University of Texas at Arlington

MavMatrix

2021 Fall Honors Capstone Projects Honors College

12-1-2021

PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS
THROUGH MATHEMATICAL MODELING OF COLON CANCER

Achyuth Manoj

Follow this and additional works at: https://mavmatrix.uta.edu/honors_fall2021

Recommended Citation

Manoj, Achyuth, "PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS THROUGH MATHEMATICAL
MODELING OF COLON CANCER" (2021). 20217 Fall Honors Capstone Projects. 24.
https://mavmatrix.uta.edu/honors_fall2021/24

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2021 Fall Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_fall2021
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_fall2021?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_fall2021/24?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Achyuth Manoj 2021

All Rights Reserved

PARAMETER ESTIMATION AND SENSITIVITY
ANALYSIS THROUGH MATHEMATICAL MODELING

OF COLON CANCER

ACHYUTH MANOJ

Presented to the Faculty of the Honors College of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN MATHEMATICS

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2021

ACKNOWLEDGMENTS

Firstly, I would like to thank Dr. Roy and Dr. Pal for the support they have provided
me as mentors, and for all the knowledge that they have given me throughout the research.
I would also like to thank Juan Villegas, Susanth Kakarla, and Mesfer Alajmi who were
the other students who collaborated with me on this project. It has been a pleasure working
with them on this project. This work was supported by the National Institutes of Health
Grant Number R21CA242933.

Most importantly, I would like to thank my parents for their love and emotional
support, which has allowed me to grow as a person, for cultivating my interests, and for
their hard work that allowed me to pursue my interests and receive this level of education
in a foreign country far from home.

November 19, 2021

il

ABSTRACT

PARAMETER ESTIMATION AND SENSITIVITY
ANALYSIS THROUGH MATHEMATICAL

MODELING OF COLON CANCER

Achyuth Manoj, B.S. Mathematics

The University of Texas at Arlington, 2021

Faculty Mentor: Souvik Roy

We formulated a new and efficient method to propose a personalized treatment
platform for colorectal cancer. A mathematical model of colon cancer was used and is
comprised of a system of differential equations, which model various cell dynamics. The
dynamics are dependent on patient-specific parameters that are unknown which we
estimate given patient data in form of cell measurements. We approached this estimation
as an inverse problem based on an optimization framework and developed computational
optimization techniques created on non-linear conjugate gradient methods to solve for the
optimal set of parameters for a specific patient. These optimal parameters are then ranked
by conducting a sensitivity analysis using the Latin Hypercube Sampling-Partial Rank

Correlation Coefficient method, to determine the most sensitive parameters with respect to

v

the tumor cell count. Using this information, we can deduce the types of feasible treatment

strategies which can be utilized for curing the patient.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt st e 111

