typically expressed by ODEs, which are first-order, coupled, damped, and

nonlinear (Turchin, 2003a,b). Despite the presence of damping and nonlinearities in

such models, no clear demonstration of the onset of chaos has yet been shown (e.g.,

Rai & Upadhyay, 2004). However, some studies have suggested that insect population

dynamics can undergo transitions between stable and chaotic phases for models near

a transition point between order and chaos (e.g., Figueroa et al., 2020).

In recent work (Pham & Musielak, 2023a), the standard Lagrangians were con-

structed for the above listed population dynamics models with one additional model

included; this is the SIR model (Kermack & McKendrick, 1927) and it describes the

spread of a disease in a population. In the constructed standard Lagrangians, kinetic

energy-like terms and potential energy-like terms were identified and their roles in

population dynamics were discussed. It was also suggested that the identification of

these energy-like terms may become an efficient way of comparing biological models.

Further, it was found that force-like terms appear for some of these models. For

the models of population dynamics for interacting species, an oscillator-like behavior,

with respect to a given system’s equilibrium, was observed. In the following, a brief

description of the results obtained by Pham & Musielak (2023a) is presented.

Typical equations of motion of population dynamics models can be written in

the following form

ẍ+ α(x)ẋ2 + γ(x)x = F (x, ẋ), (3.35)
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where x(t) represents the population of species and the force-like term is given by

F (x, ẋ) = C0 − β(x)ẋ, (3.36)

with C0 being a constant. Note that F (x, ẋ) has the dissipative term β(x)ẋ, which is

by itself a null Lagrangian (see Chapter 4).

According to the method developed by Pham & Musielak (2023a), the con-

structed standard Lagrangian can be written as

L(ẋ, x) =
1

2
ẋ2e2Iα(x) −

x∫
x̃γ(x̃)e2Iα(x̃)dx̃ , (3.37)

where

Iα(x) =

x∫
α(x̃)dx̃ , (3.38)

and ÊL[L(ẋ, x)] = F (ẋ, x)e2Iα(x) or more explicitly

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= F (ẋ, x)e2Iα(x) . (3.39)

The presence of the term F (ẋ, x)e2Iα(x) is justified by the fact that this term does

not arise from any potential (e.g., Goldstein et al., 2002). The presented method was

used by Pham & Musielak (2023a) to construct standard Lagrangians for the fol-

lowing population dynamics systems: the Lotka-Volterra, Verhulst, Gompertz, Host-

Parasite, and SIR models.

The above work to construct the standard Lagrangians for the population dy-

namics models was followed by Pham & Musielak (2023b), who developed another

method to construct non-standard Lagrangians. The method requires that the equa-

tions of motion for the population dynamics models (see Eq. 3.35) is written as

ẍ+ α(x)ẋ2 = Fdis(ẋ, x) , (3.40)
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where

Fdis(ẋ, x) = F (x)− β(x)ẋ− γ(x)x , (3.41)

becomes a dissipative force because of its dependence on ẋ(t). Then, the required

E-L equation can be written as

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Fdis(ẋ, x)e

2Iα(x) , (3.42)

where the force on the RHS of this equation is known as the Rayleigh force (Goldstein

et al. 2002). The form of the non-standard Lagrangians that must be used to obtain

the equation of motion (see Eq. 3.40) is given by Eq. (2.6), and after evaluating the

arbitrary functions in this equation, the final Lagrangian becomes

Lns(ẋ, x) =
1

ẋeIα(x) + Co

, (3.43)

where Co is an arbitrary constant.

As demonstrated by Pham & Musielak (2023b), the obtained non-standard

Lagrangian has no restrictions or limitations and it exists for any differentiable coeffi-

cient α(x) regardless of the forms of β(x) and γ(x). Therefore, Lns(ẋ, x) was used to

derive non-standard Lagrangians for the Lotka-Volterra, Verhulst, Gompertz, Host-

Parasite, and SIR population dynamics models. An interesting result obtained by

Pham & Musielak (2023b) is that the derived non-standard Lagrangians are directly

related to null Lagrangians and their gauge function; thus, the first null Lagrangians

and gauge functions for the considered models were also derived.

3.6 Summary

While standard Lagrangians have been utilized at length for their ability to

efficiently and effectively describe physical systems, non-standard Lagrangians, con-

trastingly, have not. In this chapter, some standard and non-standard Lagrangians
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of importance in physics were introduced, and the differences and similarities be-

tween these two families of Lagrangians were highlighted. Notably, non-standard

Lagrangians do not have distinguishable kinetic and potential energy terms; this at-

tribute differs from their standard Lagrangian counterparts, and in this chapter I

discussed how also the non-standard Lagrangian form of the law of inertia is Galilean

invariant, which is not true for the standard Lagrangian formulation. Non-standard

Lagrangians for harmonic oscillators were then discussed, along with work in this area

relevant to non-standard Lagrangians. Our work investigating the Bateman model

and how it relates to the CK Lagrangian was also discussed. Special functions of key

importance for systems in physics are presented as they will be further discussed in

Chapter 4. Lastly, a brief history of the application of Lagrangians to the field of the-

oretical biology is given; special attention is given to recent work in which standard

and non-standard Lagrangians are used for models of population dynamics.

The law of inertia was presented along with its standard Lagrangian form and an

equivalent non-standard Lagrangian form. Another system of key interest in physics,

the harmonic oscillator, was discussed; a dissipative system of oscillators was also

introduced. Some applications of the Bessel, Hermite, and Legendre equations were

given. Lastly, biological applications of standard and non-standard Lagrangians were

described.
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Table 3.1. Values of the constants α, β, γ, and µ in Equation (3.24) corresponding
to the four types of Bessel equations.

Bessel Equations α β γ µ
Regular 1 1 −1 real or integer
Modified 1 −1 1 real or integer
Spherical 2 1 −1 µ2 = l(l + 1)
Modified spherical 2 −1 1 µ2 = l(l + 1)
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CHAPTER 4

Standard Null Lagrangians and their Novel Roles in Dynamics

In this chapter, my research involving null Lagrangians is introduced. I walk

through the steps for introducing novel gauge functions (GFs) from null Lagrangians

to non-relativistic classical mechanics, and how they are used to define forces. The

results presented are from multiple projects investigating null Lagrangians and gauges

in which I have had a significant role; they show that gauge functions directly affect

the energy function and that they allow for the conversion of an undriven physical

system into a driven one, which is one of the main focuses of this dissertation. This

is a novel phenomenon in dynamics that resembles the role of gauges in quantum

field theory. The discussion contained in this chapter is limited to standard null

Lagrangians; the chapter to follow will address non-standard null Lagrangians and

extend the formalism developed herein.

The layout is as follows: In 4.1, I introduce two methods to construct standard

null Lagrangians (SNLs) and I comment on why null Lagrangians are so compelling

for research in physics. The connection between NLs and forces is then explored in

section 4.2. An application of null Lagrangians to oscillators is presented in section

4.3; gauge functions corresponding to NLs are found and forces are introduced for the

harmonic oscillator, demonstrating how the formula may be applied to a simple sys-

tem and allowing for the conversion of this conservative, undriven system to a driven

one. In section 4.4, it is shown also how gauge functions can be used to convert the

undriven Bateman oscillators into driven ones; this result is important and novel in

that the formalism is extended here to dissipative systems. In section 4.5, a com-
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pelling direct link between gauge functions and forces is presented, and I illustrate

the connection between these as well as to null Lagrangians. Then, in section 4.6,

a new and promising area of NL research is presented. The formalism developed in

section 4.5 (general NLs) is used and a new way and is shown to reproduce nonlin-

earities, extending the list of applications of this method beyond the introduction of

forces. This is followed in section 4.7 by a discussion of null Lagrangians for some

ODEs with special function (SF) solutions that are of key interest in physics. This

project further illustrates the vast range of applications of NLs and GFs by this time

focusing on SFs. A short summary is presented at the close of the chapter.

4.1 Methods to Construct Standard Null Lagrangians

Multiple methods to construct NLs have been described in the literature (e.g.,

Krupka et al., 2010; Olver, 2022; Musielak & Watson, 2020a,b; Vestal & Musielak,

2021; 2023). In this section, I discuss two methods of constructing null Lagrangians

and their corresponding gauges. The first method restricts the orders of the dependent

and independent variables, yielding uncomplicated NL terms that can be directly

added to the Lagrangian of a given system, and its development was presented in

several papers (e.g., Musielak & Vestal et al., 2020; Vestal & Musielak 2021; Dange,

Vestal, & Musielak 2021). The second method was introduced more recently by Vestal

& Musielak (2023). This alternate method, which successfully reproduces NLs, gauge

terms, and forces that match those previously published, was developed with the aim

of creating a generalized framework for finding all NLs and force terms for a given

system.
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4.1.1 First Method

In this first method, NLs and their gauge functions are found for second-order

ordinary differential equations (ODEs) in one dimension. The constructed NLs are

of lower or comparable orders to the standard Lagrangian for a given equation and

depend on arbitrary constant coefficients, which are replaced here with arbitrary

functions of the independent variable. This is done for a non-dissipative oscillator

system, and the NLs developed are further physically investigated in the context of

this system in Musielak & Vestal et al. (2020).

For the simple oscillators, the independent variable t is time and the dependent

variable x(t) is a displacement. Let D̂ = d2/dt2 + c be an linear differential operator,

with c being a constant whose value may change from one dynamical system to

another, and let Q be a set of all ODEs of the form D̂x(t) = 0; depending on the

physical meaning of x(t) and c, the ODEs of Q may describe different linear oscillators,

including linear pendulums. General solutions of these ODEs are well-known and can

be written as x(t) = c1x1(t) + c2x2(t), where c1 and c2 are integration constants, and

x1(t) and x2(t) are the solutions given in terms of the elementary functions (Murphy

2011; Teschl 2012). The Lagrangian formalism is established for the ODEs of Q.

First, let Lm[ẋ(t), x(t)] be a mixed Lagrangian of dependent and independent

variables given by

Lm[ẋ(t), x(t), t] = C1ẋ(t)x(t) + C2ẋ(t)t+ C3x(t)t , (4.1)

and Lf [ẋ(t), x(t)] be a Lagrangian of the single dependent variable written as

Lf [ẋ(t), x(t)] = C4ẋ(t) + C5x(t) + C6 , (4.2)

where C1, C2, C3, C4, C5 and C6 are arbitrary constants.
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We will use the standard Lagrangian

Ls[ẋ(t), x(t)] =
1

2

[
α (ẋ(t))2 + βx2(t)

]
, (4.3)

where the coefficients α and β are either constants or functions of time.

Because x(t) is a displacement of harmonic oscillators and t is time, the con-

stants must have different physical dimensions for the dimensions of Lm[ẋ(t), x(t), t]

and Lf [ẋ(t), x(t)] to be consistent with those of Ls[ẋ(t), x(t)].

We define ÊL to be the E-L equation operator and take ÊL(Lm + Lf ) = 0.

Ln[ẋ(t), x(t), t] = Lm[ẋ(t), x(t), t] +Lf [ẋ(t), x(t)] can then become a null Lagrangian,

which requires C3 = 0 and C5 = C2. Then, the null Lagrangian can be written as

Ln[ẋ(t), x(t), t] =
4∑

i=1

Lni[ẋ(t), x(t), t] , (4.4)

where i = 1, 2, 3 and 4, and the partial NLs are given by

Ln1[ẋ(t), x(t)] = C1ẋ(t)x(t), (4.5)

Ln2[ẋ(t), x(t), t] = C2[ẋ(t)t+ x(t)], (4.6)

Ln3[ẋ(t)] = C4ẋ(t) (4.7)

and

Ln4 = C6 (4.8)

Of these, Ln2[ẋ(t), x(t), t] is the only partial null Lagrangian that depends ex-

plicitly on t. Note that these partial null Lagrangians are constructed to lowest orders

of the dynamic variable x(t).

The term partial null Lagrangian is used here to refer to individual null La-

grangians that are added together to form the null Lagrangian of interest. Each of
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these terms alone (equations 4.4-4.8) would also be a null Lagrangian. Similarly, each

partial null Lagrangian has a corresponding partial gauge function.

We may write the gauge function, Φp(t), for Ln by using the definition from

Chapter 2,

Φp(t) =
4∑

i=1

ϕpi(t) , (4.9)

where the partial gauge functions ϕpi(t) correspond the partial null Lagrangians

Lni[ẋ(t), x(t)], and they are defined as ϕp1(t) = C1x
2(t)/2, ϕp2(t) = C2x(t)t, ϕp3(t) =

C4x(t) and ϕp4(t) = C6t.

We consider the ODEs of Q and write them in their explicit form

ẍ(t) + cx(t) = 0 , (4.10)

where c may be any real number. Let us define the following primary Lagrangian

Lp[ẋ(t), x(t), t] = Lps[ẋ(t), x(t)] + Lpn[ẋ(t), x(t), t] , (4.11)

where the primary standard Lagrangian (with α = 1 and β = −c in Eq. 4.3) is given

by

Lps[ẋ(t), x(t)] =
1

2

[
(ẋ(t))2 − cx2(t)

]
, (4.12)

and the primary null Lagrangian Lpn[ẋ(t), x(t)] is equal to Ln[ẋ(t), x(t)] (see Eq. 4.4)

with the same partial NLs. In addition, the primary gauge function Φp(t) is given by

Eq. (4.9) with the same partial gauge functions.

The above results can be generalized by writing the Lagrangian given by Eq.

