University of Texas at Arlington

MavMatrix

2020 Spring Honors Capstone Projects Honors College

5-1-2020

DRIVING THE IROBOT CREATE 2: COMMAND FUNCTIONS

Sophie Soueid

Follow this and additional works at: https://mavmatrix.uta.edu/honors_spring2020

Recommended Citation

Soueid, Sophie, "DRIVING THE IROBOT CREATE 2: COMMAND FUNCTIONS" (2020). 2020 Spring Honors
Capstone Projects. 20.

https://mavmatrix.uta.edu/honors_spring2020/20

This Honors Thesis is brought to you for free and open access by the Honors College at MavMatrix. It has been
accepted for inclusion in 2020 Spring Honors Capstone Projects by an authorized administrator of MavMatrix. For
more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/honors_spring2020
https://mavmatrix.uta.edu/honors
https://mavmatrix.uta.edu/honors_spring2020?utm_source=mavmatrix.uta.edu%2Fhonors_spring2020%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/honors_spring2020/20?utm_source=mavmatrix.uta.edu%2Fhonors_spring2020%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

Copyright © by Sophie Elizabeth Soueid 2020

All Rights Reserved

DRIVING THE IROBOT CREATE 2:

COMMAND FUNCTIONS

SOPHIE ELIZABETH SOUEID

Presented to the Faculty of the Honors College of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

HONORS BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2020

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge Zachary Holloway, my colleague
and friend, who developed the other half of this driver. Although the immense amount of
time we have spent together on various projects has caused us to butt heads at times, I could
not have found another colleague who strives for excellence in the same way that he does.

I want to thank my faculty mentor, Dr. Greg Turner, not just for all the academic
opportunities he provided me the past four years, but also for being a source of inspiration
in the form of character. I will forever strive to be as kind, dedicated, and patient as he was
to me. I also want to thank Dr. Howard Russell, who has always held great trust in my
knowledge and ability and has helped me develop my passion for teaching others.

I would also like to acknowledge my fellow friends and associates in Tau Beta Pi
for constantly challenging me and for acting almost as a second family. I would especially
like to thank Maxwell Sanders for being the first student leader I truly looked up to. I hope
to one day be as authentic and considerate of a leader as he always was to me.

Lastly, I would like to thank my father, who I, without a doubt, took after regarding
our STEM-oriented minds. Dad, you were always my first inspiration in engineering. When
you passed, my goals in life solidified. I wanted to do things that would make you proud,
and the first obvious goal became getting an engineering degree. Eleven years later, it still
seems bittersweet to finally achieve this goal without you. Nonetheless, I will persevere,
and I know the next step for me will be finding another goal that will make you proud.

May 4, 2020

111

ABSTRACT

DRIVING THE IROBOT CREATE 2:

COMMAND FUNCTIONS

Sophie Soueid, B.S. Electrical Engineering

The University of Texas at Arlington, 2020

Faculty Mentor: Greg Turner

A driver library in the C programming language was developed to interface
between the iRobot Create® 2 Programmable Robot’s command functions and the
MSP432P401R via Universal Asynchronous Receiver/Transmitter (UART). This allows
for quick and simple development of microcontroller control over the Create 2’s command
functions. It utilizes information from the iRobot Open Interface to reduce the complicated
series of data in the form of arrays that have to be sent to the iRobot microcontroller down
to individual functions. The driver that interfaces between these two devices greatly
increases the ease of access to hobbyist programmers using the Create 2 and
MSP432P401R. This driver is written in the C programming language, and so it can be
used in any project that uses either C or C++ as its coding language for the primary

functions. The project has been published on Hackster.io for public use.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACTccoviiiiiniinieieeicn
LIST OF ILLUSTRATIONS............
LIST OF TABLES.......cccocveiiiiienn
Chapter

1. INTRODUCTION

1.1 Motivation........ccceuuu......

1.2 Senior Design and Creation of the Driver........cc.ccocevieveniiniininicneenens

2. DRIVER DESIGN AND DEVELOPMENTcocoiiiiiiiinieeneceeee

2.1 The sendUART Function

2.2 Formatting Data for Commandscccceecverieiiniinieniniienecncnicneeeeen

2.3 Sending Data to the Create 2cccevieviiriinienieniiniteieeereceeeeseeeee

3. CONCLUSION.......ccerurnene
Appendix

A. HEADER CODE LISTING..

B. SOURCE CODE LISTING ..
REFERENCESccoooiiiiiieiee

BIOGRAPHICAL INFORMATION

il

v

vi

Vil

23

36

37

Figure

2.1

LIST OF ILLUSTRATIONS

Image from the Create 2 Open Interface

vi

Table

2.1

LIST OF TABLES

Table of Binary String for Schedule

vil

CHAPTER 1
INTRODUCTION
1.1 Motivation
The iRobot Create® 2 is a Roomba® product marketed at hobbyist programmers

interested in the iRobot line of products. The iRobot Open Interface enables these amateur
programmers to interface their iRobot Create 2 with any microcontroller capable of
communicating over Universal Asynchronous Receive/Transmit (UART), which is an
extremely basic form of communication available on almost any microcontroller on the
market. One of these microcontrollers is the MSP432P401R, a microcontroller made by
Texas Instruments that is easy to use for the amateur programmer and has a wide database
of documentation and examples that are easily accessible. However, many of the functions
of the iRobot Create 2 available to the end user require background knowledge of binary
strings and bitmasks, which are usually only taught while taking a degree in electrical or
computer engineering. By creating a driver to interface between the MSP432P401R and
the iRobot Create 2, the hobbyist programmers who make up the iRobot Create 2’s target
audience will easily be able to access and use more complex functions of the device to use
the product to its fullest potential.

1.2 Senior Design and the Creation of the Driver

A senior design group was assigned a senior design project in the Spring 2019
semester called the Pet Waste Avoiding Autonomous Vacuum (PWAAV) under our

mentor Dr. Greg Turner. This project required us to use an iRobot Create 2 in conjunction

with an MSP432P401R microcontroller and the Pixy2 color recognition camera, in
addition to other optional sensors, in order to create an autonomous vacuum capable of
detecting and avoiding pet waste around the house and give the homeowner a wireless
notification that the vacuum has encountered pet waste. This driver enabled easier
development of code for this senior design project in addition to its primary purpose of
providing a more accessible way to program the iRobot Create 2 for amateur programmers.
It enabled both the senior design group to achieve their project’s goal in addition to
providing an ease of access to those just beginning to explore the world of programmable

microcontrollers.

CHAPTER 2

DRIVER DESIGN AND DEVELOPMENT

2.1 The sendUART Function

The basis of the entire driver is a function called sendUART, which enables the
MSP432P401R to send information to the Create® 2. This function sends data using
Universal Asynchronous Transmit/Receive (UART), which is a communication protocol
where two devices agree on a predetermined speed to communicate data as opposed to
using a shared clock line to time data transmissions. The two devices communicate at a
baud rate of 115200, which is the default speed of communication for the Create 2. All the
command functions in the driver utilize this sendUART function in order to initiate
communication and let the Create 2 know what command is to be performed. This function
will always begin with the opcode of the command trying to be issued, followed by any
other data that may be necessary for the Create 2 to know the details of how to perform
that command.

2.2 Formatting Data for Commands

Before any data is sent to the Create 2 through the sendUART function, the
supporting data for each command must be passed to the function associated with a
command and formatted in a way that the microcontroller onboard the Create 2 can parse.
These values are put into an array that will be sent by the sendUART function. In order to

make the driver more useful to the Create 2’s target demographic of amateur programmers,

the functions had to be written so these programmers could easily utilize them without
needing a strong background in electrical or computer engineering.

Schedule Opcode: 167 Data Bytes: 15

This command sends Roomba a new schedule. To disable scheduled cleaning, send all 0s.

s Serial sequence: [167] [Days] [Sun Hour] [Sun Minute] [Mon Hour] [Mon Minute] [Tue Hour] [Tue
Minute] [Wed Hour] [Wed Minute] [Thu Hour] [Thu Minute] [Fri Hour] [Fri Minute] [Sat Hour] [Sat
Minute]

« Available in modes: Passive, Safe, or Full.

« If Roomba's schedule or clock button is pressed, this command will be ignored.