ABSTRACT ...ttt ettt ettt e v

LIST OF ILLUSTRATIONS ...ttt e viil

LIST OF TABLES ...ttt e X
Chapter

1. INTRODUCTION ...ttt ettt st e 1

1.1 Colorectal CanCer.........coouuiiuiiiiiiiieie et 1

1.1.1 Modelling and Parameter Estimation...........c.cccccceeevevieencieeeneeeennnen. 1

1.1.2 Colorectal Cancer Modelccooviiiiiiniiiiiiniieieceeeeeeee, 2

2. OPTIMIZATION TECHNIQUES. ..ot 4

2.1 Need for Numerical Optimizationccceeeeeuveeeeuieerivieeniiieeeieeeeveeeenns 4

2.2 MethOAOLOZYvveeiiieeeiie ettt ee e e e eaee e 4

2.2.1 FOrward SOIVET.......cc.eiiiiiiiiiiiiiet e 4

2.2.2 ReVEISE SOIVET .ecuuiiiiiiiiiiiiiee e 5

2.2.3 Nonlinear Conjugate Gradient Algorithmcccccoveveiiiniinnnnnen. 6

2.2.4 Sensitivity ANALYSIS ...ueeeviieeriieeiiieeiieeeiee e eree e evee e sree e e 8

3. NUMERICAL RESULTS ..ottt 10

BU1 TSt CASC .ttt 10

Vi

4. CONCLUSION........ecveunne

Appendix

A. PYTHON SCRIPT OF OPTIMIZATION ALGORITHM............cccceeneee.

REFERENCESccccooiiiiinn

BIOGRAPHICAL INFORMATION

vii

12

13

26

27

LIST OF ILLUSTRATIONS
Figure Page

3.1 Evolution of T, N, L, C with true (red) and optimal (blue) parameter

viii

Table

1.1

1.2

1.3

LIST OF TABLES

Variables of the system of ODE:s ...

Coefficients of the system of ODEs

Sensitivity analysis of test case

X

CHAPTER 1

INTRODUCTION

1.1 Colorectal Cancer

Colorectal cancer is one of the leading causes of cancer related deaths in the United
States. The American Cancer society estimates 100,000 new cases of colon cancer will be
diagnosed in 2021, with more than 50,000 deaths [1]. This large death rate is due to
difficulties in early diagnosis, treatment being managed on an individual level, and lack of
cost-effective experimental testing of drug efficacy. For this reason, computational models
are a cost-effective alternative which can feasibly provide optimal treatments at the
individual level without the need for extensive clinical testing.
1.1.1 Modelling and Parameter Estimation

Dynamical modelling can be used for systems which evolve over time, such as
colorectal cancer. Several dynamical models have already been developed to model colon
cancer. For our purposes, we used the model proposed by dePillis et al. as dynamic models
are usually represented by a set of differential equations. In biological systems, these
equations are often quite complex and dependent on parameters which vary from patient
to patient. These unknown parameters appear as coefficients in the differential equations
and need to be estimated as the tumor properties can also vary between individuals. Thus,
the parameter estimation is to be done only given the individual tumor data and is a key
part of recommending treatment based on computational modelling methods. This is

considered a reverse Ordinary Differential Equation (ODE) problem where we are given

the evolution of the variables and must estimate the coefficients.
1.1.2 Colorectal Cancer Model
We used a dynamic colorectal cancer model developed by dePillis ef al. [2]. The

system of ODEs that govern the model are as follows.

aT
= = aT(1=bT) = cNT = DT, T(0) = Ty
dN
—-=eC—fN —pNT, N(0) = N
a_. T LT + (r,N + ,C)T, L(0) = L
dt Jrk+r” 1 R R, B = o
dc
E=a—ﬁC,C(O)= CO

Where the variable D is given by

Dk
s+(E/pt

Here, the unknown patient parameters are d, 1, s, p, k, and q, which are represented
by the set 0. The physical quantities that are represented by the set of equations are below.

Table 1.1: Variables of the system of ODEs [2]

Variable Physical Quantity

T Total tumor cell population
N Concentration of Natural Killer (NK) cells per
liter of blood (cells/L)

L Concentration of cytotoxic T lymphocytes
(CD8") per liter of blood (cells/L)
C Concentration of lymphocytes per liter of
blood, not including NK cells and active
CDS8'T cells (cells/L)

Table 1.2: Coefticients of the system of ODEs [2]

Coefficient

Physical quantity

Growth rate of tumor

Inverse of carrying capacity

Rate of NK-induced tumor death

Immune-system strength coefficient

Rate of NK cell synthesis

Rate of NK cell turnover

—. |0 |0 |

Rate of CD8'T-cell lysed tumor cell
debris activation of CD8'T cells

Tumor size for half maximal CD8"T lysed
debris CD8'T activation

Immune-system strength scaling
coefficient

Rate of NK cell death due to tumor
interaction

Rate of CDS8'T cell death due to tumor
interaction

I

Rate of NK lysed tumor cell debris
activation of CD8'T cells

2

Rate of CD8'T-cell production from
circulating lymphocytes

Value of (L/T)! necessary for half
maximal CD8'T cell effectiveness against
tumor

