
University of Texas at Arlington University of Texas at Arlington

MavMatrix MavMatrix

2022 Spring Honors Capstone Projects Honors College

5-2022

Creating and Comparing Seated Posture Classification Models Creating and Comparing Seated Posture Classification Models

Using Machine Learning and Computer Vision Using Machine Learning and Computer Vision

Rithik Kapoor

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2022

Recommended Citation Recommended Citation
Kapoor, Rithik, "Creating and Comparing Seated Posture Classification Models Using Machine Learning
and Computer Vision" (2022). 2022 Spring Honors Capstone Projects. 23.
https://mavmatrix.uta.edu/honors_spring2022/23

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2022 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2022
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2022?utm_source=mavmatrix.uta.edu%2Fhonors_spring2022%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2022/23?utm_source=mavmatrix.uta.edu%2Fhonors_spring2022%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Rithik Kapoor 2022

All Rights Reserved

CREATING AND COMPARING SEATED POSTURE

CLASSIFICATION MODELS USING MACHINE

LEARNING AND COMPUTER VISION

by

RITHIK KAPOOR

Presented to the Faculty of the Honors College of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

iii

ACKNOWLEDGMENTS

I would first like to start off by expressing my gratitude to Dr. Shawn Gieser for

being very supportive throughout the project. He has done a great job guiding my team and

making sure we have all the resources to ensure our project was a success.

I would also like to say thanks to my teammates Sri Subhash Pathuri and Dhruva

Malik for pulling through all those all-nighters with me and making sure our project came

out just how we envisioned it.

Finally, I would like to give my appreciation to Ms. Brown and the whole Honors

College for reading through all my submissions and giving detailed feedback on them.

May 1, 2022

iv

ABSTRACT

CREATING AND COMPARING SEATED POSTURE CLASSIFICATION

MODELS USING MACHINE LEARNING AND COMPUTER VISION

Rithik Kapoor, B. S. Computer Science

The University of Texas at Arlington, 2022

Faculty Mentor: Shawn Gieser

The pandemic has led to a huge increase in the number of people teleworking these

days. The growing time people spend in front of the computer elevates the risk of them

developing bad posture habits that in the long run can result in health issues. It therefore

becomes highly important to develop methods to monitor and correct the posture of people

now adjusting to this new lifestyle of teleworking. Although there are many posture

correction apps on the Google play store, almost all of them involve using some kind of

expensive tracker that is placed on the body and are not widely accessible. To fix this

problem, multiple posture detection models were developed to identify bad posture. We

further compared the performances of these models with each other to find the model that

performs better than the others.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS ... vii

LIST OF TABLES ... viii

Chapter

 1. INTRODUCTION ... 1

 1.1 Background .. 1

 1.1.1 Honors Project Responsibilities .. 2

 1.1.2 Honors Project Tools .. 3

 1.2 Value Proposition... 3

 2. TECH STACK ... 5

 2.1 Android Studio & Java... 5

 2.2 Tensorflow ... 6

 3. METHODOLOGY .. 7

 3.1 Posture Estimation Using BlazePose ... 7

 3.2 Creating Datasets for Training and Testing ... 9

 3.3 Normalizing the Key Points Coordinates in the Dataset 10

 3.4 Training the Machine Learning Models .. 11

 4. RESULTS .. 13

 5. CONCLUSION .. 15

vi

REFERENCES .. 16

BIOGRAPHICAL INFORMATION ... 18

 vii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Key Points Detected by BlazePose Model... 8

3.2 Key Points Detected by BlazePose on Real Person 9

3.3 Formula for Normalizing the Translation of Poses.. 10

3.4 Formula for Normalizing the Scale of Posture .. 11

4.1 NN Model Classification Results... 14

 viii

LIST OF ILLUSTRATIONS

Table Page

4.1 Results of Different Module Comparison .. 13

 1

CHAPTER 1

INTRODUCTION

1.1 Background

The year 2019 resulted in a big change for people all over the world. With the rise

of COVID cases, companies and governments started encouraging employees to work

remotely to prevent the spread of the virus. According to an e-survey, 48% of the

participants worked at home at least some time during the COVID pandemic and 33.7%

worked exclusively from home. This is a huge jump from the one in twenty people that

teleworked regularly in 2018 [2]. Among these employees, many of them were

teleworking for the first time and did not have the experience of spending long hours in

front of a screen or the knowledge of how one should maintain proper posture. It therefore

becomes highly important to develop and utilize techniques to analyze posture to prevent

health issues among the millions in the current generation adopting this new lifestyle. The

research team decided to define good, seated posture as a posture which fulfills the

following properties:

