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ABSTRACT 

 

PARAMETER ESTIMATION AND SENSITIVITY  

ANALYSIS THROUGH MATHEMATICAL 

MODELING OF COLON CANCER 

 

Achyuth Manoj, B.S. Mathematics 

 

The University of Texas at Arlington, 2021 

 

Faculty Mentor: Souvik Roy 

We formulated a new and efficient method to propose a personalized treatment 

platform for colorectal cancer. A mathematical model of colon cancer was used and is 

comprised of a system of differential equations, which model various cell dynamics. The 

dynamics are dependent on patient-specific parameters that are unknown which we 

estimate given patient data in form of cell measurements. We approached this estimation 

as an inverse problem based on an optimization framework and developed computational 

optimization techniques created on non-linear conjugate gradient methods to solve for the 

optimal set of parameters for a specific patient. These optimal parameters are then ranked 

by conducting a sensitivity analysis using the Latin Hypercube Sampling-Partial Rank 

Correlation Coefficient method, to determine the most sensitive parameters with respect to 
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the tumor cell count. Using this information, we can deduce the types of feasible treatment 

strategies which can be utilized for curing the patient. 
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CHAPTER 1 

INTRODUCTION 

1.1 Colorectal Cancer 

Colorectal cancer is one of the leading causes of cancer related deaths in the United 

States. The American Cancer society estimates 100,000 new cases of colon cancer will be 

diagnosed in 2021, with more than 50,000 deaths [1]. This large death rate is due to 

difficulties in early diagnosis, treatment being managed on an individual level, and lack of 

cost-effective experimental testing of drug efficacy. For this reason, computational models 

are a cost-effective alternative which can feasibly provide optimal treatments at the 

individual level without the need for extensive clinical testing. 

1.1.1 Modelling and Parameter Estimation 

Dynamical modelling can be used for systems which evolve over time, such as 

colorectal cancer. Several dynamical models have already been developed to model colon 

cancer. For our purposes, we used the model proposed by dePillis et al. as dynamic models 

are usually represented by a set of differential equations. In biological systems, these 

equations are often quite complex and dependent on parameters which vary from patient 

to patient. These unknown parameters appear as coefficients in the differential equations 

and need to be estimated as the tumor properties can also vary between individuals. Thus, 

the parameter estimation is to be done only given the individual tumor data and is a key 

part of recommending treatment based on computational modelling methods. This is 

considered a reverse Ordinary Differential Equation (ODE) problem where we are given 
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the evolution of the variables and must estimate the coefficients. 

1.1.2 Colorectal Cancer Model 

We used a dynamic colorectal cancer model developed by dePillis et al. [2]. The 

system of ODEs that govern the model are as follows. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑑𝑑(1 − 𝑏𝑏𝑑𝑑) − 𝑐𝑐𝑐𝑐𝑑𝑑 − 𝐷𝐷𝑑𝑑,  𝑑𝑑(0) =  𝑑𝑑0 

𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝑒𝑒 − 𝑓𝑓𝑐𝑐 − 𝑝𝑝𝑐𝑐𝑑𝑑,  𝑐𝑐(0) = 𝑐𝑐0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑗𝑗
𝑑𝑑

𝑘𝑘 + 𝑑𝑑
𝑑𝑑 − 𝑞𝑞𝑑𝑑𝑑𝑑 + (𝑟𝑟1𝑐𝑐 + 𝑟𝑟2𝑒𝑒)𝑑𝑑,  𝑑𝑑(0) = 𝑑𝑑0 

𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝛼𝛼 − 𝛽𝛽𝑒𝑒,  𝑒𝑒(0) =  𝑒𝑒0 

Where the variable D is given by  

𝐷𝐷 = 𝑑𝑑 (𝐿𝐿 𝑇𝑇� )𝑙𝑙

𝑠𝑠+(𝐿𝐿 𝑇𝑇� )𝑙𝑙
.  

Here, the unknown patient parameters are d, l, s, p, k, and q, which are represented 

by the set θ. The physical quantities that are represented by the set of equations are below.  