Lymphocyte synthesis in bone marrow

Rate or lymphocyte turnover

CHAPTER 2
OPTIMIZATION TECHNIQUES

2.1 Need for Numerical Optimization

Due to the complexity of the system of ODEs, we cannot solve for the parameter values
analytically. Instead we look to numerical optimization methods that give us an estimate
of parameter values, which are well established to find solutions for ordinary and partial
differential equations. These methods have a wide range of applications in mathematical
science, examples of which include the Navier-Stokes equation in aerodynamics,
Schrédinger’s equation in quantum mechanics, and Maxwell’s equations in
electrodynamics [3]. In the following sections, we outline the computational algorithms
used to estimate the unknown parameter set 6.

2.2 Methodology

The first step is to use Explicit Euler’s method to obtain the evolution of the system
with an initial guess of the parameter set, starting from time to and moving in equal intervals
up to a time tn, also known as the forward solver. We then use the Explicit Euler’s method
again on an adjoint set of equations, for which we solve backwards from t, to to. Finally,
we can use a nonlinear conjugate gradient (NCG) method, which is our optimization
algorithm, that minimizes a functional giving an optimal parameter set.

2.2.1 Forward Solver
Explicit Euler’s method is an easy to implement, efficient computational method

for solving differential equations [4]. The algorithm of the forward solver used for the

above set of equations is outlined below. This is considered a general first order initial

value problem.

dx _
E - f(x, t)'x(to) = Xo

It can be assumed that f and fx are continuous so a solution exists for this problem.
We consider an interval of time [to, ti,, t] for which we want to solve the equation by
finding the corresponding x values [Xo,X1,....,Xn]. We approximate x; by using the equation
of the tangent line at (to,xo), taking f(xo,t0) as the slope of the tangent line.

x1 = xo + f (%0, to) (t1 — to)

We solve for the other values of x in a similar fashion by using the tangent line at
the previously solved point considering the values of the function f at the previous point
as the slope.

Xiv1 = X + f(xp t) (Gipr —)

Thus, we obtain the values of x for different t values in the interval, solving forward
from to to t.. We apply the forward solver to all the equations in the governing ODE model,
so that we have T, N, L, and C solved for at all the values of t; in the interval. The Python
3 code used for the forward solver is given in the appendices section.

2.2.2 Reverse Solver
Next, the Explicit Euler method is applied to a set of adjoint equations. This set of

adjoint equations is given as follows.
dT, k+TLL,
E = abTTa - a(l - bT)Ta - CNTa - DTa - pNNa +](k+—T)2 - QLLa
+ (1N +1,0)Lg, To(tr) = T/

dN,

= ~fNa = pTNg = cTT, +1iTLo, No(ty) = N/

dLy _ . Tlq
dt]k+T

_Lf

a’

dac,
dta = —ﬁCa + eNa + TzTLa: Ca(tf) = le

The values of Ta, Na, La, and C, are the adjoint values of T, N, L, C from the ODE
model discussed in 1.1.2. The Explicit Euler method is applied in reverse to this set of
equations, where we start from t, and step down in equal intervals to to. This gives adjoint
values of the model variables at all the points [t,,to]. Data obtained from the forward
solver and the reverse solver will be used in the NCG algorithm.

2.2.3 Nonlinear Conjugate Gradient Algorithms

The primary optimization technique used for parameter estimation is outlined in the
functional to be minimized below. We use the NCG method proposed by Dai and Yuan
[5].

6" = argmingso (6)
Z S ree) =17 + SEOE) = NP + S (LD - L)?

a
+ (0@ — €2 + 116l

The a values in the formula are obtained by using an Armijo Line-search method.
The values of Tj, Nj, Li, C;, are from the given data while Tj(t), Ni(t), Li(t), Ci(t), are acquired

using the forward solver. The optimization is subject to the following constraint:

8] 8]

i 6J
Vo] (t,0) = (g (.6, 5 e)g(t,e)g

(¢,) (t9) (t9)>

The algorithm for NCG optimization for our minimization problem is given below:
(1) Start

(2) Input: initial approximation 6°.

