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ABSTRACT

FRACTAL NATURE OF THE FIBONOMIAL TRIANGLE

MOD P FOR A GENERAL RANK OF APPARITION

Michael DeBellevue, B.S. Mathematics

The University of Texas at Arlington, 2017

Faculty Mentor: Dimitar Grantcharov

Pascal’s Triangle forms the well-known Sierpinski Triangle fractal when divided by

a prime number. The fibonomial triangle has been shown to exhibit similar behavior for

certain primes. In this paper, we show that for primes p with one zero in the period of the

Fibonacci sequence mod p,
(n+ip∗pm
k+ jp∗pm

)
F
≡p

( i
j

) (n
k

)
F , and for primes with two zeroes in the

period,
(n+ip∗pm
k+ jp∗pm

)
F
≡p (−1)i j−nk ( i

j

) (n
k

)
F . This substantially increases the size of the collection

of primes for which a fractal structure is proven to exist, and the remaining case can be handled

using the same methods we employ. We also describe the resulting fractals and compute their

Hausdorff dimension.
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CHAPTER 1

INTRODUCTION

1.1 Binomial Coefficients and Pascal’s Triangle

The binomial coefficient is defined as
(n
k

)
= n!

(n−k)!k! , where the factorial n! is defined

as n · (n − 1) . . . 2 · 1. It is conventional to define 0! = 1 and
(n
k

)
= 0 for n < k[4]. Binomial

coefficients arise in many settings in algebra and combinatorics. One important property is

that the coefficient
(n
k

)
represents the number of ways that k objects can be picked from n

objects if the selection order does not matter[1].

Pascal’s Triangle is a well-known structure in which the n by k’th entry is the binomial

coefficient
(n
k

)
. The structure of the triangle reveals an important recursive property of binomial

coefficients:

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Graphically, this is represented by each entry being the sum of the two entries immedi-

ately above it[1].

Figure 1.1: Pascal’s Triangle
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Pascal’s triangle can also be used to demonstrate an important number-theoretic prop-

erty of binomial coefficients. If we divide each entry of the triangle by a prime number p,

leaving its remainder, we obtain a special structure. The remainders, also called congruence

classes, recur according to their appearance in base p. A number in base p is commonly written

in the form p0 + p1p + . . . pnpn. It is alternatively written as (pnpn−1 . . . p1p2)p. The exact

form of the recurrence of congruence classes is shown in the following theorem.

Theorem 1.1.0.1 (Lucas). For a binomial coefficient
(n
k

)
, write n and k in base p, obtaining

(nmnm−1 . . . n1n0)p and (kmkm−1 . . . k1k0)p. Then,

(
n
k

)
≡p

(
nm

km

) (
nm−1
km−1

)
. . .

(
n1
k1

) (
n0
k0

)
.

Note that, in the above theorem, any of the digits km, . . . k1 may be zero when n > k.

Example 1.1.1. Consider the binomial coefficient
(8
5
)
. Let’s assume we are interested in the

coefficient’s congruence class modulo 2. To apply Theorem 1.1.0.1, write 8 = 0 + 0 · 2 + 0 ·

22 + 1 · 23 and 5 = 1 + 0 · 2 + 1 · 22 + 0 · 23 to obtain (1000)2 and (0101)2. Then

(
8
5

)
≡2

(
1
0

) (
0
1

) (
0
0

) (
0
1

)
.

Since
(0
1
)
= 0, we conclude that

(8
5
)
≡2 0, or that it is even.

If the zero entries in the triangle are colored white and the non-zero entries are colored

black, the resulting object is the fractal known as Sierpinski’s Gasket[5].

A characteristic property of fractals is their fractal dimension. The fractal dimension

measures the complexity of the fractal’s structure. Since Sierpinski’s gasket can be generated

iteratively, its fractal dimension can be computed in the following way: In each step, count the

2



Figure 1.2: Pascal’s Triangle Mod 2; Zeros are Grey and Non-zeros are Bold

number N of triangles that are generated and determine the ratio r of the size of these new

triangles as compared to the size of the triangles in the preceding step. Then the dimension is

log(N)
log(r) [17].

