
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2021 Spring Honors Capstone Projects Honors College

5-1-2021

ACTIVE LOAD STABILIZATION ON STAIR CLIMBING VEHICLE ACTIVE LOAD STABILIZATION ON STAIR CLIMBING VEHICLE

VECTR SENIOR DESIGN TEAM 2021 VECTR SENIOR DESIGN TEAM 2021

Joseph Johnson

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2021

Recommended Citation Recommended Citation
Johnson, Joseph, "ACTIVE LOAD STABILIZATION ON STAIR CLIMBING VEHICLE VECTR SENIOR DESIGN
TEAM 2021" (2021). 2021 Spring Honors Capstone Projects. 50.
https://mavmatrix.uta.edu/honors_spring2021/50

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2021 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2021
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2021?utm_source=mavmatrix.uta.edu%2Fhonors_spring2021%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2021/50?utm_source=mavmatrix.uta.edu%2Fhonors_spring2021%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Joseph Cole Johnson 2021

All Rights Reserved

ACTIVE LOAD STABILIZATION ON STAIR

CLIMBING VEHICLE VECTR SENIOR

DESIGN TEAM 2021

by

JOSEPH COLE JOHNSON

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2021

 iii

ACKNOWLEDGMENTS

I would like to thank Dr. Ashley Guy for his guidance and oversight of this project,

including a great deal of technical and practical advice on project specifics. In addition, I

would like to extend thanks to Dr. Raul Fernandez for high-level management of the Senior

Design Honors process as a whole.

Our team thanks Dr. Huff for generous lease of several components for our

prototype, without which our proof-of-concept device could not be built to full scale.

May 1, 2021

 iv

ABSTRACT

ACTIVE LOAD STABILIZATION ON STAIR

CLIMBING VEHICLE VECTR SENIOR

DESIGN TEAM 2021

Joseph Cole Johnson, B.S. Mechanical Engineering

The University of Texas at Arlington, 2021

Faculty Mentor: Ashley Guy

The VECTR Stair Climbing Robot team has designed a product to take loads up a

stairway in a safe manner. This device carries the load in a basket. The basket’s rotation is

impeded by a set of parallel rotational dampers. This setup is sufficient to retard the

oscillation of the load about its point of equilibrium, but is passive and slow to respond. As

such, a system was designed to actively control the load orientation. This system will use

a sensor to measure change in angle and adjust the load to keep it stable. This system

provided a tangible decrease in response time in comparison to the current passive system,

and consisted of three basic elements: a circuit mounted gyroscope; a processor with the

ability to interpret data from said sensor and issue a command in response; and a brushed

DC motor. A mathematical model of the problem was proven, and a control system

 v

established as an approximation of the physical system. The final result was a physical

model of the system demonstrating the viability of the concept.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

Chapter

 1. BACKGROUND AND PREVIOUS WORK .. 1

 1.1 Introduction and Justification .. 1

 1.2 Previous Work ... 1

 1.3 Need for Improvement ... 3

 2. METHODOLOGY .. 5

 2.1 Analytical Work ... 5

 2.2 Simulation .. 7

 2.3 Hardware and Testing .. 8

 3. RESULTS AND CONCLUSION .. 12

 3.1 Simulation Results ... 12

 3.2 Physical Model Testing.. 14

 3.3 Summary and Conclusion .. 15

Appendix

A. ARDUINO AND MATLAB CODE .. 17

B. ANALYTICAL WORK... 24

 vii

C. LIST OF HARDWARE ... 27

REFERENCES .. 29

BIOGRAPHICAL INFORMATION ... 30

 viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 CAD Model .. 2

1.2 Free-Body Diagram of Load .. 2

1.3 Damped versus Undamped Pendulum ... 3

2.1 Free-Body Diagram ... 6

2.2 Control Diagram .. 8

2.3 Arduino Controller Logic .. 9

2.4 MPU6050 Gyroscope ... 10

2.5 Arduino Mega .. 10

2.6 LN298H Motor Controller ... 10

2.7 Basic Diagram .. 11

3.1 System Response to Nonzero Initial Conditions ... 12

3.2 System Response to Random Noise .. 13

3.3 Nonzero Constant Input ... 14

3.4 Physical Model... 15

 ix

LIST OF TABLES

Table Page

2.1 Constant Equations .. 7

 1

CHAPTER 1

BACKGROUND AND PREVIOUS WORK

1.1 Introduction and Justification

The VECTR Senior Design team vehicle uses a damped pendulum approximation

to model the swinging of the load basket on the robot as it moves. While multiple options

were discussed, this system was chosen due to its simplicity and low cost. As part of the

normal duties of the design team, this model was simulated to validate its performance.