(3) Evaluate d° = —Ve I(t, 6°)

(4) Index k = 1, maximum k = kmax = (50), tolerance = tol =(10-5).
(5) While (k < kmax) do

(6) Compute o*! using the Armijo line-search algorithm.

(7) Set 0% = @k + g1 gk!

(8) Compute g* = Vol(t, 6).

(9) Compute B! using Dai-Yuan formula [5].

(10) Set d* = —gk + pit d=! .

(11) If ||VeJ(t, 6%)|| < tol or k = kmax, terminate loop.

(12) Setk=k + 1.

(13) End while.

(14) If |Vel(t, 6¥)|| < tol, then print 6 as the minimum else convergence not achieved.
(15) Stop

Next, we outline the line search algorithm:

(1) Start

(2) Input: initial approx. a k—1 =1, ¢ = 0.4, %!, Vel(t,).

(3) Index j = 0, maximum j = jmax = (10)

(4) While (j < jmax) do

(5) Compute d; = J(0%! — a*'Vo](t, 6K1))

(6) Compute da = J(65") — co*”'[|Vel(t, 6*1)|I°

(7) If di < da, return o' and terminate loop.
(8) okl = k12
(9)Setj=j+1.
(10) End while.
(11) If j = jmax, then return o' = 0.
(12) Stop

The NCG algorithm gives us a result of an optimal parameter set 0. The Python 3
code used for the NCG algorithm is given in the appendices.
2.2.4 Sensitivity Analysis

A study of the uncertainty of the parameter values is important, as the effect of the
model parameters on the outputs need to be understood. Sensitivity analysis follows an
uncertainty analysis as it helps allocate the outputs of the model to input sources.
Uncertainty and sensitivity analysis ranks the parameters in the magnitude by which they
contribute to the inaccuracy of the outputs. We make use of the Latin Hypercube Sampling
(LHC) scheme and Partial Rank Correlation Coefficient Analysis (PRCC) [6]. Latin
Hypercube Sampling generates a random set of parameter values such that each parameter
is set to follow a normal distribution with a 10% standard deviation. Each of these
distributions are divided into intervals of equal probability, and these intervals are sampled
once without replacement so that the entire range for each parameter is explored. PRCC
analysis involves rank transforming the LHC matrix and then partial correlation on the rank
transformed data from the matrix. The significance of the rank assigned to each parameter

is determined through the calculated p-value. If the p-value is less than the chosen level of

significance, then the partial rank correlation coefficient is considered to be significant

implying that the parameter is sensitive.

CHAPTER 3

NUMERICAL RESULTS

We consider a test case with a true parameter set and synthetic data. This data is
used for the NCG algorithm applied on the ODE system of equations. A 5D interpolation
is performed to obtain the data function at all the points in the interval [ti,
the true parameter set 6 = (1.1, 1.6, 1.0, 1.0, 0.1, 1.0) for our test case. The time interval is

chosen to be t = [0,30] with N = 10 steps. The initial guess of the parameter set is

(0.1,0.1,0.1,0.1,0.1,0.1).

3.1.1 Results

The optimal parameter set obtained for the above test case is 0* = (2, 1.5, 0.7, 1.8,

3.1 Test Case

0.4, 1.6). The results of the sensitivity analysis are below.

Table 3.1: Sensitivity analysis of test case

Parameter p-value PRCC value
d 6.3e-8 -0.77
1 le-27 0.99
S Te-6 0.72
p 0.058 -0.07
k 0.70 -0.34
q 0.07 0.18

10

....tn]. We used

Figure 3.1: Evolution of T, N, L, C with true (red) and optimal (blue) parameter set

The plots show the ODE system estimated parameters show similar evolution of T,
N, L, and C with respect to time. This shows that the optimal parameter set predicted is
reasonably accurate. The p-values of the parameters show that d, I, and s are the most

sensitive parameters, with the PRCC values showing that 1 is more sensitive that d and s.