(4.3) in the following form

Ls[ẋ(t), x(t)] =
1

2

[
α(t) (ẋ(t))2 + β(t)x2(t)

]
, (4.13)
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where α(t) and β(t) are continuous and differentiable functions. Substituting this

Lagrangian into the E-L equation, we find α(t) = Co and β(t) = −Coc, where Co is

an intergration constant. Then, the general standard Lagrangian can be written as

Lgs[ẋ(t), x(t)] =
1

2
Co

[
(ẋ(t))2 − cx2(t)]

]
. (4.14)

This Lagrangian can be reduced to the primary standard Lagrangian if Co = 1 and

it can also be used to define the following general Lagrangian

Lg[ẋ(t), x(t), t] = Lgs[ẋ(t), x(t), t] + Lgn[ẋ(t), x(t), t] , (4.15)

where the general null Lagrangian is

Lgn[ẋ(t), x(t), t] =
4∑

i=1

Lgni[ẋ(t), x(t), t] , (4.16)

with ÊL(Lgn) = 0 and Lgni[ẋ(t), x(t), t] being its partial components. To determine

the partial null Lagrangians, we generalize the primary gauge functions ϕpi(t) given

below Eq. (4.9) by replacing their constant coefficients by functions of the indepen-

dent variable t. Denoting the general gauge functions as ϕgi(t), we obtain

ϕg1(t) =
1

2
f1(t)x

2(t) , (4.17)

ϕg2(t) = f2(t)x(t)t , (4.18)

ϕg3(t) = f4(t)x(t) , (4.19)

and

ϕg4(t) = f6(t)t , (4.20)

where f1(t), f2(t), f4(t) and f6(t) are continuous and differentiable functions to be

determined.
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Then, we take the total derivatives of these partial gauge functions and obtain

the following partial Lagrangians

Lgn1[ẋ(t), x(t), t] =

[
f1(t)ẋ(t) +

1

2
ḟ1(t)x(t)

]
x(t) , (4.21)

Lgn2[ẋ(t), x(t), t] =
[(
f2(t)ẋ(t) + ḟ2(t)x(t)

)
t+ f2(t)x

]
, (4.22)

Lgn3[ẋ(t), x(t), t] =
[
f4(t)ẋ(t) + ḟ4(t)x(t)

]
, (4.23)

and

Lgn4[ẋ(t), x(t), t] =
[
ḟ6(t)t+ f6(t)

]
, (4.24)

which can be added together to obtain the general null Lagrangian (see Eq. 4.16).

This Lagrangian depends on four functions that must be continuous and differentiable

but are otherwise arbitrary. Specification of the initial conditions for physical prob-

lems would set up constraints on these functions, however, in this section the functions

are kept arbitrary for reasons explained in section 4. The general null Lagrangian

reduces to the primary null Lagrangian when f1(t) = C1, f2(t) = C2, f4(t) = C4 and

f6

We derived the primary and general SLs and NLs for the ODEs of Q. Most

obtained SLs are already known and they are generated as a byproduct of our proce-

dure of deriving the NLs, which are new for the considered equations. For each null

Lagrangian, we found its corresponding gauge function. The general Lagrangians de-

pend on four functions that must be continuous and differentiable, and must satisfy

initial conditions of a specific physical problem. If the functions are assumed to be

constants, the primary NLs are obtained. Since the functions are arbitrary, many

different NLs can be obtained by choosing different forms of these functions.

40



4.1.2 Second Method

The second method, which is capable of reproducing the NLs found above,

will now be introduced. Further results from this method will be presented later

in the Chapter, in Table 4.1. In investigating this generalized approach to building

NLs staring from their gauges (Φ), rather than starting from a NL and finding its

corresponding gauge after, a clear link between the form of a given NL and the form

of the force-like term it produces was established.

This dissertation draws a clear line from the gauge term to its corresponding

NL, and then to the resulting energy function and finally to the resulting force-like

term. This reveals a fundamental connection underlying dynamical systems and sheds

more light on the impact and significance of NLs for physical systems. Further, it

was shown that this formalism can reproduce nonlinear terms by Vestal & Musielak

(2023), which is discussed later in the Chapter.

If Ln is a NL and ÊL is the Euler-Lagrange operator, then ÊL(Ln) = 0, as

required by the definition of the NLs. Such NLs may depend on both the dependent

and independent variables, so they can be written as Ln(ẋ, x, t). These NLs can

be added to the standard Lagragian, Ls(ẋ, x, t), without having any effect on the

resulting equation of motion. Thus, the total Lagrangian, Ltot, can be written as

Ltot(ẋ, x, t) = Ls(ẋ, x, t) + Ln(ẋ, x, t) , (4.25)

where Ln(ẋ, x, t) is the NL that can be obtained by calculating the total derivative

of any scalar and differentiable function (Olver 1993; Olver & Sivaloganathan 1989;

Crampin & Saunders 2005; Vitolo 1999), which is called the gauge function and

denoted as Φ(x, t), with x = x(t). Thus, the general NL can be written using Eq.

(2.9). Substitution of this NL into the E-L equation shows that the gauge function

can be of any form as long as it has the properties specified above.
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Despite the fact that the presence of NLs does not change the form of the

resulting equation of motion, it has been shown that the NLs may be used to restore

Galilean invariance of standard Lagrangians (eg. Levy-Leblond 1969; Musielak &

Watson 2020; Segovia, Vestal, & Musielak 2022), and to independently introduce

forces to classical mechanics by some, but not all, NLs by Musielak & Vestal et al.

(2020), and by Vestal & Musielak (2023). Therefore, it is desired to construct general

NLs and identify among them those NLs that can be used to introduce forces; it must

be pointed out that the NLs for second-order ODEs are known (eg. Olver, 1993; Olver

and Sivaloganathan, 1989; Crampin & Saunders, 2005; Vitolo, 1999) and that the NLs

constructed using this method are consistent with those previously obtained.

The previous work on defining forces done by Musielak & Vestal et al. (2020),

and Vestal & Musielak (2023), is now extended to specific forces that frequently

appear in dynamics as well as to nonlinearities that are present in some well-known

dynamical systems. For the considered forces and nonlinearities, corresponding gauge

functions are given. These gauge functions can be used to obtain the corresponding

NLs and to convert undriven and linear dynamical systems into the driven and non-

linear systems. In the following, the procedure that allows for this conversion, and

uses the Legendre transform to generate new energy terms that are then added to the

standard Lagrangian of a given dynamical system, is described, and is then applied

to some well-known oscillators in classical dynamics.

Let us generalize the gauge function Φ1(x, t) = c1xt and consider

Φg1(x, t) =
∑
m=1

∑
n=1

Cm,nx
mtn , (4.26)

where Cm,n are arbitrary real constants, and m and n are positive integers. Since, for

dynamical systems, the variables t and x represent time and displacement, respec-

tively, both variables have dimensions. It is therefore required that the constants Cm,n
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have different dimensions to guarantee that each term in the expansion has the same

physical units as the gauge function [kg m2/s]. Thus, the dimensions of C1,1 = c1 are

[kg m/s2], which are of the dimensions of force (see example at the end of Section

2.2).

The general gauge function Φg1(x, t) gives the following NL

Lng1(ẋ, x, t) =
∑
m=1

∑
n=1

Cm,n [mẋt+ nx]xm−1tn−1 , (4.27)

where each term of this summation is also a NL.

To further generalize the gauge function Φg1(x, t), we consider

Φg2(x, t) =
∑
m=1

cmx
mfm(t) , (4.28)

where cm are arbitrary constants of real values and different dimensions, and m and

n are positive integers. In addition, fm(t) are arbitrary functions that are required

to be ordinary (fm : R → R) and smooth (C∞). The resulting general NL is

Lng2(ẋ, x, t) =
∑
m=1

[
mfm(t)ẋ(t) + ḟm(t)x

]
cmx

m−1 , (4.29)

Once again, we further generalize Φg2(x, t) to

Φg3(x, t) =
∑
m=1

∑
n=1

cm,nfm(t)gn(x) , (4.30)

where gn(x) are arbitrary functions that are required to be ordinary (gn : R → R)

and smooth (C∞). The gauge function gives the following general NL

Lng3(ẋ, x, t) =
∑
m=1

∑
n=1

cm,n

[
ḟm(t)gn(x) + ẋ(t)fm(t)g

′
n(x)

]
. (4.31)

In section 4.2, these general forms for NLs and their corresponding gauge terms are

discussed in the context of their implications for systems in physics.

We have now walked through how to construct general gauge functions and

their corresponding NLs, which will be used to convert undriven dynamical systems
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into the driven ones in much of the remainder of the chapter. Later, in section 4.6,

this approach will also be used by Vestal & Musielak (2023) to convert linear systems

into the nonlinear ones. The main objective of this section was to present the two

methods of constructing gauge functions and their corresponding NLs for second-

order ordinary differential equations (ODEs) in one dimension. In special cases, the

obtained NLs reduce to those found by Musielak et al. (2020) and Musielak & Vestal

et al. (2020).

4.2 Gauge Functions and Forces in Dynamics

The main purpose of the NLs constructed in 4.1 is to use them to introduce

forces and nonlinearities into otherwise undriven and linear dynamical systems, which

has not previously been done. This is achieved by using the Legendre transform

to generate new energy terms and adding them to the standard Lagrangian of a

dynamical system, which modifies the original system; this is the main novelty of our

approach, as described. We also explore physical effects of such modifications and

demonstrate that forces and nonlinearities can be introduced to dynamical systems in

this way. The presented gauge functions for a variety of known dynamical systems are

our main results as these functions can be used to determine the corresponding forces

and nonlinearities that are introduced into otherwise undriven and linear dynamical

systems.

Let us consider a conservative dynamical system, whose equation of motion

is a second-order differential equation that can be obtained from the standard La-

grangian, Ls(ẋ, x), that does not depend explicitly on time. However, let us assume

that a NL depends explicitly on time. Then, the energy function must be calculated
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(e.g., Goldstein et al., 2002; José & Saletan, 2002), and, for the total Lagrangian,

Ltot(ẋ, x, t) = Ls[ẋ, x] + Ln(ẋ, x, t), the energy function is given by

Etot(ẋ, x, t) = ẋ
∂(Ls + Ln)

∂ẋ
− (Ls + Ln) = Es(ẋ, x) + En(x, t) . (4.32)

where Es(ẋ, x) represents the total energy of the system, which is equal to its Hamil-

tonian that can be used to derive the equation of motion from the Hamilton equations

(Goldstein et al., 2002; José & Saletan, 2002). The Legendre transformation relates

the Lagrangian and Hamiltonian formulations (Abraham &Marsden, 2008), and leads

to the same Hamilton equations independently from the null Lagrangian that is added

to the standard Lagrangian. The necessary condition is dEtot/dt = −[∂(Ls+Ln)/∂t],

which plays the same role as the E-L equation does for Ls(ẋ) (e.g., Goldstein et al.,

2002; José & Saletan, 2002; Abraham & Marsden, 2008).

In addition, En(x, t) becomes

En(x, t) = −∂Φ
∂t

, (4.33)

which shows that Φ must depend explicitly on t for En(x, t) ̸= 0. There are known

NLs that do not depend explicitly on t but either only on ẋ or on both x and ẋ

including Olver (1993), Olver & Sivaloganathan (1989), and Crampin & Saunders

(2005), as all these NLs give En(x) = 0. In the following we only consider the NLs

that depend explicitly on t.

Comparison of Eq. (4.33) to Eq. (4.32) shows that En(x, t) and Ln(ẋ, x, t) have

one common term, and that this term becomes a NL if, and only if, Φ ̸= Φ(x) and

Φ = Φ(t), which means that

∂Φ

∂t
=
dΦ

dt
. (4.34)

However, when Φ = Φ(x, t), the total derivative of this gauge function gives a NL,

but the resulting En(x, t) is not a NL. This is an interesting case as this extra energy
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term can now be added to, or substracted from, the standard Lagrangian Ls(ẋ, x).

Then, the following total Lagrangian is obtained

Ltot(ẋ, x, t) = Ls(ẋ, x)± En(x, t) . (4.35)

Substitution of Ltot(ẋ, x, t) into the E-L equation gives

d

dt

(
∂Ls

∂ẋ

)
− ∂Ls

∂x
= ±∂En

∂x
. (4.36)

If the standard Lagrangian is specified, the equation of motion is obtained from the

terms that depend on Ls, and this equation represents an undriven (conservative)

dynamical system. However, the presence of the space derivative of En is reponsible

for converting the conservative equation of motion into the driven one and it can be

considered to be a force F (t).

The above results show that the addition of En to Ls(ẋ, x) modifies the original

mechanical system and makes its equation of motion different. The differences are

of two kinds, either a time-dependent force appears in the new equation of motion

making it an inhomogeneous ODE (driven system), or the form of the original ODE

is modified by a nonlinear term. In the first case, the general solutions to both the

homogeneous and inhomogeneous ODEs are the same, but the inhomogeneous ODE

has also a complimentary solution that accounts for the force. However, in the second

case, new solutions must be found independently to each equation of motion with a

nonlinear term added, and since the ODEs are nonlinear finding their solutions could

be challenging (Kahn 1990).

The force F (t) that appears in the equation of motion is given by

F (t) = ±∂En

∂x
= ± ∂

∂x

(
∂Φ

∂t

)
, (4.37)

which means that the initially undriven equation of motion becomes now the driven

one. The force depends on the form of the gauge function, Φ(x, t), which must be an
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explicit function of both the dependent variable and the independent variable. Since

the gauge function Φ(x, t) can be any differentiable scalar function, the resulting force

can also be of any form (see sections 4.4 and 4.5 for additional specific applications).

According to Eq. (4.26), the simplest form of the gauge function Φ(x, t) that

gives a non-zero force is Φ1(x, t) = c1xt, where c1 is an arbitrary real constant.

Thus, the resulting force is F1 = ±c1 = const, as shown by Musielak et al.

(2020), Musielak & Vestal et al. (2020), and Vestal & Musielak (2021). In the follow-

ing, we generalize this result to gauge functions that depend on arbitrary functions

of x and t but keep the variables separated to obtain general analytical results.

The general force resulting from Φg1(x, t) (Eq. 4.27) is

Fg1(x, t) =
∑
m=1

∑
n=1

mn Cm,n x
m−1tn−1 . (4.38)

Similarly, for Φg2, the general force is

Fg2(x, t) =
∑
m=1

mḟm(t)cmx
m−1 . (4.39)

The resulting force is a power series in the dependent variable with each term of this

power being multiplied by any differentiable function of the independent variable.

This general force reduces to Fg2 = F1 = c1 = const if, and only if, m = 1 and

f1(t) = t.

For Φg3, and the general force

Fg3(x, t) =
∑
m=1

cm,nḟm(t)g
′
n(x) , (4.40)

where g′n(x) is the derivative of gn(x) with respect to x. The gauge function Φg3(x, t)

is the most general one that can be considered when the dependent and indepen-

dent variables are separated. Therefore, the resulting NL Lng3(ẋ, x, t) and the force

Fg3(x, t) are also the most general that can be obtained under these conditions, and
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they are given as infinite sums of all differentiable functions. It must be pointed

out that each term in the power series given by Eqs (4.38) and (4.39) and in the

summation of functions given by Eq. (4.40) represents a partial NL.