While the chosen system works adequately, given the theoretical commercial

nature of this product, attention should be paid to the overall safety of the vehicle in

operation. As the load swings, it gains momentum. If the magnitude of this momentum is

too great, it could possibly destabilize the vehicle as it ascends the stairs, causing it to fall.

If a person or pet were below, they could be injured by the heavy and bulky falling robot.

1.2 Previous Work

As previously mentioned, the uncontrolled simply damped system was modeled

and simulated by the team. A free-body diagram was drawn up and an equation of motion

for the system was obtained. The equations of motion were used in MATLAB with an

ode45 numerical integrator to simulate the system [1]. A comparison was made between

the behavior of the swinging load with and without a damper to justify its use in the

prototype.

 2

Figure 1.1: CAD Model

 Figure 1.1 shows the full CAD model of the VECTR prototype. Note how the load

swings on an axis of rotation while the rotation is damped by rotational dampers (shown

as black discs). This system is approximated for the purposes of this report as a pendulum,

shown below.

Figure 1.2: Free-Body Diagram of Load

 The swinging of the load was approximated by the above diagram, where a mass

on the end of a lever arm creates a moment about the hinged fixed support. In a controlled

 3

system, there is a torque provided by an electric motor at this point to counter the moment

of the pendulum.

Figure 1.3: Damped versus Undamped Pendulum

 Shown above is the simulated response of the pendulum acting with and without a

damper. Note that the damper reduces the oscillation, but only after several swings and at

roughly 1.5 seconds. The red dashed line is the damped oscillation, and the solid black line

is the undamped oscillation, which swings without diminishing as would be expected.

1.3 Need for Improvement

The need for improvement in the load stabilization system boils down to a

judgement between “outstanding” and “good enough”. While the current system has been

proven to be good enough from a technical standpoint, there exists room for improvement

in both the transient response of the controller to a standard impulse input and to any

random input noise that may be encountered. In a product that is to be marketed to an

elderly or disabled audience, it would seem that the safety of the product should not just

meet a minimum standard.

 4

From a technical standpoint, it is desired to reduce both the amplitude of the

oscillations as well as their duration, to reduce the forces placed on the vehicle as it ascends

the stairs, and to keep the motion of the load from interfering with any autonomous

navigation that may be in action.

The introduction of active leveling in this load carrying vehicle is representative of

an incremental improvement in technology common in many engineering applications, in

which processes and methods evolve from passive, reactive assemblies to those able to

respond with input from a sensing device. While this system could be analog, the most

common incarnation of such a control system involves a microcontroller to receive data,

compare it to some known standard, and initiate a response. This basic concept is

responsible for a plethora of engineering improvements in many systems, from air

conditioning climate control to active cruise control in automobiles.

As such, this modification represents a proof of concept for an upgrade to the

existing vehicle design and is typical of technological progression in an engineering

context. This project also incorporates a plethora of higher-level engineering courses such

as Introduction to Controls Systems, Circuit Analysis, Kinematics and Dynamics of

Machines, and Mechanical Design I, and requires this knowledge be applied in a creative

combination of disciplines.

 5

CHAPTER 2

METHODOLOGY

2.1 Analytical Work

To actively control the oscillation of the load, a PID controller was constructed to

command the response of an input torque on the pendulum as provided by a DC motor. To

construct this controller, the equations of motion for the pendulum with an input torque

were derived. These equations of motion were converted to the “s” domain by a Laplace

transform.

