
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2021 Fall Honors Capstone Projects Honors College

12-1-2021

PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS

THROUGH MATHEMATICAL MODELING OF COLON CANCER THROUGH MATHEMATICAL MODELING OF COLON CANCER

Achyuth Manoj

Follow this and additional works at: https://mavmatrix.uta.edu/honors_fall2021

Recommended Citation Recommended Citation
Manoj, Achyuth, "PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS THROUGH MATHEMATICAL
MODELING OF COLON CANCER" (2021). 2021 Fall Honors Capstone Projects. 24.
https://mavmatrix.uta.edu/honors_fall2021/24

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2021 Fall Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_fall2021
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_fall2021?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_fall2021/24?utm_source=mavmatrix.uta.edu%2Fhonors_fall2021%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Achyuth Manoj 2021

All Rights Reserved

PARAMETER ESTIMATION AND SENSITIVITY

ANALYSIS THROUGH MATHEMATICAL MODELING

OF COLON CANCER

by

ACHYUTH MANOJ

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN MATHEMATICS

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2021

 iii

ACKNOWLEDGMENTS

Firstly, I would like to thank Dr. Roy and Dr. Pal for the support they have provided

me as mentors, and for all the knowledge that they have given me throughout the research.

I would also like to thank Juan Villegas, Susanth Kakarla, and Mesfer Alajmi who were

the other students who collaborated with me on this project. It has been a pleasure working

with them on this project. This work was supported by the National Institutes of Health

Grant Number R21CA242933.

Most importantly, I would like to thank my parents for their love and emotional

support, which has allowed me to grow as a person, for cultivating my interests, and for

their hard work that allowed me to pursue my interests and receive this level of education

in a foreign country far from home.

November 19, 2021

 iv

ABSTRACT

PARAMETER ESTIMATION AND SENSITIVITY

ANALYSIS THROUGH MATHEMATICAL

MODELING OF COLON CANCER

Achyuth Manoj, B.S. Mathematics

The University of Texas at Arlington, 2021

Faculty Mentor: Souvik Roy

We formulated a new and efficient method to propose a personalized treatment

platform for colorectal cancer. A mathematical model of colon cancer was used and is

comprised of a system of differential equations, which model various cell dynamics. The

dynamics are dependent on patient-specific parameters that are unknown which we

estimate given patient data in form of cell measurements. We approached this estimation

as an inverse problem based on an optimization framework and developed computational

optimization techniques created on non-linear conjugate gradient methods to solve for the

optimal set of parameters for a specific patient. These optimal parameters are then ranked

by conducting a sensitivity analysis using the Latin Hypercube Sampling-Partial Rank

Correlation Coefficient method, to determine the most sensitive parameters with respect to

 v

the tumor cell count. Using this information, we can deduce the types of feasible treatment

strategies which can be utilized for curing the patient.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

Chapter

 1. INTRODUCTION ... 1

 1.1 Colorectal Cancer... 1

 1.1.1 Modelling and Parameter Estimation .. 1

 1.1.2 Colorectal Cancer Model .. 2

 2. OPTIMIZATION TECHNIQUES ... 4

 2.1 Need for Numerical Optimization ... 4

 2.2 Methodology .. 4

 2.2.1 Forward Solver.. 4

 2.2.2 Reverse Solver .. 5

 2.2.3 Nonlinear Conjugate Gradient Algorithm 6

 2.2.4 Sensitivity Analysis .. 8

 3. NUMERICAL RESULTS ... 10

 3.1 Test Case .. 10

 vii

 4. CONCLUSION .. 12

Appendix

A. PYTHON SCRIPT OF OPTIMIZATION ALGORITHM 13

REFERENCES .. 26

BIOGRAPHICAL INFORMATION ... 27

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Evolution of T, N, L, C with true (red) and optimal (blue) parameter

set ... 11

ix

LIST OF TABLES

Table Page

1.1 Variables of the system of ODEs .. 2

1.2 Coefficients of the system of ODEs .. 3

1.3 Sensitivity analysis of test case ... 10

1

CHAPTER 1

INTRODUCTION

1.1 Colorectal Cancer

Colorectal cancer is one of the leading causes of cancer related deaths in the United

States. The American Cancer society estimates 100,000 new cases of colon cancer will be

diagnosed in 2021, with more than 50,000 deaths [1]. This large death rate is due to

difficulties in early diagnosis, treatment being managed on an individual level, and lack of

cost-effective experimental testing of drug efficacy. For this reason, computational models

are a cost-effective alternative which can feasibly provide optimal treatments at the

individual level without the need for extensive clinical testing.

