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ABSTRACT 

 

IMPROVEMENT OF THE FORM AND FUNCTION  

OF THE AL5D ROBOTIC ARM 

 

Cristian Almendariz, B.S. Mechanical Engineering 

 

The University of Texas at Arlington, 2018 

 

Faculty Mentor: Raul Fernandez 

The University of Texas at Arlington Research Institute’s Automation and 

Intelligent Systems Lab assigned the task of developing a multi-robotic framework to 

autonomously identify, sort, and deliver various objects to desired locations in a 

workspace. One main component of the framework is the AL5D Robotic Arm, which 

serves as the sorting machine. In an attempt to mitigate the limitations of the hobby grade 

motors that the AL5D uses, modifications were made to implement a position feedback to 

its controller. The AL5D’s servo motor showed negligible change in the system response 

with the application of a digital compensator to the electronic controller. Other alterations 

made to the AL5D include the implementation of position teaching program and a 3D 

printed cover for the joints and links. The suggested alterations and the additional 

functionality implemented onto the AL5D robotic arm serve as a proof of concept for future 

improvements. 
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CHAPTER 1 

INTRODUCTION 

 Automation is an important component of the modern world. The implementation 

of machines to complete routine and simple tasks in nearly every industry has created an 

immense rise in productivity. The disruptive nature of integrating automated processes can 

be seen on a global economic scale, leading to some fearing the loss of human labor forces 

in many industries [1]. Automation serves to empower human productivity and thus 

support higher skilled and specialized workers for more job markets. Combine machine 

learning with automation technology and the result is a safer workplace with higher 

productivity yields [2]. 

 "Artificial intelligence isn't magic. In fact, it's not really about intelligence 

at all. It's better understood as simply the latest advance in automation” 

Jerry Kaplan, author of Humans Need Not Apply [3]. 

 

It is projected that the robotics industry will reach $100 billion by 2020. The next 

decade for robotics will be defined by the means of implementation of new devices into 

other industries. With the addition of Artificial Intelligence, new robotic systems will be 

capable of enhanced machine learning and prove more useful in complex tasks [4]. As of 

today, there are many applications for robotic systems. Well known devices, such as the 

Da Vinci Surgical Robot, enhance the capabilities of the world’s surgeons, leading to safer 

and more innovative surgeries. The implementation of force sensing control systems has 

allowed such devices as surgical robots to be developed [5]. With the combination of force  
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sensing control systems, artificial intelligence, and machine learning, the creation of 

Collaborative Robots has allowed smaller and safer industrial robots to be implemented 

into more of the world’s manufacturing facilities. Despite the higher level of safety, there 

is still a concern for the lack of research in this field of robotics [2]. 

 Collaborative robots are unique due to their ability to directly interact with human 

operators. The space between human operators and robotic technology is ever decreasing, 

leading to streamlined integration into existing manufacturing lines. The safety of these 

systems is still under investigation but is proving promising. The collaborative robots can 

utilize any combination of vision systems, force sensing, and virtual surfaces to constrain 

their motions and allow workers to increase interaction [6]. 

Current research is focused on improving the safety systems used in collaborative 

robots that are implemented in existing manufacturing lines, as well as how to best 

implement them for optimized performance and human interaction. Optimizing the 

transition of collaborative robots to receiving and performing new tasks is major area of 

focus for today’s research [7]. 
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CHAPTER 2 

UTARI’S LIFELONG LEARNING MACHINES 

2.1 Project Scope 

The University of Texas at Arlington Research Institute’s Automation and 

Intelligent Systems Lab assigned the Senior Design Team, ARLM, the task of developing 

a multi-robotic framework as a proof of concept for showcasing machine learning. ARLM 

was provided the means of how to best showcase machine learning in a simple and effective 

manner. Under the supervision of the faculty advisors, Dr. Das and Dr. Sevil, the team 

decided on a system that sorts colored blocks and delivers these blocks to areas within a 

given workspace. To accomplish this task, ARLM would use a robotic arm coupled to a 

secondary vision system to sort colored blocks. The blocks would be placed onto rovers, 

which would use a primary vision system to navigate to a desired delivery location. 

 

Figure 2.1: Workspace of Robotic Framework for Automated Sorting 
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2.2 Team Members and Tasks 

The Senior Design Team, ARLM, was comprised of four students, including 

myself. The task set before the team was divided into four main subtasks to be worked on 

individually and in a manner that would not allow one item to greatly limit the progress of 

any other. The common communications platform between each robotic system is a 

software called Robotic Operating System (ROS). ROS is a cross-platform communication 

program that allows for data abstraction and communication between many machines and 

many languages. More generalized, ROS is a software that allows for programs to talk to 

each other whether or not they speak the same language. The advantage of using ROS is 

that we are not limited to having to find a single software package or hardware that can 

encompass the entirety of the project. We are able to find any system and implement it with 

little trouble. 

2.2.1 Navigation & Primary Vision  

 Tesleem Lawal served as the team captain for ARLM and primarily worked on the 

development of the navigation system that would utilize the Hercules Rovers to transport 

the sorted blocks around the workspace. Eric McDaniels assisted Tesleem with this task. 

