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ABSTRACT 

 

ACTIVE LOAD STABILIZATION ON STAIR  

CLIMBING VEHICLE VECTR SENIOR  

DESIGN TEAM 2021 

 

Joseph Cole Johnson, B.S. Mechanical Engineering 

 

The University of Texas at Arlington, 2021 

 

Faculty Mentor:  Ashley Guy 

The VECTR Stair Climbing Robot team has designed a product to take loads up a 

stairway in a safe manner. This device carries the load in a basket. The basket’s rotation is 

impeded by a set of parallel rotational dampers. This setup is sufficient to retard the 

oscillation of the load about its point of equilibrium, but is passive and slow to respond. As 

such, a system was designed to actively control the load orientation. This system will use 

a sensor to measure change in angle and adjust the load to keep it stable. This system 

provided a tangible decrease in response time in comparison to the current passive system, 

and consisted of three basic elements: a circuit mounted gyroscope; a processor with the 

ability to interpret data from said sensor and issue a command in response; and a brushed 

DC motor. A mathematical model of the problem was proven, and a control system  
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established as an approximation of the physical system. The final result was a physical 

model of the system demonstrating the viability of the concept.  
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CHAPTER 1 

BACKGROUND AND PREVIOUS WORK 

1.1 Introduction and Justification 

The VECTR Senior Design team vehicle uses a damped pendulum approximation 

to model the swinging of the load basket on the robot as it moves. While multiple options 

were discussed, this system was chosen due to its simplicity and low cost. As part of the 

normal duties of the design team, this model was simulated to validate its performance.  

While the chosen system works adequately, given the theoretical commercial 

nature of this product, attention should be paid to the overall safety of the vehicle in 

operation. As the load swings, it gains momentum. If the magnitude of this momentum is 

too great, it could possibly destabilize the vehicle as it ascends the stairs, causing it to fall. 

If a person or pet were below, they could be injured by the heavy and bulky falling robot.  

1.2 Previous Work 

As previously mentioned, the uncontrolled simply damped system was modeled 

and simulated by the team. A free-body diagram was drawn up and an equation of motion 

for the system was obtained. The equations of motion were used in MATLAB with an 

ode45 numerical integrator to simulate the system [1]. A comparison was made between 

the behavior of the swinging load with and without a damper to justify its use in the 

prototype. 
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Figure 1.1: CAD Model 

 Figure 1.1 shows the full CAD model of the VECTR prototype. Note how the load 

swings on an axis of rotation while the rotation is damped by rotational dampers (shown 

as black discs). This system is approximated for the purposes of this report as a pendulum, 

shown below.  

 

Figure 1.2: Free-Body Diagram of Load 

 The swinging of the load was approximated by the above diagram, where a mass 

on the end of a lever arm creates a moment about the hinged fixed support. In a controlled 
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system, there is a torque provided by an electric motor at this point to counter the moment 

of the pendulum.  

 

Figure 1.3: Damped versus Undamped Pendulum 

 Shown above is the simulated response of the pendulum acting with and without a 

damper. Note that the damper reduces the oscillation, but only after several swings and at 

roughly 1.5 seconds. The red dashed line is the damped oscillation, and the solid black line 

is the undamped oscillation, which swings without diminishing as would be expected. 

1.3 Need for Improvement 

The need for improvement in the load stabilization system boils down to a 

judgement between “outstanding” and “good enough”. While the current system has been 

proven to be good enough from a technical standpoint, there exists room for improvement 

in both the transient response of the controller to a standard impulse input and to any 

random input noise that may be encountered.  In a product that is to be marketed to an 

elderly or disabled audience, it would seem that the safety of the product should not just 

meet a minimum standard.  
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From a technical standpoint, it is desired to reduce both the amplitude of the 

oscillations as well as their duration, to reduce the forces placed on the vehicle as it ascends 

the stairs, and to keep the motion of the load from interfering with any autonomous 

navigation that may be in action.  

The introduction of active leveling in this load carrying vehicle is representative of 

an incremental improvement in technology common in many engineering applications, in 

which processes and methods evolve from passive, reactive assemblies to those able to 

respond with input from a sensing device. While this system could be analog, the most 

common incarnation of such a control system involves a microcontroller to receive data, 

compare it to some known standard, and initiate a response. This basic concept is 

responsible for a plethora of engineering improvements in many systems, from air 

conditioning climate control to active cruise control in automobiles.  