1.1.1 Modelling and Parameter Estimation

Dynamical modelling can be used for systems which evolve over time, such as

colorectal cancer. Several dynamical models have already been developed to model colon

cancer. For our purposes, we used the model proposed by dePillis et al. as dynamic models

are usually represented by a set of differential equations. In biological systems, these

equations are often quite complex and dependent on parameters which vary from patient

to patient. These unknown parameters appear as coefficients in the differential equations

and need to be estimated as the tumor properties can also vary between individuals. Thus,

the parameter estimation is to be done only given the individual tumor data and is a key

part of recommending treatment based on computational modelling methods. This is

considered a reverse Ordinary Differential Equation (ODE) problem where we are given

2

the evolution of the variables and must estimate the coefficients.

1.1.2 Colorectal Cancer Model

We used a dynamic colorectal cancer model developed by dePillis et al. [2]. The

system of ODEs that govern the model are as follows.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑑𝑑(1 − 𝑏𝑏𝑑𝑑) − 𝑐𝑐𝑐𝑐𝑑𝑑 − 𝐷𝐷𝑑𝑑, 𝑑𝑑(0) = 𝑑𝑑0

𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝑒𝑒 − 𝑓𝑓𝑐𝑐 − 𝑝𝑝𝑐𝑐𝑑𝑑, 𝑐𝑐(0) = 𝑐𝑐0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑗𝑗
𝑑𝑑

𝑘𝑘 + 𝑑𝑑
𝑑𝑑 − 𝑞𝑞𝑑𝑑𝑑𝑑 + (𝑟𝑟1𝑐𝑐 + 𝑟𝑟2𝑒𝑒)𝑑𝑑, 𝑑𝑑(0) = 𝑑𝑑0

𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝛼𝛼 − 𝛽𝛽𝑒𝑒, 𝑒𝑒(0) = 𝑒𝑒0

Where the variable D is given by

𝐷𝐷 = 𝑑𝑑 (𝐿𝐿 𝑇𝑇�)𝑙𝑙

𝑠𝑠+(𝐿𝐿 𝑇𝑇�)𝑙𝑙
.

Here, the unknown patient parameters are d, l, s, p, k, and q, which are represented

by the set θ. The physical quantities that are represented by the set of equations are below.

Table 1.1: Variables of the system of ODEs [2]

Variable Physical Quantity
T Total tumor cell population
N Concentration of Natural Killer (NK) cells per

liter of blood (cells/L)
L Concentration of cytotoxic T lymphocytes

(CD8+) per liter of blood (cells/L)
C Concentration of lymphocytes per liter of

blood, not including NK cells and active
CD8+T cells (cells/L)

3

Table 1.2: Coefficients of the system of ODEs [2]

Coefficient Physical quantity
a Growth rate of tumor
b Inverse of carrying capacity
c Rate of NK-induced tumor death
d Immune-system strength coefficient
e Rate of NK cell synthesis
f Rate of NK cell turnover
j Rate of CD8+T-cell lysed tumor cell

debris activation of CD8+T cells
k Tumor size for half maximal CD8+T lysed

debris CD8+T activation
l Immune-system strength scaling

coefficient
p Rate of NK cell death due to tumor

interaction
q Rate of CD8+T cell death due to tumor

interaction
r1 Rate of NK lysed tumor cell debris

activation of CD8+T cells
r2 Rate of CD8+T-cell production from

circulating lymphocytes
s Value of (L/T)l necessary for half

maximal CD8+T cell effectiveness against
tumor

α Lymphocyte synthesis in bone marrow
β Rate or lymphocyte turnover

4

CHAPTER 2

OPTIMIZATION TECHNIQUES

2.1 Need for Numerical Optimization

Due to the complexity of the system of ODEs, we cannot solve for the parameter values

analytically. Instead we look to numerical optimization methods that give us an estimate

of parameter values, which are well established to find solutions for ordinary and partial

differential equations. These methods have a wide range of applications in mathematical

science, examples of which include the Navier-Stokes equation in aerodynamics,

Schrödinger’s equation in quantum mechanics, and Maxwell’s equations in

electrodynamics [3]. In the following sections, we outline the computational algorithms

used to estimate the unknown parameter set θ.