11

CHAPTER 4
CONCLUSION

Numerical optimization techniques have been utilized to estimate patient specific
parameters, which are present as coefficients of the governing system of ODEs previously
discussed. The Dai-Yuan nonlinear conjugate gradient optimization was used to obtain the
optimal parameter set. A test case was considered by generating data from a true parameter
set. The forward solver applied on the optimal parameter set and the true parameter set
have comparable characteristics, showing that the parameters can be predicted with high
accuracy. This shows that parameter estimation is a viable cost-effective alternative to
clinical testing to measure the parameters. A future direction to further this work would be
to find optimal drug dosages for individual cases. This would provide a mechanism where
we are able to propose individual treatment for colon cancer. This could significantly
reduce the number of colon-cancer related deaths. Another direction of further research
would be to improve the parameter estimation technique by exploring other frameworks of
colon cancer that may better model the system. Improving the accuracy of parameter

estimation may provide more optimal treatment strategies.

12

APPENDIX A

PYTHON SCRIPT OF OPTIMIZATION ALGORITHM

13

The Python 3 script used to perform the algorithms outlined in chapter 2 are provided
below.

1. Parameters

import numpy as np
import math

def parameters():

a=0.531;

b=0.021;

¢ =5.2%pow(10,-9);
e=0.11;

£=0.01;
j=1.245*pow(10,-4);
m = 5*pow(10,-3);

rl = 5.2*pow(10,-2);
r2 = pow(10,-5);
alpha = 0.18;

beta = 6.3*pow(10,-3);

No. of time interval points

Nt =200;

t = np.linspace(0, 20, num = Nt, endpoint=True)
step = t[2]-t[1];

step = (1-math.exp(-50*step))/50

Regularization parameter
nu=0.001;

return a, b, ¢, e, f, j, m, rl, r2, alpha, beta, t, Nt, step, nu

2. Forward Model

import numpy as np
import math

from parameters import parameters

a, b, c, e, f, j,m,rl, r2, alpha, beta, t, Nt, step, nu = parameters()

14

def forward model(X,theta):
Y will be the matrix of F(X)
Y=np.zeros(4)
#reshaping to make it a column vector
Y=Y .reshape((4,1))

d = theta[0];
1 =theta[1];
s = theta[2];
p = theta[3];
k = theta[4];
q = theta[5];

#calculating D from given values to make the following line less bulky

#Individually writing each equation in F(x)
T = X[0,0]
N=X[1,0]
L =X[2,0]
C =X]3,0]

divL T=L/T
#D mul = (math.pow(divL_T,l))/(math.pow(divL_T,l)+s)
D mul = (d * pow(divL_T.,l))/(4*s*pow(10,-3)*pow(200,1) + pow(divL_T.,I));

Y[0,0]=a*T*(1-b*T)-c*N*T-D mul *T;

Y[1,0]=e*C-f*N-p*pow(10,-10) * N * T;

Y[2,0=m*L+ (G * T * L)/(k+T) - q *pow(10,-8)* L* T+ (r1 * N+12 *
O)*T;

Y[3,0]= alpha - beta * C;

return Y

3. Forward Solver

import numpy as np

from forward model import forward model
from parameters import parameters

a, b, c,e,f, j,m,rl, r2, alpha, beta, t, Nt, step, nu = parameters()

15

def forward solver(theta):

Zeros_vector
Values of TN,L,C att=0

T 0=1.5
N 0=1.0
L 0=1.0
C 0=1.0

X =np.array([T_O,N _0,L 0,C 0])
X = X.reshape(4,1) # Transforming X to a column vector

sol = np.zeros(4)

sol = sol.reshape((4,1))

sol = np.hstack((sol,X))

sol = np.delete(sol,0,axis=1)