Tesleem used ROS and available software packages to get the rovers to be able to navigate 

within the workspace. The primary vision system used was VICON, a motion capture 

system comprised of a series of cameras. The VICON Camera System was made available 

to us by UTARI. VICON allows for accurate positioning of the Rovers within the defined 

workspace, that workspace being a cage-like structure that has been built in a large UTARI 

Lab. Eric worked with Tesleem on getting the VICON system to feed positions to the rover 

for navigation development. The staff at UTARI previously had the VICON system 



 

 5 

calibrated to the Hercules Rovers for other projects, allowing for easy implementation of 

VICON into our project. 

2.2.2 Secondary Vision System 

 Iris Romero used ROS software packages and OpenCV, an open source vision 

program, to develop a smaller, secondary camera system for detecting individual colored 

blocks. The specified colored block’s locations are sent to the AL5D Robotic Arm and 

used for sorting. She used a 1080p 60fps USB camera with custom mounting and a custom 

3D printed case. Iris placed the camera in a manner that overlooks the area within the reach 

of the AL5D robotic arm. 

2.3 Senior Design Assigned Task 

The fourth sub task for ARLM was the development of the robotic arm system. 

The robotic arm chosen was the AL5D Robotic Arm by Lynxmotion. Implementation of 

the arm into the robotic framework consisted of integrating ROS communication, 

implementing motion control software, and increasing the working area of the arm. 

2.3.1 Linear Rail System 

To accomplish the task outlined by the Automation and Intelligent Systems lab, it 

was decided to increase the working volume of the AL5D’s reach with the implementation 

of a linear rail. This was decided in order to allow for a larger area for block placement and 

allow for the Rovers to navigate closer to the arm for loading and unloading. The increase 

in area is presented graphically in Figure 2.2.  
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Figure 2.2: Workspace Improvement with Linear Rail System 

The linear rail system used a hobby grade CNC rail and an associated sliding block. A 

stepper motor was implemented as the means of actuation, and custom components were 

produced to mount the AL5D to the sliding block and the motor to the rail. The completed 

rail system rendering is presented in Figure 2.3. 

 

Figure 2.3: Linear Rail with AL5D Rendering 

2.3.2 Inverse Kinematics 

The program that would be used to control the motion of the AL5D robotic arm in 

3D space would need to follow a strict algorithm to be able to direct the motion of each 

joint and thus direct the position and orientation of the AL5D gripper. To do this, inverse 

kinematics were used and implemented into a python script to allow for joint angles to be 
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calculated, leading to position and orientation control of the end effector of the AL5D. To 

find the Inverse Kinematics, the Modified Denavit–Hartenberg method presented by Craig, 

in Intro to Robotics was used and can be found in Appendix A [8]. The motion of the AL5D 

was reduced from a 5 DOF robotic arm to a 3 DOF-single plane robotic arm (Figure 2.4). 

This was done to simplify the motion and complexity of the programming involved. With 

the implementation of the inverse kinematics, instead of hard coding every movement of 

every joint of the AL5D links, we only needed to input the desired position and orientation 

of the AL5D gripper in cartesian coordinates. 

 
Figure 2.4: Visual of AL5D Joint Locations and Plane of Motion 

 
2.3.3 Programming Motion 

 To program the AL5D and the other robotic systems, various Python and C++ 

scripts were written and utilized in ROS. Each script of code used lived within a ROS node. 

These nodes are instances of a terminal within the computer that houses the software. The 

AL5D robotic arm is controlled through four nodes. The “Navigator” node orchestrated the 
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process of retrieving and placing the desired blocks. Those steps being: aligning the AL5D 

with the desired block along the length of the linear rail, moving the arm to grab the block 

along the plane of motion previously defined, placing the block on the rover, and returning 

the arm to a home position. The “InverK” node housed the calculations for the inverse 

kinematics of the AL5D. The “Navigator” node would call on the “InverK” node to act as 

a function, returning each joint angle to place the gripper in the needed location. Every 

command that would move the servo motors of the AL5D needed to be passed from the 

“Navigator” node through a serial connection to the servo controller, the SSC-32U. This 

process was done by the “Servo_Run2” node. The “Stepper_Run2” node accomplished the 

equivalent task for getting the stepper motor to translate the AL5D along the rail system.  

Each node in ROS communicates via a TCP/IP Protocol, taking advantage of a publish-

subscribe system. This is done by sending data packets, either predefined data types or 

custom ones (called msg types), through topics. Each node can publish messages in topics 

or be subscribed to topics to receive the published messages. Every node written for the 

complete motion of the robotic arm sub-system can be found in Appendix B. 

