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ABSTRACT

Investigating the Role of Bias and Sample

Incompleteness in Gamma-ray Burst Studies

Christopher Michael Bryant, Ph.D.

University of Texas at Arlington, 2024

Supervising Professor: Amir Shahmoradi

Gamma-ray bursts (GRBs) are the most energetic stellar explosions that have

been observed in the universe. Due to their high energy and the collimated na-

ture of the burst, they can be detected at cosmological distances. In addition

to the prompt gamma-ray emission, an afterglow is usually detected at longer

wavelengths, which can allow for a redshift calculation and localization of the

host galaxy. Understanding GRBs is not only critical for determining the physics

driving their progenitors, but for probing the high-redshift cosmos.

The space-based satellites that detect GRBs have complex triggering mecha-

nisms, and accounting for their limitations (e.g., detection thresholds) is vital for

drawing inferences from the data that they collect. Likewise, the statistical meth-

ods employed to analyze the data should be very carefully considered, so as to

not unintentionally affect the conclusions drawn from the data.

In this dissertation, I present two studies that reconsider conclusions drawn

from GRB datasets. The first study is a reanalysis of several recent studies that

concluded there is a correlation between the luminosity/energetics of long GRBs

(LGRBs) and their redshift. We demonstrate that the inferred correlations are

likely significantly affected by an underestimation of the detection threshold. In

the second study, the use of an apparent plateau in the duration distribution of
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LGRBs as evidence for the collapsar model is reexamined. We demonstrate that

multiple aspects of the statistical properties of the dataset and methodologies

used provide opportunity for the generation of a plateau that has no physical

origin. Collectively, these studies aim to enhance the reliability of GRB studies by

identifying and addressing the roles of bias and sample incompleteness.
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"Ad astra per aspera"

To the stars, through adversity
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1 Introduction

Gamma-ray Bursts (GRBs) are the most violent and energetic stellar explosions

in the known universe, piercing the cosmos in a collimated beam of gamma-rays.

With a typical isotropic gamma-ray luminosity of ~1051 – 1053 erg s−1, these cat-

aclysmic events can radiate as much energy as the lifetime energy output of the

Sun within less than a second (Atteia et al., 2017). Because these immense ener-

gies are confined to a tight beam, GRBs can be detected at very high redshift (the

current record being z = 9.4 with a lookback time of ~13.2 Gyr for GRB090429B)

(Cucchiara et al., 2011). They are followed by an afterglow emission at longer

wavelengths that allow for multi-spectral analysis (Kouveliotou et al., 1993).

1.1 History

The discovery of GRBs dates back to the Cold War era in the early 1960s. Amid

escalating nuclear tests by the United States and the Soviet Union, both nations

recognized the unsustainable nature of such activities. This led to the signing of

the Limited Nuclear Test Ban Treaty in 1963, which prohibited nuclear tests in the

atmosphere, outer space, and underwater. Despite the treaty, mistrust between

the U.S. and the Soviet Union persisted, particularly concerning potential nu-

clear tests in outer space. In response, the U.S. Department of Defense initiated

the Vela satellite program. These military satellites, launched in pairs starting
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1 Introduction

in 1963, were designed to detect nuclear test signatures in space and triangulate

their origins (London III, 1993).

In 1967, the Vela satellites detected a gamma-ray signature in space that was

determined to have not originated from nuclear tests. The data, declassified in

1973, revealed that it, and 15 similar detections, were of extra-solar origin. The

signals were brief (<0.1 – 30 s) and isotropically distributed on the celestial sphere

(Klebesadel, Strong, and Olson, 1973; Strong, Klebesadel, and Olson, 1974).

Following this discovery, there would be minimal observational advancements

until 1991, when NASA launched the Compton Gamma-ray Observatory (Comp-

ton), whose main objectives included not only detecting many more GRBs but,

crucially, localizing them more clearly. The instrument responsible for this on-

board Compton was the Burst and Transient Source Experiment (BATSE). Up to

that point, fewer than a hundred GRBs had been detected; Compton would go

on to detect well over 2000 during its operational lifetime (Fishman et al., 1994;

Gehrels, Chipman, and Kniffen, 1993). Eventually, other satellites would be launched

that were also capable of observing GRBs, among them the Neil Gehrels Swift

Observatory (Swift) in 2004 and the Fermi Gamma-ray Space Telescope (Fermi) in

2008.

1.2 Observational Properties

GRBs are detected across the entire electromagnetic spectrum through a combi-

nation of space-based and ground-based telescopes. This section outlines the fea-

tures, and utility, of both the prompt emission and afterglow of GRBs, providing

context for the current thesis.
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1.2 Observational Properties

1.2.1 Prompt Emission

The prompt emission phase of a GRB is characterized by a sudden and intense

burst of photons in the hard-X-ray/soft-gamma-ray band, typically lasting from

milliseconds to several minutes. This phase is primarily observed using space-

based telescopes, as Earth’s atmosphere is opaque to gamma-rays. Two key as-

pects of the prompt emission are the light curve and the spectral properties:

Light Curves

The light curves of GRB prompt emissions are notably irregular and complex,

with no two being identical; see Figure 1.1 for an example set from BATSE. There

is significant variation in almost every property: the number of pulses can vary

from one to multiple, and they can be symmetric or demonstrate a "fast rise expo-

nential decay" (FRED) behavior; the variability can be smooth or display extreme

millisecond-scale changes; the duration can vary from mere milliseconds to thou-

sands of seconds (Pe’Er, 2015). Some GRBs even have weak precursor events to

the main burst (Koshut et al., 1995).

The total duration of the GRB prompt emission is commonly defined by the

parameter T90, which is the interval during which 5% and 95% of the total fluence

is registered by the detector. It was discovered with the BATSE dataset in the

1990s that the T90 distribution is bimodal for a large number of GRBs, suggesting

two separate populations: short GRBs (SGRB) and long GRBs (LGRB); see Figure

1.2. Working off of the first year of observational data from BATSE, Kouveliotou

et al. (1993) suggested the delimitation of these two populations occur at T90 =

2 s, which results in ~1/4 of the BATSE catalog being classified as SGRBs and

~3/4 as LGRBs. When the Swift and Fermi catalogs are included (as of July 2024),

these ratios shift slightly to ~1/5 and ~4/5, respectively. Ultimately, LGRBs are

observed several times more often than SGRBs. When these three catalogs are

3



1 Introduction

Figure 1.1: The variability of light curves as seen in this selection of 12
GRBs detected by BATSE. Note the significant variations in duration,
number of peaks, and smoothness. Figure credit: Daniel Perley with
data from the public BATSE archive.

4
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1.2 Observational Properties

Figure 1.2: The bimodal distribution of durations as seen in the BATSE
dataset of 2041 GRBs. Events below the threshold of T90 = 2 s (dashed
blue line) are classified as SGRBs, and those above as LGRBs.

Figure 1.3: A comparison of the shape of the T90 duration distributions
of the BATSE, Swift, and Fermi catalogs (as of July 2024). Shapes ex-
tracted via kernel density estimate.
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1 Introduction

visualized against one another (Figure 1.3), it is noticeable that the T90 = 2 s

delimitation does not as accurately divide the populations of the Swift and Fermi

datasets as it does BATSE’s.

Spectral Properties

Typically, the prompt emission is observed to be an X-ray/gamma-ray non-thermal

spectrum, whose spectral shape can be well-described by the empirical Band

function. Defined by Band et al. (1993) as a smoothly connected combination of

two power laws, it is characterized by a low-energy segment and a high-energy

segment, with a peak energy where the transition occurs. It is defined as follows:

N(E) =


A
( E

100 keV

)α
exp

(
− E

E0

)
, if E < (α − β)E0

A
[
(α−β)E0
100 keV

](α−β)
exp(β − α)

( E
100 keV

)β
, if E ≥ (α − β)E0

(1.1)

where

Ep = (2 + α)E0

In this equation, N(E)dE is the number of photons in the energy bin dE, and

A is the normalization constant [photons s−1 cm−2 keV−1]. α is the low-energy

photon index, and describes the spectral slope at energies lower than the peak

energy. It typically ranges between -1 and -2. β is the high-energy photon index,

and defines the spectral slope at energies higher than the peak energy. Values for

it typically fall between -2.5 and -3.5. E0 is the break energy [keV] that determines

where the spectral transition occurs, and Ep is the peak energy [keV] of the νFν

spectrum. Ep varies significantly among GRBs, and typically falls in the range of

100 keV to a few MeV.
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1.2 Observational Properties

Figure 1.4: The fireball model for LGRBs. Figure credit: NASA’s God-
dard Space Flight Center

1.2.2 Afterglow

After the intense prompt emission phase of a GRB, a longer-lasting afterglow is

typically observed across the remainder of the EM spectrum. Unlike the prompt

emission that can last up to several minutes, the afterglow can last for weeks,

months, or in rare cases, years. The afterglow emission is attributed to the in-

teraction between the jetted relativistic outflow and the surrounding interstellar

medium (Mészáros and Rees, 1997); see Figure 1.4. This interaction creates an

external shock, which is responsible for the observed afterglow. The presence of

highly beamed jetted outflows has been empirically confirmed through the iden-

tification of the jet break feature within the afterglow light curves.

GRBs typically exhibit jet opening angles of only a few degrees (Panaitescu

and Mészáros, 1999; Rhoads, 1997). As we are observing the GRB at a particular

viewing angle, the beaming cone of the relativistic jet eventually widens enough

that we can start seeing the edges of the jet. At this point, the afterglow light

7

https://www.nasa.gov/wp-content/uploads/2017/05/grb_shell_final.jpg
https://www.nasa.gov/wp-content/uploads/2017/05/grb_shell_final.jpg


1 Introduction

curve exhibits a characteristic steepening, known as a jet break (Rhoads, 1999).

This phenomenon is primarily geometric in nature and, as such, does not alter

the emission spectrum; it manifests across all observed wavebands, from X-ray

to radio.

Optical and infrared afterglows are crucial for localizing GRBs and identify-

ing their host galaxies. The brightness and duration of the optical afterglow can

vary significantly, influenced by factors such as the angle of the jet relative to the

detector, the density of the surrounding medium, and the presence of dust ex-

tinction. These observations are essential for determining the redshift of GRBs,

thereby providing information about their distance.

1.3 Models

Current theoretical models suggest that SGRBs are generated by kilonovae1, which

result from the merger of compact binary systems, such as neutron star-neutron

star (NS-NS) or neutron star-black hole (NS-BH) pairs (Eichler et al., 1989; Nakar,

2007). During these cataclysmic events, the violent coalescence of the compact

objects leads to the ejection of matter and the formation of a highly relativistic jet.

This jet, if aligned with our line of sight, emits intense gamma rays that can be

detected by gamma-ray observatories. The alignment and subsequent detection

are contingent on the orientation of the jet relative to Earth, which is critical for

the observability of the SGRB.

The first confirmation of this model came in 2017, with the simultaneous detec-

tion of gravitational waves (GW) and radiation across the electromagnetic spec-

trum. The event began with the detection of gravitational wave signal GW170817

by the LIGO/Virgo collaboration, lasting approximately 100 seconds. ~1.7 sec-

1A kilonova is named as such because it reaches a peak brightness of about 1000 times that of a
nova while being 10-100 times less luminous than a supernova (Metzger et al., 2010).
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1.3 Models

onds after the merger time, the short duration GRB 170817A was detected by

Fermi and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). With

all eyes on the sky, an intense observing campaign followed to locate the expected

optical emission. Less than 11 hours later, astronomical transient AT 2017gfo

was found in the galaxy NGC 4993 at ~40 Mpc. In the coming days and weeks,

dozens of ground-based and space-based detectors captured the afterglow emis-

sions. The event confirmed that at least some SGRBs are produced by kilonovae,

heralding in the age of multi-messenger astronomy (Abbott et al., 2017b; Gold-

stein et al., 2017; Savchenko et al., 2017a).

LGRBs are believed to be caused by the death of massive stars2, specifically,

those that end in core-collapse supernovae (Woosley and Bloom, 2006; Woosley,

1993). The larger a star is, the higher its core pressure and the higher the species

of elements it can fuse up to. However, once the core begins producing iron, the

reaction can go no further, as the reactions consume energy instead of produc-

ing it. Unable to withstand the pressure of the stellar envelope, the core rapidly

collapses into a black hole, as the rest of the star is blasted apart in a spectacular

supernova explosion (Glendenning, 2012). The black hole launches polar jets that

then must drill through the expanding shell of ejecta (MacFadyen and Woosley,

1999; MacFadyen, Woosley, and Heger, 2001), sending a tightly collimated beam

of radiation into space. Some theories propose this is also possible for a newly-

formed magnetar (Usov, 1992; Zhang and Mészáros, 2001).