• The spine is approximately perpendicular to the thighs and is straight throughout.

• The neck is not hunched forward.

• The shoulders are not protracted forward.

• The body’s weight is distributed equally and not to just one side.

 2

On the other hand, any posture that does not follow this alignment was considered

bad posture. Bad posture can result in numerous health issue such as severe low/middle

back pain, moderate discomfort in eyes/neck/head, discomfort in the upper back/shoulders,

and elevated stress levels [5]. Additionally, bad posture can cause long term health issues

like injuries and spine curvature [6]. Identifying bad posture early can prevent a lot of these

health problems that in the long term, may result in extreme discomfort and long-term

damage. In recent years, a lot of progress has been made in pose estimation models that

can predict various key points on the body with a high accuracy. Systems like OpenPose

and BlazePose use Machine Learning and Deep Learning techniques to detect parts on the

human body like eyes, shoulders, hips, etcetera [3] [4]. These models can further be

leveraged to classify various poses such as good and bad posture as done in this paper.

Although there are other posture correction apps on the market, almost all of them involve

using some kind of expensive tracker that is placed on the body (like Upright) and do not

seem to use machine learning and computer vision [7].

1.1.1 Honors Project Responsibilities

As a part of the capstone project, I worked on the additional component to create

and compare machine learning models for seated posture detection. To accomplish this, I

created nine models using various machine learning algorithms and by selecting different

sets of key points each time. The machine learning algorithms I used were K-Nearest

Neighbors (KNN), Neural Networks (NN), and XGBoost. Each machine learning model

was trained on three sets of key points that were: “All Key points” that used all 33 key

points, “No Limbs” that used all key points except of the limbs, and “Remove Z” that

dropped the experimental z-values which represent the depth of a key point. I then tested

 3

each of the models to find the accuracy of detecting posture, precision of detecting good

posture, and precision of detecting bad posture to compare the performances of each of the

models to find the best model.

1.1.2 Honors Project Tools

The tools I used while doing the Honors project were Java, Python, Tensorflow,

and Mediapipe. All the machine learning models were created and tested using Python.

Python has many libraries like Pandas, Numpy, Scikit Learn, and Matplotlib that improve

productivity by providing commonly used functionalities needed in data science. The

Tensorflow library was used to create the neural network models and convert them to

TFlLite models that can run on a phone. The Mediapipe library provided a pretrained pose

estimation model that allowed the extraction of 33 key points from a person in an image.

Java was needed to develop our Android app and link together all the functionalities into a

package that the user can easily use.

1.2 Value Proposition

Although there are other posture correction systems, almost all of them involve

using some kind of expensive tracker that is placed on the body and do not seem to use

machine learning and computer vision. Unlike these systems, the Machine Learning

models developed as part of this capstone project only need a simple camera and can further

be implemented in a variety of devices like phones, laptops, and desktops to help people

maintain a good posture no matter where they go.

The models developed as part of this Capstone Project exceed in performance

compared to other general models like Convolutional Neural Networks (CNNs) in terms

of both accuracy and speed. This will enable people without specialized hardware to run

 4

the model on smaller devices like phones, tablets, and laptops. Another significant

advantage of the models developed in this capstone project is that they can detect good/bad

posture from a variety of camera angles instead of just the front or side angle. Finally, the

comparison of models created in this capstone project also provide insight into other

researchers about the pros and cons of different Machine Learning algorithms when used

in different scenarios.

