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A FLEXIBLE DISTRIBUTION IN  

MODELING SURVIVAL DATA 

 

ABSTRACT 

 

Ian Harris, B.S. Mathematics 

 

The University of Texas at Arlington, 2018 

 

Faculty Mentor: Suvra Pal 

When analyzing survival data, which involves such parameters as lifetime, 

censoring rate, and any number of covariates, we have several distributions to try to fit the 

study into a model. Among these are the exponential, the gamma, the lognormal, and the 

Weibull distributions.  The problem with these distributions is that their parameter 

requirements are quite stiff and not flexible.  So, if some parameters are even slightly off 

(or otherwise unknown), how would we be able to model the data and, better yet, see if the 

data falls outside the given distributions?  That is where the generalized gamma distribution 

comes in.  The beauty of this distribution is how malleable it is and how it can be used as 

a blanket distribution of sorts to catch datasets that fall outside the commonly used 

distributions.  Using R software, we performed a simulation study in which we generated 

datasets under the generalized gamma distribution and compared different iterations of the 

simulated data to models of the different distributions in a likelihood ratio test to show the  
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rejection rates of models whose parameters differ. As the number of generated generalized 

gamma datasets increased (50 to 300 to 500), the rejection rates among different parameters 

(Q=0 vs. Q=0.5 to name one) grew larger and larger whilst the fixed vs. fitted model 

comparisons of the same parameter grew closer and closer to a 5% rejection rate. With this 

as a background, we applied the generalized gamma distribution to a real dataset, whose 

parameters were unknown, to estimate its parameters. Although it didn’t fall into any of 

the special cases, it still could fit in the generalized gamma distribution. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Survival Analysis 

Lifetime data modeling, according to Klein and Moeschberger (2003), has a sizable 

list of statistical distributions to represent the data of any medical or lifetime study.  Of 

course, what do we mean by “lifetime study”?  This can be, interchangeably, “survival 

analysis.”  Survival analysis is generally defined as a set of statistical methods for analyzing 

data in a study where the variable is the time until the occurrence of an event of interest, 

which is often called a lifetime. The event can be death, occurrence of a disease, and so 

forth.  Survival analysis is essentially a lifetime study where the variable outcome is usually 

death.  Say, for example, a hospital wants to administer a treatment for a certain occurrence 

of a cancerous tumor.  The study would be carried out over a designated block of time (e.g. 

15 years), and the observed “lifetimes” for the treatment group are recorded.  However, 

these collected data sets contain what is known as “censored data”.  Censored data, 

according to Klein and Moeschberger (2003), shows up when a treatment group 

individual’s lifetime is only known to occur within a certain period of time.  Common 

censoring techniques include right censoring, when all we know is the individual lived 

through the study period and didn’t experience the event (e.g. death), as well as left 

censoring where the individual experienced the event prior to the start of the survival study.  

In most survival studies, parametric studies in particular, authors have used statistical 

distributions to model the survival data.  Due to censoring, which comes naturally in any
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 survival data, there are no formal goodness-of-fit tests to check if the chosen distribution 

provides an adequate fit to the data.  In this regard, one can fit several distributions and use 

information-based criteria, namely the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC), to check which distribution results in the minimum 

AIC and BIC values.  Traditionally, the distribution with the minimum AIC and BIC values 

is supposed to provide the best fit to the data.  There are four distributions that stand out as 

the most useful methods of best fit modelling the clear majority of obtained lifetime data. 

1.1.1 The Exponential Distribution 

The simplest of the four is the exponential distribution. According to Balakrishnan 

and Basu (1995), the exponential distribution is mathematically tractable.  What makes the 

exponential distribution unique is its constant hazard rate, λ.  Assume for any distribution, 

f(t) is the probability density function, F(t) is the cumulative distribution function, S(t) is 

the survival function (probability that an event will happen after time t, given as S(t) = 1-

F(t) = P(T > t)), h(t) is the hazard function (probability that an event will happen in the next 

instance of time t, given that the event in question has not yet occurred until time t), and 

H(t) is the cumulative hazard function.  In this particular case, the exponential distribution 

can be denoted as T ∼ Exp(λ). For t > 0, 

f(t) = λe-λt for λ > 0 (scale parameter) 

F(t) = 1−e-λt 

S(t) = e-λt 

h(t) = λ ←constant hazard function 

H(t) = λt. 
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Balakrishnan and Basu (1995) state that “while the exponential distribution’s 

constant hazard rate makes the simple form of the distribution inadequate to describe real-

life complexity, it often serves as a bench mark with reference to which effects of 

departures allow for a specific type of disturbance to be assessed.”  This distribution is also 

essentially a watermark model from which other, more complex distributions can stem. 

1.1.2 The Weibull Distribution 

One such distribution is the Weibull distribution.  This distribution, described by 

Murthy et al. (2004) as well as Rinne (2008), is an extremely flexible distribution with a 

hazard function that can increase, decrease, or remain constant, making it more applicable 

to a wide range of survival studies.  This distribution’s functions of interest are given by: 

F(t) = 1−e(-(λt)^α) 

f(t) = α(λα )(tα-1) e(-(λt)^α) 

h(t) = α(λα)(tα-1) 

H(t) = (λt)α 

In the equation above, t > 0, λ > 0 is the scale parameter, while α > 0 is the shape parameter 

of the distribution.    