This collapsar model has garnered substantial observational support through

the confirmed association of approximately half a dozen LGRBs with broad-line

Ic supernovae, which have been spectroscopically verified. Additionally, photo-

metric evidence of underlying supernovae has been observed in approximately

two dozen more cases, further bolstering the connection between LGRBs and su-

2generally having mass M ≥ 30M⊙
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1 Introduction

pernovae (Galama et al., 1998; Hjorth et al., 2011; Hjorth et al., 2003; Stanek et al.,

2003; Woosley and Heger, 2006). Beyond these direct associations, there is signif-

icant indirect evidence linking LGRBs to massive stars. This evidence is derived

from the identification of LGRB host galaxies as environments characterized by

intense star formation. Moreover, LGRBs are often localized within the most ac-

tive star-forming regions of these galaxies, strongly suggesting that LGRBs are

the end products of the deaths of supermassive stars.

1.4 Organization of Thesis

The primary focus of this thesis is to improve the reliability of GRB studies by

identifying and addressing the influence of bias and sample incompleteness. This

research endeavors to achieve a more precise understanding of GRBs and to re-

fine the methodologies employed in their analysis. The thesis is structured as

follows: Chapter 2 reproduces my paper on how underestimating the detector

threshold can affect the perceived correlations between redshifts and the lumi-

nosity of LGRBs. Chapter 3 presents a reproduction of my paper examining how

observed plateaus in GRB duration datasets, often attributed to the physics of

the progenitor, may instead arise from purely statistical factors. Finally, Chapter

4 provides a summary and concluding remarks.

10



2 HOW UNBIASED STATISTICAL METHODS

LEAD TO BIASED SCIENTIFIC

DISCOVERIES: A CASE STUDY OF THE

EFRON-PETROSIAN STATISTIC APPLIED

TO THE LUMINOSITY-REDSHIFT

EVOLUTION OF GAMMA-RAY BURSTS

Authors: Bryant, Christopher Michael, Joshua Alexander Osborne, and

Amir Shahmoradi

Published: Monthly Notices of the Royal Astronomical Society 504.3 (2021):

4192-4203.
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2 How unbiased statistical methods lead to biased scientific discoveries

2.1 Introduction

Gamma-Ray Bursts (GRBs) are the most violent and energetic stellar explosions

in the known universe. They radiate huge amounts of gamma-ray energy, com-

parable to the lifetime energy output of the sun, over a short period of time and

are often followed by an afterglow at longer wavelengths (e.g., Gehrels, Ramirez-

Ruiz, and Fox, 2009; Mészáros, 2006; Zhang, 2007). With their energy concen-

trated in a collimated beam, they can be seen at much higher redshifts than su-

pernovae (SNe). Amongst other things, GRBs are excellent tools to probe the Star

Formation Rate (SFR) of the early as well as the recent universe.

GRBs are generally divided into two categories: Long-soft GRBs (LGRBs) with

T90 ∼> 2 [s], and Short-hard GRBs (SGRBs) with T90 ≲ 2 [s].1 These values are

based on population statistics of the Compton Gamma Ray Observatory’s Burst and

Transient Source Experiment (BATSE) detector, which was decommissioned in

2000 (Kouveliotou et al., 1993; Shahmoradi, 2013a,b; Shahmoradi and Nemiroff,

2011b, 2015). LGRBs are believed to be the result of the collapse of massive stars

into a black hole (Woosley, 1993), while SGRBs are theorized to be the result of

the merger of two neutron stars or of a neutron star and a black hole (Eichler et

al., 1989).

Current research attempts to infer an accurate description and distribution pro-

file of various GRB characteristics, in particular, the class of LGRBs due to their

abundant redshift measurements compared to the SGRB class. A recent focus in

the community has been on the potential cosmological evolution of LGRB lumi-

nosity/energetics Liso/Eiso with redshift, as well as estimating the cosmic rates of

LGRBs. A popular technique to constrain these is based on the non-parametric

method of Efron-Petrosian (Efron and Petrosian, 1992; Petrosian, 2002), which is

1T90 is the duration over which a burst emits from 5 - 95% of its total measured gamma-ray
photon flux.
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2.1 Introduction

widely used to study observational data sets subject to truncation and censorship

(e.g., Dainotti, Singal, Ostrowski, et al., 2013; Kocevski and Liang, 2006; Singal,

Petrosian, Lawrence, et al., 2011).

Yu et al. (2015) (hereafter Y15), Petrosian, Kitanidis, and Kocevski (2015) (here-

after P15), and Lloyd-Ronning, Aykutalp, and Johnson (2019) (hereafter L19) use

the method of Efron-Petrosian to deduce the local (redshift-decorrelated) lumi-

nosity function ψ(L0) and cosmic GRB formation rate ρ(z) to infer that local GRBs

(z < 1) are in excess of the SFR. Pescalli et al. (2016) (hereafter P16) follows the

same approach as the previous three, however, does not find an excess of GRBs

relative to the SFR at low redshifts. Tsvetkova et al. (2017) (hereafter T17) simply

deduces the luminosity function and GRB formation rate.

In this work, we hypothesize and provide evidence that the effects of detection

threshold in the aforementioned studies might have been significantly underesti-

mated. This underestimation of the detector threshold results in an artificial cor-

relation between the luminosity/energetics of LGRBs and redshifts. This could,

in turn, lead to the conclusion that the GRB formation rate is different from the

SFR at any redshift.

This paper is organized as follows. Section 2.2 details the methodology used

by the aforementioned papers to deduce luminosity/energy evolution L(z)/E(z)

given a sample of GRBs, which leads to ψ(L0) and ρ(z). Section 2.3 is a reanalysis

of their work (with the exception of P15, for whom we could not locate their data).

Section 2.4 describes our own Monte Carlo simulation of a synthetic population

of LGRBs. Finally, section 2.5 is a discussion of the results of our reanalysis and

the implications of our Monte Carlo simulations.
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2 How unbiased statistical methods lead to biased scientific discoveries

2.2 Methods

It is often the case in the analysis of astronomical data that one is faced with re-

constructing the joint bivariate or multivariate distributions from truncated data.

Truncation can be due to a multitude of factors, most importantly, the Malmquist-

types of biases in the population studies of GRBs (e.g., Band and Preece, 2005;

Butler, Bloom, and Poznanski, 2010; Shahmoradi, 2013a; Shahmoradi and Ne-

miroff, 2009; Shahmoradi and Nemiroff, 2011b, 2015). The GRB luminosity and

redshift distribution (L, z) is one such set of bivariate data. For simplicity, it is

often assumed that the functional form of the total Luminosity Function is sepa-

rable in the following form,

Ψ(z, L) = ρ(z)ψ(L) (2.1)

where ρ(z) is the GRB Formation Rate and ψ(L) is the Luminosity Function.

Efron and Petrosian (1992) developed a nonparametric technique for estimating

ρ(z) and ψ(L) based on the c− method of Lynden-Bell (1971). Luminosity is as-

sumed to have a simple power law redshift dependence:

L(z) = g(z)L0 = (1 + z)αL0 (2.2)

such that the resulting distribution of L0 (the redshift de-evolved luminosity), and

hence ψ(L0) (the local Luminosity Function), becomes independent of redshift.

Consider the data set seen in Figure 2.1a. Instead of dealing with the entire

data set, we deal with associated sets that can be constructed independent of the

truncation limit that affects the full data set. Each of these associated sets includes

only the objects for a given range of luminosity and redshift. For the ith data point
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in the (L, z) data set, we can define the associated set Ji as,

Ji = {j|Lj > Li, zj < zmax
i } , (2.3)

that is, the set of all points j given the above two conditions, where Lj is the

luminosity of point j, Li is the luminosity of the given point i, zj is the redshift

of point j, and zmax
i is the maximum redshift at which a GRB with luminosity Li

can be observed due to the detector threshold limit. This produces the dashed

black bounding box seen in Figure 2.1a. Ni represents the number of GRBs in this

region: Ni ≡ size of{Ji}. This is the same as in the c− method in Lynden-Bell

(1971). Ri is the number of events that have redshift zj less than zi,

Ri ≡ size of{j ∈ Ji|zj < zi} . (2.4)

We expect the rank Ri of zi to be uniformly distributed between 1 and Ni if L and

z are independent of each other (Efron and Petrosian, 1992). The Efron-Petrosian

test statistic τ is then,

τ ≡ ∑i(Ri − Ei)√
∑i Vi

, (2.5)

where Ei = (1 + Ni)/2, Vi = (N2
i − 1)/12 are the expected mean and the vari-

ance of Ri, respectively. This is a specialized version of Kendell’s τ statistic. The

τ statistic represents the significance of the correlation in the bivariate distribu-

tion of the two quantities of interest by taking into account the effects of data

truncation created by a detection threshold hard cutoff. It is normally distributed

about a mean of 0 with a standard deviation of 1 (Efron and Petrosian, 1992).

Hence, a τ of 2 implies a 2σ correlation. Once a correlation has been hypothe-

sized, one simply parameterizes it in some way to remove the correlation. As

has been aforementioned, a functional form of L0 = Liso/g(z) has been chosen in
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2 How unbiased statistical methods lead to biased scientific discoveries

the majority of previous studies, where g(z) has a simple power law dependence

on z, g(z) = (1 + z)α. Next, α is varied and L0 is computed, which along with

(1 + z) constitutes a new data set. Then the τ statistic is computed on each of

these sets corresponding to different α values used. The one where the τ statistic

is zero indicates the α parameter that removes the correlation between L0 and z

and gives the power law exponent for g(z) that fully decorrelates Liso and z.

Prior to constructing the τ statistic, the detector threshold limit needs to be ren-

dered on the Liso or Eiso graph. The following transforms a flux (Pbol) or fluence

(Sbol) into Liso or Eiso, respectively:

Liso = 4π × dL(z)2 × Pbol

Eiso = 4π × dL(z)2 × Sbol
1 + z

(2.6)

dL(z) =
c

H0
(1 + z)

∫ z

0
[(1 + z′)3ΩM + ΩΛ]

−1/2 dz′

where Fmin is substituted for Pbol or Sbol and dL(z) represents the distance in cm

assuming concordance cosmology. For the sake of computational efficiency, an

approximation to the above integral is used, as discussed in Wickramasinghe and

Ukwatta (2010). It is shown to be highly accurate for a wide range of redshifts

corresponding to (1 + z) > 1.1. In this work we use the following cosmological

parameters: H0 = 71 [ km s−1 Mpc−1 ], ΩM = 0.3, ΩΛ = 0.7 (e.g., Shahmoradi

and Nemiroff, 2011b).

2.3 Reanalyses of past work

In the following subsections, we attempt to regenerate and reanalyze the findings

of several recent papers that present evidence in favor of a strong evolution of the

GRB luminosity/energetics with redshift.
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Y15 Values Reanalysis Values

α 2.43+0.41
−0.38 2.04+0.36

−0.37
τ 4.7σ 5.18σ

Fmin 2.0 × 10−8 [ erg cm−2 s−1 ] 2.00 × 10−8 [ erg cm−2 s−1 ]

Table 2.1: Using the same value as Y15 for Fmin yields quantitatively
similar α and τ values.

2.3.1 Yu et al. (2015) (Y15)

In their paper, Y15 find an excess of LGRBs at low redshift (z < 1), deviating

from the SFR. They use the method of Efron and Petrosian (1992) to infer the

luminosity function and the cosmic rates of LGRBs based on the observational

data collected by Swift’s Burst Alert Telescope (BAT) gamma-ray detector. They

find that the luminosity function of LGRBs evolves with redshift as Eq. (2.2) with

α = 2.43+0.41
−0.38. This conclusion is based on the assumption of a flux lower limit of

Fmin = 2.0 × 10−8 [ erg cm−2 s−1 ] , (2.7)

representing the detector threshold limit of Swift’s BAT.

To better understand the role of Swift’s BAT detector threshold on the conclu-

sions drawn by Y15, here we attempt to reproduce their analysis of Swift data.

Figures 2.1a - 2.1c depict the distributions of the observational LGRB sample

used in Table 1 of Y15. Specifically, the bivariate distribution of the 1-second

total isotropic peak flux (Liso) and the redshifts (1 + z) of LGRBs as shown in plot

2.1a exhibits an apparently strong correlation. However, much of this correla-

tion is potentially due to the BAT detection threshold effects on the observational

sample of LGRBs. To quantify and eliminate the effects of detector threshold, Y15

use the proposed non-parametric methodology of Efron and Petrosian (1992) by

assuming a parametrization as seen in Eq. (2.2) for the luminosity-redshift de-

pendence in the LGRB data, such that the resulting distribution of L0 becomes
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(a) (b)

(c) (d)

Figure 2.1: Plotting of the 127 GRBs from Y15. Plot (a) shows isotropic
luminosity vs. redshift. The black line represents the observational
limit of Swift assumed by Y15 to be 2.00 × 10−8 [ erg cm−2 s−1 ]. The
purple line represents the linear regression through the data set whose
slope is α = 2.04. Plot (b) is the observer frame visualization of the Y15
data set, where the dashed line is the observational limit of Y15. Plot
(c) is a histogram of flux, where the dashed line is the observational
limit. Plot (d) shows redshift vs. L0 = L(z)/(1 + z)2.04, the redshift-
independent luminosity.
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(e) (f)

Figure 2.1: (cont.) Plot (e) shows a range of possible threshold limits
vs. α values at τ = 0. The intersection of this line with Y15’s thresh-
old limit is our value for their α. Plot (f) shows a range of possible
threshold limits vs τ values at α = 0. Assuming the detection thresh-
old of Y15, a redshift-independent luminosity distribution is rejected at
|τ| = 5.18σ. However, choosing a more conservative detection thresh-
old at 2.00 × 10−7 [ erg cm−2 s−1 ] yields no evidence for luminosity-
redshift evolution.

independent of redshift. We note an apparent inconsistency between Eq. (2.5)

that we have extracted from Efron and Petrosian (1992) and Eq. (9) of Y15, where

summations are taken in different places.

