
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2018 Spring Honors Capstone Projects Honors College

5-1-2018

DETERMINING HARDWARE SETUP FOR TRAINING AND TESTING DETERMINING HARDWARE SETUP FOR TRAINING AND TESTING

AN OBJECT DETECTION MODEL FOR USE IN AN INDUSTRIAL AN OBJECT DETECTION MODEL FOR USE IN AN INDUSTRIAL

SETTING SETTING

Tanmay Sardesai

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2018

Recommended Citation Recommended Citation
Sardesai, Tanmay, "DETERMINING HARDWARE SETUP FOR TRAINING AND TESTING AN OBJECT
DETECTION MODEL FOR USE IN AN INDUSTRIAL SETTING" (2018). 2018 Spring Honors Capstone
Projects. 29.
https://mavmatrix.uta.edu/honors_spring2018/29

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2018 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2018
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2018?utm_source=mavmatrix.uta.edu%2Fhonors_spring2018%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2018/29?utm_source=mavmatrix.uta.edu%2Fhonors_spring2018%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Tanmay Sardesai 2018

All Rights Reserved

DETERMINING HARDWARE SETUP FOR TRAINING AND

TESTING AN OBJECT DETECTION MODEL FOR

USE IN AN INDUSTRIAL SETTING

by

TANMAY SARDESAI

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

 iii

ACKNOWLEDGMENTS

I would like to thank Dr. Christopher D. McMurrough for his mentorship on this

project. I would also like to thank my colleagues—Ashley Quimod, Gowsi Sriskandarajah,

Ranjeev Neurekar and Sneha Kalita—for their wonderful collaboration in helping

complete the training phase of this project.

This project would have been impossible without the financial support of Cloud 9

Perception. They provided us with the right tools as well as the expensive hardware

required.

Lastly I would like to thank my family for all the financial and emotional support

that they have provided to help me successfully reach this stage in my collegiate career.

May 04, 2014

 iv

ABSTRACT

DETERMINING HARDWARE SETUP FOR TRAINING AND

TESTING AN OBJECT DETECTION MODEL FOR

USE IN AN INDUSTRIAL SETTING

Tanmay Sardesai, B.S. Computer Science

The University of Texas at Arlington, 2018

Faculty Mentor: Christopher McMurrough

Darknet YOLO is a real-time object detection system that is used in this project.

YOLO, which stands for You Only Look Once, uses a single convolutional neural network

to detect objects in an image. There are various versions of YOLO, all with their own

advantages and disadvantages. For the purpose of this project we will be using Tiny

YOLOv2, which is a version of YOLO that is lightweight and performs less calculation,

giving us a lower accuracy but higher frame rate. Tiny YOLOv2 applies a single neural

network to the full image and divides the image into regions and predicts bounding boxes

and probabilities for each region. As part of the Senior Design project our team has trained

a seven-class object detection model. The classes that can be detected by this model are

people, forklifts, trucks, boxes, pallets, pallet jacks and industrial carts. The goal of this

Honors thesis was to run this object detection model on different hardware systems to

 v

decide the best option. This model is tested on five different systems: Raspberry Pi 3, Asus

Intel i5 4th Gen CPU, Nvidia Jetson TX1, Nvidia Jetson TX2 and Nvidia GeForce GTX

980 Ti. After taking into account the frame rate, accuracy and cost of each of these systems,

our recommendation is to use Nvidia Jetson TX2.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

Chapter

 1. INTRODUCTION ... 1

 1.1 Introducing YOLO ... 1

 1.2 Project Requirements ... 2

 2. CREATING A DATASET .. 3

 2.1 Downloading Images ... 3

 2.2 Refining Images ... 3

 2.2.1 Deleting Impurities ... 3

 2.2.2 Deleting Duplicates ... 4

 2.3 Re-Download and Repeat .. 4

 3. ANNOTATION ... 5

 3.1 BBox Tool .. 5

 3.2 Converting Labels .. 5

 4. TRAINING .. 7

 4.1 Create Train File, Test File and Cfg Files.. 7

 4.2 Start Training ... 7

 vii

 4.2.1 Issues While Training on Nvidia Jetson TX2 7

 4.2.2 Training on Nvidia GeForce GTX 980 Ti 8

 4.2.3 Conclusions About Training ... 8

 5. TESTING ... 9

 5.1 Test Results on Different Systems ... 9

 5.2 Comparing Hardware ... 11

REFERENCES .. 13

BIOGRAPHICAL INFORMATION ... 15

 viii

LIST OF ILLUSTRATIONS

Figure Page

5.1 Test Image from Raspberry Pi 3 .. 9

5.2 Test Image from Intel i5 4th Gen CPU .. 10

5.3 Test Image from Nvidia Jetson TX1 .. 10

5.4 Test Image from Nvidia Jetson TX2 .. 11

5.5 Test Image from Nvidia GeForce GTX 980 Ti ... 11

 ix

LIST OF TABLES

Table Page

5.1 Comparing Hardware .. 12

 1

CHAPTER 1

INTRODUCTION

1.1 Introducing YOLO

Object detection should be fast, accurate and able to recognize a wide variety of

classes. Over the past few years object detection has become faster and more accurate using

neural networks. We humans glance at an image and can easily see what objects are in the

image. Fast and accurate algorithms for object detection will allow computer systems to do

the same and make our lives easier. These algorithms can be used to drive cars, automate

warehouses and delivery, increase airport security and unlock the potential for general

purpose, ubiquitous and responsive robotics system.