 5

CHAPTER 2

TECH STACK

2.1 Android Studio & Java

Initially, the research team and I were deciding whether to develop the application

for android or iOS users. After analyzing multiple factors, the research team concluded that

android was the better option than iOS. iOS is limited to iPhone and iPad; however Android

is used as OS for a wide array of manufacturers. Unlike iOS, Android is a widely accepted

platform in the world, which constitutes a major component in the market share. In

addition, Android offers a lot of customization features with widgets and shortcuts while

iOS only supports a few widgets. After evaluating all these key aspects, I decided to go

ahead with Android OS as it will benefit more people. We had to use java as the

programming language and Android Studio as framework to seamlessly see the changes

on the phones. Java is a great language to use as it has multiple third-party libraries to speed

up and simplify our development. In addition, Android Studio, is an integrated developer

environment and an editor which makes it a one stop solution to working in the android

eco system.

Further, Java is a compiled language instead of an interpreted language, like others,

which makes it much faster. In this application, memory management has been taken care

of automatically, which is mainly possible with the support of Java. This helps us ensure

that the app does not occupy much space in the user’s device.

 6

2.2 Tensorflow

 TensorFlow is an open-source library created for Python by Google Brain Team.

TensorFlow compiles many different algorithms and models together, enabling the user

to implement deep neural networks for use in tasks like image recognition/classification

and natural language processing [8]. Object detection is a computer vision technique in

which the software system can detect, locate, and trace the object from a given image or

video [9]. The special attribute about object detection is that it identifies the class of

object (person, part of body, chair, etc.) and its location-specific coordinates in the given

image. Tensorflow detects objects by generating small segments of an image, and then

feature extraction is carried out for each segmented rectangular area to predict whether

the rectangle contains a valid object or not. In this way, I followed a similar approach to

build on the ML Vision Kit Application to figure out the co-ordinates of the body. I have

utilized the Tensorflow object detection APi to assist in constructing, training, and

deploying object detection models. With this platform I could bundle together machine

learning and deep learning models with a front-end design conveniently.

 7

CHAPTER 3

METHODOLOGY

The system to detect good and bad posture in this paper is composed of two main

components: the posture estimation system and the posture classification system. For each

frame in a video input stream, the system uses the following steps to detect good/bad

posture in that frame:

1. Detect 33 body key points using BlazePose.

2. Normalize key points by translation and scale.

3. Classify picture as good or bad posture using normalized key points via ML/DL

model.

In the following subsections each one of the steps will be explained in detail.

3.1 Posture Estimation Using BlazePose

The tool used in this paper for extracting the key points from the body in the picture

is BlazePose. BlazePose is a lightweight convolutional neural network architecture for

human pose estimation that is tailored for real-time inference on mobile devices [3]. It

detects 33 different key points on the human body as shown in Figure. 1. Figure 2 shows

how it detects key points on the picture of a real human. The model consists of two main

components: a pose detector and pose tracker. The pose detector is actually a fast-face

detector that acts as a proxy for a person detector. The face is used as the primary feature

for the pose detector because the face is the strongest signal for the neural network to

predict the position of the torso. By detecting the face first, BlazePose can run at fast, real-

 8

time speeds since it can then predict information about the pose’s alignment parameters

such as the middle point between hips and the size of the circle circumscribing the whole

person before moving on to detecting the key points.

The pose tracker further uses the alignment parameters predicted before to detect

the 33 key point coordinates in the picture and a refined area of interest to search in the

next frame to increase efficiency. When compared to other pose estimation models,

BlazePose was found to be 25-75 times faster on a single mid-tier phone Central Processing

Unit (CPU) as compared to commonly used model OpenPose. Additionally, BlazePose can

run at over 30 frames per second on a Google Pixel 2 phone [3]. Leveraging BlazePose is

critical to make the posture classification system highly accessible and allow users to use

it on any device that does not have specialized hardware like a laptop/mobile.