The value of exponent that we infer from the data set of Y15 is consistent

with, although not the same as, their inferred α exponent. Y15 found a value

of α = 2.43+0.41
−0.38 in their analysis. In our reanalysis of their work, we find a value

of α = 2.04+0.36
−0.37. However we do believe that their assumption for the value of

the flux lower limit of Eq. (2.7) is likely a severe underestimation of the detec-

tion threshold of Swift’s BAT. In reality the detection threshold limit of the BAT

detector is far more complex than a simple hard cutoff, but rather, a fuzzy range

arising from a multitude of factors.

The Swift satellite is very well known for its immensely complex triggering

algorithm. To our knowledge, it is comprised of at least three separate detection

19



2 How unbiased statistical methods lead to biased scientific discoveries

mechanisms that complement each other (e.g., Fenimore et al., 2003):

1. The first type of trigger is for short time scales (4 ms to 64 ms). These are tra-

ditional triggers (single background), for which about 25,000 combinations

of time-energy-focal plane subregions are checked per second.

2. The second type of trigger is similar to HETE: fits multiple background re-

gions to remove trends for time scales between 64 ms and 64 s. About 500

combinations for these triggering mechanisms are checked per second. For

these rate triggers, false triggers and variable non-GRB sources are also re-

jected by requiring a new source to be present in an image.

3. The third type of trigger works on longer time scales (minutes) and is based

on routine images that are made of the field of view.

The entire complexity of the detection mechanism of Swift’s BAT, as mentioned

above, is summarized in a single value, Eq. (2.7), in the work of Y15. The

consequences of choosing this value is most apparent in Figures 2.1b and 2.1c,

where the data set of detected LGRBs virtually ends before reaching the detec-

tion threshold line. This implies that the observational LGRB data set is not con-

strained by the assumed detection threshold of Y15, which is counterintuitive.

We do expect the threshold to soft-truncate the data set, and this truncation likely

occurs closer to the central peak of the histogram of Figure 2.1c.

This severe underestimation of the detection threshold of BAT by Y15 is very

well seen in Figure 2.1d where we plot the redshift-corrected isotropic peak lu-

minosity vs. redshift. The solid black line in this plot represents the redshift-

corrected detection threshold. In agreement with our hypothesis in the previous

paragraph, we observe that the resulting redshift-corrected detection threshold

of Y15 resembles almost a flat line at high redshifts. This is another indication
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that the inferred relationship between (1+ z) and Liso is likely heavily influenced

by the improperly-modeled detection threshold of BAT.

In Figures 2.1e and 2.1f the calculation of α and τ are taken a step further, this

time by varying the detector threshold limit, Fmin. Figure 2.1e depicts how α

varies with detector threshold when τ equals zero, while Figure 2.1f depicts how

τ varies with detector threshold when α equals zero. Both plots can therefore

show for what value of detector threshold both α and τ equal zero (indicating

zero correlation between Liso and z), however, this is only highlighted in Figure

2.1f with the blue dashed line. In other words, how a more conservative choice

of detector threshold can remove the calculated correlation entirely. For the Y15

data set, it takes only one order of magnitude to fully remove the correlation.

To gain a better insight into the effects of detection threshold on observational

data, we have reproduced parts of the results of Shahmoradi and Nemiroff (2015)

in Figure 2.2. This figure illustrates well the subtle fuzzy effects of the BATSE de-

tector threshold on the observed distribution of the energetics of BATSE LGRBs

and SGRBs, including the observed peak flux distribution for which a sharp de-

tection threshold cutoff is frequently assumed. The detection threshold causes a

deviation in the observed data from the inferred underlying population, to begin

just to the right of the histogram peak (the solid lines). This deviation becomes

more significant as one moves leftward. Y15 chose their detector threshold to

begin far to the left of the histogram peak, when in reality, it should have been

chosen close to the peak. If their choice of detector threshold is taken seriously,

then its implications are profound: there is a suspicious lack of faint LGRBs in

the universe that are not the result of detector threshold cutoff, or Malmquist

bias. This is why the cutoff must be closer to the central peak.

Finally, we turn our attention to Y15’s Monte Carlo simulations, which seem-

ingly confirms their results. Therein, they begin with their inferred value of
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2 How unbiased statistical methods lead to biased scientific discoveries

Figure 2.2: The red and green colors represent data and model for
LGRBs and SGRBs, respectively, for BATSE catalogue GRBs. The solid
curves illustrate the projection of the multivariate GRB world models
of Shahmoradi (2013a) and Shahmoradi and Nemiroff (2015) on the
BATSE-catalog peak flux Pbol distribution, subject to the BATSE de-
tection threshold. The colour-shaded areas represent the 90 percent
prediction intervals for the distribution of BATSE data. The dashed
lines represent the predicted underlying populations of LGRBs and
SGRBs, respectively based on the multivariate GRB world models of
Shahmoradi (2013a) and Shahmoradi and Nemiroff (2015).
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α to simulate a distribution of LGRBs following the relationship of Eq. (2.2)

with α = 2.43. They find that the synthetic data and the observed data have

similar distributions. This is, however, no surprise considering their simula-

tion was based on the derived results of their observational analysis and the

assumed potentially-underestimated detection threshold. In other words, their

Monte Carlo simulation proves the self-consistency of the Efron-Petrosian statis-

tic and their analysis, but falls short of verifying the accuracy of the detection

threshold assumption made in their analysis. Therefore, this circular reasoning

concludes that the two observed and synthetic distributions are similar without

validating the accuracies of the assumptions made in their work.

The primary conclusion of Y15, of an excess of GRBs at low redshift (z < 1)

compared to the SFR, also contradicts previous studies based on the properties

of GRB host galaxies. In point of fact, Vergani et al. (2015), Perley et al. (2015,

2016a) and Perley et al. (2016b), Krühler et al. (2015), and Schulze et al. (2015)

performed spectroscopic and multi-wavelength studies on the properties (stel-

lar masses, luminosities, SFR, and metallicity) of GRB host galaxies of various

complete GRB samples and compared them to those of the star-forming galaxies

selected by galaxy surveys. Their collective results indicate that at low redshift

(z < 1) only a small fraction of the star formation produces GRBs Pescalli et al.

(2016).

2.3.2 Pescalli et al. (2016) (P16)

P16 proceeds in a similar fashion to Y15, beginning with the observational data

set of LGRBs found in their Table B.1. We extract from this data set 81 LGRBs

that have both redshift and isotropic peak luminosity (Liso) values for our re-

analysis. They use the Efron-Petrosian τ statistic to find an α value of α = 2.5,

consistent with the results of Y15. This provides the functional form of the lumi-
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(a) (b)

(c) (d)

Figure 2.3: Plotting of the 81 GRBs from P16. Plot (a) shows red-
shift vs. isotropic luminosity. The black line represents the observa-
tional limit of Swift, which has been deduced from P16 to be 8.10 ×
10−8 [ erg cm−2 s−1 ]. The purple line represents the linear regres-
sion through the data set whose slope is α = 2.50. Plot (b) is the
observer frame visualization of the P16 data set, where the dashed
line is the observational limit. Plot (c) is a histogram of flux, where
the dashed line is the observational limit. Plot (d) shows redshift vs.
L0 = L(z)/(1 + z)2.50, the redshift-independent luminosity.
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(e) (f)

Figure 2.3: (cont.) Plot (e) shows a range of possible threshold limits
vs. α values at τ = 0. The intersection of this line with P16’s supposed
threshold limit is our value for their α. Plot (f) shows a range of pos-
sible threshold limits vs τ values at α = 0. Assuming the detection
threshold inferred from the analysis of P16, a redshift-independent lu-
minosity distribution is rejected at |τ| = 4.99σ. However, choosing a
more conservative detection threshold at 3.94 × 10−7 [ erg cm−2 s−1 ]
yields no evidence for luminosity-redshift evolution.

nosity evolution with redshift L(z) = L0(1 + z)2.5. From here they proceed with

Lynden-Bell’s c− method to derive the cumulative luminosity function Φ(L0) and

the LGRB formation rate ρ(z).

These results, however, are predicated on a value of detector threshold which

P16 gives as,

Plim = 2.6 [ photons cm−2 s−1 ] . (2.8)

This corresponds to an instrument that is ∼6 times less sensitive than Swift’s

BAT (Salvaterra et al., 2012). In their work, P16 adopt a slightly different ap-

proach to modeling the flux limit of their sample. The quantities Llim and zmax

that are used in the Efron-Petrosian statistic are computed by adopting individ-

ual spectral and temporal properties of LGRBs and applying the corresponding

K-corrections. This approach results in a small scatter in the energy flux-limit

of their Liso − (1 + z) plane. However, they find that this non-uniqueness of the
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P16 Values Reanalysis Values

α 2.5 2.50+0.40
−0.44

τ Not given 4.99σ
Fmin Given as Plim 8.10 × 10−8 [ erg cm−2 s−1 ]

Table 2.2: A value for Fmin was chosen such that the resulting α value
matches P16’s value. Using a Band model with Plim was unsuccessful.

detection threshold has a very small impact in the computation of their τ statistic.

Given the lack of sufficient details about the approach proposed by P16 and the

fact they find almost no difference between the traditional approach to comput-

ing the Efron-Petrosian statistic and their proposed method, here we follow the

traditional formal technique for computing the τ statistic. However, since P16 do

not provide an effective bolometric energy flux limit for their sample in units of

[ erg cm−2 s−1 ], we searched for an effective energy flux detection threshold that

would yield a τ statistic comparable to what P16 find.

We find that an effective detection threshold of Fmin = 8.10× 10−8 [ erg cm−2 s−1 ]

yields a regression slope of Liso − (1 + z) correlation of α = 2.50+0.40
−0.44 which is

identical to the reported value by P16. Alternatively, we also compute the corre-

sponding detection threshold energy flux by converting the photon flux thresh-

old of Eq. (2.8) to an effective energy flux limit by assuming a Band model (Band

et al., 1993) of the form,

Φ(E) ∝


Eαph e

(
−

(2+αph)E
Ep

)
if E ≤

(
Ep

)( αph−βph
2+αph

)
,

Eβph if otherwise.
(2.9)

with low- and high-energy spectral indices of αph = −1 and βph = −2.25, respec-

tively, taken from Salvaterra et al. (2012) and an effective spectral peak energy

fixed to the average observed spectral peak energy of the LGRB sample of P16

(Ep = 574 keV). Using this approach, we obtain an effective energy flux limit
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(Fmin = 2.34 × 10−7 [ erg cm−2 s−1 ]) for the LGRB sample that results in a com-

pletely different value, α = 1.35+0.50
−0.45, for the regression slope of the Liso − (1 + z)

relation than what is reported by P16.

Therefore, we conclude that the effective detection threshold (Fmin = 8.10 ×

10−8 [ erg cm−2 s−1 ]) that we previously inferred directly from the Efron-

Petrosian statistic should likely resemble more the flux limit that is used but not

clearly discussed or shown in the work of P16. However, the trade off in choosing

this value is that the limit appears to be underestimated, as can be seen in Figures

2.3a - 2.3c. It is not possible to choose a value of Ep that both yields an α value in

agreement with P16 and does not appear to underestimate the detector threshold

flux limit.

Assuming this chosen value for Fmin is indeed an appropriate approximation

for that used by P16, we are again faced with an underestimation of the true

effective value of the detection threshold of Swift, similar to Y15. This can be

clearly seen in Figure 2.3d where we plot the redshift-corrected isotropic peak

luminosity vs. redshift, and the solid black line represents the redshift-corrected

detection threshold. We observe that this threshold resembles almost a flat line at

high redshifts, indicating that the inferred relationship between (1+ z) and Liso is

likely heavily influenced by the improperly-modeled detection threshold of BAT.

In Figure 2.3f it can be seen that the reported correlation can be removed entirely

with a more conservative value of Fmin = 3.94 × 10−7 [ erg cm−2 s−1 ].

In addition to potential underestimation of the detection threshold, the obser-

vational data in the work of P16 also appears to not have been homogeneously

collected. Looking at Figure 2.3c, the histogram of data appears to be multi-

modal/incomplete, implying the presence of some, yet-unknown, selection ef-

fects in the process of constructing this data set.

Finally, we turn our attention to P16’s Monte Carlo simulation, which seems
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T17 Values Reanalysis Values

α 1.7 1.70+0.34
−0.26

τ 1.2σ 5.46σ
Fmin 2 × 10−6 [ erg cm−2 s−1 ] 7.95 × 10−7 [ erg cm−2 s−1 ]

Table 2.3: Using T17’s value for Fmin does not reproduce their α value,
so an Fmin was chosen that does.

to confirm their results. Unlike Y15, P16 avoid a circular logic inference in their

simulations by assuming different Fmin (5 × 10−8 [ erg cm−2 s−1 ]) and α (2.2) val-

ues from their methodology and results. They are able to successfully recover

the GRB formation rate and luminosity function that they adopted for their sim-

ulated sample.