Table 2.1: Custom Data Types Used in ROS 

 

EndEff ItemPos StepCtrl FullCtrl 
Float64 x Int64 x Bool dir0 Uint16 pwm0 Uint16 pwm4 
Float64 y Int64 y Float64 vel0 Uint16 pwm1 Uint16 pwm5 
Float64 phi Int8 cartID Uint64 stepNum Uint16 pwm2 Uint16 time0 
   Uint16 pwm3  
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  CHAPTER 3 

METHODS OF IMPROVEMENT 

 The AL5D serves as a very affordable and easy-to-use 5 DOF robotic arm. In order 

to maintain the affordability of the AL5D, Lynxmotion used commonly available hobby 

grade components for the construction of each arm. They also provided a variety of 

electronic controllers and controller software to purchase with the arm. The affordability 

of the components and controller results in reasonable limitations on performance and 

functions available to the user. Hitec servo motors stand as the primary servo motor used 

to control the rotation of each joint. The AL5D serves as a starting point in developing an 

understanding of robotic systems. If the AL5D is the only available system to a user, then 

there should be a means of improving the performance and functionality of the system. The 

work presented here serves as a proof of concept that improvements can be made on the 

AL5D while retaining as much of the original hardware as possible. 

3.1 Modifying Servo Motors 

3.1.1 How Servo Motors Work 

The AL5D robotic arm uses analog servo motors to actuate each joint. A servo 

motor is comprised of a DC motor coupled to an output shaft and potentiometer via an 

internal gearing system (Figure 3.1). Once a position angle is desired and the command 

signal sent to the servo motor, the motor will spin, and the changes in angular position will 

be read by the potentiometer. The motor stops spinning once the difference between the 

angular position of the output matches the desired angular position that was sent as an input  
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command. The servo motor will constantly adjust its angular position to compensate for 

any changes or loading on the output shaft. 

 

Figure 3.1: Components of a Servo Motor 

This system is a self-contained feedback loop. Figure 3.2 shows a simplified model 

of the feedback system. In this case the motor, potentiometer, and the output are all physical 

components of the servo motor. The controller used to send the desired angular positions 

to the servo motor initially was the SSC-32U but was later switched to an Arduino UNO. 

 

Figure 3.2: Feedback Loop of Unmodified Servo Motor 

3.1.2 Control System Improvement 

To improve the performance and the functionality of the analog servo motor, the 

angular position of the output is fed back to the controller. This is done by severing the 

connections between the potentiometer and the internal controller of the servo motor. With 

the angular position feeding back to the controller, a digital compensator can be used to 

fine tune the control. Another advantage to feeding back the position to the controller is 
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that additional software could implement the newly added feedback for new purposes and 

functions. Figure 3.3 depicts the angular position feedback to the controller.  

 

Figure 3.3: Feedback Loop of Modified Servo Motor 

3.2 3D Printing Custom Components 

The AL5D is comprised of powder coated brushed aluminum links and other 

components. Any modifications to the links or adding additional components requires 

deconstruction of the AL5D arm assembly and taking those components to a power tool. 

While an easy process for most individuals who have access to the proper tools and 

facilities, some may have a lack of such access. I designed and 3D printed custom link 

covers as a proof of concept that increased functionality could be added to the arm without 

the complete deconstruction of the AL5D robotic arm assembly. Having 3D printed 

components could accommodate additional hardware or electronics.  

3.3 Method of Position Teaching 

A position teaching mode was added to the functionality of the AL5D robotic arm 

to act as a proof of concept for new software that can easily be implemented. Software 

additions are not necessarily a part of the physical AL5D system but can be added to the 

external controller. Given the addition of angular feedback from servo motors to the 

external controller, the software can utilize this to provide a recording of angular positions, 

making it simple to implement a position teaching method. With the addition of more 

sensors and modifications, it should be possible to write more complex software to provide 

the whole AL5D system with increased functionality.
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CHAPTER 4 

IMPLEMENTATION 

4.1 Modified Servo Motors 

The AL5D robotic arm uses the Hitec brand of servo motors. An analysis of the 

physical control system and response of a Hitec servo motor was completed by Piateck of 

the University of Science and Technology, Krakow, Poland [9]. Piateck was able to 

determine the original unmodified control system transfer function, gain, k, and DC motor 

inertia, T, that comprises the analog servo motor (Figure 4.1). The value for gain, k, is 

(20.8), and that for DC motor inertia, T, is (0.0181). 

 

Figure 4.1: Unmodified Servo Motor Block Diagram [9] 

This information was modeled using MATLAB to provide the root locus (Figure 4.2) 

and position response under a step input (Figure 4.3). The root locus of a control system is 

used to be able to predict the systems response given certain input parameters. The root 

locus of the unmodified, servo motor provides the damping ratio of 0.814 and the percent 

over shoot of 1.22%. These values are important in defining how the system responds to 

varying inputs. The damping ratio indicates how quickly and with how much oscillation a 

system will have when adjusting to an input; this is known as the transient response. A 

value less than one for the damping ratio, represents an underdamped system response. The
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transient response will have a high number of oscillations and take a relatively long time 

to reach the desired change of state. A critically damped system will have a damping ratio 

of one and be quite quick in its response with no overshoot. A damping ratio greater than 

one will also have no overshoot but will take longer and longer to reach the desired state. 

This is an overdamped system. The percent overshoot shows how much of an initial 

overshoot the system will have during the transient response. The unmodified servo motor 

has a fairly good response with a damping ratio of 0.814, meaning that it has slight 

oscillations in its response, but it still reaches the desired state quickly. 