As such, this modification represents a proof of concept for an upgrade to the 

existing vehicle design and is typical of technological progression in an engineering 

context. This project also incorporates a plethora of higher-level engineering courses such 

as Introduction to Controls Systems, Circuit Analysis, Kinematics and Dynamics of 

Machines, and Mechanical Design I, and requires this knowledge be applied in a creative 

combination of disciplines.



 

 5 

CHAPTER 2 

METHODOLOGY 

2.1 Analytical Work 

To actively control the oscillation of the load, a PID controller was constructed to 

command the response of an input torque on the pendulum as provided by a DC motor. To 

construct this controller, the equations of motion for the pendulum with an input torque 

were derived. These equations of motion were converted to the “s” domain by a Laplace 

transform.  

After taking a Laplace transform, a second order approximation of the system was 

established by defining performance parameters and using said parameters to find a target 

damping ratio and natural frequency. Once these were found, polynomial long division was 

conducted to solve equation for Kd, Kp, and Ki in terms of system parameters such as 

mass, length, and gravity. These equations could then be solved simultaneously to find the 

PID constants (Kp, Ki, Kd) after system constants were specified. The free-body diagram 

shown in Chapter 1 was used, reproduced below, with the addition of an input torque. 
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Figure 2.1: Free Body Diagram  
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Equation 1, the equation of motion for the system, was converted to a state space 

system, shown in Equation 2. This representation was used to simulate the system in 

MATLAB using an ode45 numerical integrator. A small angle approximation was used to 

linearize the system.  

Using a small angle approximation, a Laplace domain model of the system was 

constructed. After the previously mentioned performance parameters were defined and 

long division carried out, the following constraint equations for the PID terms were found. 

This long division was necessary to use a second order approximation of a higher order 

system. The poles of the higher order system were set to ten times the lower order 

approximation to effectively negate their influence on the system.  

Equations 3 and 4 quantify the performance constraints placed on the system.  

{3} 𝑇𝑇𝑠𝑠 = 4
𝜁𝜁𝜔𝜔𝑛𝑛

= 1 
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{4} 𝑂𝑂𝑂𝑂% = 𝑒𝑒
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�

= 10 

 

Table 2.1 Constant Equations  

Constant Equation 

Kp 1
𝑚𝑚𝐿𝐿2

 

Ki 687
𝑚𝑚𝑚𝑚𝐿𝐿

 

Kd 
�166 −

687(𝑚𝑚𝑙𝑙2)
𝑚𝑚𝑚𝑚𝐿𝐿

�
1

𝑚𝑚𝑚𝑚𝐿𝐿
 

 

Table 2.1 contains the derived equations for the values of the PID constants in 

terms of physical parameters. These parameters can be adjusted for varying values to 

generate correct constants for systems of differing sizes. A full derivation can be found in 

Appendix B.  

2.2 Simulation 

To plot the performance of the system in MATLAB, the initial free-body diagram 

was used to derive a state space representation of the system. Using the torque as an input, 

this state space system was written into MATLAB code using an ode45 numerical 

integrator function. The desired control input (such as input from a gyroscope) could then 

be fed into the integrator/controller function, which would take the error between the 

current and desired states and issue a response based on the PID constants and the physical 

parameters of the system. In this way, adjustments could be made to the input function to 

view the system response to a constant input, a sinusoid, or white noise. After tuning the 
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PID constants to provide a reasonably fast response with minimal overshoot or steady state 

error, the controlled and passive systems could then be compared to view the relative 

advantages. Since the ode45 integrator uses variable time steps to reduce overall error, 

interpolation functions were needed to scale the desire input vectors to the correct length 

for integration and plotting.  

Basic signal flow can be seen in the following figure. While this figure was 

generated in Simulink, it serves a conceptual purpose only. A reference value of zero, 

which refers to degrees measured by the gyroscope with respect to gravity, is used to create 

an error signal based on the output angle of the system under the influence of inertial forces 

and the controller’s provided torque.  