Example 1.1.2. To compute the fractal dimension of the standard Sierpinski Gasket, consider

the first step of its generation. The middle third of a triangle is removed, leaving three triangles

in place of one. Each of these triangles is half the size of the previous one, so the fractal

dimension is log(3)
log(2) .

1.2 The Fibonacci Sequence and Fibonomial Coefficients

The Fibonacci sequence is a well known sequence which appears in many unexpected

contexts. It can be defined in the following way: Let F0 = 0, F1 = 1. Then define the rest of

the sequence recursively by Fn = Fn−1 + Fn−2.

One surprising property of the Fibonacci sequence is that the congruence classes

modulo p form a periodic sequence. The length of this period is denoted by π(p)[15].

Example 1.2.1. If we divide the Fibonacci sequence by two, the first three remainders are 0, 1, 1.

After that, it is easily verifiable that the sequence repeats itself, giving 0, 1, 1, 0, . . .

3



The index of the first non-zero Fibonacci number divisible by p is called the rank of

apparition and is denoted by p∗. Because the Pisano period always starts with a zero, p∗ divides

π(p).

Example 1.2.2. The first four Fibonacci numbers are 0, 1, 1, 2. We see that F3 = 2, and none of

the preceding Fibonacci numbers are divisible by two. For this reason, 2∗ = 3.

Unfortunately, there is not a general formula for the rank of apparition or the Pisano

period which holds for all primes[12].

These properties allow the fibonomial coefficient to be defined analogously to the

standard binomial coefficient. We define the fibofactorial n!F = Fn · Fn−1 . . . F2 · F1, with

0!F = 1. We then define the fibonomial coefficient as

(
n
k

)
F
=

n!F
(n − k)!F k!F

,

where we define
(n
k

)
F = 0 for k > n.

Example 1.2.3. 4!F = F4 · F3 · F2 · F1 = 3 · 2 · 1 · 1 = 6.

Example 1.2.4.

(
8
5

)
F
=

8!F
(8 − 5)!F5!F

=
F8 · F7 · F6
F3 · F2 · F1

=
21 · 13 · 8
2 · 1 · 1

= 1092.

The fibonomial coefficient also has interesting combinatorial interpretations involving

tilings of rectangles. Importantly, this can be used to show that the fibonomial coefficient is

always an integer[11].

The following lemmas regarding the Fibonacci sequence and fibonomial coefficients

will be useful later. They can be found in a variety of sources, including[16].

4



Lemma 1.2.0.1. (Lucas [9]) For positive integers n and m, gcd(Fn, Fm) = Fgcd(n,m). If n | m,

then gcd(n,m) = n, so gcd(Fn, Fm) = Fn, and so Fn | Fm.

Lemma 1.2.0.2. For positive integer i and prime p, p | Fip∗ .

Lemma 1.2.0.3. For positive integers n and m, Fn+m = FmFn+1 + Fm−1Fn.

The fibonomial coefficients satisfy a recurrence relation analogous to the recurrence

relation for binomial coefficients:

Lemma 1.2.0.4. For positive integers n and k,

(
n
k

)
F
= Fn−k+1

(
n − 1
k − 1

)
F
+ Fk−1

(
n − 1

k

)
F
.

Like the binomial coefficients, the fibonomial coefficients possess a number of useful

properties, among them the negation property and the iterative property:

Lemma 1.2.0.5 (Gould). For n, k ∈ Z,

(
n
k

)
F
=

(
n

n − k

)
F
.

The recurrence relation described in Lemma 1.2.0.4 allows one to generate the fi-

bonomial triangle in an analagous fashion as Pascal’s triangle. Computational results have

suggested that the fibonomial triangle modulo p forms a fractal similar to Pascal’s triangle. An

example is depicted in Figure 1.3.

5



Figure 1.3: The Fibonomial Triangle Mod 11; Zeros are Grey and Non-zeros are Bold
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CHAPTER 2

LITERATURE REVIEW

2.1 Modulo 2, 3, and 5 Cases

The fibonomial triangle modulo a prime was first considered for a finite number of

primes. Chen and Sagan considered the modulo 2 and modulo 3 cases[2]. They provided a

combinatorial, number theoretic, and inductive proof that the triangle modulo 2 forms a fractal.