Table 1.1: Variables of the system of ODEs [2] 

Variable Physical Quantity 
T Total tumor cell population 
N Concentration of Natural Killer (NK) cells per 

liter of blood (cells/L) 
L Concentration of cytotoxic T lymphocytes 

(CD8+) per liter of blood (cells/L) 
C Concentration of lymphocytes per liter of 

blood, not including NK cells and active 
CD8+T cells (cells/L) 
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Table 1.2: Coefficients of the system of ODEs [2] 

Coefficient Physical quantity 
a Growth rate of tumor 
b Inverse of carrying capacity 
c Rate of NK-induced tumor death 
d Immune-system strength coefficient 
e Rate of NK cell synthesis 
f Rate of NK cell turnover 
j Rate of CD8+T-cell lysed tumor cell 

debris activation of CD8+T cells 
k Tumor size for half maximal CD8+T lysed 

debris CD8+T activation 
l Immune-system strength scaling 

coefficient 
p Rate of NK cell death due to tumor 

interaction 
q Rate of CD8+T cell death due to tumor 

interaction 
r1 Rate of NK lysed tumor cell debris 

activation of CD8+T cells 
r2 Rate of CD8+T-cell production from 

circulating lymphocytes 
s Value of (L/T)l necessary for half 

maximal CD8+T cell effectiveness against 
tumor 

α Lymphocyte synthesis in bone marrow 
β Rate or lymphocyte turnover 
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CHAPTER 2 

OPTIMIZATION TECHNIQUES 

2.1 Need for Numerical Optimization 

Due to the complexity of the system of ODEs, we cannot solve for the parameter values 

analytically. Instead we look to numerical optimization methods that give us an estimate 

of parameter values, which are well established to find solutions for ordinary and partial 

differential equations. These methods have a wide range of applications in mathematical 

science, examples of which include the Navier-Stokes equation in aerodynamics, 

Schrödinger’s equation in quantum mechanics, and Maxwell’s equations in 

electrodynamics [3]. In the following sections, we outline the computational algorithms 

used to estimate the unknown parameter set θ.  

2.2 Methodology 

The first step is to use Explicit Euler’s method to obtain the evolution of the system 

with an initial guess of the parameter set, starting from time t0 and moving in equal intervals 

up to a time tn, also known as the forward solver. We then use the Explicit Euler’s method 

again on an adjoint set of equations, for which we solve backwards from tn to t0. Finally, 

we can use a nonlinear conjugate gradient (NCG) method, which is our optimization 

algorithm, that minimizes a functional giving an optimal parameter set.  

2.2.1 Forward Solver 

 Explicit Euler’s method is an easy to implement, efficient computational method 

for solving differential equations [4]. The algorithm of the forward solver used for the 
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above set of equations is outlined below. This is considered a general first order initial 

value problem. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑, 𝑑𝑑), 𝑑𝑑(𝑑𝑑0) =  𝑑𝑑0 

It can be assumed that f and fx are continuous so a solution exists for this problem. 

We consider an interval of time [t0, t1, …., tn] for which we want to solve the equation by 

finding the corresponding x values [x0,x1,….,xn]. We approximate x1 by using the equation 

of the tangent line at (t0,x0), taking f(x0,t0) as the slope of the tangent line.  

𝑑𝑑1 = 𝑑𝑑0 + 𝑓𝑓(𝑑𝑑0, 𝑑𝑑0)(𝑑𝑑1 − 𝑑𝑑0) 

We solve for the other values of x in a similar fashion by using the tangent line at 

the previously solved point considering the values of the function f  at the previous point 

as the slope. 

𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖 + 𝑓𝑓(𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖)(𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖) 

Thus, we obtain the values of x for different t values in the interval, solving forward 

from t0 to tn. We apply the forward solver to all the equations in the governing ODE model, 

so that we have T, N, L, and C solved for at all the values of ti in the interval. The Python 

3 code used for the forward solver is given in the appendices section. 