 

Figure 2.2: Control Diagram 

2.3 Hardware and Testing 

 With the understanding that this analysis was to augment future iterations of the 

VECTR prototype, it was desirable to construct a physical model of the system to prove 

the ability of the controller in an applied setting. To do this, a PID controller was 

established in Arduino. This process was similar to those described above, however, the 

input was real angle data from a gyroscope mounted on the pendulum. This data was then 

compared to the desired set point (in this case zero) and the resulting error fed into a PID 

controller function to determine a value for the magnitude of the response. This value was 

then scaled and sent to the DC motor controller as a PWM signal. The motor controller 
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then determined the speed and rotation direction of the motor based on the PWM signal 

from the Arduino and a digital signal corresponding to the current quadrant location of the 

pendulum. This allowed the motor rotation to change directions as the pendulum moved 

about the desired angular location.  

 Early in testing, it was found that the error signal would grow at an unduly massive 

rate if the pendulum was at a large angle relative to the desired location. To remedy this, 

the controller was divided into sections based on the quadrant location of the pendulum. If 

the pendulum was +/- 45 degrees from its target, the controller was active. If the pendulum 

was outside this range, the controller was bypassed and the motor was fed a constant 

command at a set speed, whether clockwise or counterclockwise.  

 

Figure 2.3: Arduino Controller Logic 

Testing components included an Arduino Mega, a MPU6050 

gyroscope/accelerometer module, a LN298H motor driver, and a 7.2V NiMh rechargeable 

battery. 
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Figure 2.4: MPU6050 Gyroscope 

 

Figure 2.5: Arduino Mega 

 

Figure 2.6: LN298H Motor Controller 

 

A simple diagram of wiring and signal flow can be seen in Figure 2.2, and shows 

a representative circuit defining the relative connection and location of components.  
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Figure 2.7: Basic Diagram
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CHAPTER 3 

RESULTS AND CONCLUSIONS 

3.1 Simulation Results  

The system was simulated in MATLAB using the state space representation 

described in the previous chapter. The resulting system behavior was plotted as a function 

of time in response to various inputs.  

The most basic case represents system response to a constant input of zero degrees, 

which should be the difference between the gyroscope and the gravity normal vector in the 

plane of rotation. The following figure represents a system response with a 45-degree initial 

pendulum displacement. In this arrangement, the Ki term is negligible and can be set to 

zero if desired, as the natural equilibrium state is equal to the input.  

 

Figure 3.1: System Response to Nonzero Initial Conditions
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The system was also simulated in response to stochastic white noise. This noise 

was generated by the MATLAB wgn function as a 1x n array, where n is the desired length. 

Due to computational requirements, this vector was created in advance and rounded to 

whole numbers. The magnitude of the noise was also scaled to represent a realistic range 

of degree values.  

 

Figure 3.2: System Response to Random Noise  

 

It is also beneficial to note the response of the system to a nonzero constant input, 

simulating the system response to a desired pendulum angle that is not straight up and 

down. In this configuration the value of Ki must be nonzero to remove steady state error.  



 

 14 

 

Figure 3.3: Nonzero Constant Input 

 

3.2 Physical Model Testing  

The hardware introduced in Chapter 2 was used to construct a working model of 

the basket-pendulum system. This allowed a visual representation of the system working 

and provided clarity to the layout of the system. Though it was small and not to actual 

prototype scale, the components could easily be scaled up for full size use. This would 

require simulating the system using full size system parameters and obtaining the torque 

curves from MATLAB, as has been discussed.  

To obtain a more accurate system response, it would be necessary to include the 

gear ratio in the simulation such that the output angular speed and the torque step up would 

be apparent in the results.  
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Figure 3.4: Physical Model 

The Arduino can be seen in the lower left, the motor controller in the lower right, 

and the brushed DC motor in the middle left center of the image. The gyroscope is obscured 

behind the test stand, but the four wires that relay information and power can be seen 

leading to the breadboard.  

3.3 Summary and Conclusion  

An active load leveling system for the VECTR platform was designed and modeled 

in both state space and the Laplace domains, and the equations of motion for this active 

load leveling system were used to simulate the new load system using MATLAB. 

