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ABSTRACT 

 

DETERMINING HARDWARE SETUP FOR TRAINING AND 

TESTING AN OBJECT DETECTION MODEL FOR  

USE IN AN INDUSTRIAL SETTING 

 

Tanmay Sardesai, B.S. Computer Science 

 

The University of Texas at Arlington, 2018 

 

Faculty Mentor:  Christopher McMurrough 

Darknet YOLO is a real-time object detection system that is used in this project. 

YOLO, which stands for You Only Look Once, uses a single convolutional neural network 

to detect objects in an image. There are various versions of YOLO, all with their own 

advantages and disadvantages. For the purpose of this project we will be using Tiny 

YOLOv2, which is a version of YOLO that is lightweight and performs less calculation, 

giving us a lower accuracy but higher frame rate. Tiny YOLOv2 applies a single neural 

network to the full image and divides the image into regions and predicts bounding boxes 

and probabilities for each region. As part of the Senior Design project our team has trained 

a seven-class object detection model. The classes that can be detected by this model are 

people, forklifts, trucks, boxes, pallets, pallet jacks and industrial carts. The goal of this 

Honors thesis was to run this object detection model on different hardware systems to  
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decide the best option. This model is tested on five different systems: Raspberry Pi 3, Asus 

Intel i5 4th Gen CPU, Nvidia Jetson TX1, Nvidia Jetson TX2 and Nvidia GeForce GTX 

980 Ti. After taking into account the frame rate, accuracy and cost of each of these systems, 

our recommendation is to use Nvidia Jetson TX2. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introducing YOLO 

Object detection should be fast, accurate and able to recognize a wide variety of 

classes. Over the past few years object detection has become faster and more accurate using 

neural networks. We humans glance at an image and can easily see what objects are in the 

image. Fast and accurate algorithms for object detection will allow computer systems to do 

the same and make our lives easier. These algorithms can be used to drive cars, automate 

warehouses and delivery, increase airport security and unlock the potential for general 

purpose, ubiquitous and responsive robotics system. 

YOLO, an abbreviation for You Only Look Once, was created by Joseph Redmon, 

Ph.D. student at University of Washington working with Dr. Ali Farhadi, who is a 

Professor at University of Washington. He is one of the 39 students across North America, 

Europe, and the Middle East to be selected as a 2018 Google Ph.D. Fellow. The paper 

describing YOLO, which Redmon and Farhadi co-authored with former University of 

Washington postdoc Santosh Divvala, now a research scientist at the University of 

Washington Allen School for Artificial Intelligence, and Facebook researcher Ross 

Girshick, earned the OpenCV People’s Choice Award at the Conference on Computer 

Vision and Pattern Recognition (CVPR 2016). Redmon and Farhadi followed that up with 

an Honorable Mention at CVPR 2017 for YOLO9000, a new version capable of identifying 

more than 9,000 different object categories in real time. This is the version of YOLO that 
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is used in the project. YOLO9000 is trained on YOLOv2 to detect 9000.  Last month the 

group released YOLOv3, a newer version of the software.   YOLOv3 is much more 

accurate than a TinyYOLOv2, but when one compares frame rate, it is evident that Tiny 

YOLO is the correct choice for this project. 

1.2 Project Requirements 

The sponsor had a list of requirements that we had to satisfy for the completion of 

this project. First and foremost the system had to be real-time. This means that the program 

is run on a video input from the webcam and should detect objects as things in the video 

feed are moving around. Secondly, the model has to detect seven different classes. When 

the requirements were set, the difficulty of the project was unclear, so each class had 

different priority. People and forklifts had the highest priority, followed by boxes, pallets, 

pallet jacks and industrial carts. Trucks had the lowest priority. The requirement for frame 

rate was minimum 10 frames per second. A standard video input is 30 frames per seconds. 

Therefore, with a minimum frame rate of 10 frames, one would drop one third of the 

frames. Lastly, we had to find the cheapest way to satisfy these requirements so that it is 

easy and cheap to deploy the product at the consumer location. 

Detecting industrial objects in real time is the first step towards automating 

warehouses. With automation companies can increase the output that they produce, reduce 

the number of accidents and the cost of manufacturing. The most common objects in a 

warehouse are people and forklifts which is why they were high priority. Object detection 

for warehouses is currently not done by any company. It is a largely unexplored industry. 