2.2 Methodology

The first step is to use Explicit Euler’s method to obtain the evolution of the system

with an initial guess of the parameter set, starting from time t0 and moving in equal intervals

up to a time tn, also known as the forward solver. We then use the Explicit Euler’s method

again on an adjoint set of equations, for which we solve backwards from tn to t0. Finally,

we can use a nonlinear conjugate gradient (NCG) method, which is our optimization

algorithm, that minimizes a functional giving an optimal parameter set.

2.2.1 Forward Solver

 Explicit Euler’s method is an easy to implement, efficient computational method

for solving differential equations [4]. The algorithm of the forward solver used for the

5

above set of equations is outlined below. This is considered a general first order initial

value problem.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑, 𝑑𝑑), 𝑑𝑑(𝑑𝑑0) = 𝑑𝑑0

It can be assumed that f and fx are continuous so a solution exists for this problem.

We consider an interval of time [t0, t1, …., tn] for which we want to solve the equation by

finding the corresponding x values [x0,x1,….,xn]. We approximate x1 by using the equation

of the tangent line at (t0,x0), taking f(x0,t0) as the slope of the tangent line.

𝑑𝑑1 = 𝑑𝑑0 + 𝑓𝑓(𝑑𝑑0, 𝑑𝑑0)(𝑑𝑑1 − 𝑑𝑑0)

We solve for the other values of x in a similar fashion by using the tangent line at

the previously solved point considering the values of the function f at the previous point

as the slope.

𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖 + 𝑓𝑓(𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖)(𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖)

Thus, we obtain the values of x for different t values in the interval, solving forward

from t0 to tn. We apply the forward solver to all the equations in the governing ODE model,

so that we have T, N, L, and C solved for at all the values of ti in the interval. The Python

3 code used for the forward solver is given in the appendices section.

2.2.2 Reverse Solver

 Next, the Explicit Euler method is applied to a set of adjoint equations. This set of

adjoint equations is given as follows.

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑𝑎𝑎 − 𝑎𝑎(1 − 𝑏𝑏𝑑𝑑)𝑑𝑑𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎 − 𝐷𝐷𝑑𝑑𝑎𝑎 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑗𝑗
𝑘𝑘 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
(𝑘𝑘 + 𝑑𝑑)2 − 𝑞𝑞𝑑𝑑𝑑𝑑𝑎𝑎

+ (𝑟𝑟1𝑐𝑐 + 𝑟𝑟2𝑒𝑒)𝑑𝑑𝑎𝑎,𝑑𝑑𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑑𝑑𝑎𝑎
𝑓𝑓

𝑑𝑑𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝑓𝑓𝑐𝑐𝑎𝑎 − 𝑝𝑝𝑑𝑑𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎 + 𝑟𝑟1𝑑𝑑𝑑𝑑𝑎𝑎,𝑐𝑐𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑐𝑐𝑎𝑎
𝑓𝑓

6

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑗𝑗
𝑑𝑑𝑑𝑑𝑎𝑎
𝑘𝑘 + 𝑑𝑑

+ 𝑞𝑞𝑑𝑑𝑑𝑑𝑎𝑎, 𝑑𝑑𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑑𝑑𝑎𝑎
𝑓𝑓

𝑑𝑑𝑒𝑒𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑒𝑒𝑎𝑎 + 𝑒𝑒𝑐𝑐𝑎𝑎 + 𝑟𝑟2𝑑𝑑𝑑𝑑𝑎𝑎,𝑒𝑒𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑒𝑒𝑎𝑎
𝑓𝑓

The values of Ta, Na, La, and Ca are the adjoint values of T, N, L, C from the ODE

model discussed in 1.1.2. The Explicit Euler method is applied in reverse to this set of

equations, where we start from tn and step down in equal intervals to t0. This gives adjoint

values of the model variables at all the points [tn, ….,t0]. Data obtained from the forward

solver and the reverse solver will be used in the NCG algorithm.

2.2.3 Nonlinear Conjugate Gradient Algorithms

 The primary optimization technique used for parameter estimation is outlined in the

functional to be minimized below. We use the NCG method proposed by Dai and Yuan

[5].

