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ABSTRACT 

 

CREATING AND COMPARING SEATED POSTURE CLASSIFICATION  

MODELS USING MACHINE LEARNING AND COMPUTER VISION 

 

Rithik Kapoor, B. S. Computer Science 

 

The University of Texas at Arlington, 2022 

 

Faculty Mentor: Shawn Gieser 

The pandemic has led to a huge increase in the number of people teleworking these 

days. The growing time people spend in front of the computer elevates the risk of them 

developing bad posture habits that in the long run can result in health issues. It therefore 

becomes highly important to develop methods to monitor and correct the posture of people 

now adjusting to this new lifestyle of teleworking. Although there are many posture 

correction apps on the Google play store, almost all of them involve using some kind of 

expensive tracker that is placed on the body and are not widely accessible. To fix this 

problem, multiple posture detection models were developed to identify bad posture. We 

further compared the performances of these models with each other to find the model that 

performs better than the others. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The year 2019  resulted in a big change for people all over the world. With the rise 

of COVID cases, companies and governments started encouraging employees to work 

remotely to prevent the spread of the virus. According to an e-survey, 48% of the 

participants worked at home at least some time during the COVID pandemic and 33.7% 

worked exclusively from home. This is a huge jump from the one in twenty people that 

teleworked regularly in 2018 [2]. Among these employees, many of them were  

teleworking for the first time and did not have the experience of spending long hours in 

front of a screen or the knowledge of how one should maintain proper posture. It therefore 

becomes highly important to develop and utilize techniques to analyze posture to prevent 

health issues among the millions in the current generation adopting this new lifestyle. The 

research team decided to define good, seated posture as a posture which fulfills the 

following properties:  

• The spine is approximately perpendicular to the thighs and is straight throughout.  

• The neck is not hunched forward.  

• The shoulders are not protracted forward.  

• The body’s weight is distributed equally and not to just one side.
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On the other hand, any posture that does not follow this alignment was considered 

bad posture. Bad posture can result in numerous health issue such as severe low/middle 

back pain, moderate discomfort in eyes/neck/head, discomfort in the upper back/shoulders, 

and elevated stress levels [5]. Additionally, bad posture can cause long term health issues 

like injuries and spine curvature [6]. Identifying bad posture early can prevent a lot of these 

health problems that in the long term, may result in extreme discomfort and long-term 

damage. In recent years, a lot of progress has been made in pose estimation models that 

can predict various key points on the body with a high accuracy. Systems like OpenPose 

and BlazePose use Machine Learning and Deep Learning techniques to detect parts on the 

human body like eyes, shoulders, hips, etcetera [3] [4]. These models can further be 

leveraged to classify various poses such as good and bad posture as done in this paper. 

Although there are other posture correction apps on the market, almost all of them involve 

using some kind of expensive tracker that is placed on the body (like Upright) and do not 

seem to use machine learning and computer vision [7].  

1.1.1 Honors Project Responsibilities 

As a part of the capstone project, I worked on the additional component to create 

and compare machine learning models for seated posture detection. To accomplish this, I 

created nine models using various machine learning algorithms and by selecting different 

sets of key points each time. The machine learning algorithms I used were K-Nearest 

Neighbors (KNN), Neural Networks (NN), and XGBoost. Each machine learning model 

was trained on three sets of key points that were: “All Key points” that used all 33 key 

points, “No Limbs” that used all key points except of the limbs, and “Remove Z” that 

dropped the experimental z-values which represent the depth of a key point. I then tested 
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each of the models to find the accuracy of detecting posture, precision of detecting good 

posture, and precision of detecting bad posture to compare the performances of each of the 

models to find the best model. 

1.1.2 Honors Project Tools 

The tools I used while doing the Honors project were Java, Python, Tensorflow, 

and Mediapipe. All the machine learning models were created and tested using Python. 

Python has many libraries like Pandas, Numpy, Scikit Learn, and Matplotlib that improve 

productivity by providing commonly used functionalities needed in data science. The 

Tensorflow library was used to create the neural network models and convert them to 

TFlLite models that can run on a phone. The Mediapipe library provided a pretrained pose 

estimation model that allowed the extraction of 33 key points from a person in an image. 

Java was needed to develop our Android app and link together all the functionalities into a 

package that the user can easily use. 

1.2 Value Proposition 

Although there are other posture correction systems, almost all of them involve 

using some kind of expensive tracker that is placed on the body and do not seem to use 

machine learning and computer vision. Unlike these systems, the Machine Learning 

models developed as part of this capstone project only need a simple camera and can further 

be implemented in a variety of devices like phones, laptops, and desktops to help people 

maintain a good posture no matter where they go. 