The functions fm(t) and gn(x) can be any known elementary functions, including

algebraic, trigonometric, exponential, logarithmic, hyperbolic, inverse trigonometric

and hyperbolic, and others. The summation of the functions fm(t) and gn(x) gives

a significant amount of flexibility in defining different forces by using the elementary

functions because each term in the summation is a NL that leads to a non-zero force.

Since fm(t) and gn(x) are to be specified, most known forces in classical mechanics

can be formally introduced this way. The coefficients cm,n can be determined by the

force required for a given physical system; for instance, the coefficients may represent

the amplitude of the force for the given system.

An interesting result is that the above method to define forces can also be

extended to introduce nonlinearities into otherwise linear dynamical systems, as will

be shown in section 4.6. This shows universality and a broad range of applications of

the presented results to classical dynamics.

4.3 From Undriven to Driven Dynamical Systems

Starting from the equations obtained in section 4.1, let us consider specifically

how these results apply to a harmonic oscillator system. This application shows how

NLs and their respective gauges can be applied to physical systems. The results

presented in this section were originally obtained by Musielak & Vestal et al. (2020).

For the harmonic oscillator, x(t) is the displacement variable, t is time, and the

constants must have different physical dimensions to ensure that the dimensions are

physically consistent. The equation of motion of the oscillator is D̂x(t) = 0 with

c = k/m, where k is a spring constant and m is mass. The characteristic frequency of
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the oscillator is then ωo =
√
c =

√
k/m, and the equation of motion can be written

as

ẍ(t) + ω2
ox(t) = 0 . (4.41)

It must be noted that Eq. (4.41) also describes a linear and undamped pendulum if

x(t) is replaced by θ(t), where θ(t) is an angle of the pendulum, and ωo is replaced

by the pendulum characteristic frequency ωp =
√
c =

√
g/L, where g is gravitational

acceleration and L is length of the pendulum. With these replacements, the results

by Musielak & Vestal et al. (2020) presented below for the oscillator are also valid

for the pendulum.

The standard Lagrangian for this oscillator is

Ls[ẋ(t), x(t)] =
1

2

[
(ẋ(t))2 − ω2

ox
2(t)
]
, (4.42)

and the total Lagrangian Lp[ẋ(t), x(t)] (see Eq. (4.25)) for these harmonic

oscillators can be written as

Lp[ẋ(t), x(t)] = Ls[ẋ(t), x(t)] +
dϕp

dt
, (4.43)

where and the gauge function Φp is

Φp(t) =
4∑

i=1

ϕpi(t) . (4.44)

Recall the general partial gauge functions found in equations 4.17 through 4.20,

which lead to the general partial NLs in equations 4.21 through 4.24. For this specific

system, these partial gauge functions are

ϕp1 =
1

2
C1x

2(t) , (4.45)

ϕp2 = C2x(t)t , (4.46)

ϕp3 = C4x(t) , (4.47)
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and

ϕp4 = C6t . (4.48)

Note that the total derivative of each one of these partial gauge functions gives no

contribution to the resulting equation of motion.

Since the gauge functions ϕp2 and ϕp4 depend explicitly on time t, the resulting

primary null Lagrangian is also a function of time. Following the formalism presented

in section 4.2, we then calculate the primary energy function (e.g., Goldstein et al.,

2002; José & Saletan, 2002), Ep, using

Ep[ẋ(t), x(t)] = ẋ
∂Lp

∂ẋ
− Lp[ẋ(t), x(t)] , (4.49)

which gives

Ep[ẋ(t), x(t)] =
1

2

[
(ẋ(t))2 + ω2

ox
2(t)
]
− [C2x+ C6] , (4.50)

with the first two terms on the RHS representing the energy function Es for the

primary standard Lagrangian and the other two terms corresponding to the primary

energy function Epf for the primary gauge function, so that Ep = Es + Epf . Note

that using Eq. (4.49) is equivalent to using Eq. (4.32) as this is an application of the

formalism developed in the prior sections of this chapter.

In general, Ep ̸= Etot, with Etot = Es = Hs, where Etot is the total energy of

system and Hs is its Hamiltonian, corresponding to the primary standard Lagrangian,

and given by Hs = Ep − Epf or

Hps[ẋ(t), x(t)] =
1

2

[
ẋ2(t) + ω2

ox
2(t)
]
. (4.51)

Using the Hamilton equations, the equation of motion for the harmonic oscillator

given by Eq. (4.41) is obtained. A similar result is derived when the total derivative of
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Ep is equal to the negative partial time derivative of Lp that can be written (Goldstein

et al., 2002) as

dEp

dt
= −∂Lp

∂t
, (4.52)

which again gives Eq. (4.41). It must be noted that Ep is a conserved quantity and

that Ep ̸= Etot. This shows that the equation of motion of the harmonic oscillator is

also obtained when the energy function is used instead of the primary Lagrangian Lp

or the Hamiltonian Hps.

The above results show that among the four primary gauge functions, ϕp1, ϕp2,

ϕp3 and ϕp4, the first and third do not contribute to the primary energy function, but

the second and fourth do contribute, although each one differently. The partial gauge

function ϕp2 breaks into two parts and only the part that depends on C2x contributes

to the energy function. However, the partial gauge function ϕp4 fully contributes

to the energy function. Let us call ϕp2 the primary F-gauge function, and ϕp4 the

primary E-gauge function.

The reasons for these names are as follows. First, the term C2x represents

energy if, and only if, the coefficient C2 is a constant acceleration, or a constant force

per mass, so that C2x is work done by this force on the system. This clearly shows

that the primary partial gauge function ϕp2 can be used to introduce forces that cause

the constant acceleration. Second, the primary partial gauge function ϕp4 introduces

a constant energy shift in the system.

Let us define Fc = C2, where Fc represents a constant acceleration or constant

force per mass. Similarly, Ec = C6 is a constant energy shift that could be caused

by the force. Then, the primary energy function, which includes both the energy

51



function contribution from the standard Lagrangian and the contributions from the

two partial gauge functions, can be written as

Ep[ẋ(t), x(t)] =
1

2

[
(ẋ(t))2 + ω2

ox
2(t)
]
− [Fcx+ Ec] . (4.53)

This demonstrates that some gauge functions can be used to introduce external forces

that drive the system but other gauge functions may either generate a shift of the

total energy of the system or simply have no effect on the system. In other words,

only gauge functions that depend explicitly on time may be used to introduce forces

in classical mechanics. These are new phenomena caused exclusively by including the

gauge functions in classical mechanics.

4.4 Gauge Functions for Bateman Oscillators

In building out the framework of applications of null Lagrangians to physics,

the next logical step was to consider if this approach would hold for non-conservative

systems. In this section, I show how the formalism can be extended to dissipative sys-

tems, through use of the Caldirola-Kanai model for Bateman oscillators. Since these

oscillators are non-conservative systems, the derived Lagrangians are not consistent

with the Helmholtz conditions (von Helmholtz, 1887) and (Vujanovic & Jones, 1989),

which guarantee the existence of Lagrangians for the conservative systems. The La-

grange formalism is developed for this dissipative system of oscillators, which includes

both damped and amplified systems. A novel method to derive the Caldirola-Kanai,

as introduced in section 3.3, is shown, and its validity in describing the Bateman

oscillators is also discussed. In the previous section, the null Lagrangian formalism

was developed for conservative systems only, which was done by Musielak & Vestal

et al. (2020).
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Extending this work to dissipative systems was an important step in building a

more complete framework of null Lagrangians and gauge functions in physics, which

allows for a broader investigation of physical systems through the lens of null La-

grangians. Further, it allows for a more complete picture of how null Lagrangians

and gauges fit into the study of the physical universe. This work was done by Vestal

& Musielak (2021).

The CK Lagrangian is modified by taking into account the GFs and it is shown

that this modification allows for the conversion of the undriven Bateman oscillators

into driven ones, which is our main result. One obtained SL is the CK Lagrangian,

which is well-known, and all other NLs and GFs that are derived simultaneously with

the CK Lagrangian are new results from Vestal & Musielak (2021).

The Bateman Lagrangian is as given in Eq (3.12) in section 3.3. Let us define

b = ±γ/m and c = k/m = ω2
o , where ωo is the characteristic frequency of the

oscillators, and write Eqs (3.10) and (3.11) as one equation of motion

ẍ(t) + bẋ(t) + ω2
ox(t) = 0 , (4.54)

with the understanding that the damped and amplified oscillators require b > 0 and

b < 0, respectively, and that the variable x(t) describes either damped or amplified

oscillator. Let D̂ = d2/dt2 + bd/dt+ ω2
o be a linear operator, then Eq. (4.54) can be

written in the compact form D̂x(t) = 0.

Starting with the following Lagrangian, let us follow the formalism used by

Musielak et al. (2020) and Musielak & Vestal et al. (2020) from section 4.1,

Ln[ẋ1(t), x1(t), t] = C1ẋ1(t)x1(t) + C2 [ẋ1(t)t+ x1(t)] + C4ẋ1(t) + C6 , (4.55)

where C1, C2, C4 and C6 are constants. It is easy to verify that Ln[ẋ1(t), x1(t), t] is the

null Lagrangian, with the constants being arbitrary, and that this NL is constructed
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to the lowest order of its dynamical variables as shown by Musielak & Vestal et al.

(2020). The NL can be added to Ls[ẋ1(t), x1(t)] without changing the form of the

equation of motion resulting from it.

Since the original equations of motion for the Bateman oscillators depend on

the dynamical variable x(t) not x1(t) (see Eqs (3.10) and 3.11), we now use the

inverse transform given by Eq. (3.14) to convert the variable x1(t) into x(t) in both

Ls[ẋ1(t), x1(t)] and Ln[ẋ1(t), x1(t), t]. The resulting total Lagrangian is

L[ẋ(t), x(t), t] = LCK [ẋ(t), x(t), t] + Ln[ẋ(t), x(t), t] , (4.56)

where

LCK [ẋ(t), x(t), t] =
1

2

[
(ẋ(t))2 − ω2

ox
2(t)
]
ebt , (4.57)

is the Caldirola-Kanai (CK) Lagrangian (see Caldirola, 1941 and Kanai, 1948), de-

rived here independently; comparison of the CK and Bateman Lagrangians (Eqs

(4.57) and (3.12)) shows significant differences between them. The presented method

gives the following null Lagrangian

Ln[ẋ(t), x(t), t] =
3∑

i=1

Lni[ẋ(t), x(t), t] , (4.58)

where the partial null Lagrangians are

Ln1[ẋ(t), x(t), t] =

(
C1 +

1

2
b

)[
ẋ(t) +

1

2
bx(t)

]
x(t)ebt , (4.59)

Ln2[ẋ(t), x(t), t] = C2

[(
ẋ(t) +

1

2
bx(t)

)
t+ x(t)

]
ebt/2 , (4.60)

and

Ln3[ẋ(t), x(t), t] = C4

[
ẋ(t) +

1

2
bx(t)

]
ebt/2 + C6 , (4.61)

where C1, C2, C4, and C6 are arbitrary but their physical units are different such

that all partial null Lagrangians have the same units of energy. These are new null
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Lagrangians for the Bateman oscillators. The fact that Ln[ẋ(t), x(t), t] and its partial

Lagrangians are NLs can be shown by verifying that ÊL(Ln) = 0 as well as ÊL(Lni) =

0. It must be also noted that b = 0 reduces Ln[ẋ(t), x(t), t] to the null Lagrangian

previously obtained by Musielak & Watson (2020).

After a transformation, which is not relevant to this discussion but can be found

in the full paper (ie. Vestal & Musielak, 2021) the standard Lagrangian given in 4.57

becomes

Ls[ẋ1(t), x1(t)] =
1

2

[
(ẋ1(t))

2 −
(
ω2
o −

1

4
b2
)
x21(t)

]
. (4.62)

With x1(t) as the transformed dependent variable, it gives

ẍ1(t) +

(
ω2
o −

1

4
b2
)
x1(t) = 0 , (4.63)

which is the equation of motion for a undamped harmonic oscillator if b = 0;

then x1(t) = x(t) (Goldstein et al., 2002) and (José & Saletan, 2002).

The corresponding transformed standard Lagrangian is then

LCK [ẋ(t), x(t), t] =
1

2

[
(ẋ(t))2 − ω2

ox
2(t)
]
ebt , (4.64)

which is the Caldirola-Kanai (CK) Lagrangian (Caldirola, 1941 and Kanai, 1948),

derived here independently.

For each partial null Lagrangian, the corresponding partial gauge function can

be obtained and the results are

ϕn1[x(t), t] =
1

2

(
C1 +

1

2
b

)
x2(t)ebt , (4.65)

ϕn2[x(t), t] = C2x(t)te
bt/2 , (4.66)

and

ϕn3[x(t), t] = C4x(t)e
bt/2 + C6t . (4.67)
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These partial gauge functions can be added together to form the gauge function

ϕn[x(t), t] =
3∑

i=1

ϕni[x(t), t] . (4.68)

The derived gauge function and partial gauge functions reduce to those previously

obtained (Musielak et al., 2020) when b = 0 is assumed.

The above partial gauge functions are obtained to the lowest order of the dy-

namical variables for the Bateman oscillators. Therefore, the only way to generalize

the gauge functions given by Eqs (4.65), (4.66) and (4.67), without changing the order

of their dynamical variables, is to replace the constants C1, C2, C4 and C6 with the

corresponding functions f1(t), f2(t), f4(t) and f6(t), which must be continuous and

at least twice differentiable, and must depend only on the independent variable t. In

order to obey the assumption that our method of constructing null Lagrangians is

limited to the lowest order of the dynamical variables, the functions cannot depend

on the space coordinates. An interesting result is that the functions give additional

degrees of freedom in constructing the null Lagrangians and their gauge functions.