𝜽𝜽∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜽𝜽>0𝐽𝐽(𝜽𝜽)

≔ ��
𝛼𝛼𝑇𝑇
2

(𝑑𝑑(𝑑𝑑𝑖𝑖) − 𝑑𝑑𝑖𝑖)2 +
𝛼𝛼𝑁𝑁
2

(𝑐𝑐(𝑑𝑑𝑖𝑖) − 𝑐𝑐𝑖𝑖)2 +
𝛼𝛼𝐿𝐿
2

(𝑑𝑑(𝑑𝑑𝑖𝑖) − 𝑑𝑑𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

+
𝛼𝛼𝐶𝐶
2

(𝑒𝑒(𝑑𝑑𝑖𝑖) − 𝑒𝑒𝑖𝑖)2� + ‖𝜽𝜽‖𝐿𝐿2
2

The α values in the formula are obtained by using an Armijo Line-search method.

The values of Ti, Ni, Li, Ci, are from the given data while Ti(t), Ni(t), Li(t), Ci(t), are acquired

using the forward solver. The optimization is subject to the following constraint:

∇θJ(t, θ) = �
𝛿𝛿𝐽𝐽
𝛿𝛿𝑑𝑑

(𝑑𝑑,𝜃𝜃),
𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿

(𝑑𝑑, 𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑝𝑝

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑘𝑘

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑞𝑞

(𝑑𝑑, 𝜃𝜃)� = 0

7

The algorithm for NCG optimization for our minimization problem is given below:

(1) Start

(2) Input: initial approximation θ0.

(3) Evaluate d0 = −∇θ J(t, θ0)

(4) Index k = 1, maximum k = kmax = (50), tolerance = tol =(10−5).

(5) While (k < kmax) do

(6) Compute αk-1 using the Armijo line-search algorithm.

(7) Set θk = θk-1 + αk-1 dk-1

(8) Compute gk = ∇θJ(t, θk).

(9) Compute βk-1 using Dai-Yuan formula [5].

(10) Set dk = −gk + βk-1 dk-1 .

(11) If ||∇θJ(t, θk)|| < tol or k = kmax, terminate loop.

(12) Set k = k + 1.

(13) End while.

(14) If ||∇θJ(t, θk)|| < tol, then print θk as the minimum else convergence not achieved.

(15) Stop

Next, we outline the line search algorithm:

(1) Start

(2) Input: initial approx. α k−1 = 1, c = 0.4, θk-1 , ∇θJ(t, θk-1).

(3) Index j = 0, maximum j = jmax = (10)

(4) While (j < jmax) do

(5) Compute d1 = J(θk-1 – αk-1∇θJ(t, θk-1))

(6) Compute d2 = J(θk-1) – cαk-1||∇θJ(t, θk-1)||2

8

(7) If d1 ≤ d2, return αk-1 and terminate loop.

(8) αk-1 = αk-1/2

(9) Set j = j + 1.

(10) End while.

(11) If j = jmax, then return αk-1 = 0.

(12) Stop

 The NCG algorithm gives us a result of an optimal parameter set θ*. The Python 3

code used for the NCG algorithm is given in the appendices.

2.2.4 Sensitivity Analysis

 A study of the uncertainty of the parameter values is important, as the effect of the

model parameters on the outputs need to be understood. Sensitivity analysis follows an

uncertainty analysis as it helps allocate the outputs of the model to input sources.

Uncertainty and sensitivity analysis ranks the parameters in the magnitude by which they

contribute to the inaccuracy of the outputs. We make use of the Latin Hypercube Sampling

(LHC) scheme and Partial Rank Correlation Coefficient Analysis (PRCC) [6]. Latin

Hypercube Sampling generates a random set of parameter values such that each parameter

is set to follow a normal distribution with a 10% standard deviation. Each of these

distributions are divided into intervals of equal probability, and these intervals are sampled

once without replacement so that the entire range for each parameter is explored. PRCC

analysis involves rank transforming the LHC matrix and then partial correlation on the rank

transformed data from the matrix. The significance of the rank assigned to each parameter

is determined through the calculated p-value. If the p-value is less than the chosen level of

9

significance, then the partial rank correlation coefficient is considered to be significant

implying that the parameter is sensitive.