Their number theoretic proof utilized Knuth and Wilf’s Theorem regarding generalized

binomial coefficients[8]. In order to apply this theorem, they use a special base, which will

be denoted in this paper by base Fp∗ . An expansion of a number n in base Fp∗ is of the form

n0 + n1p∗ + n2p∗p + n3p∗p2 + · · · + nmp∗pm−1 with n0 < p∗ and n1, n2, . . . , nm < p. It is

alternatively written as (nm . . . n0)Fp∗ . Their theorem for the modulo 3 case was proven using

induction. For modulo 3, they determined that the analogue of Lucass Theorem only preserved

divisibility.

Theorem 2.1.0.1 (Chen and Sagan). For p = 2, 3 write n and k in base Fp∗ . Then,

p |
(
n
k

)
F

⇐⇒ p |
(
n0
k0

)
F

(
n1
k1

)
F
. . .

(
nm

km

)
F
.

Example 2.1.1. Consider the fibonomial coefficient
(8
5
)

F . Let’s assume we are interested in the

coefficient’s congruence class modulo 2. Observing that 2∗ = 3, to apply Theorem 2.1.0.1, we

7



write 8 = 2 + 0 · 3 + 1 · 3 · 2 and 5 = 2 + 1 · 3 + 0 · 3 · 2 to obtain (102)F2∗ and (012)F2∗ . Then,

apply Theorem 2.1.0.1 to obtain

(
8
5

)
F
≡2

(
1
0

)
F

(
0
1

)
F

(
2
2

)
F
.

Since
(0
1
)

F ≡2 0, we conclude that
(8
5
)

F is divisible by 2. Recall that we computed(8
5
)

F = 1092 in Example 1.2.4, which is indeed divisible by 2.

Southwick begins by considering fibonomial coefficients modulo 5[13]. His primary

approach was number theoretic. He proved an analogue of Lucas’ Theorem for for p = 5, and

extended this to all primes p for which the rank of apparition is p + 1 by using Hu and Sun’s

Theorem on general binomial coefficients[12][7]. In the language of fibonomial coefficients,

Hu and Sun’s Theorem takes the following form:

Theorem 2.1.0.2 (Hu and Sun). Let wq be the largest divisor of Fq which is coprime to

F1, F2, · · · Fq−1. Then,

(
n + iq
k + jq

)
F
≡wq

(
i
j

) (
n
k

)
F

F(iq+k)(i− j)+ j(n−k))
q+1 .

Kryuchkova and DeBellevue proved the divisibility analogue of Lucas’ thereom for all

primes p for which the rank of apparition is p + 1 through use of Knuth and Wilf’s Theorem,

as in[2]. They also proved the following theorem for the non-zero congruence classes:

Theorem 2.1.0.3. For a prime p for which the rank of apparition is p+1, and for 0 < n < p∗pm,

0 ≤ k < p∗pm, 0 ≤ i, j < p, 0 ≤ m,

(
n + ip∗pm

k + jp∗pm

)
F
≡p (−1)ik−nj

(
i
j

) (
n
k

)
F
.

8



CHAPTER 3

MAIN RESULTS

3.1 The Fibonomial Triangle Mod p is a Fractal

3.1.1 Necessary Lemmas

Before we begin the proof of the main theorems, the following lemmas are necessary.

In all of the following, p is an odd prime.

Lemma 3.1.1.1. If 2p∗ = π(p), then for 0 ≤ n < p∗pm, Fn+p∗pm ≡p −Fn.

Proof. It suffices to show that Fn+p∗ ≡p −Fn, for then Fn+p∗pm ≡p (−1)pmFn = −Fn, as p is an

odd prime.

Let F1+p∗ ≡p v. Then Fp∗ ≡p 0, so F2+p∗ ≡ 0 + v ≡p F0 + vF1. Continuing in likewise

fashion gives Fn+p∗ ≡p vFn. Then by definition of the Pisano period, 1 ≡p F1+2p∗ ≡p vF1+p∗ ≡p

v2. Since the integers mod p are a field, this implies that v ≡p ±1. Then v ≡p −1, for otherwise,

p∗ would equal the period, which is a contradiction. □

Lemma 3.1.1.2. For i > 0,
Fip∗pm

Fp∗pm
≡p i(−1)i−1.