+ Changes mode to: No change

» Times are sent in 24 hour format. Hour (0-23) Minute (0-59)

Figure 2.1: Image from the Create 2 Open Interface

For example, the schedule command requires a complicated payload to be attached
with the days being represented by the value of a binary string. Because many amateur
programmers may not have a strong grasp on formatting binary strings that correspond to
less intuitive things like days of the week, the command was made simpler for amateur

programmers by limiting the changes in schedule to only affect one day per function call.

Table 2.1: Table of Binary String for Schedule

Days
Bit T [5 4 3 2 1 [i]
Value | Reserved Sat Fri Thu Wed Tue Maon Sun

In addition, the days of the week are no longer represented by binary numbers, but
instead by a variable type called enums that allow users to input a word (for example,
MONDAY) and have that name correspond to the binary value that the Create 2 will accept.

All functions were written in a similar manner with the end user in mind. This also
meant that code was developed such that the inexperienced end user could not send
commands to the Create 2 that would break it or that would cause memory failures in the

microcontroller.

2.3 Sending Data to the Create 2

All the necessary data for executing a command function is loaded into an array
containing 8-bit values named the command buffer. However, UART is only capable of
sending a single 8-bit value in a transmission. In order to send this over UART, the
command buffer is loaded into a first-in first-out (FIFO) buffer, which sends the individual
8-bit values in order when the previous transmission has finished. After receiving the
opcode and all the necessary supporting data, the Create 2 will carry out the requested
command. Because these are only command functions, it is largely not necessary to prepare
a receiving buffer, as no data is sent back in the command functions except for a few
functions that simply command the Create 2 to send a stream of packets from the data

functions.

CHAPTER 3
CONCLUSION

The command functions provided through the driver make the Create 2 much easier
to use in conjunction with the MSP432P401R, especially for amateur and hobbyist
programmers. The complex code normally required to be developed by the end user for
command functions is all provided in this portion of the driver, and the end user has a much
more intuitive way to drive the Create 2. This driver also significantly helped the PWAAV
senior design team develop code that allowed us to drive and demonstrate our senior design
project. While this code is currently written for the MSP432P401R in C and C++
specifically, it could very easily be adapted to work with any other C-based microcontroller
with very little effort, only requiring changes to parts of the code specific to the

microcontroller, such as the UART commands or FIFO buffer.

APPENDIX A

HEADER CODE LISTING

/*
* Create2 UART Header

*

* Created on: August 21, 2019

* Authors: Zachary Holloway and Sophie Soueid

*/

#ifndef CREATE2_UART HEADER H_
#define CREATE2_UART HEADER H_

/3K 3 e st st s e st st s e shestesi s e stesi sk st st st sk e st st sk se st st sk seste st sk ke st st sk s ste st sk st stesk sk st stesteske st st st st stk sk siolkoskoskokokoskokokokoskokokokok

/

// If building with a C++ compiler, make all of the definitions in this header

// have a C binding.
/

N***

#ifdef _ cplusplus
extern "C"

{
#endif

#include <stdint.h>

#define CREATE2._OPCODE_START

#define CREATE2._OPCODE_RESET

#define CREATE2_OPCODE_STOP

#define CREATE2_ OPCODE_BAUD

#define CREATE2._ OPCODE_SAFE

#define CREATE2_ OPCODE_FULL

#define CREATE2_OPCODE_CLEAN

#define CREATE2._ OPCODE_MAX

#define CREATE2_OPCODE_SPOT

#define CREATE2_OPCODE_SEEK_DOCK
#define CREATE2_OPCODE_POWER

#define CREATE2_OPCODE_SCHEDULE
#define CREATE2_OPCODE_SET DAY _TIME
#define CREATE2_OPCODE_DRIVE

#define CREATE2._OPCODE_DRIVE_DIRECT
#define CREATE2_OPCODE_DRIVE_PWM
#define CREATE2._ OPCODE_MOTORS
#define CREATE2._ OPCODE_PWM_MOTORS
#define CREATE2_OPCODE_LEDS

#define CREATE2_OPCODE_SCHEDULING LEDS
#define CREATE2_OPCODE_DIGIT LEDS_RAW

#define CREATE2 OPCODE BUTTONS

#define CREATE2 OPCODE DIGIT LEDS ASCII

#define CREATE2_OPCODE_SONG

#define CREATE2_OPCODE_PLAY

#define CREATE2_OPCODE_SENSORS
#define CREATE2_OPCODE_QUERY_LIST
#define CREATE2_OPCODE_STREAM

(128)
(7
(173)
(129)
(131)
(132)
(135)
(136)
(134)
(143)
(133)
(167)
(168)
(137)
(145)
(146)
(138)
(144)
(139)
(162)
(163)
(165)
(129)
(140)
(141)
(142)
(149)
(148)

#define CREATE2_OPCODE_PAUSE_RESUME_STREAM (150)
#define CREATE2 PACKET BUMP_WHEEL DROPS (7)

#define CREATE2 PACKET WALL
#define CREATE2 PACKET CLIFF LEFT

#define CREATE2 PACKET CLIFF _FRONT LEFT

®)
(€))
(10)

#define CREATE2 PACKET CLIFF_FRONT RIGHT (11)

#define CREATE2 PACKET CLIFF RIGHT (12)
#define CREATE2 PACKET VIRTUAL WALL (13)

#define CREATE2_ PACKET WHEEL OVERCURRENTS (14)
#define CREATE2_PACKET DIRT DETECT (15)

#define CREATE2_PACKET UNUSED BYTE (16)

#define CREATE2_PACKET_INFRARED CHARACTER_OMNI (17)
#define CREATE2_PACKET BUTTONS (18)

#define CREATE2_PACKET DISTANCE (19)

#define CREATE2_PACKET ANGLE (20)

#define CREATE2_ PACKET CHARGING STATE 1)

#define CREATE2_PACKET VOLTAGE (22)

#define CREATE2 PACKET CURRENT (23)

#define CREATE2 PACKET TEMPERATURE (24)

#define CREATE2 PACKET BATTERY CHARGE (25)
#define CREATE2 PACKET BATTERY CAPACITY (26)
#define CREATE2 PACKET WALL_SIGNAL @7

#define CREATE2_PACKET CLIFF_LEFT SIGNAL (28)

#define CREATE2_ PACKET CLIFF_FRONT LEFT SIGNAL (29)
#define CREATE2_ PACKET CLIFF_FRONT RIGHT SIGNAL (30)
#define CREATE2_PACKET CLIFF_RIGHT SIGNAL 31)

#define CREATE2_ PACKET CHARGING SOURCES AVAILABLE (34)
#define CREATE2_PACKET Ol MODE (35)

#define CREATE2 PACKET SONG_NUMBER (36)

#define CREATE2 PACKET SONG_PLAYING 37)

#define CREATE2_ PACKET NUMBER_STREAM_PACKETS (38)
#define CREATE2 PACKET REQUESTED VELOCITY (39)

#define CREATE2 PACKET REQUESTED RADIUS (40)

#define CREATE2 PACKET REQUESTED RIGHT RADIUS (41)
#define CREATE2_ PACKET REQUESTED LEFT RADIUS (42)
#define CREATE2_ PACKET LEFT_ENCODER_COUNTS (43)
#define CREATE2_ PACKET RIGHT ENCODER_COUNTS (44)
#define CREATE2_ PACKET LIGHT BUMPER (45)

#define CREATE2_ PACKET LIGHT BUMP_LEFT SIGNAL (46)
#define CREATE2_ PACKET LIGHT BUMP _FRONT LEFT SIGNAL (47)
#define CREATE2_ PACKET LIGHT BUMP_CENTER_LEFT SIGNAL (48)
#define CREATE2_ PACKET LIGHT BUMP_CENTER RIGHT SIGNAL (49)
#define CREATE2_PACKET LIGHT BUMP_FRONT RIGHT SIGNAL (50)
#define CREATE2_ PACKET LIGHT BUMP_RIGHT SIGNAL (51)
#define CREATE2_ PACKET LEFT MOTOR_CURRENT (54)

#define CREATE2_ PACKET RIGHT MOTOR_CURRENT (55)
#define CREATE2 PACKET MAIN BRUSH MOTOR _CURRENT (56)
#define CREATE2 PACKET SIDE BRUSH MOTOR CURRENT (57)
#define CREATE2_PACKET STASIS (58)

#define CREATE2_ PACKET INFRARED CHARACTER LEFT (52)
#define CREATE2_ PACKET INFRARED CHARACTER RIGHT (53)

typedef enum day {
SUNDAY =1,
MONDAY =2,
TUESDAY =4,
WEDNESDAY =38,
THURSDAY = 16,
FRIDAY =32,
SATURDAY = 64