1.1.3 The Lognormal Distribution 

Another special distribution is the lognormal distribution.  Crow and Shimizu 

(1988) describe the lognormal distribution as incredibly flexible in multiple fields of 

lifetime study, most notably species abundance data, count data, and so forth.  It can be 

modeled with elements of both the exponential and gamma distributions.  The lognormal 

distribution is denoted LN(µ,σ2) ∼ exp{N(µ,σ2)}. The quantities of interest are defined as 

follows:  
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F(t) = Φ((log(t)−µ)/σ) 

f(t) = φ((log(t)−µ)/σ)/tσ 

h(t) = f(t)/F(t) 

where φ and Φ are the probability density function and cumulative distribution function of 

the standard normal distribution, respectively.   

1.1.4 The Gamma Distribution 

Finally, another widely used distribution in model building is the gamma 

distribution.  This distribution, according to Thom (1958), has plenty of flexible 

applications in data modeling, including maximum likelihood estimators for the data, 

useful for reliability and weather data to name a few.  The gamma distribution can be seen 

as a generalization of the exponential distribution, since there are real-life phenomena for 

which an associated survival distribution is approximately gamma and simple functions of 

random variables can have a gamma distribution.  The gamma distribution is given as: 

f(t) = (λα tα-1 e-λt )/Γ(α) 

where Γ(α) = ∫0∞ tα-1 e-t dt 

is known as the gamma function. 

Parameters λ > 0 and α > 0 are the scale and shape of this distribution.  Note that if 

the shape parameter was equal to 1, the distribution becomes exponential.   

However, there is an underlying problem with all four of these given distributions.  

Not all of them are nested in each other, so there is a high possibility of a best-fit test result 

for a survival dataset being misleading as the information-based methods do not give the 

user any warning of how good or bad the best-fit actually is.  For instance, even if all the 

chosen distributions provide the worst possible fit to the data, the AIC and BIC criteria 
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would still select one as the best-fit distribution. So, how can we work with the stiff 

requirements of the above four distributions, or be more confident in our results without 

the nagging doubt that the best-fit is not our own techniques just picking the lesser of a 

group of bad models?   

1.2 Generalized Gamma Distribution 

This is where the generalized gamma distribution becomes important.  This 

particular distribution circumvents the best-fit problem and introduces researchers to a 

wider class of lifetime distributions which is flexible in the sense that it includes the 

aforementioned lifetime distributions as its special cases.  Since the four above cases, or 

sub-families, are nested within the bigger family distribution, it allows formal tests of 

hypotheses to be carried out to select the best distribution within the family.  The resulting 

distribution would model the lifetime data most accurately and would thus allow inference 

to be drawn with a minimum amount of bias.  This would ultimately minimize errors in 

estimating the survival probabilities, comparing survival trends between two or more 

groups, and identifying influential covariates. 
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CHAPTER 2 

SIMULATION STUDIES AND METHODOLOGY 

2.1 R Software and Generalized Gamma 

Using R software, the aim of the given experiment is to demonstrate the flexibility 

of the generalized gamma distribution through the flexsurv package.  The beauty of this 

package is its ability to generate multiple randomized datasets through commands.  The 

command used in this experiment’s coding was rgengamma(n, μ, σ, Q).  In this case, n is 

the number of observations per dataset.  For example, n=500 equals a survival generalized 

gamma dataset with 500 participants, whether or not they’re censored.  μ is generally the 

value of the location parameter of the distribution.  σ is the scale parameter and Q is the 

shape parameter. 

Modeled by Stacy (1962) as well as Prentice (1974), the flexsurv package in R 

views the generalized gamma in the following way.  If γ ∼ Gamma(Q-2,1) , and w = log(Q2 

γ)/Q, then x = e(μ+σw) follows the generalized gamma distribution with probability density 

function (exp(.) means e(.)): 

f(x|µ,σ,Q) = (|Q|(Q-2)Q^-2 / σxΓ(Q-2)) / exp(Q-2(Qw−exp(Qw))). 

The kicker to this experiment is that depending on the shape parameter Q’s value, the 

generalized gamma can be simplified to the other major distributions.  Within the R data 

package, the altering Q on the density function results in the following special case 

behaviors: 

Dgengamma(x, μ, σ, Q=0) = dlnorm(x, μ, σ) [Lognormal]
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Dgengamma(x, μ, σ, Q=1) = dweibull(x, shape=1/σ, scale=exp(μ)) [Weibull] 

Dgengamma(x, μ, σ, Q=σ) = dgamma(x, shape=1/σ2, rate=exp(-μ) / σ2) [Gamma] 

2.1.1 Simulated Datasets 

So in order to fully demonstrate the flexibility of the generalized gamma 

distribution, we first constructed a code to generate around 500 datasets of a decently large 

size per dataset (500 participants per set in our case).  In this code, every dataset contains 

a single covariate (in our case, a simple binomial covariate of size 1 with probability 0.5 

was used for the sake of minimizing the amount of coding required).  The code only counts 

the datasets that converge in its calculation of the overall average of the parameter 

estimates, as well as the parameter confidence intervals (95%), standard error, and bias.   