We follow Musielak et al. (2020) and Musielak & Vestal et al. (2020) and call

these GFs the general GFs and write them here as

ϕgn1[x(t), t] =
1

2

[
f1(t) +

1

2
b

]
x2(t)ebt , (4.69)

ϕgn2[x(t), t] = f2(t)x(t)te
bt/2 , (4.70)

and

ϕgn3[x(t), t] = f4(t)x(t)e
bt/2 + f6(t)t . (4.71)

The general gauge function is obtained by adding these partial gauge functions

ϕgn[x(t), t] =
3∑

i=1

ϕgni[x(t), t] . (4.72)
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The results given by Eqs (4.69) through (4.72) are new general gauge functions for the

Bateman oscillators and they generalize those previously obtained for Newton’s law

of inertia (see Musielak et al., 2020) and for linear undamped oscillators by Musielak

& Vestal et al. (2020) for which b = 0. The corresponding general null Lagrangians

for the Bateman oscillators can easily be obtained by calculating the total derivatives

of the derived gauge functions (see Chapter 3).

4.5 Additional Forces in Dynamical Systems

Our theoretical results presented in the previous section demonstrate how NLs

and their gauge functions can be used to introduce forces to classical dynamical

systems. We consider the equation of motion for a driven harmonic oscillator given

by

ẍ(t) + x(t) = F (t) , (4.73)

where typical forms of the force F (t) are given in Table 4.1. The presented forces are

time-dependent and they are given by some well-known elementary functions.

The aim is now to identify gauge functions that can be used to introduce these

forces. For the forces presented in Table 4.1, the most appropriate is the general

gauge function given by Eq. (4.30). The procedure is straightforward and requires

comparing the forces in Table 4.1 to the general force term given by Eq. (4.40). In

other words, we identify the coefficients cm,n and the derivatives of functions fm(t) and

gn(x). Then, Eq. (4.30) can be used to determine the gauge function corresponding

to each force of Table 4.1 as well as the NL corresponding to each force, which can

be obtained using Eq. (4.31).

We may also consider F that does not explicitly depend on t but instead depends

on x. Taking F (x) = −εF0x, where 0 < ε ≤ 1, and substituting into Eq. (4.40), we
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Dynamical Force Gauge function

systems F (t) Φ(x, t) = Φ1(x, t) + Φ2(x, t)

Driven F (t) = F0 cos t Φ1(x, t) = xF0 sin t

oscillators Φ2(x, t) = 0

F (t) = F0 cos
2 t Φ1(x, t) =

1
2
xtF0

= 1
2
F0(1 + cos 2t) Φ2(x, t) =

1
4
xF0 sin 2t

F (t) = F0 cos
3 t Φ1(x, t) =

3
4
xF0 sin t

= 1
4
F0(3 cos t+ cos 3t) Φ2(x, t) =

1
12
xF0 sin 3t

F (t) = F0e
it Φ1(x, t) = −ixF0e

it

Φ2(x, t) = 0

F (t) = F1 cos t Φ1(x, t) = xF1 sin t

+F2 sin t Φ2(x, t) = −xF2 cos t
RLC circuits E(t) = E0 sin t Φ1(x, t) = −xE0cost

Φ2(x, t) = 0

Table 4.1. Selected forces in dynamical systems and their gauge functions, from
Goldstein et al. (2002), José et al. (2002), and Kahn (1990)

obtain the equation of motion of the altered simple harmonic oscillator (Musielak et

al., 2020). The gauge function for this force is Φ = − ε
2
F0x

2t as obtained from Eq.

(4.30), and the corresponding NL is Ln(ẋ, x, t) = −1
2
εF0(2ẋt+ x)x.

The gauge functions presented in Table 4.1 become special cases of general gauge

functions given by Eqs (4.26), (4.28), and (4.30). As an example, let us consider the

force F (t) = cos2 t = 1
2
F0(1 + cos 2t). Then, its gauge function Φ1(x, t) =

1
2
xtF0 =

Φg1(x, t) with m = n = 1 and C1,1 =
1
2
F0 (see Eq. 4.64). However, the gauge function

Φ2(x, t) =
1
4
xF0 sin 2t = Φg2(x, t) with m = 1 and C1 = 1

4
F0 and f1(t) = sin 2t (see

Eq. 5.22). The same force can also be identified as Φg1(x, t) = C1,1f1(t)g1(x) +
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C2,2f2(t)g2(x), where C1,1 =
1
2
F0, f1(t) = t, g1(x) = x, C2,2 =

1
4
F0, f2(t) = sin 2t and

g2(x) = x. Similar identification can be performed for all forces given in Table 4.1.

In the above results, the gauge functions were obtained for forces that are

typically used to drive harmonic oscillators. However, the process can be reversed

and forces can be determined by using the gauge functions presented in sections

4.1.1 and 4.1.2. The same method can also be used to introduce nonlinearities to

the equation of motion of a harmonic oscillator, which will be shown in the section

immediately following.

4.6 Gauge Functions and Nonlinear Dynamics

Using the method developed in section 4.2, herein I show how nonlinearities

can be introduced to a system, in a similar way to how this was done for forces; the

results are presented for these nonlinearities in Table 4.2, paralleling the presentation

of forces in Table 4.1. It must be noted that we make no claim that our method can

only be used for forces and nonlinearities, and further exploration of how powerful

NLs and GFs are for systems in science and engineering is a promising area of future

research.

Having shown how forces can be added to the equations of motion for harmonic

oscillators and the Bateman oscillators in the previous chapter, it will now be shown

how the method can be applied to introduce nonlinearities. In this way, a well-

known nonlinear equation is produced. This is important for i) showing a new way to

introduce nonlinear terms, and ii) demonstrating the potential of the NL formalism

for introducing a range of physical phenomena; this was shown by Vestal & Musielak

(2023).
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First, we started with the following equation of motion,

ẍ(t) + x(t) = H(ẋ, x) , (4.74)

from which it is possible to represent different forms of nonlinearities in dynamical

systems by a choice of H(ẋ, x). We selected several examples of nonlinear dynami-

cal systems, including well-known systems such as the Duffing oscillator (see Levy-

Leblond, 1969 and Musielak et al., 2020), and from H(x) identified the gauge function

(Φ(x, t)) that produces each one; this was done by following the approach used to

similarly match forces to their generating GFs, as presented in section 4.5. The results

for these GFs for nonlinearities are presented in Table 4.2.

The gauge functions presented in Table 4.1 become special cases of general gauge

functions given by Eqs (4.26), (4.28) and (4.30). It is straightforward to show that

any Φ(x, t) in Table 4.2 can be identified as either Φg1(x, t), Φg2(x, t), or Φg3(x, t) from

section 4.1 by an making an appropriate selection of the coefficients and functions in

these equations. Further, note that more general nonlinearities can be obtained from

this method than the results presented in Table 4.2.

All dynamical systems considered in these two tables illustrate the relation-

ships between forces and nonlinearities and their corresponding gauge functions. The

purpose of this illustration is to demonstrate that typical forms of forces and non-

linearities have gauge functions that can be used to introduce them by way of the

method presented in the earlier section. Further, this method of introducing nonlin-

earities into otherwise linear equations of motion can be combined with the method

of defining forces so that linear, undriven dynamical systems can be converted into

nonlinear and driven ones; this means that our method can be applied to a broad

range of dynamical systems.
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Type of Nonlinearity Gauge function
oscillator H(x) Φ(x, t)

Quadratic H(x) = −εx2 Φ(x, t) = −1
3
εx3t

Duffing H(x) = −εx3 Φ(x, t) = −1
4
εx4t

Quadratic and cubic H(x) = −ε(x2 + x3) Φ(x, t) = − ε
3
x3t− ε

4
x4t

Quartic H(x) = −εx4 Φ(x, t) = −1
5
εx5t

Quintic H(x) = −εx5 Φ(x, t) = −1
6
εx6t

Higher-order H(x) = −εx2n+1 Φ(x, t) = − ε
2n+2

x2n+2t

Table 4.2. Selected nonlinearities in dynamical systems, from Goldstein et al. (2002),
José et al. (2002), and Abraham et al. (2008), and their gauge functions.

Thus, the presented results demonstrate a new important role of gauge functions

and null Lagrangians in classical mechanics and, specifically, in its theory of dynamical

systems. It is natural at this point to ask what other physical phenomena, beyond

nonlinearities and forces, might similarly have a gauge function representation.

4.7 Gauge Functions for Equations with Special Function Solutions

It is possible to write a Lagrangian general enough that it can produce multiple

SFs by a simple choice of variables. In this section, I will discuss how we developed

a method to derive general standard Lagrangians and NLs for SFs, starting with the

aforementioned Lagrangian, which is given below. This approach may feel familiar,

as the approach of starting with a general equation to describe a range of systems

was similarly utilized in the previous section. For this work, an approach like the

ones described in section 4.1 was followed to constuct the NLs and GFs. The SLs

investigated here depend on the square of the first derivative of the dependent variable

(kinetic energy-like term) and the square of the dependent variable (potential energy-
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like term). This project was also the impetus for the prior work that resulted in a

generalized formalism for introducing forces and nonlinear terms from NLs, which

was described in prior sections. Once these NLs and GFs were shown to reproduce

the equations for SFs, I felt it was important to consider the full range of NLs that

could be added to a SL.

Special functions play an important role in the mathematical framework of

physics, as discussed in section 3.4, and exploring the deeper link between these

equations and the corresponding gauge functions from which they can be derived was

the motivation for the work described in this section. As some SFs are of particu-

lar interest for applications to physical systems, a focus was given to these systems;

however, the work described herein could be expanded in a straightforward way to

consider other SFs of interest. Our results are applied to the Bessel, Hermite, and

Legendre equations, as these specific SFs are used in many physical applications. The

choice to focus on these specific ODEs was made due to their many physical appli-

cations familiar to graduate and undergraduate science students, and the presented

results should be of interest to physicists, applied mathematicians, and engineers.

Prior to this project, the role of NLs and GFs for ODEs with special function

solutions had not yet been explored. This section will describe the work that I have

done in exploring this link (see Dange, Vestal, & Musielak, 2021).

The process of determining the link between a given Lagrangian and the gener-

ating GF was done first for the general Lagrangian, and the resulting general gauge

functions and null Lagrangians were used to solve for the coefficients B(x) and C(x)

for the three specific SFs. This process is shown below.
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Let D̃ = d2/dx2 + B(x)d/dx + C(x) be a linear operator operating on smooth

C∞ functions. If D̃ acts on y(x), which is also ordinary and smooth, then the resulting

ODE can be written in the following explicit form

y”(x) +B(x)y′(x) + C(x)y(x) = 0 (4.75)

As aforementioned, by specifying the coefficients B(x) and C(x), which is done

here, all ODEs with the special function solutions are obtained; for these equations,

we derive the SLs and NLs in this way.

Then, let us consider the general Lagrangian

L(y′, y(x), x) =
1

2
f1(x)y

′2 +
1

2
f2(x)y(x)y

′(x) +
1

2
f3(x)y

2, (4.76)

where f1(x), f2(x), and f3(x) are ordinary and smooth functions to be determined.

Note specifically that this Lagrangian chosen depends on the square of the first deriva-

tive of the dependent variable (kinetic energy-like term), the square of the dependent

variable (potential energy-like term) and on the mixed term with the dependent vari-

able and its derivative. Substituting the above Lagrangian into the E-L equation

given in Eq. 2.1 yields

y”(x) +

(
f ′
1

f ′
2

)
y′(x) +

1

f1

(
1

2
f ′
2 − f3

)
y(x) = 0. (4.77)

Next, by comparing equations 4.75 and 4.77, B(x) and C(x) can be determined and

are found to be B(x) =
f ′
1

f1
and C(x) = 1

f1

(
1
2
f ′
2 − f3

)
.

By considering Eq. (4.76) and solving for functions f1 and f3, we then find that

f1 = c1e
∫
B(x)dx = c1Es (4.78)

f3 =
1

2
f ′
2 − C(x) · f1 =

1

2
f ′
2 − C(x) · (c1Es) , (4.79)

where c1 is the integration constant and Es = e
∫
B(x)dx.
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Substituting f1 and f3 into the L(y′, y, x), we find

Leq(y
′, y, x) = Ls(y

′, y, x) + Ln(y
′, y, x) (4.80)

where

Ls(y
′, y, x) =

1

2
c1Es

[
y′(x)2 − C(x)y(x)2

]
(4.81)

and

Ln(y
′, y, x) =

1

2
y[f2y

′(x) +
1

2
f ′
2(x)y(x)], (4.82)

with L(y′, y, x) being a combination of the general standard Lagrangian Ls(y
′, y, x)

and the general null Lagrangian, Ln(y
′, y, x). It must be noted that Ls(y

′, y, x) gen-

eralizes the Caldirola-Kanai (CK, see sections 3.3, 4.4) Lagrangian and it reduces to

the CK Lagrangian when B(s) = b = const and C(x) = c = const; the standard La-

grangian also describes a harmonic oscillator with time dependent mass and a spring

constant.

Having obtained the general null Lagrangian, we now derive the corresponding

general form of the gauge function (Φ) by using,

Lnull =
1

4
f ′
2(x)y

2(x) +
1

2
f2(x)y(x)y

′(x) =
dΦ

dx
. (4.83)

The gauge function for Eq. (4.83) is obtained,

Φ =
1

4
f2(x)y

2(x). (4.84)

Further, as f2(x) is arbitrary, three cases were considered. The trivial case of

f2 = 0 leads to the minimum Ls. The contribution from the null Lagrangian vanishes

for this case, and Φ = 0. The gauge obtained by substituting this case into the GF

is Φ = 1
4
f2(x)y

2(x) = 0 (no gauge function).
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For the case of a constant value of f2, Leq,mid = Ls,max + Ln,max. The resulting

gauge equation, again obtained via Eq. (4.84) is ϕ = 1
4
f2(x)y

2(x) = 1
4
cy2(x) = c2y

2(x)

(variable gauge function). The third case is f2 = f ′
1, which leads to the maximum

value for the equivalent Lagrangian, Leq,max = Ls,max + Ln,max. The corresponding

maximum variable gauge function is then obtained similarly to the two aforemen-

tioned and is ϕ = Φmax = 1
4
c1EsB(x)y2(x). Applications of these results to the three

selected ODEs, along with the general result, are given in Table 4.3. Note that the

choice of α, β, and γ allow for different Bessel equations (regular, modified, spherical,

and spherical modified) to be obtained.

To summarize, in this project general standard and null Lagrangians were found

for linear second-order ODEs whose solutions were given by the SFs of mathematical

physics and appear published in Dange, Vestal & Musielak (2021). The derived

gauge functions are also a new result. The obtained results were applied to the

Bessel, Hermite, and Legendre equations, making them very relevant to physicists

and applied mathematicians; further, these results could easily be applied to any

ODE with SF solutions, presenting a promising area of future work.