Explicit Euler

for i in range(1,Nt):
X = X + np.multiply(step , forward model(X,theta))
sol = np.hstack((sol, X))

total = np.vstack((t,sol))

f = open("forward_sol.txt","w")
np.savetxt(f,total,delimiter="")
f.close()

return sol

#data = np.delete(data,0,axis=1)

#print(data)

HHH# Plotting
plt.plot(t,sol[0])
plt.plot(t,sol[1])
plt.plot(t,sol[2])
plt.plot(t,sol[3])

1

16

total = np.vstack((t,sol))

f = open("explicit_sol.txt","w")
np.savetxt(f,total,delimiter="")
f.close()

plt.xlabel('t"
plt.ylabel('sol")
plt.title("Solution using explicit Eulers method")

4. Adjoint Model

import numpy as np
import math

from parameters import parameters

a,b,c,e, f,j, m,rl, 12, alpha, beta, t, Nt, step, nu = parameters()

def adjoint_ model(X,i,f sol,f data,theta):
#Y will be the matrix of F(X)

d = theta[0];
1 = theta[1];
s = theta[2];
p = theta[3];
k = theta[4];
q = theta[5];

Y = np.zeros(4)
Y = Y.reshape((4,1))

T a=X[0,0]
N a=X][1,0]
L a=X]2,0]
C a=X][3,0]

Forward solution at the time point t[i]

T =1 sol[0,i]
N =1 sol[1,i]
L =1 sol[2,i]
C =1 sol[3,i]

17

Data at the time point t[i]
T d=f data[0,i]
N d=f data[l,i]
L d=f data[2,i]
C d=f data[3,i]

t div0 = (d*s*I*(L**)*(T**)*T_a)/((s*(T**1)+H(L**1))**2)
£ divl = -(d*L**1)/(4*s*pow(10,-3)*pow(200,1) * T**] + L**])

t div2 = (K*L*L_a)/(k+T)**2

dT a=-a*b*T*T a+ a*(1-b*T)*T a- c*N*T a+t divO+t divl - p*
pow(10,-10) * N *N_a + j*t div2 - q*pow(10,-8)*L*L_a + (r1*N + r2*C)*L _a

#np.negative(dT a)

Y[0,0]=dT a-(T-T_d)

dN a=-f*N a -p*T*N a- c*T*T a+rl*T*L a

#np.negative(dN_a)
Y[1,0]=dN_a-(N-N_d)

L_div = (I*(L**(1-1)) * (s*(T**1)))/((s*(T**1) + L**1)**2)
dL a=m*L_a+j*((T*L_a)/(k+T)) - q*T*L _a+ d*T*T a*L div

#np.negative(dL_a)
Y[2,0]=dL _a-(L-L d)

dC _a=-beta*C a+e*N a+r2*T*L a
#np.negative(dC a)
Y[3,0]=dC a-(C-C_d)

return Y

5. Adjoint Solver
import numpy as np

from adjoint model import adjoint_model
from parameters import parameters

18

a,b,c,e, f,j, m,rl, 12, alpha, beta, t, Nt, step, nu = parameters()
def adj solver(f sol,f data,theta):

Terminal condition

T aN = -(f sol[0,Nt-1]-f data[0,Nt-1])
N_aN = -(f sol[1,Nt-1]-f data[1,Nt-1])
L aN=-(f sol[2,Nt-1]-f data[2,Nt-1])
C_aN = -(f sol[3,Nt-1]-f data[3,Nt-1])

X =np.array([T_aN, N _aN,L aN,C aN])
X = X.reshape((4,1))

result = np.zeros(4)
result = result.reshape((4,1))

result = np.hstack((result,X))

for 1 in range(Nt-1,0,-1):
X =X + np.multiply(step, adjoint model(X,i-1,f sol,f data,theta))
result = np.hstack((result,X))

result = np.delete(result,0,axis=1)

total = np.vstack((t,result))

f = open("adjoint_sol.txt","w")
np.savetxt(f,total,delimiter="")
f.close()

return result

print(result)

total = np.vstack((t,result))
#print("total:" total)