After taking a Laplace transform, a second order approximation of the system was

established by defining performance parameters and using said parameters to find a target

damping ratio and natural frequency. Once these were found, polynomial long division was

conducted to solve equation for Kd, Kp, and Ki in terms of system parameters such as

mass, length, and gravity. These equations could then be solved simultaneously to find the

PID constants (Kp, Ki, Kd) after system constants were specified. The free-body diagram

shown in Chapter 1 was used, reproduced below, with the addition of an input torque.

 6

Figure 2.1: Free Body Diagram

{1} �̈�𝜃 = 1
𝑚𝑚𝐿𝐿2

𝑇𝑇 − 𝑔𝑔
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)

{2} �𝑥𝑥1̇𝑥𝑥2̇
� = �

0 1
−𝑔𝑔

𝐿𝐿
 0� �

𝑥𝑥1
𝑥𝑥2� + �

0
1

𝑚𝑚𝐿𝐿2
� 𝑇𝑇

Equation 1, the equation of motion for the system, was converted to a state space

system, shown in Equation 2. This representation was used to simulate the system in

MATLAB using an ode45 numerical integrator. A small angle approximation was used to

linearize the system.

Using a small angle approximation, a Laplace domain model of the system was

constructed. After the previously mentioned performance parameters were defined and

long division carried out, the following constraint equations for the PID terms were found.

This long division was necessary to use a second order approximation of a higher order

system. The poles of the higher order system were set to ten times the lower order

approximation to effectively negate their influence on the system.

Equations 3 and 4 quantify the performance constraints placed on the system.

{3} 𝑇𝑇𝑠𝑠 = 4
𝜁𝜁𝜔𝜔𝑛𝑛

= 1

 7

{4} 𝑂𝑂𝑂𝑂% = 𝑒𝑒
� −𝜁𝜁𝜁𝜁

�1−𝜁𝜁2
�

= 10

Table 2.1 Constant Equations

Constant Equation

Kp 1
𝑚𝑚𝐿𝐿2

Ki 687
𝑚𝑚𝑚𝑚𝐿𝐿

Kd
�166 −

687(𝑚𝑚𝑙𝑙2)
𝑚𝑚𝑚𝑚𝐿𝐿

�
1

𝑚𝑚𝑚𝑚𝐿𝐿

Table 2.1 contains the derived equations for the values of the PID constants in

terms of physical parameters. These parameters can be adjusted for varying values to

generate correct constants for systems of differing sizes. A full derivation can be found in

Appendix B.

2.2 Simulation

To plot the performance of the system in MATLAB, the initial free-body diagram

was used to derive a state space representation of the system. Using the torque as an input,

this state space system was written into MATLAB code using an ode45 numerical

integrator function. The desired control input (such as input from a gyroscope) could then

be fed into the integrator/controller function, which would take the error between the

current and desired states and issue a response based on the PID constants and the physical

parameters of the system. In this way, adjustments could be made to the input function to

view the system response to a constant input, a sinusoid, or white noise. After tuning the

 8

PID constants to provide a reasonably fast response with minimal overshoot or steady state

error, the controlled and passive systems could then be compared to view the relative

advantages. Since the ode45 integrator uses variable time steps to reduce overall error,

interpolation functions were needed to scale the desire input vectors to the correct length

for integration and plotting.

Basic signal flow can be seen in the following figure. While this figure was

generated in Simulink, it serves a conceptual purpose only. A reference value of zero,

which refers to degrees measured by the gyroscope with respect to gravity, is used to create

an error signal based on the output angle of the system under the influence of inertial forces

and the controller’s provided torque.

Figure 2.2: Control Diagram

2.3 Hardware and Testing

 With the understanding that this analysis was to augment future iterations of the

VECTR prototype, it was desirable to construct a physical model of the system to prove

the ability of the controller in an applied setting. To do this, a PID controller was

established in Arduino. This process was similar to those described above, however, the

input was real angle data from a gyroscope mounted on the pendulum. This data was then

compared to the desired set point (in this case zero) and the resulting error fed into a PID

controller function to determine a value for the magnitude of the response. This value was

then scaled and sent to the DC motor controller as a PWM signal. The motor controller

 9

then determined the speed and rotation direction of the motor based on the PWM signal

from the Arduino and a digital signal corresponding to the current quadrant location of the

pendulum. This allowed the motor rotation to change directions as the pendulum moved

about the desired angular location.