The models developed as part of this Capstone Project exceed in performance 

compared to other general models like Convolutional Neural Networks (CNNs) in terms 

of both accuracy and speed. This will enable people without specialized hardware to run 
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the model on smaller devices like phones, tablets, and laptops. Another significant 

advantage of the models developed in this capstone project is that they can detect good/bad 

posture from a variety of camera angles instead of just the front or side angle. Finally, the 

comparison of models created in this capstone project also provide insight into other 

researchers about the pros and cons of different Machine Learning algorithms when used 

in different scenarios.
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CHAPTER 2 

TECH STACK 

2.1 Android Studio & Java 

Initially, the research team and I were deciding whether to develop the application 

for android or iOS users. After analyzing multiple factors, the research team concluded that 

android was the better option than iOS. iOS is limited to iPhone and iPad; however Android 

is used as OS for a wide array of manufacturers. Unlike iOS, Android is a widely accepted 

platform in the world, which constitutes a major component in the market share. In 

addition, Android offers a lot of customization features with widgets and shortcuts while 

iOS only supports a few widgets. After evaluating all these key aspects, I decided to go 

ahead with Android OS as it will benefit more people. We had to use java as the 

programming language and Android Studio as framework to seamlessly see the changes 

on the phones. Java is a great language to use as it has multiple third-party libraries to speed 

up and simplify our development. In addition, Android Studio, is an integrated developer 

environment and an editor which makes it a one stop solution to working in the android 

eco system.  

Further, Java is a compiled language instead of an interpreted language, like others, 

which makes it much faster. In this application, memory management has been taken care 

of automatically, which is mainly possible with the support of Java.  This helps us ensure 

that the app does not occupy much space in the user’s device.
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2.2 Tensorflow 

 TensorFlow is an open-source library created for Python by Google Brain Team. 

TensorFlow compiles many different algorithms and models together, enabling the user 

to implement deep neural networks for use in tasks like image recognition/classification 

and natural language processing [8].  Object detection is a computer vision technique in 

which the software system can detect, locate, and trace the object from a given image or 

video [9]. The special attribute about object detection is that it identifies the class of 

object (person, part of body, chair, etc.) and its location-specific coordinates in the given 

image. Tensorflow detects objects by generating small segments of an image, and then 

feature extraction is carried out for each segmented rectangular area to predict whether 

the rectangle contains a valid object or not. In this way, I followed a similar approach to 

build on the ML Vision Kit Application to figure out the co-ordinates of the body. I have 

utilized the Tensorflow object detection APi to assist in constructing, training, and 

deploying object detection models. With this platform I could bundle together machine 

learning and deep learning models with a front-end design conveniently.
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CHAPTER 3 

METHODOLOGY 

The system to detect good and bad posture in this paper is composed of two main 

components: the posture estimation system and the posture classification system. For each 

frame in a video input stream, the system uses the following steps to detect good/bad 

posture in that frame: 

1. Detect 33 body key points using BlazePose.  

2. Normalize key points by translation and scale.  

3. Classify picture as good or bad posture using normalized key points via ML/DL 

model.  

In the following subsections each one of the steps will be explained in detail. 

3.1 Posture Estimation Using BlazePose 

The tool used in this paper for extracting the key points from the body in the picture 

is BlazePose. BlazePose is a lightweight convolutional neural network architecture for 

human pose estimation that is tailored for real-time inference on mobile devices [3]. It 

detects 33 different key points on the human body as shown in Figure. 1. Figure 2 shows 

how it detects key points on the picture of a real human. The model consists of two main 

components: a pose detector and pose tracker. The pose detector is actually a fast-face 

detector that acts as a proxy for a person detector. The face is used as the primary feature 

for the pose detector because the face is the strongest signal for the neural network to 

predict the position of the torso. By detecting the face first, BlazePose can run at fast, real-
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time speeds since it can then predict information about the pose’s alignment parameters 

such as the middle point between hips and the size of the circle circumscribing the whole 

person before moving on to detecting the key points.  

The pose tracker further uses the alignment parameters predicted before to detect 

the 33 key point coordinates in the picture and a refined area of interest to search in the 

next frame to increase efficiency. When compared to other pose estimation models, 

BlazePose was found to be 25-75 times faster on a single mid-tier phone Central Processing 

Unit (CPU) as compared to commonly used model OpenPose. Additionally, BlazePose can 

run at over 30 frames per second on a Google Pixel 2 phone [3]. Leveraging BlazePose is 

critical to make the posture classification system highly accessible and allow users to use 

it on any device that does not have specialized hardware like a laptop/mobile. 

 

 

Figure 3.1: Key Points Detected by BlazePose Model 
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Figure 3.2: Key Points Detected by BlazePose on Real Person 

 

3.2 Creating Datasets for Training and Testing 

For creating the dataset, videos of eleven different people were taken, out of which 

six were used for the training dataset and five were used for the test dataset. Each 

participant was asked to sit in a good posture as described above and then asked to sit in 

their usual bad posture. A video covering a variety of angles was taken in between for each 

of their good/bad postures. These videos were further sliced frame by frame and analyzed 

by BlazePose to extract the coordinates of the key points from the frame. Next, the 

coordinates were normalized according to the normalization process explained below. 