2.2.2 Reverse Solver 

 Next, the Explicit Euler method is applied to a set of adjoint equations. This set of 

adjoint equations is given as follows. 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑𝑎𝑎 − 𝑎𝑎(1 − 𝑏𝑏𝑑𝑑)𝑑𝑑𝑎𝑎 − 𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎 − 𝐷𝐷𝑑𝑑𝑎𝑎 − 𝑝𝑝𝑐𝑐𝑐𝑐𝑎𝑎 + 𝑗𝑗
𝑘𝑘 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
(𝑘𝑘 + 𝑑𝑑)2 − 𝑞𝑞𝑑𝑑𝑑𝑑𝑎𝑎

+ (𝑟𝑟1𝑐𝑐 + 𝑟𝑟2𝑒𝑒)𝑑𝑑𝑎𝑎,𝑑𝑑𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑑𝑑𝑎𝑎
𝑓𝑓 

𝑑𝑑𝑐𝑐𝑎𝑎
𝑑𝑑𝑑𝑑

=  −𝑓𝑓𝑐𝑐𝑎𝑎 − 𝑝𝑝𝑑𝑑𝑐𝑐𝑎𝑎 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎 + 𝑟𝑟1𝑑𝑑𝑑𝑑𝑎𝑎,𝑐𝑐𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑐𝑐𝑎𝑎
𝑓𝑓 
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𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑗𝑗
𝑑𝑑𝑑𝑑𝑎𝑎
𝑘𝑘 + 𝑑𝑑

+ 𝑞𝑞𝑑𝑑𝑑𝑑𝑎𝑎, 𝑑𝑑𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑑𝑑𝑎𝑎
𝑓𝑓  

𝑑𝑑𝑒𝑒𝑎𝑎
𝑑𝑑𝑑𝑑

=  −𝛽𝛽𝑒𝑒𝑎𝑎 + 𝑒𝑒𝑐𝑐𝑎𝑎 + 𝑟𝑟2𝑑𝑑𝑑𝑑𝑎𝑎,𝑒𝑒𝑎𝑎�𝑑𝑑𝑓𝑓� = 𝑒𝑒𝑎𝑎
𝑓𝑓 

 

The values of Ta, Na, La, and Ca are the adjoint values of T, N, L, C from the ODE 

model discussed in 1.1.2. The Explicit Euler method is applied in reverse to this set of 

equations, where we start from tn and step down in equal intervals to t0. This gives adjoint 

values of the model variables at all the points [tn, ….,t0]. Data obtained from the forward 

solver and the reverse solver will be used in the NCG algorithm. 

2.2.3 Nonlinear Conjugate Gradient Algorithms 

 The primary optimization technique used for parameter estimation is outlined in the 

functional to be minimized below. We use the NCG method proposed by Dai and Yuan 

[5].  

𝜽𝜽∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜽𝜽>0𝐽𝐽(𝜽𝜽)

≔  ��
𝛼𝛼𝑇𝑇
2

(𝑑𝑑(𝑑𝑑𝑖𝑖) − 𝑑𝑑𝑖𝑖)2 +  
𝛼𝛼𝑁𝑁
2

(𝑐𝑐(𝑑𝑑𝑖𝑖) − 𝑐𝑐𝑖𝑖)2 +
𝛼𝛼𝐿𝐿
2

(𝑑𝑑(𝑑𝑑𝑖𝑖) − 𝑑𝑑𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

+
𝛼𝛼𝐶𝐶
2

(𝑒𝑒(𝑑𝑑𝑖𝑖) − 𝑒𝑒𝑖𝑖)2� + ‖𝜽𝜽‖𝐿𝐿2
2  

 

The α values in the formula are obtained by using an Armijo Line-search method. 

The values of Ti, Ni, Li, Ci, are from the given data while Ti(t), Ni(t), Li(t), Ci(t), are acquired 

using the forward solver. The optimization is subject to the following constraint: 

∇θJ(t, θ) = �
𝛿𝛿𝐽𝐽
𝛿𝛿𝑑𝑑

(𝑑𝑑,𝜃𝜃),
𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝛿𝛿

(𝑑𝑑, 𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑝𝑝

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑘𝑘

(𝑑𝑑,𝜃𝜃)
𝛿𝛿𝐽𝐽
𝛿𝛿𝑞𝑞

(𝑑𝑑, 𝜃𝜃)� = 0 

 



 

7 

The algorithm for NCG optimization for our minimization problem is given below: 

(1) Start  

(2) Input: initial approximation θ0.  