} DAY _VALUE;

extern DAY VALUE;

typedef enum mainBrush {
OFF =0,
INWARD =1,
OUTWARD =2

} MOTORS MAIN BRUSH,;

extern MOTORS_MAIN_BRUSH;

typedef enum sideBrush {
OFF =0,
CCW =1,
Cw=2

} MOTORS_SIDE _BRUSH;

extern MOTORS_SIDE BRUSH;

typedef enum vacuum {
OFF =0,
ON=1

} MOTORS_VACUUM,;

extern MOTORS VACUUM,;

typedef enum digit {
FAR LEFT=1,
MIDDLE LEFT =2,
MIDDLE RIGHT = 3,
FAR RIGHT =4

} DIGIT POSITION;

extern DIGIT POSITION;

typedef enum {
CLEAN =1,
SPOT =2,
DOCK =4,
MINUTE = 8,
HOUR = 16,
DAY =32,
SCHEDULE = 64,
CLOCK =128,
ALL =255

} BUTTON;

extern BUTTON button;

typedef enum {

10

LIGHT BUMPER LEFT=1,
LIGHT BUMPER_FRONT LEFT =2,
LIGHT BUMPER_CENTER_LEFT =4,
LIGHT BUMPER_CENTER_RIGHT =8,
LIGHT BUMPER_FRONT RIGHT = 16,
LIGHT BUMPER_RIGHT = 32,
ALL_BUMPER = 63

} LIGHTBUMPER;

extern LIGHTBUMPER lightBumper;

/7% 3 e st st s e st st s ke she st s sk ke stesk sk e kst s e ke st s ke stesi sk st skeste sk st st st sk stesteste sk st ste st sk st shestesieske ke st skt ste stk s ste sttt stttk st stk sestokoskolokokokoskokokokok

extern void configUART(void);
ﬁ***
/

/I @brief: This function configures all the necessary settings for UART A2.

/

/l @return: None.

//

Y e e e

extern void sendUART(void);

/7K 3 e st st s e st st s ke she st s ke shestesk sk st stesi s e stestose sestesie sk st kst sk st kst sk st skeskeoskstestesteskoste ke stk st sttt stk stttk stetosioloskokokokosekoloskolokokokoskokokorek

//
/I @brief: This function is used to send all data packets to the Create 2 by assigning

/! values to an integer array and filling the TX buffer with data to be sent.
/

// @return: None.

/

ﬁ***

extern void roombaStart(void);
ﬁ***

/!
/I @brief: This command starts the open interface (OI). You must always send the

/! Start command before sending any other commands to the OI. This command
/! also sets the mode to passive.

/

/I @return: None.

/

ﬁ***

extern void roombaReset(void);
ﬁ***

//
// @brief: This command resets the robot, as if you had removed and reinserted the

/ battery.

//

// @return: None.
//

/7% 3 e st st s e st st s e shestesi ke shestesk sk st st st sk e stest s ke stesieosk ke st st skt kst steste skt st steskoste ke skt sk sttt sttt stoiolkoskokosiolkoskokokokoskokolokolkokokokokok sorok

extern void roombaStop(void);
[sk ks ok ok kol ok ok ok sk kol ok ok sk kol ok ok ok sk kol ok okt ko ok ok kool ook stk ok ok ok kRl ok okl ook ok ok ok ok

/
/I @brief: This command stops the OI. All streams will stop and the robot will no

/! longer respond to commands. Use this command when you are finished working
/! with the robot.
/

// @return: None.

11

1

ﬁ***

extern void setRoombaBaud(uint32_t valueBaud);
/***
/!

/I @brief: This command sets the baud rate at which OI commands and data are sent.
/!

/I @param: valueBaud is the control of the baud rate.

/" Valid values are 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

/I 38400, 57600, or 115200.

/!

/I @return: None.

/!

ﬁ***

extern void roombaSafe(void);
N***

/!
/I @brief: This command puts the OI into Safe mode, enabling user control of Roomba.
/! It turns off all LEDs. The OI can be in Passive, Safe, or Full mode to

/ accept this command. If a safety condition occurs, Roomba reverts
/ automatically to Passive mode. Safety conditions are:

/ 1. Detection of a cliff while moving forward (or moving backward with a
/! small turning radius, less than one robot radius)

/! 2. Detection of a wheel drop (on any wheel).

/! 3. Charger plugged in and powered.

/

/| @param: None.

/!

// @return: None.

/1

ﬁ***

extern void roombaFull(void);
”***

/
/I @brief: This command gives you complete control over Roomba by putting the OI into

/ Full mode, and turning off the cliff, wheel-drop and internal charger

/ safety features. That is, in Full mode, Roomba executes any command that
/! you send it, even if the internal charger is plugged in, or command

/! triggers a cliff or wheel drop condition.

/

/| @param: None.

/!

// @return: None.

/!

[s sk sk sk sk sk Rk Rk ok sk Rk sk Rk sk sk sk kR sk kR sk Rk sk sk R sk R sk sk ok ok

extern void roombaClean(void);
N***

//
/I @brief: This command starts the default cleaning mode. This is the same as

/ pressing Roomba’s Clean button, and will pause a cleaning cycle if one
/ is already in progress.

/

/| @param: None.

/

// @return: None.

/

12

ﬁ***

extern void roombaMax(void);
/***

/!
/I @brief: This command starts the Max cleaning mode, which will clean until the

/! battery is dead. This command will pause a cleaning cycle if one is
/! already in progress.

//

/l @param: None.

/

/I @return: None.

/

ﬁ***

extern void roombaSpot(void);
ﬁ***

//
/I @brief: This command starts the Spot cleaning mode. This is the same as pressing

/! Roomba’s Spot button, and will pause a cleaning cycle if one is already
/! in progress.

//

/l @param: None.

//

/I @return: None.

/

ﬁ***

extern void roombaSeekDock(void);
ﬁ***

//
// @brief: This command directs Roomba to drive onto the dock the next time it

/! encounters the docking beams. This is the same as pressing Roomba’s Dock
/! button, and will pause a cleaning cycle if one is already in progress.

/!

/I @param: None.

//

/l @return: None.

/

/3% 3 e st st s e st st s e she st st s ke stesk sk e ke st s e ke st s sestesie sk st ke st sk st st st sk s st sk sk st st steske st stestesiestestestesieoste st stk ste stk stk siolostokoiokosekoloskolokokokoskokskorek

extern void roombaPower(void);
ﬁ***

//
// @brief: This command powers down Roomba. The OI can be in Passive, Safe, or Full

/! mode to accept this command.
/!

/I @param: None.

/!

// @return: None.

/!

”***
extern void roombaSchedule (DAY VALUE day, bool enable, uint8 t hour, uint§_t minute)

N***
/!

/I @brief: This command sends Roomba a new schedule for cleaning on a chosen day. If

/! Roomba’s schedule or clock button is pressed, this command will be ignored.

/!

/| @param: day will indicate which weekday's schedule is being changed.

// Valid values are SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, and

13

//" SATURDAY.

/1

// @param: enable will control whether the chosen day's scheduled cleaning will occur.
// Valid values are false (to disable the chosen day's cleaning) or true (to enable

/l the chosen day's cleaning).

/1

/I @param: hour will set the hour at which the chosen day's scheduled cleaning will occur.
/" Valid values are between 0-23 inclusive. Note that hours must be represented

/" in the 24-hour format. If you wish to disable the chosen day's cleaning, send a 0.

/

/I @param: minute will set the minute at which the chosen day's scheduled cleaning will
/ occur.

/" Valid values are between 0-59 inclusive. If you wish to disable the chosen day's

/" cleaning, send a 0.

/

// @return: None.

/!

Y e e e

extern void roombaScheduleDisableAll(void);

[R kR R kR R kR R kR Rk loRsoR R R iR Rk loRsoR R kR sk R ok ok
j; @brief: This command clears and disables all of the Roomba's cleaning schedules.

x (@param: None.

x @return: None.

/!

ﬁ***

extern void roombaSetDayTime(DAY VALUE day, uint8 t hour, uint8_t minute);
ﬁ***
/!

// @brief: This command sets the weekday and time on the Roomba. Note: If Roomba’s
/ schedule or clock button is pressed, this command will be ignored.

//

// @param: day will indicate which weekday's schedule is being changed.