 Early in testing, it was found that the error signal would grow at an unduly massive

rate if the pendulum was at a large angle relative to the desired location. To remedy this,

the controller was divided into sections based on the quadrant location of the pendulum. If

the pendulum was +/- 45 degrees from its target, the controller was active. If the pendulum

was outside this range, the controller was bypassed and the motor was fed a constant

command at a set speed, whether clockwise or counterclockwise.

Figure 2.3: Arduino Controller Logic

Testing components included an Arduino Mega, a MPU6050

gyroscope/accelerometer module, a LN298H motor driver, and a 7.2V NiMh rechargeable

battery.

 10

Figure 2.4: MPU6050 Gyroscope

Figure 2.5: Arduino Mega

Figure 2.6: LN298H Motor Controller

A simple diagram of wiring and signal flow can be seen in Figure 2.2, and shows

a representative circuit defining the relative connection and location of components.

 11

Figure 2.7: Basic Diagram

 12

CHAPTER 3

RESULTS AND CONCLUSIONS

3.1 Simulation Results

The system was simulated in MATLAB using the state space representation

described in the previous chapter. The resulting system behavior was plotted as a function

of time in response to various inputs.

The most basic case represents system response to a constant input of zero degrees,

which should be the difference between the gyroscope and the gravity normal vector in the

plane of rotation. The following figure represents a system response with a 45-degree initial

pendulum displacement. In this arrangement, the Ki term is negligible and can be set to

zero if desired, as the natural equilibrium state is equal to the input.

Figure 3.1: System Response to Nonzero Initial Conditions

 13

The system was also simulated in response to stochastic white noise. This noise

was generated by the MATLAB wgn function as a 1x n array, where n is the desired length.

Due to computational requirements, this vector was created in advance and rounded to

whole numbers. The magnitude of the noise was also scaled to represent a realistic range

of degree values.

Figure 3.2: System Response to Random Noise

It is also beneficial to note the response of the system to a nonzero constant input,

simulating the system response to a desired pendulum angle that is not straight up and

down. In this configuration the value of Ki must be nonzero to remove steady state error.

 14

Figure 3.3: Nonzero Constant Input

3.2 Physical Model Testing

The hardware introduced in Chapter 2 was used to construct a working model of

the basket-pendulum system. This allowed a visual representation of the system working

and provided clarity to the layout of the system. Though it was small and not to actual

prototype scale, the components could easily be scaled up for full size use. This would

require simulating the system using full size system parameters and obtaining the torque

curves from MATLAB, as has been discussed.

To obtain a more accurate system response, it would be necessary to include the

gear ratio in the simulation such that the output angular speed and the torque step up would

be apparent in the results.

 15

Figure 3.4: Physical Model

The Arduino can be seen in the lower left, the motor controller in the lower right,

and the brushed DC motor in the middle left center of the image. The gyroscope is obscured

behind the test stand, but the four wires that relay information and power can be seen

leading to the breadboard.

3.3 Summary and Conclusion

An active load leveling system for the VECTR platform was designed and modeled

in both state space and the Laplace domains, and the equations of motion for this active

load leveling system were used to simulate the new load system using MATLAB.

Hardware to model the active load stabilization system was sourced and wired to establish

a model of the system, and Arduino code was written to control the motor in response to

data from a gyroscope and the PID controller. This establishes the active load leveling

system as practical, and demonstrates that this system could be easily scaled up to full size

by specifying desired system loads; easily obtainable from simulation data and physical

system constants.

 16

In conclusion, the designed active load stabilization system is a dramatic

improvement on the existing passive load stabilization in response time, overshoot, and

response to random input, and is easily adaptable to different physical dimensions. In

addition, the demonstration of a physical model establishes the feasibility of establishing

this system on future VECTR prototypes.