(3) Evaluate d0 = −∇θ J(t, θ0)  

(4) Index k = 1, maximum k = kmax = (50), tolerance = tol =(10−5 ).  

(5) While (k < kmax) do  

(6) Compute αk-1 using the Armijo line-search algorithm.  

(7) Set θk = θk-1 + αk-1 dk-1  

(8) Compute gk = ∇θJ(t, θk).  

(9) Compute βk-1 using Dai-Yuan formula [5].  

(10) Set dk = −gk + βk-1 dk-1 .  

(11) If ||∇θJ(t, θk)|| < tol or k = kmax, terminate loop.  

(12) Set k = k + 1.  

(13) End while.  

(14) If ||∇θJ(t, θk)|| < tol, then print θk as the minimum else convergence not achieved.  

(15) Stop 

Next, we outline the line search algorithm: 

(1) Start  

(2) Input: initial approx. α k−1 = 1, c = 0.4, θk-1 , ∇θJ(t, θk-1).  

(3) Index j = 0, maximum j = jmax = (10)  

(4) While (j < jmax) do  

(5) Compute d1 = J(θk-1 – αk-1∇θJ(t, θk-1)) 

(6) Compute d2 = J(θk-1) – cαk-1||∇θJ(t, θk-1)||2 
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(7) If d1 ≤ d2, return αk-1 and terminate loop.  

(8) αk-1 = αk-1/2  

(9) Set j = j + 1.  

(10) End while.  

(11) If j = jmax, then return αk-1 = 0.  

(12) Stop 

 The NCG algorithm gives us a result of an optimal parameter set θ*. The Python 3 

code used for the NCG algorithm is given in the appendices. 

2.2.4 Sensitivity Analysis 

 A study of the uncertainty of the parameter values is important, as the effect of the 

model parameters on the outputs need to be understood. Sensitivity analysis follows an 

uncertainty analysis as it helps allocate the outputs of the model to input sources. 

Uncertainty and sensitivity analysis ranks the parameters in the magnitude by which they 

contribute to the inaccuracy of the outputs. We make use of the Latin Hypercube Sampling 

(LHC) scheme and Partial Rank Correlation Coefficient Analysis (PRCC) [6]. Latin 

Hypercube Sampling generates a random set of parameter values such that each parameter 

is set to follow a normal distribution with a 10% standard deviation. Each of these 

distributions are divided into intervals of equal probability, and these intervals are sampled 

once without replacement so that the entire range for each parameter is explored. PRCC 

analysis involves rank transforming the LHC matrix and then partial correlation on the rank 

transformed data from the matrix. The significance of the rank assigned to each parameter 

is determined through the calculated p-value. If the p-value is less than the chosen level of 
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significance, then the partial rank correlation coefficient is considered to be significant 

implying that the parameter is sensitive.
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CHAPTER 3 

NUMERICAL RESULTS 

3.1 Test Case 

We consider a test case with a true parameter set and synthetic data. This data is 

used for the NCG algorithm applied on the ODE system of equations. A 5D interpolation 

is performed to obtain the data function at all the points in the interval [t1, ….,tn]. We used 

the true parameter set θ = (1.1, 1.6, 1.0, 1.0, 0.1, 1.0) for our test case. The time interval is 

chosen to be t = [0,30] with N = 10 steps. The initial guess of the parameter set is 

(0.1,0.1,0.1,0.1,0.1,0.1). 

3.1.1 Results 

The optimal parameter set obtained for the above test case is θ* = (2, 1.5, 0.7, 1.8, 

0.4, 1.6). The results of the sensitivity analysis are below. 