Finally, these coordinates were saved in a CSV file to provide a better format to train 

ML/DL models. A total of 7,666 frames were analyzed to make up the training dataset and 

5,898 frames to make up the test dataset. 
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3.3 Normalizing the Key Points Coordinates in the Dataset 

For each frame, the translation and scale of all the key point coordinates were 

normalized. To normalize the translation of the pose, first the coordinates of the middle 

point 𝑀𝑀 that lies between left hip 𝐿𝐿 and right hip 𝑅𝑅 were found. This gives us 𝑀𝑀 = (𝑚𝑚1 

𝑚𝑚2 m3) = 1/2(𝐿𝐿 + 𝐻𝐻) and subtract all other key point coordinates by the coordinates of 𝑀𝑀. 

This moved the pose center to the origin. These steps can be represented by the following 

matrix operations where 𝑇𝑇, 𝑋𝑋, 𝐶𝐶 ∈ R33x3, 𝑋𝑋 is the original matrix containing the 𝑥𝑥, 𝑦𝑦 

coordinates of each coordinate, and T is the matrix normalized by translation.  

s  

Figure 3.3: Formula for Normalizing the Translation of Poses 

Finally, to normalize the scale of the pose, first, the maximum distance between 

any key point to the pose center 𝑀𝑀 is calculated. This distance is considered as the scaling 

factor for that particular human subject. Hence, all the body key point coordinates are 

divided by the calculated maximum distance which normalizes the scale of each pose 

resulting in all coordinate values between 0 to 1. The above steps can be represented by 

the following matrix operations: 
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Figure 3.4: Formula for Normalizing the Scale of Posture 

Here, 𝑇𝑇 is the matrix normalized by translation and 𝑁𝑁 is the final matrix normalized with 

respect to both translation and scale. 

3.4 Training the Machine Learning Models 

From the first phase, all body key points extracted from the image frames using 

BlazePose were normalized and stored in separate CSV files for each subject. The CSV 

files containing normalized data were only for training and testing purposes. Once the 

model was deployed, the extracted key points were classified in real-time and did not need 

to be stored anywhere. The pre-processed normalized body key points were used to train 

and compare three different sets of ML models: K-Nearest Neighbors (KNN), XGBoost, 

and Neural Networks (NN). For the KNN model, I used the 10 nearest neighbors with 

uniform weights for classification. For the XGBoost model, I used the tree booster with an 

eta (learning rate) of 0.3, and max depth of 6. Finally, for the Neural Network model, I 

used three hidden layers with 100 perceptrons each, a learning rate of 0.001, Relu as the 

activation function, Adam as the optimizer, and trained the model over 100 epochs.  

In addition to using different models, the combination of key points used for 

training was also varied. For the first case, all 33 body key points (All Key points) were 

used for training. Next, the models were trained excluding the key points from the limbs 
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(No Limbs). Finally, the experimental depth values (z-values) were dropped and only 𝑥𝑥 

and 𝑦𝑦 coordinates were used from all 33 key points to train the third set of models (Remove 

Z).
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CHAPTER 4 

RESULTS 

The results from each set of training for the three models can be found in Table 1. 

 

Table 4.1: Results of Different Module Comparison 

The best accuracy and precision were achieved with the Neural Network model 

using all key points at 98% accuracy. I also observed that I got a decent accuracy of 93% 

with the no limbs Neural Network model. This means that the posture detection algorithm 

could be sped up by just detecting 15 key points instead of the original 33. Finally, it was 

observed that removing the Z features does not have too much of an effect on the 

performance of the models and was in fact performing better in the case of the KNN model. 

This suggests that adding a depth sensor would not have benefited the models much and 

an (Red-Green-Blue) RGB camera should suffice for our purposes. All the above models 

appear to maintain a constant real time performance above 20 Frames-Per-Second (FPS) 

without any drop in accuracy on an i7-8750H laptop.
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The KNN model was further integrated in an Android app and achieved a real time 

performance of 7-9 FPS on a Samsung A10. On a laptop with an i7-8750H, the model’s 

performance improved to 25-28 FPS. This demonstrates that the posture system explained 

in this paper is accessible on everyday devices and does not require specialized hardware 

like Graphics-Processing-Units (GPUs). Example of the system classifying good and bad 

posture can been seen in Figure 4.2. 

 

Figure 4.1: NN Model Classification Results
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CHAPTER 5 

CONCLUSION 

I created nine models using various machine learning algorithms and by selecting 

different sets of key points each time. The machine learning algorithms used were K-

Nearest Neighbors (KNN), Neural Networks (NN), and XGBoost. For each machine 

learning model, the three sets of key points they were trained on were “All Key Points” 

that used all 33 key points, “No Limbs” that used all key points except of the limbs, and 

“Remove Z” that dropped the experimental z-values which represent the depth of a key 

point. I then tested each of the models and found that the Neural Network model using all 

33 key points performed the best with 98% accuracy. With people spending most of their 

time in front of a computer, it becomes highly important to maintain proper posture to 

avoid any long-term health issues. This is where the models come into play being fast, 

efficient, and able to provide real-time feedback. Creating these models for my capstone 

project further allowed me to find the best possible models that my team and I could use 

for our senior design project and really enhanced our project with its great performance.
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