/" Valid values are Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and

/" Saturday.

/!

/I @param: hour will set the hour value on the Roomba's clock.

/" Valid values are between 0-23 inclusive. Note that hours must be represented

//" in the 24-hour format.

/!

// @param: minute will set the minute value on the Roomba's clock.

// Valid values are between 0-59 inclusive.

/

// @return: None.

/!

7% 3 e st st s e st st s e shestesi s shestesk sk ke st st sk e st st s shestesie sk ke sk st skt kst sk s steste skt st stk ke skt sk sttt sttt stotoloskokosiokoskokokokostokoiokolkokskokokokskorek

extern void roombaDrive (int16_t velocity, int16_t radius);
[sk ks ok ok stk sk ok ok ok sk ok ok ok skl ok ok ok sk kol ok okt ko ok ok kool ok ok ok ok ok ok kol ok okl ook ok ok ok ok

/
/I @brief: This command controls Roomba’s drive wheels.

//

/l @param: velocity will set the average velocity of the drive wheels in millimeters
/! per second (mm/s). Positive values will make the Roomba drive forward.

/! Negative values will make the Roomba drive backward.

14

// - Valid values are between -500 to 500 inclusive.

/!

/l @param: radius will set the radius in millimeters at which Roomba will turn. A

/ longer radius makes the Roomba drive straighter, while the shorter radius

/ makes the Roomba turn more. The radius is measured from the center of the
/! turning circle to the center of the Roomba. Positive values will make the

/ Roomba turn counter-clockwise. Negative values will make the Roomba turn
/! clockwise.

/" Valid values are between -2000 to 2000 inclusive to specify the turn radius.
/I Special case values are -32768 or 32767 to make the Roomba drive straight,
/" -1 to make the Roomba turn in place clockwise, and 1 to make the Roomba
/" turn in place counter-clockwise.

1

// @return: None.

/

N***

extern void roombaDriveDirect (int16_t rightVelocity, int16_t leftVelocity);
[s s s sk Rk R s sk R R R SRR R R SR KRR SR SR R R SR S KRR R R SRR KR R sk sk RS R sk sk RSk R s ok

/
// @brief: This command lets you control the forward and backward motion of Roomba’s

/ drive wheels independently in terms of velocity in millimeters per second
/ (mm/s). A positive value makes the wheel drive forward, while a negative
/ value makes the wheel drive backward.

/

/I @param: rightVelocity controls the velocity of the right wheel.
/" Valid values are -500 to 500 inclusive.

/

/I @param: leftVelocity controls the velocity of the left wheel.

// Valid values are -500 to 500 inclusive.

/

/I @return: None.

/

N***

extern void roombaDrivePWM (int16_t rightDutyCycle, int16_t leftDutyCycle);

N***

/1
/I @brief: This command lets you control the forward and backward motion of Roomba’s

/ drive wheels independently in terms of duty cycle. A positive duty cycle

I makes that wheel drive forward, while a negative duty cycle makes it drive
1 backward.

1

/I @param: rightDutyCycle controls the duty cycle (%) of the right wheel.

// Valid values are -100 to 100 inclusive.

/

// @param: leftDutyCycle controls the duty cycle (%) of the left wheel.

/" Valid values are -100 to 100 inclusive.

/

/I @return: None.

/
//***
extern void motors (MOTORS MAIN BRUSH mainBrush, MOTORS SIDE BRUSH sideBrush,
MOTORS VACUUM vacuum);
U***
/1

// @brief: This command lets you control the forward and backward motion of Roomba’s

/ main brush, side brush, and vacuum independently. Motor velocity cannot

15

/! be controlled with this command, all motors will run at maximum speed when
/! enabled.

//

// @param: mainBrush controls the Roomba's main brush.

// Valid values are:

/! OFF to turn the main brush off

/! INWARD to turn the main brush on at full power in the inward direction
/! OUTWARD to turn the main brush on at full power in the outward direction
/

/I @param: sideBrush controls the Roomba's side brush.
/" Valid values are:
/ OFF to turn the side brush off

/! CCW to turn the side brush on at full power in the counter-clockwise direction
/! CW to turn the side brush on at full power in the clockwise direction
//

// @param: vacuum controls the Roomba's vacuum.
/" Valid values are:

/! OFF to turn the vacuum off

/! ON to turn the vacuum on at full power

//" Note that the vacuum can only run in the forward direction.
/

/l @return: None.

//

ﬁ***

extern void pwmMotors (int8 t mainBrushDutyCycle, int8 t sideBrushDutyCycle, uint8 t

vacuumDutyCycle);
ﬁ***

/!

// @brief: This command lets you control the speed of Roomba’s main brush, side brush,
/! and vacuum independently.

/!

/I @param: mainBrushDutyCycle controls the duty cycle (%) of the Roomba's main brush.
/- Valid values are -100 to 100 inclusive. Positive values turn the main brush

// inward, while negative values turn the main brush outward.

/

// @param: sideBrushDutyCycle controls the duty cycle (%) of the Roomba's side brush.
/" Valid values are -100 to 100 inclusive. Positive values turn the side brush

/I in the counter-clockwise direction, while negative values turn the side brush

/I in the clockwise direction.

I

/l @param: vacuumDutyCycle controls the duty cycle (%) of the Roomba's vacuum.

// Valid values are 0 to 100 inclusive. The vacuum only runs in the forward

// direction.

/

// @return: None.

/
N***
extern void leds (bool checkRobot, bool home, bool spot, bool debris, uint8 t powerColor, uint8_t

powerlntensity);
N***

/1

/I @brief: This command controls the LEDs common to all models of Roomba 600.

1

/l @param: checkRobot controls the power state of the Check Robot LED, which is orange.
// Valid values are false (to turn off the Check Robot LED) or true (to turn on

/I the Check Robot LED).

16

/!

/! @param: home controls the power state of the Home / Dock LED, which is green.
// Valid values are false (to turn off the Home / Dock LED) or true (to turn on
// the Home / Dock LED).

/!

/I @param: spot controls the power state of the Spot LED, which is green.

// Valid values are false (to turn off the Spot LED) or true (to turn on

// the Spot LED).

/!

/I @param: debris controls the power state of the Debris LED, which is blue.

/I Valid values are false (to turn off the Debris LED) or true (to turn on

/" the Debris LED).

/!

// @param: powerColor controls the color state of the Power LED, which is a

/! bicolor (red/green) LED.

/" Valid values are 0 to 255 inclusive, where 0 = green, 255 = red, and

/' intermediate values are intermediate colors (orange, yellow, etc).

//

/I @param: powerlntensity controls the brightness of the Power LED, which is a
/! bicolor (red/green) LED.

/- Valid values are 0 to 255 inclusive, where 0 = off, 255 = full intensity,

/" and intermediate values are intermediate intensities.

/!

/I @return: None.

/!

N***

extern void weekdayLeds (bool sun, bool mon, bool tues, bool wed, bool thur, bool fri, bool sat);
ﬁ***
/!

/I @brief: This command controls the state of the weekday LEDs present on the Roomba 560 and 570.
/! These LEDs are located above the four 7-segment displays.

/!

// @param: sun controls the red Sunday scheduling LED.

/" Valid values are false (to turn off the Sunday LED) or true (to turn on the Sunday LED).

//

/l @param: mon controls the red Monday scheduling LED.

/" Valid values are false (to turn off the Monday LED) or true (to turn on the Monday LED).

/!

/I @param: tues controls the red Tuesday scheduling LED.

/I Valid values are false (to turn off the Tuesday LED) or true (to turn on the Tuesday LED).

/

// @param: wed controls the red Wednesday scheduling LED.

/" Valid values are false (to turn off the Wednesday LED) or true (to turn on the Wednesday LED).
/

// @param: thur controls the red Thursday scheduling LED.

// Valid values are false (to turn off the Thursday LED) or true (to turn on the Thursday LED).

/!

/I @param: fri controls the red Friday scheduling LED.

/" Valid values are false (to turn off the Friday LED) or true (to turn on the Friday LED).

/!

/I @param: sat controls the red Saturday scheduling LED.

/" Valid values are false (to turn off the Saturday LED) or true (to turn on the Saturday LED).

/!

// @return: None.

/!

N***

17

extern void schedulingLeds (bool scheduleLed, bool clockLed, bool amLed, bool pmLed, bool colonLed);
ﬁ***
/!