6. NCG Algorithm
import numpy as np
import math
from numpy import linalg

19

from parameters import parameters
from forward_solver import forward_solver
from adj_solver import adj_solver

a, b, c, e, f,j,m,rl, r2, alpha, beta, t, Nt, step, nu = parameters()
def gradient(f sol,a sol,theta):

d = theta[0];
1 = theta[1];
s = theta[2];
p = theta[3];
k = theta[4];
q = theta[5];

grad(J) matrix
grad = np.zeros([6])

for 1 in range(0,Nt):

Forward solution at t[i]
T =1 sol[0,i]
N =1 sol[1,i]
L =1 sol[2,i]
C =1 sol[3,i]

Adjoint solution at t[i]
T a=a sol[0,i]
N a=a sol[l,i]
L a=a sol[2,i]
C a=a sol[3,i]

LT div=L/T

LT div exp=LT div**l

#partial derviative J/d

grad[0] = grad[0] + (LT div_ exp * T * T a)/ (4*s*pow(10,-3)*pow(200,1) +
LT div_exp) + nu*d

grad[0] = grad[0] * step

#partial derviative J/1

20

grad[1]=grad[1]+(d *s* T a* (LT div_exp * math.log(LT div) +
4*s*pow(10,-3)*pow(200,1) * math.log(200)))/ (4*s*pow(10,-3)*pow(200,1) +
LT div_exp) **2 + nu*l

grad[1] = grad[1] * step

#partial derviative J/s

grad[2] = grad[2] -(d * LT div exp * T * T _a * 4*pow(10,-3)*pow(200,1))/
(4*s*pow(10,-3)*pow(200,1) + LT div_exp)**2 + nu*s

grad[2] = grad[2] * step

#partial derviative J/p
grad[3] = grad[3] + pow(10,-10)*N * N_a * T + nu*p
grad[3] = grad[3] * step

#partial derivative J/k
grad[4] =grad[4] +(G*L*L _a* T)/ (k+ T)**2 + nu*k
grad[4] = grad[4] * step

#partial derivative J/q
grad[5] = grad[5] + pow(10,-8)*L * L_a * T + nu*q
grad[5] = grad[5] * step

return grad

Functional
def J(f sol,f data,theta):

d = theta[0];
1 = theta[1];
s = theta[2];
p = theta[3];
k = theta[4];
q = theta[5];

result=0.0
for k in range(0,Nt):
result = result + (f _sol[0,k] - f data[0,k])**2 + (f sol[1,k] - f data[1,k])**2
+ (f sol[2,k] - f data[2,k])**2 + (f sol[3,k] - f data[3,k])**2

regularization term = nu*(d**2 + [**2 + g#*2 + p**2 + k**2 + q**2)
result = 0.5*(result*step + regularization term)

return result

21

def armijo_line search(theta,grad,des,f sol,f data):

#index
j=0

#max
j_max =10

alpha=0.5
c=0.25

while j <j max:
theta new = theta + alpha*des
f new = forward_solver(theta new)

d1 =J(f new.,f data,theta new)
d2 = J(f sol,f data,theta) + c * alpha * np.inner(grad,des)

ifdl <=d2:
return alpha
quit()

else:
alpha = alpha/2.0
j=itl

if j ==j max:
alpha=0.0
return alpha

def Fletcher Reeves(grad old,grad):

vec = grad old
vec2 = grad

#numerator = np.dot(vec,vec2)
numerator = linalg.norm(vec2)**2

#denominator = np.dot(vec2,vec2)
denominator = linalg.norm(vec)**2
result = numerator/denominator

return result

def Dai_Yuan(grad old,grad,des):