4.8 Summary

This chapter presents a fundamental first step in constructing NLs and exploring

their new important roles in classical physics. The chapter begins with two methods

to construct standard null Lagrangians. This is followed by my first published results

that appeared in the paper by Musielak & Vestal et al. (2020), wherein we present

an approach to convert undriven oscillators to driven ones in a novel way by using

the derived NLs. The formalism was then extended to dissipative systems, focusing

on the Bateman oscillator system, by Vestal & Musielak (2021). This work showed

that application of the formalism developed is not limited to conservative systems,
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Figure 4.1. Selected equations with special function solutions and their corresponding
gauge functions. By the choice of α , β and γ, different (regular, modified, spherical
and spherical modified) Bessel equations are obtained (Dange, Vestal, & Musielak
2021).

which is a novel result. I also developed a new approach to finding NLs and their

gauge functions in a generalized way, and for going between NLs and corresponding

gauge functions. The formalism was developed for introducing forces and nonlineari-

ties directly from these gauges, and I showed how forces and nonlinearities of interest

for applications to physics can be reproduced using this method in Vestal & Musielak

(2023). The successful adaption of the NL formalism to nonlinearities further demon-

strates how promising the study of NLs and gauge functions is for physical systems.

There may be additional phenomena beyond those described herein that NLs can also

be used to introduce to a system. Moreover, standard and null Lagrangians, and their

corresponding gauge functions, were also derived for linear second-order ODEs whose

solutions are given by SFs of mathematical physics and appeared published in Dange,

Vestal, & Musielak, 2021. The derived gauge functions are also a new result. The
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research presented herein helps to lay the groundwork for a large-scale investigation

of the application of NLs to the field of physics, of which this dissertation is a piece.
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CHAPTER 5

Non-standard Null Lagrangians and their Applications to Dynamics

In this chapter, I will present additional applications of non-standard and non-

standard null Lagrangians (NSNLs) to systems of interest in dynamics. I start by

describing a method to construct NSNLs. This will be followed by first presenting the

way in which NSNLs and their corresponding non-standard gauge functions (NSGFs)

can be used to introduce dissipative forces to Classical Dynamics, extending what

was done in Chapter 4 to non-standard Lagrangians, which is the main conclusion of

work by Segovia, Vestal, & Musielak (2022); this work illustrates the unique role that

NSNLs play in physics, notably that the behavior of the non-standard representation

of a system can differ from the behavior of the standard Lagrangian. Further, in

this project we showed that the NSNL for the law of inertia is Galilean invariant

but the forces resulting from the NSNL are not Galilean invariant, except for the

special case of only time-dependent forces. The chapter concludes with recent work

of Das & Musielak (2023), who demonstrated strong relationships between standard

and non-standard null Lagrangians and non-standard Lagrangians.

A method to construct NSNLs and corresponding NSGFs is presented in section

5.1. An extension of the formalism for introducing forces by way of NLs and GFs to

consider NSNLs and NSGFs, is their Galilean invariance, are given in sections 5.2 and

5.3. Nonlinearities arising from GFs are discussed in section 5.4. Newly discovered

relationships between non-standard Lagrangians and standard and non-standard null

Lagrangians are discussed in section 5.5.; the chapter is summarized in section 5.6.
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5.1 Methods to Construct Non-standard Null Lagrangians

The next step in investigating the role of NLs in physics is to explore if a similar

formalism can be found for non-standard Lagrangians (see section 2.3.2) to find a

non-standard null Lagrangian (NSNL). No such formalism exists within literature.

Recall that NSLs are described as Lagrangians different from standard La-

grangians (Musielak, 2021). Is it possible to write a non-standard null Lagrangian,

what would a term like this look like, and what sort of physical significance might

it have, if any? The first two of these questions will be addressed in this section.

An approach to finding NSNLs (non-standard Lagrangians that also satisfy the two

conditions for being a null Lagrangian) is now presented.

We will begin by considering a very commonly used NSL,

Lns(ẋ, x, t) =
1

g1(t)ẋ+ g2(t)x+ g3(t)
, (5.1)

where g1(t), g2(t) and g3(t) are arbitrary and differentiable functions that are to be

determined. In addition to being different from standard Lagrangians, non-standard

Lagrangians must be similar to this equation (Musielak, 2021). The NSL, and there-

fore the NSNL, must then contain ẋ, x and arbitrary functions of t, or constants.

Further, to be a NSNL, it is necessary that the power of the dependent variable and

its derivative not exceed their order as given in Eq. (5.1).

Proposition 1: Let a1, a2, a3 and a4 be constants in the following non-standard

test-Lagrangian

Lns,test1(ẋ, x, t) =
a1ẋ

a2x+ a3t+ a4
. (5.2)

Then, Lns,test1(ẋ, x, t) is a null Lagrangian if, and only if, a3 = 0.

Proof: Since this Lagrangain must satisfy the E-L equation, ÊL{Lns,test1(ẋ, x, t)} =

0, the required condition is a1a3 = 0. With a1 ̸= 0, then a3 = 0, and Lns,test1(ẋ, x, t) =

Lnsn1(ẋ, x, t), where the latter is the non-standard NL. This concludes the proof.
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Corollary 2: Let Lnsn1[ẋ, x] be the non-standard null Lagrangian given by

Lnsn1(ẋ, x, t) =
a1ẋ

a2x+ a4
, (5.3)

then, its gauge function Φnsn1(x) is

Φnsn1(x) =
a1
a2

ln |a2x+ a4| . (5.4)

Corollary 3: Another non-standard NL that can be constructed is Lnsn2(t) =

b1/(b2t + b3) with its gauge function Φnsn2(t) = (b1/b2) ln |b2t + b3|; however, this

Lagrangian and its gauge function do not obey the first condition, thus, they will not

be further considered.

Generalization of Lnsn1(ẋ, x) is now presented in Proposition 2.

Proposition 2: Let h1(t), h2(t) and h4(t) be at least twice differentiable func-

tions, and Lnsn1(ẋ, x) be the non-standard NL given by Eq. (5.3) with its non-

standard GF given by Eq. (5.4). A more general non-standard NL is obtained if, and

only if, the constants in Φnsn1(x) are replaced by the corresponding functions h1(t),

h2(t) and h4(t).

Proof: Replacing the constant coefficients a1, a2 and a4 in Lnsn1(ẋ, x) by the

functions h1(t), h2(t) and h4(t), respectively, the resulting Lagrangian is

Lns,test2(ẋ, x, t) =
h1(t)ẋ

h2(t)x+ h4(t)
. (5.5)

Using ÊL{Lns,test2(ẋ, x, t)} = 0, it is seen that Lns,test2(ẋ, x, t) is the non-standard

NL only when h1(t) = a1, h2(t) = a2 and h4(t) = a4, which reduces Lns,test2(ẋ, x, t) to

Lnsn1(ẋ, x, t), and shows that no generalization of Lnsn1(ẋ, x, t) can be accomplished

this way.

Now, replacing the constant coefficients in Φnsn1(x) by the functions h1(t), h2(t)

and h4(t) generalizes the gauge function to

Φnsgn(x) =
h1(t)

h2(t)
ln |h2(t)x+ h4(t)| . (5.6)
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Since the total derivative of any differentiable scalar function that depends on x and

t is a null Lagrangian, the following non-standard NL is obtained

Lnsgn(ẋ, x, t) =
h1(t)[h2(t)ẋ+ ḣ2(t)x] + ḣ4(t)

h2(t)[h2(t)x+ h4(t)
+

[
ḣ1(t)

h2(t)
− h1(t)ḣ2(t)

h22(t)

]
ln |h2(t)x+h4(t)| .

(5.7)

As expected ÊL{Lnsgn(ẋ, x, t)} = 0. Therefore, Lnsgn(ẋ, x, t) is the general

(when compared to Eq. 5.3) non-standard null Lagrangian. This concludes the proof.

In this way, a new family of NSNLs, given in a general form by Lnsgn(ẋ, x, t),

is obtained. Further, the corresponding gauge functions for these NSNLs are found

to be Φnsgn(ẋ, x, t). In section 3.1, a physical application of NSNLs to the law of

inertia is presented and a remarkable result arising only from the non-standard form

is discussed.

5.2 Non-standard Null Lagrangians and Forces in Classical Mechanics

In this section, the role of NSNLs and their NSGFs in defining forces in CM

is investigated by following Segovia, Vestal, & Musielak (2022). The main result

found from this work is that dissipative forces can be introduced to CM by using

the NSGFs. The relationships between the forces and types of null Lagrangians

that introduce them are used to gain novel insight into the physical meaning of the

standard and non-standard null Lagrangians and the differences between the two.

In section 5.3, the obtained results are further discussed as they relate to Newton’s

laws, which were introduced in NSL form in section 3.1.2. While standard and non-

standard Lagrangians are known for producing the same equation of motion for a

given system, we explore a unique aspect of the non-standard formulation that leads

to a compelling result.
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As discussed in section 2.3.2, non-standard Lagrangians are a lesser known

family of Lagrangians in which neither explicit kinetic nor potential energy-like terms

are present. These Lagrangians have been introduced to CM in recent years. However,

the physical meaning of the NSLs remains unclear (see discussion in section 2.3.2).

In this section, I present an extension to the formalism established for SLs to NSLs.

The forms of SLs and NSLs are distinct, thus, there are also the corresponding

NLs whose forms resemble those two families of Lagrangians. In the previous work

on NLs (e.g., Musielak & Vestal et al., 2020; Vestal & Musielak 2021, 2023; Jammer,

1997, 2000), the so-called standard NLs have been used. Recently, non-standard

NLs have been introduced (Musielak, 2021), and herein the aim is to understand the

physical meaning of the non-standard NLs and their role in dynamical systems.

The results herein demonstrate that the non-standard NLs can be used to in-

troduce dissipative forces, and that this distinguishes them from the standard NLs

that are responsible for non-dissipative forces. From a physical point of view, this

means that the standard Lagrangians are more suitable for describing undamped dy-

namical systems, while the non-standard Lagrangians are more applicable to damped

systems; this statement applies equally to the SLs and NSLs as well as to the stan-

dard and non-standard NLs. Further, in section 5.3 the obtained results are used to

introduce dissipative forces to the law of inertia and convert it into Newton’s second

law; Galilean invariance of the laws and their Lagrangians is also investigated and

discussed.

A method to construct NSLs introduced in section 5.1 can now be used to find

Ln(ẋ, x) =
a1ẋ

a2x+ a4
, (5.8)
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where a1, a2 and a4 are arbitrary constant coefficients. It is easy to verify that Ln(ẋ, x)

is indeed a null Lagrangian, and that its gauge function is

Φn(x) =
a1
a2

ln |a2x+ a4| . (5.9)

To generalize these results, it was suggested that the coefficients a1, a2 and a4

be replaced by the corresponding functions of t so the generalized gauge function [31]

becomes

Φgn(x, t) =
h1(t)

h2(t)
ln |h2(t)x+ h4(t)| , (5.10)

where h1(t), h2(t) and h3(t) are twice differentiable but otherwise arbitrary functions

of t, and in addition h2 ̸= 0. This gauge function gives the following general non-

standard NL

Lgn(ẋ, x, t) =
h1(t)[h2(t)ẋ+ ḣ2(t)x] + ḣ4(t)

h2(t)[h2(t)x+ h4]

+

[
ḣ1(t)

h2(t)
− h1(t)ḣ2(t)

h22(t)

]
ln |h2(t)x+ h4| , (5.11)

which is significantly different than Ln(ẋ, x) given by Eq. (5.8), despite the fact that

both are null Lagrangians.

Let Φnull[x(t), t] be a gauge function (either Φn(x) or Φgn(x, t)). Any NL can

then be expressed as Lnull(ẋ, x, t) = dΦnull(x, t)/dt, which gives the energy function

Enull(ẋ, x, t) = −∂Φnull(x, t)

∂t
. (5.12)

By using Φnull(x, t) = Φn(x), we find En = 0 because the gauge function does not

depend explicitly on time. However, for Φnull(x, t) = Φgn(x, t), we obtain

Egn(ẋ, x, t) = −

[
ḣ1(t)

h1(t)
− ḣ2(t)

h2(t)

]
Φgn(x, t)

−
[
h1(t)

h2(t)

]
h2(t)ẋ+ ḣ2(t)x+ ḣ4(t)

h2(t)x+ h4(t)
. (5.13)
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This shows that different gauge functions have different effects on the energy function,

namely, for some it can be zero, but for others becomes non-zero, and it is interesting

that it depends on the gauge function itself.

Having obtained the relationship between the energy function and the gauge

function (Eq. 5.12), and knowing that Enull(ẋ, x, t) resulting from any non-standard

NL is not a NL by itself, we may add this extra term to the NSL given by Eq. (5.1).

This gives

Lt(ẋ, x, t) = Lns(ẋ, x, t)−
∂Φnull(x, t)

∂t
, (5.14)

where the NSL is either

Lns(ẋ, x, t) =
1

C1f 2(t)[f(t)ẋ− aox+ C2]
, (5.15)

or

Lns(ẋ, x, t) =
1

C3ẋ
, (5.16)

with f(t) = aot + vo, and Φnull(x, t) = Φgn(x, t), since there is no contribution from

Φn(x).

The equation of motion resulting from Eq. (5.15) is

2ẍ

C1[f(t)ẋ− aox+ C2]3
= F (ẋ, x, t) , (5.17)

and using Eq. (5.16), we obtain

2ẍ

C3ẋ2
= F (ẋ, x, t) , (5.18)

where the forcing function is

F (ẋ, x, t) = − ∂

∂x

[
∂Φgn(x, t)

∂t

]
=
∂Egn(ẋ, x, t)

∂x
. (5.19)

Because of the presence of additional terms on the LHS of the above equations,

we may write Eqs (5.17) and (5.18) in the following forms: ẍ = F1(ẋ, x, t) and
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ẍ = F2(ẋ, x, t), respectively, where F1(ẋ, x, t) = F (ẋ, x, t)C1[f(t)ẋ − aox + C2]
3 and

F2(ẋ, x, t) = F (ẋ, x, t)C3ẋ
2/2. The effects of these extra terms on the forcing function

are discussed in Section 5.