10

CHAPTER 3

NUMERICAL RESULTS

3.1 Test Case

We consider a test case with a true parameter set and synthetic data. This data is

used for the NCG algorithm applied on the ODE system of equations. A 5D interpolation

is performed to obtain the data function at all the points in the interval [t1, ….,tn]. We used

the true parameter set θ = (1.1, 1.6, 1.0, 1.0, 0.1, 1.0) for our test case. The time interval is

chosen to be t = [0,30] with N = 10 steps. The initial guess of the parameter set is

(0.1,0.1,0.1,0.1,0.1,0.1).

3.1.1 Results

The optimal parameter set obtained for the above test case is θ* = (2, 1.5, 0.7, 1.8,

0.4, 1.6). The results of the sensitivity analysis are below.

Table 3.1: Sensitivity analysis of test case

Parameter p-value PRCC value

d 6.3e-8 -0.77

l 1e-27 0.99

s 7e-6 0.72

p 0.058 -0.07

k 0.70 -0.34

q 0.07 0.18

11

Figure 3.1: Evolution of T, N, L, C with true (red) and optimal (blue) parameter set

The plots show the ODE system estimated parameters show similar evolution of T,

N, L, and C with respect to time. This shows that the optimal parameter set predicted is

reasonably accurate. The p-values of the parameters show that d, l, and s are the most

sensitive parameters, with the PRCC values showing that l is more sensitive that d and s.

12

CHAPTER 4

CONCLUSION

Numerical optimization techniques have been utilized to estimate patient specific

parameters, which are present as coefficients of the governing system of ODEs previously

discussed. The Dai-Yuan nonlinear conjugate gradient optimization was used to obtain the

optimal parameter set. A test case was considered by generating data from a true parameter

set. The forward solver applied on the optimal parameter set and the true parameter set

have comparable characteristics, showing that the parameters can be predicted with high

accuracy. This shows that parameter estimation is a viable cost-effective alternative to

clinical testing to measure the parameters. A future direction to further this work would be

to find optimal drug dosages for individual cases. This would provide a mechanism where

we are able to propose individual treatment for colon cancer. This could significantly

reduce the number of colon-cancer related deaths. Another direction of further research

would be to improve the parameter estimation technique by exploring other frameworks of

colon cancer that may better model the system. Improving the accuracy of parameter

estimation may provide more optimal treatment strategies.

13

APPENDIX A

PYTHON SCRIPT OF OPTIMIZATION ALGORITHM

14

The Python 3 script used to perform the algorithms outlined in chapter 2 are provided
below.

1. Parameters

import numpy as np
import math

def parameters():

 a = 0.531;
 b = 0.021;
 c = 5.2*pow(10,-9);
 e = 0.11;
 f = 0.01;
 j = 1.245*pow(10,-4);
 m = 5*pow(10,-3);
 r1 = 5.2*pow(10,-2);
 r2 = pow(10,-5);
 alpha = 0.18;
 beta = 6.3*pow(10,-3);

 # No. of time interval points
 Nt = 200;
 t = np.linspace(0, 20, num = Nt, endpoint=True)
 step = t[2]-t[1];
 step = (1-math.exp(-50*step))/50

 # Regularization parameter
 nu = 0.001;

 return a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu

2. Forward Model

import numpy as np
import math

from parameters import parameters

a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters()

15

def forward_model(X,theta):
 # Y will be the matrix of F(X)
 Y=np.zeros(4)
 #reshaping to make it a column vector
 Y=Y.reshape((4,1))

 d = theta[0];
 l = theta[1];
 s = theta[2];
 p = theta[3];
 k = theta[4];
 q = theta[5];

 #calculating D from given values to make the following line less bulky

 #Individually writing each equation in F(x)
 T = X[0,0]
 N = X[1,0]
 L = X[2,0]
 C = X[3,0]

 divL_T = L/T
 #D_mul = (math.pow(divL_T,l))/(math.pow(divL_T,l)+s)
 D_mul = (d * pow(divL_T,l))/(4*s*pow(10,-3)*pow(200,l) + pow(divL_T,l));

 Y[0,0] = a * T *(1 - b * T) - c * N * T - D_mul * T;
 Y[1,0]= e * C - f * N - p * pow(10,-10) * N * T;
 Y[2,0]= m*L + (j * T * L)/(k+T) - q *pow(10,-8)* L * T + (r1 * N + r2 *
C)*T;
 Y[3,0]= alpha - beta * C;

 return Y

3. Forward Solver

import numpy as np

from forward_model import forward_model
from parameters import parameters

a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters()