22

vec = grad old
vec2 = grad

#numerator = np.dot(vec,vec2)
numerator = linalg.norm(grad)**2

#denominator = np.dot(vec2,vec?2)
denominator = np.inner(des,grad-grad old)

result = numerator/denominator

return result

Starting the NCG algorithm

def NCG(theta,f data):

#index
k=0

#max

k max =50
#tolerance

tol = 10%*(-5)

f sol = forward solver(theta)
a_sol =adj solver(f sol,f data,theta)
des = np.zeros([6])

Computing the gradient

grad = gradient(f sol,a_sol,theta)
grad norm = linalg.norm(grad)
des0 = -grad

des = des0

while k <k max:

Obtaining alpha through the line search algorithm
alpha = armijo_line search(theta,grad,des,f sol,f data)
if (alpha == 0):

print ('Line search fails')

23

break

Updating the parameter
theta old = theta

theta = theta old + alpha * des

Projection Step

theta[0] = min(2,max(theta[0],0))
theta[1] = min(2,max(theta[0],0))
theta[2] = min(3,max(theta[0],0))
theta[3] = min(1.5,max(theta[0],0))
theta[4] = min(0.5,max(theta[0],0))
theta[5] = min(1.5,max(theta[0],0))

Old gradient
grad old = grad
New updates

f sol = forward_solver(theta)
a_sol =adj solver(f sol,f data,theta)

Computing the new gradient
grad = gradient(f sol,a_sol,theta)

Updating the conjugate directions
#beta = Fletcher Reeves(grad old,grad)
beta = Dai_Yuan(grad old,grad,des)

des old = des;
des = -grad + np.multiply(beta,des old)

grad norm = linalg.norm(grad)

print('’k ="k, ', Alpha =", alpha, ', Iterate value =", theta, ', Gradient Norm =
,grad norm,'J =", J(f sol,f data,theta))

24

if (linalg.norm(grad) < tol or k ==k max):
exit()
k+=1

return theta

25

REFERENCES

[1] “Colorectal Cancer Statistics: How Common Is Colorectal Cancer?” Key Statistics for
Colorectal Cancer, American Cancer Society, 12 Jan. 2021,

[2] L.G. dePillis, H. Savage, A.E. Radunskaya, “Mathematical Model of Colorectal
Cancer with Monoclonal Antibody Treatments”, British Journal of Medicine &
Medical Research 4(16): 3101-3131, 2014

[3] Computational Optimization of Systems Governed by Partial Differential Equations.
2012, Alfio Borzi, Volker Schulz.

[4] Nurujjaman, Md. (2020). Enhanced Euler's Method to Solve First Order Ordinary
Differential Equations with Better Accuracy. 10.5281/zenodo.3731020.

[5] Y. H. Dai and Y. Yuan, “A Nonlinear Conjugate Gradient Method with a Strong
Global Convergence Property”, SIAM Journal on Optimization 1999 10:1, 177-182

[6] S. Marino, 1. B. Hogue, C. J. Ray and D. E. Kirschner. A methodology for performing
global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical
Biology, 254(1):178-196, 2008.

[7] S. Roy, S. Pal, A. Manoj, S. Kakarla, J. Villegas, M. Alajmi, a Fokker-Planck
framework for parameter estimation and sensitivity analysis in colon cancer, AIP

Conference Proceedings, 2021.

26

BIOGRAPHICAL INFORMATION
Achyuth Manoj is a senior international student at the University of Texas at
Arlington majoring in Physics with a second major in Mathematics. His research interests
are in Condensed Matter Physics and in Space Physics. He has completed one Honors
senior project on predicting band gaps in transition metal oxides and has co-authored a
paper on parameter estimation and sensitivity analysis on colon cancer. He plans to attend

graduate school after completing his bachelor’s degree.

27

	PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS THROUGH MATHEMATICAL MODELING OF COLON CANCER
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Colorectal Cancer
	2.1 Need for Numerical Optimization