Hardware to model the active load stabilization system was sourced and wired to establish 

a model of the system, and Arduino code was written to control the motor in response to 

data from a gyroscope and the PID controller. This establishes the active load leveling 

system as practical, and demonstrates that this system could be easily scaled up to full size 

by specifying desired system loads; easily obtainable from simulation data and physical 

system constants.  
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In conclusion, the designed active load stabilization system is a dramatic 

improvement on the existing passive load stabilization in response time, overshoot, and 

response to random input, and is easily adaptable to different physical dimensions. In 

addition, the demonstration of a physical model establishes the feasibility of establishing 

this system on future VECTR prototypes.  
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APPENDIX A 

ARDUINO AND MATLAB CODE 
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Arduino Code 
#include<Wire.h> 
#include<math.h> 
//Variable Declarations 
//////////////////////////////////////////////////////// 
const int MPU_addr=0x68; 
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; 
int minVal=265; int maxVal=402; 
int motor1pin1 = 2;int motor1pin2 = 3; 
int x; double y; double z; double var; double sinhh; double coshh; 
////////////////////////////////////////////////////// 
//PID constants 
////////////////////////////////////////////////// 
double kp = 1; double ki = 0; double kd = 1; 
unsigned long currentTime, previousTime; 
double elapsedTime; 
double error; 
double lastError; 
double input, output, setPoint; 
double cumError, rateError;  
double NormOut; double PWMNormOut; 
////////////////////////////////////////////////// 
 
void setup(){ 
  Wire.begin(); 
  Wire.beginTransmission(MPU_addr); 
  Wire.write(0x6B); 
  Wire.write(0); 
  Wire.endTransmission(true); 
  Serial.begin(9600); 
  pinMode(motor1pin1, OUTPUT); 
  pinMode(motor1pin2, OUTPUT); 
  pinMode(9, OUTPUT);  
  // 
  setPoint = 270;   //set point at zero degrees 
} 
 
void loop(){ 
Wire.beginTransmission(MPU_addr); 
Wire.write(0x3B); 
Wire.endTransmission(false); 
Wire.requestFrom(MPU_addr,14,true); 
AcX=Wire.read()<<8|Wire.read(); 
AcY=Wire.read()<<8|Wire.read(); 
AcZ=Wire.read()<<8|Wire.read(); 
int xAng = map(AcX,minVal,maxVal,-90,90); 
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int yAng = map(AcY,minVal,maxVal,-90,90); 
int zAng = map(AcZ,minVal,maxVal,-90,90); 
x= RAD_TO_DEG * (atan2(-yAng, -zAng)+PI); 
y= RAD_TO_DEG * (atan2(-xAng, -zAng)+PI); 
z= RAD_TO_DEG * (atan2(-yAng, -xAng)+PI); 
Serial.print("AngleX= "); 
Serial.println(x); 
Serial.println("-----------------------------------------"); 
 
input = x; 
 
  if ((x<225)&&(x>90)){ 
    Serial.print("Region B, out of bounds, max speed"); 
    Serial.println("-----------------------------------------"); 
    analogWrite(9, 150); //need to make this go to motor controller, this is max throttle 
outside reasonable angle range 
    digitalWrite(motor1pin1, HIGH); 
    digitalWrite(motor1pin2, LOW); 
  } 
  if (((x<90)&&(x>0))||(x>315.00)){ 
    Serial.print("Region A, out of bounds, max speed"); 
    Serial.println("-----------------------------------------"); 
    analogWrite(9, 150); //need to make this go to motor controller, this is max throttle 
outside reasonable angle range 
    digitalWrite(motor1pin1, LOW); 
    digitalWrite(motor1pin2, HIGH); 
  } 
   
  if ((x>225)&&(x<315)){ 
    output = computePID(input); 
    NormOut = output/45; 
    PWMNormOut = abs(NormOut*255); 
    var = tanh(x); 
    Serial.print("Region C, controller active\n"); 
    Serial.print("output= \n"); 
    Serial.println(output); 
    Serial.print("NormOut= \n"); 
    Serial.println(NormOut); 
    Serial.print("PWMNormOut= \n"); 
    Serial.println(PWMNormOut); 
    Serial.print("var= \n"); 
    Serial.println(var); 
    Serial.println("-----------------------------------------"); 
     