The above results demonstrate how classical forces can be defined using the non-

standard NLs, and also show how the law of inertia can be converted into the second

law of dynamics. The main difference between the previous results (eg. Musielak &

Vestal et al., 2020; Vestal & Musielak, 2021) and the ones presented in this section

is the physical nature of the forces introduced by the non-standard NLs, namely, the

forces resulting from the non-standard NLs are dissipative, while the forces introduced

by the standard NLs are non-dissipative.

Our method of converting the first law of dynamics into the second one gives

an independent way to introduce forces in CM, and supplements Newton’s definition

of forces that directly relates them to object’s acceleration and mass (e.g., Jammer,

1997, 2000). Thus, the presented results show a deeper connection between Newton’s

first and second laws of dynamics, and demonstrate that non-standard NLs can be

used to turn undriven dynamical systems into driven ones.

Using Eqs (5.13) and (5.19), we obtain the explicit form of the forcing function

F (ẋ, x, t) =
h1(t)h2(t)

[h2(t)x(t) + h4(t)]2

[
ẋ+

(
ḣ2(t)

h2(t)
− ḣ1(t)

h1(t)

)
x

]

− h1(t)h4(t)

[h2(t)x(t) + h4(t)]2

(
ḣ4(t)

h4(t)
− ḣ1(t)

h1(t)

)
. (5.20)

For F (ẋ, x, t) to be zero, either h1(t) = 0 or h1(t) = h2(t) = 0. There are several

special cases, like h1(t) = c1, h2(t) = c2, and h4(t) = 0, which gives F (ẋ, x) = −c1ẋ/x,

or h1(t) = c1, h2(t) = c2, and h4(t) = c4, which results in F (ẋ, x) = −c1c2ẋ/(c2x+c4).

A special case of h2(t) = 0 makes F (t) to be only a function of t.
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Other reductions of F (ẋ, x, t) are also possible but since the forcing function

originates exclusively from the gauge function Φgn(x, t), there are other terms re-

sulting from Lns(ẋ, x, t) (see Eqs 5.17 and 5.18), and these extra terms affect, in

addition to F (ẋ, x, t), the forms of functions F1(ẋ, x, t) and F2(ẋ, x, t). Both extra

terms depend on the variables ẋ, x and t. Thus, the forces in the equations of motion

ẍ = F1(ẋ, x, t) and ẍ = F2(ẋ, x, t) are always dissipative. Therefore, based on the

presented results, we conclude that non-standard null Lagrangians can be used to

introduce dissipative forces to dynamical systems.

5.3 Galilean Invariance of Dissipative Forces

As already demonstrated in section 3.1.2, the Galilean group of the metric

is composed of rotations, translations, and boosts between two inertial frames of

reference. The results presented in section 3.1.2 showed that the NSL given by Eq.

(3.2) is Galilean invariant but the other NSL given by Eq. (3.3) is not. Following

Segovia, Vestal & Musielak (2022), Galilean invariance of forces obtained in section

5.2 is now considered.

Let (x, t) be an inertial frame moving at a constant velocity, V0, with respect

to a second inertial frame, (x′, t′), and let their origins coincide at t = t′ = t0.

Thus, there are the following transformations between the systems: x′ = x − V0t

and t′ = t. By applying these transformations to the law of inertia ẍ = 0, it is seen

that Newton’s first law is Galilean invariant. However, its standard Lagrangian is not

Galilean invariant (e.g., Landau & Lifschitz 1969; Lévy-Leblond 1969) and it requires

a special procedure that involves standard null Lagrangians to restore its Galilean

invariance (Musielak & Watson 2020a).
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Let us now investigate Galilean invariance of the non-standard Lagrangian for

the law of inertia (see section 3.1.2) and written here as

Lns(ẋ, x, t) =
1

C1f 2(t)[f(t)ẋ− aox+ C2]
, (5.21)

where f(t) = aot+ vo. After the Galilean transformation, this Lagrangian becomes

L′
ns[ẋ

′(t′), x′(t′), t′] =
1

C ′
1f

′ 2(t′)[f ′(t′)ẋ′(t)− a′ox
′(t′) + C ′

2 + v′oV0]
. (5.22)

Galilean invariance of Lns(ẋ, x, t) requires that its form is the same as L′
ns[ẋ

′(t′), x′(t′), t′].

For the original and transformed Lagrangians to be of the same form in the variables

x(t) and x′(t′), the following conditions must be satisfied: (i) f ′(t′) = f(t), which re-

quires that a′o = ao and v
′
o = vo; further, it is also required that t′ = t, as guaranteed

by the Galilean transformation; (ii) C ′
1 = C1 is satisfied in all inertial frames; and

(iii) C ′
2 + voV0 = C2 to be valid for all Galilean observers.

Since ao and vo are the integration constants for the auxiliary equation (Musielak

2021), and C1 and C2 are the constants of integration for the law of inertia, these con-

stants are determined by the initial conditions to be specified for a physical problem

to be solved. However, both the auxiliary equation and the law of inertia are Galilean

invariant; thus, the solutions to these equations must also be the same (Galilean in-

variant) for all Galilean observers. The latter is equivalent to the requirement that

the specified initial conditions are also the same for all Galilean observers, which

validates the above conditions (i) and (ii). The condition (iii) shows that C ′
2 ̸= C2

and that the constant C ′
2 must be modified by adding another constant voV0 to it

as compared to C2. This addition is known in advance by all Galilean observers,

who by their definition already agreed on the Galilean invariance. Therefore, the

non-standard Lagrangian for the law of inertia given by Eq. (3.2) is Galilean invari-

ant, which distinguishes it from the standard Lagrangian, whose original form is not

Galilean invariant (e.g., Landau & Lifschitz 1969; Lévy-Leblond 1969).
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Having demonstrated the Galilean invariance of the law of inertia and its non-

standard Lagrangian (see section 3.1.2), we now check the Galilean invariance of the

equations of motion ẍ = F1(ẋ, x, t) and ẍ = F2(ẋ, x, t). It is easy to verify that neither

F1(ẋ, x, t) nor F2(ẋ, x, t) is Galilean invariant because they are dissipative forces that

depend explicitly on both ẋ and x. Thus, the Galilean invariance is lost when the

law of inertia is converted into the second law of dynamics.

The above results demonstrate that dissipative forces in dynamics can also be

defined using non-standard null Lagrangians, which is a novel way to view forces and

it significantly extends the previous work on standard null Lagrangians that were

used to introduce non-dissipative forces to dynamics (Musielak & Watson 2020a,b;

Musielak & Vestal et al. 2020; Vestal & Musielak 2021). The presented results also

show that the non-standard Lagrangian for the law of inertia preserves its Galilean

invariance, which makes it different from the standard Lagrangian, whose Galilean

invariance must be fixed by using a special procedure that involves standard null

Lagrangians. The presented results give novel insight into the role played by non-

standard Lagrangians and non-standard null Lagrangians, which seem to be more

suitable for describing damped dynamical systems, while standard Lagrangians and

standard null Lagrangians seem to be more applicable to undamped dynamical sys-

tems.

It must be also pointed out that the results presented were obtained within the

framework of classical mechanics, and that they can be extended to quantum fields

as is shown in Chapter 6.

5.4 Relationships Between Null and Non-standard Lagrangians

The results presented in my dissertation must also be considered in the con-

text of the recent developments in theories of null Lagrangians described by Das &
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Musielak (2022, 2023). According to these authors, there is a natural mapping be-

tween the NLs and NSLs, and this mapping becomes a method to generate NSLs

when NLs are known. Actually, the generated NSLs, when substituted into the E-L

equation, give equations of motion by using the following condition

d

dt
[Lnull(ẋ, x, t)] = 0. (5.23)

An interesting result is that any null Lagrangian Lnull(ẋ, x, t) gives its equation of

motion, which means that each null Lagrangian derived in this dissertation has the

resulting equation of motion (see section 2.3.3). As already pointed out by Das and

Musielak (2022, 2023), the main advantage of Eq. (5.23) is that its form is much

simpler than the E-L equation, which means that it is easier to derive an equation of

motion. However, its disadvantage is that the resulting equation of motion must be

in a form that obeys a special relationship among the coefficients of this equation; the

relationship is unique for a given dynamical system but varies for different systems.

Indeed, I performed preliminary studies by substituting the NLs obtained in this

dissertation into the above condition, and found out that the resulting equations of

motion were different than the original ones, and that there were special relationships

between the coefficients of these equations. This is consistent with the examples

presented by Das & Musielak (2022, 2023), who discussed those relationships and

suggested possible solutions. Nevertheless, the problem of finding a null Lagrangian

whose substitution into Eq. (5.23) would result in the originally given equation of

motion still remains unsolved; thus, this problem is proposed as a future activity in

the field of research of null Lagrangians and gauge functions.
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5.5 Chapter Summary

In this chapter, I introduced non-standard null Lagrangians and showed how

the formalism developed in Chapter 4 can be extended to also include this lesser-

known family of Lagrangians. I presented a variety of applications of NLs, including

a way to introduce dissipative forces by way of the non-standard gauge functions, and

I discussed Galilean invariance of these forces.

In section 5.1, it was shown how to construct NSNLs and their corresponding

NSGFs, and then in the section following, how to use them to introduce dissipative

forces to classical dynamics. The presented results significantly extended the previous

work on standard null Lagrangians, wherein they were used to introduce forces to

dynamics (eg. Musielak et al., 2020; Vestal & Musielak, 2021). Further, the results

described in this chapter give novel insight into the role played by non-standard

Lagrangians and non-standard null Lagrangians, which seem to be more suitable for

describing damped dynamical systems, while standard Lagrangians and standard null

Lagrangians seem to be more applicable to undamped dynamical systems.

The chapter concludes with newly discovered relationships between non-standard

Lagrangians and standard and non-standard null Lagrangians, which give new insight

into mathematical and physical connections between these diverse Lagrangians.
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CHAPTER 6

The Role of Null Lagrangians in Quantum Mechanics

In this chapter, the role of null Lagrangians for quantum mechanical systems

will be investigated and discussed. I start by describing relevant previous work and

background information. Following this, I will present my work on developing a for-

malism for the construction of null Lagrangians for quantum fields, which, to the best

of my knowledge, has not yet been done for such fields. The Galilean invariance of the

Schrödinger equation will then be discussed, and a key difference in the Schrödinger

equation and its Lagrangian is highlighted.

Studies of null Lagrangians and gauge functions presented in this dissertation

in Chapters 4 and 5, as well as those done previously in mathematics and described

in Section 2.3.3, were mainly performed for systems given by first and second-order

ODEs (e.g., Krupka 1973, 1977; Olver 1983; Olver & Sivaloganatham 1988; Crampin

& Saunders 2005; Krupka et al. 2010; Olver 2022; and others). As pointed out by

Krupka & Musilova (1998), the problem of finding all existing null Lagrangians and

their gauge functions for all ODEs of a given order is one of the most difficult problems

in variational calculus. Most previous work done by mathematicians concentrated

on first-order ODEs; however, all the results presented in Chapters 4 and 5 of this

dissertation deal with second-order ODEs and are therefore complementary to the

previous investigations. Another important difference between previous studies and

the work described in this dissertation is that the latter considers exclusively systems

of physical interest, whereas the mathematicians investigated general systems without

making any reference to their physical meaning.
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A seminal paper on defining null Lagrangians for classical fields, which are

characterized by many degrees of freedom and are described by first and second-order

PDEs, was published by Hojman (1983). In the following work, Krupka & Musilova

(1998), Grigorge (1999), Crampin & Saunders (2005), and Thieme (2020) studied

null Lagrangians in classical field theories. To the best of my knowledge, studies of

null Lagrangians in quantum field theories have not yet been done, which means that

the results presented in this chapter are the first of such attempts. The main goal of

this chapter is to construct first null Lagrangians and their gauge functions for non-

relativistic QM, and to then use these to investigate the Galilean invariance of the

Schrödinger equation and its Lagrangians. It is my hope that the presented results

initiate more future work in this exciting field of study of null Lagrangians and gauge

functions.

6.1 Method to Construct Null Lagrangians for Quantum Fields

Despite some work done by mathematicians (e.g., Hojman 1983; Krupka &

Musilova 1998; Grigorge 1999; Crampin & Saunders 2005; Thieme 2020) for classi-

cal fields, construction of null Lagrangians and their gauge functions specifically for

quantum mechanical fields has not yet been done. The results presented in this sec-

tion will generalize my results from Chapters 4 and 5 to quantum fields, with special

applications to the Schrödinger equation of QM.

As shown in section (2.3.3), the two main characteristics of NLs are: (i) they

must yield from applying the E-L operator (see Eq. 2.1) identically zero, and (ii)

there must exist a scalar function (called a gauge function) whose total derivative

is equal to a given NL. In other words, any NL must have these two properties. In

the following, my method to construct NLs is based on these two characteristics.

However, the results presented below show that the construction of NLs must be
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done with caution because, in addition to mathematical constraints, there are also

physical constraints, which are typically ignored by mathematicians.

Let η(r⃗, t) be a scalar wave function that represents a quantum field. It is easy

to show that the following null Lagrangians can be constructed

Ln1 = C1η∂tη , (6.1)

where C1 is an arbitrary (real or imaginary) constant and its gauge function is χ1 =

C1η
2/2, and

Ln2 = C2η∂xη . (6.2)

with C2 being another arbitrary constant and the gauge function given by χ1 =

C2η
2/2; note that ∂x represents the three spatial coordinates (x, y, z). Substituting

these Lagrangians into the following E-L equation

∂L

∂η
− ∂t

∂L

∂(∂tη)
−∇ ∂L

∂(∂xη)
= 0 , (6.3)

it is confirmed that both Ln1 and Ln2 are null Lagrangians.

Since null Lagrangians vanish under the E-L operator, multiple can be added

together without changing the resulting equation of motion from the E-L, as was done

in Chapter 4. Let us now add Eq. (6.1) and Eq. (6.2) together,

Ln3 = Ln1 + Ln2 . (6.4)

This is allowed as ÊL(Ln1) = 0 and ÊL(Ln2) = 0, thus, ÊL(Ln1 + Ln2) = 0, sat-

isfying the first condition for a null Lagrangian. The same can be done with the

gauge functions, which are known. However, the addition of gauge functions causes

a problem with physical units, which must be fixed before the results are applied

to physical systems. In other words, the addition of Ln1 and Ln2 to produce Ln3 is

not equivalent to the addition of their corresponding gauge functions χ3 = χ1 + χ2
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since the constants C1 and C2 have different units. This illustrates the importance

of looking at these systems from a physical perspective, which is required to fix this

physical unit problem.