16

def forward_solver(theta):

 #-----------------------------------Zeros_vector----------------------------
 # Values of T,N,L,C at t = 0

 T_0= 1.5
 N_0= 1.0
 L_0= 1.0
 C_0= 1.0

 X = np.array([T_0,N_0,L_0,C_0])
 X = X.reshape(4,1) # Transforming X to a column vector

 sol = np.zeros(4)
 sol = sol.reshape((4,1))
 sol = np.hstack((sol,X))
 sol = np.delete(sol,0,axis=1)

 #------------------------------Explicit Euler-----------------------------
 for i in range(1,Nt):
 X = X + np.multiply(step , forward_model(X,theta))
 sol = np.hstack((sol,X))

 total = np.vstack((t,sol))
 f = open("forward_sol.txt","w")
 np.savetxt(f,total,delimiter=' ')
 f.close()

 return sol

#data = np.delete(data,0,axis=1)

#print(data)

#-----------------------------------Plotting-----------------------------
plt.plot(t,sol[0])
plt.plot(t,sol[1])
plt.plot(t,sol[2])
plt.plot(t,sol[3])

17

total = np.vstack((t,sol))
f = open("explicit_sol.txt","w")
np.savetxt(f,total,delimiter=' ')
f.close()

plt.xlabel('t')
plt.ylabel('sol')
plt.title("Solution using explicit Eulers method")

4. Adjoint Model

import numpy as np
import math

from parameters import parameters

a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters()

def adjoint_model(X,i,f_sol,f_data,theta):
 # Y will be the matrix of F(X)

 d = theta[0];
 l = theta[1];
 s = theta[2];
 p = theta[3];
 k = theta[4];
 q = theta[5];

 Y = np.zeros(4)
 Y = Y.reshape((4,1))

 T_a = X[0,0]
 N_a = X[1,0]
 L_a = X[2,0]
 C_a = X[3,0]

 # Forward solution at the time point t[i]

 T = f_sol[0,i]
 N = f_sol[1,i]
 L = f_sol[2,i]
 C = f_sol[3,i]

18

 # Data at the time point t[i]
 T_d = f_data[0,i]
 N_d = f_data[1,i]
 L_d = f_data[2,i]
 C_d = f_data[3,i]

 t_div0 = (d*s*l*(L**l)*(T**l)*T_a)/((s*(T**l)+(L**l))**2)
 t_div1 = -(d*L**l)/(4*s*pow(10,-3)*pow(200,l) * T**l + L**l)

 t_div2 = (k*L*L_a)/(k+T)**2

 dT_a = -a*b*T*T_a + a*(1-b*T)*T_a - c*N*T_a + t_div0+ t_div1 - p*
pow(10,-10) * N *N_a + j*t_div2 - q*pow(10,-8)*L*L_a + (r1*N + r2*C)*L_a
 #np.negative(dT_a)
 Y[0,0] = dT_a - (T-T_d)

 dN_a = -f*N_a - p*T*N_a - c*T*T_a + r1*T*L_a
 #np.negative(dN_a)
 Y[1,0] = dN_a - (N-N_d)

 L_div = (l*(L**(1-l)) * (s*(T**l)))/((s*(T**l) + L**l)**2)

 dL_a = m*L_a + j*((T*L_a)/(k+T)) - q*T*L_a + d*T*T_a*L_div
 #np.negative(dL_a)
 Y[2,0] = dL_a - (L-L_d)

 dC_a = -beta*C_a + e*N_a + r2*T*L_a
 #np.negative(dC_a)
 Y[3,0] = dC_a - (C-C_d)

 return Y

5. Adjoint Solver
import numpy as np

from adjoint_model import adjoint_model
from parameters import parameters

19

a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters()

def adj_solver(f_sol,f_data,theta):

 # Terminal condition
 T_aN = -(f_sol[0,Nt-1]-f_data[0,Nt-1])
 N_aN = -(f_sol[1,Nt-1]-f_data[1,Nt-1])
 L_aN = -(f_sol[2,Nt-1]-f_data[2,Nt-1])
 C_aN = -(f_sol[3,Nt-1]-f_data[3,Nt-1])