/I @brief: This command controls the state of the scheduling LEDs present on the Roomba 560 and 570.
/!

/I @param: scheduleLed controls the red Schedule LED.

// Valid values are false (to turn off the Schedule LED) or true (to turn on the Schedule LED).

//

// @param: clockLed controls the red Clock LED.

/I Valid values are false (to turn off the Clock LED) or true (to turn on the Clock LED).

/

/I @param: amLed controls the red AM LED.

/" Valid values are false (to turn off the AM LED) or true (to turn on the AM LED).

/

// @param: pmLed controls the red PM LED.

// Valid values are false (to turn off the PM LED) or true (to turn on the PM LED).

/1

/I @param: colonLed controls the red Colon (:) LED.

// Valid values are false (to turn off the Colon LED) or true (to turn on the Colon LED).

/

/I @return: None.

/

/7% 3 e st st s e st st s ke ke st s ke shestesi sk st st s s e stest s shestesie sk ke kst sk st sheste sk st skeske sk ke st steskoste ke stk sk stk st stk stttk stekosiolstokoiokosokoloskokokokokoskokoikoroek

extern void digitLedsRaw (DIGIT POSITION digit, bool a, bool b, bool ¢, bool d, bool e, bool f, bool g);

ﬁ***

/
/I @brief: This command controls the four 7 segment red LED displays on the

/! Roomba 560 and 570. The seven segments are labeled as follows:

/!

/! A

/" | |

// F| B

I G |

/" | \

/ E| |IC

/ | D |

/1

/ Note: this function cannot be used in conjunction with the digitLedsAscii
/! function. This function will also store previous values written to the

/ four 7-segment displays via the digitLedsRaw function. This can be cleared
/ either via the digitLedsRaw function (by manually turning off all segments
/! for each digit) or via the digitLedsRawClear function.

/!

// @param: digit selects which 7 segment display is being written to.
// Valid values are FAR_LEFT, MIDDLE LEFT, MIDDLE RIGHT, and FAR RIGHT.
/!

/I @param: a controls the 'A' LED segment on the selected digit.

/" Valid values are false (to turn off the 'A' segment) or true (to turn
/" onthe'A' segment).

/1

/I @param: b controls the 'B' LED segment on the selected digit.

/" Valid values are false (to turn off the 'B' segment) or true (to turn
/" on the 'B' segment).

1

/l @param: c controls the 'C' LED segment on the selected digit.

// Valid values are false (to turn off the 'C' segment) or true (to turn

18

/" on the 'C' segment).

//

/I @param: d controls the 'D' LED segment on the selected digit.

/" Valid values are false (to turn off the 'D' segment) or true (to turn
/" on the 'D' segment).

/

// @param: e controls the 'E' LED segment on the selected digit.

/" Valid values are false (to turn off the 'E' segment) or true (to turn
// on the 'E' segment).

/1

/I @param: f controls the 'F' LED segment on the selected digit.

// Valid values are false (to turn off the 'F' segment) or true (to turn
//" on the 'F' segment).

//

// @param: g controls the 'G' LED segment on the selected digit.

/" Valid values are false (to turn off the 'G' segment) or true (to turn
/" on the 'G' segment).

/

/I @return: None.

/

ﬁ***

extern void buttons (BUTTON button);
/***

/!
// @brief: If given an argument of the name of one of the 8 buttons on the Roomba,

/! this function digitally presses the respective button on the Roomba.
/!

/' Bit| 716 |5 4] 3] 2] 1] 0

/!

/" Value | Clock |Schedule| Day | Hour | Minute | Dock | Spot | Clean
/!

/I @param: digit selects which 7 segment display is being written to.

/I Valid values are CLEAN, SPOT, DOCK, MINUTE, HOUR, DAY, SCHEDULE, CLOCK, and
/I ALL.

/

/! @return: None.

/!

ﬁ***

extern void digitLedsAscii (DIGIT POSITION digit);

[s R s sk R R SR s KRR R R SRR KRR R SRR R R SR SR Rk RS R SRR R R SRR KRR R Sk ks R sk sk sk R sk Rk ok
/!

/I @brief: This command will print one of the ASCII characters listed in the table

/! below on the 7 segment display given as an argument. Due to the
/! limitations of a 7 segment display, all characters are an approximation
/ and not all ASCII codes are listed.

/

//'|Code|Display|Code | Display | Code |Display | Code |Display|
/32 53 5 70,102 F 86,118 V

/33 1 54 6 71,103 G 87,119 W

/34 7 55 7 72,104 H 88,120 X

/I35 # 56 8 73,105 1 89,121 Y

/37 % 57 9 74,106 J 90,122 Z

/38 & 58 : 75,107 K 91,40 [

/39 7 59 ; 76,108 L 92 \

/44 60 i 77,109 M 93,41]

/I 45 - 61 = 78,110 N 94 A

19

/46 . 62 0 79,111 O 95 ~
/41 63 ? 80,112 P 96 ‘
/48 0 65,97 A 81,113 Q 123 ¢
/49 1 66,98 B 82,114 R 124 —
/50 2 67,99 C 83,36,1158 125)
/51 3 68,100 D 84,116 T 126 ~
/52 4 69,101 E 85,117 U

//

//

/I @param: button selects which button on the Roomba to press.

// Valid values are FAR_LEFT, MIDDLE LEFT, MIDDLE RIGHT, and FAR RIGHT.

//

/I @return: None.

//
U***
extern void song (uint8 t songNumber, uint8 t songLength, uint8_t songNotes[],

uint8_t songNotesDuration[]);
ﬁ***

//
/I @brief: This command lets you write up to 4 songs to store in the Roomba's memory,

/l each of which can be up to 16 notes long. The play() command can be used
/! to play one of the songs stored in memory. The duration of each note

/! should be input in units of 1/64th of a second (for example, a note

// meant to last one-half second should be given a duration of 32). Refer to

// the chart below for song numbers that correspond to each note.

/1

// [Number|Note|Frequency [Number | Note |Frequency|Number| Note | Frequency |
/31 G 49.0 58 A# 233.1 8 C# 11088
/32 G# 519 59 B 2469 8 D 1174.7
/33 A 550 60 C 261.6 8 D# 12445
/34 A# 583 61 C# 2772 88 E 13185
/'35 B 617 62 D 2937 89 F 1396.9
/36 C 654 63 D# 311.1 90 F# 1480.0
/137 C# 693 64 E 3296 91 G 1568.0
/38 D 734 65 F 3492 92 G# 16613
/39 D# 778 66 F# 3700 93 A 1760.0
/40 E 824 67 G 3920 94 A# 1864.7
// 41 F 873 68 G# 4153 95 B 1975.6
/42 F# 925 69 A 4400 96 C 2093.1
/43 G 980 70 A# 4662 97 C# 22175
// 44 G# 103.8 71 B 4939 98 D 23494
/45 A 110.0 72 C 5233 99 D# 2489.1
/46 A# 1165 73 C# 5544 100 E 2637.1
// 47 B 1235 74 D 5873 101 F 27939
// 48 C 1308 75 D# 6223 102 F# 2960.0
/49 C# 1386 76 E 6593 103 G 3136.0
//' 50 D 146.8 77 F 6985 104 G# 33225
//'51 D# 155.6 78 F# 740.0 105 A 3520.1
/52 E 1648 79 G 784.0 106 A# 37294
/53 F 174.6 80 G# 830.6 107 B 39512
/54 F# 1850 81 A 880.0

//'55 G 1960 82 A# 9324

// 56 G# 2077 83 B 9878

/57 A 2200 84 C 1046.5

/I @param: songNumber selects which of the 4 songs the new sequence is to be stored

20

/! to.

// - Valid values are between 0-3 inclusive.

/!

/I @param: songlLength describes the number of notes in the new song.
// Valid values are between 1-16 inclusive.

/!

/I @param: songNotes[] is an array of unsigned 8-bit integers that contains the number
/! for each note given by the table above.

/" Valid values are between 31-107 inclusive.

/

/I @param: songNotesDuration[] is an array of unsigned 8-bit integers that contains the
/ duration of each note in units of 1/64th of a second.

/I Valid values are between 0-255 inclusive.

/

// @return: None.

/!

ﬁ***

extern void play (uint8 t songNumber);
Y e e

/!
/l @brief: This command will play one of the 4 songs stored in memory using the song()
/ function.

//

/I @param: songNumber gives the function the song number from the Roomba's memory to
/! play.