With this in mind, taking a closer look at Eq. (6.4), which becomes

Ln3 = C1η∂tη + C2η∂xη , (6.5)

it is apparent that this Lagrangian is also physically inconsistent due to the lack of

agreement in the units. Let us now refine our approach so as to find a method to

construct physically consistent null Lagrangians and their gauge functions, along with

the E-L equation for the systems.

To fix the units in Eq. (6.5), let us write,

Ln = c(η∂tη + η(v⃗ · ∇)η) , (6.6)

where v⃗ is velocity of inertial frames in Galilean relativity; note that this velocity

remains constant for Galilean observers, which means that it can be used to fix the

unit problem, similarly to what was done in the special theory of relativity by the

speed of light. The E-L equation then becomes,

∂L

∂η
− ∂t

∂L

∂(∂tη)
− (v⃗ · ∇)

∂L

∂(v⃗ · ∇η)
= 0 . (6.7)

Starting with the gauge function,

χ = c
1

2
η2 , (6.8)

and taking the total derivative,

dχ

dt
=
∂χ

∂t
+ (

∂χ

∂η
)(∂tη) + (

∂χ

∂η
)(v⃗ · ∇)η , (6.9)

we recover Eq. (6.6), which is indeed a null Lagrangian, as can be verified using Eq.

(6.7).
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Further, it is possible to construct another, simpler null Lagrangian, Ln4, from

the gauge function χ4 = cη. Using Eq. (6.9), the corresponding null Lagrangian is

found to be

Ln4 = c(∂tη + (v⃗ · ∇)η) . (6.10)

It can be confirmed that Eq. (6.10) is a null Lagrangian using Eq. (6.7). Thus, we

have constructed two physically consistent null Lagrangians for fields, Eqs (6.6) and

6.10, along with their corresponding gauge functions.

6.2 Galilean Invariance of Schrödinger Equation and its Phase Factor

As already described in Section 3.1.2, in Galilean space-time there are two

metrics, given by ds21 = dx2 + dy2 + dz2 and ds22 = dt2, where x, y and z are

spatial coordinates and t is time. The group of all allowed rotations, translations,

and boosts is known as the Galilean group of the metric (Levy-Leblond 1963, 1967);

its mathematical structure is given and discussed in Section 3.1.2, and it will not

be repeated here. As demonstrated by Bargmann & Wigner (1954), and then by

Levy-Leblond (1967, 1969), the Lie algebra associated with the Galilean group of the

metric can be extended and to become the so-called extended Galilean group, whose

mathematical structure is

Ge = [R(3)⊗s B(3)]⊗s [T (3 + 1)⊗ U(1)] (6.11)

where R(3) and B(3) are subgroups of rotations and boosts, respectively. In addition,

T (3+ 1) is a subgroup of translations in space and time and U(1) is a one-parameter

unitary group, and ⊗ is a direct product and ⊗s represents a semi-direct product. It

is important to point out that the presence of the subgroup U(1) in Ge guarantees

that the square of the absolute value of the Schrödinger wave function remains the

same for all Galilean observers, as is required by QM.
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The group Ge is the universal covering group of the Galilei group of the met-

ric G (see Section 3.1.2), and it is used to demonstrate Galilean invariance of the

Schrödinger equation (e.g., Merzbacher 1998; van Oosten 2006; Musielak & Fry 2009;

Fry & Musielak 2010). As those authors showed, the Schrödinger equation is invari-

ant with respect to all Galilean rotations and translations. However, the requirement

that the Schrödinger equation be invariant with respect to Galilean boosts involves a

phase factor, which is now derived.

In Galilean space-time, a boost is defined by the change of coordinate

r⃗ ′ = r⃗ − v⃗t and t′ = t , (6.12)

which gives

∂

∂t′
=

∂

∂t
+ v⃗ · ∇ and ∇′ = ∇ . (6.13)

Let us now apply these Galilean boost transformations to the Schrödinger equa-

tion for a free elementary particle, as given in its standard form

i
∂ψ(r⃗, t)

∂t
+

h̄

2m
∇2ψ(r⃗, t) = 0 . (6.14)

For this equation to be Galilean invariant, its transformed form must be given by

i
∂ψ′(r⃗′, t′)

∂t′
+

h̄

2m
∇′2ψ′(r⃗′, t′) = 0 , (6.15)

where ψ(r⃗, t)− ϕ(r⃗′, t′)ψ′(r⃗′, t′), with ϕ(r⃗′, t′) being an arbitrary function to be deter-

mined in such a way that Eqs (6.14) and (6.15) are of the same form. This requires

that the following condition is satisfied(
i
∂ϕ

∂t′
− iv⃗ · ∇′ϕ+

h̄

2m
∇′2ϕ

)
ψ′ +

(
h̄

m
∇′ϕ− iv⃗ϕ

)
· (∇′ψ′) = 0 . (6.16)

Since ψ′ ̸= 0 and ∇′ψ′ ̸= 0 for all r⃗′ and t′, the condition reduces to

i
∂ϕ

∂t′
− iv⃗ · ∇′ϕ+

h̄

2m
∇′2ϕ = 0 , (6.17)
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and

h̄

m
∇′ϕ− iv⃗ϕ = 0 . (6.18)

which can be used to determine ϕ(r⃗′,t′).

From Eqs (6.17) and (6.18), one finds

ϕ(r⃗ ′, t′) = ϕ0 e
im(v⃗·r⃗ ′+ 1

2
v2t′)/h̄ , (6.19)

where ϕ0 is an integration constant. The existence of the phase function ϕ(r⃗ ′, t′) is

an important result because it demonstrates that Schrödinger equation is Galilean

invariant and that the explicit form of the transformation law for the state functions

ψ(r⃗, t) and ψ′(r⃗ ′, t′) can be derived. Taking ϕ0 = 1, the transformation law becomes

ψ(r⃗, t) = ψ(r⃗ ′ + v⃗t′, t′) = ψ′(r⃗ ′, t′) eim(v⃗·r⃗
′+ 1

2
v2t′)/h̄ . (6.20)

The obtained result is well-known and it can be found in advanced QM textbooks

(e.g., Merzbacher 1998); this result was also used by different authors in their studies

of the origin of the Schrödinger equation from the point of view of group theory (e.g.,

van Oosten 2006; Musielak & Fry 2009; Fry & Musielak 2010).

The presence of the phase factor in the transformed wave function implies

that the wave functions for different Galilean observers have different forms because

ϕ(r⃗ ′, t′) changes from one inertial frame to another. Notably, this does not vio-

late the Galilean invariance of the Schrödinger equation as QM only requires that

|ψ(r⃗, t)|2 = |ψ′(r⃗ ′, t′)|2, since it is consistent with the presence of the subgroup U(1)

in Ge and it is the basis for all measurements in QM.

6.3 Galilean Invariance of the Schrödinger Lagrangian

As shown in the previous section, the Schrödinger equation is Galilean invari-

ant and this invariance requires a phase function, whose explicit form is given by
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Eq. (6.20). Recall from section 3.1.2 that while Newton’s law of inertia is Galilean

invariant, its Lagrangian is not (e.g., Landau & Lifschitz 1969; Lévy-Leblond 1969);

however, its Galilean invariance can be restored, as shown by Musielak & Watson

(2020a).

Now, I will investigate the Galilean invariance of the Schrödinger Lagrangian,

which can be written as (e.g., Daughty 1990; Merzbacher 1998)

Ls(ψ, ψ
∗, ∂tψ, ∂tψ

∗,∇ψ,∇ψ∗) = − h̄

2m
(∇ψ∗) · (∇ψ) + i

1

2
(ψ∗∂tψ − ψ∂tψ

∗) , (6.21)

where ψ∗ is the conjugate of ψ, m is mass of an elementary particle described by the

equation. As most available QM textbooks do not discuss the Galilean invariance of

the Schrödinger Lagrangian, in the following I will demonstrate that the Lagrangian

is Galilean invariant and that this has some implications for my research, which is

presented in sections 6.4 and 6.5.

Substituting Ls(ψ, ψ
∗, ∂tψ, ∂tψ

∗,∇ψ,∇ψ∗) into the Euler-Lagrangian

∂L

∂ψ∗ − ∂t

(
∂L

∂(∂ψ∗)

)
−∇ ·

(
∂L

∂(∇ψ∗)

)
= 0 , (6.22)

yields the Schrödinger equation for the wave function ψ

i∂tψ +
h̄

2m
∇2ψ = 0 . (6.23)

However, the Schrödinger equation for the conjugate wave function is obtained when

ψ∗ in the E-L equation is replaced by ψ (e.g., Daughty 1990).

As Galilean invariance requires that Ls = L′
s, where

L′
s(ψ

′, ψ′∗, ∂tψ
′, ∂tψ

′∗,∇ψ′,∇ψ′∗) = − h̄

2m
(∇′ψ′∗) · (∇′ψ′) + i

1

2
(ψ′∗∂t′ψ

′ − ψ′∂t′ψ
′∗) ,

(6.24)
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we must now compute L′
s. To do this, let ∇ = ∇′, h̄ = const., m = const., ∂t′ =

∂t + v⃗ · ∇, r⃗′ = r⃗ − v⃗t, t = t′ and

ψ(r⃗, t) = ψ(r⃗′, t⃗′)eimv⃗·(r⃗′+ 1
2
v⃗t′)/h̄ . (6.25)

For simplicity of calculation, let us also define

α =
m

h̄
(v⃗ · r⃗′ + 1

2
v⃗2t′) , (6.26)

and use

ψ(r⃗, t) = ψ′(r⃗′, t′)eiα , (6.27)

and

ψ∗(r⃗, t) = ψ′∗(r⃗′, t′)e−iα . (6.28)

Taking the gradient of eiα, it is found that

∇′eiα = i
mv⃗

h̄
eiα . (6.29)

We first find that

∂tψ = (∂t′ − v⃗ · ∇)(ψ′eiα) , (6.30)

which becomes

ψ∗∂tψ = (∂t′ψ
′ − (v⃗ · ∇′)ψ′ + iψ′∂t′α− iψ′(v⃗ · ∇′)α)eiα . (6.31)

Using this, we then find that

ψ∗∂tψ = ψ′∗∂t′ψ
′ − ψ′∗(v⃗ · ∇′)ψ′ + i(∂t′α− (v⃗ · ∇′)α)ψ′ψ′∗ (6.32)

and the remaining terms are found similarly.

Making the substitutions and comparing the result to Eq. (6.21), we find

L′
s = Ls + ET1 + ET2 , (6.33)
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where ET1 and ET2 are the terms additional to L′
s that were not present in Ls, and

are defined as

ET1 = i
1

2
(ψ′(v⃗ · ∇′)ψ′∗ − ψ′∗(v⃗ · ∇′)ψ′) +

1

2

m

h̄
v2ψ′ψ′∗ , (6.34)

and

ET2 = −i1
2
(ψ′(v⃗ · ∇′)ψ′∗ − ψ′∗(v⃗ · ∇′)ψ′)− 1

2

m

h̄
v2ψ′ψ′∗ . (6.35)

However, looking more closely at ET1 and ET2, we see that the terms exactly cancel,

and Ls is found to be equal to L′
s. This shows that the Schrödinger Lagrangian is

indeed Galilean invariant.

6.4 Schrödinger Lagrangian and its Null Lagrangians

Since the Schrödinger equation is parabolic, its Lagrangian must be a com-

bination of the wavefunction ψ and its conjugate, which is the only way to write

Lagrangians for this type of partial differential equation (e.g., Daughty 1990). It is

clear from looking at the form of the Lagrangian in Eq. (6.21) that the NLs developed

in section 6.1 are not compatible with it, as they only depend on the scalar (gauge)

function η and not on its conjugate. Therefore, the results presented in section 6.1

must be now generalized by also taking into account complex gauge functions and

their conjugates. In the following, I describe a method to construct such NLs and

their gauge functions by using the results of section 6.1.

The null Lagrangian given by Eq. (6.6) can be generalized as

Ln1 = C1[η(∂tη
∗) + η∗(∂tη) + η(v⃗ · ∇η∗) + η∗(v⃗ · ∇η)] , (6.36)
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with the corresponding gauge function χ1 = C1ηη
∗, and C1 being any (real or imagi-

nary) constant. Since χ1 is now a function of both η and η∗, its total derivative must

be calculated by using

dχ1

dt
=
∂χ1

∂t
+
∂χ1

∂η
(∂tη) +

∂χ1

∂η
(v⃗ · ∇η) + ∂χ1

∂η∗
(∂tη

∗) +
∂χ1

∂η∗
(v⃗ · ∇η∗) . (6.37)

Substitution of χ1 into this equation gives the Lagrangian Ln1. It must be noted that

χ1 does not depend on time explicitly, but only through the time-dependence of the

functions η and η∗.

Now, using the results of section 6.1, the E-L equation can be written as

∂L

∂η
− ∂t

∂L

∂(∂tη)
− (v⃗ · ∇)

∂L

∂(v⃗ · ∇η)
= 0 , (6.38)

with the understanding that there is the complementary E-L equation written for

η∗. Substitution of L = Ln1 into these two E-L equations yields two different null

Lagrangians, similar to the way in which the Schrödinger Lagrangian (see Eq. 6.21)

gives two different Schrödinger equations, one for ψ and the other for ψ∗ as discussed

in section 6.3.

If η ̸= η(t), then Ln1 reduces to Ln2 as given by

Ln2 = C1[η(v⃗ · ∇η∗) + η∗(v⃗ · ∇η)] , (6.39)

which is also a null Lagrangian. An interesting result is that an even simpler null

Lagrangian can be constructed by taking only

Ln3 = C2[(v⃗ · ∇η∗) + (v⃗ · ∇η)] , (6.40)

where C2 may be a different constant than C1 because its physical units are different.