They further test the consequences of sample incompleteness in two approaches.

In the first approach they randomly remove a fraction of the bursts close to Fmin.

In the second approach, they lower Fmin by a factor of 5, creating an underesti-

mation of its value. Both approaches artificially create sample incompleteness.

The result of both realizations of sample incompleteness is to flatten out the GRB

formation rate at low redshift, creating the illusion of an excess of low-redshift

GRBs relative to the SFR. This result contradicts the simulations and findings of

Y15 and corroborates our conclusions in §2.3.1.

2.3.3 Tsvetkova et al. (2017) (T17)

In T17, the authors explore a data set of GRBs detected in the triggered mode of

the Konus-Wind experiment. Beginning with 150 mixed-type GRBs, they prune

the data set down to 137 by removing the Type I (short) GRBs as well as GRB

081203A. It is not explained why GRB 081203A is excluded.

Similar to Y15 and P16, they employ the Efron-Petrosian τ statistic to find the

luminosity evolution, assuming a functional form as seen in Eq. (2.2). They find
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(a) (b)

(c) (d)

Figure 2.4: Plotting of the 137 GRBs from T17. Plot (a) shows red-
shift vs. isotropic luminosity. The black line represents the observa-
tional limit of Swift, which has been deduced from T17 to be 7.95 ×
10−7 [ erg cm−2 s−1 ]. The purple line represents the linear regres-
sion through the data set whose slope is α = 1.70. Plot (b) is the
observer frame visualization of the T17 data set, where the dashed
line is the observational limit. Plot (c) is a histogram of flux, where
the dashed line is the observational limit. Plot (d) shows redshift vs.
L0 = L(z)/(1 + z)1.70, the redshift-independent luminosity.
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(e) (f)

Figure 2.4: (cont.) Plot (e) shows a range of possible threshold limits
vs. α values at τ = 0. The intersection of this line with T17’s supposed
threshold limit is our value for their α. Plot (f) shows a range of pos-
sible threshold limits vs τ values at α = 0. Assuming the detection
threshold inferred from the analysis of T17, a redshift-independent lu-
minosity distribution is rejected at |τ| = 5.46σ. However, choosing a
more conservative detection threshold at 2.12 × 10−6 [ erg cm−2 s−1 ]
yields no evidence for luminosity-redshift evolution.

individual truncation limits to the (1 + z)− Liso plane calculated for each burst

separately, yielding an α value of α = 1.7. They note that similar results were

obtained by using the "monolithic" truncation limit of

Fmin = 2 × 10−6 [ erg cm−2 s−1 ] . (2.10)

Since both methods yield the same α value, we will use the single-valued limit,

as we have in our previous analyses. When we do so, we obtain a value of α =

0.29+0.28
−0.28, which is significantly different from the reported value of 1.7. This

should not be the case, so we turn to another method for obtaining α by visually

matching the threshold cut from their Figure 8. Doing so requires a threshold of

1.1 × 10−6 [ erg cm−2 s−1 ] and yields α = 1.36+0.27
−0.34. Still not the reported α value,

we search for the threshold limit of 7.95 × 10−7 [ erg cm−2 s−1 ] which correctly
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L19 Values Reanalysis Values

α 2.3 ± 0.5 1.31+0.21
−0.20

τ 5.6σ 6.01σ
Fmin 2 × 10−6 [ erg cm−2 ] 1.60 × 10−7 [ erg cm−2 ]

Table 2.4: Using L19’s value for Fmin does not reproduce their α value,
and a reasonable Fmin could not be chosen that does, so instead one was
deduced to visually match the threshold cut on their graph. This yields
a significantly different α value, however.

yields α = 1.70+0.34
−0.26. This can be seen in Figures 2.4a - 2.4c.

As can be seen in Figures 2.4b and 2.4c, the analysis of T17 also appears to suf-

fer from an underestimation of the detector threshold limit of Swift. Again, we

expect the limit to be closer to the central peak of the histogram, soft-truncating

the data set. Otherwise, such a sharp drop in the count of LGRB events before

reaching the detection threshold would have truly fundamental and revolution-

ary implications about the cosmic rates of LGRBs.

We note that T17’s underestimation of the detector threshold limit does not

appear to be as severe as Y15 or P16. Once the luminosity evolution has been

removed, the detector threshold cut in the (1 + z) − L0 plane does not become

flat at high redshift, as can be seen in Figure 2.4d.

Also of note is the disparity in the significance of rejecting no luminosity-

redshift evolution between our results and those of T17. Figure 2.4f shows our

inferred significance (τ = 5.46σ), which is hard to reconcile with the inferred sig-

nificance τ = 1.2σ in T17. This figure also highlights that a more conservative

value of Flim = 2.12 × 10−6 [ erg cm−2 s−1 ] removes the apparent correlation

between Liso and z entirely.
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(a) (b)

(c) (d)

Figure 2.5: Plotting of the 376 GRBs from L19. Plot (a) shows red-
shift vs. isotropic emitted energy. The black line represents the ob-
servational limit of Swift, which has been deduced from L19 to be
1.60 × 10−7 [ erg cm−2 ]. The purple line represents the linear regres-
sion through the data set whose slope is α = 1.31. Plot (b) is the ob-
server frame visualization of the L19 data set, where the dashed line
is the observational limit. Plot (c) is a histogram of fluence, where
the dashed line is the observational limit. Plot (d) shows redshift vs.
E0 = E(z)/(1 + z)1.31, the redshift-independent effective energy.
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(e) (f)

Figure 2.5: (cont.) Plot (e) shows a range of possible threshold limits
vs. α values at τ = 0. The intersection of this line with L19’s supposed
threshold limit is our value for their α. Plot (f) shows a range of pos-
sible threshold limits vs τ values at α = 0. Assuming the detection
threshold inferred from the analysis of L19, a redshift-independent lu-
minosity distribution is rejected at |τ| = 6.01σ. However, choosing a
more conservative detection threshold at 1.04× 10−6 [ erg cm−2 ] yields
no evidence for luminosity-redshift evolution.

2.3.4 Lloyd-Ronning, Aykutalp, and Johnson (2019) (L19)

In L19, the authors use a data set taken from Wang et al. (2020) that consists of

all publicly available observations of 6289 GRBs, from 1991 to 2016. They iso-

late those events with a measured redshift and observed duration of T90 > 2s

(LGRBs), which can yield an estimate of the total isotropic gamma-ray emission,

Eiso. This leads to the selection of 376 LGRB events by L19, based upon which

they proceed to construct the τ statistic, in similar fashion to the previous stud-

ies, to find the redshift evolution parameter, α. L19 choose a functional form of

Eiso = E0(1 + z)α, and find that α = 2.3 ± 0.5. L19 report a value of,

Fmin = 2 × 10−6 [ erg cm−2 ] . (2.11)

used in their study. However, when we use this limit in our reanalysis, the
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threshold line cuts through the majority of the data set, and yields a value of

α = −0.58+0.18
−0.18. Our inferred value for α is completely at odds with the value re-

ported by L19. In order to obtain their value of α, we have to use a threshold limit

of 1.60 × 10−10 [ erg cm−2 ], which yields α = 2.30 ± 0.24. This inferred detection

threshold cut is almost two orders of magnitude below the data set.

To resolve the disagreement between our inferred value of detection thresh-

old used by L19 and the reported value in their study, we instead settle on vi-

sually matching the threshold cut in Figure 1 of L19 to obtain a limit of 1.60 ×

10−7 [ erg cm−2 ]. This yields Figure 2.5a which looks remarkably similar to the

corresponding Figure 1 of L19. Assuming this detection threshold, we obtain a

value of α = 1.31+0.21
−0.20 using the Efron-Petrosian τ statistic.

If our inferred detection threshold is indeed the value used by L19 in their

study, then Figures 2.5b and 2.5c, lead us to conclude that the detection threshold

has been likely severely underestimated in the study of L19. The effective thresh-

old represented by the dashed line in the histogram of Figure 2.5c is well to the

left of the peak of the distribution of LGRB fluences.

Our conclusion in the above is further confirmed by Figure 2.5d, where we plot

the redshift-corrected isotropic effective energy vs. redshift. The solid black line

in this plot represents the redshift-corrected detection threshold and almost re-

sembles a flat line at high redshifts. This is another indication that the inferred re-

lationship between (1+z) and Eiso is likely heavily influenced by the improperly-

modeled detection threshold. In this study, however, the effective threshold cut

represent the combined effects of the detection thresholds of multiple satellites

due to the heterogenous collection of data from multiple independent GRB cata-

logs. All of these raise the possibility that L19’s single-valued threshold is likely

a severe oversimplification of the complex merger of individual satellite thresh-

olds, while none of the individual satellite thresholds might be well represented
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by a single-valued hard cutoff.

Figure 2.5e shows a range of possible threshold limits vs. α values at τ =

0. One can see the red line approaches L19’s value of α = 2.3 on the far left

edge of the graph. Figure 2.5f indicates that Eiso and z are correlated at 6.01σ

significance assuming our inferred threshold has been used by L19. Although

this significance is not the same as the value reported by L19, 5.6σ, it is similar.

Note, however, that this inferred detection threshold still severely underestimates

the actual combined effects of multiple detection thresholds on the heterogenous

data set of L19. As can be seen in the figure, a more conservative choice of Fmin =

1.04 × 10−6 [ erg cm−2 ] removes the apparent correlation between Eiso and z

entirely.

2.4 Monte Carlo Simulations of

Luminosity-Redshift Evolution

To further investigate the effects of detection threshold underestimation on the

inferred luminosity-redshift evolution of LGRBs, we also create a Monte Carlo

universe of LGRBs. The premise of our simulation is that the LGRB world is de-

void of any luminosity-redshift or energetics-redshift correlations. Therefore, the

application of the Efron-Petrosian statistic on any collection of events measured

from such Monte Carlo universe of LGRBs, subjected to a given simulated detec-

tion threshold, should also accurately predict no energetics/luminosity-redshift

correlations for the intrinsic underlying population of LGRBs in the Monte Carlo

universe.

35



2 How unbiased statistical methods lead to biased scientific discoveries

2.4.1 The LGRB World Model

We follow the approach extensively discussed in Osborne, Shahmoradi, and Ne-

miroff (2020), Shahmoradi (2013a,b), Shahmoradi and Nemiroff (2015), and Shah-

moradi and Nemiroff (2019), to construct our Monte Carlo Universe of LGRBs.

Toward this, we assume that the intrinsic comoving rate density of LGRBs fol-

lows a piecewise power-law function of the form,

ζ̇(z) ∝


(1 + z)γ0 z < z0

(1 + z)γ1 z0 < z < z1

(1 + z)γ2 z > z1 ,

(2.12)

whose parameters,

(z0, z1, γ0, γ1, γ2) = (0.97, 4.00, 3.14, 1.36,−2.92) , (2.13)

are adopted from Butler, Bloom, and Poznanski, 2010. This SFR is henceforth

referred to as the B10 rate. For simplicity, but also as argued by Osborne, Shah-

moradi, and Nemiroff (2020), Shahmoradi (2013a,b), Shahmoradi and Nemiroff

(2015), and Shahmoradi and Nemiroff (2019), we consider a 4-dimensional Mul-

tivariate Lognormal Probability Density Function (PDF) for the joint distribution

of the four main LGRB prompt gamma-ray emission characteristics: The total

isotropic peak luminosity (Liso), the total gamma-ray emission (Eiso), the intrinsic

spectral peak energy (Epz), and the intrinsic duration (T90z).

We use the BATSE catalog of 1366 LGRBs (Goldstein et al., 2013; Paciesas et

al., 1999; Shahmoradi and Nemiroff, 2010) to construct a Bayesian hierarchical

model (Shahmoradi, 2017) of the cosmic distribution of LGRBs in the universe,

subject to an accurate modeling of the detection threshold of BATSE Large Area
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Detectors (LADs) and data uncertainties. Then, we use a variant of the adaptive

Markov Chain Monte Carlo techniques to sample the resulting posterior distribu-

tion of the parameters of the hierarchical model (Shahmoradi, 2019; Shahmoradi

and Bagheri, 2020; Shahmoradi and Bagheri, 2020c; Shahmoradi, Bagheri, and

Osborne, 2020). Details of model construction and sampling are extensively dis-

cussed in the aforementioned papers (e.g., Osborne, Shahmoradi, and Nemiroff,

2020; Shahmoradi, 2013a).

2.4.2 The Monte Carlo Universe of LGRBs

Once the best-fit parameters of the LGRB world model are inferred, we create a

Monte Carlo Universe of LGRBs by randomly and repeatedly generating LGRB

events whose characteristics are distributed according to the LGRB World model

constructed in §2.4.1. For each LGRB event synthesis, we use a set of model

parameters randomly drawn from the posterior distribution of the LGRB world

model parameters explored in §2.4.1. Then, each LGRB passes through the simu-

lated LGRB detection process of the BATSE LADs.