// Valid values are between 0-3 inclusive.

/!

// @return: None.

/

ﬁ***

extern void sensors (uint8_t packetld);
/***

/

/I @brief: This command requests one of the 58 sensor packets available with the OI.
/!

//|Group Packet ID|Packet Size|Contains Packets|

/10 26 7-26

/11 10 7-16

/2 6 17-20

/'3 10 21-26

/I 4 14 27-34

/I'5 12 35-42

/16 52 7-42

// 100 80 7-58

// 101 28 43 -58

// 106 12 46 - 51

// 107 9 54 - 58

/

// @param: packetld gives the packet ID of the requested packet to the OI. If given
// a value of 6, this function will return all 58 packets, whle a value of
/ 0-5 will return specific subgroups of sensors.

/" Valid values are between 0-58 inclusive and 100-107 inclusive.

1

// @return: int16_t result.

/

U***

21

extern void queryList (uint8 t packetld, uint8_t packetNumber);
ﬁ***

//
/I @brief: This command requests a list of different sensor packets whose results are

/! returned once, as in the sensors() command. The packets are returned in

/! the order specified.

/

// @param: packetld gives the packet ID of the requested packet to the OI. If given
// a value of 6, this function will return all 58 packets, whle a value of

/! 0-5 will return specific subgroups of sensors.

// Valid values are between 0-58 inclusive and 100-107 inclusive.

/

// @param: packetNumber gives the number of packets requested in the list.
/" Valid values are between 1-67 inclusive.

//

// @return: int16 _t result.

//

Y e e e

extern void stream (uint8_t packetld, uint8 t packetNumber);
N***

/
/I @brief: This command starts a stream containing a list of different sensor packets

/! whose results are returned every 15 ms, which is the rate Roomba uses to
/! update data. The packets are returned in the order specified. The packets
/1 are returned in the format:

/! [19][N-bytes][Packet ID 1][Packet 1 data...][Packet ID 2][Packet 2 data...]
/ [Checksum)]

/! The checksum is a 1-byte value that is the 8-bit complement of all the

/ bytes in the packet, meaning if you add all of the bytes in the packet,

/ including the checksum, the low byte of the result will be 0.

/

// @param: packetld gives the packet ID of the requested packet to the OI. If given
/! a value of 6, this function will return all 58 packets, whle a value of

/ 0-5 will return specific subgroups of sensors.

// Valid values are between 0-58 inclusive and 100-107 inclusive.

/!

/I @param: packetNumber gives the number of packets requested in the list.
// Valid values are between 1-67 inclusive.

/

// @return: int16 _t result.

/

N***

extern void pauseResumeStream (bool toggleStream);
Y T e e e L L

1

/I @brief: This command either pauses or resumes the data stream given in stream(),

/ without clearing the list of requested packets.

/

/I @param: toggleStream describes whether to pause or resume the stream, with 0
/ indicating a pause and a 1 indicating a resume.

// Valid values are 0 and 1.

/

// @return: None.
”***

22

APPENDIX B

SOURCE CODE LISTING

23

/*

* create2_driver.c

*

* Created on: August 21,2019

* Author: Zachary Holloway and Sophie Soueid
*/

#include "ti/devices/msp432p4xx/inc/msp.h"
#include "create2 driver.h"

#include "stdio.h"

#include "string.h"

#include "driverlib.h"

/* roombaSchedule function defines */

#define DAY _ENABLE)

#define SUNDAY_ HOUR 2)

#define SUNDAY_ MINUTE 3)

#define MONDAY_ HOUR 4)

#define MONDAY_ MINUTE (5)

#define TUESDAY_ HOUR 6)

#define TUESDAY MINUTE 7

#define WEDNESDAY HOUR ®)

#define WEDNESDAY MINUTE)

#define THURSDAY_ HOUR (10)

#define THURSDAY_ MINUTE (11)

#define FRIDAY_ HOUR (12)

#define FRIDAY MINUTE (13)

#define SATURDAY_ HOUR (14)

#define SATURDAY MINUTE (15)

/* motors function defines */

#define MAIN_BRUSH_DIRECTION (0b00010000)
#define SIDE_ BRUSH DIRECTION (0b00001000)
#define MAIN_ BRUSH_POWER (0b00000100)
#define VACUUM_POWER (0b00000010)
#define SIDE_ BRUSH POWER (0b00000001)
/* leds function defines */

#define CHECK_ROBOT _LED (0b00001000)
#define HOME _DOCK _LED (0b00000100)
#define SPOT_LED (0b00000010)
#define DEBRIS_LED (0b00000001)

/* weekdayLeds function defines */

#define SUNDAY_LED (0b00000001)
#define MONDAY LED (0b00000010)
#define TUESDAY LED (0b00000100)
#define WEDNESDAY LED (0b00001000)
#define THURSDAY LED (0b00010000)
#define FRIDAY LED (0b00100000)
#define SATURDAY LED (0b01000000)

/* scheduleLeds function defines */

#define SCHEDULE _LED (0b00010000)
#define CLOCK_LED (0b00001000)
#define AM_LED (0b00000100)

#define PM_LED (0b00000010)

24

#define COLON_LED (0b00000001)

/* digitLedsRaw function defines */

#define RAW LED A (0b00000001)
#define RAW _LED B (0b00000010)

#define RAW LED C (0b00000100)

#define RAW _LED D (0b00001000)

#define RAW_LED E (0b00010000)

#define RAW_LED F (0b00100000)

#define RAW_LED G (0b01000000)

#define EUSCI_AO_BASE (PERIPH_BASE +0x00001000)
#define EUSCI_A1_BASE (PERIPH_BASE +0x00001400)
#define EUSCI_A2_BASE (PERIPH_BASE +0x00001800)
#define EUSCI_A3_BASE (PERIPH_BASE +0x00001C00)

//#define EUSCI_A_UART_CLOCKSOURCE_SMCLK (EUSCI_A_CTLWO SSEL__SMCLK)
//#define EUSCI_A_UART CLOCKSOURCE_ACLK (EUSCI A _CTLWO_SSEL _ACLK)

uint8 t commandBuffer[20];

intl16_t responseBuffer[20];

int16_t rxBuffer[1024];

uint16_t roombaBufferIndex = 0;

uint8 t song0Array[34] = {CREATE2 OPCODE SONG, 0};

uint8 t songlArray[34] = {CREATE2 OPCODE SONG, 1};

uint8 t song2Array[34] = {CREATE2 OPCODE SONG, 2};

uint8_t song3Array[34] = {CREATE2 OPCODE_SONG, 3};

uint8_t scheduleArray[] = {CREATE2 OPCODE SCHEDULE, 0, 0, 0, 0, 0, 0, 0,0, 0, 0,0, 0, 0, 0, 0};
uint8_t schedulingLedsArray[] = {CREATE2 OPCODE SCHEDULING LEDS, 0, 0};
uint8 t digitLedsRawArray[] = {CREATE2 OPCODE DIGIT LEDS RAW, 0,0, 0, 0};
uint8 t digitLedsAsciiArray[] = {CREATE2 OPCODE DIGIT LEDS ASCII, 0,0, 0, 0};
uint8 t packetIDList[59] = {CREATE2 OPCODE SENSORS};

uint32_t clockSpeed;
uint32_t eusciChannel;
uint8_t eusciFlag;

void sendUART (void) {
inti;
int length = sizeof(commandBuffer);
for (1 =0; i < length; i++){
while (/(EUSCI_A2->IFG & EUSCI A IFG TXIFG));
EUSCI_A2->TXBUF = commandBuffer[i];
H

memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaStart (void) {
commandBuffer[0] = CREATE2 OPCODE START;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaReset (void) {
commandBuffer[0] = CREATE2 OPCODE RESET;
sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

25

}

void roombaStop (void) {
commandBuffer[0] = CREATE2 _OPCODE_STOP;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void setRoombaBaud (uint32_t valueBaud) {

switch (valueBaud)