Therefore, working on this will help the sponsors in their computer vision and machine 

learning applications in warehouses.
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CHAPTER 2 

CREATING A DATASET 

The first step to any machine learning application is creating a dataset of annotated 

images. For this project as we wanted to detect objects in an image, the dataset was 

composed of images of all the classes. This section discusses how to download the images 

and problems that were tackled during this step. 

2.1 Downloading Images 

As the training phase required more than 500 images for each of the classes, this 

task was divided among all the team members. Everyone on the team used a variety of 

tools to download images. One such open source tool was 

https://github.com/hardikvasa/google-images-download. Google_images_download can 

be installed directly via Python-pip. It is an easy way to download bulk images directly 

from Google images. To download 500 images of forklift, one has to simply type 

googleimagesdownload --keywords "forklift" --limit 500 in the terminal. 

2.2 Refining Images 

2.2.1 Deleting Impurities 

As Google image search is not perfect, it always leads to a plethora of images which 

are completely unrelated. As we are download 500 images, towards the end some of the 

images are unrelated to the keyword. For example, if one types “pallet” in a Google image 

search then they will come across images of furniture (made using pallets). Such images 

cannot be used during the training phase. Therefore, it is necessary to go through all the 
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images cannot be used during the training phase. Therefore, it is necessary to go through 

all the images and delete such impurities. 

2.2.2 Deleting Duplicates 

Another issue that Google images cause is that it has multiple duplicates in the same 

search list. This leads to us downloading multiple copies of the same image. This is bad for 

training a model as it cannot learn from multiple copies of the same object. In fact, it also 

causes overfitting. This is why it is required to go through all the images and delete 

duplicates.  

2.3 Re-Download and Repeat 

Following the steps described in section 2.2 will lead to a decrease in the number 

of images gathered, as we are deleting unwanted images. This is why the above two steps 

have to be repeated until the total number of unique good quality images are above 500. 

Once we have 500 or more images we can proceed to the next step of annotating images. 
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CHAPTER 3 

ANNOTATION 

Most machine learning algorithms are split into two group—supervised learning 

and unsupervised learning. Supervised learning is when the model is given a data point and 

its target value, and the algorithm trains on it, minimizing the number of false positives. 

Unsupervised learning is when the system has no idea about the target value and has to 

learn on its own. As YOLO is a supervised learning algorithm, the next step in training is 

to provide annotations for all 500 images for all the classes. 

3.1 BBox Tool 

For labeling all of the images our team used the BBox Tool. BBox Tool is an open 

source project that is frequently used in annotating images for machine learning 

applications. For annotating images one has to load all the images in the tool and then use 

a cursor to draw rectangular boxes around all objects of interest. This should be done for 

all the objects in all the images. After the image is labeled a corresponding text file is 

created with number of objects and then locations of all the objects in this format: 

“[bounding box left X] [bounding box top Y] [bounding box right X] [bounding box 

bottom Y]”. These labels are what we called annotations for the image. 

3.2 Converting Labels 

As with most opens source technologies there is no proper integration between the 

output from the BBox Tool and YOLO training input. The input for YOLO is “[class 

number] [object center in X] [object center in Y] [object width in X] [object width in Y]”. 



 

 6 

For this we use a script to convert the labels for each of the files. It involves basic file 

reading and arithmetic to solve this problem. Once all the files are converted we can 

proceed to train the model.
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CHAPTER 4 

TRAINING 

In this step we start the training phase as the dataset is ready. Two steps are required 

to start training. 

4.1 Create Train File, Test File and Cfg Files 

Before starting training one is required to create a train and test file from the 

dataset. These file are used by YOLO to test the status of its training. Along with this we 

also create idc.data file which has number of classes being trained, location of train file, 

location of test file, location of idc.names file and location of directory to be used to store 

backup weights. The idc.names file has a list of all the classes ordered based on the class 

number used while annotating. Lastly we use the standard tiny-yolo-v2.cfg file and edit the 

number of classes and filter value for that number. Save this renamed file as idc.cfg 

4.2 Start Training 

Once all the steps above are carried out we type ./darknet detector train cfg/idc.data 

cfg/idc.cfg tiny_yolo.conv.13 where tiny_yolo.conv.13 is the pre-trained starting point for 

YOLO. After the training has started, one has to monitor the output.log. 