An illustration of the resulting Monte Carlo Universe of LGRBs is provided

in Figure 2.6. The two plots represent the joint distributions of Eiso/Liso and

redshift. Clearly, the BATSE LADs create a rather sharp cut on the synthesized

z − Liso sample of LGRBs compared to the distribution of z − Eiso, which exhibits

much fuzzier detection threshold effects. This is expected and reassuring, since

the BATSE LADs are primarily triggered on the peak photon flux at different

timescales.

We note that the specific shape of the energetics or redshift distribution of

LGRBs or the specific detection mechanism of LGRBs in our Monte Carlo sim-

ulations has no relevance or effects on our assessment of the utility and accuracy

of the Efron-Petrosian statistic. All that is important here, is the lack of any a pri-

37



2 How unbiased statistical methods lead to biased scientific discoveries

(a)

(b)

Figure 2.6: An illustration of the Monte Carlo universe of LGRBs con-
structed in §2.4.2 using the B10 rate. Each point in this plot represents
one synthetic LGRB. The magenta color represents a high probability
of detection while the cyan represents a low probability of detection.
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ori correlations between the energetics and the redshifts of LGRBs in our Monte

Carlo simulations.

Using our Monte Carlo universe of LGRBs, we generate a random sample of

380 BATSE-detectable LGRBs. This sample size is comparable to the size of the

observational data sets collected and analyzed in previous studies. We flag an

LGRB as detectable by generating a uniform-random number between 0 and 1

and comparing it to the probability of detection of the LGRB. If the probability of

detection is higher than the randomly generated number, we include the event in

the sample of detected LGRBs for our analysis.

2.4.3 Analysis of Synthetic Monte Carlo Data

We start with the synthetic Eiso − z sample shown in figure 2.7a where the black

line represents the BATSE detector threshold at 50% detection probability and

the color on each point represents the probability of that burst being detected by

BATSE. From it we take those bursts which have a probability of being detected

between 48% and 52% and take the average value of the “observed” quantity in

our synthetic sample for our 50% probability of detection. The corresponding

lower limit on the fluence at this 50% chance of detection is

Fmin = 1.88 × 10−6 [ ergs cm−2 ] . (2.14)

We then apply the Efron-Petrosian statistic to our synthetic data set and find that

α = 0.11 ± 0.24 with the detection threshold set at 50% probability of detection.

This is reassuring as it implies that the Efron-Petrosian test statistic remains rela-

tively unbiased even when the detection threshold is not a sharp cutoff. But this

is true only for as long as the detection threshold is not significantly underesti-

mated.
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(a)

(b)

Figure 2.7: An illustration of the effects of detection threshold on the outcome of the
Efron-Petrosian test statistic. Plot (a) Shows the synthetic data set used for our study
of (Eiso, 1 + z) correlation. The solid black line represents the detector threshold at 50%
while the dashed black line represents a detector threshold comparable to that of L19
at 99% probability of detection. The color bar represents the probability of detection by
the BATSE LADs where cyan and magenta represent 0% and 100% chances of detection,
respectively. Plot (b) shows the redshift-evolution corrected data set based off of the
value of alpha calculated using the detector threshold at 50% probability of detection.

40



2.4 Monte Carlo Simulations of Luminosity-Redshift Evolution

(c)

(d)

Figure 2.7: (cont.) Plot (c) shows the alpha value calculated corresponding to
τ = 0 with varying detection threshold limits. The solid black line represents
the detector threshold at 50%, the black circle is the average α value over 50
generated samples for the specific threshold used, while the dashed black line
represents the detector threshold at 99% probability of detection, comparable to
those of previous studies, and the black square is the average α over 50 gener-
ated samples at τ = 0. Plot (d) displays the τ statistic at α = 0. The black line
represents the detector threshold at 50% detection probability and the dashed
black line represents the detection threshold at 99% detection probability, com-
parable to those of previous studies. The circle and square in this figure are the
average τ values over 50 generated samples.
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To further illustrate this, we consider a lower detection threshold, comparable

to the value used in L19. We note that a direct application of the assumed de-

tection threshold of L19 to our analysis is not possible since the data set used in

L19 has been collected from multiple heterogenous sources, as opposed to our

synthetic homogenously-detected LGRB sample. However, a detection threshold

equivalent to that of L19 can be obtained in our analysis by noting that the de-

tection threshold cutoff assumed in the study of L19 is above only 3 individual

LGRB events. This comprises less than 1% of the entire data set of 376 LGRBs in

L19.

We therefore, choose our detection threshold limit such that only 1% of our

synthetic sample falls below the assumed detection threshold hard cutoff, similar

to that of L19. This yields a value of α = 1.55 ± 0.21 which is depicted illustrated

in Figure 2.7c. This inferred non-zero correlation at 7σ significance clearly contra-

dicts the fundamental assumption of our Monte Carlo simulation, and confirms

our hypothesis that an underestimation of the detection threshold can readily

bias the Efron-Petrosian test statistic.

As seen in Figure 2.8, we repeat the above analysis for the joint distribution of

z − Liso with a detection threshold hard cutoff set at 50% probability of detection:

1.88× 10−7 [ ergs cm−2 s−1]. We find α = −0.04± 0.24 at this probability of detec-

tion. However, when we use a detection threshold comparable to those of Y15,

P16, and T17, we find α = 1.72 ± 0.16 at > 10σ significance, again contradicting

the a priori assumption of our Monte Carlos universe of LGRBs.

2.5 Discussion

In this work we re-analyzed several previous studies on the evolution of the lu-

minosity/energetics of LGRBs with redshift. To be consistent with the previous
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(a)

(b)

Figure 2.8: An illustration of the effects of detection threshold on the outcome of
the Efron-Petrosian test statistic. Plot (a) Shows the synthetic data set used for
our study of (Liso, 1 + z) correlation. The solid black line represents the detec-
tor threshold at 50% while the dashed black line represents a detector threshold
comparable to that of L19 at 99% probability of detection. The color bar repre-
sents the probability of detection by the BATSE LADs where cyan and magenta
represent 0% and 100% chances of detection, respectively. Plot (b) shows the
redshift-evolution corrected data set based off of the value of alpha calculated
using the detector threshold at 50% probability of detection.
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(c)

(d)

Figure 2.8: (cont.) Plot (c) shows the alpha value calculated corresponding to
τ = 0 with varying detection threshold limits. The solid black line represents
the detector threshold at 50%, the black circle is the average α value over 50
generated samples for the specific threshold used, while the dashed black line
represents the detector threshold at 99% probability of detection, comparable to
those of previous studies, and the black square is the average α over 50 gener-
ated samples at τ = 0. Plot (d) displays the τ statistic at α = 0. The black line
represents the detector threshold at 50% detection probability and the dashed
black line represents the detection threshold at 99% detection probability, com-
parable to those of previous studies. The circle and square in this figure are the
average τ values over 50 generated samples.
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studies we used the method of Efron-Petrosian and the τ statistic to determine

the exponent of the power-law relationship, α in g(z) = (1 + z)α, between the

luminosity/energetics and redshifts of LGRBs.

Contrary to the previous studies, we conclude that the effects of the detection

threshold has been likely severely underestimated. We further confirm our con-

clusion via Monte Carlo simulation, where we assume no correlation between

the energetics and the redshift of LGRBs. We then measure these simulated

LGRBs via the BATSE detector (for its simplicity). Our finding is that an un-

derestimation of the effective detection threshold by even less than a factor

of two can create artificial correlations between the redshifts and the luminos-

ity/energetics of LGRBs. The Monte Carlo simulation of P16 also shows that an

underestimation of the detector flux limit can lead to apparent artificial correla-

tions between luminosity and redshift. They further show that this effect can also

give rise to an apparent overabundance of LGRBs at low redshift.

The regression slope (α, on a log-log plot) of the reported correlations between

the redshift and the luminosity/energetics of previous studies also resembles

their chosen detection threshold (Figures 2.1a, 2.3a, and 2.5a). This further cor-

roborates our hypothesis that the observed correlations are an artifact of the in-

dividually chosen detection thresholds of the various gamma-ray detectors.

A more accurate study of the luminosity/energetics-redshift evolution requires

a more careful modeling of the detection threshold of gamma-ray detectors, where

the detection threshold is not a single cutoff on the distribution of LGRBs but

rather a dispersed set of detection probabilities in the entire bivariate distribution.

However, such a modeling approach is impossible with the original method of

Efron-Petrosian and requires parametric modeling of the luminosity/energetics

and redshift distribution as well as the detection threshold.

Le, Ratke, and Mehta (2020) uses purely parametric methods to determine the
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GRB formation rate ρ(z). They find that there is no deviation from the SFR at any

redshift for the complete unbiased LGRB Swift-Perley and Swift-Ryan-b samples.

They do, however, find an excess at low redshift (z < 1) for the Swift-Ryan 2012

sample, and conclude that the reason for this excess is either incomplete sample

size, that ρ(z) doesn’t trace SFR at low redshift, or that it is simply unclear.

Deng et al. (2016) run an in-depth analysis using both the τ statistic and para-

metric modeling and find that observational biases may lead to an overestima-

tion of the α value, and that the evidence for luminosity evolution with redshift

is too weak to argue. They note several biases that can lead to data sets being

incomplete in redshift, such as the flux truncation effect, trigger probability, and

redshift measurement. They too argue that the true instrument threshold for a

GRB is complicated, as we have. Coward et al. (2013) goes into further detail

on how the biases of redshift measurement are even more complicated, noting

factors such as galactic dust extinction, redshift desert, and host galaxy extinc-

tion that contribute, independent of the brightness of a GRB. They argue that the

observed redshift distribution is compatible with a GRB formation rate ρ(z) that

tracks the SFR.

The premise of the previous studies in §2.3 has been to provide a nonpara-

metric investigation of the luminosity/energetics vs redshift. However, upon

performing the nonparametric correlation, the majority of these investigations

rely on parametric fitting of the luminosity/energetics and redshift distributions,

which convolutes the premise. Indeed, Lan et al. (2019) presents a fully paramet-

ric study of the redshift/energetics evolution and reports a potential correlation

between the two, but nevertheless, their study is founded on the assumption of a

simple hard cutoff of the detection threshold of LGRBs. A fully parametric study

of the correlation which incorporates a more accurate and detailed description of

the detection threshold of gamma-ray detectors remains to be done.
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2.6 Data Availability

All of the data used in this paper, as well as the Matlab code used for our analysis

and Monte Carlo simulation, can be found here: https://github.com/cdslaborg/

lgrbEnergeticsRedshiftCorrelation. The original data can also be found in the

individual four papers analyzed in §2.3.
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3.1 Introduction

Gamma-ray bursts (GRBs) are mainly split into two categories: long-duration

GRBs (LGRBs), with T90 > 2 s, and short-duration GRBs (SGRBs), with T90 < 2 s

(e.g., Kouveliotou et al., 1993). Specifically, T90 is the time it takes to receive 90%

burst fluence, starting when 5% of the fluence has been observed (e.g., Poolakkil

et al., 2021). Significant observational evidence over the past two decades has

connected LGRBs to the death and the iron core-collapse of supermassive stars

(Fruchter et al., 2006; Woosley and Bloom, 2006). Specifically, the leading theory

points toward Wolf-Rayet stars, with masses between 10M⊙ − 50M⊙ (Massey,

1981), as being the most likely progenitors of LGRBs due to the mass loss incurred

due to stellar wind, allowing for the jets to break out of the stellar envelope. This

collapsar model of LGRBs was first supported by observational evidence through

the association of half a dozen GRBs with spectroscopically confirmed broad-

line Ic supernovae (SNe), as well as photometric evidence of underlying SNe

in about two dozen more (Galama et al., 1998; Hjorth et al., 2011; Hjorth et al.,

2003; Stanek et al., 2003; Woosley and Heger, 2006). In addition, there is indirect

evidence for the connection of LGRBs with massive stars from the identification

of LGRB host galaxies as intensively star-forming galaxies (Bloom et al., 2002;

Christensen, Hjorth, and Gorosabel, 2004; Fruchter et al., 2006; Le Floc’h et al.,

2003). The LGRBs are localized in the most active star-forming regions within

those galaxies, increasing the probability that they originate from the death of

supermassive stars. Physically, according to the Collapsar model, as the core

collapses in a supernova (SN) explosion, a bipolar jet is launched from the center

of the star that has to drill through the stellar envelope and break out to produce

an observed GRB (e.g., MacFadyen and Woosley, 1999; MacFadyen, Woosley, and

Heger, 2001).

While the evidence for a LGRB-supernovae association (Bloom, Frail, and Sari,
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2001) has provided strong support for the collapsar model, the first strong sign of

support for the jet-ejecta interaction has come from the off-axis afterglow observa-

tions of GRB 170817A (e.g., Abbott et al., 2017a; Goldstein et al., 2017; Savchenko

et al., 2017a). In their study, Bromberg, Nakar, Piran, et al. (2012) developed a

model of LGRBs that provides the first prompt-emission observational imprint of

this jet-envelope interaction, and thus, direct confirmation of the collapsar model.