 

Figure 4.2: Unmodified Root Locus and Step Response 

 In implementing the modified Hitec servo motors, the first step was to determine 

whether the measured system response would match the response presented by Piateck. 

Piateck used the Hitec HS-475HB Standard Deluxe Servo while the one tested for this 

application was the Hitec HS-322HD Standard Deluxe Servo. Both servo motors require 

the same voltage and current and they both have similar response times at 0.23sec/60° for 

the HS-475HB and 0.19sec/60° for the HS-322HD. The modification that was made to the 

HS-322HD was the implementation of angular position feedback. The servo motor was 
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subjected to a 90° step input. A NI USB-6009 DAQ was used in conjunction with 

LabVIEW to measure and record this response. Figure 4.3 shows the wiring diagram for 

the LabVIEW program that was used. The LabVIEW DAQ Assistant was set to use a 

sample rate of 1000 Hz over two seconds. The results were recorded in excel while 

simultaneously displayed in the LabVIEW VI (Figure 4.4). 

 

Figure 4.3: LabVIEW Block Diagram for Measuring Angular Position 

 

Figure 4.4: LabVIEW VI Displaying Servo Motor Response 
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The results from testing the modified servo motor are also displayed in Figure 4.5.  

 

Figure 4.5: Modified Servo Response – No Compensators 

 The step input from a 90° shift in angular position correlated to a ~1V drop across 

the potentiometer and a transient response time of ~400ms. This result differs from the 

transient response time proposed by Piateck, that time being ~150ms for a 1V step input. 

The value that was achieved may have been from unideal conditions, either caused by the 

electronic controller or the measurement device, used to record the response. In order to 

accommodate for this, the value for gain, k, used in the simulated response of the servo 

motor, was changed from k = 20.8 to k = 10.8. The new value for gain, k, was determined 

by altering the simulated transfer function step response in MATLAB until the transient 

response time matched the recorded value for the unmodified control system with the 

assumption that the reported DC motor inertia, reported by Piateck, was still valid for an 

unloaded Hitec HS-475HB Standard Deluxe Servo. This assumption was made due to any 

change in value of the DC motor inertia, T, also altering the damping ratio of the system 

response, leading to either a simulated response with too much or not enough oscillation. 

The DC motor inertia, T, would not result in the desired change in transient response time 
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needed to match the measured response time while the gain, k, would.  Figure 4.6 displays 

the resulting MATLAB simulation, now more closely matching the actual transient 

response time. The actual system response still varies from the simulated response.  

 

Figure 4.6: Comparison of the Transient Response Time Approximations for the  
              Simulated Response (a) and the Measured Response Overlaid (b) 

The original transfer function was modified to reflect the modified servo motors 

with the addition of a digital PID compensator integrated into the controller (Figure 4.7).  

 

Figure 4.7: Modified Servo Motor Block Diagram 

The servo controller was switched from the SSC-32U to an Arduino controller for ease of 

use in testing purposes. The Arduino controller used an existing PID library as the digital 

compensator in an attempt to make an improvement on the transient response time without 

sacrificing the damping levels already present in the servo motors. Initially, making 

changes to the parameters that control the tuning for the PID controller resulted in the 

response of the modified servo motor being thrown into an oscillatory response (Figure 

(a) (b) 
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4.8). The parameters of the PID controller are the proportional gain [Kp], integral gain 

[Ki], and a derivative gain [Kd], set at 20, 20, and 10, respectively.  

 

Figure 4.8: Oscillatory Response Brought on by Bad PID Tuning  

 The response of the system with more tuning of the PID parameters with the best 

results were Kp = 10, Ki=10, and Kd=1 (Figure 4.9). 

 

Figure 4.9: Response with PID Compensator and Proper Tuning 

Despite the addition of the angular position feedback to the controller and the 

implementation of an Arduino based PID compensator, the best motor response achieved 
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matched the original response of the servo motor without the integrated Arduino PID 

compensator.  

4.2 3D Printed Components 

The 3D printed components that were added to the AL5D assembly are presented 

below, with the CAD models presented in Appendix C. There were 5 major components 

designed and printed for attachment to the AL5D. The components were designed in 

SolidWorks and printed on a PolyPrinter in The University of Texas at Arlington Central 

Library’s FabLab. The components were designed to act as a wire management system. 

The aim was to retain the original dimensions and geometry of the AL5D; therefore, the 

additional components were needed to match the geometry of the existing links and be 

attached without making alterations. The printing material used was PLA and each layer 

had a thickness of 0.25mm (Figure 4.10).  

 

Figure 4.10: First Layer of 3D Printing on PolyPrinter 
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The 3D printed components were attached successfully and did not disrupt the 

range of motion of the arm given the explicit application used for the senior design project 

(Figure 4.11). 

  

Figure 4.11: The AL5D Robotic Arm with 3D printed Link Covers 

4.3 Implementing the Position Teaching Mode 

The position teach mode was successfully implemented. The code was written in C 

and implemented using an Arduino as the electronic controller, available in Appendix D. 

The Basic PID Arduino library was used [10]. The function of teaching the robot arm a 

position was a proof-of-concept that new functions can be implemented that use the 

modified servos or additional sensors and feedback. To demonstrate the position teaching 

mode, first a button was also implemented into a separate circuit connected to the Arduino. 