{

case 300:
commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1] = 0;
break;

case 600:
commandBuffer[0] = CREATE2 OPCODE_BAUD;
commandBuffer[1] = 1;
break;

case 1200:
commandBuffer[0] = CREATE2_OPCODE _BAUD;
commandBuffer[1] = 2;
break;

case 2400:
commandBuffer[0] = CREATE2 _OPCODE BAUD;
commandBuffer[1] = 3;
break;

case 4800:
commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1] = 4;
break;

case 9600:
commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1] =5;
break;

case 14400:
commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1] = 6;
break;

case 19200:
commandBuffer[0] = CREATE2 OPCODE_BAUD;
commandBuffer[1] =7;
break;

case 28800:
commandBuffer[0] = CREATE2 OPCODE _BAUD;
commandBuffer[1] = §;
break;

case 38400:
commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1]=9;
break;

case 57600:

commandBuffer[0] = CREATE2 OPCODE BAUD;
commandBuffer[1] = 10;
break;

26

case 115200:
commandBuffer[0] = CREATE2_OPCODE_BAUD;
commandBuffer[1] =11,
break;
case default:
return;
}
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

//delay 100ms
H

void roombaSafe (void) {
commandBuffer[0] = CREATE2 OPCODE SAFE;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaFull (void) {
commandBuffer[0] = CREATE2 OPCODE_FULL;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaClean (void) {
commandBuffer[0] = CREATE2 OPCODE CLEAN;
sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaMax (void) {
commandBuffer[0] = CREATE2 OPCODE MAX;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaSpot (void) {
commandBuffer[0] = CREATE2 OPCODE SPOT;
sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaSeekDock (void) {
commandBuffer[0] = CREATE2 OPCODE_SEEK DOCK;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaPower (void) {
commandBuffer[0] = CREATE2 OPCODE POWER;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaSchedule (DAY VALUE day, bool enable, uint8_t hour, uint8_t minute)

27

if ((hour > 23)||(minute > 59))
return;
else if (enable) //if enable is true
scheduleArray[DAY ENABLE] |= day; //set the day enable value
else //if enable is false
scheduleArray[DAY ENABLE] &= ~day; //clear the day enable value

switch (day)
{

case SUNDAY:
scheduleArray[SUNDAY HOUR] = hour;
scheduleArray[SUNDAY MINUTE] = minute;
break;

case MONDAY:
scheduleArray[MONDAY_ HOUR] = hour;
scheduleArray[MONDAY MINUTE] = minute;
break;

case TUESDAY:
scheduleArray[TUESDAY HOUR] = hour;
scheduleArray[TUESDAY MINUTE] = minute;
break;

case WEDNESDAY:
scheduleArray[WEDNESDAY HOUR] = hour;
scheduleArray[WEDNESDAY MINUTE] = minute;
break;

case THURSDAY:
scheduleArray[THURSDAY HOUR] = hour;
scheduleArray[THURSDAY MINUTE] = minute;
break;

case FRIDAY:
scheduleArray[FRIDAY HOUR] = hour;
scheduleArray[FRIDAY MINUTE] = minute;
break;

case SATURDAY:
scheduleArray[SATURDAY HOUR] = hour;
scheduleArray[SATURDAY MINUTE] = minute;
break;

}

memcpy(commandBuffer, scheduleArray, sizeof(scheduleArray));
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaScheduleDisableAll (void) {
memset(scheduleArray, 0, sizeof(scheduleArray));
scheduleArray[0] = CREATE2 OPCODE_SCHEDULE;
memcpy(commandBuffer, scheduleArray, sizeof(scheduleArray));
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaSetDayTime (DAY VALUE day, uint8 t hour, uint§ t minute) {
commandBuffer[0] = CREATE2 OPCODE SET DAY TIME;
commandBuffer[1] = day;

28

commandBuffer[2] = hour;

commandBuffer[3] = minute;

sendUART();

memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaDrive (int16_t velocity, int16_t radius) {
commandBuffer[0] = CREATE2_ OPCODE_DRIVE;
commandBuffer[1] = velocity >> §;
commandBuffer[2] = velocity & 0x00FF;
commandBuffer[3] = radius >> §;
commandBuffer[4] = radius & 0x00FF;
sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaDriveDirect (int16_t rightVelocity, int16_t leftVelocity) {
commandBuffer[0] = CREATE2 _OPCODE_DRIVE DIRECT;

commandBuffer[1] = rightVelocity >> 8;
commandBuffer[2] = rightVelocity & 0x00FF;
commandBuffer[3] = leftVelocity >> §;
commandBuffer[4] = leftVelocity & 0x00FF;
sendUART();

memset(commandBuffer, 0, sizeof(commandBuffer));

}

void roombaDrivePWM (int16 _t rightDutyCycle, int16_t leftDutyCycle) {
int16_t rightPWM;
int16_t leftPWM;
rightPWM = 255*rightDutyCycle/100;
leftPWM = 255*]eftDutyCycle/100;

commandBuffer[0] = CREATE2_ OPCODE_DRIVE _PWM;
commandBuffer[1] = rightPWM >> §;
commandBuffer[2] = rightPWM & 0x00FF;
commandBuffer[3] = leftPWM >> §;
commandBuffer[4] = leftPWM & 0x00FF;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));
H

void motors (MOTORS_MAIN BRUSH mainBrush, MOTORS_SIDE BRUSH sideBrush,
MOTORS_VACUUM vacuum) {

uint8_t motorsControl;

motorsControl = 0;

switch (mainBrush)
{
case OFF:
motorsControl &= ~MAIN_ BRUSH POWER; // turn off main brush
break;
case INWARD:
motorsControl |= MAIN BRUSH POWER; // turn on main brush
motorsControl &= ~MAIN BRUSH DIRECTION; // set main brush to inward
break;
case OUTWARD:

29

motorsControl |= MAIN_BRUSH POWER; // turn on main brush
motorsControl |= MAIN_BRUSH DIRECTION; // set main brush to outward
break;

}

switch (sideBrush)
{
case OFF:
motorsControl &= ~SIDE_BRUSH POWER; // turn off side brush
break;
case CCW:
motorsControl |= SIDE BRUSH POWER; // turn on side brush
motorsControl &= ~SIDE BRUSH DIRECTION; // set side brush to ccw
break;
case CW:
motorsControl |= SIDE_ BRUSH POWER; // turn on side brush
motorsControl |= SIDE_ BRUSH DIRECTION; // set side brush to cw
break;

H

switch (vacuum)
{
case OFF:
motorsControl &= ~VACUUM_POWER; // turn off vacuum
break;
case ON:
motorsControl |= VACUUM_POWER; // turn on vacuum
break;

}

commandBuffer[0] = CREATE2 OPCODE_MOTORS;
commandBuffer[1] = motorsControl;

sendUART();

memset(commandBuffer, 0, sizeof(commandBuffer));

H

void pwmMotors (int§8_t mainBrushDutyCycle, int8_t sideBrushDutyCycle, uint8 t vacuumDutyCycle) {
mainBrushDutyCycle = 127*mainBrushDutyCycle/100;
sideBrushDutyCycle = 127*sideBrushDutyCycle/100;
vacuumDutyCycle = 127*vacuumDutyCycle/100;

commandBuffer[0] = CREATE2 OPCODE_PWM_MOTORS;
commandBuffer[1] = mainBrushDutyCycle;
commandBuffer[2] = sideBrushDutyCycle;
commandBuffer[3] = vacuumDutyCycle;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

H

void leds (bool checkRobot, bool home, bool spot, bool debris, uint8 t powerColor, uint8 t
powerlntensity) {

uint8_t ledBits;

ledBits = 0;

if (checkRobot)
ledBits |= CHECK_ROBOT LED;