 X = np.array([T_aN, N_aN,L_aN,C_aN])
 X = X.reshape((4,1))

 result = np.zeros(4)
 result = result.reshape((4,1))

 result = np.hstack((result,X))

 for i in range(Nt-1,0,-1):
 X = X + np.multiply(step, adjoint_model(X,i-1,f_sol,f_data,theta))
 result = np.hstack((result,X))

 result = np.delete(result,0,axis=1)

 total = np.vstack((t,result))
 f = open("adjoint_sol.txt","w")
 np.savetxt(f,total,delimiter=' ')
 f.close()
 return result

 # print(result)

 # total = np.vstack((t,result))
 # #print("total:",total)

6. NCG Algorithm
import numpy as np
import math
from numpy import linalg

20

from parameters import parameters
from forward_solver import forward_solver
from adj_solver import adj_solver

a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters()

def gradient(f_sol,a_sol,theta):

 d = theta[0];
 l = theta[1];
 s = theta[2];
 p = theta[3];
 k = theta[4];
 q = theta[5];

 # grad(J) matrix
 grad = np.zeros([6])

 for i in range(0,Nt):

 # Forward solution at t[i]
 T = f_sol[0,i]
 N = f_sol[1,i]
 L = f_sol[2,i]
 C = f_sol[3,i]

 # Adjoint solution at t[i]
 T_a = a_sol[0,i]
 N_a = a_sol[1,i]
 L_a = a_sol[2,i]
 C_a = a_sol[3,i]

 LT_div = L/T

 LT_div_exp = LT_div**l

 #partial derviative J/d
 grad[0] = grad[0] + (LT_div_exp * T * T_a) / (4*s*pow(10,-3)*pow(200,l) +
LT_div_exp) + nu*d
 grad[0] = grad[0] * step

 #partial derviative J/l

21

 grad[1] = grad[1] + (d * s * T_a * (LT_div_exp * math.log(LT_div) +
4*s*pow(10,-3)*pow(200,l) * math.log(200)))/ (4*s*pow(10,-3)*pow(200,l) +
LT_div_exp) **2 + nu*l
 grad[1] = grad[1] * step

 #partial derviative J/s
 grad[2] = grad[2] -(d * LT_div_exp * T * T_a * 4*pow(10,-3)*pow(200,l))/
(4*s*pow(10,-3)*pow(200,l) + LT_div_exp)**2 + nu*s
 grad[2] = grad[2] * step

 #partial derviative J/p
 grad[3] = grad[3] + pow(10,-10)*N * N_a * T + nu*p
 grad[3] = grad[3] * step

 #partial derivative J/k
 grad[4] = grad[4] + (j * L * L_a * T)/ (k + T)**2 + nu*k
 grad[4] = grad[4] * step

 #partial derivative J/q
 grad[5] = grad[5] + pow(10,-8)*L * L_a * T + nu*q
 grad[5] = grad[5] * step

 return grad

Functional
def J(f_sol,f_data,theta):

 d = theta[0];
 l = theta[1];
 s = theta[2];
 p = theta[3];
 k = theta[4];
 q = theta[5];

 result = 0.0

 for k in range(0,Nt):
 result = result + (f_sol[0,k] - f_data[0,k])**2 + (f_sol[1,k] - f_data[1,k])**2
+ (f_sol[2,k] - f_data[2,k])**2 + (f_sol[3,k] - f_data[3,k])**2

 regularization_term = nu*(d**2 + l**2 + s**2 + p**2 + k**2 + q**2)
 result = 0.5*(result*step + regularization_term)

 return result

22

def armijo_line_search(theta,grad,des,f_sol,f_data):

 #index
 j = 0

 #max
 j_max = 10

 alpha = 0.5
 c = 0.25

 while j < j_max:
 theta_new = theta + alpha*des
 f_new = forward_solver(theta_new)

 d1 = J(f_new,f_data,theta_new)
 d2 = J(f_sol,f_data,theta) + c * alpha * np.inner(grad,des)

 if d1 <= d2:
 return alpha
 quit()
 else:
 alpha = alpha/2.0
 j = j+1

 if j == j_max:
 alpha = 0.0
 return alpha

def Fletcher_Reeves(grad_old,grad):

 vec = grad_old
 vec2 = grad

 #numerator = np.dot(vec,vec2)
 numerator = linalg.norm(vec2)**2

 #denominator = np.dot(vec2,vec2)
 denominator = linalg.norm(vec)**2
 result = numerator/denominator

 return result

def Dai_Yuan(grad_old,grad,des):