Figure 3.1: Key Points Detected by BlazePose Model

 9

Figure 3.2: Key Points Detected by BlazePose on Real Person

3.2 Creating Datasets for Training and Testing

For creating the dataset, videos of eleven different people were taken, out of which

six were used for the training dataset and five were used for the test dataset. Each

participant was asked to sit in a good posture as described above and then asked to sit in

their usual bad posture. A video covering a variety of angles was taken in between for each

of their good/bad postures. These videos were further sliced frame by frame and analyzed

by BlazePose to extract the coordinates of the key points from the frame. Next, the

coordinates were normalized according to the normalization process explained below.

Finally, these coordinates were saved in a CSV file to provide a better format to train

ML/DL models. A total of 7,666 frames were analyzed to make up the training dataset and

5,898 frames to make up the test dataset.

 10

3.3 Normalizing the Key Points Coordinates in the Dataset

For each frame, the translation and scale of all the key point coordinates were

normalized. To normalize the translation of the pose, first the coordinates of the middle

point 𝑀𝑀 that lies between left hip 𝐿𝐿 and right hip 𝑅𝑅 were found. This gives us 𝑀𝑀 = (𝑚𝑚1

𝑚𝑚2 m3) = 1/2(𝐿𝐿 + 𝐻𝐻) and subtract all other key point coordinates by the coordinates of 𝑀𝑀.

This moved the pose center to the origin. These steps can be represented by the following

matrix operations where 𝑇𝑇, 𝑋𝑋, 𝐶𝐶 ∈ R33x3, 𝑋𝑋 is the original matrix containing the 𝑥𝑥, 𝑦𝑦

coordinates of each coordinate, and T is the matrix normalized by translation.

s

Figure 3.3: Formula for Normalizing the Translation of Poses

Finally, to normalize the scale of the pose, first, the maximum distance between

any key point to the pose center 𝑀𝑀 is calculated. This distance is considered as the scaling

factor for that particular human subject. Hence, all the body key point coordinates are

divided by the calculated maximum distance which normalizes the scale of each pose

resulting in all coordinate values between 0 to 1. The above steps can be represented by

the following matrix operations:

 11

Figure 3.4: Formula for Normalizing the Scale of Posture

Here, 𝑇𝑇 is the matrix normalized by translation and 𝑁𝑁 is the final matrix normalized with

respect to both translation and scale.

3.4 Training the Machine Learning Models

From the first phase, all body key points extracted from the image frames using

BlazePose were normalized and stored in separate CSV files for each subject. The CSV

files containing normalized data were only for training and testing purposes. Once the

model was deployed, the extracted key points were classified in real-time and did not need

to be stored anywhere. The pre-processed normalized body key points were used to train

and compare three different sets of ML models: K-Nearest Neighbors (KNN), XGBoost,

and Neural Networks (NN). For the KNN model, I used the 10 nearest neighbors with

uniform weights for classification. For the XGBoost model, I used the tree booster with an

eta (learning rate) of 0.3, and max depth of 6. Finally, for the Neural Network model, I

used three hidden layers with 100 perceptrons each, a learning rate of 0.001, Relu as the

activation function, Adam as the optimizer, and trained the model over 100 epochs.

In addition to using different models, the combination of key points used for

training was also varied. For the first case, all 33 body key points (All Key points) were

used for training. Next, the models were trained excluding the key points from the limbs

 12

(No Limbs). Finally, the experimental depth values (z-values) were dropped and only 𝑥𝑥

and 𝑦𝑦 coordinates were used from all 33 key points to train the third set of models (Remove

Z).

 13

CHAPTER 4

RESULTS

The results from each set of training for the three models can be found in Table 1.

Table 4.1: Results of Different Module Comparison

The best accuracy and precision were achieved with the Neural Network model

using all key points at 98% accuracy. I also observed that I got a decent accuracy of 93%

with the no limbs Neural Network model. This means that the posture detection algorithm

could be sped up by just detecting 15 key points instead of the original 33. Finally, it was

observed that removing the Z features does not have too much of an effect on the

performance of the models and was in fact performing better in the case of the KNN model.

This suggests that adding a depth sensor would not have benefited the models much and

an (Red-Green-Blue) RGB camera should suffice for our purposes. All the above models

appear to maintain a constant real time performance above 20 Frames-Per-Second (FPS)

without any drop in accuracy on an i7-8750H laptop.