YOLO, an abbreviation for You Only Look Once, was created by Joseph Redmon,

Ph.D. student at University of Washington working with Dr. Ali Farhadi, who is a

Professor at University of Washington. He is one of the 39 students across North America,

Europe, and the Middle East to be selected as a 2018 Google Ph.D. Fellow. The paper

describing YOLO, which Redmon and Farhadi co-authored with former University of

Washington postdoc Santosh Divvala, now a research scientist at the University of

Washington Allen School for Artificial Intelligence, and Facebook researcher Ross

Girshick, earned the OpenCV People’s Choice Award at the Conference on Computer

Vision and Pattern Recognition (CVPR 2016). Redmon and Farhadi followed that up with

an Honorable Mention at CVPR 2017 for YOLO9000, a new version capable of identifying

more than 9,000 different object categories in real time. This is the version of YOLO that

 2

is used in the project. YOLO9000 is trained on YOLOv2 to detect 9000. Last month the

group released YOLOv3, a newer version of the software. YOLOv3 is much more

accurate than a TinyYOLOv2, but when one compares frame rate, it is evident that Tiny

YOLO is the correct choice for this project.

1.2 Project Requirements

The sponsor had a list of requirements that we had to satisfy for the completion of

this project. First and foremost the system had to be real-time. This means that the program

is run on a video input from the webcam and should detect objects as things in the video

feed are moving around. Secondly, the model has to detect seven different classes. When

the requirements were set, the difficulty of the project was unclear, so each class had

different priority. People and forklifts had the highest priority, followed by boxes, pallets,

pallet jacks and industrial carts. Trucks had the lowest priority. The requirement for frame

rate was minimum 10 frames per second. A standard video input is 30 frames per seconds.

Therefore, with a minimum frame rate of 10 frames, one would drop one third of the

frames. Lastly, we had to find the cheapest way to satisfy these requirements so that it is

easy and cheap to deploy the product at the consumer location.

Detecting industrial objects in real time is the first step towards automating

warehouses. With automation companies can increase the output that they produce, reduce

the number of accidents and the cost of manufacturing. The most common objects in a

warehouse are people and forklifts which is why they were high priority. Object detection

for warehouses is currently not done by any company. It is a largely unexplored industry.

Therefore, working on this will help the sponsors in their computer vision and machine

learning applications in warehouses.

 3

CHAPTER 2

CREATING A DATASET

The first step to any machine learning application is creating a dataset of annotated

images. For this project as we wanted to detect objects in an image, the dataset was

composed of images of all the classes. This section discusses how to download the images

and problems that were tackled during this step.

2.1 Downloading Images

As the training phase required more than 500 images for each of the classes, this

task was divided among all the team members. Everyone on the team used a variety of

tools to download images. One such open source tool was

https://github.com/hardikvasa/google-images-download. Google_images_download can

be installed directly via Python-pip. It is an easy way to download bulk images directly

from Google images. To download 500 images of forklift, one has to simply type

googleimagesdownload --keywords "forklift" --limit 500 in the terminal.

2.2 Refining Images

2.2.1 Deleting Impurities

As Google image search is not perfect, it always leads to a plethora of images which

are completely unrelated. As we are download 500 images, towards the end some of the

images are unrelated to the keyword. For example, if one types “pallet” in a Google image

search then they will come across images of furniture (made using pallets). Such images

cannot be used during the training phase. Therefore, it is necessary to go through all the

 4

images cannot be used during the training phase. Therefore, it is necessary to go through

all the images and delete such impurities.

2.2.2 Deleting Duplicates

Another issue that Google images cause is that it has multiple duplicates in the same

search list. This leads to us downloading multiple copies of the same image. This is bad for

training a model as it cannot learn from multiple copies of the same object. In fact, it also

causes overfitting. This is why it is required to go through all the images and delete

duplicates.

2.3 Re-Download and Repeat

Following the steps described in section 2.2 will lead to a decrease in the number

of images gathered, as we are deleting unwanted images. This is why the above two steps

have to be repeated until the total number of unique good quality images are above 500.

Once we have 500 or more images we can proceed to the next step of annotating images.