Proof. The proof is identical to the proof in [3], where the first step follows because 2p∗ = π(p)

means that p∗ is the semiperiod, and the semiperiod is always even [6]. □

With the above lemmas established, proof of the following two lemmas is identical to

the proofs in [3].

9



Lemma 3.1.1.3. For i > 0, (
ip∗pm

p∗pm

)
F
≡p i.

Lemma 3.1.1.4. For 0 ≤ i, j < p,

(
ip∗pm

jp∗pm

)
F
≡p

(
i
j

)
.

If the Pisano period of p is p∗, then all of the following hold.

Lemma 3.1.1.5. For 0 ≤ n < p∗pm, Fn+p∗pm ≡p −Fn.

Proof. Since p∗ = π(p) is the period, Fn+p∗ ≡p Fn. Then use finite induction to obtain

Fn+p∗pm ≡p Fn. □

Lemma 3.1.1.6. For i > 0,
Fip∗pm

Fp∗pm
≡p i.

Proof. We prove this by induction.

First, let i = 1. Then the statement follows trivially.

Now, assume the inductive hypothesis:

Fip∗pm

Fp∗pm
≡p i.

Consider

F(1+i)p∗pm

Fp∗pm
=

Fp∗pm+ip∗pm

Fp∗pm
.

We apply the shifting property of the Fibonacci sequence to obtain:

10



Fp∗pm+ip∗pm

Fp∗pm
=

Fp∗pmFip∗pm+1 + Fp∗pm−1Fip∗pm

Fp∗pm
.

Then we simplify by cancelling like terms on the left and applying the induction hypothesis

on the right, and then apply Lemma 3.1.1.5:

Fip∗pm+1 + Fp∗pm−1(i) ≡p 1 + i.

□

Lemma 3.1.1.7. For i > 0, (
ip∗pm

p∗pm

)
F
≡p i.

Proof. By definition of the fibonomial coefficient,

(
ip∗pm

p∗pm

)
F
=

Fip∗pmFip∗pm−1 . . . F(i−1)p∗pmF(i−1)p∗pm−1 . . . F1

(F(i−1)p∗pmF(i−1)p∗pm−1 . . . F1)Fp∗pmFp∗pm−1 . . . F1
.

Cancelling like terms gives

Fip∗pmFip∗pm−1 . . . Fip∗pm−(p∗pm−1)
Fp∗pmFp∗pm−1 . . . F1

.

The terms in the above expression take three forms, which we represent separately for

clarity. Note that all reduction modulo p happens term-wise, and thus the result is an integer.

1. We first consider terms of the form Fip∗pm−a, where p∗ ∤ a. For each of these terms, we

identify a corresponding term in the denominator:

Fip∗pm−a

Fp∗pm−a
.

11



We apply Lemma 3.1.1.5 to the top so that we can cancel the top and bottom, giving just

1.

2. Next we consider terms of the form F(ipm−a)p∗:

pm−1∏
a=1

F(ipm−a)p∗

F(pm−a)p∗
.

By Lemma 3.1.1.6,

(pm−1∏
a=1

F(ipm−a)p∗

F(pm−a)p∗

) ( 1
Fp∗

1
Fp∗

) pm−1

≡p

pm−1∏
a=1

(ipm − a)
(pm − a) ≡p 1.

Note that in the modular group we use division notation to represent multiplication by

an inverse.

3. The only remaining term is the quotient Fip∗pm
Fp∗pm

≡p i, by Lemma 3.1.1.6.

From the three cases above,

(
ip∗pm

p∗pm

)
F
≡p i.

□

Lemma 3.1.1.8. For 0 ≤ i, j < p,

(
ip∗pm

jp∗pm

)
F
≡p

(
i
j

)
.

Proof. Proof proceeds identically as in [3] except that Lemma 3.1.1.7 is substituted for 3.1.1.3.