30

else
ledBits &= ~CHECK _ROBOT _LED;

if (home)

ledBits = HOME DOCK _LED;
else

ledBits &= ~HOME DOCK LED;

if (spot)

ledBits = SPOT_LED;
else

ledBits &= ~SPOT_LED;

if (debris)

ledBits = DEBRIS_LED;
else

ledBits &= ~DEBRIS_LED;

commandBuffer[0] = CREATE2 OPCODE_LEDS;
commandBuffer[1] = ledBits;
commandBuffer[2] = powerColor;
commandBuffer[3] = powerlntensity;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));
H
void weekdayLeds (bool sun, bool mon, bool tues, bool wed, bool thur, bool fri, bool sat) {
if (sun)
schedulingledsArray[1] |= SUNDAY LED;
else

schedulingLedsArray[1] &= ~SUNDAY LED;

if (mon)

schedulingLedsArray[1] |- MONDAY_ LED;
else

schedulingledsArray[1] &= ~MONDAY LED;

if (tues)

schedulingLedsArray[1] |= TUESDAY LED;
else

schedulingLedsArray[1] &= ~TUESDAY_ LED;

if (wed)

schedulingLedsArray[1] |- WEDNESDAY LED;
else

schedulingLedsArray[1] &= ~WEDNESDAY LED;

if (thur)

schedulinglLedsArray[1] |- THURSDAY LED;
else

schedulingLedsArray[1] &= ~THURSDAY LED;

if (fri)

schedulingLedsArray[1] |= FRIDAY LED;
else

31

schedulinglLedsArray[1] &= ~FRIDAY LED;

if (sat)

schedulingLedsArray[1] |= SATURDAY LED;
else

schedulingLedsArray[1] &= ~SATURDAY LED;

memcpy(commandBuffer, schedulingLedsArray, sizeof(schedulingledsArray));

sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));
H
void schedulingleds (bool scheduleLed, bool clockLed, bool amLed, bool pmLed, bool colonLed) {
if (scheduleLed)
schedulingLedsArray[2] |= SCHEDULE LED;
else

schedulingLedsArray[2] &= ~SCHEDULE LED;

if (clockLed)

schedulingLedsArray[2] |- CLOCK LED;
else

schedulingLedsArray[2] &= ~CLOCK LED;

if (amLed)

schedulingLedsArray[2] |= AM_LED;
else

schedulingLedsArray[2] &= ~AM_LED;

if (pmLed)

schedulinglLedsArray[2] |= PM_LED;
else

schedulingLedsArray[2] &= ~PM_LED;

if (colonLed)

schedulingLedsArray[2] |= COLON_LED;
else

schedulinglLedsArray[2] &= ~COLON_LED;

memcpy(commandBuffer, schedulingledsArray, sizeof(schedulingLedsArray));

sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));
H
void digitLedsRaw (DIGIT POSITION digit, bool a, bool b, bool ¢, bool d, bool e, bool f, bool g) {
if (a)
digitLedsRawArray[digit] = RAW_LED A;
else

digitLedsRawArray[digit] &= ~RAW_LED A,

if (b)

digitLedsRawArray[digit] = RAW_LED B;
else

digitLedsRawArray[digit] &= ~RAW _LED B;

32

}

if (c)

digitLedsRawArray[digit] |= RAW_LED C;
else

digitLedsRawArray[digit] &= ~RAW_LED C;

if (d)

digitLedsRawArray[digit] |= RAW_LED D;
else

digitLedsRawArray[digit] &= ~RAW_LED D;

if (e)

digitLedsRawArray[digit] = RAW_LED E;
else

digitLedsRawArray[digit] &= ~RAW_LED E;

if ()

digitLedsRawArray[digit] |= RAW_LED F;
else

digitLedsRawArray[digit] &= ~RAW_LED F;

if (2)

digitLedsRawArray[digit] |= RAW_LED G;
else

digitLedsRawArray[digit] &= ~RAW_LED G;

memcpy(commandBuffer, digitLedsRawArray, sizeof(digitLedsRawArray));
sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

void buttons (BUTTON button) {

}

commandBuffer[0] = CREATE2 OPCODE BUTTONS;
commandBuffer[1] = button;

sendUART();

memset(commandBuffer, 0, sizeof(commandBuffer));

void digitLedsAscii (DIGIT POSITION digit) {

//these are all the characters that are possible for display
char ascii;
char *returnPointer;

ch = digitLedsRawArray[digit];
ret = strchr(str, ascii);
if (!returnPointer)
print("Error: Character is not valid for this display.\n")
else
commandBuffer[digit] = ascii;

memcpy(commandBuffer, digitLedsAsciiArray, sizeof(digitLedsAsciiArray));

sendUARTY();
memset(commandBuffer, 0, sizeof(commandBuffer));

33

void song (uint8_t songNumber, uint8_t songLength, uint8_t songNotes[], uint8_t songNotesDuration[]) {
uint8 ti;

if (songNumber == 0) {
for (i =0; i <songLength; i++) {
song0Array[2 * i + 2] = songNotes][i];
song0Array[2 * i + 3] = songNotesDuration[i];
memcpy(commandBuffer, song0Array, sizeof(song0Array));
}
}
else if (songNumber == 1) {
for (i = 0; i <songLength; i++) {
songlArray[2 * i + 2] = songNotes][i];
songlArray[2 * i + 3] = songNotesDuration[i];
memcpy(commandBuffer, songlArray, sizeof(song0Array));
}
}
else if (songNumber == 2) {
for (= 0; i < songLength; i++) {
song2Array[2 * i + 2] = songNotes][i];
song2Array[2 * i+ 3] = songNotesDuration[i];
memcpy(commandBuffer, song2 Array, sizeof(song0Array));

}

else if (songNumber == 3) {
for (1= 0; i <songLength; i++) {
song3Array[2 * i + 2] = songNotes[i];
song3Array[2 * i + 3] = songNotesDuration[i];
memcpy(commandBuffer, song3Array, sizeof(song0Array));
}
H

sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void play (uint8_t songNumber) {
commandBuffer[0] = CREATE2 OPCODE _PLAY;
commandBuffer[1] = songNumber;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));
}
void sensors (uint8_t packetld) {
commandBuffer[0] = CREATE2 OPCODE_SENSORS;
commandBuffer[1] = packetld;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void queryList (uint8_t packetldList[], uint8 t packetNumber) {
uint8 ti;
commandBuffer[0] = CREATE2 OPCODE_QUERY_LIST;
commandBuffer[1] = packetNumber;
for (i=0;1<58; i++)
commandBuffer[i+2] = packetIdList[i];
sendUART();

34

memset(commandBuffer, 0, sizeof(commandBuffer));

}

void stream (uint8_t packetIdList[], uint8 t packetNumber) {
uint8 ti;
commandBuffer[0] = CREATE2 OPCODE_STREAM;
commandBuffer[1] = packetNumber;
for 1=0;1<58; i++)
commandBuffer[i+2] = packetIdList[i];
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

}

void pauseResumeStream(bool toggleStream) {
commandBuffer[0] = CREATE2 OPCODE PAUSE RESUME STREAM;
commandBuffer[1] = toggleStream,;
sendUART();
memset(commandBuffer, 0, sizeof(commandBuffer));

35

REFERENCES
Hackster.io, “Driving the iRobot Create 2 with the MSP432P401R”. [Online]. Available:
https://www.hackster.io/holloway-soueid/driving-the-irobot-create-2-with-the-
msp432p401r-35fc16
iRobot, “iRobot® Create® 2 Open Interface (OI) Specification based on the iRobot®
Roomba® 600,” Adafruit. [Online]. Available: https://cdn-

shop.adafruit.com/datasheets/create 2 Open_Interface Spec.pdf.

36

BIOGRAPHICAL INFORMATION

Sophie Soueid is a senior at the University of Texas at Arlington who is pursuing
both a B.S. in Electrical Engineering and a B.A. in French. She also has minors in
Mathematics, French Localization & Translation, and Business Administration, and is
currently taking graduate courses in electrical engineering through the fast-track program.
During her time at UTA, Sophie has served as an officer in five different student
organizations, the engineering ones being Eta Kappa Nu and Tau Beta Pi, and was named
the awardee of the Dr. Wayne Duke Outstanding Student Leader Award in Spring 2019.

In addition to this driver and her senior design project, Sophie has worked on
several projects in the field of Electrical Engineering, including an REU project to create a
wearable magnetic sensor with tactile feedback, a junior design project to create a heart
rate alarm clock, an undergraduate course project to create a multimeter, and a graduate
course project to create a programmable pulse generator. In regard to her French degree,
Sophie participated in the UTA in Montreal study abroad program in Summer 2018 and
also plans to obtain Honors with a thesis focused on an exploration of machine translation
of a low-resource French variant.

Sophie is now finishing up her third semester as a TA for Circuit Analysis I and her
first year as a CWEP for Lockheed Martin. Immediately after graduating, she plans to start
a full-time position in Component Engineering at Lockheed Martin Missiles and Fire

Control and plans to concurrently to pursue an M.S. in Electrical Engineering part-time.

37

	DRIVING THE IROBOT CREATE 2: COMMAND FUNCTIONS
	Recommended Citation

	DRIVING THE IROBOT CREATE 2:
	COMMAND FUNCTIONS
	DRIVING THE IROBOT CREATE 2:
	COMMAND FUNCTIONS
	TABLE OF CONTENTS
	1.1 Motivation
	2.1 The sendUART Function
	2.2 Formatting Data for Commands
	2.3 Sending Data to the Create 2