The recording of the most recent angular position for each servo was initiated only when 

the button was pressed. While the button is pressed, the AL5D can be manipulated and 

placed into any orientation, the angles are then recorded as the button is released. The arm 



 

 20 

then returns to a hardcoded default position. After five seconds the arm plays back the 

recorded position and will hold that position until the button is pressed again. Once the 

button is pressed for a second recording, the first angular position recorded for every joint 

is overwritten. This was done due to the limited memory of the Arduino. A single position 

being recorded stood as a proof-of-concept that something similar and improved could in 

fact be easily implemented. A video was produced to showcase the capability of the 

position teaching program. Several screenshots are available in Appendix E. 
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CHAPTER 5 

CONCLUSION 

The methods presented to improve the form and function of the AL5D robotic arm 

were meant to serve as a proof-of-concept that improvements could be made to the AL5D. 

The goal was to retain as much of the original hardware and electronics as possible. The 

methods of improvement include modifying the provided analog servo motors, adding 3D 

printed link covers, and to implement a position teaching program.  

The Hitec servo motors were modified by implementing an angular position 

feedback to the electronic controller. This addition was utilized with an Arduino based PID 

compensator in an attempt to improve the transient response time of the servo motors when 

subjected to a step input of 90°. Given the negligible change in the system response, it is 

assumed that the quality of the servo motors will not allow for much improvement from 

what the manufacturer already provides as an internal controller for the given servo motor. 

Despite this, the addition of the angular position feedback allowed for the measurement of 

the system response, showing that it is possible to implement a tuning mechanism that can 

benefit some applications.  

The addition of new 3D printed components (whether they be link covers, link 

replacements, or any other printed attachment) can be easily designed and fabricated with 

any conventional CAD software and 3D printer. This method of modification for 

improvement would allow for the easy addition or replacement of links. The printed 

components could be designed to house sensors, provide an altered geometry and thus  
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modified inverse kinematics or stand as a wire management component as demonstrated. 

If 3D printers are available to users, this method would be highly recommended as a means 

of providing modifications or additions to the AL5D robotic arm. 

The implementation of a position feedback to the controller proved effective when 

coupled with additional software; a simple position teaching program written in C. This 

seemed the most significant advantage to adding the angular position feedback. As more 

information is fed back to the electronic controller of choice, more options for additional 

functionality are possible through the addition of adding new programs. Provided that the 

controller has the additional sources of feedback already implemented, then the addition of 

software to utilize that information is not limited by any physical capacity other than 

memory and processing capability of the servo controller. 
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APPENDIX A 

SIMPLIFIED INVERSE KINEMATICS 
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Using the Modified Denavit–Hartenberg Method of Solutions for Inverse Kinematics [8] 
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 𝑐𝑐𝑐𝑐 = 𝑐𝑐123 

 
𝑠𝑠𝑠𝑠=s123 

  
𝑥𝑥 = 𝑙𝑙1𝑐𝑐1 + 𝑙𝑙2𝑐𝑐12 

 
 𝑦𝑦 =  𝑙𝑙1𝑠𝑠1 + 𝑙𝑙2𝑠𝑠12 

 
𝑐𝑐2 =

𝑥𝑥2 + 𝑦𝑦2 − 𝑙𝑙12 − 𝑙𝑙22

2𝑙𝑙1𝑙𝑙2
 

 
𝑠𝑠2 = ±�1 − 𝑐𝑐22 

 ∅2 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2(𝑠𝑠2, 𝑐𝑐2) 

 𝑥𝑥 = 𝑘𝑘1𝑐𝑐1 − 𝑘𝑘2𝑠𝑠1 

 𝑦𝑦 = 𝑘𝑘1𝑠𝑠1 + 𝑘𝑘2𝑐𝑐1 

 𝑘𝑘1 = 𝑙𝑙1 + 𝑙𝑙2𝑐𝑐2 

 𝑘𝑘2 = 𝑙𝑙2𝑠𝑠2 

 𝑦𝑦 =  𝑙𝑙1𝑐𝑐1 + 𝑙𝑙2𝑐𝑐12 

 ∅1 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2(𝑦𝑦, 𝑥𝑥) −  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2(𝑘𝑘2,𝑘𝑘1) 

 ∅3 = 𝜑𝜑 − ∅1 − ∅2 
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APPENDIX B 

ROS TOPIC AND NODE FLOW CHART
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APPENDIX C 

ROS NODES
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Stepper_Run2.py 
#!/usr/bin/env python 
import serial 
import sys 
import time 
import rospy 
from std_msgs.msg import String 
from al5d.msg import FullCtrl 
 
 
#callback function: gets info from topic and constructs str to control all servos 
#is the node for serial comms with ssc32u 
def callback(data): 
    rospy.loginfo(data) 
    #pwm0:base pwm1:shoulder pwm2:elbow pwm3:wrist1 pwm4:wrist_rotate pwm5:claw 
    servo = "#0P"+str(data.pwm0)+" "+"#1P"+str(data.pwm1)+" "+"#2P"+str(data.pwm2)+" 
"+"#3P"+str(data.pwm3)+" "+"#4P"+str(data.pwm4)+" "+"#5P"+str(data.pwm5)+"T"+str(data.time0)+"\r" 
    servo = servo.encode() 
    print(servo) 
 
    ssc32.write(servo) 
    #time.sleep(2) 
    #ssc32.write("#0P1500 #1P1500 #2P1500 #3P1500 #4P1500 #5P1500 T500\r".encode()) 
    print("end") 
 