Table 3.1: Sensitivity analysis of test case 

Parameter p-value PRCC value 

d 6.3e-8 -0.77 

l 1e-27 0.99 

s 7e-6 0.72 

p 0.058 -0.07 

k 0.70 -0.34 

q 0.07 0.18 
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Figure 3.1: Evolution of T, N, L, C with true (red) and optimal (blue) parameter set 

  

The plots show the ODE system estimated parameters show similar evolution of T, 

N, L, and C with respect to time. This shows that the optimal parameter set predicted is 

reasonably accurate. The p-values of the parameters show that d, l, and s are the most 

sensitive parameters, with the PRCC values showing that l is more sensitive that d and s. 
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CHAPTER 4 

CONCLUSION 

Numerical optimization techniques have been utilized to estimate patient specific 

parameters, which are present as coefficients of the governing system of ODEs previously 

discussed. The Dai-Yuan nonlinear conjugate gradient optimization was used to obtain the 

optimal parameter set. A test case was considered by generating data from a true parameter 

set. The forward solver applied on the optimal parameter set and the true parameter set 

have comparable characteristics, showing that the parameters can be predicted with high 

accuracy. This shows that parameter estimation is a viable cost-effective alternative to 

clinical testing to measure the parameters. A future direction to further this work would be 

to find optimal drug dosages for individual cases. This would provide a mechanism where 

we are able to propose individual treatment for colon cancer. This could significantly 

reduce the number of colon-cancer related deaths. Another direction of further research 

would be to improve the parameter estimation technique by exploring other frameworks of 

colon cancer that may better model the system. Improving the accuracy of parameter 

estimation may provide more optimal treatment strategies.
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APPENDIX A 

PYTHON SCRIPT OF OPTIMIZATION ALGORITHM
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The Python 3 script used to perform the algorithms outlined in chapter 2 are provided 
below. 
 

1. Parameters 
 
import numpy as np 
import math 
 
def parameters(): 
     
    a = 0.531; 
    b = 0.021; 
    c = 5.2*pow(10,-9); 
    e = 0.11; 
    f = 0.01; 
    j = 1.245*pow(10,-4); 
    m = 5*pow(10,-3); 
    r1 = 5.2*pow(10,-2); 
    r2 = pow(10,-5); 
    alpha = 0.18; 
    beta = 6.3*pow(10,-3); 
     
     
    # No. of time interval points 
    Nt = 200; 
    t = np.linspace(0, 20, num = Nt, endpoint=True) 
    step = t[2]-t[1]; 
    step = (1-math.exp(-50*step))/50 
 
    # Regularization parameter 
    nu = 0.001; 
     
    return a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu 
 
 

2. Forward Model 
 
import numpy as np 
import math 
 
from parameters import parameters 
 
 
a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters() 
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def forward_model(X,theta): 
    # Y will be the matrix of F(X) 
    Y=np.zeros(4) 
    #reshaping to make it a column vector 
    Y=Y.reshape((4,1)) 
     
    d = theta[0]; 
    l = theta[1]; 
    s = theta[2]; 
    p = theta[3]; 
    k = theta[4]; 
    q = theta[5]; 
     
    #calculating D from given values to make the following line less bulky 
    
    #Individually writing each equation in F(x) 
    T = X[0,0] 
    N = X[1,0] 
    L = X[2,0] 
    C = X[3,0] 
     
    divL_T = L/T 
    #D_mul = (math.pow(divL_T,l))/(math.pow(divL_T,l)+s) 
    D_mul = (d * pow(divL_T,l))/(4*s*pow(10,-3)*pow(200,l) + pow(divL_T,l)); 
 
     
     
    Y[0,0] = a * T *( 1 - b * T ) - c * N * T - D_mul * T; 
    Y[1,0]= e * C - f * N - p * pow(10,-10) * N * T; 
    Y[2,0]= m*L + (j * T * L)/(k+T) -  q *pow(10,-8)* L * T + (r1 * N + r2 * 
C)*T; 
    Y[3,0]= alpha - beta * C; 
     
    return Y 
 
 

3. Forward Solver 
 
import numpy as np 
 
 
from forward_model import forward_model 
from parameters import parameters 
 
 
a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters() 
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def forward_solver(theta): 
 
  #-----------------------------------Zeros_vector---------------------------- 
  # Values of T,N,L,C at t = 0 
 