 5

CHAPTER 3

ANNOTATION

Most machine learning algorithms are split into two group—supervised learning

and unsupervised learning. Supervised learning is when the model is given a data point and

its target value, and the algorithm trains on it, minimizing the number of false positives.

Unsupervised learning is when the system has no idea about the target value and has to

learn on its own. As YOLO is a supervised learning algorithm, the next step in training is

to provide annotations for all 500 images for all the classes.

3.1 BBox Tool

For labeling all of the images our team used the BBox Tool. BBox Tool is an open

source project that is frequently used in annotating images for machine learning

applications. For annotating images one has to load all the images in the tool and then use

a cursor to draw rectangular boxes around all objects of interest. This should be done for

all the objects in all the images. After the image is labeled a corresponding text file is

created with number of objects and then locations of all the objects in this format:

“[bounding box left X] [bounding box top Y] [bounding box right X] [bounding box

bottom Y]”. These labels are what we called annotations for the image.

3.2 Converting Labels

As with most opens source technologies there is no proper integration between the

output from the BBox Tool and YOLO training input. The input for YOLO is “[class

number] [object center in X] [object center in Y] [object width in X] [object width in Y]”.

 6

For this we use a script to convert the labels for each of the files. It involves basic file

reading and arithmetic to solve this problem. Once all the files are converted we can

proceed to train the model.

 7

CHAPTER 4

TRAINING

In this step we start the training phase as the dataset is ready. Two steps are required

to start training.

4.1 Create Train File, Test File and Cfg Files

Before starting training one is required to create a train and test file from the

dataset. These file are used by YOLO to test the status of its training. Along with this we

also create idc.data file which has number of classes being trained, location of train file,

location of test file, location of idc.names file and location of directory to be used to store

backup weights. The idc.names file has a list of all the classes ordered based on the class

number used while annotating. Lastly we use the standard tiny-yolo-v2.cfg file and edit the

number of classes and filter value for that number. Save this renamed file as idc.cfg

4.2 Start Training

Once all the steps above are carried out we type ./darknet detector train cfg/idc.data

cfg/idc.cfg tiny_yolo.conv.13 where tiny_yolo.conv.13 is the pre-trained starting point for

YOLO. After the training has started, one has to monitor the output.log.

4.2.1 Issues While Training on Nvidia Jetson TX2

The first training was done on Nvidia Jetson TX2. While training, the system would

crash every other hour due to out of memory error. This meant that one person had to stay

the entire time and restart the process after every crash. Along with this because of the low

computation power of the TX2 it took three days to finish 20,000 of the first single class

 8

training. After one set of training it was decided to ask for better hardware from the

sponsors.

4.2.2 Training on Nvidia GeForce GTX 980 Ti

After we started training on Nvidia GeForce GTX 980 Ti, the process went very

smoothly. As a result of high computing power and access to two Nvidia GeForce GTX

980 Ti, training with 40200 iterations took six to seven hours, which is exponentially faster

than the Jetson TX2.

4.2.3 Conclusions About Training

At this point we had decided that training should always be done on a system that

is more powerful than a Jetson TX2. For this project our best option was to use Nvidia

GeForce GTX 980 Ti.

 9

CHAPTER 5

TESTING

This section discusses the independent work done for the Honors thesis by the

author. In this section we will compare the trained model for the people class on different

hardware systems. At the end of the section we will compare frame rate, cost and accuracy

to reach a decision.

5.1 Test Results on Different Systems

Figure 5.1: Test Image from Raspberry Pi 3

Figure 5.1 shows the output from Raspberry Pi 3. We can see that it took 39.004

seconds to process the image and it detected three people with a confidence in the range of

51%-62%. If we test video input on Raspberry Pi 3, then it crashes. This means that

Raspberry Pi 3 cannot handle real-time detection.

 10

Figure 5.2: Test Image from Intel i5 4th Gen CPU

Figure 5.2 shows the output from Intel i5 4th Gen CPU. We see that it took 1.738

seconds and it detects six people with the confidence ranging from 58%-80%. If we use

video input on this setup, then we see a frame rate of 0.5 fps, which is really slow.

Figure 5.3: Test Image from Nvidia Jetson TX1

Figure 5.3 shows the output from Nvidia Jetson TX1. We see that it provides the

same output as the i5 CPU, but the time required to compute is 0.136, which is about 20

times faster than the CPU. If we use video input on this setup, then we see a frame rate of

10-12 fps.

 11

Figure 5.4: Test Image from Nvidia Jetson TX2

Figure 5.4 shows the output from Nvidia Jetson Tx2. Time required to compute is

0.096 seconds. If we use video input on this setup, then we see a frame rate of 15-17 fps.