 17

APPENDIX A

ARDUINO AND MATLAB CODE

 18

Arduino Code
#include<Wire.h>
#include<math.h>
//Variable Declarations
//
const int MPU_addr=0x68;
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
int minVal=265; int maxVal=402;
int motor1pin1 = 2;int motor1pin2 = 3;
int x; double y; double z; double var; double sinhh; double coshh;
//
//PID constants
//
double kp = 1; double ki = 0; double kd = 1;
unsigned long currentTime, previousTime;
double elapsedTime;
double error;
double lastError;
double input, output, setPoint;
double cumError, rateError;
double NormOut; double PWMNormOut;
//

void setup(){
 Wire.begin();
 Wire.beginTransmission(MPU_addr);
 Wire.write(0x6B);
 Wire.write(0);
 Wire.endTransmission(true);
 Serial.begin(9600);
 pinMode(motor1pin1, OUTPUT);
 pinMode(motor1pin2, OUTPUT);
 pinMode(9, OUTPUT);
 //
 setPoint = 270; //set point at zero degrees
}

void loop(){
Wire.beginTransmission(MPU_addr);
Wire.write(0x3B);
Wire.endTransmission(false);
Wire.requestFrom(MPU_addr,14,true);
AcX=Wire.read()<<8|Wire.read();
AcY=Wire.read()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();
int xAng = map(AcX,minVal,maxVal,-90,90);

 19

int yAng = map(AcY,minVal,maxVal,-90,90);
int zAng = map(AcZ,minVal,maxVal,-90,90);
x= RAD_TO_DEG * (atan2(-yAng, -zAng)+PI);
y= RAD_TO_DEG * (atan2(-xAng, -zAng)+PI);
z= RAD_TO_DEG * (atan2(-yAng, -xAng)+PI);
Serial.print("AngleX= ");
Serial.println(x);
Serial.println("---");

input = x;

 if ((x<225)&&(x>90)){
 Serial.print("Region B, out of bounds, max speed");
 Serial.println("---");
 analogWrite(9, 150); //need to make this go to motor controller, this is max throttle
outside reasonable angle range
 digitalWrite(motor1pin1, HIGH);
 digitalWrite(motor1pin2, LOW);
 }
 if (((x<90)&&(x>0))||(x>315.00)){
 Serial.print("Region A, out of bounds, max speed");
 Serial.println("---");
 analogWrite(9, 150); //need to make this go to motor controller, this is max throttle
outside reasonable angle range
 digitalWrite(motor1pin1, LOW);
 digitalWrite(motor1pin2, HIGH);
 }

 if ((x>225)&&(x<315)){
 output = computePID(input);
 NormOut = output/45;
 PWMNormOut = abs(NormOut*255);
 var = tanh(x);
 Serial.print("Region C, controller active\n");
 Serial.print("output= \n");
 Serial.println(output);
 Serial.print("NormOut= \n");
 Serial.println(NormOut);
 Serial.print("PWMNormOut= \n");
 Serial.println(PWMNormOut);
 Serial.print("var= \n");
 Serial.println(var);
 Serial.println("---");

 analogWrite(9, PWMNormOut); //need to make this go to motor controller
 if (x<265){

 20

 digitalWrite(motor1pin1, HIGH);
 digitalWrite(motor1pin2, LOW);
 }
 if (x>275){
 digitalWrite(motor1pin1, LOW);
 digitalWrite(motor1pin2, HIGH);
 }
 if ((x>265)&&(x<275)){
 digitalWrite(motor1pin1, LOW);
 digitalWrite(motor1pin2, LOW);
 }
 }
//Controls motor direction, replace with hyperbolic tangent
//sinh = .5*(exp(x)-exp(-x));
//cosh = .5*(exp(x)+exp(-x));
//var = sinh/cosh;

delay(100);
}
///
double computePID(double inp){
 currentTime = millis(); //get current time
 elapsedTime = (double)(currentTime - previousTime); //compute time elapsed
from previous computation

 error = setPoint - input; // determine error
 cumError += error * elapsedTime; // compute integral
 rateError = (error - lastError)/elapsedTime; // compute derivative

 double out = kp*error + ki*cumError + kd*rateError; //PID output

 lastError = error; //remember current error
 previousTime = currentTime; //remember current time

 return out; //have function return the PID output
}
///

 21

Matlab Code
Uncontrolled Damped Oscillation Simulation

clear
clc
close all

m =1500;
g = 9.81;