2.1.2 Likelihood Ratio Tests 

 Next, we wrote a sizeable code to perform a likelihood ratio test of differing sample 

sizes of randomly generated datasets in order to construct a four-by-four matrix of rejection 

rates between fixed versus fitted values of Q, those values being Q=0 (lognormal), Q=0.5 

(σ in our whole experiment, gamma), Q=1 (Weibull), and Q=1.5 (generalized gamma).  If 

the code were to go without error, the rejection rates should approach 1 the farther away 

from each other the compared Q values are whilst comparing the same values of Q should 

yield rejection rates approaching 5% (0.05).  The higher the number of generated datasets, 

the more often the code should recognize when the averages of the shape parameters differ 

and thus reject the null hypothesis that the generated sets aren’t different from a fixed set. 

2.1.3 Real Dataset 

 Finally, with this ratio test as a back, we applied an altered version of the first code 

to an actual dataset in order to estimate its unknown model parameters rather than a set of 
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simulated sets whose parameters were entered into the function. This dataset came included 

in the flexsurv package in R and was called “bc”, which stood for breast cancer. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Simulated Data Parameter Estimates 

Upon entering the parameters 1, 0.5, and 0 for μ, σ, and Q respectively and running 

the first code which randomly generated 500 generalized gamma lifetime datasets with an 

entered 0.2 censoring rate, the resultant output shown in R is indicated by the table below. 

Table 3.1: Generalized Gamma Parameter Estimates 

Simulated Estimate Lower 95% Upper 95% Std. Error Bias 

μ 0.996 0.892 1.099 0.053 -0.004 

σ 0.497 0.456 0.542 0.022 -0.003 

Q -0.010 -0.315 0.295 0.155 -0.010 

 

As seen in the above output, the estimates of the parameters come close enough to 

the actual parameter values to be considered valid estimates. 

3.2 Likelihood Ratio Test Results 

The second larger code took increasing numbers of generated datasets, each with 

increasing size per set, and performed a series of likelihood ratio tests, which involved the 

use of chi-square with log-likelihood values to compare the goodness of fit of two models.  

The results of the tests are indicated by the figures below. 
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Figure 3.1: Rejection Rates Fixed vs. Fitted (Size 50) 

 

Given the small sample sizes and number of iterations, the resultant large variability 

resulted in almost completely random rejection rates.  However, once the sample size per 

dataset and the number of datasets increased to 300, the resultant rejection rates where 

shown as output in the below figure. 

Figure 3.2: Rejection Rates Fixed vs. Fitted (size 300) 

 

Now a pattern is shown, as the farther away the shape parameters are from each other, the 

more often the code rejects the models as a best fit for each other. Finally, in the figure 

below, the sample size and iterations are increased to 500, so as to show with more certainty 

what happens to our rejection rates. 
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Figure 3.3: Rejection Rates Fixed vs. Fitted (Size 500) 

Given that the special cases Q=0 (lognormal), Q=0.5 (sigma) and Q=1(Weibull) are not 

nested in each other, the rate of rejection increased along with sample size and iterations, 

while the test came close to a 5% rejection of best fit when comparing a model to itself. 

3.3 Real Dataset Estimates 

With these results, we ran the first code again for a real dataset (bc) in order to 

estimate its parameters.  The resultant output is shown in the table below. 

Table 3.2: Real Dataset Parameter Estimates 

BC Estimate Lower 95% Upper 95% Std. Error 

μ 7.838 7.582 8.095 0.131 

σ 1.056 0.962 1.159 0.050 

Q -0.593 -1.059 -0.127 0.238 

GroupMedium -0.649 -0.868 -0.431 0.112 

GroupPoor -1.283 -1.502 -1.064 0.112 

 

The covariate in this dataset’s case was a qualitative group that a patient of the treatment  

group fell in; Good, Medium, or Poor.  GroupMedium and groupPoor are percentage 

differences when compared to groupGood.  The results indicate a 64% decrease in survival 
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rate for medium along with a whopping 128% decrease in survival rate for the poor group.  

The output shows that the μ is quite close to 7.8, the scale parameter σ is close to 1, and 

the shape parameter Q is about -0.6, which falls outside the realm of our special cases of 

lognormal, Weibull, gamma, etc.  However, given that the generalized gamma distribution 

can allow our shape parameter to be any value, this real dataset still has a best fit in 

generalized gamma. 

3.4 Future Research 

 So, the results ultimately show that the generalized gamma distribution is incredibly 

flexible, capable of fitting an extremely wide range of lifetime data sets in and outside the 

parameter bounds of other distributions.  This would allow for more legitimate models and 

the study of far more complex phenomena in statistics; air pollution, drought analysis, 

reliability studies, the list is quite large. 
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