 14

The KNN model was further integrated in an Android app and achieved a real time

performance of 7-9 FPS on a Samsung A10. On a laptop with an i7-8750H, the model’s

performance improved to 25-28 FPS. This demonstrates that the posture system explained

in this paper is accessible on everyday devices and does not require specialized hardware

like Graphics-Processing-Units (GPUs). Example of the system classifying good and bad

posture can been seen in Figure 4.2.

Figure 4.1: NN Model Classification Results

 15

CHAPTER 5

CONCLUSION

I created nine models using various machine learning algorithms and by selecting

different sets of key points each time. The machine learning algorithms used were K-

Nearest Neighbors (KNN), Neural Networks (NN), and XGBoost. For each machine

learning model, the three sets of key points they were trained on were “All Key Points”

that used all 33 key points, “No Limbs” that used all key points except of the limbs, and

“Remove Z” that dropped the experimental z-values which represent the depth of a key

point. I then tested each of the models and found that the Neural Network model using all

33 key points performed the best with 98% accuracy. With people spending most of their

time in front of a computer, it becomes highly important to maintain proper posture to

avoid any long-term health issues. This is where the models come into play being fast,

efficient, and able to provide real-time feedback. Creating these models for my capstone

project further allowed me to find the best possible models that my team and I could use

for our senior design project and really enhanced our project with its great performance.

16

REFERENCES

[1]: Cao, Zhe, et al. "Realtime multi-person 2d pose estimation using part affinity

fields." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.

[2]: European Foundation for the Improvement of Living and Working Conditions Page

41. "Living, Working and COVID-19—First Findings—April 2020." (2020).

[3]: Bazarevsky, Valentin, et al. "Blazepose: On-device real-time body pose

tracking." arXiv preprint arXiv:2006.10204 (2020).

[4]: Osokin, Daniil. "Real-time 2d multi-person pose estimation on cpu: Lightweight

openpose." arXiv preprint arXiv:1811.12004 (2018).

[5]: AlOmar, Reem S., et al. "Musculoskeletal symptoms and their associated risk factors

among Saudi office workers: a cross-sectional study." BMC Musculoskeletal

Disorders 22.1 (2021): 1-9.

[6] : Gerding, Thomas, et al. "An assessment of ergonomic issues in the home offices of

university employees sent home due to the COVID-19 pandemic." Work Preprint (2021):

1-12.

[7]: “Everyday Posture Coaching.” UPRIGHT Posture Training Device, 12 May 2022,

https://www.uprightpose.com/?gclid=CjwKCAjw4ayUBhA4EiwATWyBrh2wvpzrfq4dh

VQlkObwxyuZM1sKuPs0PFrinlTLIo0HYqkieiit_hoC2C4QAvD_BwE.

[8]: “Why Tensorflow.” TensorFlow, https://www.tensorflow.org/about.

17

[9]: “ELI5: What Is Image Classification in Deep Learning?” ThinkAutomation, 3 Dec.

2020, https://www.thinkautomation.com/eli5/eli5-what-is-image-classification-in-

deep-learning/.

18

BIOGRAPHICAL INFORMATION

Rithik Kapoor is a third-year undergraduate student studying computer science at

the University of Texas at Arlington. He works as a research assistant under Dr. Fillia

Makedon in the Heracleia Lab. His prior experience includes working as a data science

intern at Axtria, where he worked on the automation of ML workflows. His interests

primarily lie in the fields of machine learning and computer vision.

	Creating and Comparing Seated Posture Classification Models Using Machine Learning and Computer Vision
	Recommended Citation

	CREATING AND COMPARING SEATED POSTURE CLASSIFICATION MODELS USING MACHINE
	LEARNING AND COMPUTER VISION
	CREATING AND COMPARING SEATED POSTURE CLASSIFICATION
	MODELS USING MACHINE LEARNING AND COMPUTER VISION
	TABLE OF CONTENTS
	1.1 Background
	2.1 Android Studio & Java