 T_0= 1.5 
 N_0= 1.0 
 L_0= 1.0 
 C_0= 1.0 
 
  
 X = np.array([T_0,N_0,L_0,C_0]) 
 X = X.reshape(4,1) # Transforming X to a column vector 
 
 sol = np.zeros(4) 
 sol = sol.reshape((4,1)) 
 sol = np.hstack((sol,X)) 
 sol = np.delete(sol,0,axis=1) 
 
  
 
 
 #------------------------------Explicit Euler----------------------------- 
 for i in range(1,Nt): 
     X = X + np.multiply(step , forward_model(X,theta)) 
     sol = np.hstack((sol,X)) 
  
 
 total = np.vstack((t,sol)) 
 f = open("forward_sol.txt","w") 
 np.savetxt(f,total,delimiter=' ') 
 f.close() 
 
 return sol 
    
 
#data = np.delete(data,0,axis=1) 
 
#print(data) 
     
 
# # #-----------------------------------Plotting----------------------------- 
# plt.plot(t,sol[0]) 
# plt.plot(t,sol[1]) 
# plt.plot(t,sol[2]) 
# plt.plot(t,sol[3]) 
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# total = np.vstack((t,sol)) 
# f = open("explicit_sol.txt","w") 
# np.savetxt(f,total,delimiter=' ') 
# f.close() 
 
 
# plt.xlabel('t') 
# plt.ylabel('sol') 
# plt.title("Solution using explicit Eulers method") 
 

4. Adjoint Model 
 
import numpy as np 
import math 
 
from parameters import parameters 
 
 
a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters() 
 
 
 
def adjoint_model(X,i,f_sol,f_data,theta): 
   # Y will be the matrix of F(X) 
 
    d = theta[0]; 
    l = theta[1]; 
    s = theta[2]; 
    p = theta[3]; 
    k = theta[4]; 
    q = theta[5]; 
 
    Y = np.zeros(4)                                    
    Y = Y.reshape((4,1))    
                           
    T_a = X[0,0] 
    N_a = X[1,0] 
    L_a = X[2,0] 
    C_a = X[3,0] 
 
    # Forward solution at the time point t[i] 
     
    T = f_sol[0,i] 
    N = f_sol[1,i] 
    L = f_sol[2,i] 
    C = f_sol[3,i] 
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    # Data at the time point t[i] 
    T_d = f_data[0,i] 
    N_d = f_data[1,i] 
    L_d = f_data[2,i] 
    C_d = f_data[3,i] 
     
    t_div0 = (d*s*l*(L**l)*(T**l)*T_a)/((s*(T**l)+(L**l))**2) 
    t_div1 = -(d*L**l)/(4*s*pow(10,-3)*pow(200,l) * T**l + L**l) 
     
    t_div2 = (k*L*L_a)/(k+T)**2 
     
    dT_a = -a*b*T*T_a + a*(1-b*T)*T_a - c*N*T_a + t_div0+ t_div1 - p* 
pow(10,-10) * N *N_a + j*t_div2 - q*pow(10,-8)*L*L_a + (r1*N + r2*C)*L_a    
    #np.negative(dT_a) 
    Y[0,0] = dT_a - (T-T_d) 
     
    dN_a = -f*N_a  - p*T*N_a -  c*T*T_a + r1*T*L_a 
    #np.negative(dN_a) 
    Y[1,0] = dN_a - (N-N_d) 
     
     
     
     
    L_div = (l*(L**(1-l)) * (s*(T**l)))/((s*(T**l) + L**l)**2) 
     
    dL_a = m*L_a + j*((T*L_a)/(k+T)) - q*T*L_a + d*T*T_a*L_div 
    #np.negative(dL_a) 
    Y[2,0] = dL_a - (L-L_d) 
     
     
     
    dC_a = -beta*C_a + e*N_a + r2*T*L_a 
    #np.negative(dC_a) 
    Y[3,0] = dC_a - (C-C_d) 
    
     
    return Y 
 
 
 

5. Adjoint Solver  
import numpy as np 
 
from adjoint_model import adjoint_model 
from parameters import parameters 
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a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters() 
 
def adj_solver(f_sol,f_data,theta): 
 