    analogWrite(9, PWMNormOut); //need to make this go to motor controller  
    if (x<265){ 
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      digitalWrite(motor1pin1, HIGH); 
      digitalWrite(motor1pin2, LOW); 
    } 
    if (x>275){ 
      digitalWrite(motor1pin1, LOW); 
      digitalWrite(motor1pin2, HIGH);  
    } 
    if ((x>265)&&(x<275)){ 
      digitalWrite(motor1pin1, LOW); 
      digitalWrite(motor1pin2, LOW);  
    } 
  } 
//Controls motor direction, replace with hyperbolic tangent  
//sinh = .5*(exp(x)-exp(-x)); 
//cosh = .5*(exp(x)+exp(-x)); 
//var = sinh/cosh; 
  
delay(100); 
} 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
double computePID(double inp){      
        currentTime = millis();                                     //get current time 
        elapsedTime = (double)(currentTime - previousTime);        //compute time elapsed 
from previous computation 
         
        error = setPoint - input;                                    // determine error 
        cumError += error * elapsedTime;                            // compute integral 
        rateError = (error - lastError)/elapsedTime;                // compute derivative 
  
        double out = kp*error + ki*cumError + kd*rateError;                //PID output                
  
        lastError = error;                                      //remember current error 
        previousTime = currentTime;                               //remember current time 
  
        return out;                                                //have function return the PID output 
}   
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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Matlab Code  
Uncontrolled Damped Oscillation Simulation 

clear 
clc 
close all 
 
m =1500; 
g = 9.81; 
  
[t,x] = ode45(@eqns, [0 4],[ 0 0 ]); 
[t2,x2] = ode45(@eqns2, [0 4],[ 0 0 ]); 
  
theta = x(:,1); theta = theta*180/pi; 
thetad = x(:,2); 
plot(t,theta); hold on; title('Damped vs Undamped Uncontrolled 
Oscillation') 
xlabel('Time, [s]'); ylabel('Angle, [deg]'); 
  
theta2 = x2(:,1); theta2 = theta2*180/pi; 
thetad2 = x2(:,2); 
plot(t2,theta2); 
  
function dx = eqns(t,x) 
dx = zeros(2,1); 
  
m = 15; 
g = 9.81; 
L = .2; 
  
dx(1) = x(2); 
dx(2) = g/L*cos(x(1)); 
end 
  
function dx = eqns2(t2,x2) 
dx = zeros(2,1); 
  
m = 15; 
g = 9.81; 
L = .2; 
b = 5; 
dx(1) = x2(2); 
dx(2) = g/L*cos(x2(1))-b*x2(2); 
end 
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Matlab Code  

Controlled Oscillation Simulation 
 
clear 
clc 
close all 
  
global error input dt time i torque; 
error = 0; 
dt = 1; 
%input = wgn(100,1,1); 
%input = 10*sin(0:360); 
input = zeros(1,3); 
%input = [8 -11 9   -3  -1  -3  8   20  10  0   -8  1   -11 -1  11  -1  
13  -6  5   4   -16 -6  11  -13 -2  -11 -11 -10 9   0   4   -6  -1  9   
-14 -9  11  19  -10 5   -14 7   1   -11 6   14  -2  -10 -13 -14 4   4   
-9  8   -12 17  -24 -3  8   0   1   -6  22  -5  8   14  -4  16  5   -17 
-5  -2  7   8   8   -16 -17 15  9   5   17  21  -9  0   5   1   2   2   
12  -31 0   -3  -5  2   6   -3  0   -19 -13 -4]; 
%input = 5*[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; 
time = 0:dt:dt*(length(input)-1); 
  
torque = zeros(1,145); 
i = 0; 
  
[t,x] = ode45(@eqns, [time(1) time(end)],[ 45 0 ]); 
  
thetatarget = interp1(time, input, t); 
e = x(:,1)-thetatarget; 
%torque2 = interp1(time, torque,t); 
  
figure() 
thetagraph = x(:,1); %thetagraph = thetagraph*180/pi; 
plot(t,thetagraph); hold on; title('Control Response') 
xlabel('Time, [s]'); ylabel('Angle, [deg]'); 
plot(t,thetatarget); legend('Theta', 'Input'); 
% figure() 
% plot(t, torque); hold on; xlabel('Time, [s]'); ylabel('Torque, 
[N*m]'); 
  
function dx = eqns(t,x) 
dx = zeros(2,1); 
  
persistent PrevInput PrevTime  
if isempty(PrevInput) 
    PrevInput = 0; 
    PrevTime = 0; 
end 
global error input dt time i torque;  
  
i = i+1; 
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m = 20; 
g = 9.81; 
L = .2; 
  