□

12



For all cases, we’ll need the following lemma:

Lemma 3.1.1.9. For 0 ≤ k < p∗pm, 0 ≤ i, j < p, 0 ≤ m
( ip∗pm
k+ jp∗pm

)
F
≡p 0.

Proof. Write k in base Fp∗ and then apply Theorem 2.1.0.2 to obtain

(
ip∗pm

k + jp∗pm

)
F
=

(
0 + p∗(ipm)

k0 + p∗(ipm + k1 + k2 ∗ p + . . . )

)
F

≡pr

(
i
j

) (
0
k1

)
. . .

(
0
k0

)
F

Fp∗+1
p(ipm− jpm−k0−k1... ).

Then since k , 0, there must be some l s.t. kl , 0. If l ≥ 1, then
( 0
kl

)
is zero by definition. If

l = 0 then
( 0
k0

)
F

is zero by definition. In either case,

(
ip∗pm

k + jp∗pm

)
F
≡pr 0 ⇒

(
ip∗pm

k + jp∗pm

)
F
≡p 0.

□

3.1.2 Main Theorems

With necessary preliminaries dealt with, we can proceed with the main theorem.

Theorem 3.1.2.1. For an odd prime p with pi(p) = 2p∗, and for 0 < n < p∗pm, 0 ≤ k < p∗pm,

0 ≤ i, j < p, 0 ≤ m, (
n + ip∗pm

k + jp∗pm

)
F
≡p (−1)ik−nj

(
i
j

) (
n
k

)
F
.

Proof. We proceed by induction.

First let n = k = 0. Then the statement follows directly from Lemma 3.1.1.4.

13



When n = 0, k > 0, then by Lemma 3.1.1.9,

(
ip∗pm

k + jp∗pm

)
F
≡p 0 ≡p (−1)ik−0 j

(
i
j

) (
0
k

)
.

Let n > 0, k ≥ 0. We assume

(
n − 1 + ip∗pm

k + jp∗pm

)
F
≡p (−1)ik−(n−1) j

(
i
j

) (
n − 1

k

)
F

for all k.

Using the recurrence relation for fibonomial coefficients,

(
n + ip∗pm

k + jp∗pm

)
F
≡p Fn+(i− j)p∗pm−k+1

(
n − 1 + ip∗pm

k − 1 + jp∗pm

)
F
+ . . .

· · · + Fk−1+ jp∗pm

(
n − 1 + ip∗pm

k + jp∗pm

)
F

≡p (−1)i− j Fn−k+1(−1)i(k−1)−(n−1) j
(
i
j

) (
n − 1
k − 1

)
F
+ . . .

· · · + (−1) j Fk−1(−1)i(k)−(n−1) j
(
i
j

) (
n − 1

k

)
F

≡p (−1)ik−nj
(
i
j

) [
Fn−k+1

(
n − 1
k − 1

)
F
+ Fk−1

(
n − 1

k

)
F

]
≡p (−1)ik−nj

(
i
j

) (
n
k

)
F
.

This completes the proof. □

Theorem 3.1.2.2. For an odd prime p with p∗ even and π(p) = p∗, and for 0 < n < p∗pm,

0 ≤ k < p∗pm, 0 ≤ i, j < p, 0 ≤ m,

(
n + ip∗pm

k + jp∗pm

)
F
≡p

(
i
j

) (
n
k

)
F
.

14



Proof. We proceed by induction.

First let n = k = 0. Then the statement follows directly from Lemma 3.1.1.8.

When n = 0, k > 0, then by Lemma 3.1.1.9,

(
ip∗pm

k + jp∗pm

)
F
≡p 0 ≡p

(
i
j

) (
0
k

)
.

Let n > 0, k ≥ 0. We assume

(
n − 1 + ip∗pm

k + jp∗pm

)
F
≡p

(
i
j

) (
n − 1

k

)
F

for all k.

Using the recurrence relation for fibonomial coefficients,

(
n + ip∗pm

k + jp∗pm

)
F
≡p Fn+(i− j)p∗pm−k+1

(
n − 1 + ip∗pm

k − 1 + jp∗pm

)
F
+ . . .