 # Terminal condition 
 T_aN = -(f_sol[0,Nt-1]-f_data[0,Nt-1]) 
 N_aN = -(f_sol[1,Nt-1]-f_data[1,Nt-1]) 
 L_aN = -(f_sol[2,Nt-1]-f_data[2,Nt-1]) 
 C_aN = -(f_sol[3,Nt-1]-f_data[3,Nt-1]) 
 
 
 
 X = np.array([T_aN, N_aN,L_aN,C_aN]) 
 X = X.reshape((4,1)) 
 
 result = np.zeros(4) 
 result = result.reshape((4,1)) 
 
 result = np.hstack((result,X)) 
 
 
 
 for i in range(Nt-1,0,-1): 
     X = X + np.multiply(step, adjoint_model(X,i-1,f_sol,f_data,theta)) 
     result = np.hstack((result,X)) 
     
 result = np.delete(result,0,axis=1) 
 
 total = np.vstack((t,result)) 
 f = open("adjoint_sol.txt","w") 
 np.savetxt(f,total,delimiter=' ') 
 f.close() 
 return result 
                 
 # print(result) 
 
 
 
 # total = np.vstack((t,result)) 
 # #print("total:",total) 
 

6. NCG Algorithm 
import numpy as np 
import math 
from numpy import linalg 
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from parameters import parameters 
from forward_solver import forward_solver 
from adj_solver import adj_solver 
 
 
a, b, c, e, f, j, m, r1, r2, alpha, beta, t, Nt, step, nu = parameters() 
 
def gradient(f_sol,a_sol,theta): 
 
    d = theta[0]; 
    l = theta[1]; 
    s = theta[2]; 
    p = theta[3]; 
    k = theta[4]; 
    q = theta[5]; 
 
    # grad(J) matrix 
    grad = np.zeros([6]) 
 
    for i in range(0,Nt): 
         
        # Forward solution at t[i] 
        T = f_sol[0,i] 
        N = f_sol[1,i] 
        L = f_sol[2,i] 
        C = f_sol[3,i] 
         
        # Adjoint solution at t[i] 
        T_a = a_sol[0,i] 
        N_a = a_sol[1,i] 
        L_a = a_sol[2,i] 
        C_a = a_sol[3,i] 
         
         
        LT_div = L/T 
         
        LT_div_exp = LT_div**l 
         
        #partial derviative J/d 
        grad[0] = grad[0] + (LT_div_exp * T * T_a) / (4*s*pow(10,-3)*pow(200,l) + 
LT_div_exp) + nu*d 
        grad[0] = grad[0] * step  
 
        #partial derviative J/l 
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        grad[1] = grad[1] + (d * s * T_a * (LT_div_exp * math.log(LT_div) + 
4*s*pow(10,-3)*pow(200,l) * math.log(200)))/ (4*s*pow(10,-3)*pow(200,l) + 
LT_div_exp ) **2 + nu*l 
        grad[1] = grad[1] * step  
 
        #partial derviative J/s 
        grad[2] = grad[2] -(d * LT_div_exp * T * T_a * 4*pow(10,-3)*pow(200,l))/ 
(4*s*pow(10,-3)*pow(200,l) + LT_div_exp)**2 + nu*s 
        grad[2] = grad[2] * step  
 
        #partial derviative J/p 
        grad[3] = grad[3] + pow(10,-10)*N * N_a * T + nu*p 
        grad[3] = grad[3] * step 
 
        #partial derivative J/k 
        grad[4] = grad[4] + (j * L * L_a * T)/ (k + T)**2 + nu*k 
        grad[4] = grad[4] * step  
 
        #partial derivative J/q 
        grad[5] = grad[5] + pow(10,-8)*L * L_a * T + nu*q 
        grad[5] = grad[5] * step  
 
    return grad 
     
 
 