The results obtained above can now be directly related to the Schrödinger equa-

tion by taking η = ψ and η∗ = ψ∗. Then, each of the null Lagrangians Ln1, Ln2, and
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Ln3, or a combination of all of them, can be added to the Schrödinger Lagrangian given

by Eq. (6.21); the resulting Schrödinger equation will be of the same form, which is

an expected result. However, some of our previously obtained results (e.g., Musielak

& Watson 2020a,b; Musielak & Vestal et al. 2020; Vestal & Musielak 2021; Vestal &

Musielak 2023) demonstrated that null Lagrangians and their gauge functions can be

used to restore Galilean invariance, and introduce forces and nonlinearities. In the

following, I discuss some possible applications of the derived null Lagrangians and

gauge functions to QM, and specifically to the Schrödinger equation.

6.5 Null Lagrangians and Schrödinger Phase Factor

The results presented in sections 6.2 and 6.3 show that both the Schrödinger

equation and its Lagrangian are Galilean invariant, and that this invariance re-

quires a phase factor. The presence of the phase factor implies that solutions to

the Schrödinger equation are different in different inertial frames, which may be in-

terpreted as a violation of Galilean invariance in QM. However, this is not the case

because the Schrödinger wavefunction being a complex function in the Hilbert space

cannot be directly measured experimentally; the only measurements that are allowed

are those that are of the square of the absolute value of the function, which remain

the same for all Galilean observers.

From a theoretical point of view, it would be interesting to explore possibility of

achieving Galilean invariance for the Schrödinger equation and its Lagrangian without

the phase factor but instead with help of the derived null Lagrangians and their gauge

functions. Let us assume that the phase factor α = 0, which reduces Eq. (6.34) to

ET1 = i
1

2
(ψ′(v⃗ · ∇′)ψ′∗ − ψ′∗(v⃗ · ∇′)ψ′) . (6.41)
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Let us also replace η = ψ′ and η∗ = ψ′∗ in Eq. (6.39) and obtain

Ln2 = C1[ψ
′(v⃗ · ∇′ψ′∗) + ψ′∗(v⃗ · ∇ψ′)] . (6.42)

Comparison of these two equations shows that the terms in ET1 are very similar to

those in Ln2 but there is a sign difference between the second term in the equations.

The consequences of this sign difference are significant as it shows that the addition

of Ln2 cannot remove the extra terms resulting from the Galilean transformations.

Thus, my main result of this study is that the constructed null Lagrangians cannot be

used to remove the phase factor from the formulation of QM based on the Schrödinger

equation.

To further explore the relationship between null Lagrangians and the Schrödinger

phase factor, I assume that η = eiα and η∗ = e−iα; this is allowed as the results ob-

tained in sections 6.1 and 6.4 are valid for any η as long as it is a scalar function. By

making these substitutions to the equations for Ln1, Ln2 and Ln3 in section 6.4, it is

demonstrated that Ln1 = Ln2 = Ln3 = 0; this means that the phase factor causes all

of the constructed null Lagrangians to vanish and forces their corresponding gauge

functions each to simply be constants.

The main conclusion from these results is that the Schrödinger phase factor elim-

inates all null Lagrangians constructed for the Schrödinger equation; rather, the main

terms of these null Lagrangians resemble the terms in the Schrödinger Lagrangian.

Thus, the obtained results allow me to formulate (without proof) the following final

conjecture.

Conjecture : All null Lagrangians constructed for the Schrödinger wavefunc-

tion and its conjugate can be eliminated by the Schrödinger phase factor, which means

that null Lagrangians cannot affect the Galilean invariance of quantum mechanics.
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However, the null Lagrangians and their gauge functions may be used to intro-

duce different potentials to the Schrödinger equation as well as to make the equation

nonlinear (e.g., Karjanto, 2019). Both topics are out of the scope of this dissertation

and they will be explored as future research projects.

6.6 Summary and Future Work

While null Lagrangians have been investigated mathematically, in section 6.1

it was shown that a null Lagrangian can be mathematically consistent while also

being inconsistent in its physical units. Further, a formalism for constructing null

Lagrangians for fields was developed, taking into account units; this method ensures

that the resulting null Lagrangians and gauge functions are physical - a necessary

distinction and requirement for developing the framework of null Lagrangians for

systems in physics.

In section 6.3, it was shown that the Schrödinger Lagrangian is Galilean invari-

ant. This result is significant as the Galilean invariance of the Schrödinger equation

does not guarantee the invariance of its Lagrangian, as was discussed earlier for the

Law of Inertia in section 3.1.

The method in section 6.1 was generalized in section 6.4 by also taking into

account complex gauge functions and their conjugates; these Lagrangians could be

added to systems like the Schrödinger Lagrangian and remain physically consistent.

As presented in previous chapters, the addition of a null Lagrangian can be sufficient

to convert an undriven system to a driven one, introduce nonlinearities, or restore

Galilean invariance (see Musielak & Watson 2020a,b; Musielak & Vestal et al. 2020;

Vestal & Musielak 2021; Vestal & Musielak 2023), making this a compelling step

forward for the application of null Lagrangians to systems in QM. In section 6.5, the

phase factor required by the Schrödinger equation to ensure Galilean invariance was
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discussed and investigated. It was found that it is not possible to remove this term

and replace it instead with a null Lagrangian while maintaining Galilean invariance.

The null Lagrangians developed in this chapter may well have further appli-

cations to systems in QM, just as those in prior chapters did for dynamics, and in

this way they may open new doors to areas of research into quantum phenomena and

shed light on underlying phenomena as of yet not understood.
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CHAPTER 7

Discussion and Conclusions

The primary goal of this dissertation is to communicate the impact and potential

of null Lagrangians for applications in physics, as well as the work that has been done

in this area of research. As null Lagrangians have not been explored to nearly the same

extent as their standard counterparts in physics, they are a natural starting point in

searching for new insight into physical phenomena and underlying symmetries in our

physical universe. In this dissertation, a method was presented for introducing forces

to a system that is an alternative to the way in which this was done by Newton over

300 years ago. By way of the gauge functions corresponding to null Lagrangians,

force arises from the physical system rather than later being added. This elegant

method has been shown also to be capable of converting a linear system to one that

is nonlinear.

The null Lagrangian formalism was developed first for systems in classical me-

chanics, with an application to the simple harmonic oscillator; it was then extended

to dissipative systems. As this formalism is not confined to classical dynamics, it was

also formulated for systems in quantum mechanics, building out the framework of

null Lagrangians for physical systems. This work was done with physical systems in

mind.

It was shown how known forces and the gauge functions corresponding to null

Lagrangians are directly linked. A method to find the gauge function to introduce

a given force in dynamics was presented. Further, this formalism was extended to

nonlinearities, and nonlinearities and forces of key interest in physics were included
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as examples. A primary result of this work was to show that the addition of a null

Lagrangian to a standard Lagrangian for a given system is sufficient to convert an

undriven, conservative system to a driven system. Using the equations and methods

developed herein to consider additional forces in physics, as well as in other fields of

science, is suggested as a compelling area of future work.

The null Lagrangian formalism was then also extended to non-standard null

Lagrangians, adding to knowledge of the role of null Lagrangians for physical systems

and opening another area of possible future work. The development of a formalism

for non-standard null Lagrangians is an additional key result of this dissertation.

Gauge functions, corresponding to null Lagrangians, were also found for equations

with solutions that are special functions that play significant roles in mathematical

physics.

Not all null Lagrangians are physically meaningful, and, as was shown explicitly

in Chapter 6, not all null Lagrangians are physically consistent; the presented results

demonstrate how to restore their consistency for some systems. To the best of our

knowledge, the null Lagrangians in Chapter 6 are the first null Lagrangians that have

been formulated for systems in quantum mechanics; this contribution is a key result

of this dissertation.

As with null Lagrangians, non-standard Lagrangians have been less of an area

of focus for physical systems. However, they may also aid us in reaching a deeper

understanding of physical phenomena. As was shown herein, the non-standard La-

grangian formulation of the law of inertia preserves its Galilean invariance, which is

notably different from the standard Lagrangian formulation; this is another notable

result of this work.

This dissertation is meant to be considered part of the starting point for what

I believe to be a very promising area of research in physics. Null Lagrangians in
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particular have been investigated almost entirely within the field of mathematics

thus far. Using this special family of Lagrangians for applications to systems in

physics requires that we consider only physically consistent equations and physically

meaningful applications. Rather, a mathematical treatment of these equations is

not sufficient to investigate the full picture of the role that null Lagrangians play

in physics. In this dissertation, I have instead approached null Lagrangians from a

physical perspective.

As presented in section 4.6, the addition of a null Lagrangian is sufficient to

convert an undriven system to a driven one; further, the addition of a gauge function

allows for a force to arise naturally from a system without contributing to its equation

of motion by way of the E-L equation. In section 4.5, it was shown that this method

is capable of perfectly reproducing various known forces. As much of our physical

universe is not yet understood, investigating underlying symmetries, such as the way

gauge terms are able to introduce forces and nonlinearities to a system, may shed light

on such phenomena. Viewing physical phenomena through this new lens may be the

key to new connections and compelling discoveries. What else might we be missing by

not investigating our physical world, and any underlying symmetries, further through

the lens of these powerful tools?

This dissertation is not meant to fully encapsulate the role of null Lagrangians

in physics. Rather, the work presented herein comprises what I hope will become

the first step in a larger body of work exploring the role of null and non-standard

Lagrangians for physical systems.
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CHAPTER 8

Future Work

8.1 Gauge Functions and Canonical Transformations

A primary objective of this dissertation is to study gauge functions, and their

corresponding null Lagrangians, within the framework of the Lagrangian formalism

and its role in Classical Mechanics. As a result, canonical transformations and their

generating functions, which involve Hamiltonians and Hamilton’s equations, are not

directly discussed in this work. Nevertheless, it is necessary to also comment on the

general relationship between the gauge and generating functions, with the intention

that this may set the direction for future studies.

Following Finn (2008), the extended action principle can be written as

δ

∫ tf

ti

L(q̇, q, ṗ, p, t) = 0 , (8.1)

where the Lagrangian is given by

L(q̇, q, ṗ, p, t) = q̇p−H(q, p, t) +
dF (q, p, t)

dt
, (8.2)

and with H(q, p, t) being the Hamiltonian and F (q, p, t) an arbitrary scalar function.

It must be also noted that δF (q, p, t)|tfti = 0.

Lagrangian dynamics allows for invertible point transformations q = q(Q, t),

which can be extended to become canonical transformations (q, p, t) → (Q,P, t) of

phase space; these transformations preserve the form of the Hamiltonian and Hamil-

ton’s equations. Moreover, the transformations also leave the Lagrangian invariant

q̇p−H(q, p, t) +
dF (q, p, t)

dt
= Q̇P − H̃(Q,P, t) +

dF̃ (Q,P, t)

dt
, (8.3)
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which shows that both H(q, p, t) and F (q, p, t) are transformed to H̃(q, p, t) and

F̃ (q, p, t), respectively. Defining G(q, p,Q, P, t) = F̃ (Q,P, t) − F (q, p, t), Eq. (8.3)

can then be written in the following form

q̇p−H(q, p, t) = Q̇P − H̃(Q,P, t) +
dG(q, p,Q, P, t)

dt
, (8.4)

where G(q, p,Q, P, t) is called the generator of the canonical transformation or the

generating function. In other words, a transformation (q, p, t) → (Q,P, t) is canonical

if, and only if, the generating function exists.

The function G(q, p,Q, P, t) is the generator of a Legendre transformation be-

tween two coordinate systems, which are connected by expressing the function by

some mixture of both coordinates. To find the generating function for a given dy-

namical system is the main goal of the Hamilton-Jacobi equation, which is valid only

if the equation of motion is completely integrable.

Comparison of the generating functions to the gauge functions derived in this

dissertation shows that there are important differences between them, and that these

functions play different physical roles in classical dynamics. Nevertheless, the gauge

functions obtained in this dissertation may be used to derive the generating functions

for a given dynamical system and for performing canonical transformations between

two coordinate systems used to describe the system. This is proposed as future work

in which the Lagrangian formalism studied in this dissertation is extended to the

Hamiltonian formalism and its canonical transformations.

8.2 Null Lagrangians for Systems in Quantum Mechanics

Another suggested area of future work is that of further investigating the role

of null Lagrangians for systems in quantum mechanics. As null Lagrangians for quan-

tum fields were constructed in Chapter 6, they can now be considered and modified
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for various additional quantum systems. For systems in classical mechanics, it was

shown that the addition of a null Lagrangian allows for the introduction of a force

or nonlinearity, for some, but not all, null Lagrangians. It is left as an area of fu-

ture research what additional physical insight can be gained from investigating null

Lagrangians for systems of interest in quantum mechanics beyond those discussed in

this dissertation. The null Lagrangians developed in Chapter 6 do not constitute an

exhaustive list of possible null Lagrangians for systems in quantum mechanics. As

such, formulating other standard and non-standard null Lagrangians for such systems

is left as a supplementary area of future work.

8.3 Additional Future Work

As discussed in Chapter 5, an as-of-yet unsolved problem is that of how to find

a null Lagrangian whose substitution into Eq. (5.23) would yield the originally given

equation of motion. Linking the equation of motion and gauge function in this way

would be a significant result and this is proposed as a future area of research in the

field of null Lagrangians and gauge functions.

An additional area of suggested future research is that of finding both standard

and non-standard null Lagrangians for equations of special functions of key interest

in mathematical physics beyond those covered in this dissertation. Lastly, applying

the formalism that was developed in Chapter 4, yielding the results presented in

sections 4.5 and 4.6, to other areas of science and engineering is also suggested as

future work. This method is compelling in that its applications are not limited to

systems in classical dynamics; rather, is it my hope that this formalism will be used

to investigate applications to systems in other fields such as theoretical biology.
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APPENDIX A
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In this appendix, we present a procedure for improving the bounds obtained by

the application of Jensen’s inequality. The methiod is based on the idea of reducing

the thickness of a convex region into many thinner convex regions.

A.1 Convex Functions

A real valued function f is defined to be convex over an interval Ω = [α, β] if

λΦ{x1) + (1− λ)Φ(x2) ≥ Φ(λx1 + (1− λ)x2}. (A.1)

If the above inequality is reversed or

λΦ(x1) + (1− λ)Φ(x2) ≤ Φ(λx1 + (1− λ)x2), (A.2)

then Φ is called concave.

A.2 Jensen’s Inequality for Convex Functions

Let x be a random variable with a finite mean. If Φ(x) is real-valued convex

function, then

E[Φ(x)] ≥ Φ (E[x]) (A.3)

where E[.] is the mathematical expectation.
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