· · · + Fk−1+ jp∗pm

(
n − 1 + ip∗pm

k + jp∗pm

)
F

≡p Fn−k+1

(
i
j

) (
n − 1
k − 1

)
F
+ Fk−1

(
i
j

) (
n − 1

k

)
F

≡p

(
i
j

) [
Fn−k+1

(
n − 1
k − 1

)
F
+ Fk−1

(
n − 1

k

)
F

]
≡p

(
i
j

) (
n
k

)
F
.

This completes the proof. □
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Example 3.1.1. Consider the fibonomial coefficient
(39935
26626

)
F . Suppose we are interested in

its congruence class modulo 11, for which 11∗ = 10 and π(11) = 10 = 11∗, and we write(39935
26626

)
F =

(5+3·10·113

6+2·10·113
)

F . Since the conditions of Theorem 3.1.2.2 are satisfied, we obtain

(
39935
26626

)
F
≡11

(
3
2

) (
5
6

)
F
≡11 0

where the last congruence holds because
(n
k

)
F is defined to be zero for k > n.

Example 3.1.2. Consider the fibonomial coefficient
( 97615
406117

)
F . Suppose we are interested in

its congruence class modulo 7, for which 7∗ = 8 and π(7) = 16, and we write
( 97615
406117

)
F =(7+4·8·73+5·8·75

5+1·8·73+3·8·75
)
. Since the conditions of Theorem 3.1.2.1 are satisfied, we apply it twice to

obtain

(
97615
406117

)
F
≡p (−1)5·2749−10984·3(−1)4·5−8·1

(
5
3

) (
4
1

) (
7
5

)
F
≡7 −2.

3.2 Characterization of the Fibonomial Fractal

Theorem 3.2.0.1. For an odd prime p such that 2p∗ = π(p) or p∗ = π(p), the fractal dimension

of the fibonomial triangle modulo p is 1 + logp( p+1
2 ).

Proof. By Theorems 3.1.2.1 and 3.1.2.2, we can generate the fibonomial triangle mod p

fractal by incrementing m. When m = 0, p∗-many rows are generated. Then each time m is

incremented, the result is triangle of p∗pm-many rows, so to shrink the triangle down to its

original size, it is necessary to scale it by a factor of p. There is one new non-zero triangle

16



generated for each i and j, 0 ≤ j ≤ i < p, so the total number of non-zero triangles generated

in each step is
p−1∑
i=0

i + 1 = p(p + 1)
2

.

Thus the fractal dimension is

log( p(p+1)
2 )

log(p) = 1 + logp(
p + 1

2
).

Note that this is precisely the dimension of Pascal triangle-type fractals[17]. □
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CHAPTER 4

FUTURE DIRECTIONS

Since there can only be one, two, or four zeros in the period[10], and each zero

corresponds to a multiple of p∗, Theorems 3.1.2.2 and 3.1.2.1 deal with two out of three

possible cases for the relationship between p∗ and π(p). The remaining case should be easily

dealt with according to the methods above, but computation might be somewhat complicated

due to the following lemma, proven by Vinson [14].

Lemma 4.0.0.1. If 4p∗ = π(p), then p∗ is odd and Fn+p∗ ≡p vFn, with v2 ≡p −1.

The final form of Theorems 3.1.2.2 and 3.1.2.1 is remarkably similar to Theorem

2.1.0.2. They are stronger than Theroem 2.1.0.2 because they place fewer requirements on wq:

if we take q = p∗pm, Theorem 2.1.0.2 would require thqt wq be coprime to F1, . . . , Fq−1. Since

p divides Fp∗ by definition, p cannot be a factor of wq, as it is not coprime to any of the terms

Fp∗, F2p∗, . . . , Fpm−1p∗ .

While it may be possible to weaken the conditions of 2.1.0.2 by other methods, it would

be necessary to make an argument regarding the terms in the numerator and denominator of

the fibonomial which are divisible by p. If the numerator is divisible by a higher power of

p than the denominator, than the coefficient will be congruent to zero. In order to obtain a

non-zero congruence class, the highest power of p dividing the numerator and highest power

of p dividing the denominator must be equal. This problem is solved in Lemmas 3.1.1.3 and

3.1.1.7, but there may be more elegant solutions.
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