# Functional 
def J(f_sol,f_data,theta): 
 
    d = theta[0]; 
    l = theta[1]; 
    s = theta[2]; 
    p = theta[3]; 
    k = theta[4]; 
    q = theta[5]; 
 
    result = 0.0 
     
    for k in range(0,Nt): 
        result = result + (f_sol[0,k] - f_data[0,k])**2 + (f_sol[1,k] - f_data[1,k])**2 
+ (f_sol[2,k] - f_data[2,k])**2 + (f_sol[3,k] - f_data[3,k])**2 
 
    regularization_term = nu*(d**2 + l**2 + s**2 + p**2 + k**2 + q**2) 
    result = 0.5*(result*step + regularization_term) 
 
    return result 
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def armijo_line_search(theta,grad,des,f_sol,f_data): 
     
    #index 
    j = 0 
     
    #max 
    j_max = 10 
 
    alpha = 0.5 
    c = 0.25 
     
    while j < j_max: 
        theta_new = theta + alpha*des 
        f_new = forward_solver(theta_new) 
 
        d1 = J(f_new,f_data,theta_new) 
        d2 = J(f_sol,f_data,theta) + c * alpha * np.inner(grad,des) 
         
        if d1 <= d2: 
            return alpha         
            quit() 
        else: 
            alpha = alpha/2.0 
            j = j+1 
         
    if j == j_max: 
        alpha = 0.0 
        return alpha 
 
 
 
def Fletcher_Reeves(grad_old,grad): 
 
    vec = grad_old 
    vec2 = grad 
     
    #numerator = np.dot(vec,vec2) 
    numerator = linalg.norm(vec2)**2 
     
    #denominator = np.dot(vec2,vec2) 
    denominator = linalg.norm(vec)**2 
    result = numerator/denominator 
     
    return result 
 
def Dai_Yuan(grad_old,grad,des): 
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    vec = grad_old 
    vec2 = grad 
     
    #numerator = np.dot(vec,vec2) 
    numerator = linalg.norm(grad)**2 
     
    #denominator = np.dot(vec2,vec2) 
    denominator = np.inner(des,grad-grad_old) 
    result = numerator/denominator 
     
    return result 
     
 
 
# Starting the NCG algorithm             
     
def NCG(theta,f_data): 
 
    #index 
    k = 0 
 
    #max 
    k_max = 50 
 
    #tolerance 
    tol = 10**(-5) 
 
    f_sol = forward_solver(theta) 
    a_sol = adj_solver(f_sol,f_data,theta) 
    des = np.zeros([6]) 
 
    # Computing the gradient 
    grad = gradient(f_sol,a_sol,theta) 
    grad_norm = linalg.norm(grad) 
    des0 = -grad 
 
    des = des0 
 
 
 
    while k < k_max: 
 
        # Obtaining alpha through the line search algorithm 
        alpha = armijo_line_search(theta,grad,des,f_sol,f_data) 
        if (alpha == 0): 
            print ('Line search fails') 
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            break 
 
        # Updating the parameter 
        theta_old = theta 
         
        theta = theta_old + alpha * des 
         
 
        # Projection Step 
        theta[0] = min(2,max(theta[0],0)) 
        theta[1] = min(2,max(theta[0],0)) 
        theta[2] = min(3,max(theta[0],0)) 
        theta[3] = min(1.5,max(theta[0],0)) 
        theta[4] = min(0.5,max(theta[0],0)) 
        theta[5] = min(1.5,max(theta[0],0)) 
 
 
        # Old gradient 
        grad_old = grad 
 
        # New updates 
 
        f_sol = forward_solver(theta) 
        a_sol = adj_solver(f_sol,f_data,theta) 
 
        # Computing the new gradient 
        grad = gradient(f_sol,a_sol,theta) 
 
         
 
        # Updating the conjugate directions 
        #beta = Fletcher_Reeves(grad_old,grad) 
        beta = Dai_Yuan(grad_old,grad,des) 
 
         
 
        des_old = des; 
        des = -grad + np.multiply(beta,des_old) 
 
        grad_norm = linalg.norm(grad) 
 
        print('k = ',k, ', Alpha = ', alpha, ', Iterate value  = ', theta, ', Gradient Norm = 
',grad_norm, 'J = ', J(f_sol,f_data,theta)) 
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        if (linalg.norm(grad) < tol or k == k_max): 
            exit() 
 
        k += 1 
 
     
    return theta 
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