23

 vec = grad_old
 vec2 = grad

 #numerator = np.dot(vec,vec2)
 numerator = linalg.norm(grad)**2

 #denominator = np.dot(vec2,vec2)
 denominator = np.inner(des,grad-grad_old)
 result = numerator/denominator

 return result

Starting the NCG algorithm

def NCG(theta,f_data):

 #index
 k = 0

 #max
 k_max = 50

 #tolerance
 tol = 10**(-5)

 f_sol = forward_solver(theta)
 a_sol = adj_solver(f_sol,f_data,theta)
 des = np.zeros([6])

 # Computing the gradient
 grad = gradient(f_sol,a_sol,theta)
 grad_norm = linalg.norm(grad)
 des0 = -grad

 des = des0

 while k < k_max:

 # Obtaining alpha through the line search algorithm
 alpha = armijo_line_search(theta,grad,des,f_sol,f_data)
 if (alpha == 0):
 print ('Line search fails')

24

 break

 # Updating the parameter
 theta_old = theta

 theta = theta_old + alpha * des

 # Projection Step
 theta[0] = min(2,max(theta[0],0))
 theta[1] = min(2,max(theta[0],0))
 theta[2] = min(3,max(theta[0],0))
 theta[3] = min(1.5,max(theta[0],0))
 theta[4] = min(0.5,max(theta[0],0))
 theta[5] = min(1.5,max(theta[0],0))

 # Old gradient
 grad_old = grad

 # New updates

 f_sol = forward_solver(theta)
 a_sol = adj_solver(f_sol,f_data,theta)

 # Computing the new gradient
 grad = gradient(f_sol,a_sol,theta)

 # Updating the conjugate directions
 #beta = Fletcher_Reeves(grad_old,grad)
 beta = Dai_Yuan(grad_old,grad,des)

 des_old = des;
 des = -grad + np.multiply(beta,des_old)

 grad_norm = linalg.norm(grad)

 print('k = ',k, ', Alpha = ', alpha, ', Iterate value = ', theta, ', Gradient Norm =
',grad_norm, 'J = ', J(f_sol,f_data,theta))

25

 if (linalg.norm(grad) < tol or k == k_max):
 exit()

 k += 1

 return theta

26

REFERENCES

[1] “Colorectal Cancer Statistics: How Common Is Colorectal Cancer?” Key Statistics for

Colorectal Cancer, American Cancer Society, 12 Jan. 2021,

[2] L.G. dePillis, H. Savage, A.E. Radunskaya, “Mathematical Model of Colorectal

Cancer with Monoclonal Antibody Treatments”, British Journal of Medicine &

Medical Research 4(16): 3101-3131, 2014

[3] Computational Optimization of Systems Governed by Partial Differential Equations.

2012, Alfio Borzί, Volker Schulz.

[4] Nurujjaman, Md. (2020). Enhanced Euler's Method to Solve First Order Ordinary

Differential Equations with Better Accuracy. 10.5281/zenodo.3731020.

[5] Y. H. Dai and Y. Yuan, “A Nonlinear Conjugate Gradient Method with a Strong

Global Convergence Property”, SIAM Journal on Optimization 1999 10:1, 177-182

[6] S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner. A methodology for performing

global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical

Biology, 254(1):178–196, 2008.

[7] S. Roy, S. Pal, A. Manoj, S. Kakarla, J. Villegas, M. Alajmi, a Fokker-Planck

framework for parameter estimation and sensitivity analysis in colon cancer, AIP

Conference Proceedings, 2021.

27

BIOGRAPHICAL INFORMATION

Achyuth Manoj is a senior international student at the University of Texas at

Arlington majoring in Physics with a second major in Mathematics. His research interests

are in Condensed Matter Physics and in Space Physics. He has completed one Honors

senior project on predicting band gaps in transition metal oxides and has co-authored a

paper on parameter estimation and sensitivity analysis on colon cancer. He plans to attend

graduate school after completing his bachelor’s degree.

	PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS THROUGH MATHEMATICAL MODELING OF COLON CANCER
	Recommended Citation

	TABLE OF CONTENTS
	1.1 Colorectal Cancer
	2.1 Need for Numerical Optimization