4.2.1 Issues While Training on Nvidia Jetson TX2 

The first training was done on Nvidia Jetson TX2. While training, the system would 

crash every other hour due to out of memory error. This meant that one person had to stay 

the entire time and restart the process after every crash. Along with this because of the low 

computation power of the TX2 it took three days to finish 20,000 of the first single class  
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training. After one set of training it was decided to ask for better hardware from the 

sponsors. 

4.2.2 Training on Nvidia GeForce GTX 980 Ti 

After we started training on Nvidia GeForce GTX 980 Ti, the process went very 

smoothly. As a result of high computing power and access to two Nvidia GeForce GTX  

980 Ti, training with 40200 iterations took six to seven hours, which is exponentially faster 

than the Jetson TX2. 

4.2.3 Conclusions About Training 

At this point we had decided that training should always be done on a system that 

is more powerful than a Jetson TX2.  For this project our best option was to use Nvidia 

GeForce GTX 980 Ti. 
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CHAPTER 5 

TESTING 

This section discusses the independent work done for the Honors thesis by the 

author. In this section we will compare the trained model for the people class on different 

hardware systems. At the end of the section we will compare frame rate, cost and accuracy 

to reach a decision. 

5.1 Test Results on Different Systems 

 

Figure 5.1: Test Image from Raspberry Pi 3 

Figure 5.1 shows the output from Raspberry Pi 3. We can see that it took 39.004 

seconds to process the image and it detected three people with a confidence in the range of 

51%-62%. If we test video input on Raspberry Pi 3, then it crashes. This means that 

Raspberry Pi 3 cannot handle real-time detection.
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Figure 5.2: Test Image from Intel i5 4th Gen CPU 

Figure 5.2 shows the output from Intel i5 4th Gen CPU. We see that it took 1.738 

seconds and it detects six people with the confidence ranging from 58%-80%. If we use 

video input on this setup, then we see a frame rate of 0.5 fps, which is really slow. 

 

Figure 5.3: Test Image from Nvidia Jetson TX1 

Figure 5.3 shows the output from Nvidia Jetson TX1. We see that it provides the 

same output as the i5 CPU, but the time required to compute is 0.136, which is about 20 

times faster than the CPU. If we use video input on this setup, then we see a frame rate of 

10-12 fps. 
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Figure 5.4: Test Image from Nvidia Jetson TX2 

Figure 5.4 shows the output from Nvidia Jetson Tx2. Time required to compute is 

0.096 seconds. If we use video input on this setup, then we see a frame rate of 15-17 fps.

 

Figure 5.5: Test Image from Nvidia GeForce GTX 980 Ti 

Lastly we look at Figure 5.5. This is taken from the GeForce GTX 980 Ti. It shows 

the same output as the TX2 and CPU, but the time required is only 0.0053 seconds. If we 

use video input on this setup, then we see a frame rate of 60+ fps. 

5.2 Comparing Hardware 

Based of the above section we can see that GPUs are better than CPUs for neural 

network. GPUs are more than 100x faster for training and more than 20x faster for testing 

neural networks than a CPU. The bulk of our computation is multiplying big matrices 

(thanks to neural networks), so we want a card with high single precision performance. The 
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fact that a GPU costs more does not necessarily mean it is better. Although in most cases 

it is better. In the following table we will compare the outputs from all the GPU tests: 

 
 Jetson TX1 Jetson TX2 GeForce GTX 

980 Ti 

NVIDIA 
Maxwell ™ 256 
CUDA cores 

NVIDIA Pascal™ 256 
CUDA cores 

NVIDIA 
Maxwell ™ 2816 
CUDA cores 

998 MHz 1300 Mhz 1000-1075 MHz 

$499 $599 $569 + $1200 

11 fps 16 fps 63 fps 

Table 5.1: Comparing Hardware 

The final decision of what GPU/CPU to buy is based on the use of the end product. 

If the user only needs to run it once every one to two minutes and does not mind the low 

confidence and quality of the result, then using a Raspberry Pi to capture an image every 

minute to run YOLO will do the job. If the consumer wants a real-time object detection 

system, then it is recommended to use Nvidia Jetson TX2, as it provides a decent frame 

rate at a decent price.  
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