 
# Initiates ROS node to control servos, once topic has published data, callfunction ran 
def servo_run2(): 
    # topic: pulseWidth 
    # msg type: FullCtrl 
    # msg is located in al5d package under msg dir 
    rospy.init_node('servo_run2', anonymous=True) 
    rospy.Subscriber("pulseWidth", FullCtrl, callback) 
    rospy.spin() 
 
#begins program, confirms start of node, opens serial port to ssc32u and also closes port 
if __name__ == '__main__': 
    ssc32 = serial.Serial("/dev/ttyUSB0", 9600) 
    print("start") 
    servo_run2() 
    ssc32.close() 
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InverK.py 
#!/usr/bin/env python 
 
import rospy 
import math 
import time 
from al5d.msg import StepCtrl 
from al5d.msg import FullCtrl 
from al5d.msg import ItemPos 
from al5d.msg import EndEff 
 
def callback(data): 
    pub1 = rospy.Publisher('pulseWidth', FullCtrl, queue_size=10) 
    rospy.loginfo(data) 
 
    #conversion factor of pwm to 
    k = 1000/90 
 
    #link lengths [inches] 
    l1 = 5.875 
    l2 = 7.375 
 
    x = data.x 
    y = data.y 
    phi = -90 
 
    c2 = (math.pow(x,2) + math.pow(y,2) - math.pow(l1,2) - math.pow(l2,2)) / (2*l1*l2) 
 
    #step1 = math.pow(c2,2) 
    #step2 = 1-step1 
    #step3 = math.fabs(step2) 
    #step4 = math.sqrt(step3) 
 
    si = -1*math.sqrt(math.fabs(1-math.pow(c2,2))) 
    #si = -step4 
 
    k1 = l1+l2*c2 
    k2 = l2*si 
 
    theta1 = (180/math.pi * (math.atan2(y,x) - math.atan2(k2,k1))) 
    theta2 = (180/math.pi * (math.atan2(si,c2))) 
    theta3 = phi - theta1 - theta2 
 
    deg1 = theta1 - 90 
    deg1o = theta1 
    deg2 = theta2 + 90 
    deg2o = theta2  
    deg3 = phi - deg1o - deg2o + 90 
 
    theta1 = k*deg1+1400 
    theta2 = -k*deg2+1500 
    theta3 = k*deg3+1450 
 
    pwm0 = 1350 
    pwm1 = int(theta1) 
    pwm2 = int(theta2) 
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    pwm3 = int(theta3) 
    pwm4 = 1600 
    pwm5 = 1500 
    time = 1000 
 
    if pwm1 > 2500: 
        pwm1 = 2500 
    if pwm1 < 500: 
        pwm1 = 500 
 
    if pwm2 > 2500: 
        pwm2 = 2500 
    if pwm2 < 500: 
        pwm2 = 500 
 
    if pwm3 > 2500: 
        pwm3 = 2500 
    if pwm3 < 500: 
        pwm3 = 500 
 
    pub1.publish(pwm0, pwm1, pwm2, pwm3, pwm4, pwm5, time) 
    pub1.publish(1500, 1500, 1500, 1500, 1500, 1500, 1000) 
    print(pwm1) 
    print(pwm2) 
    print(pwm3) 
 
def inversekin(): 
    rospy.init_node('inverseK', anonymous=True) 
    rospy.Subscriber('endMath', EndEff, callback) 
    rospy.spin() 
    #main function 
 
if __name__ == '__main__': 
    print('start') 
    inversekin() 
    print('end') 
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Navigator.py 
#!/usr/bin/env python 
 
import rospy 
import time 
import math 
from al5d.msg import StepCtrl 
from al5d.msg import FullCtrl 
from al5d.msg import ItemPos 
 
def callback(data): 
    global cart 
    global blockLocation 
    pub1 = rospy.Publisher('pulseWidth', FullCtrl, queue_size=10) 
    pub2 = rospy.Publisher('stepQuick', StepCtrl, queue_size=10) 
 
    print('entered callback') 
    #callback loop to iris 
    rospy.loginfo(data) 
    pwm1 = -0.746*math.pow(data.y,2)-58.2983*(data.y)+1587.5353-200 
    pwm2 = -8.602*math.pow(data.y,2)-39.3968*(data.y)+2081.2027 
    pwm3 = -6.7599*math.pow(data.y,2)+23.8576*(data.y)+1096.3500+1000 
 