Kp = 20; 
Kd = 7; 
Ki = 2; 
  
Current = interp1(time,input,t); 
if t==PrevTime 
    inputdot = 0; 
else 
    inputdot  = ( Current - PrevInput ) / (t-PrevTime); 
end 
PrevInput = Current; 
  
T = Kp*(Current - x(1)) + Kd*( inputdot - x(2)) + Ki*error; 
torque(i) = T; 
error = error + (Current - x(1))*(t-PrevTime); 
  
dx(1) = x(2); 
dx(2) = (1/(m*L^2))*T - g/L*sin(x(1)); 
  
PrevTime = t; 
end 
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APPENDIX B 

ANALYTICAL WORK 
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Derivation of PID Constants  
 

 

𝑚𝑚𝐿𝐿2�̈�𝜃 + 𝑚𝑚𝑚𝑚𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = −𝑇𝑇 

If we assume sin(theta)=theta (small angle approximation) 

𝑚𝑚𝐿𝐿2�̈�𝜃 + 𝑚𝑚𝑚𝑚𝐿𝐿𝜃𝜃 = −𝑇𝑇 

Taking Laplace Transform:  

𝜃𝜃(𝑠𝑠)[𝑚𝑚𝐿𝐿2𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝐿𝐿𝑠𝑠] = −𝑇𝑇(𝑠𝑠) 

𝜃𝜃(𝑠𝑠)
𝑇𝑇(𝑠𝑠) = �

1
𝑚𝑚𝐿𝐿2𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝐿𝐿𝑠𝑠

� 

If we set 𝑚𝑚𝐿𝐿2 = 𝐴𝐴 and 𝑚𝑚𝑚𝑚𝐿𝐿 = 𝐵𝐵 for convenience: 

𝜃𝜃(𝑠𝑠)
𝑇𝑇(𝑠𝑠) = �

1
𝐴𝐴𝑠𝑠2 + 𝐵𝐵𝑠𝑠

� 

Taking a second-order approximation of the characteristic polynomial in series with a 

PID controller, using performance targets discussed in Chapter 2: 

𝑠𝑠2 + 2𝜁𝜁𝑊𝑊𝑛𝑛𝑠𝑠 + 𝑊𝑊𝑛𝑛 = (𝐴𝐴𝑠𝑠2 + 𝐵𝐵𝑠𝑠) �𝐾𝐾𝐾𝐾 +
𝐾𝐾𝑠𝑠
𝑠𝑠

+ 𝐾𝐾𝐾𝐾𝑠𝑠� 

Substituting values in the left side to achieve target dominant poles: 

 

𝐴𝐴𝐴𝐴𝐾𝐾𝑠𝑠3 + 𝑠𝑠2(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝑠𝑠(𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝐵𝐵𝐾𝐾𝑠𝑠 = (𝑠𝑠 + 15)(𝑠𝑠2 + 8𝑠𝑠 + 45.83) 

𝐴𝐴𝐴𝐴𝐾𝐾𝑠𝑠3 + 𝑠𝑠2(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝑠𝑠(𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾) + 𝐵𝐵𝐾𝐾𝑠𝑠 = (𝑠𝑠3 + 23𝑠𝑠2 + 166𝑠𝑠 + 687) 
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Matching powers of s: 

𝐴𝐴𝐾𝐾𝐾𝐾 = 1 

(𝐴𝐴𝐾𝐾𝐾𝐾 + 𝐵𝐵𝐾𝐾𝐾𝐾) = 23 

166 = (𝐴𝐴𝐾𝐾𝑠𝑠 + 𝐵𝐵𝐾𝐾𝐾𝐾) 

𝐵𝐵𝐾𝐾𝑠𝑠 = 687.45 

From this, we extract: 

𝐾𝐾𝐾𝐾 =
1
𝐴𝐴

 

𝐾𝐾𝑠𝑠 =
687
𝐵𝐵

 

𝐾𝐾𝐾𝐾 = �166 −
687𝐴𝐴
𝐵𝐵 � �

1
𝐵𝐵�
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APPENDIX C 

LIST OF HARDWARE  
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List of Hardware 
 

LN298H Motor Controller 
 

Arduino Mega  
 

MPU 6050 Gyroscope 
 

Brushed DC Motor 
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