A distinct signature in the duration distribution has been detected: the appear-

ance of a plateau toward short durations. This occurs at times much shorter than

the typical breakout time of the jet, that is, the time it takes for the jet to drill

through the stellar envelope. This action dissipates energy, so the engine driv-

ing these jets must be in operation for at least the breakout time. If it is not, a

GRB is not produced. The GRB is brief for breakout times that are very close to

the engine time and a characteristic plateau is seen in the duration distribution.

The breakout time is set by the density and radius of the stellar envelope at radii

> 1010 cm. In comparison, the stellar core properties at radii < 108 cm determine

the engine’s working time.

Unlike LGRBs, SGRBs are theorized to result from the merger of either two

neutron stars (NS-NS) or that of a neutron star and a black hole (NS-BH) (Berger,

2014; D’Avanzo, 2015; Eichler et al., 1989; Metzger and Berger, 2012; Narayan,

Piran, and Kumar, 2001). Recently, the first NS-NS merger was confirmed in

an unprecedented joint gravitational and electromagnetic observation by Ad-

vanced Laser Interferometer Gravitational-Wave Observatory (LIGO), Advanced

Virgo, INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and

the Fermi Gamma-ray Space Telescope’s Gamma-ray Burst Monitor (GBM) (Ab-

bott et al., 2017a; Goldstein et al., 2017; Savchenko et al., 2017b). Following the

discovery of gravitational waves, this was also the first spectroscopically con-

firmed event associated with a kilonova. Other recent studies using photom-
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etry have also found a kilonova event associated with GRB 211211A and GRB

230307A, both consisting of a hard-to-soft prompt emission (Levan et al., 2023;

Troja et al., 2022). Compact binary mergers of these types are accompanied by

significant dynamical mass ejection. Models differ with respect to how much

mass is ejected depending on the GRB, from 0.03 - 0.08 M⊙ (GRB 130603B) to 0.1

- 0.13 M⊙ (GRB 060614) (Berger, Fong, and Chornock, 2013; Tanvir et al., 2013;

Yang et al., 2015). The beamed nature of these events has been observed by in-

specting breaks in optical and radio bands in GRB 990510 (Harrison et al., 1999).

Similar observations of breaks in SGRB afterglows have suggested the involve-

ment of jets as well (Fong et al., 2012; Soderberg et al., 2006). Further supporting

evidence for relativistic jets in GRBs has been found thanks to the observation of

superluminal motion in GRBs by Ghirlanda et al. (2019), Mooley et al. (2018), and

Taylor et al. (2004), a phenomenon that is typically seen in the jets of blazars and

quasars. Therefore, similarly to the collapsar model, the merger launches a rela-

tivistic jet that has to push through the expanding ejecta of significant mass (Duf-

fell, Quataert, and MacFadyen, 2015; Gottlieb, Nakar, and Piran, 2018; Kumar

and Zhang, 2015; Murguia-Berthier et al., 2014; Nagakura et al., 2014). According

to Moharana and Piran (2017), this again produces a plateau in the T90 distribu-

tion, only at shorter durations than the one seen with LGRBs, reflecting the time

it takes for prompt γ-ray emission to become observable after the jet reaches the

ejecta’s outer edge.

In this paper, we argue that although the plateaus seen in the analysis of the T90

distributions of GRBs by Bromberg, Nakar, Piran, et al. (2012) and Moharana and

Piran (2017) could serve as a direct confirmation of theoretical models, they could

(with equal plausibility) simply be interpreted as statistical artifacts. This work is

organized as follows. Section 3.2 reviews and dissects the theoretical arguments

for the collapsar interpretation of the observed plateau of LGRBs duration distri-
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bution. Section 3.3 details our alternative statistical interpretation of the plateau

and our attempt to reproduce the apparent plateaus seen in observational GRB

durations from sample incompleteness. Section 3.4 presents a discussion of our

results.

3.2 Collapsar interpretation of the plateau

The argument for the presence of a plateau in the observed duration distribu-

tion of LGRBs begins with the assumption that the intrinsic1 prompt gamma-ray

emission duration (tγ) depends exclusively on the LGRB central engine activity

time (te) and the jet breakout time (tb) from the stellar envelope,

tγ =


0 if te ≤ tb ,

te − tb if te > tb .
(3.1)

Realistically, as Bromberg, Nakar, Piran, et al. (2012) stated, the jet breakout, en-

gine working times, and the gamma-ray emission duration might be correlated

with each other and other properties of the LGRB progenitor. Nevertheless, as-

suming the validity of (3.1), we can write the probability density function (PDF)

of tγ (i.e., the probability distribution of the intrinsic LGRB duration) in terms of

the PDF of the engine working time, te,

πγ(tγ)dtγ =


0 if te ≤ tb ,

πe(te)dte = πe(tb + tγ)dtγ if te > tb ,
(3.2)

where π denotes the PDF. In other words, the duration distribution of LGRBs (for

1Note: Bromberg, Nakar, Piran, et al. (2012) use the keywords "intrinsic" and "observed" inter-
changeably to represent rest-frame LGRB duration. In this paper, "intrinsic" and "observed"
exclusively refer to the GRB rest frame and the observer frame on Earth, respectively.
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3.2 Collapsar interpretation of the plateau

a given tb) is simply the tail of the distribution of the engine work time beyond

tb. Under further assumption that πe is locally analytic at te = tb, the Taylor

expansion of the right-hand side of (3.2) at te = tb yields,

πe(tb + tγ) = πe(tb) + tγ
dπe(te)

dte

∣∣∣∣
te=tb

+O
(

t2
γ

)
. (3.3)

Given Eqs. (3.2) and (3.3), this implies a nearly constant PDF for the prompt

emission duration of LGRBs as tγ → 0, that is, if and only if the higher order

terms in the Taylor expansion are negligible compared to the first (constant) term.

This requires either tγ ≪ tb or for all derivatives of πe(te) near tb be nearly zero.

Specifically, the second term in the right-hand side of Eq. (3.3) containing the first

derivative of πe(te) must satisfy the following condition:

dπe(te)

dte

∣∣∣∣
te=tb

≪ πe(tb)

tγ
. (3.4)

Independent theoretical arguments (e.g., Bromberg, Nakar, and Piran, 2011)

have suggested a typical jet breakout time t̂b ≃ 50 [s], which is on the same order

as the starting point of the plateau behavior in the duration distribution of LGRBs

at t̂γ ≃ 20 − 30 [s] (Bromberg, Nakar, Piran, et al., 2012). This similarity (t̂γ ≃ t̂b)

clearly violates the condition of tγ ≪ tb under which the Taylor expansion is

valid. Bromberg, Nakar, and Piran, 2011; Bromberg, Nakar, Piran, et al., 2012

reconciled this by further assuming πe(te) is a smooth function that "does not

vary on short timescales in the vicinity of t̂b;" namely: the first and higher order

derivatives in the Taylor expansion must be effectively zero relative to the first

constant term in Eq. (3.3).

Such a strict additional constraint on the derivatives in the Taylor expansion in

Eq. (3.3) leads to a circular logic whereby the collapsar interpretation of the ob-

served nearly-flat plateau in tγ requires the assumption of a nearly-flat plateau in
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3 Alternative statistical interpretation for apparent plateaus

engine working time distribution around tb. We recall that πγ(tγ > 0) = πe(te >

tb), by definition based on Eq. (3.2). In other words, the collapsar interpretation

of the plateau requires the implicit assumption of the existence of the plateau.

The above circular logic can be resolved in several ways: 1) the theoretical pre-

dictions of the typical breakout time t̂ ∼ 50 [s] are imprecise; 2) the distribution of

the engine activity time πe(te) is indeed nearly flat around t̂b; or 3) the observed

plateau in the duration distribution of LGRBs does not have a collapsar interpre-

tation, but is due, rather, to the statistical nature of the distributions of strictly

positive physical quantities combined with sample incompleteness, convolution

effects, contamination with SGRBs, and visual effects.

In the following section, we argue the last resolution offers a plausible expla-

nation for the apparent plateaus in the duration distributions of both LGRBs and

SGRBs, without invoking any physical theories.

3.3 Statistical interpretation of the plateau

Statistical distributions with strictly positive support, for example, π(tγ), tγ ∈

(0,+∞), frequently and naturally exhibit plateaus in their short tails. Such plateaus

can appear across a broad range of independent circumstances, as discussed in

the following subsections.

3.3.1 All finite-valued statistical distributions with positive

support exhibit plateaus

We recall that the Taylor expansion of the PDF of an analytic statistical distribu-

tion at any point within its support guarantees the existence of a plateau near

the point of expansion. Such a plateau, however, is mathematically infinitesimal,

defined only asymptotically as one approaches the point of expansion. There-
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Figure 3.1: Illustration of the plateau in the distribution of strictly pos-
itive random variables as x → 0. The existence of these plateaus is
mathematically guaranteed for all distributions with positive support
and finite-valued Probability Density Function (PDF). (a) PDFs of three
popular positive-valued statistical distributions. (b) Zoom-in on the
same PDFs as in plot (a), but at very small values near the origin, on a
logarithmic x-axis, illustrating the plateau-like behavior of the distribu-
tions near x = 0. The appearance of the plateau near the origin (x = 0)
is guaranteed by the logarithmic transformation of the x-axis. The loga-
rithmic transformation effectively spreads a finite amount of variations
in the PDF on the y-axis over a semi-infinite range on the (logarithmic)
x-axis.
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3 Alternative statistical interpretation for apparent plateaus

fore, these mathematically infinitesimal plateaus are invisible to the human eye

almost anywhere within the support of the PDF, except at the origin, tγ = 0, un-

der an appropriate transformation. By definition, the PDF has a positive support

tγ ∈ (0,+∞). Therefore, taking the logarithm of the x-axis (tγ) pushes the lower

limit of the support of the PDF at tγ = 0 to negative infinity: log(tγ → 0) → −∞.

This logarithmic transformation of the x-axis effectively infinitely magnifies the

Taylor expansion of π(tγ) around tγ = 0. This infinite magnification can be intu-

itively understood by noting that the PDF π(tγ) of the distribution must have a

finite value at the origin, tγ = 0, with a well defined, finite, right-hand derivative.

When the x-axis is logarithmically transformed, the finite amount of changes in

π(tγ) span progressively over larger and larger logarithmic ranges on the x-axis,

effectively making the PDF resemble a plateau as log(tγ) → −∞.

This is precisely the mechanism by which the collapsar interpretation discussed

in Sect. 3.2 attempts to explain the observed plateau in the duration distribution

of LGRBs. However, the collapsar theory of LGRBs invocation appears unneces-

sary since all finite-valued statistical distributions with strictly positive support

exhibit a plateau toward zero, and there is an uncountably infinite number of

such statistical distributions. Given that the gamma-ray duration, tγ, of both

SGRBs and LGRBs is a strictly positive-valued observable random variable, the

appearance of a plateau in their tγ distributions on a log(tγ)-axis is mathemati-

cally guaranteed as tγ → 0. This is true without recourse to any physical theories

of GRBs. Figure 3.1 illustrates this mathematical asymptotic plateau behavior for

some well-known continuous distributions with positive real support.
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3.3 Statistical interpretation of the plateau

3.3.2 Sample-incompleteness creates plateaus in

observational data

Despite the mathematical guarantee of a plateau in strictly positive finite-valued

distributions, the practical visibility of such plateaus in observational data is

limited to distributions whose probability mass is heavily concentrated around

zero. For an illustration, the near-zero, hard-to-sample, mathematical plateaus

of gamma and lognormal distributions from this category are depicted in Figure

3.1b.

Sample-incompleteness, however, can still generate a second kind of plateau

in strictly positive statistical distributions, entirely different from the plateaus

of the first kind of mathematical origin discussed in Sect 3.3.1. Such observa-

tional plateaus result from limited sampling of positive statistical distributions

that are highly positively skewed. We recall that plateaus naturally also occur in

the neighborhood of the mode of a distribution where the derivative of the PDF

is mathematically zero. This flatness of the PDF around the mode can readily

become observationally visible if the distribution sharply rises from some finite

value at tγ = 0, typically π(tγ = 0) = 0, to the PDF mode at tγ = t̂, and gradually

declines to zero as tγ → +∞. This sharp rise and gradual decay is the typical be-

havior of many positive-valued statistical distributions and the key requirement

for generating finite-sample extended plateaus in their PDFs.

Therefore, if the shape of the distribution (in log-log space) is such that the

probability of sampling at tγ < t̂ is negligible, a plateau appears in the histogram

of observational data at tγ ∼ t̂. The plateau appearance is substantially strength-

ened and extended if the PDF decays slowly (and concavely) toward +∞ and the

observational sample is binned and visualized on a logarithmic x-axis as done in

Bromberg, Nakar, Piran, et al. (2012).