Figure 5.5: Test Image from Nvidia GeForce GTX 980 Ti

Lastly we look at Figure 5.5. This is taken from the GeForce GTX 980 Ti. It shows

the same output as the TX2 and CPU, but the time required is only 0.0053 seconds. If we

use video input on this setup, then we see a frame rate of 60+ fps.

5.2 Comparing Hardware

Based of the above section we can see that GPUs are better than CPUs for neural

network. GPUs are more than 100x faster for training and more than 20x faster for testing

neural networks than a CPU. The bulk of our computation is multiplying big matrices

(thanks to neural networks), so we want a card with high single precision performance. The

 12

fact that a GPU costs more does not necessarily mean it is better. Although in most cases

it is better. In the following table we will compare the outputs from all the GPU tests:

 Jetson TX1 Jetson TX2 GeForce GTX

980 Ti

NVIDIA
Maxwell ™ 256
CUDA cores

NVIDIA Pascal™ 256
CUDA cores

NVIDIA
Maxwell ™ 2816
CUDA cores

998 MHz 1300 Mhz 1000-1075 MHz

$499 $599 $569 + $1200

11 fps 16 fps 63 fps

Table 5.1: Comparing Hardware

The final decision of what GPU/CPU to buy is based on the use of the end product.

If the user only needs to run it once every one to two minutes and does not mind the low

confidence and quality of the result, then using a Raspberry Pi to capture an image every

minute to run YOLO will do the job. If the consumer wants a real-time object detection

system, then it is recommended to use Nvidia Jetson TX2, as it provides a decent frame

rate at a decent price.

13

REFERENCES

AlexeyAB, “AlexeyAB/darknet,” GitHub. [Online]. Available:

https://github.com/AlexeyAB/darknet. [Accessed: 04-May-2018]

“Allen School News,” Allen School News » Allen School's Joseph Redmon wins Google

Ph.D. Fellowship. [Online]. Available:

https://news.cs.washington.edu/2018/04/05/allen-schools-joseph-redmon-wins-

google-ph-d-fellowship/. [Accessed: 04-May-2018].

Hardikvasa, “hardikvasa/google-images-download,” GitHub. [Online]. Available:

https://github.com/hardikvasa/google-images-download. [Accessed: 04-May-2018].

J. Redmon, YOLO: Real-Time Object Detection. [Online]. Available:

https://pjreddie.com/darknet/yolo/. [Accessed: 04-May-2018].

“Start Training YOLO with Our Own Data,” Guanghan Ning's Blog, 19-Oct-2016.

[Online]. Available: http://guanghan.info/blog/en/my-works/train-yolo/. [Accessed:

04-May-2018].

N. Tijtgat, “How to train YOLOv2 to detect custom objects,” Timebutt.io, 07-Jun-2017.

[Online]. Available: https://timebutt.github.io/static/how-to-train-yolov2-to-detect-

custom-objects/. [Accessed: 04-May-2018].

Redmon, Joseph, Farhadi, and Ali, “YOLO9000: Better, Faster, Stronger,” [1402.1128]

Long Short-Term Memory Based Recurrent Neural Network Architectures for Large

Vocabulary Speech Recognition, 25-Dec-2016. [Online]. Available:

https://arxiv.org/abs/1612.08242. [Accessed: 04-May-2018]

14

“Redmon, Joseph, Farhadi, and Ali, “YOLOv3: An Incremental Improvement,”

[1402.1128] Long Short-Term Memory Based Recurrent Neural Network

Architectures for Large Vocabulary Speech Recognition, 08-Apr-2018. [Online].

Available: https://arxiv.org/abs/1804.02767. [Accessed: 04-May-2018].

Redmon, Joseph, Divvala, Santosh, Girshick, Ross, Farhadi, and Ali, “You Only Look

Once: Unified, Real-Time Object Detection,” [1402.1128] Long Short-Term Memory

Based Recurrent Neural Network Architectures for Large Vocabulary Speech

Recognition, 09-May-2016. [Online]. Available: https://arxiv.org/abs/1506.02640.

[Accessed: 04-May-2018].

15

BIOGRAPHICAL INFORMATION

Tanmay Sardesai is an Honors B.S. in Computer Science student at the University

of Texas at Arlington. After completing his undergraduate degree he will pursue an M.S.

in Computer Science at the University of California, Los Angeles. There he will specialize

in Artificial Intelligence, Machine Learning, and Computer Vision. After completing his

M.S., he plans to work in the industry prior to pursuing a Ph.D. in Computer Science.

	DETERMINING HARDWARE SETUP FOR TRAINING AND TESTING AN OBJECT DETECTION MODEL FOR USE IN AN INDUSTRIAL SETTING
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Introducing YOLO
	CREATING A DATASET
	2.1 Downloading Images
	2.2 Refining Images
	2.3 Re-Download and Repeat
	5.2 Comparing Hardware