    #k is the conversion from pixel distance to steps 
    k=1 
    blockLocation = k*data.x 
    cart = data.cartID 
 
    print('got data') 
 
    def attack(): 
        #move down to surround block 
        pub1.publish(1350, pwm1, pwm2, pwm3, 1600, 800, 3000) 
        rospy.sleep(3) 
        #close gripper 
        pub1.publish(1350, pwm1, pwm2, pwm3, 1600, 2000, 50) 
        rospy.sleep(1) 
        print('attack') 
 
    def return2ready(): 
        #prepares for motion by publishing pwm to joints 
        pub1.publish(1350, 1400, 1500, 1500, 1600, 2000, 2000) 
        rospy.sleep(2) 
        print('return2ready') 
 
    def standardRotation(): 
        #goes through middle position via pwm 
        pub1.publish(1350, 1400, 1200, 1500, 1600, 800, 2000) 
        rospy.sleep(3) 
        print('std rot') 
 
    def home(): 
        #returns to cart 1 location or cart 2 location 
        #hardcoded block location to see if it corrects error 
        global cart 
        global blockLocation 
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        #blockLocation = 2500 
        if cart > 2: 
            cart = 2 
        if cart == 1: 
            blockLocation = blockLocation - 500 
            pub2.publish(True, 0.005, blockLocation) 
            temp = 0.01*blockLocation + 3 
            rospy.sleep(temp) 
        if cart == 2: 
            pub2.publish(True, 0.005, blockLocation) 
            temp = 0.01*blockLocation + 3 
            rospy.sleep(temp) 
 
        pub1.publish(1350, 1025, 1500, 1800, 1600, 2000, 1000) 
        rospy.sleep(1.1) 
        pub1.publish(1350, 1025, 1500, 1800, 1600, 800, 500) 
        rospy.sleep(0.6) 
        pub1.publish(1350, 1400, 1100, 1800, 1600, 800, 1000) 
        rospy.sleep(1.1) 
 
        if cart ==1: 
            pub2.publish(True, 0.01, 500) 
            rospy.sleep(5) 
        print('home') 
 
    def align(): 
        #aligns arm with block 
        pub2.publish(False, 0.005, blockLocation) 
        temp = 0.01*blockLocation 
        rospy.sleep(temp) 
        print('align') 
 
    print('did functions') 
 
    rospy.sleep(0.5) 
    return2ready() 
    align() 
    standardRotation() 
    attack() 
    return2ready() 
    home() 
 
def navigator(): 
    rospy.init_node('navigator', anonymous=True) 
    rospy.Subscriber('iris', ItemPos, callback) 
    rospy.spin() 
    #main function 
 
if __name__ == '__main__': 
    print('start') 
    navigator() 
    print('end') 
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Stepper_Run2.py 
#!/usr/bin/env python 
# -*- coding: utf-8 -*- 
 
import sys 
import time 
import rospy 
#add msg file for stepper motor: #ofSteps, direction, and speed 
from al5d.msg import StepCtrl 
from std_msgs.msg import String 
import RPi.GPIO as gpio 
 
Dir0 = True 
StepNum = 0 
Vel0 = 0 
 
#gpio.setmode(gpio.BCM) 
#gpio.setwarnings(False) 
 
class easydriver(object): 
    gpio.setmode(gpio.BCM) 
    gpio.setwarnings(False) 
 
    def 
__init__(self,pin_step=0,delay=0.1,pin_direction=0,pin_ms1=0,pin_ms2=0,pin_ms3=0,pin_sleep=0,pin_en
able=0,pin_reset=0,name="Stepper"): 
        self.pin_step = pin_step 
        self.delay = delay / 2 
        self.pin_direction = pin_direction 
        self.pin_microstep_1 = pin_ms1 
        self.pin_microstep_2 = pin_ms2 
        self.pin_microstep_3 = pin_ms3 
        self.pin_sleep = pin_sleep 
        self.pin_enable = pin_enable 
        self.pin_reset = pin_reset 
        self.name = name 
 
        if self.pin_step > 0: 
            gpio.setup(self.pin_step, gpio.OUT) 
        if self.pin_direction > 0: 
            gpio.setup(self.pin_direction, gpio.OUT) 
            gpio.output(self.pin_direction, True) 
        if self.pin_microstep_1 > 0: 
            gpio.setup(self.pin_microstep_1, gpio.OUT) 
            gpio.output(self.pin_microstep_1, False) 
        if self.pin_microstep_2 > 0: 
            gpio.setup(self.pin_microstep_2, gpio.OUT) 
            gpio.output(self.pin_microstep_2, False) 
        if self.pin_microstep_3 > 0: 
            gpio.setup(self.pin_microstep_3, gpio.OUT) 
            gpio.output(self.pin_microstep_3, False) 
        if self.pin_sleep > 0: 
            gpio.setup(self.pin_sleep, gpio.OUT) 
            gpio.output(self.pin_sleep,True) 
        if self.pin_enable > 0: 
            gpio.setup(self.pin_enable, gpio.OUT) 
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            gpio.output(self.pin_enable,False) 
        if self.pin_reset > 0: 
            gpio.setup(self.pin_reset, gpio.OUT) 
            gpio.output(self.pin_reset,True) 
 
    def step(self): 
        gpio.output(self.pin_step,True) 
        time.sleep(self.delay) 
        gpio.output(self.pin_step,False) 
        time.sleep(self.delay) 
 