To illustrate this artificial finite-sample plateau creation in action, we consid-
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3 Alternative statistical interpretation for apparent plateaus

ered the lognormal distribution, widely used in astronomy for modeling lumi-

nosity functions and other observational data (e.g., Balazs et al., 2003; Berkhuijsen

and Fletcher, 2012; Butler, Bloom, and Poznanski, 2010; Medvedev et al., 2017;

Osborne, Shahmoradi, and Nemiroff, 2020; Shahmoradi, 2013a,b; Shahmoradi,

2017; Shahmoradi and Nemiroff, 2015; Yan et al., 2021; Zaninetti, 2018). The log-

normal distribution is always positively skewed for any parameter values. This

results in a typically negligible area to the left of the PDF mode, as illustrated in

Figures 3.2a and 3.2c. Hence, the short tail of the lognormal distribution to the

left of its mode is rarely fully observationally constructed, leading to the appear-

ance of a plateau in the PDF on the log scale near the distribution mode. This

behavior is not exclusive to lognormal and is generically seen in many statistical

distributions with positive support, some of which are also shown in the rest of

the plots of Figure 3.2.

3.3.3 Convolution creates plateaus in observational data

In addition to the area to the left of the mode of PDFs with positive support,

the smoothness (differentiability) and concavity of the PDF near its mode play

a dominant role in the appearance of finite-sample plateaus. Indeed, a separate

class of statistical distributions with strictly positive support has modes that are

neither smooth nor occur at the origin. These distributions, as shown by the

Pareto and log-Laplace examples, hardly exhibit plateau behavior under finite

sampling. Nevertheless, this section shows that even the most difficult, non-

analytic, non-smooth PDFs can exhibit plateaus under convolution.

Recall the convolution of two functions:

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ) dτ , (3.5)
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Figure 3.2: Illustration of the effects of sample incompleteness on
plateau formation in statistical distributions. A primary factor in the
appearance of finite-sample plateaus near the modes of PDFs is the
area to the left of the PDF mode. The smaller this area, the fewer op-
portunities there are to construct the short tail of the PDFs in finite sam-
pling, thus leading to the appearance of plateaus in the PDFs near their
modes. Plots (a) & (b) depict the histograms of the log-transformed
random variables drawn from select statistical distributions with posi-
tive support. Plots (c) & (d) depict the corresponding histograms of the
original random variables but on logarithmic axes.
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3 Alternative statistical interpretation for apparent plateaus

acts as a smoothing operation similar to that of weighted averaging. The result-

ing function from the convolution will be at least as smooth as the individual

functions ( f (·) or g(·) in (3.5)). In fact, the convolution operation is identical to a

weighted dynamic averaging of f (·) when the weight, g(·), is a probability den-

sity function. In the case of the duration distribution of LGRBs, the convolution

performed to obtain the observer-frame duration distribution is as follows:

log(tγ,obs) = log(z + 1) + log(tγ,int) , (3.6)

where “obs" and “int" stand for the observed and intrinsic durations, respectively,

and z represents the GRB redshift.

We demonstrate the effectiveness of convolution in creating plateaus by con-

sidering a Pareto PDF for the duration distribution of LGRBs. The Pareto distri-

bution does not exhibit any plateau-like behavior within its support under any

circumstances (e.g., see Figure 3.3a). Yet, when convolved with the redshift distri-

bution of LGRBs detected by the Neil Gehrels Swift Observatory2, the sharp non-

analytical mode of the Pareto PDF transforms into a continuous smooth mode

as seen in Figure 3.3b. Combining the observed convolved duration distribution

of LGRBs with the duration distribution of SGRBs further eliminates the appear-

ance of any discontinuity or sharp decline in the short tail of the distribution,

leading to a plateau in the mixture distribution that is even longer than the ob-

served plateaus in the duration distributions of The Burst And Transient Source

Experiment (BATSE) and Fermi catalog GRBs (Figure 3.3c).

To verify the generality of convolution effects on plateau creation, we also con-

sidered four additional popular GRB formation rate scenarios, each in 10,000

independent simulations: Collaboration et al. (2018) (F18), Madau and Fragos

(2017) (M17), Butler, Bloom, and Poznanski (2010) (B10), and Hopkins and Bea-

2All redshifts are taken from the Swift GRB catalog.
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Figure 3.3: Illustration of the smoothing effects of convolution on the
Pareto distribution, leading to the appearance of a plateau in dN

dT plot.
(a) Sampled points from a Pareto distribution after performing the bin
merging as described in Bromberg, Nakar, Piran, et al. (2012). (b) Same
data as in plot (a) but convolved with the redshift distribution of LGRBs
(derived from Swift catalog). (c) Convolved observed duration distri-
bution of LGRBs combined with a lognormal fit to the redshift distri-
bution of SGRBs. For comparison, the green line represents the dura-
tion distribution of the BATSE SGRBs and LGRBs. The final observed
plateau resulting from the Pareto distribution is 50% longer than the ob-
served plateau in the duration distribution of BATSE LGRBs. (d) Dis-
tribution of the average plateau lengths, assuming an intrinsic Pareto
duration distribution convolved with various GRB popular redshift
distribution scenarios from the literature as listed in the plot legend.
The observed plateau length in the BATSE duration data is illustrated
by the vertical black line.
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3 Alternative statistical interpretation for apparent plateaus

com (2006) (H06). The data modeling and fittings were performed by assuming

one of these redshift models as the redshift distribution of LGRBs and assuming

a parametric form for the intrinsic duration distribution of LGRBs (e.g., Pareto),

using a Bayesian fitting approach, as described in Osborne, Shahmoradi, and

Nemiroff (2020), Shahmoradi (2013a), Shahmoradi (2017), and Shahmoradi and

Nemiroff (2015) assuming non-informative objective priors for all unknown pa-

rameters. Once the model fitting was carried out, random redshift samples of the

same size as the observational duration distribution data were generated by sam-

pling the corresponding redshift distribution models with an adaptive Markov

chain Monte Carlo algorithm (Kumbhare and Shahmoradi, 2020; Shahmoradi

and Bagheri, 2020a,b; Shahmoradi and Bagheri, 2021; Shahmoradi, Bagheri, and

Osborne, 2020). The random samples were subsequently convolved with the ran-

dom samples from the corresponding duration distribution models with the best-

fit parameters to generate the observed duration distributions. This procedure

was repeated 10,000 times for each modeling and redshift distribution scenario.

Finally, the lengths of the resulting apparent plateaus in the duration distribu-

tions for each of the 10,000 simulations per modeling scenario were measured

using the same approach as in Bromberg, Nakar, Piran, et al. (2012).

The histograms of the resulting plateau lengths for each of the five redshift dis-

tribution scenarios are illustrated in plot (d) of Figure 3.3d. Notably, the resulting

average plateau lengths from the convolution of a Pareto duration distribution

with all GRB formation rate scenarios are longer than the plateau length in BATSE

observational data.

62



3.4 Discussion

3.3.4 Sample contamination creates plateaus in observational

data

A contamination of the short tail of the duration distribution of LGRBs with

SGRBs leads to a further extension of the apparent plateaus because the popu-

lation of SGRBs compensates for any drop in the count of LGRBs toward low

durations. Again, we considered a lognormal fit for the intrinsic duration dis-

tribution of LGRBs. Osborne, Shahmoradi, and Nemiroff (2020), Shahmoradi

(2013a,b), and Shahmoradi and Nemiroff (2015) argued and provided evidence

for the goodness of fit of LGRBs and SGRBs prompt duration distributions with

lognormal PDF. The lognormal distribution does not exhibit an inherent plateau

near its short tail. Sample incompleteness, however, creates the appearance of

a plateau in the lognormal fit to the observational LGRB data. This apparent

plateau is further extended by the convolution of the intrinsic duration distribu-

tion with redshift to obtain the observe-frame duration distribution as illustrated

in Figure 3.4a. Finally, the contamination with SGRB data due to the overlap of

the two distributions completely eradicates any signs of decline in the short tail

of LGRBs duration distribution, yielding a perfect plateau appearance in the final

mixture distribution, as shown by the magenta solid curve in Figure 3.4a.

3.4 Discussion

In this paper, we present statistical arguments that strongly favor a non-physical

(i.e., non-collapsar) origin for the observed plateau in the duration distribution

of LGRBs. The Taylor expansion in Eq. (3.3) of the density function of the engine

activity time (te) near the jet breakout time (tb) requires the plateau to appear at

durations orders of magnitude smaller than the inferred tb in Bromberg, Nakar,

Piran, et al. (2012). Bromberg, Nakar, and Piran, 2011; Bromberg, Nakar, Piran, et
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Figure 3.4: BATSE-detectable samples of 600 SGRBs and 1400 LGRBs
are randomly generated from our respective Monte Carlo Universes.
(a) SGRBs, represented by the blue bins and LGRBs by the red bins,
where each bin is the 50th percentile value of 10,000 synthetic detec-
tions. The solid blue and red lines are lognormal fits to the bins in
the pre-transformed space. These two fits are summed to produce the
solid magenta line multiplied by a factor of 10 to offset it for clarity.
The dotted gray lines represent the 90% confidence interval for each
binned distribution. (b) Distribution of observed Swift redshifts in lin-
ear space. (c) Redshift distribution transformed in the same manner
as the duration distribution throughout this manuscript. After per-
forming the transformation described in Bromberg, Nakar, Piran, et
al. (2012), the resulting plot displays a plateau in the log-log space, al-
though there is no apparent physical origin.
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al., 2012 reconciled this inconsistency by an additional assumption of the engine

activity time as "a smooth function" that not vary on short timescales near the

breakout time. However, this leads to a circular logic in the argument for the

collapsar origin of the observed plateau, where Bromberg, Nakar, Piran, et al.,

2012 imposed a flatness condition on the distribution of the engine activity time

near the breakout time to obtain a flatness in the prompt duration of LGRBs; by

definition as per Eq. (3.2), this is the same as the engine activity time at tγ > tb.

Alternatively, we can interpret the plateau in the duration distribution of LGRBs

as a constraint on the shape of the engine activity time, under the assumption

that the prompt gamma-emission duration precisely reflects the engine activity

time at tγ > tb, as proposed in Bromberg, Nakar, and Piran, 2011; Bromberg,

Nakar, Piran, et al., 2012. In either case, the plateau in the duration distribution

of LGRBs does not appear to serve as an observational imprint of the collapsar

model.

We further question any physical origins of the observed plateau by show-

ing that plateaus are ubiquitous in the short tails of statistical distributions with

strictly positive support (e.g., Figure 3.2) and frequently result from a combina-

tion of sample incompleteness with the extremely positively skewed nature of

such distributions (on natural axes). Even where the intrinsic duration distribu-

tion of LGRBs does not exhibit a plateau behavior in its short tail, we show that

its convolution with a redshift distribution can create observed duration distribu-

tions that exhibit plateau-like behavior. The presence and extent of the plateaus

are further significantly enhanced if SGRBs mix with and contaminate the ob-

served duration distribution of LGRBs, as is the case with all major GRB catalogs.

An example of a perfect plateau resulting from such contamination is depicted in

Figure 3.4a.

To resolve the sample contamination problem and minimize the impact of SGRBs
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3 Alternative statistical interpretation for apparent plateaus

duration distribution on the observed plateau in the duration distribution of

LGRBs, Bromberg, Nakar, Piran, et al. (2012) also restricted their analysis only

to soft LGRBs in the BATSE catalog. This is done by removing any events with

a hardness ratio 3 above 2.6. This artificial cutoff preferentially excludes SGRBs

from the duration histogram and significantly extends the observed plateau of

LGRBs to more than twice the original length. However, in contrast to the ar-

guments of Bromberg, Nakar, Piran, et al. (2012), this plateau extension in the

population of soft LGRBs has no connection with the collapsar interpretation of

the plateau. It is merely an artifact of further censorships and sample incomplete-

ness caused by the exclusion of an arbitrarily chosen subset of data. To illustrate

this phenomenon, we followed Osborne, Shahmoradi, and Nemiroff, 2020; Shah-

moradi, 2013a; Shahmoradi and Nemiroff, 2015 to fit the BATSE catalog data with

a comprehensive model for the duration, spectral peak energy, peak luminosity,

and isotropic energy of GRBs. Notably, we assumed that the duration distribu-

tions of both LGRBs and SGRBs follow lognormal, making no assumption on

the existence of plateaus in the duration distributions. Once the fitting was per-

formed, we followed the prescription of Bromberg, Nakar, Piran, et al. (2012) to

remove the observed events from our Monte Carlo Universe with hardness ratios

larger than 2.6. Figure 3.5 compares the resulting duration histogram for the soft

population of LGRBs with the original histogram from the Monte Carlo Universe.

A few remarks are in order, as follows.

Firstly, plateaus appear in the duration distributions of both LGRBs and SGRBs

without even requiring their existence in the model. Secondly, the LGRB plateau

extends to about two orders of magnitude when we follow the prescription of

Bromberg, Nakar, Piran, et al. (2012) to exclude short hard bursts from the his-

togram. While it is indeed purely statistical, this plateau extension is on par with

3The hardness ratio is defined as the ratio of fluence between BATSE energy channels. In this
case, channels 3 (100-300 keV) and 2 (50-100 keV)
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Figure 3.5: Illustration of the impact of excluding SGRBs from the du-
ration distribution on the observed plateau of LGRBs. The original
plateau in the red histogram and the extension of it by removing SGRBs
in the magenta histogram are purely statistical (resulting from the log-
normal fits to data as depicted in Figure 3.4a) and have no connections
to the physics of GRBs or collapsars whatsoever.

the reported extension Bromberg, Nakar, Piran, et al. (2012) found in the BATSE

catalog data.