[t,x] = ode45(@eqns, [0 4],[0 0]);
[t2,x2] = ode45(@eqns2, [0 4],[0 0]);

theta = x(:,1); theta = theta*180/pi;
thetad = x(:,2);
plot(t,theta); hold on; title('Damped vs Undamped Uncontrolled
Oscillation')
xlabel('Time, [s]'); ylabel('Angle, [deg]');

theta2 = x2(:,1); theta2 = theta2*180/pi;
thetad2 = x2(:,2);
plot(t2,theta2);

function dx = eqns(t,x)
dx = zeros(2,1);

m = 15;
g = 9.81;
L = .2;

dx(1) = x(2);
dx(2) = g/L*cos(x(1));
end

function dx = eqns2(t2,x2)
dx = zeros(2,1);

m = 15;
g = 9.81;
L = .2;
b = 5;
dx(1) = x2(2);
dx(2) = g/L*cos(x2(1))-b*x2(2);
end

 22

Matlab Code

Controlled Oscillation Simulation

clear
clc
close all

global error input dt time i torque;
error = 0;
dt = 1;
%input = wgn(100,1,1);
%input = 10*sin(0:360);
input = zeros(1,3);
%input = [8 -11 9 -3 -1 -3 8 20 10 0 -8 1 -11 -1 11 -1
13 -6 5 4 -16 -6 11 -13 -2 -11 -11 -10 9 0 4 -6 -1 9
-14 -9 11 19 -10 5 -14 7 1 -11 6 14 -2 -10 -13 -14 4 4
-9 8 -12 17 -24 -3 8 0 1 -6 22 -5 8 14 -4 16 5 -17
-5 -2 7 8 8 -16 -17 15 9 5 17 21 -9 0 5 1 2 2
12 -31 0 -3 -5 2 6 -3 0 -19 -13 -4];
%input = 5*[1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
time = 0:dt:dt*(length(input)-1);

torque = zeros(1,145);
i = 0;

[t,x] = ode45(@eqns, [time(1) time(end)],[45 0]);

thetatarget = interp1(time, input, t);
e = x(:,1)-thetatarget;
%torque2 = interp1(time, torque,t);

figure()
thetagraph = x(:,1); %thetagraph = thetagraph*180/pi;
plot(t,thetagraph); hold on; title('Control Response')
xlabel('Time, [s]'); ylabel('Angle, [deg]');
plot(t,thetatarget); legend('Theta', 'Input');
% figure()
% plot(t, torque); hold on; xlabel('Time, [s]'); ylabel('Torque,
[N*m]');

function dx = eqns(t,x)
dx = zeros(2,1);

persistent PrevInput PrevTime
if isempty(PrevInput)
 PrevInput = 0;
 PrevTime = 0;
end
global error input dt time i torque;

i = i+1;

 23

m = 20;
g = 9.81;
L = .2;

Kp = 20;
Kd = 7;
Ki = 2;

Current = interp1(time,input,t);
if t==PrevTime
 inputdot = 0;
else
 inputdot = (Current - PrevInput) / (t-PrevTime);
end
PrevInput = Current;

T = Kp*(Current - x(1)) + Kd*(inputdot - x(2)) + Ki*error;
torque(i) = T;
error = error + (Current - x(1))*(t-PrevTime);

dx(1) = x(2);
dx(2) = (1/(m*L^2))*T - g/L*sin(x(1));

PrevTime = t;
end

 24

APPENDIX B

ANALYTICAL WORK

 25

Derivation of PID Constants

𝑚𝑚𝐿𝐿2�̈�𝜃 + 𝑚𝑚𝑚𝑚𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = −𝑇𝑇

If we assume sin(theta)=theta (small angle approximation)

𝑚𝑚𝐿𝐿2�̈�𝜃 + 𝑚𝑚𝑚𝑚𝐿𝐿𝜃𝜃 = −𝑇𝑇

Taking Laplace Transform:

𝜃𝜃(𝑠𝑠)[𝑚𝑚𝐿𝐿2𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝐿𝐿𝑠𝑠] = −𝑇𝑇(𝑠𝑠)

𝜃𝜃(𝑠𝑠)
𝑇𝑇(𝑠𝑠) = �

1
𝑚𝑚𝐿𝐿2𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝐿𝐿𝑠𝑠

�

If we set 𝑚𝑚𝐿𝐿2 = 𝐴𝐴 and 𝑚𝑚𝑚𝑚𝐿𝐿 = 𝐵𝐵 for convenience:

𝜃𝜃(𝑠𝑠)
𝑇𝑇(𝑠𝑠) = �

1
𝐴𝐴𝑠𝑠2 + 𝐵𝐵𝑠𝑠

�

Taking a second-order approximation of the characteristic polynomial in series with a

PID controller, using performance targets discussed in Chapter 2:

𝑠𝑠2 + 2𝜁𝜁𝑊𝑊𝑛𝑛𝑠𝑠 + 𝑊𝑊𝑛𝑛 = (𝐴𝐴𝑠𝑠2 + 𝐵𝐵𝑠𝑠) �𝐾𝐾𝐾𝐾 +
𝐾𝐾𝑠𝑠
𝑠𝑠

+ 𝐾𝐾𝐾𝐾𝑠𝑠�

Substituting values in the left side to achieve target dominant poles:

𝐴𝐴𝐴𝐴𝐾𝐾𝑠𝑠3 + 𝑠𝑠2(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝑠𝑠(𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝐵𝐵𝐾𝐾𝑠𝑠 = (𝑠𝑠 + 15)(𝑠𝑠2 + 8𝑠𝑠 + 45.83)

𝐴𝐴𝐴𝐴𝐾𝐾𝑠𝑠3 + 𝑠𝑠2(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝑠𝑠(𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝐵𝐵𝐾𝐾𝑠𝑠 = (𝑠𝑠3 + 23𝑠𝑠2 + 166𝑠𝑠 + 687)

 26

Matching powers of s:

𝐴𝐴𝐾𝐾𝐾𝐾 = 1

(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) = 23

166 = (𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾)

𝐵𝐵𝐾𝐾𝑠𝑠 = 687.45

From this, we extract:

𝐾𝐾𝐾𝐾 =
1
𝐴𝐴

𝐾𝐾𝑠𝑠 =
687
𝐵𝐵

𝐾𝐾𝐾𝐾 = �166 −
687𝐴𝐴
𝐵𝐵 � �

1
𝐵𝐵�

 27

APPENDIX C

LIST OF HARDWARE

28

List of Hardware

LN298H Motor Controller

Arduino Mega

MPU 6050 Gyroscope

Brushed DC Motor

29

REFERENCES

[1] VECTR Senior Design Team Proposal, Spring 2021 UTA Student Design team,

drafted 1/21; members A. Burge, H. Pavlik, G. Hadley, J. Crowson, K. Matthee, J.

Johnson

 [2] Control Systems Engineering, 7th Ed. Nise, Norman S., Wiley Publishers,

Copyright 2015

30

BIOGRAPHICAL INFORMATION

Joseph Cole Johnson is a student at the University of Texas at Arlington. He is a

member of the Honors College, having been admitted as an incoming freshman, and was

awarded the Terry Foundation Traditional scholarship for exemplary leadership, academic

performance, and service to community.

During his time at UTA, Cole completed numerous Honors projects in completion

of his Honors degree, most notably in Dynamics and Kinematics and Dynamics. Active on

campus, Cole served a term as Engineering Senator and performed various leadership roles

in the UTA Cycling Club, Pro Life Mavericks, and the Baptist Student Ministry, and

achieved the College of Engineering Dean’s list.

Cole will graduate with a Bachelor of Science in Mechanical Engineering in May

2021, with a degree from the UTA Honors College.

	ACTIVE LOAD STABILIZATION ON STAIR CLIMBING VEHICLE VECTR SENIOR DESIGN TEAM 2021
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Introduction and Justification
	2.1 Analytical Work