    def set_direction(self,direction): 
        gpio.output(self.pin_direction,direction) 
 
    def set_full_step(self): 
        gpio.output(self.pin_microstep_1,False) 
        gpio.output(self.pin_microstep_2,False) 
        gpio.output(self.pin_microstep_3,False) 
 
    def sleep(self): 
        gpio.output(self.pin_sleep,False) 
 
    def wake(self): 
        gpio.output(self.pin_sleep,True) 
 
    def disable(self): 
        gpio.output(self.pin_enable,True) 
 
    def enable(self): 
        gpio.output(self.pin_enable,False) 
 
    def reset(self): 
        gpio.output(self.pin_reset,False) 
        time.sleep(1) 
        gpio.output(self.pin_reset,True) 
 
    def set_delay(self, delay): 
        self.delay = delay / 2 
 
    def finish(self): 
        gpio.cleanup() 
 
 
 
def stepper_run(): 
    rospy.init_node('stepper_run', anonymous=True) 
    rospy.Subscriber('stepQuick', StepCtrl, callback) 
    rospy.spin() 
 
 
def callback(data): 
    rospy.loginfo(data) 
    global StepNum 
    global Dir0 
    global Vel0 
    global sub 
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StepNum = data.stepNum 
    Dir0 = data.dir0 
    Vel0 = data.vel0 
 
    print(Dir0) 
    print(Vel0) 
    print(StepNum) 
 
    stepper = easydriver(14, Vel0, 15, 23, 24, 24) 
    stepper.set_direction(Dir0) 
    stepper.set_full_step() 
 
    for k in range(0,StepNum): 
        stepper.step() 
        print(k) 
 
 
if __name__ == '__main__': 
    #gpio.setmode(gpio.BCM) 
    #gpio.setwarnings(False) 
    print('start') 
    stepper_run() 
    stepper = easydriver(14, Vel0, 15, 23, 24, 24) 
    stepper.finish() 
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APPENDIX D 

3D PRINTED COMPONENTS 
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APPENDIX E 

POSITION TEACHING PROGRAM
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Teach Position C Script 
#include <Servo.h> 
 
Servo joint0; 
Servo joint1; 
Servo joint2; 
Servo joint3; 
Servo joint4; 
Servo joint5; 
 
int pos0 = 90; 
int pos1 = 90; 
int pos2 = 90; 
int pos3 = 90; 
int pos4 = 90; 
int pos5 = 90; 
 
int sensorPin0 = A0; 
int sensorPin1 = A1; 
int sensorPin2 = A2; 
int sensorPin3 = A3; 
int sensorPin4 = A4; 
int sensorPin5 = A5; 
 
int sensorVal0 = 0; 
int sensorVal1 = 0; 
int sensorVal2 = 0; 
int sensorVal3 = 0; 
int sensorVal4 = 0; 
int sensorVal5 = 0; 
 
int angle0 = 90; 
int angle1 = 90; 
int angle2 = 90; 
int angle3 = 90; 
int angle4 = 90; 
int angle5 = 90; 
 
const int buttonPin = 2; 
int buttonState = 0; 
int i = 0; 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(buttonPin, INPUT); 
 
} 
 
void loop() { 
  buttonState = digitalRead(buttonPin); 
  Serial.println(buttonState); 
   
  if(buttonState == HIGH){ 
    joint0.attach(0); 
    joint1.attach(0); 
    joint2.attach(0); 
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    joint3.attach(0); 
    joint4.attach(0); 
    joint5.attach(0); 
 
    sensorVal0 = map(analogRead(sensorPin0),86,418,0,180); 
    sensorVal1 = map(analogRead(sensorPin0),86,418,0,180); 
    sensorVal2 = map(analogRead(sensorPin0),86,418,0,180); 
    sensorVal3 = map(analogRead(sensorPin0),86,418,0,180); 
    sensorVal4 = map(analogRead(sensorPin0),86,418,0,180); 
    sensorVal5 = map(analogRead(sensorPin0),86,418,0,180); 
    Serial.println(sensorVal0); 
     
    angle0 = sensorVal0; 
    angle1 = sensorVal1; 
    angle2 = sensorVal2; 
    angle3 = sensorVal3; 
    angle4 = sensorVal4; 
    angle5 = sensorVal5; 
    Serial.println(angle0); 
         
    if(buttonState == HIGH){ 
      delay(100); 
    } 
    i = 1; 
  }else if(i==1){ 
    Serial.println(angle0); 
    joint0.attach(3); 
    joint1.attach(5); 
    joint2.attach(6); 
    joint3.attach(9); 
    joint4.attach(10); 
    joint5.attach(11); 
 
    joint0.write(90); 
    joint1.write(90); 
    joint2.write(90); 
    joint3.write(90); 
    joint4.write(90); 
    joint5.write(90); 
 
    delay(5000); 
 
    joint0.write(angle0); 
    joint1.write(angle1); 
    joint2.write(angle2); 
    joint3.write(angle3); 
    joint4.write(angle4); 
    joint5.write(angle5); 
     
    i = 0; 
     
  } else{ 
    delay(100); 
  } 
}  
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APPENDIX F 

POSITION TEACHING VISUALS
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