The specific binning approach used to construct histograms of data also ap-

pears to moderately (and even significantly) impact the strength and extent of

any plateau in the short tails of distributions. This binning effect is well illus-

trated in Figures 3.2c and 3.2d. The above arguments point to a non-physical

origin for the observed plateau in the duration distribution of LGRBs. In fact,

the distributions of other observational properties of GRBs (e.g., the observed

redshift distribution as seen in Figure 3.4c) also exhibit plateaus without any ap-

parent physical origins.

The plateau emerging within the LGRB duration distribution is not unique and

can also be seen in the population of SGRBs. Unlike the population of LGRBs, the

decline in the short tail of the duration distribution of SGRBs is readily seen. This
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decline in the short tail actually suggests the reason why we do not see such a fall

in the short tails of LGRBs duration distribution. Unlike the case of LGRBs, no ad-

ditional mixing distribution "covers" this decline in the SGRB population. Such

a plateau in the SGRB duration distribution is hard to reconcile with the non-

collapsar origin of SGRBs. Moharana and Piran (2017) proposed a similar prompt

emission mechanism to that of LGRBs (by requiring the SGRB jet to drill through

an envelope) to explain the non-collapsar plateau seen in the duration distribu-

tion of SGRBs. The likelihood ratio test used in Moharana and Piran (2017) for

comparing the performances of the lognormal and plateau models to observa-

tional data only applies to nested statistical models, while the models compared

are non-nested with entirely different parameters. To compare the goodness of fit

of different models to the combined SGRB and LGRB BATSE data, we also consid-

ered four modeling scenarios: the lognormal+lognormal mixture model as illus-

trated in Figure 3.4; the proposed plateau+powerlaw-plateau+powerlaw(tapered)

mixture model as in Eq. (3) in Moharana and Piran (2017); lognormal - plateau

+ powerlaw (tapered) mixture model; and plateau+powerlaw-lognormal mix-

ture model. The resulting fits yield the corresponding Bayesian information cri-

terion (BIC) scores of: 8339, 8354, 8360, and 8362, implying that the observational

SGRB/LGRB data is ~3 × 106 − 109 times more likely to have originated from a

lognormal+lognormal mixture model than any alternative models with plateaus

for the duration distributions of either or both GRB classes.

By contrast, the statistical arguments presented in this manuscript offer a natu-

ral explanation for plateaus in the duration distributions of both GRB populations

without recourse to any physical arguments and origins of GRBs. The fact that

a wide variety of statistical distributions fit the duration distributions of GRBs

equally well, as we demonstrate in this work, further corroborates the findings

of Ghirlanda et al., 2015; Salafia et al., 2020 and serves as a reminder to exercise
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caution in attributing the observed plateaus in the duration distributions of GRBs

to their physics.

In summary, we present an alternative equally plausible purely statistical ori-

gin for the observed plateaus in the duration distributions of LGRBs and SGRBs.

Our analysis further signifies the relevance and importance of selection effects

and data censorship (e.g., Band and Preece, 2005; Bryant, Osborne, and Shah-

moradi, 2021; Butler, Bloom, and Poznanski, 2010; Butler, Kocevski, and Bloom,

2009; Butler et al., 2007; Coward et al., 2015; Hakkila et al., 2003; Lloyd and

Petrosian, 1999; Lloyd, Petrosian, and Mallozzi, 2000; Nakar and Piran, 2004;

Osborne, Bagheri, and Shahmoradi, 2021; Osborne, Shahmoradi, and Nemiroff,

2020; Petrosian, Kitanidis, and Kocevski, 2015; Petrosian and Lee, 1996; Pet-

rosian, Lloyd-Ronning, and Lee, 1999; Shahmoradi, 2013b; Shahmoradi and Ne-

miroff, 2011a; Shahmoradi and Nemiroff, 2009; Shahmoradi and Nemiroff, 2011b;

Tarnopolski, 2021) in data-driven studies of the Physics of GRBs.
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4.1 Overview

The overarching purpose of this thesis is to enhance the reliability of GRB studies

by identifying and addressing the roles of bias and sample incompleteness. By

doing so, this research aims to provide a more accurate understanding of GRBs

and improve the methodologies used in their analysis. In this chapter, I will

summarize the main results of the research projects presented in this thesis, ex-

panding on a few points, followed by concluding remarks.

4.2 Summary of Findings

In Chapter 2, a reanalysis of the works of Y15, P15, P16, T17, and L19 found that

the effects of the detector threshold were likely underestimated in each study, giv-

ing rise to apparent artificial correlations between luminosity and redshift. This

in turn led to an apparent overabundance of LGRBs at low redshift and gave rise

to the problem of the GRB formation rate deviating from the SFR. This hypoth-

esis was further tested by creating a synthetic dataset of LGRBs generated with

no correlation between their energetics and redshifts. The dataset was subjected

to censorship as would occur with a real-world detector, and the correlation be-
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tween energetics and redshift was again computed as before. It was found that

an underestimation of the effective detector threshold yielded an artificial corre-

lation that was not a part of the original generated data. Furthermore, this gave

rise to an overabundance of LGRBs at low redshift that was also not the case in

the synthetic dataset.

Following this in Chapter 3, the evidence for the collapsar origins of LGRBs

in T90 duration distributions was reexamined and found to more likely be the

result of statistical methods rather than the physics of the progenitor. Multiple

statistical artifacts were shown to potentially contribute to the apparent plateau

that has been interpreted as validation of the collapsar model. When viewed on a

logarithmic scale, all finite-valued statistical distributions with positive support

will develop a plateau as the axis is stretched on approach to zero. Sample con-

tamination between the SGRB and LGRB subsets produce an interior plateau as

the tails between their respective modes overlap.

Of particular note is sample incompleteness, as it is one of the more perva-

sive statistical challenges in data analysis. I will briefly expand on an example

from Section 3.3.2. Figure 4.1 more clearly demonstrates the effect of sample in-

completeness relative to a more complete sample of the lognormal distribution,

specifically. The left column is a random sampling of a lognormal distribution

with 100,000 samples drawn. The right column is similar, but with only 600 sam-

ples drawn. The data is transformed in the bottom row from Counts → dN/dt by

dividing each bin by its width. Since the binning is done in log-space the width of

each bin varies, growing larger as t grows. The left tail of the distribution is ele-

vated because each bin is being divided by progressively smaller numbers as you

move leftwards. The effect on the incomplete sample is more extreme, however,

and it begins to flatten out. Merging adjacent bins that have less than five events
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Figure 4.1: The effect of sample incompleteness on the transformed
data of a lognormal distribution. There is an apparent plateau to the
left of the mode of the incomplete sample (bottom right figure).
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each also contributes to this effect. This highlights how the interplay between

sample incompleteness and the way in which the data is commonly transformed

and visualized for GRB T90 duration datasets leads to the artificial appearance of

a plateau without it existing in the underlying distribution.

Using the BIC to Evaluate Models

In Section 3.4, it is briefly mentioned that the Bayesian information criterion (BIC)

was used to determine that a lognormal-lognormal mixture is the most likely un-

derlying distribution of observed BATSE SGRB/LGRB duration data. I will ex-

pand on that here. First and foremost, BIC is a statistical measure used for model

selection among a finite set of models (Schwarz et al., 1978). It helps identify the

model that best balances goodness of fit and model complexity by penalizing an

excessive use of parameters, thus preventing overfitting. It can be used to com-

pare non-nested models, where one model is not a special case of another model.

This is unlike the likelihood ratio test, which is only appropriate for comparing

nested models.

The BIC is defined as

BIC = k ln n − 2 ln L̂ (4.1)

where

L̂ = p
(
x
∣∣ θ̂, M

)
Here, L̂ is the maximized value of the likelihood function of model M. x is the

observed data and n is the number of data points in it. θ̂ are the parameter val-

ues that maximize the likelihood function, and k is the number of parameters of

model M. When comparing the BIC of two models, the one that yields the lowest
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Figure 4.2: Comparing the fit of the best lognormal-lognormal mixture
model (pink) to the BATSE dataset (green) of T90 values. The BIC for
this model is 8339, the lowest (i.e., best fit) of the four models.

value is the most desirable. This can be explicitly quantified by approximating

the Bayes Factor (BF) to find the posterior probability of models. In terms of BIC

values,

BF12 ≈ exp
(

BIC2 − BIC1

2

)
(4.2)

and it indicates how many times more likely the observed data x was drawn from

model M1 than M2 (Wagenmakers, 2007).

Returning to the discussion on whether or not the apparent plateau in the ob-

served T90 BATSE duration data is intrinsic to the underlying distribution, or a

statistical artifact, BIC was used to compare and quantify the goodness of fit of

several models. Four models were considered: a lognormal & lognormal mix-

ture model; a plateau plus powerlaw & plateau plus powerlaw (tapered) mixture

model; a lognormal & plateau plus powerlaw (tapered) mixture model; and fi-

nally a plateau plus powerlaw & lognormal mixture model.
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Figure 4.3: Comparing the fit of the best plateau plus powerlaw &
plateau plus tapered powerlaw mixture model (pink) to the BATSE
dataset (green) of T90 values. The BIC for this model is 8354.

The first model considered was a lognormal & lognormal mixture model. It

posits that the underlying T90 distribution is a mixture of a lognormal model

for short durations, and another lognormal model for long durations, as seen in

Figure 4.2. Our hypothesis was that this is the most likely model, as there is no

intrinsic plateau. It is a model of 5 parameters, and yields a BIC of 8339.

The second model considered was a plateau plus powerlaw & plateau plus

powerlaw (tapered) mixture model. It posits that the underlying T90 distribution

is a mixture of a plateau plus a powerlaw model for short durations, and a plateau

plus a powerlaw model that is tapered for long durations, as seen in Figure 4.3.

This is the model hypothesized by Moharana and Piran (2017) as most likely,

as it has plateaus in both the short duration and long duration portions of the

distribution. It is a model of 6 parameters, and yields a BIC of 8354.

The third model considered was a lognormal & plateau plus powerlaw (ta-
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Figure 4.4: Comparing the fit of the best lognormal & plateau plus ta-
pered powerlaw mixture model (pink) to the BATSE dataset (green) of
T90 values. The BIC for this model is 8360.

pered) mixture model. It posits that the underlying T90 distribution is a mixture

of a lognormal model for short durations, and a plateau plus a powerlaw model

that is tapered for long durations, as seen in Figure 4.4. This is similar to the

model proposed by Bromberg, Nakar, Piran, et al. (2012, 2013), that included a

plateau in the long duration. It is a model of 6 parameters, and yields a BIC of

8360.

The final model considered was a plateau plus powerlaw & lognormal mixture

model. It posits that the underlying T90 distribution is a mixture of a plateau plus

a powerlaw model for short durations, and a lognormal model for long durations,

as seen in Figure 4.5. It is a model of 5 parameters, and yields a BIC of 8362.

Of these four models, the lognormal & lognormal mixture model has the low-

est BIC value, confirming our hypothesis that it is the most likely. Its BF indicates

that it is on the order of ~103 times more likely than the double plateau model pro-
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Figure 4.5: Comparing the fit of the best plateau plus powerlaw & log-
normal mixture model (pink) to the BATSE dataset (green) of T90 val-
ues. The BIC for this model is 8362, the highest (i.e., worst fit) of the
four models.

posed by Moharana and Piran (2017), and on the order of ~104 times1 more likely

than the single plateau model proposed by Bromberg, Nakar, Piran, et al. (2012,

2013). The BIC strongly suggests that plateaus are not intrinsic to the BATSE T90

dataset, or in the very least, that the plateau plus powerlaw models examined are

not sufficiently representative of the data.

4.3 Concluding Remarks

The significance of these studies extend beyond the realm of GRB datasets. By

improving statistical practices in astrophysics, this research has the potential to

influence other fields that rely on complex data analysis.

Drawing conclusions from limited data is fundamental to the scientific process

1A correction must be noted here, as these values were originally reported incorrectly in Section
3.4. They have been corrected here.
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and is an inherent aspect of research. We often work with incomplete or imperfect

data due to various constraints, such as limited resources, observational capabil-

ities, or the sheer complexity of natural phenomena. Without careful attention to

the ways in which data might be potentially incomplete, inferences drawn about

it can be misleading. This is particularly problematic if the missing data is not

missing at random (e.g., missing systematically due to bias). This challenge ne-

cessitates the use of sophisticated statistical methods and analytical techniques

to develop rigorous models and identify patterns or trends, without overfitting

to random fluctuations and noise. We must carefully consider the limitations of

our data, explicitly acknowledging any potential biases or uncertainties in our

analyses in order to avoid drawing erroneous inferences. Fortunately, the iter-

ative nature of science means that initial findings based on limited data often

serve as a foundation for further investigation. As more data becomes available,

hypotheses can be refined, models can be improved, and conclusions can be val-

idated or revised. This continual process of testing, refinement, and validation is

what drives scientific progress.
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